Sample records for absolute positioning accuracy

  1. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    PubMed Central

    Deng, Mingjun; Li, Jiansong

    2017-01-01

    The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675

  2. Cadastral Database Positional Accuracy Improvement

    NASA Astrophysics Data System (ADS)

    Hashim, N. M.; Omar, A. H.; Ramli, S. N. M.; Omar, K. M.; Din, N.

    2017-10-01

    Positional Accuracy Improvement (PAI) is the refining process of the geometry feature in a geospatial dataset to improve its actual position. This actual position relates to the absolute position in specific coordinate system and the relation to the neighborhood features. With the growth of spatial based technology especially Geographical Information System (GIS) and Global Navigation Satellite System (GNSS), the PAI campaign is inevitable especially to the legacy cadastral database. Integration of legacy dataset and higher accuracy dataset like GNSS observation is a potential solution for improving the legacy dataset. However, by merely integrating both datasets will lead to a distortion of the relative geometry. The improved dataset should be further treated to minimize inherent errors and fitting to the new accurate dataset. The main focus of this study is to describe a method of angular based Least Square Adjustment (LSA) for PAI process of legacy dataset. The existing high accuracy dataset known as National Digital Cadastral Database (NDCDB) is then used as bench mark to validate the results. It was found that the propose technique is highly possible for positional accuracy improvement of legacy spatial datasets.

  3. Absolute frequencies of water lines near 790 nm with 10-11 accuracy

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hua, T.-P.; Tao, L.-G.; Sun, Y. R.; Liu, A.-W.; Hu, S.-M.

    2018-01-01

    Water lines in the infrared are convenient frequency references. We present absolute positions of several H216O ro-vibrational transitions around 790 nm using comb-locked cavity ring-down saturation spectroscopy. Lamb dips of 6 water lines with saturation power in the range of 70-130 kW/cm2 were observed and the line positions were determined with an accuracy of 25 kHz, corresponding to a fractional uncertainty of 6.6 × 10-11. The present work demonstrates the capability to considerably improve the accuracy of the water line positions in the infrared.

  4. Alaska national hydrography dataset positional accuracy assessment study

    USGS Publications Warehouse

    Arundel, Samantha; Yamamoto, Kristina H.; Constance, Eric; Mantey, Kim; Vinyard-Houx, Jeremy

    2013-01-01

    Initial visual assessments Wide range in the quality of fit between features in NHD and these new image sources. No statistical analysis has been performed to actually quantify accuracy Determining absolute accuracy is cost prohibitive (must collect independent, well defined test points) Quantitative analysis of relative positional error is feasible.

  5. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  6. Confidence-accuracy calibration in absolute and relative face recognition judgments.

    PubMed

    Weber, Nathan; Brewer, Neil

    2004-09-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced negligibly different CA calibration, whereas no significant difference was observed for simultaneous and sequential mini-lineups. Further, the effect of difficulty on CA calibration was equivalent across judgment and mini-lineup types. It is interesting to note that positive (i.e., old) recognition judgments demonstrated strong CA calibration whereas negative (i.e., new) judgments evidenced little or no CA association. Implications for eyewitness identification are discussed. (c) 2004 APA, all rights reserved.

  7. Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz absolute frequency accuracy.

    PubMed

    Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M

    2012-04-23

    A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)). © 2012 Optical Society of America

  8. Absolute GPS Positioning Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  9. Development and validation of a cerebral oximeter capable of absolute accuracy.

    PubMed

    MacLeod, David B; Ikeda, Keita; Vacchiano, Charles; Lobbestael, Aaron; Wahr, Joyce A; Shaw, Andrew D

    2012-12-01

    Cerebral oximetry may be a valuable monitor, but few validation data are available, and most report the change from baseline rather than absolute accuracy, which may be affected by individuals whose oximetric values are outside the expected range. The authors sought to develop and validate a cerebral oximeter capable of absolute accuracy. An in vivo research study. A university human physiology laboratory. Healthy human volunteers were enrolled in calibration and validation studies of 2 cerebral oximetric sensors, the Nonin 8000CA and 8004CA. The 8000CA validation study identified 5 individuals with atypical cerebral oxygenation values; their data were used to design the 8004CA sensor, which subsequently underwent calibration and validation. Volunteers were taken through a stepwise hypoxia protocol to a minimum saturation of peripheral oxygen. Arteriovenous saturation (70% jugular bulb venous saturation and 30% arterial saturation) at 6 hypoxic plateaus was used as the reference value for the cerebral oximeter. Absolute accuracy was defined using a combination of the bias and precision of the paired saturations (A(RMS)). In the validation study for the 8000CA sensor (n = 9, 106 plateaus), relative accuracy was an A(RMS) of 2.7, with an absolute accuracy of 8.1, meeting the criteria for a relative (trend) monitor, but not an absolute monitor. In the validation study for the 8004CA sensor (n = 11, 119 plateaus), the A(RMS) of the 8004CA was 4.1, meeting the prespecified success criterion of <5.0. The Nonin cerebral oximeter using the 8004CA sensor can provide absolute data on regional cerebral saturation compared with arteriovenous saturation, even in subjects previously shown to have values outside the normal population distribution curves. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution

    NASA Astrophysics Data System (ADS)

    Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng

    2018-05-01

    The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.

  11. Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments

    ERIC Educational Resources Information Center

    Weber, Nathan; Brewer, Neil

    2004-01-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…

  12. Constraint on Absolute Accuracy of Metacomprehension Assessments: The Anchoring and Adjustment Model vs. the Standards Model

    ERIC Educational Resources Information Center

    Kwon, Heekyung

    2011-01-01

    The objective of this study is to provide a systematic account of three typical phenomena surrounding absolute accuracy of metacomprehension assessments: (1) the absolute accuracy of predictions is typically quite low; (2) there exist individual differences in absolute accuracy of predictions as a function of reading skill; and (3) postdictions…

  13. A Comparative Study of Precise Point Positioning (PPP) Accuracy Using Online Services

    NASA Astrophysics Data System (ADS)

    Malinowski, Marcin; Kwiecień, Janusz

    2016-12-01

    Precise Point Positioning (PPP) is a technique used to determine the position of receiver antenna without communication with the reference station. It may be an alternative solution to differential measurements, where maintaining a connection with a single RTK station or a regional network of reference stations RTN is necessary. This situation is especially common in areas with poorly developed infrastructure of ground stations. A lot of research conducted so far on the use of the PPP technique has been concerned about the development of entire day observation sessions. However, this paper presents the results of a comparative analysis of accuracy of absolute determination of position from observations which last between 1 to 7 hours with the use of four permanent services which execute calculations with PPP technique such as: Automatic Precise Positioning Service (APPS), Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP), GNSS Analysis and Positioning Software (GAPS) and magicPPP - Precise Point Positioning Solution (magicGNSS). On the basis of acquired results of measurements, it can be concluded that at least two-hour long measurements allow acquiring an absolute position with an accuracy of 2-4 cm. An evaluation of the impact on the accuracy of simultaneous positioning of three points test network on the change of the horizontal distance and the relative height difference between measured triangle vertices was also conducted. Distances and relative height differences between points of the triangular test network measured with a laser station Leica TDRA6000 were adopted as references. The analyses of results show that at least two hours long measurement sessions can be used to determine the horizontal distance or the difference in height with an accuracy of 1-2 cm. Rapid products employed in calculations conducted with PPP technique reached the accuracy of determining coordinates on a close level as in elaborations which employ Final products.

  14. The Dependence of Cloud Property Trend Detection on Absolute Calibration Accuracy of Passive Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.

    2016-12-01

    Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection

  15. Spinal intra-operative three-dimensional navigation with infra-red tool tracking: correlation between clinical and absolute engineering accuracy

    NASA Astrophysics Data System (ADS)

    Guha, Daipayan; Jakubovic, Raphael; Gupta, Shaurya; Yang, Victor X. D.

    2017-02-01

    Computer-assisted navigation (CAN) may guide spinal surgeries, reliably reducing screw breach rates. Definitions of screw breach, if reported, vary widely across studies. Absolute quantitative error is theoretically a more precise and generalizable metric of navigation accuracy, but has been computed variably and reported in fewer than 25% of clinical studies of CAN-guided pedicle screw accuracy. We reviewed a prospectively-collected series of 209 pedicle screws placed with CAN guidance to characterize the correlation between clinical pedicle screw accuracy, based on postoperative imaging, and absolute quantitative navigation accuracy. We found that acceptable screw accuracy was achieved for significantly fewer screws based on 2mm grade vs. Heary grade, particularly in the lumbar spine. Inter-rater agreement was good for the Heary classification and moderate for the 2mm grade, significantly greater among radiologists than surgeon raters. Mean absolute translational/angular accuracies were 1.75mm/3.13° and 1.20mm/3.64° in the axial and sagittal planes, respectively. There was no correlation between clinical and absolute navigation accuracy, in part because surgeons appear to compensate for perceived translational navigation error by adjusting screw medialization angle. Future studies of navigation accuracy should therefore report absolute translational and angular errors. Clinical screw grades based on post-operative imaging, if reported, may be more reliable if performed in multiple by radiologist raters.

  16. Optoelectronic device for the measurement of the absolute linear position in the micrometric displacement range

    NASA Astrophysics Data System (ADS)

    Morlanes, Tomas; de la Pena, Jose L.; Sanchez-Brea, Luis M.; Alonso, Jose; Crespo, Daniel; Saez-Landete, Jose B.; Bernabeu, Eusebio

    2005-07-01

    In this work, an optoelectronic device that provides the absolute position of a measurement element with respect to a pattern scale upon switch-on is presented. That means that there is not a need to perform any kind of transversal displacement after the startup of the system. The optoelectronic device is based on the process of light propagation passing through a slit. A light source with a definite size guarantees the relation of distances between the different elements that constitute our system and allows getting a particular optical intensity profile that can be measured by an electronic post-processing device providing the absolute location of the system with a resolution of 1 micron. The accuracy of this measuring device is restricted to the same limitations of any incremental position optical encoder.

  17. Positional and Dimensional Accuracy Assessment of Drone Images Geo-referenced with Three Different GPSs

    NASA Astrophysics Data System (ADS)

    Cao, C.; Lee, X.; Xu, J.

    2017-12-01

    Unmanned Aerial Vehicles (UAVs) or drones have been widely used in environmental, ecological and engineering applications in recent years. These applications require assessment of positional and dimensional accuracy. In this study, positional accuracy refers to the accuracy of the latitudinal and longitudinal coordinates of locations on the mosaicked image in reference to the coordinates of the same locations measured by a Global Positioning System (GPS) in a ground survey, and dimensional accuracy refers to length and height of a ground target. Here, we investigate the effects of the number of Ground Control Points (GCPs) and the accuracy of the GPS used to measure the GCPs on positional and dimensional accuracy of a drone 3D model. Results show that using on-board GPS and a hand-held GPS produce a positional accuracy on the order of 2-9 meters. In comparison, using a differential GPS with high accuracy (30 cm) improves the positional accuracy of the drone model by about 40 %. Increasing the number of GCPs can compensate for the uncertainty brought by the GPS equipment with low accuracy. In terms of the dimensional accuracy of the drone model, even with the use of a low resolution GPS onboard the vehicle, the mean absolute errors are only 0.04 m for height and 0.10 m for length, which are well suited for some applications in precision agriculture and in land survey studies.

  18. MSTAR: an absolute metrology sensor with sub-micron accuracy for space-based applications

    NASA Technical Reports Server (NTRS)

    Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan P.; Jeganathan, Muthu

    2004-01-01

    The MSTAR sensor is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with subnanometer accuracy.

  19. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  20. Speed and Accuracy of Absolute Pitch Judgments: Some Latter-Day Results.

    ERIC Educational Resources Information Center

    Carroll, John B.

    Nine subjects, 5 of whom claimed absolute pitch (AP) ability were instructed to rapidly strike notes on the piano to match randomized tape-recorded piano notes. Stimulus set sizes were 64, 16, or 4 consecutive semitones, or 7 diatonic notes of a designated octave. A control task involved motor movements to notes announced in advance. Accuracy,…

  1. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. High-resolution absolute position detection using a multiple grating

    NASA Astrophysics Data System (ADS)

    Schilling, Ulrich; Drabarek, Pawel; Kuehnle, Goetz; Tiziani, Hans J.

    1996-08-01

    To control electro-mechanical engines, high-resolution linear and rotary encoders are needed. Interferometric methods (grating interferometers) promise a resolution of a few nanometers, but have an ambiguity range of some microns. Incremental encoders increase the absolute measurement range by counting the signal periods starting from a defined initial point. In many applications, however, it is not possible to move to this initial point, so that absolute encoders have to be used. Absolute encoders generally have a scale with two or more tracks placed next to each other. Therefore, they use a two-dimensional grating structure to measure a one-dimensional position. We present a new method, which uses a one-dimensional structure to determine the position in one dimension. It is based on a grating with a large grating period up to some millimeters, having the same diffraction efficiency in several predefined diffraction orders (multiple grating). By combining the phase signals of the different diffraction orders, it is possible to establish the position in an absolute range of the grating period with a resolution like incremental grating interferometers. The principal functionality was demonstrated by applying the multiple grating in a heterodyne grating interferometer. The heterodyne frequency was generated by a frequency modulated laser in an unbalanced interferometer. In experimental measurements an absolute range of 8 mm was obtained while achieving a resolution of 10 nm.

  3. The PMA Catalogue: 420 million positions and absolute proper motions

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    2017-07-01

    We present a catalogue that contains about 420 million absolute proper motions of stars. It was derived from the combination of positions from Gaia DR1 and 2MASS, with a mean difference of epochs of about 15 yr. Most of the systematic zonal errors inherent in the 2MASS Catalogue were eliminated before deriving the absolute proper motions. The absolute calibration procedure (zero-pointing of the proper motions) was carried out using about 1.6 million positions of extragalactic sources. The mean formal error of the absolute calibration is less than 0.35 mas yr-1. The derived proper motions cover the whole celestial sphere without gaps for a range of stellar magnitudes from 8 to 21 mag. In the sky areas where the extragalactic sources are invisible (the avoidance zone), a dedicated procedure was used that transforms the relative proper motions into absolute ones. The rms error of proper motions depends on stellar magnitude and ranges from 2-5 mas yr-1 for stars with 10 mag < G < 17 mag to 5-10 mas yr-1 for faint ones. The present catalogue contains the Gaia DR1 positions of stars for the J2015 epoch. The system of the PMA proper motions does not depend on the systematic errors of the 2MASS positions, and in the range from 14 to 21 mag represents an independent realization of a quasi-inertial reference frame in the optical and near-infrared wavelength range. The Catalogue also contains stellar magnitudes taken from the Gaia DR1 and 2MASS catalogues. A comparison of the PMA proper motions of stars with similar data from certain recent catalogues has been undertaken.

  4. Absolute continuity for operator valued completely positive maps on C∗-algebras

    NASA Astrophysics Data System (ADS)

    Gheondea, Aurelian; Kavruk, Ali Şamil

    2009-02-01

    Motivated by applicability to quantum operations, quantum information, and quantum probability, we investigate the notion of absolute continuity for operator valued completely positive maps on C∗-algebras, previously introduced by Parthasarathy [in Athens Conference on Applied Probability and Time Series Analysis I (Springer-Verlag, Berlin, 1996), pp. 34-54]. We obtain an intrinsic definition of absolute continuity, we show that the Lebesgue decomposition defined by Parthasarathy is the maximal one among all other Lebesgue-type decompositions and that this maximal Lebesgue decomposition does not depend on the jointly dominating completely positive map, we obtain more flexible formulas for calculating the maximal Lebesgue decomposition, and we point out the nonuniqueness of the Lebesgue decomposition as well as a sufficient condition for uniqueness. In addition, we consider Radon-Nikodym derivatives for absolutely continuous completely positive maps that, in general, are unbounded positive self-adjoint operators affiliated to a certain von Neumann algebra, and we obtain a spectral approximation by bounded Radon-Nikodym derivatives. An application to the existence of the infimum of two completely positive maps is indicated, and formulas in terms of Choi's matrices for the Lebesgue decomposition of completely positive maps in matrix algebras are obtained.

  5. Restoration of the ASCA Source Position Accuracy

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Ueda, Y.; Fujimoto, R.; Kii, T.; Yamaoka, K.

    2000-11-01

    We present a calibration of the absolute pointing accuracy of the Advanced Satellite for Cosmology and Astrophysics (ASCA) which allows us to compensate for a large error (up to 1') in the derived source coordinates. We parameterize a temperature dependent deviation of the attitude solution which is responsible for this error. By analyzing ASCA coordinates of 100 bright active galactic nuclei, we show that it is possible to reduce the uncertainty in the sky position for any given observation by a factor of 4. The revised 90% error circle radius is then 12", consistent with preflight specifications, effectively restoring the full ASCA pointing accuracy. Herein, we derive an algorithm which compensates for this attitude error and present an internet-based table to be used to correct post facto the coordinate of all ASCA observations. While the above error circle is strictly applicable to data taken with the on-board Solid-state Imaging Spectrometers (SISs), similar coordinate corrections are derived for data obtained with the Gas Imaging Spectrometers (GISs), which, however, have additional instrumental uncertainties. The 90% error circle radius for the central 20' diameter of the GIS is 24". The large reduction in the error circle area for the two instruments offers the opportunity to greatly enhance the search for X-ray counterparts at other wavelengths. This has important implications for current and future ASCA source catalogs and surveys.

  6. Absolute and relative height-pixel accuracy of SRTM-GL1 over the South American Andean Plateau

    NASA Astrophysics Data System (ADS)

    Satge, Frédéric; Denezine, Matheus; Pillco, Ramiro; Timouk, Franck; Pinel, Sébastien; Molina, Jorge; Garnier, Jérémie; Seyler, Frédérique; Bonnet, Marie-Paule

    2016-11-01

    Previously available only over the Continental United States (CONUS), the 1 arc-second mesh size (spatial resolution) SRTM-GL1 (Shuttle Radar Topographic Mission - Global 1) product has been freely available worldwide since November 2014. With a relatively small mesh size, this digital elevation model (DEM) provides valuable topographic information over remote regions. SRTM-GL1 is assessed for the first time over the South American Andean Plateau in terms of both the absolute and relative vertical point-to-point accuracies at the regional scale and for different slope classes. For comparison, SRTM-v4 and GDEM-v2 Global DEM version 2 (GDEM-v2) generated by ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) are also considered. A total of approximately 160,000 ICESat/GLAS (Ice, Cloud and Land Elevation Satellite/Geoscience Laser Altimeter System) data are used as ground reference measurements. Relative error is often neglected in DEM assessments due to the lack of reference data. A new methodology is proposed to assess the relative accuracies of SRTM-GL1, SRTM-v4 and GDEM-v2 based on a comparison with ICESat/GLAS measurements. Slope values derived from DEMs and ICESat/GLAS measurements from approximately 265,000 ICESat/GLAS point pairs are compared using quantitative and categorical statistical analysis introducing a new index: the False Slope Ratio (FSR). Additionally, a reference hydrological network is derived from Google Earth and compared with river networks derived from the DEMs to assess each DEM's potential for hydrological applications over the region. In terms of the absolute vertical accuracy on a global scale, GDEM-v2 is the most accurate DEM, while SRTM-GL1 is more accurate than SRTM-v4. However, a simple bias correction makes SRTM-GL1 the most accurate DEM over the region in terms of vertical accuracy. The relative accuracy results generally did not corroborate the absolute vertical accuracy. GDEM-v2 presents the lowest statistical

  7. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  8. Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems

    NASA Technical Reports Server (NTRS)

    Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph

    2012-01-01

    Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a

  9. Piezoresistive position microsensors with ppm-accuracy

    NASA Astrophysics Data System (ADS)

    Stavrov, Vladimir; Shulev, Assen; Stavreva, Galina; Todorov, Vencislav

    2015-05-01

    In this article, the relation between position accuracy and the number of simultaneously measured values, such as coordinates, has been analyzed. Based on this, a conceptual layout of MEMS devices (microsensors) for multidimensional position monitoring comprising a single anchored and a single actuated part has been developed. Both parts are connected with a plurality of micromechanical flexures, and each flexure includes position detecting cantilevers. Microsensors having detecting cantilevers oriented in X and Y direction have been designed and prototyped. Experimentally measured results at characterization of 1D, 2D and 3D position microsensors are reported as well. Exploiting different flexure layouts, a travel range between 50μm and 1.8mm and sensors' sensitivity in the range between 30μV/μm and 5mV/μm@ 1V DC supply voltage have been demonstrated. A method for accurate calculation of all three Cartesian coordinates, based on measurement of at least three microsensors' signals has also been described. The analyses of experimental results prove the capability of position monitoring with ppm-(part per million) accuracy. The technology for fabrication of MEMS devices with sidewall embedded piezoresistors removes restrictions in strong improvement of their usability for position sensing with a high accuracy. The present study is, also a part of a common strategy for developing a novel MEMS-based platform for simultaneous accurate measurement of various physical values when they are transduced to a change of position.

  10. Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement

    NASA Astrophysics Data System (ADS)

    Yang, Juqing; Wang, Dayong; Fan, Baixing; Dong, Dengfeng; Zhou, Weihu

    2017-03-01

    In-situ intelligent manufacturing for large-volume equipment requires industrial robots with absolute high-accuracy positioning and orientation steering control. Conventional robots mainly employ an offline calibration technology to identify and compensate key robotic parameters. However, the dynamic and static parameters of a robot change nonlinearly. It is not possible to acquire a robot's actual parameters and control the absolute pose of the robot with a high accuracy within a large workspace by offline calibration in real-time. This study proposes a real-time online absolute pose steering control method for an industrial robot based on six degrees of freedom laser tracking measurement, which adopts comprehensive compensation and correction of differential movement variables. First, the pose steering control system and robot kinematics error model are constructed, and then the pose error compensation mechanism and algorithm are introduced in detail. By accurately achieving the position and orientation of the robot end-tool, mapping the computed Jacobian matrix of the joint variable and correcting the joint variable, the real-time online absolute pose compensation for an industrial robot is accurately implemented in simulations and experimental tests. The average positioning error is 0.048 mm and orientation accuracy is better than 0.01 deg. The results demonstrate that the proposed method is feasible, and the online absolute accuracy of a robot is sufficiently enhanced.

  11. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive trackingmore » system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.« less

  12. Tracking accuracy of a real-time fiducial tracking system for patient positioning and monitoring in radiation therapy.

    PubMed

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W

    2010-11-15

    In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Laser, GPS and absolute gravimetry vertical positioning time series comparison at the OCA observatory, France

    NASA Astrophysics Data System (ADS)

    Nicolas, J.; Nocquet, J.; van Camp, M.; Coulot, D.

    2003-12-01

    Time-dependent displacements of stations usually have magnitude close to the accuracy of each individual technique, and it still remains difficult to separate the true geophysical motion from possible artifacts inherent to each space geodetic technique. The Observatoire de la C“te d'Azur (OCA), located at Grasse, France benefits from the collocation of several geodetic instruments and techniques (3 laser ranging stations, and a permanent GPS) what allows us to do a direct comparison of the time series. Moreover, absolute gravimetry measurement campaigns have also been regularly performed since 1997, first by the "Ecole et Observatoire des Sciences de la Terre (EOST) of Strasbourg, France, and more recently by the Royal Observatory of Belgium. This study presents a comparison between the positioning time series of the vertical component derived from the SLR and GPS analysis with the gravimetric results from 1997 to 2003. The laser station coordinates are based on a LAGEOS -1 and -2 combined solution using reference 10-day arc orbits, the ITRF2000 reference frame, and the IERS96 conventions. Different GPS weekly global solutions provided from several IGS are combined and compared to the SLR results. The absolute gravimetry measurements are converted into vertical displacements with a classical gradient. The laser time series indicate a strong annual signal at the level of about 3-4 cm peak to peak amplitude on the vertical component. Absolute gravimetry data agrees with the SLR results. GPS positioning solutions also indicate a significant annual term, but with a magnitude of only 50% of the one shown by the SLR solution and by the gravimetry measurements. Similar annual terms are also observed on other SLR sites we processed, but usually with! lower and various amplitudes. These annual signals are also compared to vertical positioning variations corresponding to an atmospheric loading model. We present the level of agreement between the different techniques and we

  14. Correction to Method of Establishing the Absolute Radiometric Accuracy of Remote Sensing Systems While On-orbit Using Characterized Stellar Sources

    NASA Technical Reports Server (NTRS)

    Bowen, Howard S.; Cunningham, Douglas M.

    2007-01-01

    The contents include: 1) Brief history of related events; 2) Overview of original method used to establish absolute radiometric accuracy of remote sensing instruments using stellar sources; and 3) Considerations to improve the stellar calibration approach.

  15. Absolute calibration accuracy of L4 TM and L5 TM sensor image pairs

    USGS Publications Warehouse

    Chander, G.; Micijevic, E.

    2006-01-01

    The Landsat suite of satellites has collected the longest continuous archive of multispectral data of any land-observing space program. From the Landsat program's inception in 1972 to the present, the Earth science user community has benefited from a historical record of remotely sensed data. However, little attention has been paid to ensuring that the data are calibrated and comparable from mission to mission, Launched in 1982 and 1984 respectively, the Landsat 4 (L4) and Landsat 5 (L5) Thematic Mappers (TM) are the backbone of an extensive archive of moderate resolution Earth imagery. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The approach involves comparing image statistics derived from large common areas observed eight days apart by the two sensors. The average percent differences in reflectance estimates obtained from the L4 TM agree with those from the L5 TM to within 15 percent. Additional work to characterize the absolute differences between the two sensors over the entire mission is in progress.

  16. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  17. Absolute and angular efficiencies of a microchannel-plate position-sensitive detector

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Gibner, P. S.; Newman, J. H.; Smith, K. A.; Stebbings, R. F.

    1984-01-01

    This paper presents a characterization of a commercially available position-sensitive detector of energetic ions and neutrals. The detector consists of two microchannel plates followed by a resistive position-encoding anode. The work includes measurement of absolute efficiencies of H(+), He(+), and O(+) ions in the energy range between 250 and 5000 eV, measurement of relative detection efficiencies as a function of particle impact angle, and a simple method for accurate measurement of the time at which a particle strikes the detector.

  18. Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan

    2018-04-01

    This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.

  19. How a GNSS Receiver Is Held May Affect Static Horizontal Position Accuracy

    PubMed Central

    Weaver, Steven A.; Ucar, Zennure; Bettinger, Pete; Merry, Krista

    2015-01-01

    The static horizontal position accuracy of a mapping-grade GNSS receiver was tested in two forest types over two seasons, and subsequently was tested in one forest type against open sky conditions in the winter season. The main objective was to determine whether the holding position during data collection would result in significantly different static horizontal position accuracy. Additionally, we wanted to determine whether the time of year (season), forest type, or environmental variables had an influence on accuracy. In general, the F4Devices Flint GNSS receiver was found to have mean static horizontal position accuracy levels within the ranges typically expected for this general type of receiver (3 to 5 m) when differential correction was not employed. When used under forest cover, in some cases the GNSS receiver provided a higher level of static horizontal position accuracy when held vertically, as opposed to held at an angle or horizontally (the more natural positions), perhaps due to the orientation of the antenna within the receiver, or in part due to multipath or the inability to use certain satellite signals. Therefore, due to the fact that numerous variables may affect static horizontal position accuracy, we only conclude that there is weak to moderate evidence that the results of holding position are significant. Statistical test results also suggest that the season of data collection had no significant effect on static horizontal position accuracy, and results suggest that atmospheric variables had weak correlation with horizontal position accuracy. Forest type was found to have a significant effect on static horizontal position accuracy in one aspect of one test, yet otherwise there was little evidence that forest type affected horizontal position accuracy. Since the holding position was found in some cases to be significant with regard to the static horizontal position accuracy of positions collected in forests, it may be beneficial to have an

  20. How a GNSS Receiver Is Held May Affect Static Horizontal Position Accuracy.

    PubMed

    Weaver, Steven A; Ucar, Zennure; Bettinger, Pete; Merry, Krista

    2015-01-01

    The static horizontal position accuracy of a mapping-grade GNSS receiver was tested in two forest types over two seasons, and subsequently was tested in one forest type against open sky conditions in the winter season. The main objective was to determine whether the holding position during data collection would result in significantly different static horizontal position accuracy. Additionally, we wanted to determine whether the time of year (season), forest type, or environmental variables had an influence on accuracy. In general, the F4Devices Flint GNSS receiver was found to have mean static horizontal position accuracy levels within the ranges typically expected for this general type of receiver (3 to 5 m) when differential correction was not employed. When used under forest cover, in some cases the GNSS receiver provided a higher level of static horizontal position accuracy when held vertically, as opposed to held at an angle or horizontally (the more natural positions), perhaps due to the orientation of the antenna within the receiver, or in part due to multipath or the inability to use certain satellite signals. Therefore, due to the fact that numerous variables may affect static horizontal position accuracy, we only conclude that there is weak to moderate evidence that the results of holding position are significant. Statistical test results also suggest that the season of data collection had no significant effect on static horizontal position accuracy, and results suggest that atmospheric variables had weak correlation with horizontal position accuracy. Forest type was found to have a significant effect on static horizontal position accuracy in one aspect of one test, yet otherwise there was little evidence that forest type affected horizontal position accuracy. Since the holding position was found in some cases to be significant with regard to the static horizontal position accuracy of positions collected in forests, it may be beneficial to have an

  1. The Impact of Strategy Instruction and Timing of Estimates on Low and High Working-Memory Capacity Readers' Absolute Monitoring Accuracy

    ERIC Educational Resources Information Center

    Linderholm, Tracy; Zhao, Qin

    2008-01-01

    Working-memory capacity, strategy instruction, and timing of estimates were investigated for their effects on absolute monitoring accuracy, which is the difference between estimated and actual reading comprehension test performance. Participants read two expository texts under one of two randomly assigned reading strategy instruction conditions…

  2. High Accuracy, Absolute, Cryogenic Refractive Index Measurements of Infrared Lens Materials for JWST NIRCam using CHARMS

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas; Frey, Bradley

    2005-01-01

    The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.

  3. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays.

    PubMed

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-11-13

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test.

  4. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays

    PubMed Central

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-01-01

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622

  5. Accuracy of Cup Positioning With the Computed Tomography-Based Two-dimensional to Three-Dimensional Matched Navigation System: A Prospective, Randomized Controlled Study.

    PubMed

    Yamada, Kazuki; Endo, Hirosuke; Tetsunaga, Tomonori; Miyake, Takamasa; Sanki, Tomoaki; Ozaki, Toshifumi

    2018-01-01

    The accuracy of various navigation systems used for total hip arthroplasty has been described, but no publications reported the accuracy of cup orientation in computed tomography (CT)-based 2D-3D (two-dimensional to three-dimensional) matched navigation. In a prospective, randomized controlled study, 80 hips including 44 with developmental dysplasia of the hips were divided into a CT-based 2D-3D matched navigation group (2D-3D group) and a paired-point matched navigation group (PPM group). The accuracy of cup orientation (absolute difference between the intraoperative record and the postoperative measurement) was compared between groups. Additionally, multiple logistic regression analysis was performed to evaluate patient factors affecting the accuracy of cup orientation in each navigation. The accuracy of cup inclination was 2.5° ± 2.2° in the 2D-3D group and 4.6° ± 3.3° in the PPM group (P = .0016). The accuracy of cup anteversion was 2.3° ± 1.7° in the 2D-3D group and 4.4° ± 3.3° in the PPM group (P = .0009). In the PPM group, the presence of roof osteophytes decreased the accuracy of cup inclination (odds ratio 8.27, P = .0140) and the absolute value of pelvic tilt had a negative influence on the accuracy of cup anteversion (odds ratio 1.27, P = .0222). In the 2D-3D group, patient factors had no effect on the accuracy of cup orientation. The accuracy of cup positioning in CT-based 2D-3D matched navigation was better than in paired-point matched navigation, and was not affected by patient factors. It is a useful system for even severely deformed pelvises such as developmental dysplasia of the hips. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. COMPASS time synchronization and dissemination—Toward centimetre positioning accuracy

    NASA Astrophysics Data System (ADS)

    Wang, ZhengBo; Zhao, Lu; Wang, ShiGuang; Zhang, JianWei; Wang, Bo; Wang, LiJun

    2014-09-01

    In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system (GNSS). Owing to the special design of COMPASS which implements several geo-stationary satellites (GEO), time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites. Serving as space-borne relay stations, the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous (IGSO) and mid-earth orbit (MEO) satellites within the system. It is shown that, because of the accuracy in clock synchronization, the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS. In addition, the COMPASS system can function with its entire positioning, navigation, and time-dissemination services even without the ground link, thus making it much more robust and secure. We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy, to reach 100 ps in time dissemination and 3 cm in positioning accuracy, respectively. In this paper, we also analyze two feasible synchronization plans. All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given. We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications.

  7. Optimal Design of the Absolute Positioning Sensor for a High-Speed Maglev Train and Research on Its Fault Diagnosis

    PubMed Central

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project. PMID:23112619

  8. Optimal design of the absolute positioning sensor for a high-speed maglev train and research on its fault diagnosis.

    PubMed

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project.

  9. Accuracy Analysis of a Wireless Indoor Positioning System Using Geodetic Methods

    NASA Astrophysics Data System (ADS)

    Wagner, Przemysław; Woźniak, Marek; Odziemczyk, Waldemar; Pakuła, Dariusz

    2017-12-01

    Ubisense RTLS is one of the Indoor positioning systems using an Ultra Wide Band. AOA and TDOA methods are used as a principle of positioning. The accuracy of positioning depends primarily on the accuracy of determined angles and distance differences. The paper presents the results of accuracy research which includes a theoretical accuracy prediction and a practical test. Theoretical accuracy was calculated for two variants of system components geometry, assuming the parameters declared by the system manufacturer. Total station measurements were taken as a reference during the practical test. The results of the analysis are presented in a graphical form. A sample implementation (MagMaster) developed by Globema is presented in the final part of the paper.

  10. Accuracy Analysis of a Low-Cost Platform for Positioning and Navigation

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Kuntzsch, C.; Schulze, M. J.; Eggert, D.; Sester, M.

    2012-07-01

    This paper presents an accuracy analysis of a platform based on low-cost components for landmark-based navigation intended for research and teaching purposes. The proposed platform includes a LEGO MINDSTORMS NXT 2.0 kit, an Android-based Smartphone as well as a compact laser scanner Hokuyo URG-04LX. The robot is used in a small indoor environment, where GNSS is not available. Therefore, a landmark map was produced in advance, with the landmark positions provided to the robot. All steps of procedure to set up the platform are shown. The main focus of this paper is the reachable positioning accuracy, which was analyzed in this type of scenario depending on the accuracy of the reference landmarks and the directional and distance measuring accuracy of the laser scanner. Several experiments were carried out, demonstrating the practically achievable positioning accuracy. To evaluate the accuracy, ground truth was acquired using a total station. These results are compared to the theoretically achievable accuracies and the laser scanner's characteristics.

  11. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  12. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    PubMed Central

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  13. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    PubMed

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-05-23

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

  14. Handheld Reflective Foil Emissometer with 0.007 Absolute Accuracy at 0.05

    NASA Astrophysics Data System (ADS)

    van der Ham, E. W. M.; Ballico, M. J.

    2014-07-01

    The development and performance of a handheld emissometer for the measurement of the emissivity of highly reflective metallic foils used for the insulation of domestic and commercial buildings are described. Reflective roofing insulation based on a thin coating of metal on a more robust substrate is very widely used in hotter climates to reduce the radiant heat transfer between the ceiling and roof in commercial and residential buildings. The required normal emissivity of these foils is generally below 0.05, so stray reflected ambient infrared radiation (IR) makes traditional reflectance-based measurements of emissivity very difficult to achieve with the required accuracy. Many manufacturers apply additional coatings onto the metallic foil to reduce visible glare during installation on a roof, and to provide protection to the thin reflective layer; however, this layer can also substantially increase the IR emissivity. The system as developed at the National Measurement Institute, Australia (NMIA) is based on the principle of measurement of the modulation in thermal infrared radiation, as the sample is thermally modulated by hot and cold air streams. A commercial infrared to band radiation thermometer with a highly specialized stray and reflected radiation shroud attachment is used as the detector system, allowing for convenient handheld field measurements. The performance and accuracy of the system have been compared with NMIA's reference emissometer systems for a number of typical material samples, demonstrating its capability to measure the absolute thermal emissivity of these very highly reflective foils with an uncertainty of better than.

  15. Positional Accuracy Assessment of Googleearth in Riyadh

    NASA Astrophysics Data System (ADS)

    Farah, Ashraf; Algarni, Dafer

    2014-06-01

    Google Earth is a virtual globe, map and geographical information program that is controlled by Google corporation. It maps the Earth by the superimposition of images obtained from satellite imagery, aerial photography and GIS 3D globe. With millions of users all around the globe, GoogleEarth® has become the ultimate source of spatial data and information for private and public decision-support systems besides many types and forms of social interactions. Many users mostly in developing countries are also using it for surveying applications, the matter that raises questions about the positional accuracy of the Google Earth program. This research presents a small-scale assessment study of the positional accuracy of GoogleEarth® Imagery in Riyadh; capital of Kingdom of Saudi Arabia (KSA). The results show that the RMSE of the GoogleEarth imagery is 2.18 m and 1.51 m for the horizontal and height coordinates respectively.

  16. Absolute vs. relative error characterization of electromagnetic tracking accuracy

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet

    2010-02-01

    Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the

  17. Comparing position and orientation accuracy of different electromagnetic sensors for tracking during interventions.

    PubMed

    Nijkamp, Jasper; Schermers, Bram; Schmitz, Sander; de Jonge, Sofieke; Kuhlmann, Koert; van der Heijden, Ferdinand; Sonke, Jan-Jakob; Ruers, Theo

    2016-08-01

    To compare the position and orientation accuracy between using one 6-degree of freedom (DOF) electromagnetic (EM) sensor, or the position information of three 5DOF sensors within the scope of tumor tracking. The position accuracy of Northern Digital Inc Aurora 5DOF and 6DOF sensors was determined for a table-top field generator (TTFG) up to a distance of 52 cm. For each sensor 716 positions were measured for 10 s at 15 Hz. Orientation accuracy was determined for each of the orthogonal axis at the TTFG distances of 17, 27, 37 and 47 cm. For the 6DOF sensors, orientation was determined for sensors in-line with the orientation axis, and perpendicular. 5DOF orientation accuracy was determined for a theoretical 4 cm tumor. An optical tracking system was used as reference. Position RMSE and jitter were comparable between the sensors and increasing with distance. Jitter was within 0.1 cm SD within 45 cm distance to the TTFG. Position RMSE was approximately 0.1 cm up to 32 cm distance, increasing to 0.4 cm at 52 cm distance. Orientation accuracy of the 6DOF sensor was within 1[Formula: see text], except when the sensor was in-line with the rotation axis perpendicular to the TTFG plane (4[Formula: see text] errors at 47 cm). Orientation accuracy using 5DOF positions was within 1[Formula: see text] up to 37 cm and 2[Formula: see text] at 47 cm. The position and orientation accuracy of a 6DOF sensor was comparable with a sensor configuration consisting of three 5DOF sensors. To achieve tracking accuracy within 1 mm and 1[Formula: see text], the distance to the TTFG should be limited to approximately 30 cm.

  18. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window

    PubMed Central

    Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin

    2016-01-01

    A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10−4 pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range. PMID:27187393

  19. 3D-Printed masks as a new approach for immobilization in radiotherapy - a study of positioning accuracy.

    PubMed

    Haefner, Matthias Felix; Giesel, Frederik Lars; Mattke, Matthias; Rath, Daniel; Wade, Moritz; Kuypers, Jacob; Preuss, Alan; Kauczor, Hans-Ulrich; Schenk, Jens-Peter; Debus, Juergen; Sterzing, Florian; Unterhinninghofen, Roland

    2018-01-19

    We developed a new approach to produce individual immobilization devices for the head based on MRI data and 3D printing technologies. The purpose of this study was to determine positioning accuracy with healthy volunteers. 3D MRI data of the head were acquired for 8 volunteers. In-house developed software processed the image data to generate a surface mesh model of the immobilization mask. After adding an interface for the couch, the fixation setup was materialized using a 3D printer with acrylonitrile butadiene styrene (ABS). Repeated MRI datasets (n=10) were acquired for all volunteers wearing their masks thus simulating a setup for multiple fractions. Using automatic image-to-image registration, displacements of the head were calculated relative to the first dataset (6 degrees of freedom). The production process has been described in detail. The absolute lateral (x), vertical (y) and longitudinal (z) translations ranged between -0.7 and 0.5 mm, -1.8 and 1.4 mm, and -1.6 and 2.4 mm, respectively. The absolute rotations for pitch (x), yaw (y) and roll (z) ranged between -0.9 and 0.8°, -0.5 and 1.1°, and -0.6 and 0.8°, respectively. The mean 3D displacement was 0.9 mm with a standard deviation (SD) of the systematic and random error of 0.2 mm and 0.5 mm, respectively. In conclusion, an almost entirely automated production process of 3D printed immobilization masks for the head derived from MRI data was established. A high level of setup accuracy was demonstrated in a volunteer cohort. Future research will have to focus on workflow optimization and clinical evaluation.

  20. Accuracy of velocities from repeated GPS surveys: relative positioning is concerned

    NASA Astrophysics Data System (ADS)

    Duman, Huseyin; Ugur Sanli, D.

    2016-04-01

    Over more than a decade, researchers have been interested in studying the accuracy of GPS positioning solutions. Recently, reporting the accuracy of GPS velocities has been added to this. Researchers studying landslide motion, tectonic motion, uplift, sea level rise, and subsidence still report results from GPS experiments in which repeated GPS measurements from short sessions are used. This motivated some other researchers to study the accuracy of GPS deformation rates/velocities from various repeated GPS surveys. In one of the efforts, the velocity accuracy was derived from repeated GPS static surveys using short observation sessions and Precise Point Positioning mode of GPS software. Velocities from short GPS sessions were compared with the velocities from 24 h sessions. The accuracy of velocities was obtained using statistical hypothesis testing and quantifying the accuracy of least squares estimation models. The results reveal that 45-60 % of the horizontal and none of the vertical solutions comply with the results from 24 h solutions. We argue that this case in which the data was evaluated using PPP should also apply to the case in which the data belonging to long GPS base lengths is processed using fundamental relative point positioning. To test this idea we chose the two IGS stations ANKR and NICO and derive their velocities from the reference stations held fixed in the stable EURASIAN plate. The University of Bern's GNSS software BERNESE was used to produce relative positioning solutions, and the results are compared with those of GIPSY/OASIS II PPP results. First impressions indicate that it is worth designing a global experiment and test these ideas in detail.

  1. Positional Accuracy in Optical Trap-Assisted Nanolithography

    NASA Astrophysics Data System (ADS)

    Arnold, Craig B.; McLeod, Euan

    2009-03-01

    The ability to directly print patterns on size scales below 100 nm is important for many applications where the production or repair of high resolution and density features are important. Laser-based direct-write methods have the benefit of quickly and easily being able to modify and create structures on existing devices, but feature sizes are conventionally limited by diffraction. In this presentation, we show how to overcome this limit with a new method of probe-based near-field nanopatterning in which we employ a CW laser to optically trap and manipulate dispersed microspheres against a substrate using a 2-d Bessel beam optical trap. A secondary, pulsed nanosecond laser at 355 nm is directed through the bead and used to modify the surface below the microsphere, taking advantage of the near-field enhancement in order to produce materials modification with feature sizes under 100 nm. Here, we analyze the 3-d positioning accuracy of the microsphere through analytic modeling as a function of experimental parameters. The model is verified in all directions for our experimental conditions and is used to predict the conditions required for improved positional accuracy.

  2. Accuracy of a hexapod parallel robot kinematics based external fixator.

    PubMed

    Faschingbauer, Maximilian; Heuer, Hinrich J D; Seide, Klaus; Wendlandt, Robert; Münch, Matthias; Jürgens, Christian; Kirchner, Rainer

    2015-12-01

    Different hexapod-based external fixators are increasingly used to treat bone deformities and fractures. Accuracy has not been measured sufficiently for all models. An infrared tracking system was applied to measure positioning maneuvers with a motorized Precision Hexapod® fixator, detecting three-dimensional positions of reflective balls mounted in an L-arrangement on the fixator, simulating bone directions. By omitting one dimension of the coordinates, projections were simulated as if measured on standard radiographs. Accuracy was calculated as the absolute difference between targeted and measured positioning values. In 149 positioning maneuvers, the median values for positioning accuracy of translations and rotations (torsions/angulations) were below 0.3 mm and 0.2° with quartiles ranging from -0.5 mm to 0.5 mm and -1.0° to 0.9°, respectively. The experimental setup was found to be precise and reliable. It can be applied to compare different hexapod-based fixators. Accuracy of the investigated hexapod system was high. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Absolute flux density calibrations of radio sources: 2.3 GHz

    NASA Technical Reports Server (NTRS)

    Freiley, A. J.; Batelaan, P. D.; Bathker, D. A.

    1977-01-01

    A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations.

  4. Design considerations and validation of the MSTAR absolute metrology system

    NASA Astrophysics Data System (ADS)

    Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu

    2004-08-01

    Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.

  5. Photon caliper to achieve submillimeter positioning accuracy

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle J.; Wong, Jennifer; Zhang, Junan

    2017-09-01

    The purpose of this study was to demonstrate the feasibility of using a commercial two-dimensional (2D) detector array with an inherent detector spacing of 5 mm to achieve submillimeter accuracy in localizing the radiation isocenter. This was accomplished by delivering the Vernier ‘dose’ caliper to a 2D detector array where the nominal scale was the 2D detector array and the non-nominal Vernier scale was the radiation dose strips produced by the high-definition (HD) multileaf collimators (MLCs) of the linear accelerator. Because the HD MLC sequence was similar to the picket fence test, we called this procedure the Vernier picket fence (VPF) test. We confirmed the accuracy of the VPF test by offsetting the HD MLC bank by known increments and comparing the known offset with the VPF test result. The VPF test was able to determine the known offset within 0.02 mm. We also cross-validated the accuracy of the VPF test in an evaluation of couch hysteresis. This was done by using both the VPF test and the ExacTrac optical tracking system to evaluate the couch position. We showed that the VPF test was in agreement with the ExacTrac optical tracking system within a root-mean-square value of 0.07 mm for both the lateral and longitudinal directions. In conclusion, we demonstrated the VPF test can determine the offset between a 2D detector array and the radiation isocenter with submillimeter accuracy. Until now, no method to locate the radiation isocenter using a 2D detector array has been able to achieve such accuracy.

  6. Accuracy of maxillary positioning after standard and inverted orthognathic sequencing.

    PubMed

    Ritto, Fabio G; Ritto, Thiago G; Ribeiro, Danilo Passeado; Medeiros, Paulo José; de Moraes, Márcio

    2014-05-01

    This study aimed to compare the accuracy of maxillary positioning after bimaxillary orthognathic surgery, using 2 sequences. A total of 80 cephalograms (40 preoperative and 40 postoperative) from 40 patients were analyzed. Group 1 included radiographs of patients submitted to conventional sequence, whereas group 2 patients were submitted to inverted sequence. The final position of the maxillary central incisor was obtained after vertical and horizontal measurements of the tracings, and it was compared with what had been planned. The null hypothesis, which stated that there would be no difference between the groups, was tested. After applying the Welch t test for comparison of mean differences between maxillary desired and achieved position, considering a statistical significance of 5% and a 2-tailed test, the null hypothesis was not rejected (P > .05). Thus, there was no difference in the accuracy of maxillary positioning between groups. Conventional and inverted sequencing proved to be reliable in positioning the maxilla after LeFort I osteotomy in bimaxillary orthognathic surgeries. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Positioning accuracy in a registration-free CT-based navigation system

    NASA Astrophysics Data System (ADS)

    Brandenberger, D.; Birkfellner, W.; Baumann, B.; Messmer, P.; Huegli, R. W.; Regazzoni, P.; Jacob, A. L.

    2007-12-01

    In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology.

  8. Arm-Positioning Accuracy as a Function of Direction, Extent, and Presentation

    ERIC Educational Resources Information Center

    Casher, Bonnie Berger; Stadulis, Robert E.

    1975-01-01

    Accuracy of horizontal arm-positioning toward the midline of the body was investigated, comparing two methods of presentation of the test position (verbal versus passive movement) and three extents of angular displacement. (RC)

  9. Development and Testing of a High-Precision Position and Attitude Measuring System for a Space Mechanism

    NASA Technical Reports Server (NTRS)

    Khanenya, Nikolay; Paciotti, Gabriel; Forzani, Eugenio; Blecha, Luc

    2016-01-01

    This paper describes a high-precision optical metrology system - a unique ground test equipment which was designed and implemented for simultaneous precise contactless measurements of 6 degrees-of-freedom (3 translational + 3 rotational) of a space mechanism end-effector [1] in a thermally controlled ISO 5 clean environment. The developed contactless method reconstructs both position and attitude of the specimen from three cross-sections measured by 2D distance sensors [2]. The cleanliness is preserved by the hermetic test chamber filled with high purity nitrogen. The specimen's temperature is controlled by the thermostat [7]. The developed method excludes errors caused by the thermal deformations and manufacturing inaccuracies of the test jig. Tests and simulations show that the measurement accuracy of an object absolute position is of 20 micron in in-plane measurement (XY) and about 50 micron out of plane (Z). The typical absolute attitude is determined with an accuracy better than 3 arcmin in rotation around X and Y and better than 10 arcmin in Z. The metrology system is able to determine relative position and movement with an accuracy one order of magnitude lower than the absolute accuracy. Typical relative displacement measurement accuracies are better than 1 micron in X and Y and about 2 micron in Z. Finally, the relative rotation can be measured with accuracy better than 20 arcsec in any direction.

  10. Estimating the absolute wealth of households.

    PubMed

    Hruschka, Daniel J; Gerkey, Drew; Hadley, Craig

    2015-07-01

    To estimate the absolute wealth of households using data from demographic and health surveys. We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. The median absolute wealth estimates of 1,403,186 households were 2056 international dollars per capita (interquartile range: 723-6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R(2)  = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality.

  11. An absolute photometric system at 10 and 20 microns

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lebofsky, M. J.; Low, F. J.

    1985-01-01

    Two new direct calibrations at 10 and 20 microns are presented in which terrestrial flux standards are referred to infrared standard stars. These measurements give both good agreement and higher accuracy when compared with previous direct calibrations. As a result, the absolute calibrations at 10 and 20 microns have now been determined with accuracies of 3 and 8 percent, respectively. A variety of absolute calibrations based on extrapolation of stellar spectra from the visible to 10 microns are reviewed. Current atmospheric models of A-type stars underestimate their fluxes by about 10 percent at 10 microns, whereas models of solar-type stars agree well with the direct calibrations. The calibration at 20 microns can probably be determined to about 5 percent by extrapolation from the more accurate result at 10 microns. The photometric system at 10 and 20 microns is updated to reflect the new absolute calibration, to base its zero point directly on the colors of A0 stars, and to improve the accuracy in the comparison of the standard stars.

  12. 3D-Printed masks as a new approach for immobilization in radiotherapy – a study of positioning accuracy

    PubMed Central

    Haefner, Matthias Felix; Giesel, Frederik Lars; Mattke, Matthias; Rath, Daniel; Wade, Moritz; Kuypers, Jacob; Preuss, Alan; Kauczor, Hans-Ulrich; Schenk, Jens-Peter; Debus, Juergen; Sterzing, Florian; Unterhinninghofen, Roland

    2018-01-01

    We developed a new approach to produce individual immobilization devices for the head based on MRI data and 3D printing technologies. The purpose of this study was to determine positioning accuracy with healthy volunteers. 3D MRI data of the head were acquired for 8 volunteers. In-house developed software processed the image data to generate a surface mesh model of the immobilization mask. After adding an interface for the couch, the fixation setup was materialized using a 3D printer with acrylonitrile butadiene styrene (ABS). Repeated MRI datasets (n=10) were acquired for all volunteers wearing their masks thus simulating a setup for multiple fractions. Using automatic image-to-image registration, displacements of the head were calculated relative to the first dataset (6 degrees of freedom). The production process has been described in detail. The absolute lateral (x), vertical (y) and longitudinal (z) translations ranged between −0.7 and 0.5 mm, −1.8 and 1.4 mm, and −1.6 and 2.4 mm, respectively. The absolute rotations for pitch (x), yaw (y) and roll (z) ranged between −0.9 and 0.8°, −0.5 and 1.1°, and −0.6 and 0.8°, respectively. The mean 3D displacement was 0.9 mm with a standard deviation (SD) of the systematic and random error of 0.2 mm and 0.5 mm, respectively. In conclusion, an almost entirely automated production process of 3D printed immobilization masks for the head derived from MRI data was established. A high level of setup accuracy was demonstrated in a volunteer cohort. Future research will have to focus on workflow optimization and clinical evaluation. PMID:29464087

  13. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Absolute coverage groups. 404.1205 Section... Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent... are not under a retirement system. An absolute coverage group may include positions which were...

  14. Accuracy Analysis of Precise Point Positioning of Compass Navigation System Applied to Crustal Motion Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Yuebing

    2017-04-01

    Based on the observation data of Compass/GPSobserved at five stations, time span from July 1, 2014 to June 30, 2016. UsingPPP positioning model of the PANDA software developed by Wuhan University,Analyzedthe positioning accuracy of single system and Compass/GPS integrated resolving, and discussed the capability of Compass navigation system in crustal motion monitoring. The results showed that the positioning accuracy in the east-west directionof the Compass navigation system is lower than the north-south direction (the positioning accuracy de 3 times RMS), in general, the positioning accuracyin the horizontal direction is about 1 2cm and the vertical direction is about 5 6cm. The GPS positioning accuracy in the horizontal direction is better than 1cm and the vertical direction is about 1 2cm. The accuracy of Compass/GPS integrated resolving is quite to GPS. It is worth mentioning that although Compass navigation system precision point positioning accuracy is lower than GPS, two sets of velocity fields obtained by using the Nikolaidis (2002) model to analyze the Compass and GPS time series results respectively, the results showed that the maximum difference of the two sets of velocity field in horizontal directions is 1.8mm/a. The Compass navigation system can now be used to monitor the crustal movement of the large deformation area, based on the velocity field in horizontal direction.

  15. Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation

    NASA Astrophysics Data System (ADS)

    Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter

    1996-01-01

    The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.

  16. The Quantitative Relationship Between ISO 15197 Accuracy Criteria and Mean Absolute Relative Difference (MARD) in the Evaluation of Analytical Performance of Self-Monitoring of Blood Glucose (SMBG) Systems.

    PubMed

    Pardo, Scott; Simmons, David A

    2016-09-01

    The relationship between International Organization for Standardization (ISO) accuracy criteria and mean absolute relative difference (MARD), 2 methods for assessing the accuracy of blood glucose meters, is complex. While lower MARD values are generally better than higher MARD values, it is not possible to define a particular MARD value that ensures a blood glucose meter will satisfy the ISO accuracy criteria. The MARD value that ensures passing the ISO accuracy test can be described only as a probabilistic range. In this work, a Bayesian model is presented to represent the relationship between ISO accuracy criteria and MARD. Under the assumptions made in this work, there is nearly a 100% chance of satisfying ISO 15197:2013 accuracy requirements if the MARD value is between 3.25% and 5.25%. © 2016 Diabetes Technology Society.

  17. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  18. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system.

    PubMed

    Ebe, Kazuyu; Sugimoto, Satoru; Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi; Court, Laurence; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji

    2015-08-01

    To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio-caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient's tumor motion. A substitute target with the patient's tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors' QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients' tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the Exac

  19. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebe, Kazuyu, E-mail: nrr24490@nifty.com; Tokuyama, Katsuichi; Baba, Ryuta

    Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on themore » target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling

  20. Position Accuracy Analysis of a Robust Vision-Based Navigation

    NASA Astrophysics Data System (ADS)

    Gaglione, S.; Del Pizzo, S.; Troisi, S.; Angrisano, A.

    2018-05-01

    Using images to determine camera position and attitude is a consolidated method, very widespread for application like UAV navigation. In harsh environment, where GNSS could be degraded or denied, image-based positioning could represent a possible candidate for an integrated or alternative system. In this paper, such method is investigated using a system based on single camera and 3D maps. A robust estimation method is proposed in order to limit the effect of blunders or noisy measurements on position solution. The proposed approach is tested using images collected in an urban canyon, where GNSS positioning is very unaccurate. A previous photogrammetry survey has been performed to build the 3D model of tested area. The position accuracy analysis is performed and the effect of the robust method proposed is validated.

  1. Volumetric vessel reconstruction method for absolute blood flow velocity measurement in Doppler OCT images

    NASA Astrophysics Data System (ADS)

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2017-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also relates to the geometry of both directions of the laser beam and the flow. In this paper, focusing on the analysis of cerebral hemodynamics, we presents a method to quantify the total absolute blood flow velocity in middle cerebral artery (MCA) based on volumetric vessel reconstruction from pure DOCT images. A modified region growing segmentation method is first used to localize the MCA on successive DOCT B-scan images. Vessel skeletonization, followed by an averaging gradient angle calculation method, is then carried out to obtain Doppler angles along the entire MCA. Once the Doppler angles are determined, the absolute blood flow velocity of each position on the MCA is easily found. Given a seed point position on the MCA, our approach could achieve automatic quantification of the fully distributed absolute BFV. Based on experiments conducted using a swept-source optical coherence tomography system, our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches in the rodent brain.

  2. Assessing and Ensuring GOES-R Magnetometer Accuracy

    NASA Technical Reports Server (NTRS)

    Kronenwetter, Jeffrey; Carter, Delano R.; Todirita, Monica; Chu, Donald

    2016-01-01

    The GOES-R magnetometer accuracy requirement is 1.7 nanoteslas (nT). During quiet times (100 nT), accuracy is defined as absolute mean plus 3 sigma. During storms (300 nT), accuracy is defined as absolute mean plus 2 sigma. To achieve this, the sensor itself has better than 1 nT accuracy. Because zero offset and scale factor drift over time, it is also necessary to perform annual calibration maneuvers. To predict performance, we used covariance analysis and attempted to corroborate it with simulations. Although not perfect, the two generally agree and show the expected behaviors. With the annual calibration regimen, these predictions suggest that the magnetometers will meet their accuracy requirements.

  3. High accuracy position method based on computer vision and error analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shihao; Shi, Zhongke

    2003-09-01

    The study of high accuracy position system is becoming the hotspot in the field of autocontrol. And positioning is one of the most researched tasks in vision system. So we decide to solve the object locating by using the image processing method. This paper describes a new method of high accuracy positioning method through vision system. In the proposed method, an edge-detection filter is designed for a certain running condition. Here, the filter contains two mainly parts: one is image-processing module, this module is to implement edge detection, it contains of multi-level threshold self-adapting segmentation, edge-detection and edge filter; the other one is object-locating module, it is to point out the location of each object in high accurate, and it is made up of medium-filtering and curve-fitting. This paper gives some analysis error for the method to prove the feasibility of vision in position detecting. Finally, to verify the availability of the method, an example of positioning worktable, which is using the proposed method, is given at the end of the paper. Results show that the method can accurately detect the position of measured object and identify object attitude.

  4. Absolute gravimetry as an operational tool for geodynamics research

    NASA Astrophysics Data System (ADS)

    Torge, W.

    Relative gravimetric techniques have been used for nearly 30 years for measuring non-tidal gravity variations with time, and thus have contributed to geodynamics research by monitoring vertical crustal movements and internal mass shifts. With today's accuracy of about ± 0.05µms-2 (or 5µGal), significant results have been obtained in numerous control nets of local extension, especially in connection with seismic and volcanic events. Nevertheless, the main drawbacks of relative gravimetry, which are deficiencies in absolute datum and calibration, set a limit for its application, especially with respect to large-scale networks and long-term investigations. These problems can now be successfully attacked by absolute gravimetry, with transportable gravimeters available since about 20 years. While the absolute technique during the first two centuries of gravimetry's history was based on the pendulum method, the free-fall method can now be employed taking advantage of laser-interferometry, electronic timing, vacuum and shock absorbing techniques, and on-line computer-control. The accuracy inherent in advanced instruments is about ± 0.05 µms-2. In field work, generally an accuracy of ±0.1 µms-2 may be expected, strongly depending on local environmental conditions.

  5. Accuracy of chest radiography for positioning of the umbilical venous catheter.

    PubMed

    Guimarães, Adriana F M; Souza, Aline A C G de; Bouzada, Maria Cândida F; Meira, Zilda M A

    To evaluate the accuracy of the simultaneous analysis of three radiographic anatomical landmarks - diaphragm, cardiac silhouette, and vertebral bodies - in determining the position of the umbilical venous catheter distal end using echocardiography as a reference standard. This was a cross-sectional, observational study, with the prospective inclusion of data from all neonates born in a public reference hospital, between April 2012 and September 2013, submitted to umbilical venous catheter insertion as part of their medical care. The position of the catheter distal end, determined by the simultaneous analysis of three radiographic anatomical landmarks, was compared with the anatomical position obtained by echocardiography; sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated. Of the 162 newborns assessed by echocardiography, only 44 (27.16%) had the catheter in optimal position, in the thoracic portion of the inferior vena cava or at the junction of the inferior vena cava with the right atrium. The catheters were located in the left atrium and interatrial septum in 54 (33.33%) newborns, in the right atrium in 26 (16.05%), intra-hepatic in 37 (22.84%), and intra-aortic in-one newborn (0.62%). The sensitivity, specificity and accuracy of the radiography to detect the catheter in the target area were 56%, 71%, and 67.28%, respectively. Anteroposterior radiography of the chest alone is not able to safely define the umbilical venous catheter position. Echocardiography allows direct visualization of the catheter tip in relation to vascular structures and, whenever possible, should be considered to identify the location of the umbilical venous catheter. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  6. Analysis of RDSS positioning accuracy based on RNSS wide area differential technique

    NASA Astrophysics Data System (ADS)

    Xing, Nan; Su, RanRan; Zhou, JianHua; Hu, XiaoGong; Gong, XiuQiang; Liu, Li; He, Feng; Guo, Rui; Ren, Hui; Hu, GuangMing; Zhang, Lei

    2013-10-01

    The BeiDou Navigation Satellite System (BDS) provides Radio Navigation Service System (RNSS) as well as Radio Determination Service System (RDSS). RDSS users can obtain positioning by responding the Master Control Center (MCC) inquiries to signal transmitted via GEO satellite transponder. The positioning result can be calculated with elevation constraint by MCC. The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay, atmospheric trans-mission delay and GEO satellite position error. During GEO orbit maneuver, poor orbit forecast accuracy significantly impacts RDSS services. A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error. Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver, independent from the RDSS reference station. This improvement can reach 50% in maximum. Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.

  7. High-accuracy absolute rotation rate measurements with a large ring laser gyro: establishing the scale factor.

    PubMed

    Hurst, Robert B; Mayerbacher, Marinus; Gebauer, Andre; Schreiber, K Ulrich; Wells, Jon-Paul R

    2017-02-01

    Large ring lasers have exceeded the performance of navigational gyroscopes by several orders of magnitude and have become useful tools for geodesy. In order to apply them to tests in fundamental physics, remaining systematic errors have to be significantly reduced. We derive a modified expression for the Sagnac frequency of a square ring laser gyro under Earth rotation. The modifications include corrections for dispersion (of both the gain medium and the mirrors), for the Goos-Hänchen effect in the mirrors, and for refractive index of the gas filling the cavity. The corrections were measured and calculated for the 16  m2 Grossring laser located at the Geodetic Observatory Wettzell. The optical frequency and the free spectral range of this laser were measured, allowing unique determination of the longitudinal mode number, and measurement of the dispersion. Ultimately we find that the absolute scale factor of the gyroscope can be estimated to an accuracy of approximately 1 part in 108.

  8. NIST Stars: Absolute Spectrophotometric Calibration of Vega and Sirius

    NASA Astrophysics Data System (ADS)

    Deustua, Susana; Woodward, John T.; Rice, Joseph P.; Brown, Steven W.; Maxwell, Stephen E.; Alberding, Brian G.; Lykke, Keith R.

    2018-01-01

    Absolute flux calibration of standard stars, traceable to SI (International System of Units) standards, is essential for 21st century astrophysics. Dark energy investigations that rely on observations of Type Ia supernovae and precise photometric redshifts of weakly lensed galaxies require a minimum accuracy of 0.5 % in the absolute color calibration. Studies that aim to address fundamental stellar astrophysics also benefit. In the era of large telescopes and all sky surveys well-calibrated standard stars that do not saturate and that are available over the whole sky are needed. Significant effort has been expended to obtain absolute measurements of the fundamental standards Vega and Sirius (and other stars) in the visible and near infrared, achieving total uncertainties between1% and 3%, depending on wavelength, that do not meet the needed accuracy. The NIST Stars program aims to determine the top-of-the-atmosphere absolute spectral irradiance of bright stars to an uncertainty less than 1% from a ground-based observatory. NIST Stars has developed a novel, fully SI-traceable laboratory calibration strategy that will enable achieving the desired accuracy. This strategy has two key components. The first is the SI-traceable calibration of the entire instrument system, and the second is the repeated spectroscopic measurement of the target star throughout the night. We will describe our experimental strategy, present preliminary results for Vega and Sirius and an end-to-end uncertainty budget

  9. Variation of Static-PPP Positioning Accuracy Using GPS-Single Frequency Observations (Aswan, Egypt)

    NASA Astrophysics Data System (ADS)

    Farah, Ashraf

    2017-06-01

    Precise Point Positioning (PPP) is a technique used for position computation with a high accuracy using only one GNSS receiver. It depends on highly accurate satellite position and clock data rather than broadcast ephemeries. PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of collected observations. PPP-(dual frequency receivers) offers comparable accuracy to differential GPS. PPP-single frequency receivers has many applications such as infrastructure, hydrography and precision agriculture. PPP using low cost GPS single-frequency receivers is an area of great interest for millions of users in developing countries such as Egypt. This research presents a study for the variability of single frequency static GPS-PPP precision based on different observation durations.

  10. Assessing and Ensuring GOES-R Magnetometer Accuracy

    NASA Technical Reports Server (NTRS)

    Carter, Delano R.; Todirita, Monica; Kronenwetter, Jeffrey; Chu, Donald

    2016-01-01

    The GOES-R magnetometer subsystem accuracy requirement is 1.7 nanoteslas (nT). During quiet times (100 nT), accuracy is defined as absolute mean plus 3 sigma. During storms (300 nT), accuracy is defined as absolute mean plus 2 sigma. Error comes both from outside the magnetometers, e.g. spacecraft fields and misalignments, as well as inside, e.g. zero offset and scale factor errors. Because zero offset and scale factor drift over time, it will be necessary to perform annual calibration maneuvers. To predict performance before launch, we have used Monte Carlo simulations and covariance analysis. Both behave as expected, and their accuracy predictions agree within 30%. With the proposed calibration regimen, both suggest that the GOES-R magnetometer subsystem will meet its accuracy requirements.

  11. Influence of the quality of intraoperative fluoroscopic images on the spatial positioning accuracy of a CAOS system.

    PubMed

    Wang, Junqiang; Wang, Yu; Zhu, Gang; Chen, Xiangqian; Zhao, Xiangrui; Qiao, Huiting; Fan, Yubo

    2018-06-01

    Spatial positioning accuracy is a key issue in a computer-assisted orthopaedic surgery (CAOS) system. Since intraoperative fluoroscopic images are one of the most important input data to the CAOS system, the quality of these images should have a significant influence on the accuracy of the CAOS system. But the regularities and mechanism of the influence of the quality of intraoperative images on the accuracy of a CAOS system have yet to be studied. Two typical spatial positioning methods - a C-arm calibration-based method and a bi-planar positioning method - are used to study the influence of different image quality parameters, such as resolution, distortion, contrast and signal-to-noise ratio, on positioning accuracy. The error propagation rules of image error in different spatial positioning methods are analyzed by the Monte Carlo method. Correlation analysis showed that resolution and distortion had a significant influence on spatial positioning accuracy. In addition the C-arm calibration-based method was more sensitive to image distortion, while the bi-planar positioning method was more susceptible to image resolution. The image contrast and signal-to-noise ratio have no significant influence on the spatial positioning accuracy. The result of Monte Carlo analysis proved that generally the bi-planar positioning method was more sensitive to image quality than the C-arm calibration-based method. The quality of intraoperative fluoroscopic images is a key issue in the spatial positioning accuracy of a CAOS system. Although the 2 typical positioning methods have very similar mathematical principles, they showed different sensitivities to different image quality parameters. The result of this research may help to create a realistic standard for intraoperative fluoroscopic images for CAOS systems. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    NASA Astrophysics Data System (ADS)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    The future Global Navigation Satellite Systems (GNSS), including modernized GPS, GLONASS, Galileo and BeiDou, offer three or more signal carriers for civilian use and much more redundant observables. The additional frequencies can significantly improve the capabilities of the traditional geodetic techniques based on GPS signals at two frequencies, especially with regard to the availability, accuracy, interoperability and integrity of high-precision GNSS applications. Furthermore, highly redundant measurements can allow for robust simultaneous estimation of static or mobile user states including more parameters such as real-time tropospheric biases and more reliable ambiguity resolution estimates. This paper presents an investigation and analysis of accuracy improvement techniques in the Precise Point Positioning (PPP) method using signals from the fully operational (GPS and GLONASS), as well as the emerging (Galileo and BeiDou) GNSS systems. The main aim was to determine the improvement in both the positioning accuracy achieved and the time convergence it takes to achieve geodetic-level (10 cm or less) accuracy. To this end, freely available observation data from the recent Multi-GNSS Experiment (MGEX) of the International GNSS Service, as well as the open source program RTKLIB were used. Following a brief background of the PPP technique and the scope of MGEX, the paper outlines the various observational scenarios that were used in order to test various data processing aspects of PPP solutions with multi-frequency, multi-constellation GNSS systems. Results from the processing of multi-GNSS observation data from selected permanent MGEX stations are presented and useful conclusions and recommendations for further research are drawn. As shown, data fusion from GPS, GLONASS, Galileo and BeiDou systems is becoming increasingly significant nowadays resulting in a position accuracy increase (mostly in the less favorable East direction) and a large reduction of convergence

  13. Cadastral Positioning Accuracy Improvement: a Case Study in Malaysia

    NASA Astrophysics Data System (ADS)

    Hashim, N. M.; Omar, A. H.; Omar, K. M.; Abdullah, N. M.; Yatim, M. H. M.

    2016-09-01

    Cadastral map is a parcel-based information which is specifically designed to define the limitation of boundaries. In Malaysia, the cadastral map is under authority of the Department of Surveying and Mapping Malaysia (DSMM). With the growth of spatial based technology especially Geographical Information System (GIS), DSMM decided to modernize and reform its cadastral legacy datasets by generating an accurate digital based representation of cadastral parcels. These legacy databases usually are derived from paper parcel maps known as certified plan. The cadastral modernization will result in the new cadastral database no longer being based on single and static parcel paper maps, but on a global digital map. Despite the strict process of the cadastral modernization, this reform has raised unexpected queries that remain essential to be addressed. The main focus of this study is to review the issues that have been generated by this transition. The transformed cadastral database should be additionally treated to minimize inherent errors and to fit them to the new satellite based coordinate system with high positional accuracy. This review result will be applied as a foundation for investigation to study the systematic and effectiveness method for Positional Accuracy Improvement (PAI) in cadastral database modernization.

  14. Globular Clusters: Absolute Proper Motions and Galactic Orbits

    NASA Astrophysics Data System (ADS)

    Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.

    2018-04-01

    We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

  15. Absolute orbit determination using line-of-sight vector measurements between formation flying spacecraft

    NASA Astrophysics Data System (ADS)

    Ou, Yangwei; Zhang, Hongbo; Li, Bin

    2018-04-01

    The purpose of this paper is to show that absolute orbit determination can be achieved based on spacecraft formation. The relative position vectors expressed in the inertial frame are used as measurements. In this scheme, the optical camera is applied to measure the relative line-of-sight (LOS) angles, i.e., the azimuth and elevation. The LIDAR (Light radio Detecting And Ranging) or radar is used to measure the range and we assume that high-accuracy inertial attitude is available. When more deputies are included in the formation, the formation configuration is optimized from the perspective of the Fisher information theory. Considering the limitation on the field of view (FOV) of cameras, the visibility of spacecraft and the installation of cameras are investigated. In simulations, an extended Kalman filter (EKF) is used to estimate the position and velocity. The results show that the navigation accuracy can be enhanced by using more deputies and the installation of cameras significantly affects the navigation performance.

  16. How are lung cancer risk perceptions and cigarette smoking related?-testing an accuracy hypothesis.

    PubMed

    Chen, Lei-Shih; Kaphingst, Kimberly A; Tseng, Tung-Sung; Zhao, Shixi

    2016-10-01

    Subjective risk perception is an important theoretical construct in the field of cancer prevention and control. Although the relationship between subjective risk perception and health behaviors has been widely studied in many health contexts, the causalities and associations between the risk perception of developing lung cancer and cigarette smoking have been inconsistently reported among studies. Such inconsistency may be from discrepancies between study designs (cross-sectional versus longitudinal designs) and the three hypotheses (i.e., the behavior motivation hypothesis, the risk reappraisals hypothesis, and the accuracy hypothesis) testing different underlying associations between risk perception and cigarette-smoking behaviors. To clarify this issue, as an initial step, we examined the association between absolute and relative risk perceptions of developing lung cancer and cigarette-smoking behaviors among a large, national representative sample of 1,680 U.S. adults by testing an accuracy hypothesis (i.e., people who smoke accurately perceived a higher risk of developing lung cancer). Data from the U.S. Health Information National Trends Survey (HINTS) were analyzed using logistic regression and multivariate linear regression to examine the associations between risk perception and cigarette-smoking behaviors among 1,680 U.S. adults. Findings from this cross-sectional survey suggest that absolute and relative risk perceptions were positively and significantly correlated with having smoked >100 cigarettes during lifetime and the frequency of cigarette smoking. Only absolute risk perception was significantly associated with the number of cigarettes smoked per day among current smokers. Because both absolute and relative risk perceptions are positively related to most cigarette-smoking behaviors, this study supports the accuracy hypothesis. Moreover, absolute risk perception might be a more sensitive measurement than relative risk perception for perceived lung

  17. High accuracy position response calibration method for a micro-channel plate ion detector

    NASA Astrophysics Data System (ADS)

    Hong, R.; Leredde, A.; Bagdasarova, Y.; Fléchard, X.; García, A.; Müller, P.; Knecht, A.; Liénard, E.; Kossin, M.; Sternberg, M. G.; Swanson, H. E.; Zumwalt, D. W.

    2016-11-01

    We have developed a position response calibration method for a micro-channel plate (MCP) detector with a delay-line anode position readout scheme. Using an in situ calibration mask, an accuracy of 8 μm and a resolution of 85 μm (FWHM) have been achieved for MeV-scale α particles and ions with energies of ∼10 keV. At this level of accuracy, the difference between the MCP position responses to high-energy α particles and low-energy ions is significant. The improved performance of the MCP detector can find applications in many fields of AMO and nuclear physics. In our case, it helps reducing systematic uncertainties in a high-precision nuclear β-decay experiment.

  18. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  19. Investigation of practical and theoretical accuracy of wireless indoor-positioning system UBISENSE

    NASA Astrophysics Data System (ADS)

    Wozniak, Marek; Odziemczyk, Waldemar; Nagorski, Kamil

    2013-04-01

    The development of Real Time Locating Systems has become an important add-on to many existing location aware systems. While Global Navigation Satelite System has solved most of the outdoor problems, it fails to repeat this success indoors. Wireless indoor positioning systems have become very popular in recent years. One of them is UBISENSE system. This system requires to carry an identity tag that is detected by sensors, which typically use triangulation to determine location. This paper presents the results of the investigation of accuracy of tag position using precise geodetic measurements and geometric analysis. Experimental measurements were carried out on the field polygon using precise tacheometer TCRP 1201+ and complete equipment of Ubisense. Results of experimental measurements were analyzed and presented graphically using Surfer 8. The paper presents the results of the investigation the teoretical and practical positioning accuracy according to the various working conditions.

  20. Probing the limits to positional information

    PubMed Central

    Gregor, Thomas; Tank, David W.; Wieschaus, Eric F.; Bialek, William

    2008-01-01

    The reproducibility and precision of biological patterning is limited by the accuracy with which concentration profiles of morphogen molecules can be established and read out by their targets. We consider four measures of precision for the Bicoid morphogen in the Drosophila embryo: The concentration differences that distinguish neighboring cells, the limits set by the random arrival of Bicoid molecules at their targets (which depends on absolute concentration), the noise in readout of Bicoid by the activation of Hunchback, and the reproducibility of Bicoid concentration at corresponding positions in multiple embryos. We show, through a combination of different experiments, that all of these quantities are ~10%. This agreement among different measures of accuracy indicates that the embryo is not faced with noisy input signals and readout mechanisms; rather the system exerts precise control over absolute concentrations and responds reliably to small concentration differences, approaching the limits set by basic physical principles. PMID:17632062

  1. Influence of Pedometer Position on Pedometer Accuracy at Various Walking Speeds: A Comparative Study

    PubMed Central

    Lovis, Christian

    2016-01-01

    Background Demographic growth in conjunction with the rise of chronic diseases is increasing the pressure on health care systems in most OECD countries. Physical activity is known to be an essential factor in improving or maintaining good health. Walking is especially recommended, as it is an activity that can easily be performed by most people without constraints. Pedometers have been extensively used as an incentive to motivate people to become more active. However, a recognized problem with these devices is their diminishing accuracy associated with decreased walking speed. The arrival on the consumer market of new devices, worn indifferently either at the waist, wrist, or as a necklace, gives rise to new questions regarding their accuracy at these different positions. Objective Our objective was to assess the performance of 4 pedometers (iHealth activity monitor, Withings Pulse O2, Misfit Shine, and Garmin vívofit) and compare their accuracy according to their position worn, and at various walking speeds. Methods We conducted this study in a controlled environment with 21 healthy adults required to walk 100 m at 3 different paces (0.4 m/s, 0.6 m/s, and 0.8 m/s) regulated by means of a string attached between their legs at the level of their ankles and a metronome ticking the cadence. To obtain baseline values, we asked the participants to walk 200 m at their own pace. Results A decrease of accuracy was positively correlated with reduced speed for all pedometers (12% mean error at self-selected pace, 27% mean error at 0.8 m/s, 52% mean error at 0.6 m/s, and 76% mean error at 0.4 m/s). Although the position of the pedometer on the person did not significantly influence its accuracy, some interesting tendencies can be highlighted in 2 settings: (1) positioning the pedometer at the waist at a speed greater than 0.8 m/s or as a necklace at preferred speed tended to produce lower mean errors than at the wrist position; and (2) at a slow speed (0.4 m/s), pedometers

  2. A new lunar absolute control point: established by images from the landing camera on Chang'e-3

    NASA Astrophysics Data System (ADS)

    Wang, Fen-Fei; Liu, Jian-Jun; Li, Chun-Lai; Ren, Xin; Mu, Ling-Li; Yan, Wei; Wang, Wen-Rui; Xiao, Jing-Tao; Tan, Xu; Zhang, Xiao-Xia; Zou, Xiao-Duan; Gao, Xing-Ye

    2014-12-01

    The establishment of a lunar control network is one of the core tasks in selenodesy, in which defining an absolute control point on the Moon is the most important step. However, up to now, the number of absolute control points has been very sparse. These absolute control points have mainly been lunar laser ranging retroreflectors, whose geographical location can be observed by observations on Earth and also identified in high resolution lunar satellite images. The Chang'e-3 (CE-3) probe successfully landed on the Moon, and its geographical location has been monitored by an observing station on Earth. Since its positional accuracy is expected to reach the meter level, the CE-3 landing site can become a new high precision absolute control point. We use a sequence of images taken from the landing camera, as well as satellite images taken by CE-1 and CE-2, to identify the location of the CE-3 lander. With its geographical location known, the CE-3 landing site can be established as a new absolute control point, which will effectively expand the current area of the lunar absolute control network by 22%, and can greatly facilitate future research in the field of lunar surveying and mapping, as well as selenodesy.

  3. Eyeball Position in Facial Approximation: Accuracy of Methods for Predicting Globe Positioning in Lateral View.

    PubMed

    Zednikova Mala, Pavla; Veleminska, Jana

    2018-01-01

    This study measured the accuracy of traditional and validated newly proposed methods for globe positioning in lateral view. Eighty lateral head cephalograms of adult subjects from Central Europe were taken, and the actual and predicted dimensions were compared. The anteroposterior eyeball position was estimated as the most accurate method based on the proportion of the orbital height (SEE = 1.9 mm) and was followed by the "tangent to the iris method" showing SEE = 2.4 mm. The traditional "tangent to the cornea method" underestimated the eyeball projection by SEE = 5.8 mm. Concerning the superoinferior eyeball position, the results showed a deviation from a central to a more superior position by 0.3 mm, on average, and the traditional method of central positioning of the globe could not be rejected as inaccurate (SEE = 0.3 mm). Based on regression analyzes or proportionality of the orbital height, the SEE = 2.1 mm. © 2017 American Academy of Forensic Sciences.

  4. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  5. Automatic and robust extrinsic camera calibration for high-accuracy mobile mapping

    NASA Astrophysics Data System (ADS)

    Goeman, Werner; Douterloigne, Koen; Bogaert, Peter; Pires, Rui; Gautama, Sidharta

    2012-10-01

    A mobile mapping system (MMS) is the answer of the geoinformation community to the exponentially growing demand for various geospatial data with increasingly higher accuracies and captured by multiple sensors. As the mobile mapping technology is pushed to explore its use for various applications on water, rail, or road, the need emerges to have an external sensor calibration procedure which is portable, fast and easy to perform. This way, sensors can be mounted and demounted depending on the application requirements without the need for time consuming calibration procedures. A new methodology is presented to provide a high quality external calibration of cameras which is automatic, robust and fool proof.The MMS uses an Applanix POSLV420, which is a tightly coupled GPS/INS positioning system. The cameras used are Point Grey color video cameras synchronized with the GPS/INS system. The method uses a portable, standard ranging pole which needs to be positioned on a known ground control point. For calibration a well studied absolute orientation problem needs to be solved. Here, a mutual information based image registration technique is studied for automatic alignment of the ranging pole. Finally, a few benchmarking tests are done under various lighting conditions which proves the methodology's robustness, by showing high absolute stereo measurement accuracies of a few centimeters.

  6. Absolute and Relative Socioeconomic Health Inequalities across Age Groups

    PubMed Central

    van Zon, Sander K. R.; Bültmann, Ute; Mendes de Leon, Carlos F.; Reijneveld, Sijmen A.

    2015-01-01

    Background The magnitude of socioeconomic health inequalities differs across age groups. It is less clear whether socioeconomic health inequalities differ across age groups by other factors that are known to affect the relation between socioeconomic position and health, like the indicator of socioeconomic position, the health outcome, gender, and as to whether socioeconomic health inequalities are measured in absolute or in relative terms. The aim is to investigate whether absolute and relative socioeconomic health inequalities differ across age groups by indicator of socioeconomic position, health outcome and gender. Methods The study sample was derived from the baseline measurement of the LifeLines Cohort Study and consisted of 95,432 participants. Socioeconomic position was measured as educational level and household income. Physical and mental health were measured with the RAND-36. Age concerned eleven 5-years age groups. Absolute inequalities were examined by comparing means. Relative inequalities were examined by comparing Gini-coefficients. Analyses were performed for both health outcomes by both educational level and household income. Analyses were performed for all age groups, and stratified by gender. Results Absolute and relative socioeconomic health inequalities differed across age groups by indicator of socioeconomic position, health outcome, and gender. Absolute inequalities were most pronounced for mental health by household income. They were larger in younger than older age groups. Relative inequalities were most pronounced for physical health by educational level. Gini-coefficients were largest in young age groups and smallest in older age groups. Conclusions Absolute and relative socioeconomic health inequalities differed cross-sectionally across age groups by indicator of socioeconomic position, health outcome and gender. Researchers should critically consider the implications of choosing a specific age group, in addition to the indicator of

  7. Probative value of absolute and relative judgments in eyewitness identification.

    PubMed

    Clark, Steven E; Erickson, Michael A; Breneman, Jesse

    2011-10-01

    It is well-accepted that eyewitness identification decisions based on relative judgments are less accurate than identification decisions based on absolute judgments. However, the theoretical foundation for this view has not been established. In this study relative and absolute judgments were compared through simulations of the WITNESS model (Clark, Appl Cogn Psychol 17:629-654, 2003) to address the question: Do suspect identifications based on absolute judgments have higher probative value than suspect identifications based on relative judgments? Simulations of the WITNESS model showed a consistent advantage for absolute judgments over relative judgments for suspect-matched lineups. However, simulations of same-foils lineups showed a complex interaction based on the accuracy of memory and the similarity relationships among lineup members.

  8. Method to improve accuracy of positioning object by eLoran system with applying standard Kalman filter

    NASA Astrophysics Data System (ADS)

    Grunin, A. P.; Kalinov, G. A.; Bolokhovtsev, A. V.; Sai, S. V.

    2018-05-01

    This article reports on a novel method to improve the accuracy of positioning an object by a low frequency hyperbolic radio navigation system like an eLoran. This method is based on the application of the standard Kalman filter. Investigations of an affection of the filter parameters and the type of the movement on accuracy of the vehicle position estimation are carried out. Evaluation of the method accuracy was investigated by separating data from the semi-empirical movement model to different types of movements.

  9. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  10. Position Accuracy Improvement by Implementing the DGNSS-CP Algorithm in Smartphones

    PubMed Central

    Yoon, Donghwan; Kee, Changdon; Seo, Jiwon; Park, Byungwoon

    2016-01-01

    The position accuracy of Global Navigation Satellite System (GNSS) modules is one of the most significant factors in determining the feasibility of new location-based services for smartphones. Considering the structure of current smartphones, it is impossible to apply the ordinary range-domain Differential GNSS (DGNSS) method. Therefore, this paper describes and applies a DGNSS-correction projection method to a commercial smartphone. First, the local line-of-sight unit vector is calculated using the elevation and azimuth angle provided in the position-related output of Android’s LocationManager, and this is transformed to Earth-centered, Earth-fixed coordinates for use. To achieve position-domain correction for satellite systems other than GPS, such as GLONASS and BeiDou, the relevant line-of-sight unit vectors are used to construct an observation matrix suitable for multiple constellations. The results of static and dynamic tests show that the standalone GNSS accuracy is improved by about 30%–60%, thereby reducing the existing error of 3–4 m to just 1 m. The proposed algorithm enables the position error to be directly corrected via software, without the need to alter the hardware and infrastructure of the smartphone. This method of implementation and the subsequent improvement in performance are expected to be highly effective to portability and cost saving. PMID:27322284

  11. Four Years of Absolutely Calibrated Hyperspectral Data from the Atmospheric Infrared Sounder (AIRS) on the Eos Aqua

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Broberg, Steve; Elliott, Denis; Gregorich, Dave

    2006-01-01

    This viewgraph presentation reviews four years of absolute calibration of hyperspectral data from the AIRS instrument located on the EOS AQUA spacecraft. The following topics are discussed: 1) A quick overview of AIRS; 2) What absolute calibration accuracy and stability are required for climate applications?; 3) Validating of radiance accuracy and stability: Results from four years of AIRS data; and 4) Conclusions.

  12. Improvement of CD-SEM mark position measurement accuracy

    NASA Astrophysics Data System (ADS)

    Kasa, Kentaro; Fukuhara, Kazuya

    2014-04-01

    CD-SEM is now attracting attention as a tool that can accurately measure positional error of device patterns. However, the measurement accuracy can get worse due to pattern asymmetry as in the case of image based overlay (IBO) and diffraction based overlay (DBO). For IBO and DBO, a way of correcting the inaccuracy arising from measurement patterns was suggested. For CD-SEM, although a way of correcting CD bias was proposed, it has not been argued how to correct the inaccuracy arising from pattern asymmetry using CD-SEM. In this study we will propose how to quantify and correct the measurement inaccuracy affected by pattern asymmetry.

  13. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  14. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo Antonio; Marques, Heloísa Alves Silva; Aquino, Marcio; Veettil, Sreeja Vadakke; Monico, João Francisco Galera

    2018-02-01

    GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  15. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  16. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4.

  17. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their

  18. Absolute metrology for space interferometers

    NASA Astrophysics Data System (ADS)

    Salvadé, Yves; Courteville, Alain; Dändliker, René

    2017-11-01

    The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.

  19. Emergency positioning system accuracy with infrared LEDs in high-security facilities

    NASA Astrophysics Data System (ADS)

    Knoch, Sierra N.; Nelson, Charles; Walker, Owens

    2017-05-01

    Instantaneous personnel location presents a challenge in Department of Defense applications where high levels of security restrict real-time tracking of crew members. During emergency situations, command and control requires immediate accountability of all personnel. Current radio frequency (RF) based indoor positioning systems can be unsuitable due to RF leakage and electromagnetic interference with sensitively calibrated machinery on variable platforms like ships, submarines and high-security facilities. Infrared light provide a possible solution to this problem. This paper proposes and evaluates an indoor line-of-sight positioning system that is comprised of IR and high-sensitivity CMOS camera receivers. In this system the movement of the LEDs is captured by the camera, uploaded and analyzed; the highest point of power is located and plotted to create a blueprint of crewmember location. Results provided evaluate accuracy as a function of both wavelength and environmental conditions. Research will further evaluate the accuracy of the LED transmitter and CMOS camera receiver system. Transmissions in both the 780 and 850nm IR are analyzed.

  20. An accuracy assessment of positions obtained using survey- and recreational-grade Global Positioning System receivers across a range of forest conditions within the Tanana Valley of interior Alaska

    Treesearch

    Hans-Erik Andersen; Tobey Clarkin; Ken Winterberger; Jacob Strunk

    2009-01-01

    The accuracy of recreational- and survey-grade global positioning system (GPS) receivers was evaluated across a range of forest conditions in the Tanana Valley of interior Alaska. High-accuracy check points, established using high-order instruments and closed-traverse surveying methods, were then used to evaluate the accuracy of positions acquired in different forest...

  1. Absolute measurements of large mirrors

    NASA Astrophysics Data System (ADS)

    Su, Peng

    The ability to produce mirrors for large astronomical telescopes is limited by the accuracy of the systems used to test the surfaces of such mirrors. Typically the mirror surfaces are measured by comparing their actual shapes to a precision master, which may be created using combinations of mirrors, lenses, and holograms. The work presented here develops several optical testing techniques that do not rely on a large or expensive precision, master reference surface. In a sense these techniques provide absolute optical testing. The Giant Magellan Telescope (GMT) has been designed with a 350 m 2 collecting area provided by a 25 m diameter primary mirror made out from seven circular independent mirror segments. These segments create an equivalent f/0.7 paraboloidal primary mirror consisting of a central segment and six outer segments. Each of the outer segments is 8.4 m in diameter and has an off-axis aspheric shape departing 14.5 mm from the best-fitting sphere. Much of the work in this dissertation is motivated by the need to measure the surfaces or such large mirrors accurately, without relying on a large or expensive precision reference surface. One method for absolute testing describing in this dissertation uses multiple measurements relative to a reference surface that is located in different positions with respect to the test surface of interest. The test measurements are performed with an algorithm that is based on the maximum likelihood (ML) method. Some methodologies for measuring large flat surfaces in the 2 m diameter range and for measuring the GMT primary mirror segments were specifically developed. For example, the optical figure of a 1.6-m flat mirror was determined to 2 nm rms accuracy using multiple 1-meter sub-aperture measurements. The optical figure of the reference surface used in the 1-meter sub-aperture measurements was also determined to the 2 nm level. The optical test methodology for a 1.7-m off axis parabola was evaluated by moving several

  2. Income and Well-Being: Relative Income and Absolute Income Weaken Negative Emotion, but Only Relative Income Improves Positive Emotion.

    PubMed

    Yu, Zonghuo; Chen, Li

    2016-01-01

    Whether relative income or absolute income could affect subjective well-being has been a bone of contention for years. Life satisfaction and the relative frequency of positive and negative emotions are parts of subjective well-being. According to the prospect theory, hedonic adaptation helps to explain why positive emotion is often so hard to be maintained, and negative emotion wouldn't be easy to be eliminated. So we expect the relationship between income and positive emotion is different from that between income and negative emotion. Given that regional reference is the main comparison mechanism, effects of regional average income on regional average subjective well-being should be potentially zero if only relative income matters. Using multilevel analysis, we tested the hypotheses with a dataset of 30,144 individuals from 162 counties in China. The results suggested that household income at the individual level is associated with life satisfaction, happiness and negative emotions. On the contrary, at a county level, household income is only associated with negative emotion. In other words, happiness and life satisfaction was only associated with relative income, but negative emotion was associated with relative income and absolute income. Without social comparison, income doesn't improve happiness, but it could weaken negative emotion. Therefore, it is possible for economic growth to weaken negative emotion without improving happiness. These findings also contribute to the current debate about the "Esterling paradox."

  3. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions - Effect of Velocity

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2013-01-01

    Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to

  4. Teaching High-Accuracy Global Positioning System to Undergraduates Using Online Processing Services

    ERIC Educational Resources Information Center

    Wang, Guoquan

    2013-01-01

    High-accuracy Global Positioning System (GPS) has become an important geoscientific tool used to measure ground motions associated with plate movements, glacial movements, volcanoes, active faults, landslides, subsidence, slow earthquake events, as well as large earthquakes. Complex calculations are required in order to achieve high-precision…

  5. The Effectiveness of a Rater Training Booklet in Increasing Accuracy of Performance Ratings

    DTIC Science & Technology

    1988-04-01

    subjects’ ratings were compared for accuracy. The dependent measure was the absolute deviation score of each individual’s rating from the "true score". The...subjects’ ratings were compared for accuracy. The dependent measure was the absolute deviation score of each individual’s rating from the "true score". The...r IS % _. Findings: The absolute deviation scores of each individual’s ratings from the "true score" provided by subject matter experts were analyzed

  6. Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty.

    PubMed

    Levy, Jonathan C; Everding, Nathan G; Frankle, Mark A; Keppler, Louis J

    2014-10-01

    The accuracy of reproducing a surgical plan during shoulder arthroplasty is improved by computer assistance. Intraoperative navigation, however, is challenged by increased surgical time and additional technically difficult steps. Patient-matched instrumentation has the potential to reproduce a similar degree of accuracy without the need for additional surgical steps. The purpose of this study was to examine the accuracy of patient-specific planning and a patient-specific drill guide for glenoid baseplate placement in reverse shoulder arthroplasty. A patient-specific glenoid baseplate drill guide for reverse shoulder arthroplasty was produced for 14 cadaveric shoulders based on a plan developed by a virtual preoperative 3-dimensional planning system using thin-cut computed tomography images. Using this patient-specific guide, high-volume shoulder surgeons exposed the glenoid through a deltopectoral approach and drilled the bicortical pathway defined by the guide. The trajectory of the drill path was compared with the virtual preoperative planned position using similar thin-cut computed tomography images to define accuracy. The drill pathway defined by the patient-matched guide was found to be highly accurate when compared with the preoperative surgical plan. The translational accuracy was 1.2 ± 0.7 mm. The accuracy of inferior tilt was 1.2° ± 1.2°. The accuracy of glenoid version was 2.6° ± 1.7°. The use of patient-specific glenoid baseplate guides is highly accurate in reproducing a virtual 3-dimensional preoperative plan. This technique delivers the accuracy observed using computerized navigation without any additional surgical steps or technical challenges. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements

    PubMed Central

    Krzysztof, Naus; Aleksander, Nowak

    2016-01-01

    The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy—PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning. PMID:27537884

  8. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements.

    PubMed

    Krzysztof, Naus; Aleksander, Nowak

    2016-08-15

    The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy-PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning.

  9. Improved Absolute Radiometric Calibration of a UHF Airborne Radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Hawkins, Brian P.; Harcke, Leif; Hensley, Scott; Lou, Yunling; Michel, Thierry R.; Moreira, Laila; Muellerschoen, Ronald J.; Shimada, Joanne G.; Tham, Kean W.; hide

    2015-01-01

    The AirMOSS airborne SAR operates at UHF and produces fully polarimetric imagery. The AirMOSS radar data are used to produce Root Zone Soil Moisture (RZSM) depth profiles. The absolute radiometric accuracy of the imagery, ideally of better than 0.5 dB, is key to retrieving RZSM, especially in wet soils where the backscatter as a function of soil moisture function tends to flatten out. In this paper we assess the absolute radiometric uncertainty in previously delivered data, describe a method to utilize Built In Test (BIT) data to improve the radiometric calibration, and evaluate the improvement from applying the method.

  10. Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures

    NASA Astrophysics Data System (ADS)

    Reuss, Matthias; Fördős, Ferenc; Blom, Hans; Öktem, Ozan; Högberg, Björn; Brismar, Hjalmar

    2017-02-01

    A common method to assess the performance of (super resolution) microscopes is to use the localization precision of emitters as an estimate for the achieved resolution. Naturally, this is widely used in super resolution methods based on single molecule stochastic switching. This concept suffers from the fact that it is hard to calibrate measures against a real sample (a phantom), because true absolute positions of emitters are almost always unknown. For this reason, resolution estimates are potentially biased in an image since one is blind to true position accuracy, i.e. deviation in position measurement from true positions. We have solved this issue by imaging nanorods fabricated with DNA-origami. The nanorods used are designed to have emitters attached at each end in a well-defined and highly conserved distance. These structures are widely used to gauge localization precision. Here, we additionally determined the true achievable localization accuracy and compared this figure of merit to localization precision values for two common super resolution microscope methods STED and STORM.

  11. Temporal Dynamics of Microbial Rhodopsin Fluorescence Reports Absolute Membrane Voltage

    PubMed Central

    Hou, Jennifer H.; Venkatachalam, Veena; Cohen, Adam E.

    2014-01-01

    Plasma membrane voltage is a fundamentally important property of a living cell; its value is tightly coupled to membrane transport, the dynamics of transmembrane proteins, and to intercellular communication. Accurate measurement of the membrane voltage could elucidate subtle changes in cellular physiology, but existing genetically encoded fluorescent voltage reporters are better at reporting relative changes than absolute numbers. We developed an Archaerhodopsin-based fluorescent voltage sensor whose time-domain response to a stepwise change in illumination encodes the absolute membrane voltage. We validated this sensor in human embryonic kidney cells. Measurements were robust to variation in imaging parameters and in gene expression levels, and reported voltage with an absolute accuracy of 10 mV. With further improvements in membrane trafficking and signal amplitude, time-domain encoding of absolute voltage could be applied to investigate many important and previously intractable bioelectric phenomena. PMID:24507604

  12. Effect of Traffic Position Accuracy for Conducting Safe Airport Surface Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III; Barnes, James R.

    2014-01-01

    The Next Generation Air Transportation System (NextGen) concept proposes many revolutionary operational concepts and technologies, such as display of traffic information and movements, airport moving maps (AMM), and proactive alerts of runway incursions and surface traffic conflicts, to deliver an overall increase in system capacity and safety. A piloted simulation study was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center to evaluate the ability to conduct safe and efficient airport surface operations while utilizing an AMM displaying traffic of various position accuracies as well as the effect of traffic position accuracy on airport conflict detection and resolution (CD&R) capability. Nominal scenarios and off-nominal conflict scenarios were conducted using 12 airline crews operating in a simulated Memphis International Airport terminal environment. The data suggest that all traffic should be shown on the airport moving map, whether qualified or unqualified, and conflict detection and resolution technologies provide significant safety benefits. Despite the presence of traffic information on the map, collisions or near collisions still occurred; when indications or alerts were generated in these same scenarios, the incidences were averted.

  13. High accuracy-nationwide differential global positioning system test and analysis : phase II report

    DOT National Transportation Integrated Search

    2005-07-01

    The High Accuracy-Nationwide Differential Global Positioning System (HA-NDGPS) program focused on the development of compression and broadcast techniques to provide users over a large area wit very accurate radio navigation solutions. The goal was ac...

  14. Accuracy of Different Modalities to Record Natural Head Position in 3 Dimensions: A Systematic Review.

    PubMed

    Leung, Ming Yin; Lo, John; Leung, Yiu Yan

    2016-11-01

    Three-dimensional (3D) images are taken with positioning devices to ensure a patient's stability, which, however, place the patient's head into a random orientation. Reorientation of images to the natural head position (NHP) is necessary for appropriate assessment of dentofacial deformities before any surgical planning. The aim of this study was to review the literature systematically to identify and evaluate the various modalities available to record the NHP in 3 dimensions and to compare their accuracy. A systematic literature search of the PubMed, Cochrane Library and Embase databases, with no limitations on publication time or language, was performed in July 2015. The search and evaluations of articles were performed in 4 rounds. The methodologies, accuracies, advantages, and limitations of various modalities to record NHP were examined. Eight articles were included in the final review. Six modalities to record NHP were identified, namely 1) stereophotogrammetry, 2) facial markings along laser lines, 3) clinical photographs and the pose from orthography and scaling with iterations (POSIT) algorithm, 4) digital orientation sensing, 5) handheld 3D camera measuring system, and 6) laser scanning. Digital orientation sensing had good accuracy, with mean angular differences from the reference within 1° (0.07 ± 0.49° and 0.12 ± 0.54°, respectively). Laser scanning was shown to be comparable to digital orientation sensing. The method involving clinical photographs and the POSIT algorithm was reported to have good accuracy, with mean angular differences for pitch, roll, and yaw within 1° (-0.17 ± 0.50°). Stereophotogrammetry was reported to have the highest reliability, with mean angular deviations in pitch, roll, and yaw for active and passive stereophotogrammetric devices within 0.1° (0.004771 ± 0.045645° and 0.007572 ± 0.079088°, respectively). This systematic review showed that recording the NHP in 3 dimensions with a digital orientation sensor has good

  15. Mapping with MAV: Experimental Study on the Contribution of Absolute and Relative Aerial Position Control

    NASA Astrophysics Data System (ADS)

    Skaloud, J.; Rehak, M.; Lichti, D.

    2014-03-01

    This study highlights the benefit of precise aerial position control in the context of mapping using frame-based imagery taken by small UAVs. We execute several flights with a custom Micro Aerial Vehicle (MAV) octocopter over a small calibration field equipped with 90 signalized targets and 25 ground control points. The octocopter carries a consumer grade RGB camera, modified to insure precise GPS time stamping of each exposure, as well as a multi-frequency/constellation GNSS receiver. The GNSS antenna and camera are rigidly mounted together on a one-axis gimbal that allows control of the obliquity of the captured imagery. The presented experiments focus on including absolute and relative aerial control. We confirm practically that both approaches are very effective: the absolute control allows omission of ground control points while the relative requires only a minimum number of control points. Indeed, the latter method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified (e.g. the lever-arm between the camera perspective and antenna phase centers does not need to be determined) and, second, its principle allows employing a single-frequency antenna and carrier-phase GNSS receiver. This reduces the cost of the system as well as the payload, which in turn increases the flying time.

  16. Absolute Coefficients and the Graphical Representation of Airfoil Characteristics

    NASA Technical Reports Server (NTRS)

    Munk, Max

    1921-01-01

    It is argued that there should be an agreement as to what conventions to use in determining absolute coefficients used in aeronautics and in how to plot those coefficients. Of particular importance are the absolute coefficients of lift and drag. The author argues for the use of the German method over the kind in common use in the United States and England, and for the Continental over the usual American and British method of graphically representing the characteristics of an airfoil. The author notes that, on the whole, it appears that the use of natural absolute coefficients in a polar diagram is the logical method for presentation of airfoil characteristics, and that serious consideration should be given to the advisability of adopting this method in all countries, in order to advance uniformity and accuracy in the science of aeronautics.

  17. Accuracy and Precision of a Veterinary Neuronavigation System for Radiation Oncology Positioning

    PubMed Central

    Ballegeer, Elizabeth A.; Frey, Stephen; Sieffert, Rob

    2018-01-01

    Conformal radiation treatment plans such as IMRT and other radiosurgery techniques require very precise patient positioning, typically within a millimeter of error for best results. CT cone beam, real-time navigation, and infrared position sensors are potential options for success but rarely present in veterinary radiation centers. A neuronavigation system (Brainsight Vet, Rogue Research) was tested 22 times on a skull for positioning accuracy and precision analysis. The first 6 manipulations allowed the authors to become familiar with the system but were still included in the analyses. Overall, the targeting mean error in 3D was 1.437 mm with SD 1.242 mm. This system could be used for positioning for radiation therapy or radiosurgery. PMID:29666822

  18. NLOS mitigation and ranging accuracy for building indoor positioning system in UWB using commercial radio modules

    NASA Astrophysics Data System (ADS)

    Alsudani, Ahlam

    2018-05-01

    In recent years, indoor positioning system (IPS) plays a very important role in several environments such as hospitals, airports, males, Etc. It is used to locate mobile stations such as human and robots inside buildings. Some of IPSs applications are: locating an elder or child needed for an urgent help in hospitals, emergency situations such as locating firefighters inside building on fire or policemen fitting terrorists inside building by a commander to help for expedite evacuation in case one of them need for help. In indoor positioning applications, the accuracy should be high as can as possible, in another word; the error should be less than 1 meter. The indoor environment is the major challenging to obtain such accuracy. In this paper, we present a novel algorithm to identify the line of sight (LOS) and non-line of sight (NLOS) channels and improve the positioning accuracy using ultra-wideband (UWB) technology implementing DW1000 devices.

  19. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...

  20. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...

  1. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...

  2. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...

  3. Accuracy analysis of the space shuttle solid rocket motor profile measuring device

    NASA Technical Reports Server (NTRS)

    Estler, W. Tyler

    1989-01-01

    The Profile Measuring Device (PMD) was developed at the George C. Marshall Space Flight Center following the loss of the Space Shuttle Challenger. It is a rotating gauge used to measure the absolute diameters of mating features of redesigned Solid Rocket Motor field joints. Diameter tolerance of these features are typically + or - 0.005 inches and it is required that the PMD absolute measurement uncertainty be within this tolerance. In this analysis, the absolute accuracy of these measurements were found to be + or - 0.00375 inches, worst case, with a potential accuracy of + or - 0.0021 inches achievable by improved temperature control.

  4. Strategy for the absolute neutron emission measurement on ITER.

    PubMed

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  5. Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  6. The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models

    NASA Astrophysics Data System (ADS)

    Godah, Walyeldeen; Krynski, Jan; Szelachowska, Malgorzata

    2018-05-01

    The objective of this paper is to demonstrate the usefulness of absolute gravity data for the validation of Global Geopotential Models (GGMs). It is also aimed at improving quasigeoid heights determined from satellite-only GGMs using absolute gravity data. The area of Poland, as a unique one, covered with a homogeneously distributed set of absolute gravity data, has been selected as a study area. The gravity anomalies obtained from GGMs were validated using the corresponding ones determined from absolute gravity data. The spectral enhancement method was implemented to overcome the spectral inconsistency in data being validated. The quasigeoid heights obtained from the satellite-only GGM as well as from the satellite-only GGM in combination with absolute gravity data were evaluated with high accuracy GNSS/levelling data. Estimated accuracy of gravity anomalies obtained from GGMs investigated is of 1.7 mGal. Considering omitted gravity signal, e.g. from degree and order 101 to 2190, satellite-only GGMs can be validated at the accuracy level of 1 mGal using absolute gravity data. An improvement up to 59% in the accuracy of quasigeoid heights obtained from the satellite-only GGM can be observed when combining the satellite-only GGM with absolute gravity data.

  7. Study on the position accuracy of a mechanical alignment system

    NASA Astrophysics Data System (ADS)

    Cai, Yimin

    In this thesis, we investigated the precision level and established the baseline achieved by a mechanical alignment system using datums and reference surfaces. The factors which affect the accuracy of mechanical alignment system were studied and methodology was developed to suppress these factors so as to reach its full potential precision. In order to characterize the mechanical alignment system quantitatively, a new optical position monitoring system by using quadrant detectors has been developed in this thesis, it can monitor multi-dimensional degrees of mechanical workpieces in real time with high precision. We studied the noise factors inside the system and optimized the optical system. Based on the fact that one of the major limiting noise factors is the shifting of the laser beam, a noise cancellation technique has been developed successfully to suppress this noise, the feasibility of an ultra high resolution (<20 A) for displacement monitoring has been demonstrated. Using the optical position monitoring system, repeatability experiment of the mechanical alignment system has been conducted on different kinds of samples including steel, aluminum, glass and plastics with the same size 100mm x 130mm. The alignment accuracy was studied quantitatively rather than qualitatively before. In a controlled environment, the alignment precision can be improved 5 folds by securing the datum without other means of help. The alignment accuracy of an aluminum workpiece having reference surface by milling is about 3 times better than by shearing. Also we have found that sample material can have fairly significant effect on the alignment precision of the system. Contamination trapped between the datum and reference surfaces in mechanical alignment system can cause errors of registration or reduce the level of manufacturing precision. In the thesis, artificial and natural dust particles were used to simulate the real situations and their effects on system precision have been

  8. Accuracy and repeatability positioning of high-performancel athe for non-circular turning

    NASA Astrophysics Data System (ADS)

    Majda, Paweł; Powałka, Bartosz

    2017-11-01

    This paper presents research on the accuracy and repeatability of CNC axis positioning in an innovative lathe with an additional Xs axis. This axis is used to perform movements synchronized with the angular position of the main drive, i.e. the spindle, and with the axial feed along the Z axis. This enables the one-pass turning of non-circular surfaces, rope and trapezoidal threads, as well as the surfaces of rotary tools such as a gear cutting hob, etc. The paper presents and discusses the interpretation of results and the calibration effects of positioning errors in the lathe's numerical control system. Finally, it shows the geometric characteristics of the rope thread turned at various spindle speeds, including before and after-correction of the positioning error of the Xs axis.

  9. Test Plan for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; Hair, Jason; McAndrew, Brendan; Daw, Adrian; Jennings, Donald; Rabin, Douglas

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. One of the major objectives of CLARREO is to advance the accuracy of SI traceable absolute calibration at infrared and reflected solar wavelengths. This advance is required to reach the on-orbit absolute accuracy required to allow climate change observations to survive data gaps while remaining sufficiently accurate to observe climate change to within the uncertainty of the limit of natural variability. While these capabilities exist at NIST in the laboratory, there is a need to demonstrate that it can move successfully from NIST to NASA and/or instrument vendor capabilities for future spaceborne instruments. The current work describes the test plan for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches , alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result of efforts with the SOLARIS CDS will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections. The CLARREO mission addresses the need to observe high-accuracy, long-term climate change trends and advance the accuracy of SI traceable absolute calibration. The current work describes the test plan for the SOLARIS which is the calibration demonstration

  10. Accuracy evaluation of 3D lidar data from small UAV

    NASA Astrophysics Data System (ADS)

    Tulldahl, H. M.; Bissmarck, Fredrik; Larsson, Hâkan; Grönwall, Christina; Tolt, Gustav

    2015-10-01

    A UAV (Unmanned Aerial Vehicle) with an integrated lidar can be an efficient system for collection of high-resolution and accurate three-dimensional (3D) data. In this paper we evaluate the accuracy of a system consisting of a lidar sensor on a small UAV. High geometric accuracy in the produced point cloud is a fundamental qualification for detection and recognition of objects in a single-flight dataset as well as for change detection using two or several data collections over the same scene. Our work presented here has two purposes: first to relate the point cloud accuracy to data processing parameters and second, to examine the influence on accuracy from the UAV platform parameters. In our work, the accuracy is numerically quantified as local surface smoothness on planar surfaces, and as distance and relative height accuracy using data from a terrestrial laser scanner as reference. The UAV lidar system used is the Velodyne HDL-32E lidar on a multirotor UAV with a total weight of 7 kg. For processing of data into a geographically referenced point cloud, positioning and orientation of the lidar sensor is based on inertial navigation system (INS) data combined with lidar data. The combination of INS and lidar data is achieved in a dynamic calibration process that minimizes the navigation errors in six degrees of freedom, namely the errors of the absolute position (x, y, z) and the orientation (pitch, roll, yaw) measured by GPS/INS. Our results show that low-cost and light-weight MEMS based (microelectromechanical systems) INS equipment with a dynamic calibration process can obtain significantly improved accuracy compared to processing based solely on INS data.

  11. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.

    PubMed

    Wang, Liang; Li, Zishen; Zhao, Jiaojiao; Zhou, Kai; Wang, Zhiyu; Yuan, Hong

    2016-12-21

    Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10-20 m (achieved by the standard positioning services) to about 3-5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50-80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test.

  12. The stars: an absolute radiometric reference for the on-orbit calibration of PLEIADES-HR satellites

    NASA Astrophysics Data System (ADS)

    Meygret, Aimé; Blanchet, Gwendoline; Mounier, Flore; Buil, Christian

    2017-09-01

    The accurate on-orbit radiometric calibration of optical sensors has become a challenge for space agencies who gather their effort through international working groups such as CEOS/WGCV or GSICS with the objective to insure the consistency of space measurements and to reach an absolute accuracy compatible with more and more demanding scientific needs. Different targets are traditionally used for calibration depending on the sensor or spacecraft specificities: from on-board calibration systems to ground targets, they all take advantage of our capacity to characterize and model them. But achieving the in-flight stability of a diffuser panel is always a challenge while the calibration over ground targets is often limited by their BDRF characterization and the atmosphere variability. Thanks to their agility, some satellites have the capability to view extra-terrestrial targets such as the moon or stars. The moon is widely used for calibration and its albedo is known through ROLO (RObotic Lunar Observatory) USGS model but with a poor absolute accuracy limiting its use to sensor drift monitoring or cross-calibration. Although the spectral irradiance of some stars is known with a very high accuracy, it was not really shown that they could provide an absolute reference for remote sensors calibration. This paper shows that high resolution optical sensors can be calibrated with a high absolute accuracy using stars. The agile-body PLEIADES 1A satellite is used for this demonstration. The star based calibration principle is described and the results are provided for different stars, each one being acquired several times. These results are compared to the official calibration provided by ground targets and the main error contributors are discussed.

  13. Expected accuracy of proximal and distal temperature estimated by wireless sensors, in relation to their number and position on the skin.

    PubMed

    Longato, Enrico; Garrido, Maria; Saccardo, Desy; Montesinos Guevara, Camila; Mani, Ali R; Bolognesi, Massimo; Amodio, Piero; Facchinetti, Andrea; Sparacino, Giovanni; Montagnese, Sara

    2017-01-01

    A popular method to estimate proximal/distal temperature (TPROX and TDIST) consists in calculating a weighted average of nine wireless sensors placed on pre-defined skin locations. Specifically, TPROX is derived from five sensors placed on the infra-clavicular and mid-thigh area (left and right) and abdomen, and TDIST from four sensors located on the hands and feet. In clinical practice, the loss/removal of one or more sensors is a common occurrence, but limited information is available on how this affects the accuracy of temperature estimates. The aim of this study was to determine the accuracy of temperature estimates in relation to number/position of sensors removed. Thirteen healthy subjects wore all nine sensors for 24 hours and reference TPROX and TDIST time-courses were calculated using all sensors. Then, all possible combinations of reduced subsets of sensors were simulated and suitable weights for each sensor calculated. The accuracy of TPROX and TDIST estimates resulting from the reduced subsets of sensors, compared to reference values, was assessed by the mean squared error, the mean absolute error (MAE), the cross-validation error and the 25th and 75th percentiles of the reconstruction error. Tables of the accuracy and sensor weights for all possible combinations of sensors are provided. For instance, in relation to TPROX, a subset of three sensors placed in any combination of three non-homologous areas (abdominal, right or left infra-clavicular, right or left mid-thigh) produced an error of 0.13°C MAE, while the loss/removal of the abdominal sensor resulted in an error of 0.25°C MAE, with the greater impact on the quality of the reconstruction. This information may help researchers/clinicians: i) evaluate the expected goodness of their TPROX and TDIST estimates based on the number of available sensors; ii) select the most appropriate subset of sensors, depending on goals and operational constraints.

  14. Expected accuracy of proximal and distal temperature estimated by wireless sensors, in relation to their number and position on the skin

    PubMed Central

    Longato, Enrico; Garrido, Maria; Saccardo, Desy; Montesinos Guevara, Camila; Mani, Ali R.; Bolognesi, Massimo; Amodio, Piero; Facchinetti, Andrea; Sparacino, Giovanni

    2017-01-01

    A popular method to estimate proximal/distal temperature (TPROX and TDIST) consists in calculating a weighted average of nine wireless sensors placed on pre-defined skin locations. Specifically, TPROX is derived from five sensors placed on the infra-clavicular and mid-thigh area (left and right) and abdomen, and TDIST from four sensors located on the hands and feet. In clinical practice, the loss/removal of one or more sensors is a common occurrence, but limited information is available on how this affects the accuracy of temperature estimates. The aim of this study was to determine the accuracy of temperature estimates in relation to number/position of sensors removed. Thirteen healthy subjects wore all nine sensors for 24 hours and reference TPROX and TDIST time-courses were calculated using all sensors. Then, all possible combinations of reduced subsets of sensors were simulated and suitable weights for each sensor calculated. The accuracy of TPROX and TDIST estimates resulting from the reduced subsets of sensors, compared to reference values, was assessed by the mean squared error, the mean absolute error (MAE), the cross-validation error and the 25th and 75th percentiles of the reconstruction error. Tables of the accuracy and sensor weights for all possible combinations of sensors are provided. For instance, in relation to TPROX, a subset of three sensors placed in any combination of three non-homologous areas (abdominal, right or left infra-clavicular, right or left mid-thigh) produced an error of 0.13°C MAE, while the loss/removal of the abdominal sensor resulted in an error of 0.25°C MAE, with the greater impact on the quality of the reconstruction. This information may help researchers/clinicians: i) evaluate the expected goodness of their TPROX and TDIST estimates based on the number of available sensors; ii) select the most appropriate subset of sensors, depending on goals and operational constraints. PMID:28666029

  15. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  16. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services

    PubMed Central

    Wang, Liang; Li, Zishen; Zhao, Jiaojiao; Zhou, Kai; Wang, Zhiyu; Yuan, Hong

    2016-01-01

    Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10–20 m (achieved by the standard positioning services) to about 3–5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50–80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test. PMID:28009835

  17. An absolute calibration system for millimeter-accuracy APOLLO measurements

    NASA Astrophysics Data System (ADS)

    Adelberger, E. G.; Battat, J. B. R.; Birkmeier, K. J.; Colmenares, N. R.; Davis, R.; Hoyle, C. D.; Huang, L. R.; McMillan, R. J.; Murphy, T. W., Jr.; Schlerman, E.; Skrobol, C.; Stubbs, C. W.; Zach, A.

    2017-12-01

    Lunar laser ranging provides a number of leading experimental tests of gravitation—important in our quest to unify general relativity and the standard model of physics. The apache point observatory lunar laser-ranging operation (APOLLO) has for years achieved median range precision at the  ∼2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (< 10 ps) pulses that are locked to a cesium clock. In essence, the ACS delivers photons to the APOLLO detector at exquisitely well-defined time intervals as a ‘truth’ input against which APOLLO’s timing performance may be judged and corrected. Preliminary analysis indicates no inaccuracies in APOLLO data beyond the  ∼3 mm level, suggesting that historical APOLLO data are of high quality and motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.

  18. Absolute position calculation for a desktop mobile rehabilitation robot based on three optical mouse sensors.

    PubMed

    Zabaleta, Haritz; Valencia, David; Perry, Joel; Veneman, Jan; Keller, Thierry

    2011-01-01

    ArmAssist is a wireless robot for post stroke upper limb rehabilitation. Knowing the position of the arm is essential for any rehabilitation device. In this paper, we describe a method based on an artificial landmark navigation system. The navigation system uses three optical mouse sensors. This enables the building of a cheap but reliable position sensor. Two of the sensors are the data source for odometry calculations, and the third optical mouse sensor takes very low resolution pictures of a custom designed mat. These pictures are processed by an optical symbol recognition algorithm which will estimate the orientation of the robot and recognize the landmarks placed on the mat. The data fusion strategy is described to detect the misclassifications of the landmarks in order to fuse only reliable information. The orientation given by the optical symbol recognition (OSR) algorithm is used to improve significantly the odometry and the recognition of the landmarks is used to reference the odometry to a absolute coordinate system. The system was tested using a 3D motion capture system. With the actual mat configuration, in a field of motion of 710 × 450 mm, the maximum error in position estimation was 49.61 mm with an average error of 36.70 ± 22.50 mm. The average test duration was 36.5 seconds and the average path length was 4173 mm.

  19. Time and position accuracy using codeless GPS

    NASA Technical Reports Server (NTRS)

    Dunn, C. E.; Jefferson, D. C.; Lichten, S. M.; Thomas, J. B.; Vigue, Y.; Young, L. E.

    1994-01-01

    The Global Positioning System has allowed scientists and engineers to make measurements having accuracy far beyond the original 15 meter goal of the system. Using global networks of P-Code capable receivers and extensive post-processing, geodesists have achieved baseline precision of a few parts per billion, and clock offsets have been measured at the nanosecond level over intercontinental distances. A cloud hangs over this picture, however. The Department of Defense plans to encrypt the P-Code (called Anti-Spoofing, or AS) in the fall of 1993. After this event, geodetic and time measurements will have to be made using codeless GPS receivers. However, there appears to be a silver lining to the cloud. In response to the anticipated encryption of the P-Code, the geodetic and GPS receiver community has developed some remarkably effective means of coping with AS without classified information. We will discuss various codeless techniques currently available and the data noise resulting from each. We will review some geodetic results obtained using only codeless data, and discuss the implications for time measurements. Finally, we will present the status of GPS research at JPL in relation to codeless clock measurements.

  20. Absolute rather than relative income is a better socioeconomic predictor of chronic obstructive pulmonary disease in Swedish adults.

    PubMed

    Axelsson Fisk, Sten; Merlo, Juan

    2017-05-04

    While psychosocial theory claims that socioeconomic status (SES), acting through social comparisons, has an important influence on susceptibility to disease, materialistic theory says that socioeconomic position (SEP) and related access to material resources matter more. However, the relative role of SEP versus SES in chronic obstructive pulmonary disease (COPD) risk has still not been examined. We investigated the association between SES/SEP and COPD risk among 667 094 older adults, aged 55 to 60, residing in Sweden between 2006 and 2011. Absolute income in five groups by population quintiles depicted SEP and relative income expressed as quintile groups within each absolute income group represented SES. We performed sex-stratified logistic regression models to estimate odds ratios and the area under the receiver operator curve (AUC) to compare the discriminatory accuracy of SES and SEP in relation to COPD. Even though both absolute (SEP) and relative income (SES) were associated with COPD risk, only absolute income (SEP) presented a clear gradient, so the poorest had a three-fold higher COPD risk than the richest individuals. While the AUC for a model including only age was 0.54 and 0.55 when including relative income (SES), it increased to 0.65 when accounting for absolute income (SEP). SEP rather than SES demonstrated a consistent association with COPD. Our study supports the materialistic theory. Access to material resources seems more relevant to COPD risk than the consequences of low relative income.

  1. Water line positions in the 782-840 nm region

    NASA Astrophysics Data System (ADS)

    Hu, S.-M.; Chen, B.; Tan, Y.; Wang, J.; Cheng, C.-F.; Liu, A.-W.

    2015-10-01

    A set of water transitions in the 782-840 nm region, including 38 H216O lines, 12 HD16O lines, and 30 D216O lines, were recorded with a cavity ring-down spectrometer calibrated using precise atomic lines. Absolute frequencies of the lines were determined with an accuracy of about 5 MHz. Systematic shifts were found in the line positions given in the HITRAN database and the upper energy levels given in recent MARVEL studies.

  2. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  3. Metrological activity determination of 133Ba by sum-peak absolute method

    NASA Astrophysics Data System (ADS)

    da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.

    2016-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.

  4. Absolute shape measurements using high-resolution optoelectronic holography methods

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2000-01-01

    Characterization of surface shape and deformation is of primary importance in a number of testing and metrology applications related to the functionality, performance, and integrity of components. In this paper, a unique, compact, and versatile state-of-the-art fiber-optic-based optoelectronic holography (OEH) methodology is described. This description addresses apparatus and analysis algorithms, especially developed to perform measurements of both absolute surface shape and deformation. The OEH can be arranged in multiple configurations, which include the three-camera, three-illumination, and in-plane speckle correlation setups. With the OEH apparatus and analysis algorithms, absolute shape measurements can be made, using present setup, with a spatial resolution and accuracy of better than 30 and 10 micrometers , respectively, for volumes characterized by a 300-mm length. Optimizing the experimental setup and incorporating equipment, as it becomes available, having superior capabilities to the ones utilized in the present investigations can further increase resolution and accuracy in the measurements. The particular feature of this methodology is its capability to export the measurements data directly into CAD environments for subsequent processing, analysis, and definition of CAD/CAE models.

  5. Comparative Accuracy Evaluation of Fine-Scale Global and Local Digital Surface Models: The Tshwane Case Study I

    NASA Astrophysics Data System (ADS)

    Breytenbach, A.

    2016-10-01

    Conducted in the City of Tshwane, South Africa, this study set about to test the accuracy of DSMs derived from different remotely sensed data locally. VHR digital mapping camera stereo-pairs, tri-stereo imagery collected by a Pléiades satellite and data detected from the Tandem-X InSAR satellite configuration were fundamental in the construction of seamless DSM products at different postings, namely 2 m, 4 m and 12 m. The three DSMs were sampled against independent control points originating from validated airborne LiDAR data. The reference surfaces were derived from the same dense point cloud at grid resolutions corresponding to those of the samples. The absolute and relative positional accuracies were computed using well-known DEM error metrics and accuracy statistics. Overall vertical accuracies were also assessed and compared across seven slope classes and nine primary land cover classes. Although all three DSMs displayed significantly more vertical errors where solid waterbodies, dense natural and/or alien woody vegetation and, in a lesser degree, urban residential areas with significant canopy cover were encountered, all three surpassed their expected positional accuracies overall.

  6. A new accuracy measure based on bounded relative error for time series forecasting

    PubMed Central

    Twycross, Jamie; Garibaldi, Jonathan M.

    2017-01-01

    Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred. PMID:28339480

  7. A new accuracy measure based on bounded relative error for time series forecasting.

    PubMed

    Chen, Chao; Twycross, Jamie; Garibaldi, Jonathan M

    2017-01-01

    Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred.

  8. Accuracy Analysis and Validation of the Mars Science Laboratory (MSL) Robotic Arm

    NASA Technical Reports Server (NTRS)

    Collins, Curtis L.; Robinson, Matthew L.

    2013-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover is currently exploring the surface of Mars with a suite of tools and instruments mounted to the end of a five degree-of-freedom robotic arm. To verify and meet a set of end-to-end system level accuracy requirements, a detailed positioning uncertainty model of the arm was developed and exercised over the arm operational workspace. Error sources at each link in the arm kinematic chain were estimated and their effects propagated to the tool frames.A rigorous test and measurement program was developed and implemented to collect data to characterize and calibrate the kinematic and stiffness parameters of the arm. Numerous absolute and relative accuracy and repeatability requirements were validated with a combination of analysis and test data extrapolated to the Mars gravity and thermal environment. Initial results of arm accuracy and repeatability on Mars demonstrate the effectiveness of the modeling and test program as the rover continues to explore the foothills of Mount Sharp.

  9. Influence of non-level walking on pedometer accuracy.

    PubMed

    Leicht, Anthony S; Crowther, Robert G

    2009-05-01

    The YAMAX Digiwalker pedometer has been previously confirmed as a valid and reliable monitor during level walking, however, little is known about its accuracy during non-level walking activities or between genders. Subsequently, this study examined the influence of non-level walking and gender on pedometer accuracy. Forty-six healthy adults completed 3-min bouts of treadmill walking at their normal walking pace during 11 inclines (0-10%) while another 123 healthy adults completed walking up and down 47 stairs. During walking, participants wore a YAMAX Digiwalker SW-700 pedometer with the number of steps taken and registered by the pedometer recorded. Pedometer difference (steps registered-steps taken), net error (% of steps taken), absolute error (absolute % of steps taken) and gender were examined by repeated measures two-way ANOVA and Tukey's post hoc tests. During incline walking, pedometer accuracy indices were similar between inclines and gender except for a significantly greater step difference (-7+/-5 steps vs. 1+/-4 steps) and net error (-2.4+/-1.8% for 9% vs. 0.4+/-1.2% for 2%). Step difference and net error were significantly greater during stair descent compared to stair ascent while absolute error was significantly greater during stair ascent compared to stair descent. The current study demonstrated that the YAMAX Digiwalker SW-700 pedometer exhibited good accuracy during incline walking up to 10% while it overestimated steps taken during stair ascent/descent with greater overestimation during stair descent. Stair walking activity should be documented in field studies as the YAMAX Digiwalker SW-700 pedometer overestimates this activity type.

  10. Position of the station Borowiec in the Doppler observation campaign WEDOC 80

    NASA Astrophysics Data System (ADS)

    Pachelski, W.

    The position of the Doppler antenna located at the Borowiec Observatory, Poland, is analyzed based on data gathered during the WEDOC 80 study and an earlier study in 1977. Among other findings, it is determined that biases of the reference system origin can be partially eliminated by transforming absolute coordinates of two or more stations into station-to-station vector components, and by determining the vector length while the system scale remains affected by broadcast ephemerides. The standard deviations of absolute coordinates are shown to represent only the internal accuracy of the solution, and are found to depend on the geometrical configuration between the station position and the satellite passes. It is shown that significant correlations between station coordinates in translocation or multilocation are due to the poor conditioning of design matrices with respect to the origin and orientation of the reference system.

  11. Early diagnosis of myocardial infarction using absolute and relative changes in cardiac troponin concentrations.

    PubMed

    Irfan, Affan; Reichlin, Tobias; Twerenbold, Raphael; Meister, Marc; Moehring, Berit; Wildi, Karin; Bassetti, Stefano; Zellweger, Christa; Gimenez, Maria Rubini; Hoeller, Rebeca; Murray, Karsten; Sou, Seoung Mann; Mueller, Mira; Mosimann, Tamina; Reiter, Miriam; Haaf, Philip; Ziller, Ronny; Freidank, Heike; Osswald, Stefan; Mueller, Christian

    2013-09-01

    Absolute changes in high-sensitivity cardiac troponin T (hs-cTnT) seem to have higher diagnostic accuracy in the early diagnosis of acute myocardial infarction compared with relative changes. It is unknown whether the same applies to high-sensitivity cardiac troponin I (hs-cTnI) assays and whether the combination of absolute and relative change might further increase accuracy. In a prospective, international multicenter study, high-sensitivity cardiac troponin (hs-cTn) was measured with 3 novel assays (hs-cTnT, Roche Diagnostics Corp, Indianapolis, Ind; hs-cTnI, Beckman Coulter Inc, Brea, Calif; hs-cTnI, Siemens, Munich, Germany) in a blinded fashion at presentation and after 1 and 2 hours in a blinded fashion in 830 unselected patients with suspected acute myocardial infarction. The final diagnosis was adjudicated by 2 independent cardiologists. The area under the receiver operating characteristic curve for diagnosing acute myocardial infarction was significantly higher for 1- and 2-hour absolute versus relative hs-cTn changes for all 3 assays (P < .001). The area under the receiver operating characteristic curve of the combination of 2-hour absolute and relative change (hs-cTnT 0.98 [95% confidence interval {CI}, 0.97-0.99]; hs-cTnI, Beckman Coulter Inc, 0.97 [95% CI, 0.96-0.99]; hs-cTnI, Siemens, 0.96 [95% CI, 0.93-0.99]) were high and provided some benefit compared with the use of absolute change alone for hs-cTnT, but not for the hs-cTnI assays. Reclassification analysis confirmed the superiority of absolute changes versus relative changes. Absolute changes seem to be the preferred metrics for both hs-cTnT and hs-cTnI in the early diagnosis of acute myocardial infarction. The combination of absolute and relative changes provides a small added value for hs-cTnT, but not for hs-cTnI. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Influence of stimulated Brillouin scattering on positioning accuracy of long-range dual Mach-Zehnder interferometric vibration sensors

    NASA Astrophysics Data System (ADS)

    He, Xiangge; Xie, Shangran; Cao, Shan; Liu, Fei; Zheng, Xiaoping; Zhang, Min; Yan, Han; Chen, Guocai

    2016-11-01

    The properties of noise induced by stimulated Brillouin scattering (SBS) in long-range interferometers and their influences on the positioning accuracy of dual Mach-Zehnder interferometric (DMZI) vibration sensing systems are studied. The SBS noise is found to be white and incoherent between the two arms of the interferometer in a 1-MHz bandwidth range. Experiments on 25-km long fibers show that the root mean square error (RMSE) of the positioning accuracy is consistent with the additive noise model for the time delay estimation theory. A low-pass filter can be properly designed to suppress the SBS noise and further achieve a maximum RMSE reduction of 6.7 dB.

  13. High accuracy line positions of the ν1 fundamental band of 14N216O

    NASA Astrophysics Data System (ADS)

    AlSaif, Bidoor; Lamperti, Marco; Gatti, Davide; Laporta, Paolo; Fermann, Martin; Farooq, Aamir; Lyulin, Oleg; Campargue, Alain; Marangoni, Marco

    2018-05-01

    The ν1 fundamental band of N2O is examined by a novel spectrometer that relies on the frequency locking of an external-cavity quantum cascade laser around 7.8 μm to a near-infrared Tm:based frequency comb at 1.9 μm. Due to the large tunability, nearly 70 lines in the 1240-1310 cm-1 range of the ν1 band of N2O, from P(40) to R(31), are for the first time measured with an absolute frequency calibration and an uncertainty from 62 to 180 kHz, depending on the line. Accurate values of the spectroscopic constants of the upper state are derived from a fit of the line centers (rms ≈ 4.8 × 10-6 cm-1 or 144 kHz). The ν1 transitions presently measured in a Doppler regime validate high accuracy predictions based on sub-Doppler measurements of the ν3 and ν3-ν1 transitions.

  14. A Study of Vicon System Positioning Performance.

    PubMed

    Merriaux, Pierre; Dupuis, Yohan; Boutteau, Rémi; Vasseur, Pascal; Savatier, Xavier

    2017-07-07

    Motion capture setups are used in numerous fields. Studies based on motion capture data can be found in biomechanical, sport or animal science. Clinical science studies include gait analysis as well as balance, posture and motor control. Robotic applications encompass object tracking. Today's life applications includes entertainment or augmented reality. Still, few studies investigate the positioning performance of motion capture setups. In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system. Our protocol includes evaluations of static and dynamic performances. Mean error as well as positioning variabilities are studied with calibrated ground truth setups that are not based on other motion capture modalities. We introduce a new setup that enables directly estimating the absolute positioning accuracy for dynamic experiments contrary to state-of-the art works that rely on inter-marker distances. The system performs well on static experiments with a mean absolute error of 0.15 mm and a variability lower than 0.025 mm. Our dynamic experiments were carried out at speeds found in real applications. Our work suggests that the system error is less than 2 mm. We also found that marker size and Vicon sampling rate must be carefully chosen with respect to the speed encountered in the application in order to reach optimal positioning performance that can go to 0.3 mm for our dynamic study.

  15. Precise and absolute measurements of complex third-order optical susceptibility

    NASA Astrophysics Data System (ADS)

    Santran, Stephane; Canioni, Lionel; Cardinal, Thierry; Fargin, Evelyne; Le Flem, Gilles; Rouyer, Claude; Sarger, Laurent

    2000-11-01

    We present precise and absolute measurements of full complex third order optical susceptibility on different fused silica and original glasses composed of tellurium, titanium, niobium erbium. These materials are designed to be the key point for applications ranging form high power laser systems to optoelectronics, their nonlinear index of refraction is a major property and thus must be accurately known. Due to the accuracy and sensitivity of our technique, we have been able to find a large dispersion (more than 30%) of the non linear index of fused silica glasses as a function of their processing mode. On the other hand, measurements on tellurium glasses have shown very strong nonlinearities (40 times higher than fused silica), to be linked to the configurations of their cations and anions. Although the titanium and niobium glasses are less nonlinear, they can be promising matrices for addition of luminescent entities like erbium leading to very interesting laser amplification materials. The experimental set-up is a collinear pump-probe (orthogonally polarized) experiment using transient absorption technique. It is built with around a 100 femtosecond laser oscillator. A fast oscillating delay between the pump and the probe allows us to measure the electronic nonlinearity in quasi real-time. This experiment has the following specifications: an absolute measurement accuracy below 10% mainly due to the laser parameters characterization, a relative measurement accuracy of 1% and a resolution less than 5.10-24m2/V2(50 times less than fused silica).

  16. An evaluation of the accuracy of geomagnetic data obtained from an unattended, automated, quasi-absolute station

    USGS Publications Warehouse

    Herzog, D.C.

    1990-01-01

    A comparison is made of geomagnetic calibration data obtained from a high-sensitivity proton magnetometer enclosed within an orthogonal bias coil system, with data obtained from standard procedures at a mid-latitude U.S. Geological Survey magnetic observatory using a quartz horizontal magnetometer, a Ruska magnetometer, and a total field magnetometer. The orthogonal coil arrangement is used with the proton magnetometer to provide Deflected-Inclination-Deflected-Declination (DIDD) data from which quasi-absolute values of declination, horizontal intensity, and vertical intensity can be derived. Vector magnetometers provide the ordinate values to yield baseline calibrations for both the DIDD and standard observatory processes. Results obtained from a prototype system over a period of several months indicate that the DIDD unit can furnish adequate absolute field values for maintaining observatory calibration data, thus providing baseline control for unattended, remote stations. ?? 1990.

  17. Accuracy and precision of patient positioning for pelvic MR-only radiation therapy using digitally reconstructed radiographs

    NASA Astrophysics Data System (ADS)

    Kemppainen, R.; Vaara, T.; Joensuu, T.; Kiljunen, T.

    2018-03-01

    Background and Purpose. Magnetic resonance imaging (MRI) has in recent years emerged as an imaging modality to drive precise contouring of targets and organs at risk in external beam radiation therapy. Moreover, recent advances in MRI enable treatment of cancer without computed tomography (CT) simulation. A commercially available MR-only solution, MRCAT, offers a single-modality approach that provides density information for dose calculation and generation of positioning reference images. We evaluated the accuracy of patient positioning based on MRCAT digitally reconstructed radiographs (DRRs) by comparing to standard CT based workflow. Materials and Methods. Twenty consecutive prostate cancer patients being treated with external beam radiation therapy were included in the study. DRRs were generated for each patient based on the planning CT and MRCAT. The accuracy assessment was performed by manually registering the DRR images to planar kV setup images using bony landmarks. A Bayesian linear mixed effects model was used to separate systematic and random components (inter- and intra-observer variation) in the assessment. In addition, method agreement was assessed using a Bland-Altman analysis. Results. The systematic difference between MRCAT and CT based patient positioning, averaged over the study population, were found to be (mean [95% CI])  -0.49 [-0.85 to  -0.13] mm, 0.11 [-0.33 to  +0.57] mm and  -0.05 [-0.23 to  +0.36] mm in vertical, longitudinal and lateral directions, respectively. The increases in total random uncertainty were estimated to be below 0.5 mm for all directions, when using MR-only workflow instead of CT. Conclusions. The MRCAT pseudo-CT method provides clinically acceptable accuracy and precision for patient positioning for pelvic radiation therapy based on planar DRR images. Furthermore, due to the reduction of geometric uncertainty, compared to dual-modality workflow, the approach is likely to improve the total

  18. Enhanced Positioning Algorithm of ARPS for Improving Accuracy and Expanding Service Coverage

    PubMed Central

    Lee, Kyuman; Baek, Hoki; Lim, Jaesung

    2016-01-01

    The airborne relay-based positioning system (ARPS), which employs the relaying of navigation signals, was proposed as an alternative positioning system. However, the ARPS has limitations, such as relatively large vertical error and service restrictions, because firstly, the user position is estimated based on airborne relays that are located in one direction, and secondly, the positioning is processed using only relayed navigation signals. In this paper, we propose an enhanced positioning algorithm to improve the performance of the ARPS. The main idea of the enhanced algorithm is the adaptable use of either virtual or direct measurements of reference stations in the calculation process based on the structural features of the ARPS. Unlike the existing two-step algorithm for airborne relay and user positioning, the enhanced algorithm is divided into two cases based on whether the required number of navigation signals for user positioning is met. In the first case, where the number of signals is greater than four, the user first estimates the positions of the airborne relays and its own initial position. Then, the user position is re-estimated by integrating a virtual measurement of a reference station that is calculated using the initial estimated user position and known reference positions. To prevent performance degradation, the re-estimation is performed after determining its requirement through comparing the expected position errors. If the navigation signals are insufficient, such as when the user is outside of airborne relay coverage, the user position is estimated by additionally using direct signal measurements of the reference stations in place of absent relayed signals. The simulation results demonstrate that a higher accuracy level can be achieved because the user position is estimated based on the measurements of airborne relays and a ground station. Furthermore, the service coverage is expanded by using direct measurements of reference stations for user

  19. Enhanced Positioning Algorithm of ARPS for Improving Accuracy and Expanding Service Coverage.

    PubMed

    Lee, Kyuman; Baek, Hoki; Lim, Jaesung

    2016-08-12

    The airborne relay-based positioning system (ARPS), which employs the relaying of navigation signals, was proposed as an alternative positioning system. However, the ARPS has limitations, such as relatively large vertical error and service restrictions, because firstly, the user position is estimated based on airborne relays that are located in one direction, and secondly, the positioning is processed using only relayed navigation signals. In this paper, we propose an enhanced positioning algorithm to improve the performance of the ARPS. The main idea of the enhanced algorithm is the adaptable use of either virtual or direct measurements of reference stations in the calculation process based on the structural features of the ARPS. Unlike the existing two-step algorithm for airborne relay and user positioning, the enhanced algorithm is divided into two cases based on whether the required number of navigation signals for user positioning is met. In the first case, where the number of signals is greater than four, the user first estimates the positions of the airborne relays and its own initial position. Then, the user position is re-estimated by integrating a virtual measurement of a reference station that is calculated using the initial estimated user position and known reference positions. To prevent performance degradation, the re-estimation is performed after determining its requirement through comparing the expected position errors. If the navigation signals are insufficient, such as when the user is outside of airborne relay coverage, the user position is estimated by additionally using direct signal measurements of the reference stations in place of absent relayed signals. The simulation results demonstrate that a higher accuracy level can be achieved because the user position is estimated based on the measurements of airborne relays and a ground station. Furthermore, the service coverage is expanded by using direct measurements of reference stations for user

  20. Accuracy of an acoustic location system for monitoring the position of duetting songbirds in tropical forest

    PubMed Central

    Mennill, Daniel J.; Burt, John M.; Fristrup, Kurt M.; Vehrencamp, Sandra L.

    2008-01-01

    A field test was conducted on the accuracy of an eight-microphone acoustic location system designed to triangulate the position of duetting rufous-and-white wrens (Thryothorus rufalbus) in Costa Rica’s humid evergreen forest. Eight microphones were set up in the breeding territories of twenty pairs of wrens, with an average inter-microphone distance of 75.2±2.6 m. The array of microphones was used to record antiphonal duets broadcast through stereo loudspeakers. The positions of the loudspeakers were then estimated by evaluating the delay with which the eight microphones recorded the broadcast sounds. Position estimates were compared to coordinates surveyed with a global-positioning system (GPS). The acoustic location system estimated the position of loudspeakers with an error of 2.82±0.26 m and calculated the distance between the “male” and “female” loudspeakers with an error of 2.12±0.42 m. Given the large range of distances between duetting birds, this relatively low level of error demonstrates that the acoustic location system is a useful tool for studying avian duets. Location error was influenced partly by the difficulties inherent in collecting high accuracy GPS coordinates of microphone positions underneath a lush tropical canopy, and partly by the complicating influence of irregular topography and thick vegetation on sound transmission. PMID:16708941

  1. Accuracy assessment of the Precise Point Positioning method applied for surveys and tracking moving objects in GIS environment

    NASA Astrophysics Data System (ADS)

    Ilieva, Tamara; Gekov, Svetoslav

    2017-04-01

    The Precise Point Positioning (PPP) method gives the users the opportunity to determine point locations using a single GNSS receiver. The accuracy of the determined by PPP point locations is better in comparison to the standard point positioning, due to the precise satellite orbit and clock corrections that are developed and maintained by the International GNSS Service (IGS). The aim of our current research is the accuracy assessment of the PPP method applied for surveys and tracking moving objects in GIS environment. The PPP data is collected by using preliminary developed by us software application that allows different sets of attribute data for the measurements and their accuracy to be used. The results from the PPP measurements are directly compared within the geospatial database to different other sets of terrestrial data - measurements obtained by total stations, real time kinematic and static GNSS.

  2. Effect of surgical guide design and surgeon's experience on the accuracy of implant placement.

    PubMed

    Hinckfuss, Simon; Conrad, Heather J; Lin, Lianshan; Lunos, Scott; Seong, Wook-Jin

    2012-08-01

    Implant position is a key determinant of esthetic and functional success. Achieving the goal of ideal implant position may be affected by case selection, prosthodontically driven treatment planning, site preparation, surgeon's experience and use of a surgical guide. The combined effect of surgical guide design, surgeon's experience, and size of the edentulous area on the accuracy of implant placement was evaluated in a simulated clinical setting. Twenty-one volunteers were recruited to participate in the study. They were divided evenly into 3 groups (novice, intermediate, and experienced). Each surgeon placed implants in single and double sites using 4 different surgical guide designs (no guide, tube, channel, and guided) and written instructions describing the ideal implant positions. A definitive typodont was constructed that had 3 implants in prosthetically determined ideal positions of single and double sites. The position and angulation of implants placed by the surgeons in the duplicate typodonts was measured using a computerized coordinate measuring machine and compared to the definitive typodont. The mean absolute positional error for all guides was 0.273, 0.340, 0.197 mm in mesial-distal, buccal-lingual, vertical positions, respectively, with an overall range of 0.00 to 1.81 mm. The mean absolute angle error for all guides was 1.61° and 2.39° in the mesial-distal and buccal-lingual angulations, respectively, with an overall range of 0.01° to 9.7°. Surgical guide design had a statistically significant effect on the accuracy of implant placement regardless of the surgeon's experience level. Experienced surgeons had significantly less error in buccal-lingual angulation. The size of the edentulous sites was found to affect both implant angle and position significantly. The magnitude of error in position and angulation caused by surgical guide design, surgeon's experience, and site size reported in this study are possibly not large enough to be clinically

  3. Accuracy and efficiency of an infrared based positioning and tracking system for patient set-up and monitoring in image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Jia, Jing; Xu, Gongming; Pei, Xi; Cao, Ruifen; Hu, Liqin; Wu, Yican

    2015-03-01

    An infrared based positioning and tracking (IPT) system was introduced and its accuracy and efficiency for patient setup and monitoring were tested for daily radiotherapy treatment. The IPT system consists of a pair of floor mounted infrared stereoscopic cameras, passive infrared markers and tools used for acquiring localization information as well as a custom controlled software which can perform the positioning and tracking functions. The evaluation of IPT system characteristics was conducted based on the AAPM 147 task report. Experiments on spatial drift and reproducibility as well as static and dynamic localization accuracy were carried out to test the efficiency of the IPT system. Measurements of known translational (up to 55.0 mm) set-up errors in three dimensions have been performed on a calibration phantom. The accuracy of positioning was evaluated on an anthropomorphic phantom with five markers attached to the surface; the precision of the tracking ability was investigated through a sinusoidal motion platform. For the monitoring of the respiration, three volunteers contributed to the breathing testing in real time. The spatial drift of the IPT system was 0.65 mm within 60 min to be stable. The reproducibility of position variations were between 0.01 and 0.04 mm. The standard deviation of static marker localization was 0.26 mm. The repositioning accuracy was 0.19 mm, 0.29 mm, and 0.53 mm in the left/right (L/R), superior/inferior (S/I) and anterior/posterior (A/P) directions, respectively. The measured dynamic accuracy was 0.57 mm and discrepancies measured for the respiratory motion tracking was better than 1 mm. The overall positioning accuracy of the IPT system was within 2 mm. In conclusion, the IPT system is an accurate and effective tool for assisting patient positioning in the treatment room. The characteristics of the IPT system can successfully meet the needs for real time external marker tracking and patient positioning as well as respiration

  4. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  5. Absolute accuracy of the Cyberware WB4 whole-body scanner

    NASA Astrophysics Data System (ADS)

    Daanen, Hein A. M.; Taylor, Stacie E.; Brunsman, Matthew A.; Nurre, Joseph H.

    1997-03-01

    The Cyberware WB4 whole body scanner is one of the first scanning systems in the world that generates a high resolution data set of the outer surface of the human body. The Computerized Anthropometric Research and Design (CARD) Laboratory of Wright-Patterson AFB intends to use the scanner to enable quick and reliable acquisition of anthropometric data. For this purpose, a validation study was initiated to check the accuracy, reliability and errors of the system. A calibration object, consisting of two boxes and a cylinder, was scanned in several locations in the scanning space. The object dimensions in the resulting scans compared favorably to the actual dimensions of the calibration object.

  6. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  7. Improvements in absolute seismometer sensitivity calibration using local earth gravity measurements

    USGS Publications Warehouse

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    The ability to determine both absolute and relative seismic amplitudes is fundamentally limited by the accuracy and precision with which scientists are able to calibrate seismometer sensitivities and characterize their response. Currently, across the Global Seismic Network (GSN), errors in midband sensitivity exceed 3% at the 95% confidence interval and are the least‐constrained response parameter in seismic recording systems. We explore a new methodology utilizing precise absolute Earth gravity measurements to determine the midband sensitivity of seismic instruments. We first determine the absolute sensitivity of Kinemetrics EpiSensor accelerometers to 0.06% at the 99% confidence interval by inverting them in a known gravity field at the Albuquerque Seismological Laboratory (ASL). After the accelerometer is calibrated, we install it in its normal configuration next to broadband seismometers and subject the sensors to identical ground motions to perform relative calibrations of the broadband sensors. Using this technique, we are able to determine the absolute midband sensitivity of the vertical components of Nanometrics Trillium Compact seismometers to within 0.11% and Streckeisen STS‐2 seismometers to within 0.14% at the 99% confidence interval. The technique enables absolute calibrations from first principles that are traceable to National Institute of Standards and Technology (NIST) measurements while providing nearly an order of magnitude more precision than step‐table calibrations.

  8. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    PubMed

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  9. Accuracy in GPS/Acoustic positioning on a moored buoy moving around far from the optimal position

    NASA Astrophysics Data System (ADS)

    Imano, M.; Kido, M.; Ohta, Y.; Takahashi, N.; Fukuda, T.; Ochi, H.; Hino, R.

    2015-12-01

    For detecting the seafloor crustal deformation and Tsunami associated with large earthquakes in real-time, it is necessary to monitor them just above the possible source region. For this purpose, we have been dedicated in developing a real-time continuous observation system using a multi-purpose moored buoy. Sea-trials of the system have been carried out near the Nanakai trough in 2013 and 2014 (Takahashi et al., 2014). We especially focused on the GPS/Acoustic measurement (GPS/A) in the system for horizontal crustal movement. The GPS/A on a moored buoy has a critical drawback compared to the traditional ones, in which the data can be stacked over ranging points fixed at an optimal position. Accuracy in positioning with a single ranging from an arbitrary point is the subject to be improved in this study. Here, we report the positioning results in the buoy system using data in the 2014 sea-trial and demonstrate the improvement of the result. We also address the potential resolving power in the positioning using synthetic tests. The target GPS/A site consists of six seafloor transponders (PXPs) forming a small inner- and a large outer-triangles. The bottom of the moored cable is anchored nearly the center of the triangles. In the sea-trial, 11 times successive ranging was scheduled once a week, and we plotted positioning results from different buoy position. We confirmed that scatter in positioning using six PXPs simultaneously is ten times smaller than that using individual triangle separately. Next, we modified the definition of the PXP array geometry using data obtained in a campaign observation. Definition of an array geometry is insensitive as far as ranging is made in the same position, however, severely affects the positioning when ranging is made from various positions like the moored buoy. The modified PXP array is slightly smaller and 2m deeper than the original one. We found that the scatter of positioning results in the sea-trial is reduced from 4m to 1

  10. Accuracy and coverage of the modernized Polish Maritime differential GPS system

    NASA Astrophysics Data System (ADS)

    Specht, Cezary

    2011-01-01

    The DGPS navigation service augments The NAVSTAR Global Positioning System by providing localized pseudorange correction factors and ancillary information which are broadcast over selected marine reference stations. The DGPS service position and integrity information satisfy requirements in coastal navigation and hydrographic surveys. Polish Maritime DGPS system has been established in 1994 and modernized (in 2009) to meet the requirements set out in IMO resolution for a future GNSS, but also to preserve backward signal compatibility of user equipment. Having finalized installation of the new technology L1, L2 reference equipment performance tests were performed.The paper presents results of the coverage modeling and accuracy measuring campaign based on long-term signal analyses of the DGPS reference station Rozewie, which was performed for 26 days in July 2009. Final results allowed to verify the coverage area of the differential signal from reference station and calculated repeatable and absolute accuracy of the system, after the technical modernization. Obtained field strength level area and position statistics (215,000 fixes) were compared to past measurements performed in 2002 (coverage) and 2005 (accuracy), when previous system infrastructure was in operation.So far, no campaigns were performed on differential Galileo. However, as signals, signal processing and receiver techniques are comparable to those know from DGPS. Because all satellite differential GNSS systems use the same transmission standard (RTCM), maritime DGPS Radiobeacons are standardized in all radio communication aspects (frequency, binary rate, modulation), then the accuracy results of differential Galileo can be expected as a similar to DGPS.Coverage of the reference station was calculated based on unique software, which calculate the signal strength level based on transmitter parameters or field signal strength measurement campaign, done in the representative points. The software works

  11. Accuracy of relative positioning by interferometry with GPS Double-blind test results

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Gourevitch, S. A.; Herring, T. A.; King, B. W.; Shapiro, I. I.; Cappallo, R. J.; Rogers, A. E. E.; Whitney, A. R.; Greenspan, R. L.; Snyder, R. E.

    1983-01-01

    MITES (Miniature Interferometer Terminals for Earth Surveying) observations conducted on December 17 and 29, 1980, are analyzed. It is noted that the time span of the observations used on each day was 78 minutes, during which five satellites were always above 20 deg elevation. The observations are analyzed to determine the intersite position vectors by means of the algorithm described by Couselman and Gourevitch (1981). The average of the MITES results from the two days is presented. The rms differences between the two determinations of the components of the three vectors, which were about 65, 92, and 124 m long, were 8 mm for the north, 3 mm for the east, and 6 mm for the vertical. It is concluded that, at least for short distances, relative positioning by interferometry with GPS can be done reliably with subcentimeter accuracy.

  12. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  13. Multi-Sensor Fusion with Interacting Multiple Model Filter for Improved Aircraft Position Accuracy

    PubMed Central

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-01-01

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter. PMID:23535715

  14. Multi-sensor fusion with interacting multiple model filter for improved aircraft position accuracy.

    PubMed

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-03-27

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter.

  15. Results from a U.S. absolute gravity survey

    NASA Astrophysics Data System (ADS)

    Zumberge, M. A.; Faller, J. E.; Gschwind, J.

    Using the recently completed JILA absolute gravity meter, we made a survey of twelve sites in the United States. Over a period of eight weeks, the instrument was driven a total distance of nearly 20,000 km to sites in California, New Mexico, Colorado, Wyoming, Maryland and Massachusetts. The time spent in carrying out a measurement at a single location was typically one day. We report the results of the measurements in this survey along with earlier measurements made with the instrument, discuss the measurement accuracy and compare our results with other measurements.

  16. SU-E-J-118: Verification of Intrafractional Positional Accuracy Using Ultrasound Autoscan Tracking for Prostate Cancer Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S; Hristov, D; Phillips, T

    Purpose: Transperineal ultrasound imaging is attractive option for imageguided radiation therapy as there is no need to implant fiducials, no extra imaging dose, and real time continuous imaging is possible during treatment. The aim of this study is to verify the tracking accuracy of a commercial ultrasound system under treatment conditions with a male pelvic phantom. Methods: A CT and ultrasound scan were acquired for the male pelvic phantom. The phantom was then placed in a treatment mimicking position on a motion platform. The axial and lateral tracking accuracy of the ultrasound system were verified using an independent optical trackingmore » system. The tracking accuracy was evaluated by tracking the phantom position detected by the ultrasound system, and comparing it to the optical tracking system under the conditions of beam on (15 MV), beam off, poor image quality with an acoustic shadow introduced, and different phantom motion cycles (10 and 20 second periods). Additionally, the time lag between the ultrasound-detected and actual phantom motion was investigated. Results: Displacement amplitudes reported by the ultrasound system and optical system were within 0.5 mm of each other for both directions and all conditions. The ultrasound tracking performance in axial direction was better than in lateral direction. Radiation did not interfere with ultrasound tracking while image quality affected tracking accuracy. The tracking accuracy was better for periodic motion with 20 second period. The time delay between the ultrasound tracking system and the phantom motion was clinically acceptable. Conclusion: Intrafractional prostate motion is a potential source of treatment error especially in the context of emerging SBRT regimens. It is feasible to use transperineal ultrasound daily to monitor prostate motion during treatment. Our results verify the tracking accuracy of a commercial ultrasound system to be better than 1 mm under typical external beam treatment

  17. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network

    PubMed Central

    Qi, Jun; Liu, Guo-Ping

    2017-01-01

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μs. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal. PMID:29113126

  18. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network.

    PubMed

    Qi, Jun; Liu, Guo-Ping

    2017-11-06

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μ s. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal.

  19. Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning.

    PubMed

    Jeong, Han-You; Nguyen, Hoa-Hung; Bhawiyuga, Adhitya

    2018-04-04

    Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of spatiotemporal local-remote sensor fusion (ST-LRSF) that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning.

  20. Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning

    PubMed Central

    Bhawiyuga, Adhitya

    2018-01-01

    Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of spatiotemporal local-remote sensor fusion (ST-LRSF) that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning. PMID:29617341

  1. Electrical Noise and the Measurement of Absolute Temperature, Boltzmann's Constant and Avogadro's Number.

    ERIC Educational Resources Information Center

    Ericson, T. J.

    1988-01-01

    Describes an apparatus capable of measuring absolute temperatures of a tungsten filament bulb up to normal running temperature and measuring Botzmann's constant to an accuracy of a few percent. Shows that electrical noise techniques are convenient to demonstrate how the concept of temperature is related to the micro- and macroscopic world. (CW)

  2. Analysis of accuracy in photogrammetric roughness measurements

    NASA Astrophysics Data System (ADS)

    Olkowicz, Marcin; Dąbrowski, Marcin; Pluymakers, Anne

    2017-04-01

    Regarding permeability, one of the most important features of shale gas reservoirs is the effective aperture of cracks opened during hydraulic fracturing, both propped and unpropped. In a propped fracture, the aperture is controlled mostly by proppant size and its embedment, and fracture surface roughness only has a minor influence. In contrast, in an unpropped fracture aperture is controlled by the fracture roughness and the wall displacement. To measure fracture surface roughness, we have used the photogrammetric method since it is time- and cost-efficient. To estimate the accuracy of this method we compare the photogrammetric measurements with reference measurements taken with a White Light Interferometer (WLI). Our photogrammetric setup is based on high resolution 50 Mpx camera combined with a focus stacking technique. The first step for photogrammetric measurements is to determine the optimal camera positions and lighting. We compare multiple scans of one sample, taken with different settings of lighting and camera positions, with the reference WLI measurement. The second step is to perform measurements of all studied fractures with the parameters that produced the best results in the first step. To compare photogrammetric and WLI measurements we regrid both data sets onto a regular 10 μm grid and determined the best fit, followed by a calculation of the difference between the measurements. The first results of the comparison show that for 90 % of measured points the absolute vertical distance between WLI and photogrammetry is less than 10 μm, while the mean absolute vertical distance is 5 μm. This proves that our setup can be used for fracture roughness measurements in shales.

  3. Carbon-Ion Pencil Beam Scanning Treatment With Gated Markerless Tumor Tracking: An Analysis of Positional Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Shinichiro, E-mail: shinshin@nirs.go.jp; Karube, Masataka; Shirai, Toshiyuki

    Purpose: Having implemented amplitude-based respiratory gating for scanned carbon-ion beam therapy, we sought to evaluate its effect on positional accuracy and throughput. Methods and Materials: A total of 10 patients with tumors of the lung and liver participated in the first clinical trials at our center. Treatment planning was conducted with 4-dimensional computed tomography (4DCT) under free-breathing conditions. The planning target volume (PTV) was calculated by adding a 2- to 3-mm setup margin outside the clinical target volume (CTV) within the gating window. The treatment beam was on when the CTV was within the PTV. Tumor position was detected inmore » real time with a markerless tumor tracking system using paired x-ray fluoroscopic imaging units. Results: The patient setup error (mean ± SD) was 1.1 ± 1.2 mm/0.6 ± 0.4°. The mean internal gating accuracy (95% confidence interval [CI]) was 0.5 mm. If external gating had been applied to this treatment, the mean gating accuracy (95% CI) would have been 4.1 mm. The fluoroscopic radiation doses (mean ± SD) were 23.7 ± 21.8 mGy per beam and less than 487.5 mGy total throughout the treatment course. The setup, preparation, and irradiation times (mean ± SD) were 8.9 ± 8.2 min, 9.5 ± 4.6 min, and 4.0 ± 2.4 min, respectively. The treatment room occupation time was 36.7 ± 67.5 min. Conclusions: Internal gating had a much higher accuracy than external gating. By the addition of a setup margin of 2 to 3 mm, internal gating positional error was less than 2.2 mm at 95% CI.« less

  4. Thematic and positional accuracy assessment of digital remotely sensed data

    Treesearch

    Russell G. Congalton

    2007-01-01

    Accuracy assessment or validation has become a standard component of any land cover or vegetation map derived from remotely sensed data. Knowing the accuracy of the map is vital to any decisionmaking performed using that map. The process of assessing the map accuracy is time consuming and expensive. It is very important that the procedure be well thought out and...

  5. First clinical experience in carbon ion scanning beam therapy: retrospective analysis of patient positional accuracy.

    PubMed

    Mori, Shinichiro; Shibayama, Kouichi; Tanimoto, Katsuyuki; Kumagai, Motoki; Matsuzaki, Yuka; Furukawa, Takuji; Inaniwa, Taku; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi

    2012-09-01

    Our institute has constructed a new treatment facility for carbon ion scanning beam therapy. The first clinical trials were successfully completed at the end of November 2011. To evaluate patient setup accuracy, positional errors between the reference Computed Tomography (CT) scan and final patient setup images were calculated using 2D-3D registration software. Eleven patients with tumors of the head and neck, prostate and pelvis receiving carbon ion scanning beam treatment participated. The patient setup process takes orthogonal X-ray flat panel detector (FPD) images and the therapists adjust the patient table position in six degrees of freedom to register the reference position by manual or auto- (or both) registration functions. We calculated residual positional errors with the 2D-3D auto-registration function using the final patient setup orthogonal FPD images and treatment planning CT data. Residual error averaged over all patients in each fraction decreased from the initial to the last treatment fraction [1.09 mm/0.76° (averaged in the 1st and 2nd fractions) to 0.77 mm/0.61° (averaged in the 15th and 16th fractions)]. 2D-3D registration calculation time was 8.0 s on average throughout the treatment course. Residual errors in translation and rotation averaged over all patients as a function of date decreased with the passage of time (1.6 mm/1.2° in May 2011 to 0.4 mm/0.2° in December 2011). This retrospective residual positional error analysis shows that the accuracy of patient setup during the first clinical trials of carbon ion beam scanning therapy was good and improved with increasing therapist experience.

  6. Three-dimensional accuracy of plastic transfer impression copings for three implant systems.

    PubMed

    Teo, Juin Wei; Tan, Keson B; Nicholls, Jack I; Wong, Keng Mun; Uy, Joanne

    2014-01-01

    The purpose of this study was to compare the three-dimensional accuracy of indirect plastic impression copings and direct implant-level impression copings from three implant systems (Nobel Biocare [NB], Biomet 3i [3i], and Straumann [STR]) at three interimplant buccolingual angulations (0, 8, and 15 degrees). Two-implant master models were used to simulate a three-unit implant fixed partial denture. Test models were made from Impregum impressions using direct implant-level impression copings (DR). Abutments were then connected to the master models for impressions using the plastic impression copings (INDR) at three different angulations for a total of 18 test groups (n = 5 in each group). A coordinate measuring machine was used to measure linear distortions, three-dimensional (3D) distortions, angular distortions, and absolute angular distortions between the master and test models. Three-way analysis of variance showed that the implant system had a significant effect on 3D distortions and absolute angular distortions in the x- and y-axes. Interimplant angulation had a significant effect on 3D distortions and absolute angular distortions in the y-axis. Impression technique had a significant effect on absolute angular distortions in the y-axis. With DR, the NB and 3i systems were not significantly different. With INDR, 3i appeared to have less distortion than the other systems. Interimplant angulations did not significantly affect the accuracy of NBDR, 3iINDR, and STRINDR. The accuracy of INDR and DR was comparable at all interimplant angulations for 3i and STR. For NB, INDR was comparable to DR at 0 and 8 degrees but was less accurate at 15 degrees. Three-dimensional accuracy of implant impressions varied with implant system, interimplant angulation, and impression technique.

  7. Towards absolute laser spectroscopic CO2 isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Anyangwe Nwaboh, Javis; Werhahn, Olav; Ebert, Volker

    2017-04-01

    Knowledge of isotope composition of carbon dioxide (CO2) in the atmosphere is necessary to identify sources and sinks of this key greenhouse gas. In the last years, laser spectroscopic techniques such as cavity ring-down spectroscopy (CRDS) and tunable diode laser absorption spectroscopy (TDLAS) have been shown to perform accurate isotope ratio measurements for CO2 and other gases like water vapour (H2O) [1,2]. Typically, isotope ratios are reported in literature referring to reference materials provided by e.g. the International Atomic Energy Agency (IAEA). However, there could be some benefit if field deployable absolute isotope ratio measurement methods were developed to address issues such as exhausted reference material like the Pee Dee Belemnite (PDB) standard. Absolute isotope ratio measurements would be particularly important for situations where reference materials do not even exist. Here, we present CRDS and TDLAS-based absolute isotope ratios (13C/12C ) in atmospheric CO2. We demonstrate the capabilities of the used methods by measuring CO2 isotope ratios in gas standards. We compare our results to values reported for the isotope certified gas standards. Guide to the expression of uncertainty in measurement (GUM) compliant uncertainty budgets on the CRDS and TDLAS absolute isotope ratio measurements are presented, and traceability is addressed. We outline the current impediments in realizing high accuracy absolute isotope ratio measurements using laser spectroscopic methods, propose solutions and the way forward. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] B. Kühnreich, S. Wagner, J. C. Habig,·O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119:177-187 (2015). [2] E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439-449 (2008).

  8. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  9. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  10. Portable device to assess dynamic accuracy of global positioning systems (GPS) receivers used in agricultural aircraft

    USDA-ARS?s Scientific Manuscript database

    A device was designed to test the dynamic accuracy of Global Positioning System (GPS) receivers used in aerial vehicles. The system works by directing a sun-reflected light beam from the ground to the aircraft using mirrors. A photodetector is placed pointing downward from the aircraft and circuitry...

  11. [Design and accuracy analysis of upper slicing system of MSCT].

    PubMed

    Jiang, Rongjian

    2013-05-01

    The upper slicing system is the main components of the optical system in MSCT. This paper focuses on the design of upper slicing system and its accuracy analysis to improve the accuracy of imaging. The error of slice thickness and ray center by bearings, screw and control system were analyzed and tested. In fact, the accumulated error measured is less than 1 microm, absolute error measured is less than 10 microm. Improving the accuracy of the upper slicing system contributes to the appropriate treatment methods and success rate of treatment.

  12. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data

    NASA Astrophysics Data System (ADS)

    Wessel, Birgit; Huber, Martin; Wohlfart, Christian; Marschalk, Ursula; Kosmann, Detlev; Roth, Achim

    2018-05-01

    The primary goal of the German TanDEM-X mission is the generation of a highly accurate and global Digital Elevation Model (DEM) with global accuracies of at least 10 m absolute height error (linear 90% error). The global TanDEM-X DEM acquired with single-pass SAR interferometry was finished in September 2016. This paper provides a unique accuracy assessment of the final TanDEM-X global DEM using two different GPS point reference data sets, which are distributed across all continents, to fully characterize the absolute height error. Firstly, the absolute vertical accuracy is examined by about three million globally distributed kinematic GPS (KGPS) points derived from 19 KGPS tracks covering a total length of about 66,000 km. Secondly, a comparison is performed with more than 23,000 "GPS on Bench Marks" (GPS-on-BM) points provided by the US National Geodetic Survey (NGS) scattered across 14 different land cover types of the US National Land Cover Data base (NLCD). Both GPS comparisons prove an absolute vertical mean error of TanDEM-X DEM smaller than ±0.20 m, a Root Means Square Error (RMSE) smaller than 1.4 m and an excellent absolute 90% linear height error below 2 m. The RMSE values are sensitive to land cover types. For low vegetation the RMSE is ±1.1 m, whereas it is slightly higher for developed areas (±1.4 m) and for forests (±1.8 m). This validation confirms an outstanding absolute height error at 90% confidence level of the global TanDEM-X DEM outperforming the requirement by a factor of five. Due to its extensive and globally distributed reference data sets, this study is of considerable interests for scientific and commercial applications.

  13. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  14. Effect of the absolute statistic on gene-sampling gene-set analysis methods.

    PubMed

    Nam, Dougu

    2017-06-01

    Gene-set enrichment analysis and its modified versions have commonly been used for identifying altered functions or pathways in disease from microarray data. In particular, the simple gene-sampling gene-set analysis methods have been heavily used for datasets with only a few sample replicates. The biggest problem with this approach is the highly inflated false-positive rate. In this paper, the effect of absolute gene statistic on gene-sampling gene-set analysis methods is systematically investigated. Thus far, the absolute gene statistic has merely been regarded as a supplementary method for capturing the bidirectional changes in each gene set. Here, it is shown that incorporating the absolute gene statistic in gene-sampling gene-set analysis substantially reduces the false-positive rate and improves the overall discriminatory ability. Its effect was investigated by power, false-positive rate, and receiver operating curve for a number of simulated and real datasets. The performances of gene-set analysis methods in one-tailed (genome-wide association study) and two-tailed (gene expression data) tests were also compared and discussed.

  15. Measurement accuracies in band-limited extrapolation

    NASA Technical Reports Server (NTRS)

    Kritikos, H. N.

    1982-01-01

    The problem of numerical instability associated with extrapolation algorithms is addressed. An attempt is made to estimate the bounds for the acceptable errors and to place a ceiling on the measurement accuracy and computational accuracy needed for the extrapolation. It is shown that in band limited (or visible angle limited) extrapolation the larger effective aperture L' that can be realized from a finite aperture L by over sampling is a function of the accuracy of measurements. It is shown that for sampling in the interval L/b absolute value of xL, b1 the signal must be known within an error e sub N given by e sub N squared approximately = 1/4(2kL') cubed (e/8b L/L')(2kL') where L is the physical aperture, L' is the extrapolated aperture, and k = 2pi lambda.

  16. [Method for evaluating the positional accuracy of a six-degrees-of-freedom radiotherapy couch using high definition digital cameras].

    PubMed

    Takemura, Akihiro; Ueda, Shinichi; Noto, Kimiya; Kurata, Yuichi; Shoji, Saori

    2011-01-01

    In this study, we proposed and evaluated a positional accuracy assessment method with two high-resolution digital cameras for add-on six-degrees-of-freedom radiotherapy (6D) couches. Two high resolution digital cameras (D5000, Nikon Co.) were used in this accuracy assessment method. These cameras were placed on two orthogonal axes of a linear accelerator (LINAC) coordinate system and focused on the isocenter of the LINAC. Pictures of a needle that was fixed on the 6D couch were taken by the cameras during couch motions of translation and rotation of each axis. The coordinates of the needle in the pictures were obtained using manual measurement, and the coordinate error of the needle was calculated. The accuracy of a HexaPOD evo (Elekta AB, Sweden) was evaluated using this method. All of the mean values of the X, Y, and Z coordinate errors in the translation tests were within ±0.1 mm. However, the standard deviation of the Z coordinate errors in the Z translation test was 0.24 mm, which is higher than the others. In the X rotation test, we found that the X coordinate of the rotational origin of the 6D couch was shifted. We proposed an accuracy assessment method for a 6D couch. The method was able to evaluate the accuracy of the motion of only the 6D couch and revealed the deviation of the origin of the couch rotation. This accuracy assessment method is effective for evaluating add-on 6D couch positioning.

  17. Algorithms for spacecraft formation flying navigation based on wireless positioning system measurements

    NASA Astrophysics Data System (ADS)

    Goh, Shu Ting

    Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due to the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft's range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better

  18. Single-baseline RTK GNSS Positioning for Hydrographic Surveying

    NASA Astrophysics Data System (ADS)

    Metin Alkan, Reha; Murat Ozulu, I.; Ilçi, Veli; Kahveci, Muzaffer

    2015-04-01

    Positioning with GNSS technique can be carried out in two ways, absolute and relative. It has been possible to reach a few meters absolute point positioning accuracies in real time after disabling SA permanently in May 2000. Today, accuracies obtainable from absolute point positioning using code observations are not sufficient for most surveying applications. Thus to meet higher accuracy requirements, differential methods using single or dual frequency geodetic-grade GNSS receivers that measure carrier phase have to be used. However, this method requires time-cost field and office works and if the measurement is not carried out with conventional RTK method, user needs a GNSS data processing software to estimate the coordinates. If RTK is used, at least two or more GNSS receivers are required, one as a reference and the other as a rover. Moreover, the distance between the receivers must not exceed 15-20 km in order to be able to rapidly and reliably resolve the carrier phase ambiguities. On the other hand, based on the innovations and improvements in satellite geodesy and GNSS modernization studies occurred within the last decade, many new positioning methods and new approaches have been developed. One of them is Network-RTK (or commonly known as CORS) and the other is Single-baseline RTK. These methods are widely used for many surveying applications in many countries. The user of the system can obtain his/her position within a few cm level of accuracy in real-time with only a single GNSS receiver that has Network RTK (CORS) capability. When compared with the conventional differential and RTK methods, this technique has several significant advantages as it is easy to use and it produces accurate, cost-effective and rapid solutions. In Turkey, establishment of a multi-base RTK network was completed and opened for civilian use in 2009. This network is called CORS-TR and consists of 146 reference stations having about 80-100 km interstation distances. It is possible

  19. Mapping stream habitats with a global positioning system: Accuracy, precision, and comparison with traditional methods

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.; Belt, K.C.

    2006-01-01

    We tested the precision and accuracy of the Trimble GeoXT??? global positioning system (GPS) handheld receiver on point and area features and compared estimates of stream habitat dimensions (e.g., lengths and areas of riffles and pools) that were made in three different Oklahoma streams using the GPS receiver and a tape measure. The precision of differentially corrected GPS (DGPS) points was not affected by the number of GPS position fixes (i.e., geographic location estimates) averaged per DGPS point. Horizontal error of points ranged from 0.03 to 2.77 m and did not differ with the number of position fixes per point. The error of area measurements ranged from 0.1% to 110.1% but decreased as the area increased. Again, error was independent of the number of position fixes averaged per polygon corner. The estimates of habitat lengths, widths, and areas did not differ when measured using two methods of data collection (GPS and a tape measure), nor did the differences among methods change at three stream sites with contrasting morphologies. Measuring features with a GPS receiver was up to 3.3 times faster on average than using a tape measure, although signal interference from high streambanks or overhanging vegetation occasionally limited satellite signal availability and prolonged measurements with a GPS receiver. There were also no differences in precision of habitat dimensions when mapped using a continuous versus a position fix average GPS data collection method. Despite there being some disadvantages to using the GPS in stream habitat studies, measuring stream habitats with a GPS resulted in spatially referenced data that allowed the assessment of relative habitat position and changes in habitats over time, and was often faster than using a tape measure. For most spatial scales of interest, the precision and accuracy of DGPS data are adequate and have logistical advantages when compared to traditional methods of measurement. ?? 2006 Springer Science+Business Media

  20. A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    PubMed

    Zhao, Huaying; Ghirlando, Rodolfo; Alfonso, Carlos; Arisaka, Fumio; Attali, Ilan; Bain, David L; Bakhtina, Marina M; Becker, Donald F; Bedwell, Gregory J; Bekdemir, Ahmet; Besong, Tabot M D; Birck, Catherine; Brautigam, Chad A; Brennerman, William; Byron, Olwyn; Bzowska, Agnieszka; Chaires, Jonathan B; Chaton, Catherine T; Cölfen, Helmut; Connaghan, Keith D; Crowley, Kimberly A; Curth, Ute; Daviter, Tina; Dean, William L; Díez, Ana I; Ebel, Christine; Eckert, Debra M; Eisele, Leslie E; Eisenstein, Edward; England, Patrick; Escalante, Carlos; Fagan, Jeffrey A; Fairman, Robert; Finn, Ron M; Fischle, Wolfgang; de la Torre, José García; Gor, Jayesh; Gustafsson, Henning; Hall, Damien; Harding, Stephen E; Cifre, José G Hernández; Herr, Andrew B; Howell, Elizabeth E; Isaac, Richard S; Jao, Shu-Chuan; Jose, Davis; Kim, Soon-Jong; Kokona, Bashkim; Kornblatt, Jack A; Kosek, Dalibor; Krayukhina, Elena; Krzizike, Daniel; Kusznir, Eric A; Kwon, Hyewon; Larson, Adam; Laue, Thomas M; Le Roy, Aline; Leech, Andrew P; Lilie, Hauke; Luger, Karolin; Luque-Ortega, Juan R; Ma, Jia; May, Carrie A; Maynard, Ernest L; Modrak-Wojcik, Anna; Mok, Yee-Foong; Mücke, Norbert; Nagel-Steger, Luitgard; Narlikar, Geeta J; Noda, Masanori; Nourse, Amanda; Obsil, Tomas; Park, Chad K; Park, Jin-Ku; Pawelek, Peter D; Perdue, Erby E; Perkins, Stephen J; Perugini, Matthew A; Peterson, Craig L; Peverelli, Martin G; Piszczek, Grzegorz; Prag, Gali; Prevelige, Peter E; Raynal, Bertrand D E; Rezabkova, Lenka; Richter, Klaus; Ringel, Alison E; Rosenberg, Rose; Rowe, Arthur J; Rufer, Arne C; Scott, David J; Seravalli, Javier G; Solovyova, Alexandra S; Song, Renjie; Staunton, David; Stoddard, Caitlin; Stott, Katherine; Strauss, Holger M; Streicher, Werner W; Sumida, John P; Swygert, Sarah G; Szczepanowski, Roman H; Tessmer, Ingrid; Toth, Ronald T; Tripathy, Ashutosh; Uchiyama, Susumu; Uebel, Stephan F W; Unzai, Satoru; Gruber, Anna Vitlin; von Hippel, Peter H; Wandrey, Christine; Wang, Szu-Huan; Weitzel, Steven E; Wielgus-Kutrowska, Beata; Wolberger, Cynthia; Wolff, Martin; Wright, Edward; Wu, Yu-Sung; Wubben, Jacinta M; Schuck, Peter

    2015-01-01

    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.

  1. A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    PubMed Central

    Zhao, Huaying; Ghirlando, Rodolfo; Alfonso, Carlos; Arisaka, Fumio; Attali, Ilan; Bain, David L.; Bakhtina, Marina M.; Becker, Donald F.; Bedwell, Gregory J.; Bekdemir, Ahmet; Besong, Tabot M. D.; Birck, Catherine; Brautigam, Chad A.; Brennerman, William; Byron, Olwyn; Bzowska, Agnieszka; Chaires, Jonathan B.; Chaton, Catherine T.; Cölfen, Helmut; Connaghan, Keith D.; Crowley, Kimberly A.; Curth, Ute; Daviter, Tina; Dean, William L.; Díez, Ana I.; Ebel, Christine; Eckert, Debra M.; Eisele, Leslie E.; Eisenstein, Edward; England, Patrick; Escalante, Carlos; Fagan, Jeffrey A.; Fairman, Robert; Finn, Ron M.; Fischle, Wolfgang; de la Torre, José García; Gor, Jayesh; Gustafsson, Henning; Hall, Damien; Harding, Stephen E.; Cifre, José G. Hernández; Herr, Andrew B.; Howell, Elizabeth E.; Isaac, Richard S.; Jao, Shu-Chuan; Jose, Davis; Kim, Soon-Jong; Kokona, Bashkim; Kornblatt, Jack A.; Kosek, Dalibor; Krayukhina, Elena; Krzizike, Daniel; Kusznir, Eric A.; Kwon, Hyewon; Larson, Adam; Laue, Thomas M.; Le Roy, Aline; Leech, Andrew P.; Lilie, Hauke; Luger, Karolin; Luque-Ortega, Juan R.; Ma, Jia; May, Carrie A.; Maynard, Ernest L.; Modrak-Wojcik, Anna; Mok, Yee-Foong; Mücke, Norbert; Nagel-Steger, Luitgard; Narlikar, Geeta J.; Noda, Masanori; Nourse, Amanda; Obsil, Tomas; Park, Chad K.; Park, Jin-Ku; Pawelek, Peter D.; Perdue, Erby E.; Perkins, Stephen J.; Perugini, Matthew A.; Peterson, Craig L.; Peverelli, Martin G.; Piszczek, Grzegorz; Prag, Gali; Prevelige, Peter E.; Raynal, Bertrand D. E.; Rezabkova, Lenka; Richter, Klaus; Ringel, Alison E.; Rosenberg, Rose; Rowe, Arthur J.; Rufer, Arne C.; Scott, David J.; Seravalli, Javier G.; Solovyova, Alexandra S.; Song, Renjie; Staunton, David; Stoddard, Caitlin; Stott, Katherine; Strauss, Holger M.; Streicher, Werner W.; Sumida, John P.; Swygert, Sarah G.; Szczepanowski, Roman H.; Tessmer, Ingrid; Toth, Ronald T.; Tripathy, Ashutosh; Uchiyama, Susumu; Uebel, Stephan F. W.; Unzai, Satoru; Gruber, Anna Vitlin; von Hippel, Peter H.; Wandrey, Christine; Wang, Szu-Huan; Weitzel, Steven E.; Wielgus-Kutrowska, Beata; Wolberger, Cynthia; Wolff, Martin; Wright, Edward; Wu, Yu-Sung; Wubben, Jacinta M.; Schuck, Peter

    2015-01-01

    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies. PMID:25997164

  2. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. © 2013 John Wiley & Sons Ltd.

  3. IMPROVEMENT OF SMVGEAR II ON VECTOR AND SCALAR MACHINES THROUGH ABSOLUTE ERROR TOLERANCE CONTROL (R823186)

    EPA Science Inventory

    The computer speed of SMVGEAR II was improved markedly on scalar and vector machines with relatively little loss in accuracy. The improvement was due to a method of frequently recalculating the absolute error tolerance instead of keeping it constant for a given set of chemistry. ...

  4. An accuracy assessment of different rigid body image registration methods and robotic couch positional corrections using a novel phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Sankar; Xing Aitang; Jameson, Michael G.

    2013-03-15

    Purpose: Image guided radiotherapy (IGRT) using cone beam computed tomography (CBCT) images greatly reduces interfractional patient positional uncertainties. An understanding of uncertainties in the IGRT process itself is essential to ensure appropriate use of this technology. The purpose of this study was to develop a phantom capable of assessing the accuracy of IGRT hardware and software including a 6 degrees of freedom patient positioning system and to investigate the accuracy of the Elekta XVI system in combination with the HexaPOD robotic treatment couch top. Methods: The constructed phantom enabled verification of the three automatic rigid body registrations (gray value, bone,more » seed) available in the Elekta XVI software and includes an adjustable mount that introduces known rotational offsets to the phantom from its reference position. Repeated positioning of the phantom was undertaken to assess phantom rotational accuracy. Using this phantom the accuracy of the XVI registration algorithms was assessed considering CBCT hardware factors and image resolution together with the residual error in the overall image guidance process when positional corrections were performed through the HexaPOD couch system. Results: The phantom positioning was found to be within 0.04 ({sigma}= 0.12) Degree-Sign , 0.02 ({sigma}= 0.13) Degree-Sign , and -0.03 ({sigma}= 0.06) Degree-Sign in X, Y, and Z directions, respectively, enabling assessment of IGRT with a 6 degrees of freedom patient positioning system. The gray value registration algorithm showed the least error in calculated offsets with maximum mean difference of -0.2({sigma}= 0.4) mm in translational and -0.1({sigma}= 0.1) Degree-Sign in rotational directions for all image resolutions. Bone and seed registration were found to be sensitive to CBCT image resolution. Seed registration was found to be most sensitive demonstrating a maximum mean error of -0.3({sigma}= 0.9) mm and -1.4({sigma}= 1.7) Degree-Sign in

  5. Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Frey, Bradley J.

    2006-01-01

    Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.

  6. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography

    PubMed Central

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2016-01-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365

  7. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography.

    PubMed

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D; Chen, Zhongping

    2016-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement.

  8. Accuracy of three-dimensional facial soft tissue simulation in post-traumatic zygoma reconstruction.

    PubMed

    Li, P; Zhou, Z W; Ren, J Y; Zhang, Y; Tian, W D; Tang, W

    2016-12-01

    The aim of this study was to evaluate the accuracy of novel software-CMF-preCADS-for the prediction of soft tissue changes following repositioning surgery for zygomatic fractures. Twenty patients who had sustained an isolated zygomatic fracture accompanied by facial deformity and who were treated with repositioning surgery participated in this study. Cone beam computed tomography (CBCT) scans and three-dimensional (3D) stereophotographs were acquired preoperatively and postoperatively. The 3D skeletal model from the preoperative CBCT data was matched with the postoperative one, and the fractured zygomatic fragments were segmented and aligned to the postoperative position for prediction. Then, the predicted model was matched with the postoperative 3D stereophotograph for quantification of the simulation error. The mean absolute error in the zygomatic soft tissue region between the predicted model and the real one was 1.42±1.56mm for all cases. The accuracy of the prediction (mean absolute error ≤2mm) was 87%. In the subjective assessment it was found that the majority of evaluators considered the predicted model and the postoperative model to be 'very similar'. CMF-preCADS software can provide a realistic, accurate prediction of the facial soft tissue appearance after repositioning surgery for zygomatic fractures. The reliability of this software for other types of repositioning surgery for maxillofacial fractures should be validated in the future. Copyright © 2016. Published by Elsevier Ltd.

  9. [Prognostic value of absolute monocyte count in chronic lymphocytic leukaemia].

    PubMed

    Szerafin, László; Jakó, János; Riskó, Ferenc

    2015-04-01

    The low peripheral absolute lymphocyte and high monocyte count have been reported to correlate with poor clinical outcome in various lymphomas and other cancers. However, a few data known about the prognostic value of absolute monocyte count in chronic lymphocytic leukaemia. The aim of the authors was to investigate the impact of absolute monocyte count measured at the time of diagnosis in patients with chronic lymphocytic leukaemia on the time to treatment and overal survival. Between January 1, 2005 and December 31, 2012, 223 patients with newly-diagnosed chronic lymphocytic leukaemia were included. The rate of patients needing treatment, time to treatment, overal survival and causes of mortality based on Rai stages, CD38, ZAP-70 positivity and absolute monocyte count were analyzed. Therapy was necessary in 21.1%, 57.4%, 88.9%, 88.9% and 100% of patients in Rai stage 0, I, II, III an IV, respectively; in 61.9% and 60.8% of patients exhibiting CD38 and ZAP-70 positivity, respectively; and in 76.9%, 21.2% and 66.2% of patients if the absolute monocyte count was <0.25 G/l, between 0.25-0.75 G/l and >0.75 G/l, respectively. The median time to treatment and the median overal survival were 19.5, 65, and 35.5 months; and 41.5, 65, and 49.5 months according to the three groups of monocyte counts. The relative risk of beginning the therapy was 1.62 (p<0.01) in patients with absolute monocyte count <0.25 G/l or >0.75 G/l, as compared to those with 0.25-0.75 G/l, and the risk of overal survival was 2.41 (p<0.01) in patients with absolute monocyte count lower than 0.25 G/l as compared to those with higher than 0.25 G/l. The relative risks remained significant in Rai 0 patients, too. The leading causes of mortality were infections (41.7%) and the chronic lymphocytic leukaemia (58.3%) in patients with low monocyte count, while tumours (25.9-35.3%) and other events (48.1 and 11.8%) occurred in patients with medium or high monocyte counts. Patients with low and high monocyte

  10. An electromechanical, patient positioning system for head and neck radiotherapy

    NASA Astrophysics Data System (ADS)

    Ostyn, Mark; Dwyer, Thomas; Miller, Matthew; King, Paden; Sacks, Rachel; Cruikshank, Ross; Rosario, Melvin; Martinez, Daniel; Kim, Siyong; Yeo, Woon-Hong

    2017-09-01

    In cancer treatment with radiation, accurate patient setup is critical for proper dose delivery. Improper arrangement can lead to disease recurrence, permanent organ damage, or lack of disease control. While current immobilization equipment often helps for patient positioning, manual adjustment is required, involving iterative, time-consuming steps. Here, we present an electromechanical robotic system for improving patient setup in radiotherapy, specifically targeting head and neck cancer. This positioning system offers six degrees of freedom for a variety of applications in radiation oncology. An analytical calculation of inverse kinematics serves as fundamental criteria to design the system. Computational mechanical modeling and experimental study of radiotherapy compatibility and x-ray-based imaging demonstrates the device feasibility and reliability to be used in radiotherapy. An absolute positioning accuracy test in a clinical treatment room supports the clinical feasibility of the system.

  11. Cervical joint position sense in rugby players versus non-rugby players.

    PubMed

    Pinsault, Nicolas; Anxionnaz, Marion; Vuillerme, Nicolas

    2010-05-01

    To determine whether cervical joint position sense is modified by intensive rugby practice. A group-comparison study. University Medical Bioengineering Laboratory. Twenty young elite rugby players (10 forwards and 10 backs) and 10 young non-rugby elite sports players. Participants were asked to perform the cervicocephalic relocation test (CRT) to the neutral head position (NHP) that is, to reposition their head on their trunk, as accurately as possible, after full active left and right cervical rotation. Rugby players were asked to perform the CRT to NHP before and after a training session. Absolute and variable errors were used to assess accuracy and consistency of the repositioning for the three groups of Forwards, Backs and Non-rugby players, respectively. The 2 groups of Forwards and Backs exhibited higher absolute and variable errors than the group of Non-rugby players. No difference was found between the two groups of Forwards and Backs and no difference was found between Before and After the training session. The cervical joint position sense of young elite rugby players is altered compared to that of non-rugby players. Furthermore, Forwards and Backs demonstrated comparable repositioning errors before and after a specific training session, suggesting that cervical proprioceptive alteration is mainly due to tackling and not the scrum.

  12. Absolute Positioning Using The Earth’s Magnetic Anomaly Field

    DTIC Science & Technology

    2016-09-15

    many of these limitations. We present a navigation filter which uses the Earth’s magnetic anomaly field as a navigation signal to aid an inertial...navigation system (INS) in an aircraft. The filter utilizes highly-accurate optically pumped cesium (OPC) magnetometers to make scalar intensity...measurements of the Earth’s magnetic field and compare them to a map using a marginalized particle filter approach. The accuracy of these mea- surements allows

  13. Certified ion implantation fluence by high accuracy RBS.

    PubMed

    Colaux, Julien L; Jeynes, Chris; Heasman, Keith C; Gwilliam, Russell M

    2015-05-07

    From measurements over the last two years we have demonstrated that the charge collection system based on Faraday cups can robustly give near-1% absolute implantation fluence accuracy for our electrostatically scanned 200 kV Danfysik ion implanter, using four-point-probe mapping with a demonstrated accuracy of 2%, and accurate Rutherford backscattering spectrometry (RBS) of test implants from our quality assurance programme. The RBS is traceable to the certified reference material IRMM-ERM-EG001/BAM-L001, and involves convenient calibrations both of the electronic gain of the spectrometry system (at about 0.1% accuracy) and of the RBS beam energy (at 0.06% accuracy). We demonstrate that accurate RBS is a definitive method to determine quantity of material. It is therefore useful for certifying high quality reference standards, and is also extensible to other kinds of samples such as thin self-supporting films of pure elements. The more powerful technique of Total-IBA may inherit the accuracy of RBS.

  14. Development and Positioning Accuracy Assessment of Single-Frequency Precise Point Positioning Algorithms by Combining GPS Code-Pseudorange Measurements with Real-Time SSR Corrections

    PubMed Central

    Kim, Miso; Park, Kwan-Dong

    2017-01-01

    We have developed a suite of real-time precise point positioning programs to process GPS pseudorange observables, and validated their performance through static and kinematic positioning tests. To correct inaccurate broadcast orbits and clocks, and account for signal delays occurring from the ionosphere and troposphere, we applied State Space Representation (SSR) error corrections provided by the Seoul Broadcasting System (SBS) in South Korea. Site displacements due to solid earth tide loading are also considered for the purpose of improving the positioning accuracy, particularly in the height direction. When the developed algorithm was tested under static positioning, Kalman-filtered solutions produced a root-mean-square error (RMSE) of 0.32 and 0.40 m in the horizontal and vertical directions, respectively. For the moving platform, the RMSE was found to be 0.53 and 0.69 m in the horizontal and vertical directions. PMID:28598403

  15. Dispositional malevolence and impression formation: Dark Tetrad associations with accuracy and positivity in first impressions.

    PubMed

    Rogers, Katherine H; Le, Marina T; Buckels, Erin E; Kim, Mikayla; Biesanz, Jeremy C

    2018-02-19

    The Dark Tetrad traits (subclinical psychopathy, narcissism, Machiavellianism, and everyday sadism) have interpersonal consequences. At present, however, how these traits are associated with the accuracy and positivity of first impressions is not well understood. The present article addresses three primary questions. First, to what extent are perceiver levels of Dark Tetrad traits associated with differing levels of perceptive accuracy? Second, to what extent are target levels of Dark Tetrad traits associated with differing levels of expressive accuracy? Finally, to what extent can Dark Tetrad traits be differentiated when examining perceptions of and by others? In a round-robin design, undergraduate participants (N = 412) in small groups engaged in brief, naturalistic, unstructured dyadic interactions before providing impressions of their partner. Dark Tetrad traits were associated with being viewed and viewing others less distinctively accurately and more negatively. Interpersonal perceptions that included an individual scoring highly on one of the Dark Tetrad traits differed in important ways from interactions among individuals with more benevolent personalities. Notably, despite the similarities between the Dark Tetrad, traits had unique associations with interpersonal perceptions. © 2018 Wiley Periodicals, Inc.

  16. Absolute Side-chain Structure at Position 13 Is Required for the Inhibitory Activity of Bromein*

    PubMed Central

    Sawano, Yoriko; Hatano, Ken-ichi; Miyakawa, Takuya; Tanokura, Masaru

    2008-01-01

    Bromelain isoinhibitor (bromein), a cysteine proteinase inhibitor from pineapple stem, has a unique double-chain structure. The bromein precursor protein includes three homologous inhibitor domains, each containing an interchain peptide between the light and heavy chains. The interchain peptide in the single-chain precursor is immediately processed by bromelain, a target proteinase. In the present study, to clarify the essential inhibitory site of bromein, we constructed 44 kinds of site-directed and deletion mutants and investigated the inhibitory activity of each toward bromelain. As a result, the complete chemical structure of Leu13 in the light chain was revealed to be essential for inhibition. Pro12 prior to the leucine residue was also involved in the inhibitory activity and would control the location of the leucine side chain by the fixed φ dihedral angle of proline. Furthermore, the five-residue length of the interchain peptide was strictly required for the inhibitory activity. On the other hand, no inhibitory activity against bromelain was observed by the substitution of proline for the N terminus residue Thr15 of the interchain peptide. In summary, these mutational analyses of bromein demonstrated that the appropriate position and conformation of Leu13 are absolutely crucial for bromelain inhibition. PMID:18948264

  17. Quantitative endoscopy: initial accuracy measurements.

    PubMed

    Truitt, T O; Adelman, R A; Kelly, D H; Willging, J P

    2000-02-01

    The geometric optics of an endoscope can be used to determine the absolute size of an object in an endoscopic field without knowing the actual distance from the object. This study explores the accuracy of a technique that estimates absolute object size from endoscopic images. Quantitative endoscopy involves calibrating a rigid endoscope to produce size estimates from 2 images taken with a known traveled distance between the images. The heights of 12 samples, ranging in size from 0.78 to 11.80 mm, were estimated with this calibrated endoscope. Backup distances of 5 mm and 10 mm were used for comparison. The mean percent error for all estimated measurements when compared with the actual object sizes was 1.12%. The mean errors for 5-mm and 10-mm backup distances were 0.76% and 1.65%, respectively. The mean errors for objects <2 mm and > or =2 mm were 0.94% and 1.18%, respectively. Quantitative endoscopy estimates endoscopic image size to within 5% of the actual object size. This method remains promising for quantitatively evaluating object size from endoscopic images. It does not require knowledge of the absolute distance of the endoscope from the object, rather, only the distance traveled by the endoscope between images.

  18. Continuous glucose monitoring system: dawn period calibration does not change accuracy of the method.

    PubMed

    Augusto, Gustavo A; Sousa, André G P; Perazo, Marcela N A; Correa-Giannella, Maria L C; Nery, Marcia; Melo, Karla F S de

    2009-06-01

    Continuous glucose monitoring system is a valuable instrument to measure glycemic control, which uses a retrospective calibration based upon 3 to 4 capillary glucose meter values inserted by the patient each day. We evaluated the interference of calibration during the dawn period in the system accuracy. The monitoring data were retrospectively divided into two groups: with (Group A) or without (Group B) the dawn period calibration (between 1:00 and 5:00 AM). Accuracy of the method was expressed by relative absolute difference. Thirty-four continuous glucose monitoring data were evaluated comprising a total of 112 nights. A total of 289 paired readings were analyzed - 195 in Group A and 94 in Group B. We did not find a difference in relative absolute difference (RAD%) in any analyzed period of day by adding dawn calibration. These data suggest that dawn calibration does not alter accuracy of method.

  19. The JILA (Joint Institute for Laboratory Astrophysics) portable absolute gravity apparatus

    NASA Astrophysics Data System (ADS)

    Faller, J. E.; Guo, Y. G.; Gschwind, J.; Niebauer, T. M.; Rinker, R. L.; Xue, J.

    1983-08-01

    We have developed a new and highly portable absolute gravity apparatus based on the principles of free-fall laser interferometry. A primary concern over the past several years has been the detection, understanding, and elimination of systematic errors. In the Spring of 1982, we used this instrument to carry out a survey at twelve sites in the United States. Over a period of eight weeks, the instrument was driven a distance of nearly 20,000 km to sites in California, New Mexico, Colorado, Wyoming, Maryland, and Massachusetts. The time required to carry out a measurement at each location was typically one day. Over the next several years, our intention is to see absolute gravity measurements become both usable and used in the field. To this end, and in the context of cooperative research programs with a number of scientific institutes throughout the world, we are building additional instruments (incorporating further refinements) which are to be used for geodetic, geophysical, geological, and tectonic studies. With these new instruments we expect to improve (perhaps by a factor of two) on the 6-10 microgal accuracy of our present instrument. Today, one can make absolutely gravity measurements as accurately as - possibly even more accurately than - one can make relative measurements. Given reasonable success with the new instruments in the field, the last years of this century should see absolute gravity measurement mature both as a new geodetic data type and as a useful geophysical tool.

  20. The Absolute Vector Magnetometers on Board Swarm, Lessons Learned From Two Years in Space.

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Leger, J. M.; Vigneron, P.; Brocco, L.; Olsen, N.; Jager, T.; Bertrand, F.; Fratter, I.; Sirol, O.; Lalanne, X.

    2015-12-01

    ESA's Swarm satellites carry 4He absolute magnetometers (ASM), designed by CEA-Léti and developed in partnership with CNES. These instruments are the first-ever space-born magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector readings of the magnetic field. They have provided the very high accuracy scalar field data nominally required by the mission (for both science and calibration purposes, since each satellite also carries a low noise high frequency fluxgate magnetometer designed by DTU), but also very useful experimental absolute vector data. In this presentation, we will report on the status of the instruments, as well as on the various tests and investigations carried out using these experimental data since launch in November 2013. In particular, we will illustrate the advantages of flying ASM instruments on space-born magnetic missions for nominal data quality checks, geomagnetic field modeling and science objectives.

  1. Statistical process control and verifying positional accuracy of a cobra motion couch using step-wedge quality assurance tool.

    PubMed

    Binny, Diana; Lancaster, Craig M; Trapp, Jamie V; Crowe, Scott B

    2017-09-01

    This study utilizes process control techniques to identify action limits for TomoTherapy couch positioning quality assurance tests. A test was introduced to monitor accuracy of the applied couch offset detection in the TomoTherapy Hi-Art treatment system using the TQA "Step-Wedge Helical" module and MVCT detector. Individual X-charts, process capability (cp), probability (P), and acceptability (cpk) indices were used to monitor a 4-year couch IEC offset data to detect systematic and random errors in the couch positional accuracy for different action levels. Process capability tests were also performed on the retrospective data to define tolerances based on user-specified levels. A second study was carried out whereby physical couch offsets were applied using the TQA module and the MVCT detector was used to detect the observed variations. Random and systematic variations were observed for the SPC-based upper and lower control limits, and investigations were carried out to maintain the ongoing stability of the process for a 4-year and a three-monthly period. Local trend analysis showed mean variations up to ±0.5 mm in the three-monthly analysis period for all IEC offset measurements. Variations were also observed in the detected versus applied offsets using the MVCT detector in the second study largely in the vertical direction, and actions were taken to remediate this error. Based on the results, it was recommended that imaging shifts in each coordinate direction be only applied after assessing the machine for applied versus detected test results using the step helical module. User-specified tolerance levels of at least ±2 mm were recommended for a test frequency of once every 3 months to improve couch positional accuracy. SPC enables detection of systematic variations prior to reaching machine tolerance levels. Couch encoding system recalibrations reduced variations to user-specified levels and a monitoring period of 3 months using SPC facilitated in detecting

  2. A resampling strategy based on bootstrap to reduce the effect of large blunders in GPS absolute positioning

    NASA Astrophysics Data System (ADS)

    Angrisano, Antonio; Maratea, Antonio; Gaglione, Salvatore

    2018-01-01

    In the absence of obstacles, a GPS device is generally able to provide continuous and accurate estimates of position, while in urban scenarios buildings can generate multipath and echo-only phenomena that severely affect the continuity and the accuracy of the provided estimates. Receiver autonomous integrity monitoring (RAIM) techniques are able to reduce the negative consequences of large blunders in urban scenarios, but require both a good redundancy and a low contamination to be effective. In this paper a resampling strategy based on bootstrap is proposed as an alternative to RAIM, in order to estimate accurately position in case of low redundancy and multiple blunders: starting with the pseudorange measurement model, at each epoch the available measurements are bootstrapped—that is random sampled with replacement—and the generated a posteriori empirical distribution is exploited to derive the final position. Compared to standard bootstrap, in this paper the sampling probabilities are not uniform, but vary according to an indicator of the measurement quality. The proposed method has been compared with two different RAIM techniques on a data set collected in critical conditions, resulting in a clear improvement on all considered figures of merit.

  3. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  4. Deriving a geocentric reference frame for satellite positioning and navigation

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S.-C.

    1988-01-01

    With the advent of Earth-orbiting geodetic satellites, nongeocentric datums or reference frames have become things of the past. Accurate geocentric three-dimensional positioning is now possible and is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using very long baseline interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be on the order of 1 meter. Satellite laser ranging (SLR), however, is capable of determining this offset to better than 10 cm, but this is possible only after years of measurements. Global Positioning System (GPS) measurements provide a powerful tool for an accurate determination of this origin offset. Two strategies are discussed. The first strategy utilizes the precise relative positions that were predetermined by VLBI to fix the frame orientation and the absolute scaling, while the offset from the geocenter is determined from GPS measurements. Three different cases are presented under this strategy. The reference frame thus adopted will be consistent with the VLBI coordinate system. The second strategy establishes a reference frame by holding only the longitude of one of the tracking sites fixed. The absolute scaling is determined by the adopted gravitational constant (GM) of the Earth; and the latitude is inferred from the time signature of the Earth rotation in the GPS measurements. The coordinate system thus defined will be a geocentric Earth-fixed coordinate system.

  5. Dichotomy and perceptual distortions in absolute pitch ability

    PubMed Central

    Athos, E. Alexandra; Levinson, Barbara; Kistler, Amy; Zemansky, Jason; Bostrom, Alan; Freimer, Nelson; Gitschier, Jane

    2007-01-01

    Absolute pitch (AP) is the rare ability to identify the pitch of a tone without the aid of a reference tone. Understanding both the nature and genesis of AP can provide insights into neuroplasticity in the auditory system. We explored factors that may influence the accuracy of pitch perception in AP subjects both during the development of the trait and in later age. We used a Web-based survey and a pitch-labeling test to collect perceptual data from 2,213 individuals, 981 (44%) of whom proved to have extraordinary pitch-naming ability. The bimodal distribution in pitch-naming ability signifies AP as a distinct perceptual trait, with possible implications for its genetic basis. The wealth of these data has allowed us to uncover unsuspected note-naming irregularities suggestive of a “perceptual magnet” centered at the note “A.” In addition, we document a gradual decline in pitch-naming accuracy with age, characterized by a perceptual shift in the “sharp” direction. These findings speak both to the process of acquisition of AP and to its stability. PMID:17724340

  6. Geolocation Accuracy Evaluations of OrbView-3, EROS-A, and SPOT-5 Imagery

    NASA Technical Reports Server (NTRS)

    Bresnahan, Paul

    2007-01-01

    This viewgraph presentation evaluates absolute geolocation accuracy of OrbView-3, EROS-A, and SPOT-5 by comparing test imagery-derived ground coordinates to Ground Control Points using SOCET set photogrammetric software.

  7. Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morley, Steven Karl

    This report reviews existing literature describing forecast accuracy metrics, concentrating on those based on relative errors and percentage errors. We then review how the most common of these metrics, the mean absolute percentage error (MAPE), has been applied in recent radiation belt modeling literature. Finally, we describe metrics based on the ratios of predicted to observed values (the accuracy ratio) that address the drawbacks inherent in using MAPE. Specifically, we define and recommend the median log accuracy ratio as a measure of bias and the median symmetric accuracy as a measure of accuracy.

  8. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  9. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Accuracy of piezoelectric pedometer and accelerometer step counts.

    PubMed

    Cruz, Joana; Brooks, Dina; Marques, Alda

    2017-04-01

    This study aimed to assess step-count accuracy of a piezoeletric pedometer (Yamax PW/EX-510), when worn at different body parts, and a triaxial accelerometer (GT3X+), and to compare device accuracy; and identify the preferred location(s) to wear a pedometer. Sixty-three healthy adults (45.8±20.6 years old) wore 7 pedometers (neck, lateral right and left of the waist, front right and left of the waist, front pockets of the trousers) and 1 accelerometer (over the right hip), while walking 120 m at slow, self-preferred/normal and fast paces. Steps were recorded. Participants identified their preferred location(s) to wear the pedometer. Absolute percent error (APE) and Bland and Altman (BA) method were used to assess device accuracy (criterion measure: manual counts) and BA method for device comparisons. Pedometer APE was below 3% at normal and fast paces despite wearing location, but higher at slow pace (4.5-9.1%). Pedometers were more accurate at the front waist and inside the pockets. Accelerometer APE was higher than pedometer APE (P<0.05); nevertheless, limits of agreement between devices were relatively small. Preferred wearing locations were inside the front right (N.=25) and left (N.=20) pockets of the trousers. Yamax PW/EX-510 pedometers may be preferable than GT3X+ accelerometers to count steps, as they provide more accurate results. These pedometers should be worn at the front right or left positions of the waist or inside the front pockets of the trousers.

  11. Consequences count: against absolutism at the end of life.

    PubMed

    Snelling, Paul C

    2004-05-01

    There has been a considerable amount of debate in the nursing literature about euthanasia, and especially the distinctions between acts and omissions, and killing and letting die. These distinctions are required by opponents of euthanasia to justify allowing some cases of passive euthanasia while forbidding all cases of active euthanasia. This paper adds to the debate by arguing that the position that absolutely forbids euthanasia is theoretically inconsistent. The paper first considers the place of moral theory in analysing moral problems, within the framework of the principles of biomedical ethics. It is argued that despite a moral pluralism that operates in many areas, the legal status of euthanasia is based upon an absolute deontological position against deliberate killing, which cannot be overridden by appeals to favourable consequences. In order that certain forms of passive euthanasia can be allowed, this position allows distinctions within three pairs of concepts--acts and omissions, killing and letting die, and ordinary and extraordinary means. A further method of justifying certain actions near the end of life is the doctrine of double effect. These paired concepts and the doctrine of double effect are analysed with special reference to their consequences. The application of the doctrine of double effect and the three distinctions relies on consideration of their consequences, allowing in practice what in theory is denied. This is important because it weakens the absolute case against euthanasia, which disallows any direct consequentialist appeal. If consequences count in the application of the doctrine and the distinctions, then they should also count directly prior to their application. This strengthens the argument for active euthanasia in certain cases.

  12. The Effect of Using Relative and Absolute Criteria to Decide Students' Passing or Failing a Course

    ERIC Educational Resources Information Center

    Sayin, Ayfer

    2016-01-01

    In the formation education that is carried out within the scope of undergraduate and non-thesis graduate programs within the same university, different criteria are used to evaluate students' success. In this study, classification accuracy of letter grades that are generated to evaluate students' success using relative and absolute criteria and…

  13. Digital evaluation of absolute marginal discrepancy: A comparison of ceramic crowns fabricated with conventional and digital techniques.

    PubMed

    Liang, Shanshan; Yuan, Fusong; Luo, Xu; Yu, Zhuoren; Tang, Zhihui

    2018-04-05

    Marginal discrepancy is key to evaluating the accuracy of fixed dental prostheses. An improved method of evaluating marginal discrepancy is needed. The purpose of this in vitro study was to evaluate the absolute marginal discrepancy of ceramic crowns fabricated using conventional and digital methods with a digital method for the quantitative evaluation of absolute marginal discrepancy. The novel method was based on 3-dimensional scanning, iterative closest point registration techniques, and reverse engineering theory. Six standard tooth preparations for the right maxillary central incisor, right maxillary second premolar, right maxillary second molar, left mandibular lateral incisor, left mandibular first premolar, and left mandibular first molar were selected. Ten conventional ceramic crowns and 10 CEREC crowns were fabricated for each tooth preparation. A dental cast scanner was used to obtain 3-dimensional data of the preparations and ceramic crowns, and the data were compared with the "virtual seating" iterative closest point technique. Reverse engineering software used edge sharpening and other functional modules to extract the margins of the preparations and crowns. Finally, quantitative evaluation of the absolute marginal discrepancy of the ceramic crowns was obtained from the 2-dimensional cross-sectional straight-line distance between points on the margin of the ceramic crowns and the standard preparations based on the circumferential function module along the long axis. The absolute marginal discrepancy of the ceramic crowns fabricated using conventional methods was 115 ±15.2 μm, and 110 ±14.3 μm for those fabricated using the digital technique was. ANOVA showed no statistical difference between the 2 methods or among ceramic crowns for different teeth (P>.05). The digital quantitative evaluation method for the absolute marginal discrepancy of ceramic crowns was established. The evaluations determined that the absolute marginal discrepancies were

  14. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Dai, Xiaolei; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-06-01

    In this contribution, we present a GPS+GLONASS+BeiDou+Galileo four-system model to fully exploit the observations of all these four navigation satellite systems for real-time precise orbit determination, clock estimation and positioning. A rigorous multi-GNSS analysis is performed to achieve the best possible consistency by processing the observations from different GNSS together in one common parameter estimation procedure. Meanwhile, an efficient multi-GNSS real-time precise positioning service system is designed and demonstrated by using the multi-GNSS Experiment, BeiDou Experimental Tracking Network, and International GNSS Service networks including stations all over the world. The statistical analysis of the 6-h predicted orbits show that the radial and cross root mean square (RMS) values are smaller than 10 cm for BeiDou and Galileo, and smaller than 5 cm for both GLONASS and GPS satellites, respectively. The RMS values of the clock differences between real-time and batch-processed solutions for GPS satellites are about 0.10 ns, while the RMS values for BeiDou, Galileo and GLONASS are 0.13, 0.13 and 0.14 ns, respectively. The addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing, reduces the convergence time almost by 70 %, while the positioning accuracy is improved by about 25 %. Some outliers in the GPS-only solutions vanish when multi-GNSS observations are processed simultaneous. The availability and reliability of GPS precise positioning decrease dramatically as the elevation cutoff increases. However, the accuracy of multi-GNSS precise point positioning (PPP) is hardly decreased and few centimeter are still achievable in the horizontal components even with 40 elevation cutoff. At 30 and 40 elevation cutoffs, the availability rates of GPS-only solution drop significantly to only around 70 and 40 %, respectively. However, multi-GNSS PPP can provide precise position estimates continuously (availability rate is more than 99

  15. Absolute angular encoder based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang

    2015-08-01

    A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.

  16. Absolute calibration of Doppler coherence imaging velocity images

    NASA Astrophysics Data System (ADS)

    Samuell, C. M.; Allen, S. L.; Meyer, W. H.; Howard, J.

    2017-08-01

    A new technique has been developed for absolutely calibrating a Doppler Coherence Imaging Spectroscopy interferometer for measuring plasma ion and neutral velocities. An optical model of the interferometer is used to generate zero-velocity reference images for the plasma spectral line of interest from a calibration source some spectral distance away. Validation of this technique using a tunable diode laser demonstrated an accuracy better than 0.2 km/s over an extrapolation range of 3.5 nm; a two order of magnitude improvement over linear approaches. While a well-characterized and very stable interferometer is required, this technique opens up the possibility of calibrated velocity measurements in difficult viewing geometries and for complex spectral line-shapes.

  17. Precision and accuracy in smFRET based structural studies—A benchmark study of the Fast-Nano-Positioning System

    NASA Astrophysics Data System (ADS)

    Nagy, Julia; Eilert, Tobias; Michaelis, Jens

    2018-03-01

    Modern hybrid structural analysis methods have opened new possibilities to analyze and resolve flexible protein complexes where conventional crystallographic methods have reached their limits. Here, the Fast-Nano-Positioning System (Fast-NPS), a Bayesian parameter estimation-based analysis method and software, is an interesting method since it allows for the localization of unknown fluorescent dye molecules attached to macromolecular complexes based on single-molecule Förster resonance energy transfer (smFRET) measurements. However, the precision, accuracy, and reliability of structural models derived from results based on such complex calculation schemes are oftentimes difficult to evaluate. Therefore, we present two proof-of-principle benchmark studies where we use smFRET data to localize supposedly unknown positions on a DNA as well as on a protein-nucleic acid complex. Since we use complexes where structural information is available, we can compare Fast-NPS localization to the existing structural data. In particular, we compare different dye models and discuss how both accuracy and precision can be optimized.

  18. Accuracy of a Basketball Indoor Tracking System Based on Standard Bluetooth Low Energy Channels (NBN23®).

    PubMed

    Figueira, Bruno; Gonçalves, Bruno; Folgado, Hugo; Masiulis, Nerijus; Calleja-González, Julio; Sampaio, Jaime

    2018-06-14

    The present study aims to identify the accuracy of the NBN23 ® system, an indoor tracking system based on radio-frequency and standard Bluetooth Low Energy channels. Twelve capture tags were attached to a custom cart with fixed distances of 0.5, 1.0, 1.5, and 1.8 m. The cart was pushed along a predetermined course following the lines of a standard dimensions Basketball court. The course was performed at low speed (<10.0 km/h), medium speed (>10.0 km/h and <20.0 km/h) and high speed (>20.0 km/h). Root mean square error (RMSE) and percentage of variance accounted for (%VAF) were used as accuracy measures. The obtained data showed acceptable accuracy results for both RMSE and %VAF, despite the expected degree of error in position measurement at higher speeds. The RMSE for all the distances and velocities presented an average absolute error of 0.30 ± 0.13 cm with 90.61 ± 8.34 of %VAF, in line with most available systems, and considered acceptable for indoor sports. The processing of data with filter correction seemed to reduce the noise and promote a lower relative error, increasing the %VAF for each measured distance. Research using positional-derived variables in Basketball is still very scarce; thus, this independent test of the NBN23 ® tracking system provides accuracy details and opens up opportunities to develop new performance indicators that help to optimize training adaptations and performance.

  19. A novel approach of an absolute coding pattern based on Hamiltonian graph

    NASA Astrophysics Data System (ADS)

    Wang, Ya'nan; Wang, Huawei; Hao, Fusheng; Liu, Liqiang

    2017-02-01

    In this paper, a novel approach of an optical type absolute rotary encoder coding pattern is presented. The concept is based on the principle of the absolute encoder to find out a unique sequence that ensures an unambiguous shaft position of any angular. We design a single-ring and a n-by-2 matrix absolute encoder coding pattern by using the variations of Hamiltonian graph principle. 12 encoding bits is used in the single-ring by a linear array CCD to achieve an 1080-position cycle encoding. Besides, a 2-by-2 matrix is used as an unit in the 2-track disk to achieve a 16-bits encoding pattern by using an area array CCD sensor (as a sample). Finally, a higher resolution can be gained by an electronic subdivision of the signals. Compared with the conventional gray or binary code pattern (for a 2n resolution), this new pattern has a higher resolution (2n*n) with less coding tracks, which means the new pattern can lead to a smaller encoder, which is essential in the industrial production.

  20. Inductive Linear-Position Sensor/Limit-Sensor Units

    NASA Technical Reports Server (NTRS)

    Alhom, Dean; Howard, David; Smith, Dennis; Dutton, Kenneth

    2007-01-01

    A new sensor provides an absolute position measurement. A schematic view of a motorized linear-translation stage that contains, at each end, an electronic unit that functions as both (1) a non-contact sensor that measures the absolute position of the stage and (2) a non-contact equivalent of a limit switch that is tripped when the stage reaches the nominal limit position. The need for such an absolute linear position-sensor/limit-sensor unit arises in the case of a linear-translation stage that is part of a larger system in which the actual stopping position of the stage (relative to the nominal limit position) must be known. Because inertia inevitably causes the stage to run somewhat past the nominal limit position, tripping of a standard limit switch or other limit sensor does not provide the required indication of the actual stopping position. This innovative sensor unit operates on an electromagnetic-induction principle similar to that of linear variable differential transformers (LVDTs)

  1. Pixel-based absolute surface metrology by three flat test with shifted and rotated maps

    NASA Astrophysics Data System (ADS)

    Zhai, Dede; Chen, Shanyong; Xue, Shuai; Yin, Ziqiang

    2018-03-01

    In traditional three flat test, it only provides the absolute profile along one surface diameter. In this paper, an absolute testing algorithm based on shift-rotation with three flat test has been proposed to reconstruct two-dimensional surface exactly. Pitch and yaw error during shift procedure is analyzed and compensated in our method. Compared with multi-rotation method proposed before, it only needs a 90° rotation and a shift, which is easy to carry out especially in condition of large size surface. It allows pixel level spatial resolution to be achieved without interpolation or assumption to the test surface. In addition, numerical simulations and optical tests are implemented and show the high accuracy recovery capability of the proposed method.

  2. Numerical model estimating the capabilities and limitations of the fast Fourier transform technique in absolute interferometry

    NASA Astrophysics Data System (ADS)

    Talamonti, James J.; Kay, Richard B.; Krebs, Danny J.

    1996-05-01

    A numerical model was developed to emulate the capabilities of systems performing noncontact absolute distance measurements. The model incorporates known methods to minimize signal processing and digital sampling errors and evaluates the accuracy limitations imposed by spectral peak isolation by using Hanning, Blackman, and Gaussian windows in the fast Fourier transform technique. We applied this model to the specific case of measuring the relative lengths of a compound Michelson interferometer. By processing computer-simulated data through our model, we project the ultimate precision for ideal data, and data containing AM-FM noise. The precision is shown to be limited by nonlinearities in the laser scan. absolute distance, interferometer.

  3. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  4. Single-breath diffusing capacity for carbon monoxide instrument accuracy across 3 health systems.

    PubMed

    Hegewald, Matthew J; Markewitz, Boaz A; Wilson, Emily L; Gallo, Heather M; Jensen, Robert L

    2015-03-01

    Measuring diffusing capacity of the lung for carbon monoxide (DLCO) is complex and associated with wide intra- and inter-laboratory variability. Increased D(LCO) variability may have important clinical consequences. The objective of the study was to assess instrument performance across hospital pulmonary function testing laboratories using a D(LCO) simulator that produces precise and repeatable D(LCO) values. D(LCO) instruments were tested with CO gas concentrations representing medium and high range D(LCO) values. The absolute difference between observed and target D(LCO) value was used to determine measurement accuracy; accuracy was defined as an average deviation from the target value of < 2.0 mL/min/mm Hg. Accuracy of inspired volume measurement and gas sensors were also determined. Twenty-three instruments were tested across 3 healthcare systems. The mean absolute deviation from the target value was 1.80 mL/min/mm Hg (range 0.24-4.23) with 10 of 23 instruments (43%) being inaccurate. High volume laboratories performed better than low volume laboratories, although the difference was not significant. There was no significant difference among the instruments by manufacturers. Inspired volume was not accurate in 48% of devices; mean absolute deviation from target value was 3.7%. Instrument gas analyzers performed adequately in all instruments. D(LCO) instrument accuracy was unacceptable in 43% of devices. Instrument inaccuracy can be primarily attributed to errors in inspired volume measurement and not gas analyzer performance. D(LCO) instrument performance may be improved by regular testing with a simulator. Caution should be used when comparing D(LCO) results reported from different laboratories. Copyright © 2015 by Daedalus Enterprises.

  5. Results from an absolute gravity survey in the United States

    NASA Technical Reports Server (NTRS)

    Zumberge, M. A.; Faller, J. E.; Gschwind, J.

    1983-01-01

    Using the recently completed JTLA absolute gravity meter, we made a survey of twelve sites in the United States. Over a period of eight weeks, the instrument was driven a total distance of nearly 20,000 km to sites in California, New Mexico, Colorado, Wyoming, Maryland and Massachusetts. The time spent in carrying out a measurement at a single location was typically one day. We report the results of the measurements in this survey along with earlier measurements made with the instrument, discuss the measurement accuracy and compare our results with other measurements. Previously announced in STAR as N83-20480

  6. Results from an absolute gravity survey in the United States

    NASA Astrophysics Data System (ADS)

    Zumberge, M. A.; Faller, J. E.; Gschwind, J.

    1983-09-01

    Using the recently completed JTLA absolute gravity meter, we made a survey of twelve sites in the United States. Over a period of eight weeks, the instrument was driven a total distance of nearly 20,000 km to sites in California, New Mexico, Colorado, Wyoming, Maryland and Massachusetts. The time spent in carrying out a measurement at a single location was typically one day. We report the results of the measurements in this survey along with earlier measurements made with the instrument, discuss the measurement accuracy and compare our results with other measurements. Previously announced in STAR as N83-20480

  7. The Accuracy Benefit of Multiple Amperometric Glucose Sensors in People With Type 1 Diabetes

    PubMed Central

    Castle, Jessica R.; Pitts, Amy; Hanavan, Kathryn; Muhly, Rhonda; El Youssef, Joseph; Hughes-Karvetski, Colleen; Kovatchev, Boris; Ward, W. Kenneth

    2012-01-01

    OBJECTIVE To improve glucose sensor accuracy in subjects with type 1 diabetes by using multiple sensors and to assess whether the benefit of redundancy is affected by intersensor distance. RESEARCH DESIGN AND METHODS Nineteen adults with type 1 diabetes wore four Dexcom SEVEN PLUS subcutaneous glucose sensors during two 9-h studies. One pair of sensors was worn on each side of the abdomen, with each sensor pair placed at a predetermined distance apart and 20 cm away from the opposite pair. Arterialized venous blood glucose levels were measured every 15 min, and sensor glucose values were recorded every 5 min. Sensors were calibrated once at the beginning of the study. RESULTS The use of four sensors significantly reduced very large errors compared with one sensor (0.4 vs. 2.6% of errors ≥50% from reference glucose, P < 0.001) and also improved overall accuracy (mean absolute relative difference, 11.6 vs. 14.8%, P < 0.001). Using only two sensors also significantly improved very large errors and accuracy. Intersensor distance did not affect the function of sensor pairs. CONCLUSIONS Sensor accuracy is significantly improved with the use of multiple sensors compared with the use of a single sensor. The benefit of redundancy is present even when sensors are positioned very closely together (7 mm). These findings are relevant to the design of an artificial pancreas device. PMID:22357189

  8. The accuracy benefit of multiple amperometric glucose sensors in people with type 1 diabetes.

    PubMed

    Castle, Jessica R; Pitts, Amy; Hanavan, Kathryn; Muhly, Rhonda; El Youssef, Joseph; Hughes-Karvetski, Colleen; Kovatchev, Boris; Ward, W Kenneth

    2012-04-01

    To improve glucose sensor accuracy in subjects with type 1 diabetes by using multiple sensors and to assess whether the benefit of redundancy is affected by intersensor distance. Nineteen adults with type 1 diabetes wore four Dexcom SEVEN PLUS subcutaneous glucose sensors during two 9-h studies. One pair of sensors was worn on each side of the abdomen, with each sensor pair placed at a predetermined distance apart and 20 cm away from the opposite pair. Arterialized venous blood glucose levels were measured every 15 min, and sensor glucose values were recorded every 5 min. Sensors were calibrated once at the beginning of the study. The use of four sensors significantly reduced very large errors compared with one sensor (0.4 vs. 2.6% of errors ≥50% from reference glucose, P < 0.001) and also improved overall accuracy (mean absolute relative difference, 11.6 vs. 14.8%, P < 0.001). Using only two sensors also significantly improved very large errors and accuracy. Intersensor distance did not affect the function of sensor pairs. Sensor accuracy is significantly improved with the use of multiple sensors compared with the use of a single sensor. The benefit of redundancy is present even when sensors are positioned very closely together (7 mm). These findings are relevant to the design of an artificial pancreas device.

  9. Facing the Sunrise: Cultural Worldview Underlying Intrinsic-Based Encoding of Absolute Frames of Reference in Aymara

    ERIC Educational Resources Information Center

    Nunez, Rafael E.; Cornejo, Carlos

    2012-01-01

    The Aymara of the Andes use absolute (cardinal) frames of reference for describing the relative position of ordinary objects. However, rather than encoding them in available absolute lexemes, they do it in lexemes that are intrinsic to the body: "nayra" ("front") and "qhipa" ("back"), denoting east and west,…

  10. Accuracy control in Monte Carlo radiative calculations

    NASA Technical Reports Server (NTRS)

    Almazan, P. Planas

    1993-01-01

    The general accuracy law that rules the Monte Carlo, ray-tracing algorithms used commonly for the calculation of the radiative entities in the thermal analysis of spacecraft are presented. These entities involve transfer of radiative energy either from a single source to a target (e.g., the configuration factors). or from several sources to a target (e.g., the absorbed heat fluxes). In fact, the former is just a particular case of the latter. The accuracy model is later applied to the calculation of some specific radiative entities. Furthermore, some issues related to the implementation of such a model in a software tool are discussed. Although only the relative error is considered through the discussion, similar results can be derived for the absolute error.

  11. Transfer of absolute and relative predictiveness in human contingency learning.

    PubMed

    Kattner, Florian

    2015-03-01

    Previous animal-learning studies have shown that the effect of the predictive history of a cue on its associability depends on whether priority was set to the absolute or relative predictiveness of that cue. The present study tested this assumption in a human contingency-learning task. In both experiments, one group of participants was trained with predictive and nonpredictive cues that were presented according to an absolute-predictiveness principle (either continuously or partially reinforced cue configurations), whereas a second group was trained with co-occurring cues that differed in predictiveness (emphasizing the relative predictive validity of the cues). In both groups, later test discriminations were learned more readily if the discriminative cues had been predictive in the previous learning stage than if they had been nonpredictive. These results imply that both the absolute and relative predictiveness of a cue lead positive transfer with regard to its associability. The data are discussed with respect to attentional models of associative learning.

  12. Technique for long and absolute distance measurement based on laser pulse repetition frequency sweeping

    NASA Astrophysics Data System (ADS)

    Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.

    2017-11-01

    In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.

  13. A novel scanning system using an industrial robot and the workspace measurement and positioning system

    NASA Astrophysics Data System (ADS)

    Zhao, Ziyue; Zhu, Jigui; Yang, Linghui; Lin, Jiarui

    2015-10-01

    The present scanning system consists of an industrial robot and a line-structured laser sensor which uses the industrial robot as a position instrument to guarantee the accuracy. However, the absolute accuracy of an industrial robot is relatively poor compared with the good repeatability in the manufacturing industry. This paper proposes a novel method using the workspace measurement and positioning system (wMPS) to remedy the lack of accuracy of the industrial robot. In order to guarantee the positioning accuracy of the system, the wMPS which is a laser-based measurement technology designed for large-volume metrology applications is brought in. Benefitting from the wMPS, this system can measure different cell-areas by the line-structured laser sensor and fuse the measurement data of different cell-areas by using the wMPS accurately. The system calibration which is the procedure to acquire and optimize the structure parameters of the scanning system is also stated in detail in this paper. In order to verify the feasibility of the system for scanning the large free-form surface, an experiment is designed to scan the internal surface of the door of a car-body in white. The final results show that the measurement data of the whole measuring areas have been jointed perfectly and there is no mismatch in the figure especially in the hole measuring areas. This experiment has verified the rationality of the system scheme, the correctness and effectiveness of the relevant methods.

  14. Assessing epistemic sophistication by considering domain-specific absolute and multiplicistic beliefs separately.

    PubMed

    Peter, Johannes; Rosman, Tom; Mayer, Anne-Kathrin; Leichner, Nikolas; Krampen, Günter

    2016-06-01

    Particularly in higher education, not only a view of science as a means of finding absolute truths (absolutism), but also a view of science as generally tentative (multiplicism) can be unsophisticated and obstructive for learning. Most quantitative epistemic belief inventories neglect this and understand epistemic sophistication as disagreement with absolute statements. This article suggests considering absolutism and multiplicism as separate dimensions. Following our understanding of epistemic sophistication as a cautious and reluctant endorsement of both positions, we assume evaluativism (a contextually adaptive view of knowledge as personally constructed and evidence-based) to be reflected by low agreement with both generalized absolute and generalized multiplicistic statements. Three studies with a total sample size of N = 416 psychology students were conducted. A domain-specific inventory containing both absolute and multiplicistic statements was developed. Expectations were tested by exploratory factor analysis, confirmatory factor analysis, and correlational analyses. Results revealed a two-factor solution with an absolute and a multiplicistic factor. Criterion validity of both factors was confirmed. Cross-sectional analyses revealed that agreement to generalized multiplicistic statements decreases with study progress. Moreover, consistent with our understanding of epistemic sophistication as a reluctant attitude towards generalized epistemic statements, evidence for a negative relationship between epistemic sophistication and need for cognitive closure was found. We recommend including multiplicistic statements into epistemic belief questionnaires and considering them as a separate dimension, especially when investigating individuals in later stages of epistemic development (i.e., in higher education). © 2015 The British Psychological Society.

  15. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    NASA Astrophysics Data System (ADS)

    Rich, D. R.; Bowman, J. D.; Crawford, B. E.; Delheij, P. P. J.; Espy, M. A.; Haseyama, T.; Jones, G.; Keith, C. D.; Knudson, J.; Leuschner, M. B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilä, S. I.; Pomeroy, V. R.; Smith, D. A.; Snow, W. M.; Szymanski, J. J.; Stephenson, S. L.; Thompson, A. K.; Yuan, V.

    2002-04-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3He spin filter and a relative transmission measurement technique. 3He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method.

  16. Mitigation of Atmospheric Delay in SAR Absolute Ranging Using Global Numerical Weather Prediction Data: Corner Reflector Experiments at 3 Different Test Sites

    NASA Astrophysics Data System (ADS)

    Cong, Xiaoying; Balss, Ulrich; Eineder, Michael

    2015-04-01

    The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the

  17. [Positional accuracy and quality assurance of Backup JAWs required for volumetric modulated arc therapy].

    PubMed

    Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2012-01-01

    The tolerance of the Backup diaphragm (Backup JAW) setting in Elekta linac was specified as 2 mm according to the AAPM TG-142 report. However, the tolerance and the quality assurance procedure for volumetric modulated arc therapy (VMAT) was not provided. This paper describes positional accuracy and quality assurance procedure of the Backup JAWs required for VMAT. It was found that a gap-width error of the Backup JAW by a sliding window test needed to be less than 1.5 mm for prostate VMAT delivery. It was also confirmed that the gap-widths had been maintained with an error of 0.2 mm during the past one year.

  18. Measures of model performance based on the log accuracy ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morley, Steven Karl; Brito, Thiago Vasconcelos; Welling, Daniel T.

    Quantitative assessment of modeling and forecasting of continuous quantities uses a variety of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute percentage error (MAPE) is one of the most common across many fields and has been widely applied in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then introduce the log accuracy ratio, and derive from it two metrics: the median symmetric accuracy; and the symmetric signed percentage bias. Robustmore » methods for estimating the spread of a multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely-used counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt electron flux modeling examples.« less

  19. Measures of model performance based on the log accuracy ratio

    DOE PAGES

    Morley, Steven Karl; Brito, Thiago Vasconcelos; Welling, Daniel T.

    2018-01-03

    Quantitative assessment of modeling and forecasting of continuous quantities uses a variety of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute percentage error (MAPE) is one of the most common across many fields and has been widely applied in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then introduce the log accuracy ratio, and derive from it two metrics: the median symmetric accuracy; and the symmetric signed percentage bias. Robustmore » methods for estimating the spread of a multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely-used counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt electron flux modeling examples.« less

  20. Simultaneous measurement of absolute strain and differential strain based on fiber Bragg grating Fabry-Perot sensor

    NASA Astrophysics Data System (ADS)

    Wang, Kuiru; Wang, Bo; Yan, Binbin; Sang, Xinzhu; Yuan, Jinhui; Peng, Gang-Ding

    2013-10-01

    We present a fiber Bragg grating Fabry-Perot (FBG-FP) sensor using the fast Fourier transform (FFT) demodulation for measuring the absolute strain and differential strain simultaneously. The amplitude and phase characteristics of Fourier transform spectrum have been studied. The relation between the amplitude of Fourier spectrum and the differential strain has been presented. We fabricate the fiber grating FP cavity sensor, and carry out the experiment on the measurement of absolute strain and differential strain. Experimental results verify the demodulation method, and show that this sensor has a good accuracy in the scope of measurement. The demodulating method can expand the number of multiplexed sensors combining with wavelength division multiplexing and time division multiplexing.

  1. High-accuracy local positioning network for the alignment of the Mu2e experiment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hejdukova, Jana B.

    This Diploma thesis describes the establishment of a high-precision local positioning network and accelerator alignment for the Mu2e physics experiment. The process of establishing new network consists of few steps: design of the network, pre-analysis, installation works, measurements of the network and making adjustments. Adjustments were performed using two approaches. First is a geodetic approach of taking into account the Earth’s curvature and the metrological approach of a pure 3D Cartesian system on the other side. The comparison of those two approaches is performed and evaluated in the results and compared with expected differences. The effect of the Earth’s curvaturemore » was found to be significant for this kind of network and should not be neglected. The measurements were obtained with Absolute Tracker AT401, leveling instrument Leica DNA03 and gyrotheodolite DMT Gyromat 2000. The coordinates of the points of the reference network were determined by the Least Square Meth od and the overall view is attached as Annexes.« less

  2. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  3. Accuracy Assessment of the Precise Point Positioning for Different Troposphere Models

    NASA Astrophysics Data System (ADS)

    Oguz Selbesoglu, Mahmut; Gurturk, Mert; Soycan, Metin

    2016-04-01

    This study investigates the accuracy and repeatability of PPP technique at different latitudes by using different troposphere delay models. Nine IGS stations were selected between 00-800 latitudes at northern hemisphere and southern hemisphere. Coordinates were obtained for 7 days at 1 hour intervals in summer and winter. At first, the coordinates were estimated by using Niell troposphere delay model with and without including north and east gradients in order to investigate the contribution of troposphere delay gradients to the positioning . Secondly, Saastamoinen model was used to eliminate troposphere path delays by using standart atmosphere parameters were extrapolated for all station levels. Finally, coordinates were estimated by using RTCA-MOPS empirical troposphere delay model. Results demonstrate that Niell troposphere delay model with horizontal gradients has better mean values of rms errors 0.09 % and 65 % than the Niell troposphere model without horizontal gradients and RTCA-MOPS model, respectively. Saastamoinen model mean values of rms errors were obtained approximately 4 times bigger than the Niell troposphere delay model with horizontal gradients.

  4. What do we mean by accuracy in geomagnetic measurements?

    USGS Publications Warehouse

    Green, A.W.

    1990-01-01

    High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.

  5. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy.

    PubMed

    Medina, Carlos; Segura, José Carlos; De la Torre, Ángel

    2013-03-13

    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm.

  6. Does ADHD in adults affect the relative accuracy of metamemory judgments?

    PubMed

    Knouse, Laura E; Paradise, Matthew J; Dunlosky, John

    2006-11-01

    Prior research suggests that individuals with ADHD overestimate their performance across domains despite performing more poorly in these domains. The authors introduce measures of accuracy from the larger realm of judgment and decision making--namely, relative accuracy and calibration--to the study of self-evaluative judgment accuracy in adults with ADHD. Twenty-eight adults with ADHD and 28 matched controls participate in a computer-administered paired-associate learning task and predict their future recall using immediate and delayed judgments of learning (JOLs). Retrospective confidence judgments are also collected. Groups perform equally in terms of judgment magnitude and absolute judgment accuracy as measured by discrepancy scores and calibration curves. Both groups benefit equally from making their JOL at a delay, and the group with ADHD show higher relative accuracy for delayed judgments. Results suggest that under certain circumstances, adults with ADHD can make accurate judgments about their future memory.

  7. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2012-01-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  8. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in themore » Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.« less

  9. Design, test, and calibration of an electrostatic beam position monitor

    NASA Astrophysics Data System (ADS)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  10. Instrumentation and First Results of the Reflected Solar Demonstration System for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Hair, Jason; McAndrew, Brendan; Jennings, Don; Rabin, Douglas; Daw, Adrian; Lundsford, Allen

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission key goals include enabling observation of high accuracy long-term climate change trends, use of these observations to test and improve climate forecasts, and calibration of operational and research sensors. The spaceborne instrument suites include a reflected solar spectroradiometer, emitted infrared spectroradiometer, and radio occultation receivers. The requirement for the RS instrument is that derived reflectance must be traceable to Sl standards with an absolute uncertainty of <0.3% and the error budget that achieves this requirement is described in previo1L5 work. This work describes the Solar/Lunar Absolute Reflectance Imaging Spectroradiometer (SOLARIS), a calibration demonstration system for RS instrument, and presents initial calibration and characterization methods and results. SOLARIS is an Offner spectrometer with two separate focal planes each with its own entrance aperture and grating covering spectral ranges of 320-640, 600-2300 nm over a full field-of-view of 10 degrees with 0.27 milliradian sampling. Results from laboratory measurements including use of integrating spheres, transfer radiometers and spectral standards combined with field-based solar and lunar acquisitions are presented. These results will be used to assess the accuracy and repeatability of the radiometric and spectral characteristics of SOLARIS, which will be presented against the sensor-level requirements addressed in the CLARREO RS instrument error budget.

  11. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude ofmore » the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.« less

  12. Continuous Glucose Monitoring in Subjects with Type 1 Diabetes: Improvement in Accuracy by Correcting for Background Current

    PubMed Central

    Youssef, Joseph El; Engle, Julia M.; Massoud, Ryan G.; Ward, W. Kenneth

    2010-01-01

    Abstract Background A cause of suboptimal accuracy in amperometric glucose sensors is the presence of a background current (current produced in the absence of glucose) that is not accounted for. We hypothesized that a mathematical correction for the estimated background current of a commercially available sensor would lead to greater accuracy compared to a situation in which we assumed the background current to be zero. We also tested whether increasing the frequency of sensor calibration would improve sensor accuracy. Methods This report includes analysis of 20 sensor datasets from seven human subjects with type 1 diabetes. Data were divided into a training set for algorithm development and a validation set on which the algorithm was tested. A range of potential background currents was tested. Results Use of the background current correction of 4 nA led to a substantial improvement in accuracy (improvement of absolute relative difference or absolute difference of 3.5–5.5 units). An increase in calibration frequency led to a modest accuracy improvement, with an optimum at every 4 h. Conclusions Compared to no correction, a correction for the estimated background current of a commercially available glucose sensor led to greater accuracy and better detection of hypoglycemia and hyperglycemia. The accuracy-optimizing scheme presented here can be implemented in real time. PMID:20879968

  13. Positioning accuracy during VMAT of gynecologic malignancies and the resulting dosimetric impact by a 6-degree-of-freedom couch in combination with daily kilovoltage cone beam computed tomography.

    PubMed

    Yao, Lihong; Zhu, Lihong; Wang, Junjie; Liu, Lu; Zhou, Shun; Jiang, ShuKun; Cao, Qianqian; Qu, Ang; Tian, Suqing

    2015-04-26

    To improve the delivery of radiotherapy in gynecologic malignancies and to minimize the irradiation of unaffected tissues by using daily kilovoltage cone beam computed tomography (kV-CBCT) to reduce setup errors. Thirteen patients with gynecologic cancers were treated with postoperative volumetric-modulated arc therapy (VMAT). All patients had a planning CT scan and daily CBCT during treatment. Automatic bone anatomy matching was used to determine initial inter-fraction positioning error. Positional correction on a six-degrees-of-freedom (6DoF) couch was followed by a second scan to calculate the residual inter-fraction error, and a post-treatment scan assessed intra-fraction motion. The margins of the planning target volume (MPTV) were calculated from these setup variations and the effect of margin size on normal tissue sparing was evaluated. In total, 573 CBCT scans were acquired. Mean absolute pre-/post-correction errors were obtained in all six planes. With 6DoF couch correction, the MPTV accounting for intra-fraction errors was reduced by 3.8-5.6 mm. This permitted a reduction in the maximum dose to the small intestine, bladder and femoral head (P=0.001, 0.035 and 0.032, respectively), the average dose to the rectum, small intestine, bladder and pelvic marrow (P=0.003, 0.000, 0.001 and 0.000, respectively) and markedly reduced irradiated normal tissue volumes. A 6DoF couch in combination with daily kV-CBCT can considerably improve positioning accuracy during VMAT treatment in gynecologic malignancies, reducing the MPTV. The reduced margin size permits improved normal tissue sparing and a smaller total irradiated volume.

  14. Absolute Isotopic Abundance Ratios and the Accuracy of Δ47 Measurements

    NASA Astrophysics Data System (ADS)

    Daeron, M.; Blamart, D.; Peral, M.; Affek, H. P.

    2016-12-01

    Conversion from raw IRMS data to clumped isotope anomalies in CO2 (Δ47) relies on four external parameters: the (13C/12C) ratio of VPDB, the (17O/16O) and (18O/16O) ratios of VSMOW (or VPDB-CO2), and the slope of the triple oxygen isotope line (λ). Here we investigate the influence that these isotopic parameters exert on measured Δ47 values, using real-world data corresponding to 7 months of measurements; simulations based on randomly generated data; precise comparisons between water-equilibrated CO2 samples and between carbonate standards believed to share quasi-identical Δ47 values; reprocessing of two carbonate calibration data sets with different slopes of Δ47 versus T. Using different sets of isotopic parameters generally produces systematic offsets as large as 0.04 ‰ in final Δ47 values. What's more, even using a single set of isotopic parameters can produce intra- and inter-laboratory discrepancies in final Δ47 values, if some of these parameters are inaccurate. Depending on the isotopic compositions of the standards used for conversion to "absolute" values, these errors should correlate strongly with either δ13C or δ18O, or more weakly with both. Based on measurements of samples expected to display identical Δ47 values, such as 25°C water-equilibrated CO2 with different carbon and oxygen isotope compositions, or high-temperature standards ETH-1 and ETH-2, we conclude that the isotopic parameters used so far in most clumped isotope studies produces large, systematic errors controlled by the relative bulk isotopic compositions of samples and standards, which should be one of the key factors responsible for current inter-laboratory discrepancies. By contrast, the isotopic parameters of Brand et al. [2010] appear to yield accurate Δ47 values regardless of bulk isotopic composition. References:Brand, Assonov and Coplen [2010] http://dx.doi.org/10.1351/PAC-REP-09-01-05

  15. Communicating cardiovascular disease risk: an interview study of General Practitioners' use of absolute risk within tailored communication strategies.

    PubMed

    Bonner, Carissa; Jansen, Jesse; McKinn, Shannon; Irwig, Les; Doust, Jenny; Glasziou, Paul; McCaffery, Kirsten

    2014-05-29

    Cardiovascular disease (CVD) prevention guidelines encourage assessment of absolute CVD risk - the probability of a CVD event within a fixed time period, based on the most predictive risk factors. However, few General Practitioners (GPs) use absolute CVD risk consistently, and communication difficulties have been identified as a barrier to changing practice. This study aimed to explore GPs' descriptions of their CVD risk communication strategies, including the role of absolute risk. Semi-structured interviews were conducted with a purposive sample of 25 GPs in New South Wales, Australia. Transcribed audio-recordings were thematically coded, using the Framework Analysis method to ensure rigour. GPs used absolute CVD risk within three different communication strategies: 'positive', 'scare tactic', and 'indirect'. A 'positive' strategy, which aimed to reassure and motivate, was used for patients with low risk, determination to change lifestyle, and some concern about CVD risk. Absolute risk was used to show how they could reduce risk. A 'scare tactic' strategy was used for patients with high risk, lack of motivation, and a dismissive attitude. Absolute risk was used to 'scare' them into taking action. An 'indirect' strategy, where CVD risk was not the main focus, was used for patients with low risk but some lifestyle risk factors, high anxiety, high resistance to change, or difficulty understanding probabilities. Non-quantitative absolute risk formats were found to be helpful in these situations. This study demonstrated how GPs use three different communication strategies to address the issue of CVD risk, depending on their perception of patient risk, motivation and anxiety. Absolute risk played a different role within each strategy. Providing GPs with alternative ways of explaining absolute risk, in order to achieve different communication aims, may improve their use of absolute CVD risk assessment in practice.

  16. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA.

    PubMed

    Ng, Vincent Y; DeClaire, Jeffrey H; Berend, Keith R; Gulick, Bethany C; Lombardi, Adolph V

    2012-01-01

    Coronal malalignment occurs frequently in TKA and may affect implant durability and knee function. Designed to improve alignment accuracy and precision, the patient-specific positioning guide is predicated on restoration of the overall mechanical axis and is a multifaceted new tool in achieving traditional goals of TKA. We compared the effectiveness of patient-specific positioning guides to manual instrumentation with intramedullary femoral and extramedullary tibial guides in restoring the mechanical axis of the extremity and achieving neutral coronal alignment of the femoral and tibial components. We retrospectively reviewed 569 TKAs performed with patient-specific positioning guides and 155 with manual instrumentation by two surgeons using postoperative long-leg radiographs. For all patients, we assessed the zone in which the overall mechanical axis passed through the knee, and for one surgeon's cases (105 patient-specific positioning guide, 55 manual instrumentation), we also measured the hip-knee-ankle angle and the individual component angles with respect to their mechanical axes. The overall mechanical axis passed through the central third of the knee more often with patient-specific positioning guides (88%) than with manual instrumentation (78%). The overall mean hip-knee-ankle angle for patient-specific positioning guides (180.6°) was similar to manual instrumentation (181.1°), but there were fewer ± 3° hip-knee-ankle angle outliers with patient-specific positioning guides (9%) than with manual instrumentation (22%). The overall mean tibial (89.9° versus 90.4°) and femoral (90.7° versus 91.3°) component angles were closer to neutral with patient-specific positioning guides than with manual instrumentation, but the rate of ± 2° outliers was similar for both the tibia (10% versus 7%) and femur (22% versus 18%). Patient-specific positioning guides can assist in achieving a neutral mechanical axis with reduction in outliers.

  17. Does the Length of Elbow Flexors and Visual Feedback Have Effect on Accuracy of Isometric Muscle Contraction in Men after Stroke?

    PubMed Central

    Juodzbaliene, Vilma; Darbutas, Tomas; Skurvydas, Albertas

    2016-01-01

    The aim of the study was to determine the effect of different muscle length and visual feedback information (VFI) on accuracy of isometric contraction of elbow flexors in men after an ischemic stroke (IS). Materials and Methods. Maximum voluntary muscle contraction force (MVMCF) and accurate determinate muscle force (20% of MVMCF) developed during an isometric contraction of elbow flexors in 90° and 60° of elbow flexion were measured by an isokinetic dynamometer in healthy subjects (MH, n = 20) and subjects after an IS during their postrehabilitation period (MS, n = 20). Results. In order to evaluate the accuracy of the isometric contraction of the elbow flexors absolute errors were calculated. The absolute errors provided information about the difference between determinate and achieved muscle force. Conclusions. There is a tendency that greater absolute errors generating determinate force are made by MH and MS subjects in case of a greater elbow flexors length despite presence of VFI. Absolute errors also increase in both groups in case of a greater elbow flexors length without VFI. MS subjects make greater absolute errors generating determinate force without VFI in comparison with MH in shorter elbow flexors length. PMID:27042670

  18. Evaluation of the geometric stability and the accuracy potential of digital cameras — Comparing mechanical stabilisation versus parameterisation

    NASA Astrophysics Data System (ADS)

    Rieke-Zapp, D.; Tecklenburg, W.; Peipe, J.; Hastedt, H.; Haig, Claudia

    Recent tests on the geometric stability of several digital cameras that were not designed for photogrammetric applications have shown that the accomplished accuracies in object space are either limited or that the accuracy potential is not exploited to the fullest extent. A total of 72 calibrations were calculated with four different software products for eleven digital camera models with different hardware setups, some with mechanical fixation of one or more parts. The calibration procedure was chosen in accord to a German guideline for evaluation of optical 3D measuring systems [VDI/VDE, VDI/VDE 2634 Part 1, 2002. Optical 3D Measuring Systems-Imaging Systems with Point-by-point Probing. Beuth Verlag, Berlin]. All images were taken with ringflashes which was considered a standard method for close-range photogrammetry. In cases where the flash was mounted to the lens, the force exerted on the lens tube and the camera mount greatly reduced the accomplished accuracy. Mounting the ringflash to the camera instead resulted in a large improvement of accuracy in object space. For standard calibration best accuracies in object space were accomplished with a Canon EOS 5D and a 35 mm Canon lens where the focusing tube was fixed with epoxy (47 μm maximum absolute length measurement error in object space). The fixation of the Canon lens was fairly easy and inexpensive resulting in a sevenfold increase in accuracy compared with the same lens type without modification. A similar accuracy was accomplished with a Nikon D3 when mounting the ringflash to the camera instead of the lens (52 μm maximum absolute length measurement error in object space). Parameterisation of geometric instabilities by introduction of an image variant interior orientation in the calibration process improved results for most cameras. In this case, a modified Alpa 12 WA yielded the best results (29 μm maximum absolute length measurement error in object space). Extending the parameter model with Fi

  19. Convective blueshifts in the solar atmosphere. I. Absolute measurements with LARS of the spectral lines at 6302 Å

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, J.; Schmidt, W.; Stief, F.; Steinmetz, T.; Holzwarth, R.

    2018-03-01

    Context. The solar convection manifests as granulation and intergranulation at the solar surface. In the photosphere, convective motions induce differential Doppler shifts to spectral lines. The observed convective blueshift varies across the solar disk. Aim. We focus on the impact of solar convection on the atmosphere and aim to resolve its velocity stratification in the photosphere. Methods: We performed high-resolution spectroscopic observations of the solar spectrum in the 6302 Å range with the Laser Absolute Reference Spectrograph at the Vacuum Tower Telescope. A laser frequency comb enabled the calibration of the spectra to an absolute wavelength scale with an accuracy of 1 m s-1. We systematically scanned the quiet Sun from the disk center to the limb at ten selected heliocentric positions. The analysis included 99 time sequences of up to 20 min in length. By means of ephemeris and reference corrections, we translated wavelength shifts into absolute line-of-sight velocities. A bisector analysis on the line profiles yielded the shapes and convective shifts of seven photospheric lines. Results: At the disk center, the bisector profiles of the iron lines feature a pronounced C-shape with maximum convective blueshifts of up to -450 m s-1 in the spectral line wings. Toward the solar limb, the bisectors change into a "\\"-shape with a saturation in the line core at a redshift of +100 m s-1. The center-to-limb variation of the line core velocities shows a slight increase in blueshift when departing the disk center for larger heliocentric angles. This increase in blueshift is more pronounced for the magnetically less active meridian than for the equator. Toward the solar limb, the blueshift decreases and can turn into a redshift. In general, weaker lines exhibit stronger blueshifts. Conclusions: Best spectroscopic measurements enabled the accurate determination of absolute convective shifts in the solar photosphere. We convolved the results to lower spectral

  20. Sub-nanometer periodic nonlinearity error in absolute distance interferometers

    NASA Astrophysics Data System (ADS)

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.

  1. Precise Positioning of Uavs - Dealing with Challenging Rtk-Gps Measurement Conditions during Automated Uav Flights

    NASA Astrophysics Data System (ADS)

    Zimmermann, F.; Eling, C.; Klingbeil, L.; Kuhlmann, H.

    2017-08-01

    For some years now, UAVs (unmanned aerial vehicles) are commonly used for different mobile mapping applications, such as in the fields of surveying, mining or archeology. To improve the efficiency of these applications an automation of the flight as well as the processing of the collected data is currently aimed at. One precondition for an automated mapping with UAVs is that the georeferencing is performed directly with cm-accuracies or better. Usually, a cm-accurate direct positioning of UAVs is based on an onboard multi-sensor system, which consists of an RTK-capable (real-time kinematic) GPS (global positioning system) receiver and additional sensors (e.g. inertial sensors). In this case, the absolute positioning accuracy essentially depends on the local GPS measurement conditions. Especially during mobile mapping applications in urban areas, these conditions can be very challenging, due to a satellite shadowing, non-line-of sight receptions, signal diffraction or multipath effects. In this paper, two straightforward and easy to implement strategies will be described and analyzed, which improve the direct positioning accuracies for UAV-based mapping and surveying applications under challenging GPS measurement conditions. Based on a 3D model of the surrounding buildings and vegetation in the area of interest, a GPS geometry map is determined, which can be integrated in the flight planning process, to avoid GPS challenging environments as far as possible. If these challenging environments cannot be avoided, the GPS positioning solution is improved by using obstruction adaptive elevation masks, to mitigate systematic GPS errors in the RTK-GPS positioning. Simulations and results of field tests demonstrate the profit of both strategies.

  2. Openstage: A Low-Cost Motorized Microscope Stage with Sub-Micron Positioning Accuracy

    PubMed Central

    Campbell, Robert A. A.; Eifert, Robert W.; Turner, Glenn C.

    2014-01-01

    Recent progress in intracellular calcium sensors and other fluorophores has promoted the widespread adoption of functional optical imaging in the life sciences. Home-built multiphoton microscopes are easy to build, highly customizable, and cost effective. For many imaging applications a 3-axis motorized stage is critical, but commercially available motorization hardware (motorized translators, controller boxes, etc) are often very expensive. Furthermore, the firmware on commercial motor controllers cannot easily be altered and is not usually designed with a microscope stage in mind. Here we describe an open-source motorization solution that is simple to construct, yet far cheaper and more customizable than commercial offerings. The cost of the controller and motorization hardware are under $1000. Hardware costs are kept low by replacing linear actuators with high quality stepper motors. Electronics are assembled from commonly available hobby components, which are easy to work with. Here we describe assembly of the system and quantify the positioning accuracy of all three axes. We obtain positioning repeatability of the order of in X/Y and in Z. A hand-held control-pad allows the user to direct stage motion precisely over a wide range of speeds ( to ), rapidly store and return to different locations, and execute “jumps” of a fixed size. In addition, the system can be controlled from a PC serial port. Our “OpenStage” controller is sufficiently flexible that it could be used to drive other devices, such as micro-manipulators, with minimal modifications. PMID:24586468

  3. High accuracy wavelength calibration for a scanning visible spectrometer.

    PubMed

    Scotti, Filippo; Bell, Ronald E

    2010-10-01

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤0.2 Å. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of ∼0.25 Å has been demonstrated. With the addition of a high resolution (0.075 arc  sec) optical encoder on the grating stage, greater precision (∼0.005 Å) is possible, allowing absolute velocity measurements within ∼0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  4. INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larchenkova, Tatiana I.; Lutovinov, Alexander A.; Lyskova, Natalya S.

    We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributionsmore » the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.« less

  5. Exploring the Relationship between Absolute and Relative Position and Late-Life Depression: Evidence from 10 European Countries

    ERIC Educational Resources Information Center

    Ladin, Keren; Daniels, Norman; Kawachi, Ichiro

    2010-01-01

    Purpose: Socioeconomic inequality has been associated with higher levels of morbidity and mortality. This study explores the role of absolute and relative deprivation in predicting late-life depression on both individual and country levels. Design and Methods: Country- and individual-level inequality indicators were used in multivariate logistic…

  6. Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors.

    PubMed

    Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal

    2009-01-01

    This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented.

  7. Exploring the Relationship Between Absolute and Relative Position and Late-Life Depression: Evidence From 10 European Countries

    PubMed Central

    Ladin, Keren; Daniels, Norman; Kawachi, Ichiro

    2010-01-01

    Purpose: Socioeconomic inequality has been associated with higher levels of morbidity and mortality. This study explores the role of absolute and relative deprivation in predicting late-life depression on both individual and country levels. Design and Methods: Country- and individual-level inequality indicators were used in multivariate logistic regression and in relative indexes of inequality. Data obtained from the Survey of Health, Ageing and Retirement in Europe (SHARE, Wave 1, Release 2) included 22,777 men and women (aged 50–104 years) from 10 European countries. Late-life depression was measured using the EURO-D scale and corresponding clinical cut point. Absolute deprivation was measured using gross domestic product and median household income at the country level and socioeconomic status at the individual level. Relative deprivation was measured by Gini coefficients at the country level and educational attainment at the individual level. Results: Rates of depression ranged from 18.10% in Denmark to 36.84% in Spain reflecting a clear north–south gradient. Measures of absolute and relative deprivation were significant in predicting depression at both country and individual levels. Findings suggest that the adverse impact of societal inequality cannot be overcome by increased individual-level or country-level income. Increases in individual-level income did not mitigate the effect of country-level relative deprivation. Implications: Mental health disparities persist throughout later life whereby persons exposed to higher levels of country-level inequality suffer greater morbidity compared with those in countries with less inequality. Cross-national variation in the relationship between inequality and depression illuminates the need for further research. PMID:19515635

  8. Absolute Position Encoders With Vertical Image Binning

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2005-01-01

    Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.

  9. Scanning micro-resonator direct-comb absolute spectroscopy

    PubMed Central

    Gambetta, Alessio; Cassinerio, Marco; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Direct optical Frequency Comb Spectroscopy (DFCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DFCS approach based on a scanning Fabry-Pérot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from UV to THz. We present an application to high-precision spectroscopy of acetylene at 1.54 μm, demonstrating performances comparable or even better than current state-of-the-art DFCS systems in terms of sensitivity, optical bandwidth and frequency-resolution. PMID:27752132

  10. Geopositioning with a quadcopter: Extracted feature locations and predicted accuracy without a priori sensor attitude information

    NASA Astrophysics Data System (ADS)

    Dolloff, John; Hottel, Bryant; Edwards, David; Theiss, Henry; Braun, Aaron

    2017-05-01

    This paper presents an overview of the Full Motion Video-Geopositioning Test Bed (FMV-GTB) developed to investigate algorithm performance and issues related to the registration of motion imagery and subsequent extraction of feature locations along with predicted accuracy. A case study is included corresponding to a video taken from a quadcopter. Registration of the corresponding video frames is performed without the benefit of a priori sensor attitude (pointing) information. In particular, tie points are automatically measured between adjacent frames using standard optical flow matching techniques from computer vision, an a priori estimate of sensor attitude is then computed based on supplied GPS sensor positions contained in the video metadata and a photogrammetric/search-based structure from motion algorithm, and then a Weighted Least Squares adjustment of all a priori metadata across the frames is performed. Extraction of absolute 3D feature locations, including their predicted accuracy based on the principles of rigorous error propagation, is then performed using a subset of the registered frames. Results are compared to known locations (check points) over a test site. Throughout this entire process, no external control information (e.g. surveyed points) is used other than for evaluation of solution errors and corresponding accuracy.

  11. Demand Forecasting: An Evaluation of DODs Accuracy Metric and Navys Procedures

    DTIC Science & Technology

    2016-06-01

    inventory management improvement plan, mean of absolute scaled error, lead time adjusted squared error, forecast accuracy, benchmarking, naïve method...Manager JASA Journal of the American Statistical Association LASE Lead-time Adjusted Squared Error LCI Life Cycle Indicator MA Moving Average MAE...Mean Squared Error xvi NAVSUP Naval Supply Systems Command NDAA National Defense Authorization Act NIIN National Individual Identification Number

  12. In vivo preclinical cancer and tissue engineering applications of absolute oxygen imaging using pulse EPR

    NASA Astrophysics Data System (ADS)

    Epel, Boris; Kotecha, Mrignayani; Halpern, Howard J.

    2017-07-01

    The value of any measurement and a fortiori any measurement technology is defined by the reproducibility and the accuracy of the measurements. This implies a relative freedom of the measurement from factors confounding its accuracy. In the past, one of the reasons for the loss of focus on the importance of imaging oxygen in vivo was the difficulty in obtaining reproducible oxygen or pO2 images free from confounding variation. This review will briefly consider principles of electron paramagnetic oxygen imaging and describe how it achieves absolute oxygen measurements. We will provide a summary review of the progress in biomedical EPR imaging, predominantly in cancer biology research, discuss EPR oxygen imaging for cancer treatment and tissue graft assessment for regenerative medicine applications.

  13. A new method to calibrate the absolute sensitivity of a soft X-ray streak camera

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali

    2016-12-01

    In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.

  14. Absolutely nondestructive discrimination of Huoshan Dendrobium nobile species with miniature near-infrared (NIR) spectrometer engine.

    PubMed

    Hu, Tian; Yang, Hai-Long; Tang, Qing; Zhang, Hui; Nie, Lei; Li, Lian; Wang, Jin-Feng; Liu, Dong-Ming; Jiang, Wei; Wang, Fei; Zang, Heng-Chang

    2014-10-01

    As one very precious traditional Chinese medicine (TCM), Huoshan Dendrobium has not only high price, but also significant pharmaceutical efficacy. However, different species of Huoshan Dendrobium exhibit considerable difference in pharmaceutical efficacy, so rapid and absolutely non-destructive discrimination of Huoshan Dendrobium nobile according to different species is crucial to quality control and pharmaceutical effect. In this study, as one type of miniature near-infrared (NIR) spectrometer, MicroNIR 1700 was used for absolutely nondestructive determination of NIR spectra of 90 batches of Dendrobium from five species of differ- ent commodity grades. The samples were intact and not smashed. Soft independent modeling of class analogy (SIMCA) pattern recognition based on principal component analysis (PCA) was used to classify and recognize different species of Dendrobium samples. The results indicated that the SIMCA qualitative models established with pretreatment method of standard normal variate transformation (SNV) in the spectra range selected by Qs method had 100% recognition rates and 100% rejection rates. This study demonstrated that a rapid and absolutely non-destructive analytical technique based on MicroNIR 1700 spectrometer was developed for successful discrimination of five different species of Huoshan Dendrobium with acceptable accuracy.

  15. Performance Evaluation of sUAS Equipped with Velodyne HDL-32E LiDAR Sensor

    NASA Astrophysics Data System (ADS)

    Jozkow, G.; Wieczorek, P.; Karpina, M.; Walicka, A.; Borkowski, A.

    2017-08-01

    The Velodyne HDL-32E laser scanner is used more frequently as main mapping sensor in small commercial UASs. However, there is still little information about the actual accuracy of point clouds collected with such UASs. This work evaluates empirically the accuracy of the point cloud collected with such UAS. Accuracy assessment was conducted in four aspects: impact of sensors on theoretical point cloud accuracy, trajectory reconstruction quality, and internal and absolute point cloud accuracies. Theoretical point cloud accuracy was evaluated by calculating 3D position error knowing errors of used sensors. The quality of trajectory reconstruction was assessed by comparing position and attitude differences from forward and reverse EKF solution. Internal and absolute accuracies were evaluated by fitting planes to 8 point cloud samples extracted for planar surfaces. In addition, the absolute accuracy was also determined by calculating point 3D distances between LiDAR UAS and reference TLS point clouds. Test data consisted of point clouds collected in two separate flights performed over the same area. Executed experiments showed that in tested UAS, the trajectory reconstruction, especially attitude, has significant impact on point cloud accuracy. Estimated absolute accuracy of point clouds collected during both test flights was better than 10 cm, thus investigated UAS fits mapping-grade category.

  16. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error

    NASA Astrophysics Data System (ADS)

    Khair, Ummul; Fahmi, Hasanul; Hakim, Sarudin Al; Rahim, Robbi

    2017-12-01

    Prediction using a forecasting method is one of the most important things for an organization, the selection of appropriate forecasting methods is also important but the percentage error of a method is more important in order for decision makers to adopt the right culture, the use of the Mean Absolute Deviation and Mean Absolute Percentage Error to calculate the percentage of mistakes in the least square method resulted in a percentage of 9.77% and it was decided that the least square method be worked for time series and trend data.

  17. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.

    2005-07-01

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  18. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.

    PubMed

    Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A

    2005-07-21

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  19. New Ultra-High Sensitivity, Absolute, Linear, and Rotary Encoders

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    1998-01-01

    Several new types of absolute optical encoders of both rotary and linear function are discussed. The means for encoding are complete departures from conventional optical encoders and offer advantages of compact form, immunity to damage-induced dropouts of position information, and about an order of magnitude higher sensitivity over what is commercially available. Rotary versions have sensitivity from 0.02 arcseconds down to 0.003 arcsecond while linear models have sensitivity of 10 nm.

  20. Absolute neutrino mass measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments inmore » Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.« less

  1. Accuracy and effectiveness of ultrasound-guided core-needle biopsy in the diagnosis of focal lesions in the salivary glands.

    PubMed

    Del Cura, Jose Luis; Coronado, Gloria; Zabala, Rosa; Korta, Igone; López, Ignacio

    2018-01-31

    To review the diagnostic accuracy of ultrasound-guided core-needle biopsy (CNB) in the diagnosis of salivary gland tumours (SGT). Retrospective, institutional review board approved, analysis of the CNB of SGT performed at our centre in 8 years. We used an automatic 18-G spring-loaded device. The final diagnosis was based on surgery in the cases that were operated on, and on clinical evolution and biopsy findings in the rest. Four hundred and nine biopsies were performed in 381 patients (ages, 2-97 years; mean, 55.9). There were two minor complications. Biopsy was diagnostic in 98.3%. There were eight false negatives. The diagnostic values for malignancy were: sensitivity 89.6%, specificity 100%, positive predictive value (PPV) 100% and negative predictive value (NPV) 98%. For the detection of neoplasms were: sensitivity 98.7%, specificity 99%, PPV 99.7% and VPN 96.1%. Accuracy of CNB in SGT is very high, with a very high sensitivity and an absolutely reliable diagnosis of malignancy. Complication rate is very low. It should be considered the technique of choice when a STG is detected. Normal tissue results warrant repeating biopsy. • Ultrasound-guided core-biopsy is the technique of choice in salivary glands nodules • Sensitivity, specificity for detecting neoplasms (which should be resected) are around 99% • Diagnosis of malignancy in core-biopsy is absolutely reliable • A CNB result of "normal tissue", however, warrants repeating the biopsy • Complication rate is very low.

  2. A method which can enhance the optical-centering accuracy

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-min; Zhang, Xue-jun; Dai, Yi-dan; Yu, Tao; Duan, Jia-you; Li, Hua

    2014-09-01

    Optical alignment machining is an effective method to ensure the co-axiality of optical system. The co-axiality accuracy is determined by optical-centering accuracy of single optical unit, which is determined by the rotating accuracy of lathe and the optical-centering judgment accuracy. When the rotating accuracy of 0.2um can be achieved, the leading error can be ignored. An axis-determination tool which is based on the principle of auto-collimation can be used to determine the only position of centerscope is designed. The only position is the position where the optical axis of centerscope is coincided with the rotating axis of the lathe. Also a new optical-centering judgment method is presented. A system which includes the axis-determination tool and the new optical-centering judgment method can enhance the optical-centering accuracy to 0.003mm.

  3. Infrared and Visible Absolute and Difference Spectra of Bacteriorhodopsin Photocycle Intermediates

    PubMed Central

    Hendler, Richard W.; Meuse, Curtis W.; Braiman, Mark S.; Smith, Paul D.; Kakareka, John W.

    2014-01-01

    We have used new kinetic fitting procedures to obtain IR absolute spectra for intermediates of the main bacteriorhodopsin (bR) photocycle(s). The linear algebra-based procedures of Hendler et al. (2001) J. Phys. Chem. B, 105, 3319–3228, for obtaining clean absolute visible spectra of bR photocycle intermediates, were adapted for use with IR data. This led to isolation, for the first time, of corresponding clean absolute IR spectra, including the separation of the M intermediate into its MF and MS components from parallel photocycles. This in turn permitted the computation of clean IR difference spectra between pairs of successive intermediates, allowing for the most rigorous analysis to date of changes occurring at each step of the photocycle. The statistical accuracy of the spectral calculation methods allows us to identify, with great confidence, new spectral features. One of these is a very strong differential IR band at 1650 cm−1 for the L intermediate at room temperature that is not present in analogous L spectra measured at cryogenic temperatures. This band, in one of the noisiest spectral regions, has not been identified in any previous time-resolved IR papers, although retrospectively it is apparent as one of the strongest L absorbance changes in their raw data, considered collectively. Additionally, our results are most consistent with Arg82 as the primary proton-release group (PRG), rather than a protonated water cluster or H-bonded grouping of carboxylic residues. Notably, the Arg82 deprotonation occurs exclusively in the MF pathway of the parallel cycles model of the photocycle. PMID:21929858

  4. Comparison of the accuracy of maxillary position between conventional model surgery and virtual surgical planning.

    PubMed

    Ritto, F G; Schmitt, A R M; Pimentel, T; Canellas, J V; Medeiros, P J

    2018-02-01

    The aim of this study was to determine whether virtual surgical planning (VSP) is an accurate method for positioning the maxilla when compared to conventional articulator model surgery (CMS), through the superimposition of computed tomography (CT) images. This retrospective study included the records of 30 adult patients submitted to bimaxillary orthognathic surgery. Two groups were created according to the treatment planning performed: CMS and VSP. The treatment planning protocol was the same for all patients. Pre- and postoperative CT images were superimposed and the linear distances between upper jaw reference points were measured. Measurements were then compared to the treatment planning, and the difference in accuracy between CMS and VSP was determined using the t-test for independent samples. The success criterion adopted was a mean linear difference of <2mm. The mean linear difference between planned and obtained movements for CMS was 1.27±1.05mm, and for VSP was 1.20±1.08mm. With CMS, 80% of overlapping reference points had a difference of <2mm, while for VSP this value was 83.6%. There was no statistically significant difference between the two techniques regarding accuracy (P>0.05). Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  6. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  7. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  8. Improved accuracies for satellite tracking

    NASA Technical Reports Server (NTRS)

    Kammeyer, P. C.; Fiala, A. D.; Seidelmann, P. K.

    1991-01-01

    A charge coupled device (CCD) camera on an optical telescope which follows the stars can be used to provide high accuracy comparisons between the line of sight to a satellite, over a large range of satellite altitudes, and lines of sight to nearby stars. The CCD camera can be rotated so the motion of the satellite is down columns of the CCD chip, and charge can be moved from row to row of the chip at a rate which matches the motion of the optical image of the satellite across the chip. Measurement of satellite and star images, together with accurate timing of charge motion, provides accurate comparisons of lines of sight. Given lines of sight to stars near the satellite, the satellite line of sight may be determined. Initial experiments with this technique, using an 18 cm telescope, have produced TDRS-4 observations which have an rms error of 0.5 arc second, 100 m at synchronous altitude. Use of a mosaic of CCD chips, each having its own rate of charge motion, in the focal place of a telescope would allow point images of a geosynchronous satellite and of stars to be formed simultaneously in the same telescope. The line of sight of such a satellite could be measured relative to nearby star lines of sight with an accuracy of approximately 0.03 arc second. Development of a star catalog with 0.04 arc second rms accuracy and perhaps ten stars per square degree would allow determination of satellite lines of sight with 0.05 arc second rms absolute accuracy, corresponding to 10 m at synchronous altitude. Multiple station time transfers through a communications satellite can provide accurate distances from the satellite to the ground stations. Such observations can, if calibrated for delays, determine satellite orbits to an accuracy approaching 10 m rms.

  9. Absolute Distances to Nearby Type Ia Supernovae via Light Curve Fitting Methods

    NASA Astrophysics Data System (ADS)

    Vinkó, J.; Ordasi, A.; Szalai, T.; Sárneczky, K.; Bányai, E.; Bíró, I. B.; Borkovits, T.; Hegedüs, T.; Hodosán, G.; Kelemen, J.; Klagyivik, P.; Kriskovics, L.; Kun, E.; Marion, G. H.; Marschalkó, G.; Molnár, L.; Nagy, A. P.; Pál, A.; Silverman, J. M.; Szakáts, R.; Szegedi-Elek, E.; Székely, P.; Szing, A.; Vida, K.; Wheeler, J. C.

    2018-06-01

    We present a comparative study of absolute distances to a sample of very nearby, bright Type Ia supernovae (SNe) derived from high cadence, high signal-to-noise, multi-band photometric data. Our sample consists of four SNe: 2012cg, 2012ht, 2013dy and 2014J. We present new homogeneous, high-cadence photometric data in Johnson–Cousins BVRI and Sloan g‧r‧i‧z‧ bands taken from two sites (Piszkesteto and Baja, Hungary), and the light curves are analyzed with publicly available light curve fitters (MLCS2k2, SNooPy2 and SALT2.4). When comparing the best-fit parameters provided by the different codes, it is found that the distance moduli of moderately reddened SNe Ia agree within ≲0.2 mag, and the agreement is even better (≲0.1 mag) for the highest signal-to-noise BVRI data. For the highly reddened SN 2014J the dispersion of the inferred distance moduli is slightly higher. These SN-based distances are in good agreement with the Cepheid distances to their host galaxies. We conclude that the current state-of-the-art light curve fitters for Type Ia SNe can provide consistent absolute distance moduli having less than ∼0.1–0.2 mag uncertainty for nearby SNe. Still, there is room for future improvements to reach the desired ∼0.05 mag accuracy in the absolute distance modulus.

  10. A strategy for absolute proteome quantification with mass spectrometry by hierarchical use of peptide-concatenated standards.

    PubMed

    Kito, Keiji; Okada, Mitsuhiro; Ishibashi, Yuko; Okada, Satoshi; Ito, Takashi

    2016-05-01

    The accurate and precise absolute abundance of proteins can be determined using mass spectrometry by spiking the sample with stable isotope-labeled standards. In this study, we developed a strategy of hierarchical use of peptide-concatenated standards (PCSs) to quantify more proteins over a wider dynamic range. Multiple primary PCSs were used for quantification of many target proteins. Unique "ID-tag peptides" were introduced into individual primary PCSs, allowing us to monitor the exact amounts of individual PCSs using a "secondary PCS" in which all "ID-tag peptides" were concatenated. Furthermore, we varied the copy number of the "ID-tag peptide" in each PCS according to a range of expression levels of target proteins. This strategy accomplished absolute quantification over a wider range than that of the measured ratios. The quantified abundance of budding yeast proteins showed a high reproducibility for replicate analyses and similar copy numbers per cell for ribosomal proteins, demonstrating the accuracy and precision of this strategy. A comparison with the absolute abundance of transcripts clearly indicated different post-transcriptional regulation of expression for specific functional groups. Thus, the approach presented here is a faithful method for the absolute quantification of proteomes and provides insights into biological mechanisms, including the regulation of expressed protein abundance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Calibration of the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.

  12. Absolute Astrometry in the next 50 Years - II

    NASA Astrophysics Data System (ADS)

    Høg, E.

    2018-01-01

    With the Gaia astrometric satellite in orbit since December 2013 it is time to look at the future of fundamental astrometry and a time frame of 50 years is needed in this matter. A space mission with Gaia-like astrometric performance is required, but not necessarily a Gaia-like satellite. A dozen science issues for a Gaia successor mission in twenty years, with launch about 2035, are presented and in this context also other possibilities for absolute astrometry with milliarcsecond (mas) or sub-mas accuracies are discussed in my report at http://arxiv.org/abs/1408.2190. In brief, the two missions (2013 and 2035) would provide an astrometric foundation for all branches of astronomy from the solar system and stellar systems, including exo-planet systems with long periods, to compact galaxies, quasars and Dark Matter substructures by data which cannot be surpassed in the next 50 years.

  13. Absolute brightness temperature measurements at 3.5-mm wavelength. [of sun, Venus, Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.

    1980-01-01

    Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.

  14. Characterizing Accuracy and Precision of Glucose Sensors and Meters

    PubMed Central

    2014-01-01

    There is need for a method to describe precision and accuracy of glucose measurement as a smooth continuous function of glucose level rather than as a step function for a few discrete ranges of glucose. We propose and illustrate a method to generate a “Glucose Precision Profile” showing absolute relative deviation (ARD) and /or %CV versus glucose level to better characterize measurement errors at any glucose level. We examine the relationship between glucose measured by test and comparator methods using linear regression. We examine bias by plotting deviation = (test – comparator method) versus glucose level. We compute the deviation, absolute deviation (AD), ARD, and standard deviation (SD) for each data pair. We utilize curve smoothing procedures to minimize the effects of random sampling variability to facilitate identification and display of the underlying relationships between ARD or %CV and glucose level. AD, ARD, SD, and %CV display smooth continuous relationships versus glucose level. Estimates of MARD and %CV are subject to relatively large errors in the hypoglycemic range due in part to a markedly nonlinear relationship with glucose level and in part to the limited number of observations in the hypoglycemic range. The curvilinear relationships of ARD and %CV versus glucose level are helpful when characterizing and comparing the precision and accuracy of glucose sensors and meters. PMID:25037194

  15. Variance computations for functional of absolute risk estimates.

    PubMed

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  16. Variance computations for functional of absolute risk estimates

    PubMed Central

    Pfeiffer, R.M.; Petracci, E.

    2011-01-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates. PMID:21643476

  17. Patient positioning in radiotherapy based on surface imaging using time of flight cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilles, M., E-mail: marlene.gilles@univ-brest.fr

    2016-08-15

    Purpose: To evaluate the patient positioning accuracy in radiotherapy using a stereo-time of flight (ToF)-camera system. Methods: A system using two ToF cameras was used to scan the surface of the patients in order to position them daily on the treatment couch. The obtained point clouds were registered to (a) detect translations applied to the table (intrafraction motion) and (b) predict the displacement to be applied in order to place the patient in its reference position (interfraction motion). The measures provided by this system were compared to the effectively applied translations. The authors analyzed 150 fractions including lung, pelvis/prostate, andmore » head and neck cancer patients. Results: The authors obtained small absolute errors for displacement detection: 0.8 ± 0.7, 0.8 ± 0.7, and 0.7 ± 0.6 mm along the vertical, longitudinal, and lateral axes, respectively, and 0.8 ± 0.7 mm for the total norm displacement. Lung cancer patients presented the largest errors with a respective mean of 1.1 ± 0.9, 0.9 ± 0.9, and 0.8 ± 0.7 mm. Conclusions: The proposed stereo-ToF system allows for sufficient accuracy and faster patient repositioning in radiotherapy. Its capability to track the complete patient surface in real time could allow, in the future, not only for an accurate positioning but also a real time tracking of any patient intrafraction motion (translation, involuntary, and breathing).« less

  18. Patient positioning in radiotherapy based on surface imaging using time of flight cameras.

    PubMed

    Gilles, M; Fayad, H; Miglierini, P; Clement, J F; Scheib, S; Cozzi, L; Bert, J; Boussion, N; Schick, U; Pradier, O; Visvikis, D

    2016-08-01

    To evaluate the patient positioning accuracy in radiotherapy using a stereo-time of flight (ToF)-camera system. A system using two ToF cameras was used to scan the surface of the patients in order to position them daily on the treatment couch. The obtained point clouds were registered to (a) detect translations applied to the table (intrafraction motion) and (b) predict the displacement to be applied in order to place the patient in its reference position (interfraction motion). The measures provided by this system were compared to the effectively applied translations. The authors analyzed 150 fractions including lung, pelvis/prostate, and head and neck cancer patients. The authors obtained small absolute errors for displacement detection: 0.8 ± 0.7, 0.8 ± 0.7, and 0.7 ± 0.6 mm along the vertical, longitudinal, and lateral axes, respectively, and 0.8 ± 0.7 mm for the total norm displacement. Lung cancer patients presented the largest errors with a respective mean of 1.1 ± 0.9, 0.9 ± 0.9, and 0.8 ± 0.7 mm. The proposed stereo-ToF system allows for sufficient accuracy and faster patient repositioning in radiotherapy. Its capability to track the complete patient surface in real time could allow, in the future, not only for an accurate positioning but also a real time tracking of any patient intrafraction motion (translation, involuntary, and breathing).

  19. Evaluation of Automatic Vehicle Location accuracy

    DOT National Transportation Integrated Search

    1999-01-01

    This study assesses the accuracy of the Automatic Vehicle Location (AVL) data provided for the buses of the Ann Arbor Transportation Authority with Global Positioning System (GPS) technology. In a sample of eighty-nine bus trips two kinds of accuracy...

  20. Accuracy Performance Evaluation of Beidou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Wang, W.; Hu, Y. N.

    2017-03-01

    Accuracy is one of the key elements of the regional Beidou Navigation Satellite System (BDS) performance standard. In this paper, we review the definition specification and evaluation standard of the BDS accuracy. Current accuracy of the regional BDS is analyzed through the ground measurements and compared with GPS in terms of dilution of precision (DOP), signal-in-space user range error (SIS URE), and positioning accuracy. The Positioning DOP (PDOP) map of BDS around Chinese mainland is compared with that of GPS. The GPS PDOP is between 1.0-2.0 and does not vary with the user latitude and longitude, while the BDS PDOP varies between 1.5-5.0, and increases as the user latitude increases, and as the user longitude apart from 118°. The accuracies of the broadcast orbits of BDS are assessed by taking the precise orbits from International GNSS Service (IGS) as the reference, and by making satellite laser ranging (SLR) residuals. The radial errors of the BDS inclined geosynchronous orbit (IGSO) and medium orbit (MEO) satellites broadcast orbits are at the 0.5m level, which are larger than those of GPS satellites at the 0.2m level. The SLR residuals of geosynchronous orbit (GEO) satellites are 65.0cm, which are larger than those of IGSO, and MEO satellites, at the 50.0cm level. The accuracy of broadcast clock offset parameters of BDS is computed by taking the clock measurements of Two-way Satellite Radio Time Frequency Transfer as the reference. Affected by the age of broadcast clock parameters, the error of the broadcast clock offset parameters of the MEO satellites is the largest, at the 0.80m level. Finally, measurements of the multi-GNSS (MGEX) receivers are used for positioning accuracy assessment of BDS and GPS. It is concluded that the positioning accuracy of regional BDS is better than 10m at the horizontal component and the vertical component. The combined positioning accuracy of both systems is better than one specific system.

  1. Techniques for improving the accuracy of cyrogenic temperature measurement in ground test programs

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Fabik, Richard H.

    1993-01-01

    The performance of a sensor is often evaluated by determining to what degree of accuracy a measurement can be made using this sensor. The absolute accuracy of a sensor is an important parameter considered when choosing the type of sensor to use in research experiments. Tests were performed to improve the accuracy of cryogenic temperature measurements by calibration of the temperature sensors when installed in their experimental operating environment. The calibration information was then used to correct for temperature sensor measurement errors by adjusting the data acquisition system software. This paper describes a method to improve the accuracy of cryogenic temperature measurements using corrections in the data acquisition system software such that the uncertainty of an individual temperature sensor is improved from plus or minus 0.90 deg R to plus or minus 0.20 deg R over a specified range.

  2. Absolutism and Natural Law Argument: William O. Douglas on Freedom of Expression.

    ERIC Educational Resources Information Center

    Rodgers, Raymond S.

    Noting that United States Supreme Court Justice William O. Douglas has often been characterized as an "absolutist" in terms of First Amendment policy, this paper argues that, in fact, Douglas's policy positions provided for less than absolute freedom to communicate. The paper then reveals, through an anlaysis of 18 of Douglas's opinions,…

  3. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  4. Positive Illusions? The Accuracy of Academic Self-Appraisals in Adolescents With ADHD.

    PubMed

    Chan, Todd; Martinussen, Rhonda

    2016-08-01

    Children with attention deficit/hyperactivity disorder (ADHD) overestimate their academic competencies (AC) relative to performance and informant indicators (i.e., positive illusory bias; PIB). Do adolescents with ADHD exhibit this PIB and does it render self-views inaccurate? We examined the magnitude of the AC-PIB in adolescents with and without ADHD, the predictive accuracy of parent and adolescent AC ratings, and whether executive functions (EF) predict the AC-PIB. Adolescents (49 ADHD; 47 typically developing) completed math and EF tests, and self-rated their AC. Parents rated their adolescents' AC and EF. Adolescents with ADHD performed more poorly on the math task (vs. comparison group) but had a larger AC-PIB relative to parents' ratings. EFs predicted the PIB within the full sample. Adolescents' AC ratings, regardless of ADHD status, were more predictive of math performance than their parents' AC ratings. Adolescents with ADHD appear self-aware in their AC despite a modest PIB; nuanced self-appraisals may depend on EFs. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The accuracy of image-guided navigation for maxillary positioning in bimaxillary surgery.

    PubMed

    Sun, Yi; Luebbers, Heinz-Theo; Agbaje, Jimoh Olubanwo; Lambrichts, Ivo; Politis, Constantinus

    2014-05-01

    The aim of our study was to evaluate the accuracy of image-guided maxillary positioning in sagittal, vertical, and mediolateral direction. Between May 2011 and July 2012, 17 patients (11 males, 6 females) underwent bimaxillary surgery with the use of intraoperative surgical navigation. During Le Fort I osteotomy, the Kolibri navigation system was used to measure movement of the maxilla at the edge of the upper central upper incisor in sagittal (buccal surface), vertical (incisor edge), and mediolateral (dental midline) direction. Six weeks after surgery, a postoperative CBCT scan was taken and registered to the preoperative cone-beam computed tomography scan to identify the actual surgical movement of the maxilla. Student 2-tailed paired t test was used to evaluate differences between the measured result from navigation system and actual surgical movement of the maxilla, which were 0.44 ± 0.35 mm (P = 0.82) in the sagittal, 0.50 ± 0.35 mm (P = 0.85) in the vertical, and 0.56 ± 0.36 mm (P = 0.81) in the mediolateral direction. Our finding demonstrates that intraoperative computer navigation is a promising tool for measuring the surgical change of the maxilla in bimaxillary surgery.

  6. Accuracy of a novel photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot

    NASA Astrophysics Data System (ADS)

    Gandhi, Neeraj; Kim, Sungmin; Kazanzides, Peter; Lediju Bell, Muyinatu A.

    2017-03-01

    Minimally invasive surgery carries the deadly risk of rupturing major blood vessels, such as the internal carotid arteries hidden by bone in endonasal transsphenoidal surgery. We propose a novel approach to surgical guidance that relies on photoacoustic-based vessel separation measurements to assess the extent of safety zones during these type of surgical procedures. This approach can be implemented with or without a robot or navigation system. To determine the accuracy of this approach, a custom phantom was designed and manufactured for modular placement of two 3.18-mm diameter vessel-mimicking targets separated by 10-20 mm. Photoacoustic images were acquired as the optical fiber was swept across the vessels in the absence and presence of teleoperation with a research da Vinci Surgical System. When the da Vinci was used, vessel positions were recorded based on the fiber position (calculated from the robot kinematics) that corresponded to an observed photoacoustic signal. In all cases, compounded photoacoustic data from a single sweep displayed the four vessel boundaries in one image. Amplitude- and coherence-based photoacoustic images were used to estimate vessel separations, resulting in 0.52-0.56 mm mean absolute errors, 0.66-0.71 mm root mean square errors, and 65-68% more accuracy compared to fiber position measurements obtained through the da Vinci robot kinematics. Results indicate that with further development, photoacoustic image-based measurements of anatomical landmarks could be a viable method for real-time path planning in multiple interventional photoacoustic applications.

  7. Millimetre Level Accuracy GNSS Positioning with the Blind Adaptive Beamforming Method in Interference Environments.

    PubMed

    Daneshmand, Saeed; Marathe, Thyagaraja; Lachapelle, Gérard

    2016-10-31

    The use of antenna arrays in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its superior capability to suppress both narrowband and wideband interference. However, the phase distortions resulting from array processing may limit the applicability of these methods for high precision applications using carrier phase based positioning techniques. This paper studies the phase distortions occurring with the adaptive blind beamforming method in which satellite angle of arrival (AoA) information is not employed in the optimization problem. To cater to non-stationary interference scenarios, the array weights of the adaptive beamformer are continuously updated. The effects of these continuous updates on the tracking parameters of a GNSS receiver are analyzed. The second part of this paper focuses on reducing the phase distortions during the blind beamforming process in order to allow the receiver to perform carrier phase based positioning by applying a constraint on the structure of the array configuration and by compensating the array uncertainties. Limitations of the previous methods are studied and a new method is proposed that keeps the simplicity of the blind beamformer structure and, at the same time, reduces tracking degradations while achieving millimetre level positioning accuracy in interference environments. To verify the applicability of the proposed method and analyze the degradations, array signals corresponding to the GPS L1 band are generated using a combination of hardware and software simulators. Furthermore, the amount of degradation and performance of the proposed method under different conditions are evaluated based on Monte Carlo simulations.

  8. Absolute detector-based spectrally tunable radiant source using digital micromirror device and supercontinuum fiber laser.

    PubMed

    Li, Zhigang; Wang, Xiaoxu; Zheng, Yuquan; Li, Futian

    2017-06-10

    High-accuracy absolute detector-based spectroradiometric calibration techniques traceable to cryogenic absolute radiometers have made progress rapidly in recent decades under the impetus of atmospheric quantitative spectral remote sensing. A high brightness spectrally tunable radiant source using a supercontinuum fiber laser and a digital micromirror device (DMD) has been developed to meet demands of spectroradiometric calibrations for ground-based, aeronautics-based, and aerospace-based remote sensing instruments and spectral simulations of natural scenes such as the sun and atmosphere. Using a supercontinuum fiber laser as a radiant source, the spectral radiance of the spectrally tunable radiant source is 20 times higher than the spectrally tunable radiant source using conventional radiant sources such as tungsten halogen lamps, xenon lamps, or LED lamps, and the stability is better than ±0.3%/h. Using a DMD, the spectrally tunable radiant source possesses two working modes. In narrow-band modes, it is calibrated by an absolute detector, and in broad-band modes, it can calibrate for remote sensing instrument. The uncertainty of the spectral radiance of the spectrally tunable radiant source is estimated at less than 1.87% at 350 nm to 0.85% at 750 nm, and compared to only standard lamp-based calibration, a greater improvement is gained.

  9. Electronic Position Sensor for Power Operated Accessory

    DOEpatents

    Haag, Ronald H.; Chia, Michael I.

    2005-05-31

    An electronic position sensor for use with a power operated vehicle accessory, such as a power liftgate. The position sensor includes an elongated resistive circuit that is mounted such that it is stationary and extends along the path of a track portion of the power operated accessory. The position sensor further includes a contact nub mounted to a link member that moves within the track portion such that the contact nub is slidingly biased against the elongated circuit. As the link member moves under the force of a motor-driven output gear, the contact nub slides along the surface of the resistive circuit, thereby affecting the overall resistance of the circuit. The position sensor uses the overall resistance to provide an electronic position signal to an ECU, wherein the signal is indicative of the absolute position of the power operated accessory. Accordingly, the electronic position sensor is capable of providing an electronic signal that enables the ECU to track the absolute position of the power operated accessory.

  10. Low accuracy and low consistency of fourth-graders' school breakfast and school lunch recalls

    PubMed Central

    THOMPSON, WILLIAM 0.; LITAKER, MARK S.; FRYE, FRANCESCA H.A.; GUINN, CAROLINE H.

    2005-01-01

    Objective To determine the accuracy and consistency of fourth-graders' school breakfast and school lunch recalls obtained during 24-hour recalls and compared with observed intake. Design Children were interviewed using a multiple-pass protocol at school the morning after being observed eating school breakfast and school lunch. Subjects 104 children stratified by ethnicity (African-American, white) and gender were randomly selected and interviewed up to 3 times each with 4 to 14 weeks between each interview. Statistical analysis Match, omission, and intrusion rates to determine accuracy of reporting items; arithmetic and/or absolute differences to determine accuracy for reporting amounts; total inaccuracy to determine inaccuracy for reporting items and amounts combined; intraclass correlation coefficients (ICC) to determine consistency. Results Means were 51% for omission rate, 39% for intrusion rate, and 7.1 servings for total inaccuracy. Total inaccuracy decreased significantly from the first to the third recall (P=0.006). The ICC was 0.29 for total inaccuracy and 0.15 for omission rate. For all meal components except bread/grain and beverage, there were more omissions than intrusions. Mean arithmetic and absolute differences per serving in amount reported for matches were -0.08 and 0.24, respectively. Mean amounts per serving of omissions and intrusions were 0.86 and 0.80, respectively. Applications/conclusions The low accuracy and low consistency of children's recalls from this study raise concerns regarding the current uses of dietary recalls obtained from children. To improve the accuracy and consistency of children's dietary recalls, validation studies are needed to determine the best way(s) to interview children. PMID:11905461

  11. Infrared and visible absolute and difference spectra of bacteriorhodopsin photocycle intermediates.

    PubMed

    Hendler, Richard W; Meuse, Curtis W; Braiman, Mark S; Smith, Paul D; Kakareka, John W

    2011-09-01

    We have used new kinetic fitting procedures to obtain infrared (IR) absolute spectra for intermediates of the main bacteriorhodopsin (bR) photocycle(s). The linear-algebra-based procedures of Hendler et al. (J. Phys. Chem. B, 105, 3319-3228 (2001)) for obtaining clean absolute visible spectra of bR photocycle intermediates were adapted for use with IR data. This led to isolation, for the first time, of corresponding clean absolute IR spectra, including the separation of the M intermediate into its M(F) and M(S) components from parallel photocycles. This in turn permitted the computation of clean IR difference spectra between pairs of successive intermediates, allowing for the most rigorous analysis to date of changes occurring at each step of the photocycle. The statistical accuracy of the spectral calculation methods allows us to identify, with great confidence, new spectral features. One of these is a very strong differential IR band at 1650 cm(-1) for the L intermediate at room temperature that is not present in analogous L spectra measured at cryogenic temperatures. This band, in one of the noisiest spectral regions, has not been identified in any previous time-resolved IR papers, although retrospectively it is apparent as one of the strongest L absorbance changes in their raw data, considered collectively. Additionally, our results are most consistent with Arg82 as the primary proton-release group (PRG), rather than a protonated water cluster or H-bonded grouping of carboxylic residues. Notably, the Arg82 deprotonation occurs exclusively in the M(F) pathway of the parallel cycles model of the photocycle. © 2011 Society for Applied Spectroscopy

  12. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  13. A global algorithm for estimating Absolute Salinity

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  14. An analysis on combined GPS/COMPASS data quality and its effect on single point positioning accuracy under different observing conditions

    NASA Astrophysics Data System (ADS)

    Cai, Changsheng; Gao, Yang; Pan, Lin; Dai, Wujiao

    2014-09-01

    With the rapid development of the COMPASS system, it is currently capable of providing regional navigation services. In order to test its data quality and performance for single point positioning (SPP), experiments have been conducted under different observing conditions including open sky, under trees, nearby a glass wall, nearby a large area of water, under high-voltage lines and under a signal transmitting tower. To assess the COMPASS data quality, the code multipath, cycle slip occurrence rate and data availability were analyzed and compared to GPS data. The datasets obtained from the experiments have also been utilized to perform combined GPS/COMPASS SPP on an epoch-by-epoch basis using unsmoothed single-frequency code observations. The investigation on the regional navigation performance aims at low-accuracy applications and all tests are made in Changsha, China, using the “SOUTH S82-C” GPS/COMPASS receivers. The results show that adding COMPASS observations can significantly improve the positioning accuracy of single-frequency GPS-only SPP in environments with limited satellite visibility. Since the COMPASS system is still in an initial operational stage, all results are obtained based on a fairly limited amount of data.

  15. Corsica: A Multi-Mission Absolute Calibration Site

    NASA Astrophysics Data System (ADS)

    Bonnefond, P.; Exertier, P.; Laurain, O.; Guinle, T.; Femenias, P.

    2013-09-01

    In collaboration with the CNES and NASA oceanographic projects (TOPEX/Poseidon and Jason), the OCA (Observatoire de la Côte d'Azur) developed a verification site in Corsica since 1996, operational since 1998. CALibration/VALidation embraces a wide variety of activities, ranging from the interpretation of information from internal-calibration modes of the sensors to validation of the fully corrected estimates of the reflector heights using in situ data. Now, Corsica is, like the Harvest platform (NASA side) [14], an operating calibration site able to support a continuous monitoring with a high level of accuracy: a 'point calibration' which yields instantaneous bias estimates with a 10-day repeatability of 30 mm (standard deviation) and mean errors of 4 mm (standard error). For a 35-day repeatability (ERS, Envisat), due to a smaller time series, the standard error is about the double ( 7 mm).In this paper, we will present updated results of the absolute Sea Surface Height (SSH) biases for TOPEX/Poseidon (T/P), Jason-1, Jason-2, ERS-2 and Envisat.

  16. Ariadne's Thread: A Robust Software Solution Leading to Automated Absolute and Relative Quantification of SRM Data.

    PubMed

    Nasso, Sara; Goetze, Sandra; Martens, Lennart

    2015-09-04

    Selected reaction monitoring (SRM) MS is a highly selective and sensitive technique to quantify protein abundances in complex biological samples. To enhance the pace of SRM large studies, a validated, robust method to fully automate absolute quantification and to substitute for interactive evaluation would be valuable. To address this demand, we present Ariadne, a Matlab software. To quantify monitored targets, Ariadne exploits metadata imported from the transition lists, and targets can be filtered according to mProphet output. Signal processing and statistical learning approaches are combined to compute peptide quantifications. To robustly estimate absolute abundances, the external calibration curve method is applied, ensuring linearity over the measured dynamic range. Ariadne was benchmarked against mProphet and Skyline by comparing its quantification performance on three different dilution series, featuring either noisy/smooth traces without background or smooth traces with complex background. Results, evaluated as efficiency, linearity, accuracy, and precision of quantification, showed that Ariadne's performance is independent of data smoothness and complex background presence and that Ariadne outperforms mProphet on the noisier data set and improved 2-fold Skyline's accuracy and precision for the lowest abundant dilution with complex background. Remarkably, Ariadne could statistically distinguish from each other all different abundances, discriminating dilutions as low as 0.1 and 0.2 fmol. These results suggest that Ariadne offers reliable and automated analysis of large-scale SRM differential expression studies.

  17. Evaluation of the accuracy and clinical practicality of a calculation system for patient positional displacement in carbon ion radiotherapy at five sites.

    PubMed

    Kubota, Yoshiki; Hayashi, Hayato; Abe, Satoshi; Souda, Saki; Okada, Ryosuke; Ishii, Takayoshi; Tashiro, Mutsumi; Torikoshi, Masami; Kanai, Tatsuaki; Ohno, Tatsuya; Nakano, Takashi

    2018-03-01

    We developed a system for calculating patient positional displacement between digital radiography images (DRs) and digitally reconstructed radiography images (DRRs) to reduce patient radiation exposure, minimize individual differences between radiological technologists in patient positioning, and decrease positioning time. The accuracy of this system at five sites was evaluated with clinical data from cancer patients. The dependence of calculation accuracy on the size of the region of interest (ROI) and initial position was evaluated for clinical use. For a preliminary verification, treatment planning and positioning data from eight setup patterns using a head and neck phantom were evaluated. Following this, data from 50 patients with prostate, lung, head and neck, liver, or pancreatic cancer (n = 10 each) were evaluated. Root mean square errors (RMSEs) between the results calculated by our system and the reference positions were assessed. The reference positions were manually determined by two radiological technologists to best-matching positions with orthogonal DRs and DRRs in six axial directions. The ROI size dependence was evaluated by comparing RMSEs for three different ROI sizes. Additionally, dependence on initial position parameters was evaluated by comparing RMSEs for four position patterns. For the phantom study, the average (± standard deviation) translation error was 0.17 ± 0.05, rotation error was 0.17 ± 0.07, and ΔD was 0.14 ± 0.05. Using the optimal ROI size for each patient site, all cases of prostate, lung, and head and neck cancer with initial position parameters of 10 mm or under were acceptable in our tolerance. However, only four liver cancer cases and three pancreatic cancer cases were acceptable, because of low-reproducibility regions in the ROIs. Our system has clinical practicality for prostate, lung, and head and neck cancer cases. Additionally, our findings suggest ROI size dependence in some cases. © 2018 The Authors

  18. Simple and rapid LC-MS/MS method for the absolute determination of cetuximab in human serum using an immobilized trypsin.

    PubMed

    Shibata, Kaito; Naito, Takafumi; Okamura, Jun; Hosokawa, Seiji; Mineta, Hiroyuki; Kawakami, Junichi

    2017-11-30

    Proteomic approaches using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) without an immunopurification technique have not been applied to the determination of serum cetuximab. This study developed a simple and rapid LC-MS/MS method for the absolute determination of cetuximab in human serum and applied it to clinical settings. Surrogate peptides derived from cetuximab digests were selected using a Fourier transform mass spectrometer. Reduced-alkylated serum cetuximab without immunopurification was digested for 20minutes using immobilized trypsin, and the digestion products were purified by solid-phase extraction. The LC-MS/MS was run in positive ion multiple reaction monitoring mode. This method was applied to the determination of serum samples in head and neck cancer patients treated with cetuximab. The chromatographic run time was 10minutes and no peaks interfering with surrogate peptides in serum digestion products were observed. The calibration curve of absolute cetuximab in serum was linear over the concentration range of 4-200μg/mL. The lower limit of quantification of cetuximab in human serum was 4μg/mL. The intra-assay and inter-assay precision and accuracy were less than 13.2% and 88.0-100.7%, respectively. The serum concentration range of cetuximab was 19-140μg/mL in patients. The serum cetuximab concentrations in LC-MS/MS were correlated with those in ELISA (r=0.899, P <0.01) and the mean bias was 1.5% in cancer patients. In conclusion, the present simple and rapid method with acceptable analytical performance can be helpful for evaluating the absolute concentration of serum cetuximab in clinical settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  20. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  1. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  2. A fast RCS accuracy assessment method for passive radar calibrators

    NASA Astrophysics Data System (ADS)

    Zhou, Yongsheng; Li, Chuanrong; Tang, Lingli; Ma, Lingling; Liu, QI

    2016-10-01

    In microwave radar radiometric calibration, the corner reflector acts as the standard reference target but its structure is usually deformed during the transportation and installation, or deformed by wind and gravity while permanently installed outdoor, which will decrease the RCS accuracy and therefore the radiometric calibration accuracy. A fast RCS accuracy measurement method based on 3-D measuring instrument and RCS simulation was proposed in this paper for tracking the characteristic variation of the corner reflector. In the first step, RCS simulation algorithm was selected and its simulation accuracy was assessed. In the second step, the 3-D measuring instrument was selected and its measuring accuracy was evaluated. Once the accuracy of the selected RCS simulation algorithm and 3-D measuring instrument was satisfied for the RCS accuracy assessment, the 3-D structure of the corner reflector would be obtained by the 3-D measuring instrument, and then the RCSs of the obtained 3-D structure and corresponding ideal structure would be calculated respectively based on the selected RCS simulation algorithm. The final RCS accuracy was the absolute difference of the two RCS calculation results. The advantage of the proposed method was that it could be applied outdoor easily, avoiding the correlation among the plate edge length error, plate orthogonality error, plate curvature error. The accuracy of this method is higher than the method using distortion equation. In the end of the paper, a measurement example was presented in order to show the performance of the proposed method.

  3. Absolute quantification of microbial taxon abundances.

    PubMed

    Props, Ruben; Kerckhof, Frederiek-Maarten; Rubbens, Peter; De Vrieze, Jo; Hernandez Sanabria, Emma; Waegeman, Willem; Monsieurs, Pieter; Hammes, Frederik; Boon, Nico

    2017-02-01

    High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys.

  4. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: a meta-analysis.

    PubMed

    Arbyn, Marc; Verdoodt, Freija; Snijders, Peter J F; Verhoef, Viola M J; Suonio, Eero; Dillner, Lena; Minozzi, Silvia; Bellisario, Cristina; Banzi, Rita; Zhao, Fang-Hui; Hillemanns, Peter; Anttila, Ahti

    2014-02-01

    Screening for human papillomavirus (HPV) infection is more effective in reducing the incidence of cervical cancer than screening using Pap smears. Moreover, HPV testing can be done on a vaginal sample self-taken by a woman, which offers an opportunity to improve screening coverage. However, the clinical accuracy of HPV testing on self-samples is not well-known. We assessed whether HPV testing on self-collected samples is equivalent to HPV testing on samples collected by clinicians. We identified relevant studies through a search of PubMed, Embase, and CENTRAL. Studies were eligible for inclusion if they fulfilled all of the following selection criteria: a cervical cell sample was self-collected by a woman followed by a sample taken by a clinician; a high-risk HPV test was done on the self-sample (index test) and HPV-testing or cytological interpretation was done on the specimen collected by the clinician (comparator tests); and the presence or absence of cervical intraepithelial neoplasia grade 2 (CIN2) or worse was verified by colposcopy and biopsy in all enrolled women or in women with one or more positive tests. The absolute accuracy for finding CIN2 or worse, or CIN grade 3 (CIN3) or worse of the index and comparator tests as well as the relative accuracy of the index versus the comparator tests were pooled using bivariate normal models and random effect models. We included data from 36 studies, which altogether enrolled 154 556 women. The absolute accuracy varied by clinical setting. In the context of screening, HPV testing on self-samples detected, on average, 76% (95% CI 69-82) of CIN2 or worse and 84% (72-92) of CIN3 or worse. The pooled absolute specificity to exclude CIN2 or worse was 86% (83-89) and 87% (84-90) to exclude CIN3 or worse. The variation of the relative accuracy of HPV testing on self-samples compared with tests on clinician-taken samples was low across settings, enabling pooling of the relative accuracy over all studies. The pooled

  5. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  6. Improving IMES Localization Accuracy by Integrating Dead Reckoning Information

    PubMed Central

    Fujii, Kenjiro; Arie, Hiroaki; Wang, Wei; Kaneko, Yuto; Sakamoto, Yoshihiro; Schmitz, Alexander; Sugano, Shigeki

    2016-01-01

    Indoor positioning remains an open problem, because it is difficult to achieve satisfactory accuracy within an indoor environment using current radio-based localization technology. In this study, we investigate the use of Indoor Messaging System (IMES) radio for high-accuracy indoor positioning. A hybrid positioning method combining IMES radio strength information and pedestrian dead reckoning information is proposed in order to improve IMES localization accuracy. For understanding the carrier noise ratio versus distance relation for IMES radio, the signal propagation of IMES radio is modeled and identified. Then, trilateration and extended Kalman filtering methods using the radio propagation model are developed for position estimation. These methods are evaluated through robot localization and pedestrian localization experiments. The experimental results show that the proposed hybrid positioning method achieved average estimation errors of 217 and 1846 mm in robot localization and pedestrian localization, respectively. In addition, in order to examine the reason for the positioning accuracy of pedestrian localization being much lower than that of robot localization, the influence of the human body on the radio propagation is experimentally evaluated. The result suggests that the influence of the human body can be modeled. PMID:26828492

  7. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-01

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k = 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k = 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  8. Low absolute neutrophil counts in African infants.

    PubMed

    Kourtis, Athena P; Bramson, Brian; van der Horst, Charles; Kazembe, Peter; Ahmed, Yusuf; Chasela, Charles; Hosseinipour, Mina; Knight, Rodney; Lugalia, Lebah; Tegha, Gerald; Joaki, George; Jafali, Robert; Jamieson, Denise J

    2005-07-01

    Infants of African origin have a lower normal range of absolute neutrophil counts than white infants; this fact, however, remains under appreciated by clinical researchers in the United States. During the initial stages of a clinical trial in Malawi, the authors noted an unexpectedly high number of infants with absolute neutrophil counts that would be classifiable as neutropenic using the National Institutes of Health's Division of AIDS toxicity tables. The authors argue that the relevant Division of AIDS table does not take into account the available evidence of low absolute neutrophil counts in African infants and that a systematic collection of data from many African settings might help establish the absolute neutrophil count cutpoints to be used for defining neutropenia in African populations.

  9. Absolute colorimetric characterization of a DSLR camera

    NASA Astrophysics Data System (ADS)

    Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo

    2014-03-01

    A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.

  10. Absolute quantitation of NAPQI-modified rat serum albumin by LC-MS/MS: monitoring acetaminophen covalent binding in vivo.

    PubMed

    LeBlanc, André; Shiao, Tze Chieh; Roy, René; Sleno, Lekha

    2014-09-15

    Acetaminophen is known to cause hepatoxicity via the formation of a reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), as a result of covalent binding to liver proteins. Serum albumin (SA) is known to be covalently modified by NAPQI and is present at high concentrations in the bloodstream and is therefore a potential biomarker to assess the levels of protein modification by NAPQI. A newly developed method for the absolute quantitation of serum albumin containing NAPQI covalently bound to its active site cysteine (Cys34) is described. This optimized assay represents the first absolute quantitation of a modified protein, with very low stoichiometric abundance, using a protein-level standard combined with isotope dilution. The LC-MS/MS assay is based on a protein standard modified with a custom-designed reagent, yielding a surrogate peptide (following digestion) that is a positional isomer to the target peptide modified by NAPQI. To illustrate the potential of this approach, the method was applied to quantify NAPQI-modified SA in plasma from rats dosed with acetaminophen. The resulting method is highly sensitive (capable of quantifying down to 0.0006% of total RSA in its NAPQI-modified form) and yields excellent precision and accuracy statistics. A time-course pharmacokinetic study was performed to test the usefulness of this method for following acetaminophen-induced covalent binding at four dosing levels (75-600 mg/kg IP), showing the viability of this approach to directly monitor in vivo samples. This approach can reliably quantify NAPQI-modified albumin, allowing direct monitoring of acetaminophen-related covalent binding.

  11. Improving absolute gravity estimates by the L p -norm approximation of the ballistic trajectory

    NASA Astrophysics Data System (ADS)

    Nagornyi, V. D.; Svitlov, S.; Araya, A.

    2016-04-01

    Iteratively re-weighted least squares (IRLS) were used to simulate the L p -norm approximation of the ballistic trajectory in absolute gravimeters. Two iterations of the IRLS delivered sufficient accuracy of the approximation without a significant bias. The simulations were performed on different samplings and perturbations of the trajectory. For the platykurtic distributions of the perturbations, the L p -approximation with 3  <  p  <  4 was found to yield several times more precise gravity estimates compared to the standard least-squares. The simulation results were confirmed by processing real gravity observations performed at the excessive noise conditions.

  12. CT colonography: accuracy, acceptance, safety and position in organised population screening.

    PubMed

    de Haan, Margriet C; Pickhardt, Perry J; Stoker, Jaap

    2015-02-01

    Colorectal cancer (CRC) is the second most common cancer and second most common cause of cancer-related deaths in Europe. The introduction of CRC screening programmes using stool tests and flexible sigmoidoscopy, have been shown to reduce CRC-related mortality substantially. In several European countries, population-based CRC screening programmes are ongoing or being rolled out. Stool tests like faecal occult blood testing are non-invasive and simple to perform, but are primarily designed to detect early invasive cancer. More invasive tests like colonoscopy and CT colonography (CTC) aim at accurately detecting both CRC and cancer precursors, thus providing for cancer prevention. This review focuses on the accuracy, acceptance and safety of CTC as a CRC screening technique and on the current position of CTC in organised population screening. Based on the detection characteristics and acceptability of CTC screening, it might be a viable screening test. The potential disadvantage of radiation exposure is probably overemphasised, especially with newer technology. At this time-point, it is not entirely clear whether the detection of extracolonic findings at CTC is of net benefit and is cost effective, but with responsible handling, this may be the case. Future efforts will seek to further improve the technique, refine appropriate diagnostic algorithms and study cost-effectiveness. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook

    2015-03-07

    We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal tomore » 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.« less

  14. Different CAD/CAM-processing routes for zirconia restorations: influence on fitting accuracy.

    PubMed

    Kohorst, Philipp; Junghanns, Janet; Dittmer, Marc P; Borchers, Lothar; Stiesch, Meike

    2011-08-01

    The aim of the present in vitro study was to evaluate the influence of different processing routes on the fitting accuracy of four-unit zirconia fixed dental prostheses (FDPs) fabricated by computer-aided design/computer-aided manufacturing (CAD/CAM). Three groups of zirconia frameworks with ten specimens each were fabricated. Frameworks of one group (CerconCAM) were produced by means of a laboratory CAM-only system. The other frameworks were made with different CAD/CAM systems; on the one hand by in-laboratory production (CerconCAD/CAM) and on the other hand by centralized production in a milling center (Compartis) after forwarding geometrical data. Frameworks were then veneered with the recommended ceramics, and marginal accuracy was determined using a replica technique. Horizontal marginal discrepancy, vertical marginal discrepancy, absolute marginal discrepancy, and marginal gap were evaluated. Statistical analyses were performed by one-way analysis of variance (ANOVA), with the level of significance chosen at 0.05. Mean horizontal discrepancies ranged between 22 μm (CerconCAM) and 58 μm (Compartis), vertical discrepancies ranged between 63 μm (CerconCAD/CAM) and 162 μm (CerconCAM), and absolute marginal discrepancies ranged between 94 μm (CerconCAD/CAM) and 181 μm (CerconCAM). The marginal gap varied between 72 μm (CerconCAD/CAM) and 112 μm (CerconCAM, Compartis). Statistical analysis revealed that, with all measurements, the marginal accuracy of the zirconia FDPs was significantly influenced by the processing route used (p < 0.05). Within the limitations of this study, all restorations showed a clinically acceptable marginal accuracy; however, the results suggest that the CAD/CAM systems are more precise than the CAM-only system for the manufacture of four-unit FDPs.

  15. Accuracy of a continuous noninvasive hemoglobin monitor in intensive care unit patients.

    PubMed

    Frasca, Denis; Dahyot-Fizelier, Claire; Catherine, Karen; Levrat, Quentin; Debaene, Bertrand; Mimoz, Olivier

    2011-10-01

    To determine whether noninvasive hemoglobin measurement by Pulse CO-Oximetry could provide clinically acceptable absolute and trend accuracy in critically ill patients, compared to other invasive methods of hemoglobin assessment available at bedside and the gold standard, the laboratory analyzer. Prospective study. Surgical intensive care unit of a university teaching hospital. Sixty-two patients continuously monitored with Pulse CO-Oximetry (Masimo Radical-7). None. Four hundred seventy-one blood samples were analyzed by a point-of-care device (HemoCue 301), a satellite lab CO-Oximeter (Siemens RapidPoint 405), and a laboratory hematology analyzer (Sysmex XT-2000i), which was considered the reference device. Hemoglobin values reported from the invasive methods were compared to the values reported by the Pulse CO-Oximeter at the time of blood draw. When the case-to-case variation was assessed, the bias and limits of agreement were 0.0±1.0 g/dL for the Pulse CO-Oximeter, 0.3±1.3g/dL for the point-of-care device, and 0.9±0.6 g/dL for the satellite lab CO-Oximeter compared to the reference method. Pulse CO-Oximetry showed similar trend accuracy as satellite lab CO-Oximetry, whereas the point-of-care device did not appear to follow the trend of the laboratory analyzer as well as the other test devices. When compared to laboratory reference values, hemoglobin measurement with Pulse CO-Oximetry has absolute accuracy and trending accuracy similar to widely used, invasive methods of hemoglobin measurement at bedside. Hemoglobin measurement with pulse CO-Oximetry has the additional advantages of providing continuous measurements, noninvasively, which may facilitate hemoglobin monitoring in the intensive care unit.

  16. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  17. Absolute frequency measurement of the 88Sr+ clock transition using a GPS link to the SI second

    NASA Astrophysics Data System (ADS)

    Dubé, Pierre; E Bernard, John; Gertsvolf, Marina

    2017-06-01

    We report the results of a recent measurement of the absolute frequency of the 5s{{ }2}{{S}1/2} - 4d{{ }2}{{D}5/2} transition of the {{}88}\\text{Sr}{{}+} ion. The optical frequency was measured against the international atomic time realization of the SI second on the geoid as obtained by frequency transfer using a global positioning system link and the precise point positioning technique. The measurement campaign yielded more than 100 h of frequency data. It was performed with improvements to the stability and accuracy of the single-ion clock compared to the last measurement made in 2012. The single ion clock uncertainty is evaluated at 1.5× {{10}-17} when contributions from acousto-optic modulator frequency chirps and servo errors are taken into account. The stability of the ion clock is 3× {{10}-15} at 1 s averaging, a factor of three better than in the previous measurement. The results from the two measurement campaigns are in good agreement. The uncertainty of the measurement, primarily from the link to the SI second, is 0.75 Hz (1.7× {{10}-15} ). The frequency measured for the S-D clock transition of {{}88}\\text{S}{{\\text{r}}+} is {ν0}= 444 779 044 095 485.27(75) Hz.

  18. Accuracy of surface registration compared to conventional volumetric registration in patient positioning for head-and-neck radiotherapy: A simulation study using patient data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngjun; Li, Ruijiang; Na, Yong Hum

    2014-12-15

    Purpose: 3D optical surface imaging has been applied to patient positioning in radiation therapy (RT). The optical patient positioning system is advantageous over conventional method using cone-beam computed tomography (CBCT) in that it is radiation free, frameless, and is capable of real-time monitoring. While the conventional radiographic method uses volumetric registration, the optical system uses surface matching for patient alignment. The relative accuracy of these two methods has not yet been sufficiently investigated. This study aims to investigate the theoretical accuracy of the surface registration based on a simulation study using patient data. Methods: This study compares the relative accuracymore » of surface and volumetric registration in head-and-neck RT. The authors examined 26 patient data sets, each consisting of planning CT data acquired before treatment and patient setup CBCT data acquired at the time of treatment. As input data of surface registration, patient’s skin surfaces were created by contouring patient skin from planning CT and treatment CBCT. Surface registration was performed using the iterative closest points algorithm by point–plane closest, which minimizes the normal distance between source points and target surfaces. Six degrees of freedom (three translations and three rotations) were used in both surface and volumetric registrations and the results were compared. The accuracy of each method was estimated by digital phantom tests. Results: Based on the results of 26 patients, the authors found that the average and maximum root-mean-square translation deviation between the surface and volumetric registrations were 2.7 and 5.2 mm, respectively. The residual error of the surface registration was calculated to have an average of 0.9 mm and a maximum of 1.7 mm. Conclusions: Surface registration may lead to results different from those of the conventional volumetric registration. Only limited accuracy can be achieved for patient

  19. Absolute pitch among students at the Shanghai Conservatory of Music: a large-scale direct-test study.

    PubMed

    Deutsch, Diana; Li, Xiaonuo; Shen, Jing

    2013-11-01

    This paper reports a large-scale direct-test study of absolute pitch (AP) in students at the Shanghai Conservatory of Music. Overall note-naming scores were very high, with high scores correlating positively with early onset of musical training. Students who had begun training at age ≤5 yr scored 83% correct not allowing for semitone errors and 90% correct allowing for semitone errors. Performance levels were higher for white key pitches than for black key pitches. This effect was greater for orchestral performers than for pianists, indicating that it cannot be attributed to early training on the piano. Rather, accuracy in identifying notes of different names (C, C#, D, etc.) correlated with their frequency of occurrence in a large sample of music taken from the Western tonal repertoire. There was also an effect of pitch range, so that performance on tones in the two-octave range beginning on Middle C was higher than on tones in the octave below Middle C. In addition, semitone errors tended to be on the sharp side. The evidence also ran counter to the hypothesis, previously advanced by others, that the note A plays a special role in pitch identification judgments.

  20. Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation.

    PubMed

    Zimbelman, Eloise G; Keefe, Robert F

    2018-01-01

    Real-time positioning on mobile devices using global navigation satellite system (GNSS) technology paired with radio frequency (RF) transmission (GNSS-RF) may help to improve safety on logging operations by increasing situational awareness. However, GNSS positional accuracy for ground workers in motion may be reduced by multipath error, satellite signal obstruction, or other factors. Radio propagation of GNSS locations may also be impacted due to line-of-sight (LOS) obstruction in remote, forested areas. The objective of this study was to characterize the effects of forest stand characteristics, topography, and other LOS obstructions on the GNSS accuracy and radio signal propagation quality of multiple Raveon Atlas PT GNSS-RF transponders functioning as a network in a range of forest conditions. Because most previous research with GNSS in forestry has focused on stationary units, we chose to analyze units in motion by evaluating the time-to-signal accuracy of geofence crossings in 21 randomly-selected stands on the University of Idaho Experimental Forest. Specifically, we studied the effects of forest stand characteristics, topography, and LOS obstructions on (1) the odds of missed GNSS-RF signals, (2) the root mean squared error (RMSE) of Atlas PTs, and (3) the time-to-signal accuracy of safety geofence crossings in forested environments. Mixed-effects models used to analyze the data showed that stand characteristics, topography, and obstructions in the LOS affected the odds of missed radio signals while stand variables alone affected RMSE. Both stand characteristics and topography affected the accuracy of geofence alerts.

  1. Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation

    PubMed Central

    2018-01-01

    Real-time positioning on mobile devices using global navigation satellite system (GNSS) technology paired with radio frequency (RF) transmission (GNSS-RF) may help to improve safety on logging operations by increasing situational awareness. However, GNSS positional accuracy for ground workers in motion may be reduced by multipath error, satellite signal obstruction, or other factors. Radio propagation of GNSS locations may also be impacted due to line-of-sight (LOS) obstruction in remote, forested areas. The objective of this study was to characterize the effects of forest stand characteristics, topography, and other LOS obstructions on the GNSS accuracy and radio signal propagation quality of multiple Raveon Atlas PT GNSS-RF transponders functioning as a network in a range of forest conditions. Because most previous research with GNSS in forestry has focused on stationary units, we chose to analyze units in motion by evaluating the time-to-signal accuracy of geofence crossings in 21 randomly-selected stands on the University of Idaho Experimental Forest. Specifically, we studied the effects of forest stand characteristics, topography, and LOS obstructions on (1) the odds of missed GNSS-RF signals, (2) the root mean squared error (RMSE) of Atlas PTs, and (3) the time-to-signal accuracy of safety geofence crossings in forested environments. Mixed-effects models used to analyze the data showed that stand characteristics, topography, and obstructions in the LOS affected the odds of missed radio signals while stand variables alone affected RMSE. Both stand characteristics and topography affected the accuracy of geofence alerts. PMID:29324794

  2. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  3. Jasminum sambac flower absolutes from India and China--geographic variations.

    PubMed

    Braun, Norbert A; Sim, Sherina

    2012-05-01

    Seven Jasminum sambac flower absolutes from different locations in the southern Indian state of Tamil Nadu were analyzed using GC and GC-MS. Focus was placed on 41 key ingredients to investigate geographic variations in this species. These seven absolutes were compared with an Indian bud absolute and commercially available J. sambac flower absolutes from India and China. All absolutes showed broad variations for the 10 main ingredients between 8% and 96%. In addition, the odor of Indian and Chinese J. sambac flower absolutes were assessed.

  4. Advancing Absolute Calibration for JWST and Other Applications

    NASA Astrophysics Data System (ADS)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  5. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  6. Measuring the Accuracy of Simple Evolving Connectionist System with Varying Distance Formulas

    NASA Astrophysics Data System (ADS)

    Al-Khowarizmi; Sitompul, O. S.; Suherman; Nababan, E. B.

    2017-12-01

    Simple Evolving Connectionist System (SECoS) is a minimal implementation of Evolving Connectionist Systems (ECoS) in artificial neural networks. The three-layer network architecture of the SECoS could be built based on the given input. In this study, the activation value for the SECoS learning process, which is commonly calculated using normalized Hamming distance, is also calculated using normalized Manhattan distance and normalized Euclidean distance in order to compare the smallest error value and best learning rate obtained. The accuracy of measurement resulted by the three distance formulas are calculated using mean absolute percentage error. In the training phase with several parameters, such as sensitivity threshold, error threshold, first learning rate, and second learning rate, it was found that normalized Euclidean distance is more accurate than both normalized Hamming distance and normalized Manhattan distance. In the case of beta fibrinogen gene -455 G/A polymorphism patients used as training data, the highest mean absolute percentage error value is obtained with normalized Manhattan distance compared to normalized Euclidean distance and normalized Hamming distance. However, the differences are very small that it can be concluded that the three distance formulas used in SECoS do not have a significant effect on the accuracy of the training results.

  7. Numerical evaluation of magnetic absolute measurements with arbitrarily distributed DI-fluxgate theodolite orientations

    NASA Astrophysics Data System (ADS)

    Brunke, Heinz-Peter; Matzka, Jürgen

    2018-01-01

    At geomagnetic observatories the absolute measurements are needed to determine the calibration parameters of the continuously recording vector magnetometer (variometer). Absolute measurements are indispensable for determining the vector of the geomagnetic field over long periods of time. A standard DI (declination, inclination) measuring scheme for absolute measurements establishes routines in magnetic observatories. The traditional measuring schema uses a fixed number of eight orientations (Jankowski et al., 1996).

    We present a numerical method, allowing for the evaluation of an arbitrary number (minimum of five as there are five independent parameters) of telescope orientations. Our method provides D, I and Z base values and calculated error bars of them.

    A general approach has significant advantages. Additional measurements may be seamlessly incorporated for higher accuracy. Individual erroneous readings are identified and can be discarded without invalidating the entire data set. A priori information can be incorporated. We expect the general method to also ease requirements for automated DI-flux measurements. The method can reveal certain properties of the DI theodolite which are not captured by the conventional method.

    Based on the alternative evaluation method, a new faster and less error-prone measuring schema is presented. It avoids needing to calculate the magnetic meridian prior to the inclination measurements.

    Measurements in the vicinity of the magnetic equator are possible with theodolites and without a zenith ocular.

    The implementation of the method in MATLAB is available as source code at the GFZ Data Center Brunke (2017).

  8. Greater absolute risk for all subtypes of breast cancer in the US than Malaysia.

    PubMed

    Horne, Hisani N; Beena Devi, C R; Sung, Hyuna; Tang, Tieng Swee; Rosenberg, Philip S; Hewitt, Stephen M; Sherman, Mark E; Anderson, William F; Yang, Xiaohong R

    2015-01-01

    Hormone receptor (HR) negative breast cancers are relatively more common in low-risk than high-risk countries and/or populations. However, the absolute variations between these different populations are not well established given the limited number of cancer registries with incidence rate data by breast cancer subtype. We, therefore, used two unique population-based resources with molecular data to compare incidence rates for the 'intrinsic' breast cancer subtypes between a low-risk Asian population in Malaysia and high-risk non-Hispanic white population in the National Cancer Institute's surveillance, epidemiology, and end results 18 registries database (SEER 18). The intrinsic breast cancer subtypes were recapitulated with the joint expression of the HRs (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor-2 (HER2). Invasive breast cancer incidence rates overall were fivefold greater in SEER 18 than in Malaysia. The majority of breast cancers were HR-positive in SEER 18 and HR-negative in Malaysia. Notwithstanding the greater relative distribution for HR-negative cancers in Malaysia, there was a greater absolute risk for all subtypes in SEER 18; incidence rates were nearly 7-fold higher for HR-positive and 2-fold higher for HR-negative cancers in SEER 18. Despite the well-established relative breast cancer differences between low-risk and high-risk countries and/or populations, there was a greater absolute risk for HR-positive and HR-negative subtypes in the US than Malaysia. Additional analytical studies are sorely needed to determine the factors responsible for the elevated risk of all subtypes of breast cancer in high-risk countries like the United States.

  9. First absolute wind measurements in the middle atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Lellouch, Emmanuel; Goldstein, Jeffrey J.; Bougher, Stephen W.; Paubert, Gabriel; Rosenqvist, Jan

    1991-12-01

    The first absolute wind measurements in the middle atmosphere of Mars (40-70 km) were obtained from Doppler shifts in the J = 2-1 CO transition at 230.538 GHz. During the 1988 opposition, this line was observed at 100 kHz resolution with the IRAM 30 m telescope. The 12-arcsec FWHM beam of the facility allowed spatial resolution of the Martian disk (23.8 arcsec). The high S/N of the data allowed measurement of winds with a 1-sigma absolute line-of-sight accuracy of 20 m/s. The measurements, performed during southern summer solstice, stress the Southern Hemisphere and clearly indicate a global easterlies flow. If modeled by a broad easterly jet with a maximum centered at 20 S, and extending 80 deg in latitude, the jet core velocity is found to have a chi-sq minimum at 160 m/s, generally consistent with predictions for broad summer easterly jets near 50 km as proposed by theoretical models. If the flow is modeled instead by a planet-wide solid rotator zonal flow which is restricted to the Southern Hemisphere or equatorial regions, the velocity of the easterlies is nearly the same. These wind measurements, together with the temperature measurements of Deming et al. (1986), provide the first experimental rough picture of the middle atmosphere circulation of Mars, in general agreement with the Jaquin axisymmetric middle atmosphere model and the current Mars GCM model of Pollack et al. (1990).

  10. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  11. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry.

    PubMed

    Wang, Guochao; Tan, Lilong; Yan, Shuhua

    2018-02-07

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  12. Absolute High-Precision Localisation of an Unmanned Ground Vehicle by Using Real-Time Aerial Video Imagery for Geo-referenced Orthophoto Registration

    NASA Astrophysics Data System (ADS)

    Kuhnert, Lars; Ax, Markus; Langer, Matthias; Nguyen van, Duong; Kuhnert, Klaus-Dieter

    This paper describes an absolute localisation method for an unmanned ground vehicle (UGV) if GPS is unavailable for the vehicle. The basic idea is to combine an unmanned aerial vehicle (UAV) to the ground vehicle and use it as an external sensor platform to achieve an absolute localisation of the robotic team. Beside the discussion of the rather naive method directly using the GPS position of the aerial robot to deduce the ground robot's position the main focus of this paper lies on the indirect usage of the telemetry data of the aerial robot combined with live video images of an onboard camera to realise a registration of local video images with apriori registered orthophotos. This yields to a precise driftless absolute localisation of the unmanned ground vehicle. Experiments with our robotic team (AMOR and PSYCHE) successfully verify this approach.

  13. Assessment of the Accuracy of the Bethe-Salpeter (BSE/GW) Oscillator Strengths.

    PubMed

    Jacquemin, Denis; Duchemin, Ivan; Blondel, Aymeric; Blase, Xavier

    2016-08-09

    Aiming to assess the accuracy of the oscillator strengths determined at the BSE/GW level, we performed benchmark calculations using three complementary sets of molecules. In the first, we considered ∼80 states in Thiel's set of compounds and compared the BSE/GW oscillator strengths to recently determined ADC(3/2) and CC3 reference values. The second set includes the oscillator strengths of the low-lying states of 80 medium to large dyes for which we have determined CC2/aug-cc-pVTZ values. The third set contains 30 anthraquinones for which experimental oscillator strengths are available. We find that BSE/GW accurately reproduces the trends for all series with excellent correlation coefficients to the benchmark data and generally very small errors. Indeed, for Thiel's sets, the BSE/GW values are more accurate (using CC3 references) than both CC2 and ADC(3/2) values on both absolute and relative scales. For all three sets, BSE/GW errors also tend to be nicely spread with almost equal numbers of positive and negative deviations as compared to reference values.

  14. Improvement of Accuracy for Background Noise Estimation Method Based on TPE-AE

    NASA Astrophysics Data System (ADS)

    Itai, Akitoshi; Yasukawa, Hiroshi

    This paper proposes a method of a background noise estimation based on the tensor product expansion with a median and a Monte carlo simulation. We have shown that a tensor product expansion with absolute error method is effective to estimate a background noise, however, a background noise might not be estimated by using conventional method properly. In this paper, it is shown that the estimate accuracy can be improved by using proposed methods.

  15. Decision Accuracy and the Role of Spatial Interaction in Opinion Dynamics

    NASA Astrophysics Data System (ADS)

    Torney, Colin J.; Levin, Simon A.; Couzin, Iain D.

    2013-04-01

    The opinions and actions of individuals within interacting groups are frequently determined by both social and personal information. When sociality (or the pressure to conform) is strong and individual preferences are weak, groups will remain cohesive until a consensus decision is reached. When group decisions are subject to a bias, representing for example private information known by some members of the population or imperfect information known by all, then the accuracy achieved for a fixed level of bias will increase with population size. In this work we determine how the scaling between accuracy and group size can be related to the microscopic properties of the decision-making process. By simulating a spatial model of opinion dynamics we show that the relationship between the instantaneous fraction of leaders in the population ( L), system size ( N), and accuracy depends on the frequency of individual opinion switches and the level of population viscosity. When social mixing is slow, and individual opinion changes are frequent, accuracy is determined by the absolute number of informed individuals. As mixing rates increase, or the rate of opinion updates decrease, a transition occurs to a regime where accuracy is determined by the value of L√{ N}. We investigate the transition between different scaling regimes analytically by examining a well-mixed limit.

  16. Accuracy of Robotic Radiosurgical Liver Treatment Throughout the Respiratory Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, Jeff D.; Wong, Raimond; Swaminath, Anand

    Purpose: To quantify random uncertainties in robotic radiosurgical treatment of liver lesions with real-time respiratory motion management. Methods and Materials: We conducted a retrospective analysis of 27 liver cancer patients treated with robotic radiosurgery over 118 fractions. The robotic radiosurgical system uses orthogonal x-ray images to determine internal target position and correlates this position with an external surrogate to provide robotic corrections of linear accelerator positioning. Verification and update of this internal–external correlation model was achieved using periodic x-ray images collected throughout treatment. To quantify random uncertainties in targeting, we analyzed logged tracking information and isolated x-ray images collected immediately beforemore » beam delivery. For translational correlation errors, we quantified the difference between correlation model–estimated target position and actual position determined by periodic x-ray imaging. To quantify prediction errors, we computed the mean absolute difference between the predicted coordinates and actual modeled position calculated 115 milliseconds later. We estimated overall random uncertainty by quadratically summing correlation, prediction, and end-to-end targeting errors. We also investigated relationships between tracking errors and motion amplitude using linear regression. Results: The 95th percentile absolute correlation errors in each direction were 2.1 mm left–right, 1.8 mm anterior–posterior, 3.3 mm cranio–caudal, and 3.9 mm 3-dimensional radial, whereas 95th percentile absolute radial prediction errors were 0.5 mm. Overall 95th percentile random uncertainty was 4 mm in the radial direction. Prediction errors were strongly correlated with modeled target amplitude (r=0.53-0.66, P<.001), whereas only weak correlations existed for correlation errors. Conclusions: Study results demonstrate that model correlation errors are the primary random source of

  17. Accuracy of Implant Position Transfer and Surface Detail Reproduction with Different Impression Materials and Techniques

    PubMed Central

    Alikhasi, Marzieh; Siadat, Hakimeh; Kharazifard, Mohammad Javad

    2015-01-01

    Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials. Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE) and 10 regular-body polyvinyl siloxane (PVS) impressions with square and conical transfer copings using open tray and closed tray techniques were made for each group. Impressions were poured with type IV stone, and linear and angular displacements of the replica heads were evaluated using a coordinate measuring machine (CMM). Also, accurate reproduction of the grooves was evaluated by a video measuring machine (VMM). These measurements were compared with the measurements calculated on the reference model that served as control, and the data were analyzed with two-way ANOVA and t-test at P= 0.05. Results: There was less linear displacement for PVS and less angular displacement for PE in closed-tray technique, and less linear displacement for PE in open tray technique (P<0.001). Also, the open tray technique showed less angular displacement with the use of PVS impression material. Detail reproduction accuracy was the same in all the groups (P>0.05). Conclusion: The open tray technique was more accurate using PE, and also both closed tray and open tray techniques had acceptable results with the use of PVS. The choice of impression material and technique made no significant difference in surface detail reproduction. PMID:27252761

  18. Development of X-Y servo pneumatic-piezoelectric hybrid actuators for position control with high response, large stroke and nanometer accuracy.

    PubMed

    Chiang, Mao-Hsiung

    2010-01-01

    This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.

  19. Development of X-Y Servo Pneumatic-Piezoelectric Hybrid Actuators for Position Control with High Response, Large Stroke and Nanometer Accuracy

    PubMed Central

    Chiang, Mao-Hsiung

    2010-01-01

    This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally. PMID:22319266

  20. Accuracy of conventional radiography and computed tomography in predicting implant position in relation to the vertebral canal in dogs.

    PubMed

    Hettlich, Bianca F; Fosgate, Geoffrey T; Levine, Jonathan M; Young, Benjamin D; Kerwin, Sharon C; Walker, Michael; Griffin, Jay; Maierl, Johann

    2010-08-01

    To compare the accuracy of radiography and computed tomography (CT) in predicting implant position in relation to the vertebral canal in the cervical and thoracolumbar vertebral column. In vitro imaging and anatomic study. Medium-sized canine cadaver vertebral columns (n=12). Steinmann pins were inserted into cervical and thoracolumbar vertebrae based on established landmarks but without predetermination of vertebral canal violation. Radiographs and CT images were obtained and evaluated by 6 individuals. A random subset of pins was evaluated for ability to distinguish left from right pins on radiographs. The ability to correctly identify vertebral canal penetration for all pins was assessed both on radiographs and CT. Spines were then anatomically prepared and visual examination of pin penetration into the canal served as the gold standard. Left/right accuracy was 93.1%. Overall sensitivity of radiographs and CT to detect vertebral canal penetration by an implant were significantly different and estimated as 50.7% and 93.4%, respectively (P<.0001). Sensitivity was significantly higher for complete versus partial penetration and for radiologists compared with nonradiologists for both imaging modalities. Overall specificity of radiographs and CT to detect vertebral canal penetration was 82.9% and 86.4%, respectively (P=.049). CT was superior to radiographic assessment and is the recommended imaging modality to assess penetration into the vertebral canal. CT is significantly more accurate in identifying vertebral canal violation by Steinmann pins and should be performed postoperatively to assess implant position.

  1. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

    2016-10-17

    Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

  2. Absolute vibrational numbering from isotope shifts in fragmentary spectroscopic data

    NASA Astrophysics Data System (ADS)

    Pashov, A.; Kowalczyk, P.; Jastrzebski, W.

    2018-05-01

    We discuss application of the isotope effect to establish the absolute vibrational numbering in electronic states of diatomic molecules. This is illustrated by examples of states with potential energy curves of both regular and irregular shape, with one or two potential minima. The minimum number of spectroscopic data (either term values or spectral line positions) necessary to provide a unique numbering is considered. We show that at favourable conditions just four term energies (or spectral lines) in one isotopologue and one term energy in the other suffice.

  3. Linking Comparisons of Absolute Gravimeters: A Proof of Concept for a new Global Absolute Gravity Reference System.

    NASA Astrophysics Data System (ADS)

    Wziontek, H.; Palinkas, V.; Falk, R.; Vaľko, M.

    2016-12-01

    Since decades, absolute gravimeters are compared on a regular basis on an international level, starting at the International Bureau for Weights and Measures (BIPM) in 1981. Usually, these comparisons are based on constant reference values deduced from all accepted measurements acquired during the comparison period. Temporal changes between comparison epochs are usually not considered. Resolution No. 2, adopted by IAG during the IUGG General Assembly in Prague 2015, initiates the establishment of a Global Absolute Gravity Reference System based on key comparisons of absolute gravimeters (AG) under the International Committee for Weights and Measures (CIPM) in order to establish a common level in the microGal range. A stable and unique reference frame can only be achieved, if different AG are taking part in different kind of comparisons. Systematic deviations between the respective comparison reference values can be detected, if the AG can be considered stable over time. The continuous operation of superconducting gravimeters (SG) on selected stations further supports the temporal link of comparison reference values by establishing a reference function over time. By a homogenous reprocessing of different comparison epochs and including AG and SG time series at selected stations, links between several comparisons will be established and temporal comparison reference functions will be derived. By this, comparisons on a regional level can be traced to back to the level of key comparisons, providing a reference for other absolute gravimeters. It will be proved and discussed, how such a concept can be used to support the future absolute gravity reference system.

  4. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.

    PubMed

    Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki

    2016-03-01

    The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference

  5. Microwave measurements of the absolute values of absorption by water vapour in the atmosphere.

    PubMed

    Hogg, D C; Guiraud, F O

    1979-05-31

    MEASUREMENT of the absolute value of absorption by water vapour at microwave frequencies is difficult because the effect is so small. Far in the wings of the absorption lines, in the so-called 'windows' of the spectrum, it is especially difficult to achieve high accuracy in the free atmosphere. But it is in these windows that the behaviour of the absorption is important from both applied and scientific points of view. Satellite communications, remote sensing of the atmosphere, and radioastronomy, are all influenced by this behaviour. Measurements on an Earth-space path are reported here; the results indicate a nonlinear relationship between absorption and water-vapour content.

  6. High Accuracy Thermal Expansion Measurement At Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Presson, Joan; Tucker, James; Daspit, Gregory; Nein, Max

    2003-01-01

    A new, interferometer based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program. Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  7. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  8. Social power facilitates the effect of prosocial orientation on empathic accuracy.

    PubMed

    Côté, Stéphane; Kraus, Michael W; Cheng, Bonnie Hayden; Oveis, Christopher; van der Löwe, Ilmo; Lian, Hua; Keltner, Dacher

    2011-08-01

    Power increases the tendency to behave in a goal-congruent fashion. Guided by this theoretical notion, we hypothesized that elevated power would strengthen the positive association between prosocial orientation and empathic accuracy. In 3 studies with university and adult samples, prosocial orientation was more strongly associated with empathic accuracy when distinct forms of power were high than when power was low. In Study 1, a physiological indicator of prosocial orientation, respiratory sinus arrhythmia, exhibited a stronger positive association with empathic accuracy in a face-to-face interaction among dispositionally high-power individuals. In Study 2, experimentally induced prosocial orientation increased the ability to accurately judge the emotions of a stranger but only for individuals induced to feel powerful. In Study 3, a trait measure of prosocial orientation was more strongly related to scores on a standard test of empathic accuracy among employees who occupied high-power positions within an organization. Study 3 further showed a mediated relationship between prosocial orientation and career satisfaction through empathic accuracy among employees in high-power positions but not among employees in lower power positions. Discussion concentrates upon the implications of these findings for studies of prosociality, power, and social behavior.

  9. Spectra of random operators with absolutely continuous integrated density of states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rio, Rafael del, E-mail: delrio@iimas.unam.mx, E-mail: delriomagia@gmail.com

    2014-04-15

    The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.

  10. Absolute Calibration of the AXAF Telescope Effective Area

    NASA Technical Reports Server (NTRS)

    Kellogg, E.; Cohen, L.; Edgar, R.; Evans, I.; Freeman, M.; Gaetz, T.; Jerius, D.; McDermott, W. C.; McKinnon, P.; Murray, S.; hide

    1997-01-01

    The prelaunch calibration of AXAF encompasses many aspects of the telescope. In principle, all that is needed is the complete point response function. This is, however, a function of energy, off-axis angle of the source, and operating mode of the facility. No single measurement would yield the entire result. Also, any calibration made prior to launch will be affected by changes in conditions after launch, such as the change from one g to zero g. The reflectivity of the mirror and perhaps even the detectors can change as well, for example by addition or removal of small amounts of material deposited on their surfaces. In this paper, we give a broad view of the issues in performing such a calibration, and discuss how they are being addressed in prelaunch preparation of AXAF. As our title indicates, we concentrate here on the total throughput of the observatory. This can be thought of as the integral of the point response function, i.e. the encircled energy, out ot the largest practical solid angle for an observation. Since there is no standard x-ray source in the sky whose flux is known to the -1% accuracy we are trying to achieve, we must do this calibration on the ground. we also must provide a means for monitoring any possible changes in this calibration from pre-launch until on-orbit operation can transfer the calibration to a celestial x-ray source whose emission is stable. In this paper, we analyze the elements of the absolute throughput calibration, which we call Effective Area. We review the requirements for calibrations of components or subsystems of the AXAF facility, including mirror, detectors, and gratings. We show how it is necessary to calibrate this ground-based detection system at standard man-made x-ray sources, such as electron storage rings. We present the status of all these calibrations, with indications of the measurements remaining to be done, even though the measurements on the AXAF flight optics and detectors will have been completed by the

  11. The Assessment of Protective Behavioral Strategies: Comparing the Absolute Frequency and Contingent Frequency Response Scales

    PubMed Central

    Kite, Benjamin A.; Pearson, Matthew R.; Henson, James M.

    2016-01-01

    The purpose of the present studies was to examine the effects of response scale on the observed relationships between protective behavioral strategies (PBS) measures and alcohol-related outcomes. We reasoned that an ‘absolute frequency’ scale (stem: “how many times…”; response scale: 0 times to 11+ times) conflates the frequency of using PBS with the frequency of consuming alcohol; thus, we hypothesized that the use of an absolute frequency response scale would result in positive relationships between types of PBS and alcohol-related outcomes. Alternatively, a ‘contingent frequency’ scale (stem: “When drinking…how often…”; response scale: never to always) does not conflate frequency of alcohol use with use of PBS; therefore, we hypothesized that use of a contingent frequency scale would result in negative relationships between use of PBS and alcohol-related outcomes. Two published measures of PBS were used across studies: the Protective Behavioral Strategies Survey (PBSS) and the Strategy Questionnaire (SQ). Across three studies, we demonstrate that when measured using a contingent frequency response scale, PBS measures relate negatively to alcohol-related outcomes in a theoretically consistent manner; however, when PBS measures were measured on an absolute frequency response scale, they were non-significantly or positively related to alcohol-related outcomes. We discuss the implications of these findings for the assessment of PBS. PMID:23438243

  12. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  13. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry

    PubMed Central

    Tan, Lilong; Yan, Shuhua

    2018-01-01

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions. PMID:29414897

  14. Precise Absolute Astrometry from the VLBA Imaging and Polarimetry Survey at 5 GHz

    NASA Technical Reports Server (NTRS)

    Petrov, L.; Taylor, G. B.

    2011-01-01

    We present accurate positions for 857 sources derived from the astrometric analysis of 16 eleven-hour experiments from the Very Long Baseline Array imaging and polarimetry survey at 5 GHz (VIPS). Among the observed sources, positions of 430 objects were not previously determined at milliarcsecond-level accuracy. For 95% of the sources the uncertainty of their positions ranges from 0.3 to 0.9 mas, with a median value of 0.5 mas. This estimate of accuracy is substantiated by the comparison of positions of 386 sources that were previously observed in astrometric programs simultaneously at 2.3/8.6 GHz. Surprisingly, the ionosphere contribution to group delay was adequately modeled with the use of the total electron content maps derived from GPS observations and only marginally affected estimates of source coordinates.

  15. Evaluation of a portable markerless finger position capture device: accuracy of the Leap Motion controller in healthy adults.

    PubMed

    Tung, James Y; Lulic, Tea; Gonzalez, Dave A; Tran, Johnathan; Dickerson, Clark R; Roy, Eric A

    2015-05-01

    Although motion analysis is frequently employed in upper limb motor assessment (e.g. visually-guided reaching), they are resource-intensive and limited to laboratory settings. This study evaluated the reliability and accuracy of a new markerless motion capture device, the Leap Motion controller, to measure finger position. Testing conditions that influence reliability and agreement between the Leap and a research-grade motion capture system were examined. Nine healthy young adults pointed to 15 targets on a computer screen under two conditions: (1) touching the target (touch) and (2) 4 cm away from the target (no-touch). Leap data was compared to an Optotrak marker attached to the index finger. Across all trials, root mean square (RMS) error of the Leap system was 17.30  ±  9.56 mm (mean ± SD), sampled at 65.47  ±  21.53 Hz. The % viable trials and mean sampling rate were significantly lower in the touch condition (44% versus 64%, p < 0.001; 52.02  ±  2.93 versus 73.98  ±  4.48 Hz, p = 0.003). While linear correlations were high (horizontal: r(2) = 0.995, vertical r(2) = 0.945), the limits of agreement were large (horizontal: -22.02 to +26.80 mm, vertical: -29.41 to +30.14 mm). While not as precise as more sophisticated optical motion capture systems, the Leap Motion controller is sufficiently reliable for measuring motor performance in pointing tasks that do not require high positional accuracy (e.g. reaction time, Fitt's, trails, bimanual coordination).

  16. Datum maintenance of the main Egyptian geodetic control networks by utilizing Precise Point Positioning "PPP" technique

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elmewafey, Mahmoud; Farahan, Magda H.

    2016-06-01

    A geodetic control network is the wire-frame or the skeleton on which continuous and consistent mapping, Geographic Information Systems (GIS), and surveys are based. Traditionally, geodetic control points are established as permanent physical monuments placed in the ground and precisely marked, located, and documented. With the development of satellite surveying methods and their availability and high degree of accuracy, a geodetic control network could be established by using GNSS and referred to an international terrestrial reference frame used as a three-dimensional geocentric reference system for a country. Based on this concept, in 1992, the Egypt Survey Authority (ESA) established two networks, namely High Accuracy Reference Network (HARN) and the National Agricultural Cadastral Network (NACN). To transfer the International Terrestrial Reference Frame to the HARN, the HARN was connected with four IGS stations. The processing results were 1:10,000,000 (Order A) for HARN and 1:1,000,000 (Order B) for NACN relative network accuracy standard between stations defined in ITRF1994 Epoch1996. Since 1996, ESA did not perform any updating or maintaining works for these networks. To see how non-performing maintenance degrading the values of the HARN and NACN, the available HARN and NACN stations in the Nile Delta were observed. The Processing of the tested part was done by CSRS-PPP Service based on utilizing Precise Point Positioning "PPP" and Trimble Business Center "TBC". The study shows the feasibility of Precise Point Positioning in updating the absolute positioning of the HARN network and its role in updating the reference frame (ITRF). The study also confirmed the necessity of the absent role of datum maintenance of Egypt networks.

  17. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  18. Absolute pitch in a four-year-old boy with autism.

    PubMed

    Brenton, James N; Devries, Seth P; Barton, Christine; Minnich, Heike; Sokol, Deborah K

    2008-08-01

    Absolute pitch is the ability to identify the pitch of an isolated tone. We report on a 4-year-old boy with autism and absolute pitch, one of the youngest reported in the literature. Absolute pitch is thought to be attributable to a single gene, transmitted in an autosomal-dominant fashion. The association of absolute pitch with autism raises the speculation that this talent could be linked to a genetically distinct subset of children with autism. Further, the identification of absolute pitch in even young children with autism may lead to a lifelong skill.

  19. The accuracy of general practitioner workforce projections

    PubMed Central

    2013-01-01

    Background Health workforce projections are important instruments to prevent imbalances in the health workforce. For both the tenability and further development of these projections, it is important to evaluate the accuracy of workforce projections. In the Netherlands, health workforce projections have been done since 2000 to support health workforce planning. What is the accuracy of the techniques of these Dutch general practitioner workforce projections? Methods We backtested the workforce projection model by comparing the ex-post projected number of general practitioners with the observed number of general practitioners between 1998 and 2011. Averages of historical data were used for all elements except for inflow in training. As the required training inflow is the key result of the workforce planning model, and has actually determined past adjustments of training inflow, the accuracy of the model was backtested using the observed training inflow and not an average of historical data to avoid the interference of past policy decisions. The accuracy of projections with different lengths of projection horizon and base period (on which the projections are based) was tested. Results The workforce projection model underestimated the number of active Dutch general practitioners in most years. The mean absolute percentage errors range from 1.9% to 14.9%, with the projections being more accurate in more recent years. Furthermore, projections with a shorter projection horizon have a higher accuracy than those with a longer horizon. Unexpectedly, projections with a shorter base period have a higher accuracy than those with a longer base period. Conclusions According to the results of the present study, forecasting the size of the future workforce did not become more difficult between 1998 and 2011, as we originally expected. Furthermore, the projections with a short projection horizon and a short base period are more accurate than projections with a longer projection

  20. Performance and Accuracy of Lightweight and Low-Cost GPS Data Loggers According to Antenna Positions, Fix Intervals, Habitats and Animal Movements

    PubMed Central

    Forin-Wiart, Marie-Amélie; Hubert, Pauline; Sirguey, Pascal; Poulle, Marie-Lazarine

    2015-01-01

    Recently developed low-cost Global Positioning System (GPS) data loggers are promising tools for wildlife research because of their affordability for low-budget projects and ability to simultaneously track a greater number of individuals compared with expensive built-in wildlife GPS. However, the reliability of these devices must be carefully examined because they were not developed to track wildlife. This study aimed to assess the performance and accuracy of commercially available GPS data loggers for the first time using the same methods applied to test built-in wildlife GPS. The effects of antenna position, fix interval and habitat on the fix-success rate (FSR) and location error (LE) of CatLog data loggers were investigated in stationary tests, whereas the effects of animal movements on these errors were investigated in motion tests. The units operated well and presented consistent performance and accuracy over time in stationary tests, and the FSR was good for all antenna positions and fix intervals. However, the LE was affected by the GPS antenna and fix interval. Furthermore, completely or partially obstructed habitats reduced the FSR by up to 80% in households and increased the LE. Movement across habitats had no effect on the FSR, whereas forest habitat influenced the LE. Finally, the mean FSR (0.90 ± 0.26) and LE (15.4 ± 10.1 m) values from low-cost GPS data loggers were comparable to those of built-in wildlife GPS collars (71.6% of fixes with LE < 10 m for motion tests), thus confirming their suitability for use in wildlife studies. PMID:26086958

  1. The interactive role of income (material position) and income rank (psychosocial position) in psychological distress: a 9-year longitudinal study of 30,000 UK parents.

    PubMed

    Garratt, Elisabeth A; Chandola, Tarani; Purdam, Kingsley; Wood, Alex M

    2016-10-01

    Parents face an increased risk of psychological distress compared with adults without children, and families with children also have lower average household incomes. Past research suggests that absolute income (material position) and income status (psychosocial position) influence psychological distress, but their combined effects on changes in psychological distress have not been examined. Whether absolute income interacts with income status to influence psychological distress are also key questions. We used fixed-effects panel models to examine longitudinal associations between psychological distress (measured on the Kessler scale) and absolute income, distance from the regional mean income, and regional income rank (a proxy for status) using data from 29,107 parents included in the UK Millennium Cohort Study (2003-2012). Psychological distress was determined by an interaction between absolute income and income rank: higher absolute income was associated with lower psychological distress across the income spectrum, while the benefits of higher income rank were evident only in the highest income parents. Parents' psychological distress was, therefore, determined by a combination of income-related material and psychosocial factors. Both material and psychosocial factors contribute to well-being. Higher absolute incomes were associated with lower psychological distress across the income spectrum, demonstrating the importance of material factors. Conversely, income status was associated with psychological distress only at higher absolute incomes, suggesting that psychosocial factors are more relevant to distress in more advantaged, higher income parents. Clinical interventions could, therefore, consider both the material and psychosocial impacts of income on psychological distress.

  2. Molecular Tools for Diagnosis of Visceral Leishmaniasis: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy

    PubMed Central

    de Ruiter, C. M.; van der Veer, C.; Leeflang, M. M. G.; Deborggraeve, S.; Lucas, C.

    2014-01-01

    Molecular methods have been proposed as highly sensitive tools for the detection of Leishmania parasites in visceral leishmaniasis (VL) patients. Here, we evaluate the diagnostic accuracy of these tools in a meta-analysis of the published literature. The selection criteria were original studies that evaluate the sensitivities and specificities of molecular tests for diagnosis of VL, adequate classification of study participants, and the absolute numbers of true positives and negatives derivable from the data presented. Forty studies met the selection criteria, including PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), and loop-mediated isothermal amplification (LAMP). The sensitivities of the individual studies ranged from 29 to 100%, and the specificities ranged from 25 to 100%. The pooled sensitivity of PCR in whole blood was 93.1% (95% confidence interval [CI], 90.0 to 95.2), and the specificity was 95.6% (95% CI, 87.0 to 98.6). The specificity was significantly lower in consecutive studies, at 63.3% (95% CI, 53.9 to 71.8), due either to true-positive patients not being identified by parasitological methods or to the number of asymptomatic carriers in areas of endemicity. PCR for patients with HIV-VL coinfection showed high diagnostic accuracy in buffy coat and bone marrow, ranging from 93.1 to 96.9%. Molecular tools are highly sensitive assays for Leishmania detection and may contribute as an additional test in the algorithm, together with a clear clinical case definition. We observed wide variety in reference standards and study designs and now recommend consecutively designed studies. PMID:24829226

  3. Local indicators of geocoding accuracy (LIGA): theory and application

    PubMed Central

    Jacquez, Geoffrey M; Rommel, Robert

    2009-01-01

    Background Although sources of positional error in geographic locations (e.g. geocoding error) used for describing and modeling spatial patterns are widely acknowledged, research on how such error impacts the statistical results has been limited. In this paper we explore techniques for quantifying the perturbability of spatial weights to different specifications of positional error. Results We find that a family of curves describes the relationship between perturbability and positional error, and use these curves to evaluate sensitivity of alternative spatial weight specifications to positional error both globally (when all locations are considered simultaneously) and locally (to identify those locations that would benefit most from increased geocoding accuracy). We evaluate the approach in simulation studies, and demonstrate it using a case-control study of bladder cancer in south-eastern Michigan. Conclusion Three results are significant. First, the shape of the probability distributions of positional error (e.g. circular, elliptical, cross) has little impact on the perturbability of spatial weights, which instead depends on the mean positional error. Second, our methodology allows researchers to evaluate the sensitivity of spatial statistics to positional accuracy for specific geographies. This has substantial practical implications since it makes possible routine sensitivity analysis of spatial statistics to positional error arising in geocoded street addresses, global positioning systems, LIDAR and other geographic data. Third, those locations with high perturbability (most sensitive to positional error) and high leverage (that contribute the most to the spatial weight being considered) will benefit the most from increased positional accuracy. These are rapidly identified using a new visualization tool we call the LIGA scatterplot. Herein lies a paradox for spatial analysis: For a given level of positional error increasing sample density to more accurately

  4. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  5. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).

  6. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  7. Image-based gradient non-linearity characterization to determine higher-order spherical harmonic coefficients for improved spatial position accuracy in magnetic resonance imaging.

    PubMed

    Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Shu, Yunhong; Tryggestad, Erik J; Gunter, Jeffrey L; McGee, Kiaran P; Litwiller, Daniel V; Hwang, Ken-Pin; Bernstein, Matt A

    2017-05-01

    Spatial position accuracy in magnetic resonance imaging (MRI) is an important concern for a variety of applications, including radiation therapy planning, surgical planning, and longitudinal studies of morphologic changes to study neurodegenerative diseases. Spatial accuracy is strongly influenced by gradient linearity. This work presents a method for characterizing the gradient non-linearity fields on a per-system basis, and using this information to provide improved and higher-order (9th vs. 5th) spherical harmonic coefficients for better spatial accuracy in MRI. A large fiducial phantom containing 5229 water-filled spheres in a grid pattern is scanned with the MR system, and the positions all the fiducials are measured and compared to the corresponding ground truth fiducial positions as reported from a computed tomography (CT) scan of the object. Systematic errors from off-resonance (i.e., B0) effects are minimized with the use of increased receiver bandwidth (±125kHz) and two acquisitions with reversed readout gradient polarity. The spherical harmonic coefficients are estimated using an iterative process, and can be subsequently used to correct for gradient non-linearity. Test-retest stability was assessed with five repeated measurements on a single scanner, and cross-scanner variation on four different, identically-configured 3T wide-bore systems. A decrease in the root-mean-square error (RMSE) over a 50cm diameter spherical volume from 1.80mm to 0.77mm is reported here in the case of replacing the vendor's standard 5th order spherical harmonic coefficients with custom fitted 9th order coefficients, and from 1.5mm to 1mm by extending custom fitted 5th order correction to the 9th order. Minimum RMSE varied between scanners, but was stable with repeated measurements in the same scanner. The results suggest that the proposed methods may be used on a per-system basis to more accurately calibrate MR gradient non-linearity coefficients when compared to vendor

  8. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montes-Rodríguez, María de los Ángeles, E-mail: angy24538@yahoo.com; Mitsoura, Eleni; Hernández-Bojórquez, Mariana

    2014-11-07

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as themore » isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.« less

  9. Angles-Only Navigation: Position and Velocity Solution from Absolute Triangulation

    DTIC Science & Technology

    2011-01-01

    geocentric position vectors. Using two vectors derived from each such observation (see next section), a solution for a portion of the boat’s track was...t)x0 describes the curvature of the path in the direction x 0, which, for a geocentric coordinate system and /(t) < 0, will be toward the center of...finite distances, with geocentric coordinates known to a meter or better (readily available on the Internet) a straightfor- ward triangulation method

  10. How calibration and reference spectra affect the accuracy of absolute soft X-ray solar irradiance measured by the SDO/EVE/ESP during high solar activity

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid; Wieman, Seth; Woods, Thomas

    2016-10-01

    The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO's Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating's first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of "uncalibrated" first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the "uncalibrated" first-order "solar" component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.

  11. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  12. Monolithically integrated absolute frequency comb laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  13. Accuracy and Reliability of the Kinect Version 2 for Clinical Measurement of Motor Function

    PubMed Central

    Kayser, Bastian; Mansow-Model, Sebastian; Verrel, Julius; Paul, Friedemann; Brandt, Alexander U.; Schmitz-Hübsch, Tanja

    2016-01-01

    Background The introduction of low cost optical 3D motion tracking sensors provides new options for effective quantification of motor dysfunction. Objective The present study aimed to evaluate the Kinect V2 sensor against a gold standard motion capture system with respect to accuracy of tracked landmark movements and accuracy and repeatability of derived clinical parameters. Methods Nineteen healthy subjects were concurrently recorded with a Kinect V2 sensor and an optical motion tracking system (Vicon). Six different movement tasks were recorded with 3D full-body kinematics from both systems. Tasks included walking in different conditions, balance and adaptive postural control. After temporal and spatial alignment, agreement of movements signals was described by Pearson’s correlation coefficient and signal to noise ratios per dimension. From these movement signals, 45 clinical parameters were calculated, including ranges of motions, torso sway, movement velocities and cadence. Accuracy of parameters was described as absolute agreement, consistency agreement and limits of agreement. Intra-session reliability of 3 to 5 measurement repetitions was described as repeatability coefficient and standard error of measurement for each system. Results Accuracy of Kinect V2 landmark movements was moderate to excellent and depended on movement dimension, landmark location and performed task. Signal to noise ratio provided information about Kinect V2 landmark stability and indicated larger noise behaviour in feet and ankles. Most of the derived clinical parameters showed good to excellent absolute agreement (30 parameters showed ICC(3,1) > 0.7) and consistency (38 parameters showed r > 0.7) between both systems. Conclusion Given that this system is low-cost, portable and does not require any sensors to be attached to the body, it could provide numerous advantages when compared to established marker- or wearable sensor based system. The Kinect V2 has the potential to be used

  14. The accuracy of portable peak flow meters.

    PubMed

    Miller, M R; Dickinson, S A; Hitchings, D J

    1992-11-01

    The variability of peak expiratory flow (PEF) is now commonly used in the diagnosis and management of asthma. It is essential for PEF meters to have a linear response in order to obtain an unbiased measurement of PEF variability. As the accuracy and linearity of portable PEF meters have not been rigorously tested in recent years this aspect of their performance has been investigated. The response of several portable PEF meters was tested with absolute standards of flow generated by a computer driven, servo controlled pump and their response was compared with that of a pneumotachograph. For each device tested the readings were highly repeatable to within the limits of accuracy with which the pointer position can be assessed by eye. The between instrument variation in reading for six identical devices expressed as a 95% confidence limit was, on average across the range of flows, +/- 8.5 l/min for the Mini-Wright, +/- 7.9 l/min for the Vitalograph, and +/- 6.4 l/min for the Ferraris. PEF meters based on the Wright meter all had similar error profiles with overreading of up to 80 l/min in the mid flow range from 300 to 500 l/min. This overreading was greatest for the Mini-Wright and Ferraris devices, and less so for the original Wright and Vitalograph meters. A Micro-Medical Turbine meter was accurate up to 400 l/min and then began to underread by up to 60 l/min at 720 l/min. For the low range devices the Vitalograph device was accurate to within 10 l/min up to 200 l/min, with the Mini-Wright overreading by up to 30 l/min above 150 l/min. Although the Mini-Wright, Ferraris, and Vitalograph meters gave remarkably repeatable results their error profiles for the full range meters will lead to important errors in recording PEF variability. This may lead to incorrect diagnosis and bias in implementing strategies of asthma treatment based on PEF measurement.

  15. The accuracy of portable peak flow meters.

    PubMed Central

    Miller, M R; Dickinson, S A; Hitchings, D J

    1992-01-01

    BACKGROUND: The variability of peak expiratory flow (PEF) is now commonly used in the diagnosis and management of asthma. It is essential for PEF meters to have a linear response in order to obtain an unbiased measurement of PEF variability. As the accuracy and linearity of portable PEF meters have not been rigorously tested in recent years this aspect of their performance has been investigated. METHODS: The response of several portable PEF meters was tested with absolute standards of flow generated by a computer driven, servo controlled pump and their response was compared with that of a pneumotachograph. RESULTS: For each device tested the readings were highly repeatable to within the limits of accuracy with which the pointer position can be assessed by eye. The between instrument variation in reading for six identical devices expressed as a 95% confidence limit was, on average across the range of flows, +/- 8.5 l/min for the Mini-Wright, +/- 7.9 l/min for the Vitalograph, and +/- 6.4 l/min for the Ferraris. PEF meters based on the Wright meter all had similar error profiles with overreading of up to 80 l/min in the mid flow range from 300 to 500 l/min. This overreading was greatest for the Mini-Wright and Ferraris devices, and less so for the original Wright and Vitalograph meters. A Micro-Medical Turbine meter was accurate up to 400 l/min and then began to underread by up to 60 l/min at 720 l/min. For the low range devices the Vitalograph device was accurate to within 10 l/min up to 200 l/min, with the Mini-Wright overreading by up to 30 l/min above 150 l/min. CONCLUSION: Although the Mini-Wright, Ferraris, and Vitalograph meters gave remarkably repeatable results their error profiles for the full range meters will lead to important errors in recording PEF variability. This may lead to incorrect diagnosis and bias in implementing strategies of asthma treatment based on PEF measurement. PMID:1465746

  16. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    NASA Astrophysics Data System (ADS)

    Radziukynas, V.; Klementavičius, A.

    2016-04-01

    The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).

  17. Projecting Individualized Absolute Invasive Breast Cancer Risk in US Hispanic Women.

    PubMed

    Banegas, Matthew P; John, Esther M; Slattery, Martha L; Gomez, Scarlett Lin; Yu, Mandi; LaCroix, Andrea Z; Pee, David; Chlebowski, Rowan T; Hines, Lisa M; Thompson, Cynthia A; Gail, Mitchell H

    2017-02-01

    There is no model to estimate absolute invasive breast cancer risk for Hispanic women. The San Francisco Bay Area Breast Cancer Study (SFBCS) provided data on Hispanic breast cancer case patients (533 US-born, 553 foreign-born) and control participants (464 US-born, 947 foreign-born). These data yielded estimates of relative risk (RR) and attributable risk (AR) separately for US-born and foreign-born women. Nativity-specific absolute risks were estimated by combining RR and AR information with nativity-specific invasive breast cancer incidence and competing mortality rates from the California Cancer Registry and Surveillance, Epidemiology, and End Results program to develop the Hispanic risk model (HRM). In independent data, we assessed model calibration through observed/expected (O/E) ratios, and we estimated discriminatory accuracy with the area under the receiver operating characteristic curve (AUC) statistic. The US-born HRM included age at first full-term pregnancy, biopsy for benign breast disease, and family history of breast cancer; the foreign-born HRM also included age at menarche. The HRM estimated lower risks than the National Cancer Institute's Breast Cancer Risk Assessment Tool (BCRAT) for US-born Hispanic women, but higher risks in foreign-born women. In independent data from the Women's Health Initiative, the HRM was well calibrated for US-born women (observed/expected [O/E] ratio = 1.07, 95% confidence interval [CI] = 0.81 to 1.40), but seemed to overestimate risk in foreign-born women (O/E ratio = 0.66, 95% CI = 0.41 to 1.07). The AUC was 0.564 (95% CI = 0.485 to 0.644) for US-born and 0.625 (95% CI = 0.487 to 0.764) for foreign-born women. The HRM is the first absolute risk model that is based entirely on data specific to Hispanic women by nativity. Further studies in Hispanic women are warranted to evaluate its validity. Published by Oxford University Press 2016. This work is written by US Government employees and is in the

  18. Projecting Individualized Absolute Invasive Breast Cancer Risk in US Hispanic Women

    PubMed Central

    John, Esther M.; Slattery, Martha L.; Gomez, Scarlett Lin; Yu, Mandi; LaCroix, Andrea Z.; Pee, David; Chlebowski, Rowan T.; Hines, Lisa M.; Thompson, Cynthia A.; Gail, Mitchell H.

    2017-01-01

    Background: There is no model to estimate absolute invasive breast cancer risk for Hispanic women. Methods: The San Francisco Bay Area Breast Cancer Study (SFBCS) provided data on Hispanic breast cancer case patients (533 US-born, 553 foreign-born) and control participants (464 US-born, 947 foreign-born). These data yielded estimates of relative risk (RR) and attributable risk (AR) separately for US-born and foreign-born women. Nativity-specific absolute risks were estimated by combining RR and AR information with nativity-specific invasive breast cancer incidence and competing mortality rates from the California Cancer Registry and Surveillance, Epidemiology, and End Results program to develop the Hispanic risk model (HRM). In independent data, we assessed model calibration through observed/expected (O/E) ratios, and we estimated discriminatory accuracy with the area under the receiver operating characteristic curve (AUC) statistic. Results: The US-born HRM included age at first full-term pregnancy, biopsy for benign breast disease, and family history of breast cancer; the foreign-born HRM also included age at menarche. The HRM estimated lower risks than the National Cancer Institute’s Breast Cancer Risk Assessment Tool (BCRAT) for US-born Hispanic women, but higher risks in foreign-born women. In independent data from the Women’s Health Initiative, the HRM was well calibrated for US-born women (observed/expected [O/E] ratio = 1.07, 95% confidence interval [CI] = 0.81 to 1.40), but seemed to overestimate risk in foreign-born women (O/E ratio = 0.66, 95% CI = 0.41 to 1.07). The AUC was 0.564 (95% CI = 0.485 to 0.644) for US-born and 0.625 (95% CI = 0.487 to 0.764) for foreign-born women. Conclusions: The HRM is the first absolute risk model that is based entirely on data specific to Hispanic women by nativity. Further studies in Hispanic women are warranted to evaluate its validity. PMID:28003316

  19. APIC. Absolute Position Interfero-Coronagraph for direct exoplanet detection

    NASA Astrophysics Data System (ADS)

    Allouche, F.; Glindemann, A.; Aristidi, E.; Vakili, F.

    2009-06-01

    Context: For detecting and directly imaging exoplanets, coronagraphic methods are mandatory when the intensity ratio between a star and its orbiting planet can be as large as 10^6. In 1996, a concept of an achromatic interfero-coronagraph (AIC) was presented for detecting very faint stellar companions, such as exoplanets. Aims: We present a modified version of the AIC not only permitting these faint companions to be detected but also their relative position to be determined with respect to the parent star, a problem that was not solved in the original design of the AIC. Methods: In our modified design, two cylindrical lens doublets were used to remove the 180° ambiguity introduced by the AIC's original design. Results: Our theoretical study and the numerical computations show that the axis of symmetry is destroyed when one of the cylindrical doublets is rotated around the optical axis.

  20. Wavelength-modulated differential photoacoustic radar imager (WM-DPARI): accurate monitoring of absolute hemoglobin oxygen saturation

    PubMed Central

    Choi, Sung Soo Sean; Lashkari, Bahman; Dovlo, Edem; Mandelis, Andreas

    2016-01-01

    Accurate monitoring of blood oxy-saturation level (SO2) in human breast tissues is clinically important for predicting and evaluating possible tumor growth at the site. In this work, four different non-invasive frequency-domain photoacoustic (PA) imaging modalities were compared for their absolute SO2 characterization capability using an in-vitro sheep blood circulation system. Among different PA modes, a new WM-DPAR imaging modality could estimate the SO2 with great accuracy when compared to a commercial blood gas analyzer. The developed WM-DPARI theory was further validated by constructing SO2 tomographic images of a blood-containing plastisol phantom. PMID:27446691

  1. Preliminary Error Budget for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Gubbels, Timothy; Barnes, Robert

    2011-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those in the IPCC Report. A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO Project will implement a spaceborne earth observation mission designed to provide rigorous SI traceable observations (i.e., radiance, reflectance, and refractivity) that are sensitive to a wide range of key decadal change variables, including: 1) Surface temperature and atmospheric temperature profile 2) Atmospheric water vapor profile 3) Far infrared water vapor greenhouse 4) Aerosol properties and anthropogenic aerosol direct radiative forcing 5) Total and spectral solar

  2. Gravitational acceleration as a cue for absolute size and distance?

    NASA Technical Reports Server (NTRS)

    Hecht, H.; Kaiser, M. K.; Banks, M. S.

    1996-01-01

    When an object's motion is influenced by gravity, as in the rise and fall of a thrown ball, the vertical component of acceleration is roughly constant at 9.8 m/sec2. In principle, an observer could use this information to estimate the absolute size and distance of the object (Saxberg, 1987a; Watson, Banks, von Hofsten, & Royden, 1992). In five experiments, we examined people's ability to utilize the size and distance information provided by gravitational acceleration. Observers viewed computer simulations of an object rising and falling on a trajectory aligned with the gravitational vector. The simulated objects were balls of different diameters presented across a wide range of simulated distances. Observers were asked to identify the ball that was presented and to estimate its distance. The results showed that observers were much more sensitive to average velocity than to the gravitational acceleration pattern. Likewise, verticality of the motion and visibility of the trajectory's apex had negligible effects on the accuracy of size and distance judgments.

  3. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium.

    PubMed

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-12-17

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s(2) → 1 snp(n = 3-7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules.

  4. Accuracy, precision, and economic efficiency for three methods of thrips (Thysanoptera: Thripidae) population density assessment.

    PubMed

    Sutherland, Andrew M; Parrella, Michael P

    2011-08-01

    Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major horticultural pest and an important vector of plant viruses in many parts of the world. Methods for assessing thrips population density for pest management decision support are often inaccurate or imprecise due to thrips' positive thigmotaxis, small size, and naturally aggregated populations. Two established methods, flower tapping and an alcohol wash, were compared with a novel method, plant desiccation coupled with passive trapping, using accuracy, precision and economic efficiency as comparative variables. Observed accuracy was statistically similar and low (37.8-53.6%) for all three methods. Flower tapping was the least expensive method, in terms of person-hours, whereas the alcohol wash method was the most expensive. Precision, expressed by relative variation, depended on location within the greenhouse, location on greenhouse benches, and the sampling week, but it was generally highest for the flower tapping and desiccation methods. Economic efficiency, expressed by relative net precision, was highest for the flower tapping method and lowest for the alcohol wash method. Advantages and disadvantages are discussed for all three methods used. If relative density assessment methods such as these can all be assumed to accurately estimate a constant proportion of absolute density, then high precision becomes the methodological goal in terms of measuring insect population density, decision making for pest management, and pesticide efficacy assessments.

  5. Single-frequency receivers as master permanent stations in GNSS networks: precision and accuracy of the positioning in mixed networks

    NASA Astrophysics Data System (ADS)

    Dabove, Paolo; Manzino, Ambrogio Maria

    2015-04-01

    The use of GPS/GNSS instruments is a common practice in the world at both a commercial and academic research level. Since last ten years, Continuous Operating Reference Stations (CORSs) networks were born in order to achieve the possibility to extend a precise positioning more than 15 km far from the master station. In this context, the Geomatics Research Group of DIATI at the Politecnico di Torino has carried out several experiments in order to evaluate the achievable precision obtainable with different GNSS receivers (geodetic and mass-market) and antennas if a CORSs network is considered. This work starts from the research above described, in particular focusing the attention on the usefulness of single frequency permanent stations in order to thicken the existing CORSs, especially for monitoring purposes. Two different types of CORSs network are available today in Italy: the first one is the so called "regional network" and the second one is the "national network", where the mean inter-station distances are about 25/30 and 50/70 km respectively. These distances are useful for many applications (e.g. mobile mapping) if geodetic instruments are considered but become less useful if mass-market instruments are used or if the inter-station distance between master and rover increases. In this context, some innovative GNSS networks were developed and tested, analyzing the performance of rover's positioning in terms of quality, accuracy and reliability both in real-time and post-processing approach. The use of single frequency GNSS receivers leads to have some limits, especially due to a limited baseline length, the possibility to obtain a correct fixing of the phase ambiguity for the network and to fix the phase ambiguity correctly also for the rover. These factors play a crucial role in order to reach a positioning with a good level of accuracy (as centimetric o better) in a short time and with an high reliability. The goal of this work is to investigate about the

  6. Accuracy and precision of smartphone applications and commercially available motion sensors in multiple sclerosis

    PubMed Central

    Balto, Julia M; Kinnett-Hopkins, Dominique L

    2016-01-01

    Background There is increased interest in the application of smartphone applications and wearable motion sensors among multiple sclerosis (MS) patients. Objective This study examined the accuracy and precision of common smartphone applications and motion sensors for measuring steps taken by MS patients while walking on a treadmill. Methods Forty-five MS patients (Expanded Disability Status Scale (EDSS) = 1.0–5.0) underwent two 500-step walking trials at comfortable walking speed on a treadmill. Participants wore five motion sensors: the Digi-Walker SW-200 pedometer (Yamax), the UP2 and UP Move (Jawbone), and the Flex and One (Fitbit). The smartphone applications were Health (Apple), Health Mate (Withings), and Moves (ProtoGeo Oy). Results The Fitbit One had the best absolute (mean = 490.6 steps, 95% confidence interval (CI) = 485.6–495.5 steps) and relative accuracy (1.9% error), and absolute (SD = 16.4) and relative precision (coefficient of variation (CV) = 0.0), for the first 500-step walking trial; this was repeated with the second trial. Relative accuracy was correlated with slower walking speed for the first (rs = −.53) and second (rs = −.53) trials. Conclusion The results suggest that the waist-worn Fitbit One is the most precise and accurate sensor for measuring steps when walking on a treadmill, but future research is needed (testing the device across a broader range of disability, at different speeds, and in real-life walking conditions) before inclusion in clinical research and practice with MS patients. PMID:28607720

  7. Accuracy and precision of smartphone applications and commercially available motion sensors in multiple sclerosis.

    PubMed

    Balto, Julia M; Kinnett-Hopkins, Dominique L; Motl, Robert W

    2016-01-01

    There is increased interest in the application of smartphone applications and wearable motion sensors among multiple sclerosis (MS) patients. This study examined the accuracy and precision of common smartphone applications and motion sensors for measuring steps taken by MS patients while walking on a treadmill. Forty-five MS patients (Expanded Disability Status Scale (EDSS) = 1.0-5.0) underwent two 500-step walking trials at comfortable walking speed on a treadmill. Participants wore five motion sensors: the Digi-Walker SW-200 pedometer (Yamax), the UP2 and UP Move (Jawbone), and the Flex and One (Fitbit). The smartphone applications were Health (Apple), Health Mate (Withings), and Moves (ProtoGeo Oy). The Fitbit One had the best absolute (mean = 490.6 steps, 95% confidence interval (CI) = 485.6-495.5 steps) and relative accuracy (1.9% error), and absolute (SD = 16.4) and relative precision (coefficient of variation (CV) = 0.0), for the first 500-step walking trial; this was repeated with the second trial. Relative accuracy was correlated with slower walking speed for the first ( r s  =  -.53) and second ( r s  =  -.53) trials. The results suggest that the waist-worn Fitbit One is the most precise and accurate sensor for measuring steps when walking on a treadmill, but future research is needed (testing the device across a broader range of disability, at different speeds, and in real-life walking conditions) before inclusion in clinical research and practice with MS patients.

  8. Accuracy of a novel multi-sensor board for measuring physical activity and energy expenditure

    PubMed Central

    Lester, Jonathan; Migotsky, Sean; Goh, Jorming; Higgins, Lisa; Borriello, Gaetano

    2011-01-01

    The ability to relate physical activity to health depends on accurate measurement. Yet, none of the available methods are fully satisfactory due to several factors. This study examined the accuracy of a multi-sensor board (MSB) that infers activity types (sitting, standing, walking, stair climbing, and running) and estimates energy expenditure in 57 adults (32 females) 39.2 ± 13.5 years. In the laboratory, subjects walked and ran on a treadmill over a select range of speeds and grades for 3 min each (six stages in random order) while connected to a stationary calorimeter, preceded and followed by brief sitting and standing. On a different day, subjects completed scripted activities in the field connected to a portable calorimeter. The MSB was attached to a strap at the right hip. Subjects repeated one condition (randomly selected) on the third day. Accuracy of inferred activities compared with recorded activities (correctly identified activities/total activities × 100) was 97 and 84% in the laboratory and field, respectively. Absolute accuracy of energy expenditure [100 – absolute value (kilocalories MSB – kilocalories calorimeter/kilocalories calorimeter) × 100] was 89 and 76% in the laboratory and field, the later being different (P < 0.05) from the calorimeter. Test–retest reliability for energy expenditure was significant in both settings (P < 0.0001; r = 0.97). In general, the MSB provides accurate measures of activity type in laboratory and field settings and energy expenditure during treadmill walking and running although the device underestimates energy expenditure in the field. PMID:21249383

  9. Assessment of the accuracy and stability of frameless gamma knife radiosurgery.

    PubMed

    Chung, Hyun-Tai; Park, Woo-Yoon; Kim, Tae Hoon; Kim, Yong Kyun; Chun, Kook Jin

    2018-06-03

    The aim of this study was to assess the accuracy and stability of frameless gamma knife radiosurgery (GKRS). The accuracies of the radiation isocenter and patient couch movement were evaluated by film dosimetry with a half-year cycle. Radiation isocenter assessment with a diode detector and cone-beam computed tomography (CBCT) image accuracy tests were performed daily with a vendor-provided tool for one and a half years after installation. CBCT image quality was examined twice a month with a phantom. The accuracy of image coregistration using CBCT images was studied using magnetic resonance (MR) and computed tomography (CT) images of another phantom. The overall positional accuracy was measured in whole procedure tests using film dosimetry with an anthropomorphic phantom. The positional errors of the radiation isocenter at the center and at an extreme position were both less than 0.1 mm. The three-dimensional deviation of the CBCT coordinate system was stable for one and a half years (mean 0.04 ± 0.02 mm). Image coregistration revealed a difference of 0.2 ± 0.1 mm between CT and CBCT images and a deviation of 0.4 ± 0.2 mm between MR and CBCT images. The whole procedure test of the positional accuracy of the mask-based irradiation revealed an accuracy of 0.5 ± 0.6 mm. The radiation isocenter accuracy, patient couch movement accuracy, and Gamma Knife Icon CBCT accuracy were all approximately 0.1 mm and were stable for one and a half years. The coordinate system assigned to MR images through coregistration was more accurate than the system defined by fiducial markers. Possible patient motion during irradiation should be considered when evaluating the overall accuracy of frameless GKRS. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. SU-G-JeP2-03: Automatic Quantification of MLC Positional Accuracy in An MRI Guided Radiotherapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Studenski, M; Yang, F

    Purpose: MRI-guided-radiotherapy (MRIGRT) systems lack many features of traditional Linac based RT systems and specialized tests need to be developed to evaluate MLC performance. This work describes automatic tools for the analysis of positional accuracy of an MLC equipped MRIGRT system. Methods: This MLC analysis tool was developed for the MRIdian™ RT system which has three Co-60 equipped treatment heads each with a double focused MLC containing 30 leaf pairs, leaf thickness is 1.05cm defined at isocenter (SAD 105 cm). For MLC positional analysis a picket fence test was performed using a 25.4cm × 25.4cm Gafchromic™ RTQA2 film placed betweenmore » 5cm solidwater and a 30cm × 30cm × 1cm jigwire phantom with seven embedded parallel metal strips 4cm apart. A plan was generated to deliver 2Gy per field and seven 23.1cm × 2cm fields centered over each wire in the phantom. For each leaf pair the center of the radiation profile was determined by fitting the horizontal profile with a Gaussian model and determining the center of the FWHM. This was compared with the metal strip location to determine any deviation. The following metrics were used to evaluate the deviations per gantry angle including maximum, minimum, mean, Kurtosis, and skewness. Results: The identified maximum/mean leaf deviations are, 1.32/0.55 mm for gantry 0°, 1.59/0.76 mm for gantry 90°, and 1.19/0.39 mm for gantry 270°. The percentage of leaf deviation less than 1mm are 90.0% at 0°, 74.6% at 90°, and 97.0% at 270°. Kurtosis/skewness of the leaf deviation are 2.41/0.14 at 0°, 2.53/0.23 at 90°, 3.33/0.83 at 270°, respectively. Conclusion: This work presents an automatic tool for evaluation of the MLC position accuracy of the MRIdian™ radiotherapy system which can be used to benchmark the performance of the MLC system for each treatment head and track the results longitudinally.« less

  11. Optimal design of a high accuracy photoelectric auto-collimator based on position sensitive detector

    NASA Astrophysics Data System (ADS)

    Yan, Pei-pei; Yang, Yong-qing; She, Wen-ji; Liu, Kai; Jiang, Kai; Duan, Jing; Shan, Qiusha

    2018-02-01

    A kind of high accuracy Photo-electric auto-collimator based on PSD was designed. The integral structure composed of light source, optical lens group, Position Sensitive Detector (PSD) sensor, and its hardware and software processing system constituted. Telephoto objective optical type is chosen during the designing process, which effectively reduces the length, weight and volume of the optical system, as well as develops simulation-based design and analysis of the auto-collimator optical system. The technical indicators of auto-collimator presented by this paper are: measuring resolution less than 0.05″; a field of view is 2ω=0.4° × 0.4° measuring range is +/-5' error of whole range measurement is less than 0.2″. Measuring distance is 10m, which are applicable to minor-angle precise measuring environment. Aberration analysis indicates that the MTF close to the diffraction limit, the spot in the spot diagram is much smaller than the Airy disk. The total length of the telephoto lens is only 450mm by the design of the optical machine structure optimization. The autocollimator's dimension get compact obviously under the condition of the image quality is guaranteed.

  12. Assessment of Completeness and Positional Accuracy of Linear Features in Volunteered Geographic Information (vgi)

    NASA Astrophysics Data System (ADS)

    Eshghi, M.; Alesheikh, A. A.

    2015-12-01

    Recent advances in spatial data collection technologies and online services dramatically increase the contribution of ordinary people to produce, share, and use geographic information. Collecting spatial data as well as disseminating them on the internet by citizens has led to a huge source of spatial data termed as Volunteered Geographic Information (VGI) by Mike Goodchild. Although, VGI has produced previously unavailable data assets, and enriched existing ones. But its quality can be highly variable and challengeable. This presents several challenges to potential end users who are concerned about the validation and the quality assurance of the data which are collected. Almost, all the existing researches are based on how to find accurate VGI data from existing VGI data which consist of a) comparing the VGI data with the accurate official data, or b) in cases that there is no access to correct data; therefore, looking for an alternative way to determine the quality of VGI data is essential, and so forth. In this paper it has been attempt to develop a useful method to reach this goal. In this process, the positional accuracy of linear feature of Iran, Tehran OSM data have been analyzed.

  13. An absolute interval scale of order for point patterns

    PubMed Central

    Protonotarios, Emmanouil D.; Baum, Buzz; Johnston, Alan; Hunter, Ginger L.; Griffin, Lewis D.

    2014-01-01

    Human observers readily make judgements about the degree of order in planar arrangements of points (point patterns). Here, based on pairwise ranking of 20 point patterns by degree of order, we have been able to show that judgements of order are highly consistent across individuals and the dimension of order has an interval scale structure spanning roughly 10 just-notable-differences (jnd) between disorder and order. We describe a geometric algorithm that estimates order to an accuracy of half a jnd by quantifying the variability of the size and shape of spaces between points. The algorithm is 70% more accurate than the best available measures. By anchoring the output of the algorithm so that Poisson point processes score on average 0, perfect lattices score 10 and unit steps correspond closely to jnds, we construct an absolute interval scale of order. We demonstrate its utility in biology by using this scale to quantify order during the development of the pattern of bristles on the dorsal thorax of the fruit fly. PMID:25079866

  14. Absolute configuration of (-)-myrtenal by vibrational circular dichroism.

    PubMed

    Burgueño-Tapia, Eleuterio; Zepeda, L Gerardo; Joseph-Nathan, Pedro

    2010-07-01

    The VCD spectrum of the monoterpene (-)-myrtenal (1) was compared with theoretical spectra using ab initio density functional theory (DFT) calculations at the B3LYP/6-31G(d,p), B3LYP/6-31G+(d,p), B3LYP/6-311G+(d,p), B3LYP/DGDZVP, and B3PW91/DGTZVP levels of theory. Conformational analysis of 1 indicated that the lowest energy conformer was s-trans-C2-C10, which contributes more than 98.5% to the total conformational population regardless of the employed level of theory. The use of a recently developed confidence level algorithm demonstrated that VCD spectra calculated for the main conformer, using the indicated hybrid functionals and basis set, gave no significant changes, from where it follows that B3LYP/DGDZVP calculations provide a superior balance between computer cost and VCD spectral accuracy. The DGDZVP basis set demanded around a quarter the time than the 6-311G+(d,p) basis set while providing similar results. The spectral comparison also provided evidence that the levorotatory enantiomer of myrtenal has the 1R absolute configuration. 2010 Elsevier Ltd. All rights reserved.

  15. Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer.

    PubMed

    Bastida Castillo, Alejandro; Gómez Carmona, Carlos D; De la Cruz Sánchez, Ernesto; Pino Ortega, José

    2018-05-01

    There is interest in the accuracy and inter-unit reliability of position-tracking systems to monitor players. Research into this technology, although relatively recent, has grown exponentially in the last years, and it is difficult to find professional team sport that does not use Global Positioning System (GPS) technology at least. The aim of this study is to know the accuracy of both GPS-based and Ultra Wide Band (UWB)-based systems on a soccer field and their inter- and intra-unit reliability. A secondary aim is to compare them for practical applications in sport science. Following institutional ethical approval and familiarization, 10 healthy and well-trained former soccer players (20 ± 1.6 years, 1.76 ± 0.08 cm, and 69.5 ± 9.8 kg) performed three course tests: (i) linear course, (ii) circular course, and (iii) a zig-zag course, all using UWB and GPS technologies. The average speed and distance covered were compared with timing gates and the real distance as references. The UWB technology showed better accuracy (bias: 0.57-5.85%), test-retest reliability (%TEM: 1.19), and inter-unit reliability (bias: 0.18) in determining distance covered than the GPS technology (bias: 0.69-6.05%; %TEM: 1.47; bias: 0.25) overall. Also, UWB showed better results (bias: 0.09; ICC: 0.979; bias: 0.01) for mean velocity measurement than GPS (bias: 0.18; ICC: 0.951; bias: 0.03).

  16. Accuracy and consistency of weights provided by home bathroom scales.

    PubMed

    Yorkin, Meredith; Spaccarotella, Kim; Martin-Biggers, Jennifer; Quick, Virginia; Byrd-Bredbenner, Carol

    2013-12-17

    Self-reported body weight is often used for calculation of Body Mass Index because it is easy to collect. Little is known about sources of error introduced by using bathroom scales to measure weight at home. The objective of this study was to evaluate the accuracy and consistency of digital versus dial-type bathroom scales commonly used for self-reported weight. Participants brought functioning bathroom scales (n=18 dial-type, n=43 digital-type) to a central location. Trained researchers assessed accuracy and consistency using certified calibration weights at 10 kg, 25 kg, 50 kg, 75 kg, 100 kg, and 110 kg. Data also were collected on frequency of calibration, age and floor surface beneath the scale. All participants reported using their scale on hard surface flooring. Before calibration, all digital scales displayed 0, but dial scales displayed a mean absolute initial weight of 0.95 (1.9 SD) kg. Digital scales accurately weighed test loads whereas dial-type scale weights differed significantly (p<0.05). Imprecision of dial scales was significantly greater than that of digital scales at all weights (p<0.05). Accuracy and precision did not vary by scale age. Digital home bathroom scales provide sufficiently accurate and consistent weights for public health research. Reminders to zero scales before each use may further improve accuracy of self-reported weight.

  17. Absolute pitch memory: its prevalence among musicians and dependence on the testing context.

    PubMed

    Wong, Yetta Kwailing; Wong, Alan C-N

    2014-04-01

    Absolute pitch (AP) is widely believed to be a rare ability possessed by only a small group of gifted and special individuals (AP possessors). While AP has fascinated psychologists, neuroscientists, and musicians for more than a century, no theory can satisfactorily explain why this ability is so rare and difficult to learn. Here, we show that AP ability appears rare because of the methodological issues of the standard pitch-naming test. Specifically, the standard test unnecessarily poses a high decisional demand on AP judgments and uses a testing context that is highly inconsistent with one's musical training. These extra cognitive challenges are not central to AP memory per se and have thus led to consistent underestimation of AP ability in the population. Using the standard test, we replicated the typical findings that the accuracy for general violinists was low (12.38 %; chance level = 0 %). With identical stimuli, scoring criteria, and participants, violinists attained 25 % accuracy in a pitch verification test in which the decisional demand of AP judgment was reduced. When the testing context was increasingly similar to their musical experience, verification accuracy improved further and reached 39 %, three times higher than that for the standard test. Results were replicated with a separate group of pianists. Our findings challenge current theories about AP and suggest that the prevalence of AP among musicians has been highly underestimated in prior work. A multimodal framework is proposed to better explain AP memory.

  18. Three-dimensional imaging of absolute blood flow velocity and blood vessel position under low blood flow velocity based on Doppler signal information included in scattered light from red blood cells

    NASA Astrophysics Data System (ADS)

    Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi

    2017-11-01

    The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.

  19. Simulation and analysis of spectroscopic filter of rotational Raman lidar for absolute measurement of atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Li, Qimeng; Li, Shichun; Hu, Xianglong; Zhao, Jing; Xin, Wenhui; Song, Yuehui; Hua, Dengxin

    2018-01-01

    The absolute measurement technique for atmospheric temperature can avoid the calibration process and improve the measurement accuracy. To achieve the rotational Raman temperature lidar of absolute measurement, the two-stage parallel multi-channel spectroscopic filter combined a first-order blazed grating with a fiber Bragg grating is designed and its performance is tested. The parameters and the optical path structure of the core cascaded-device (micron-level fiber array) are optimized, the optical path of the primary spectroscope is simulated and the maximum centrifugal distortion of the rotational Raman spectrum is approximately 0.0031 nm, the centrifugal ratio of 0.69%. The experimental results show that the channel coefficients of the primary spectroscope are 0.67, 0.91, 0.67, 0.75, 0.82, 0.63, 0.87, 0.97, 0.89, 0.87 and 1 by using the twelfth channel as a reference and the average FWHM is about 0.44 nm. The maximum deviation between the experimental wavelength and the theoretical value is approximately 0.0398 nm, with the deviation degree of 8.86%. The effective suppression to elastic scattering signal are 30.6, 35.2, 37.1, 38.4, 36.8, 38.2, 41.0, 44.3, 44.0, 46.7 dB. That means, combined with the second spectroscope, the suppression at least is up to 65 dB. Therefore we can fine extract single rotational Raman line to achieve the absolute measurement technique.

  20. Double positivity for HPV-DNA/p16ink4a is the biomarker with strongest diagnostic accuracy and prognostic value for human papillomavirus related oropharyngeal cancer patients.

    PubMed

    Mena, Marisa; Taberna, Miren; Tous, Sara; Marquez, Sandra; Clavero, Omar; Quiros, Beatriz; Lloveras, Belen; Alejo, Maria; Leon, Xavier; Quer, Miquel; Bagué, Silvia; Mesia, Ricard; Nogués, Julio; Gomà, Montserrat; Aguila, Anton; Bonfill, Teresa; Blazquez, Carmen; Guix, Marta; Hijano, Rafael; Torres, Montserrat; Holzinger, Dana; Pawlita, Michael; Pavon, Miguel Angel; Bravo, Ignacio G; de Sanjosé, Silvia; Bosch, Francesc Xavier; Alemany, Laia

    2018-03-01

    The etiologic role of human papillomaviruses (HPV) in oropharyngeal cancer (OPC) is well established. Nevertheless, information on survival differences by anatomic sub-site or treatment remains scarce, and it is still unclear the HPV-relatedness definition with best diagnostic accuracy and prognostic value. We conducted a retrospective cohort study of all patients diagnosed with a primary OPC in four Catalonian hospitals from 1990 to 2013. Formalin-fixed, paraffin-embedded cancer tissues were subjected to histopathological evaluation, DNA quality control, HPV-DNA detection, and p16 INK4a /pRb/p53/Cyclin-D1 immunohistochemistry. HPV-DNA positive and a random sample of HPV-DNA negative cases were subjected to HPV-E6*I mRNA detection. Demographic, tobacco/alcohol use, clinical and follow-up data were collected. Multivariate models were used to evaluate factors associated with HPV positivity as defined by four different HPV-relatedness definitions. Proportional-hazards models were used to compare the risk of death and recurrence among HPV-related and non-related OPC. 788 patients yielded a valid HPV-DNA result. The percentage of positive cases was 10.9%, 10.2%, 8.5% and 7.4% for p16 INK4a , HPV-DNA, HPV-DNA/HPV-E6*I mRNA, and HPV-DNA/p16 INK4a , respectively. Being non-smoker or non-drinker was consistently associated across HPV-relatedness definitions with HPV positivity. A suggestion of survival differences between anatomic sub-sites and treatments was observed. Double positivity for HPV-DNA/p16 INK4a showed strongest diagnostic accuracy and prognostic value. Double positivity for HPV-DNA/p16 INK4a , a test that can be easily implemented in the clinical practice, has optimal diagnostic accuracy and prognostic value. Our results have strong clinical implications for patients' classification and handling and also suggest that not all the HPV-related OPC behave similarly. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. SU-F-J-95: Impact of Shape Complexity On the Accuracy of Gradient-Based PET Volume Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance, M; Wu, G; Gao, Y

    2016-06-15

    Purpose: Explore correlation of tumor complexity shape with PET target volume accuracy when delineated with gradient-based segmentation tool. Methods: A total of 24 clinically realistic digital PET Monte Carlo (MC) phantoms of NSCLC were used in the study. The phantom simulated 29 thoracic lesions (lung primary and mediastinal lymph nodes) of varying size, shape, location, and {sup 18}F-FDG activity. A program was developed to calculate a curvature vector along the outline and the standard deviation of this vector was used as a metric to quantify a shape’s “complexity score”. This complexity score was calculated for standard geometric shapes and MC-generatedmore » target volumes in PET phantom images. All lesions were contoured using a commercially available gradient-based segmentation tool and the differences in volume from the MC-generated volumes were calculated as the measure of the accuracy of segmentation. Results: The average absolute percent difference in volumes between the MC-volumes and gradient-based volumes was 11% (0.4%–48.4%). The complexity score showed strong correlation with standard geometric shapes. However, no relationship was found between the complexity score and the accuracy of segmentation by gradient-based tool on MC simulated tumors (R{sup 2} = 0.156). When the lesions were grouped into primary lung lesions and mediastinal/mediastinal adjacent lesions, the average absolute percent difference in volumes were 6% and 29%, respectively. The former group is more isolated and the latter is more surround by tissues with relatively high SUV background. Conclusion: The complexity shape of NSCLC lesions has little effect on the accuracy of the gradient-based segmentation method and thus is not a good predictor of uncertainty in target volume delineation. Location of lesion within a relatively high SUV background may play a more significant role in the accuracy of gradient-based segmentation.« less

  2. Pointing to double-step visual stimuli from a standing position: motor corrections when the speed-accuracy trade-off is unexpectedly modified in-flight. A breakdown of the perception-action coupling.

    PubMed

    Fautrelle, L; Barbieri, G; Ballay, Y; Bonnetblanc, F

    2011-10-27

    The time required to complete a fast and accurate movement is a function of its amplitude and the target size. This phenomenon refers to the well known speed-accuracy trade-off. Some interpretations have suggested that the speed-accuracy trade-off is already integrated into the movement planning phase. More specifically, pointing movements may be planned to minimize the variance of the final hand position. However, goal-directed movements can be altered at any time, if for instance, the target location is changed during execution. Thus, one possible limitation of these interpretations may be that they underestimate feedback processes. To further investigate this hypothesis we designed an experiment in which the speed-accuracy trade-off was unexpectedly varied at the hand movement onset by modifying separately the target distance or size, or by modifying both of them simultaneously. These pointing movements were executed from an upright standing position. Our main results showed that the movement time increased when there was a change to the size or location of the target. In addition, the terminal variability of finger position did not change. In other words, it showed that the movement velocity is modulated according to the target size and distance during motor programming or during the final approach, independently of the final variability of the hand position. It suggests that when the speed-accuracy trade-off is unexpectedly modified, terminal feedbacks based on intermediate representations of the endpoint velocity are used to monitor and control the hand displacement. There is clearly no obvious perception-action coupling in this case but rather intermediate processing that may be involved. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site

    NASA Technical Reports Server (NTRS)

    Mishra, Nischal; Helder, Dennis; Angal, Amit; Choi, Jason; Xiong, Xiaoxiong

    2014-01-01

    The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55 deg, +23.39 deg) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as the radiometer to develop an absolute calibration model for the spectral channels covered by this instrument from visible to shortwave infrared. Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm, was used to extend the model to cover visible and near-infrared regions. A simple Bidirectional Reflectance Distribution function (BRDF) model was generated using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Libya 4 and the resulting model was validated with nadir data acquired from satellite sensors such as Aqua MODIS and Landsat 7 (L7) Enhanced Thematic Mapper (ETM+). The improvements in the absolute calibration model to account for the BRDF due to off-nadir measurements and annual variations in the atmosphere are summarized. BRDF models due to off-nadir viewing angles have been derived using the measurements from EO-1 Hyperion. In addition to L7 ETM+, measurements from other sensors such as Aqua MODIS, UK-2 Disaster Monitoring Constellation (DMC), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and Operational Land Imager (OLI) onboard Landsat 8 (L8), which was launched in February 2013, were employed to validate the model. These satellite sensors differ in terms of the width of their spectral bandpasses, overpass time, off-nadir-viewing capabilities, spatial resolution and temporal revisit time, etc. The results demonstrate that the proposed empirical calibration model has accuracy of the order of 3% with an uncertainty of about 2% for the sensors used in the study.

  4. Achievable accuracy of hip screw holding power estimation by insertion torque measurement.

    PubMed

    Erani, Paolo; Baleani, Massimiliano

    2018-02-01

    To ensure stability of proximal femoral fractures, the hip screw must firmly engage into the femoral head. Some studies suggested that screw holding power into trabecular bone could be evaluated, intraoperatively, through measurement of screw insertion torque. However, those studies used synthetic bone, instead of trabecular bone, as host material or they did not evaluate accuracy of predictions. We determined prediction accuracy, also assessing the impact of screw design and host material. We measured, under highly-repeatable experimental conditions, disregarding clinical procedure complexities, insertion torque and pullout strength of four screw designs, both in 120 synthetic and 80 trabecular bone specimens of variable density. For both host materials, we calculated the root-mean-square error and the mean-absolute-percentage error of predictions based on the best fitting model of torque-pullout data, in both single-screw and merged dataset. Predictions based on screw-specific regression models were the most accurate. Host material impacts on prediction accuracy: the replacement of synthetic with trabecular bone decreased both root-mean-square errors, from 0.54 ÷ 0.76 kN to 0.21 ÷ 0.40 kN, and mean-absolute-percentage errors, from 14 ÷ 21% to 10 ÷ 12%. However, holding power predicted on low insertion torque remained inaccurate, with errors up to 40% for torques below 1 Nm. In poor-quality trabecular bone, tissue inhomogeneities likely affect pullout strength and insertion torque to different extents, limiting the predictive power of the latter. This bias decreases when the screw engages good-quality bone. Under this condition, predictions become more accurate although this result must be confirmed by close in-vitro simulation of the clinical procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Elbow joint position sense after neuromuscular training with handheld vibration.

    PubMed

    Tripp, Brady L; Faust, Donald; Jacobs, Patrick

    2009-01-01

    Clinicians use neuromuscular control exercises to enhance joint position sense (JPS); however, because standardizing such exercises is difficult, validations of their use are limited. To evaluate the acute effects of a neuromuscular training exercise with a handheld vibrating dumbbell on elbow JPS acuity. Crossover study. University athletic training research laboratory. Thirty-one healthy, college-aged volunteers (16 men, 15 women, age = 23 + or - 3 years, height = 173 + or - 8 cm, mass = 76 + or - 14 kg). We measured and trained elbow JPS using an electromagnetic tracking device that provided auditory and visual biofeedback. For JPS testing, participants held a dumbbell and actively identified the target elbow flexion angle (90 degrees ) using the software-generated biofeedback, followed by 3 repositioning trials without feedback. Each neuromuscular training protocol included 3 exercises during which participants held a 2.55-kg dumbbell vibrating at 15, 5, or 0 Hz and used software-generated biofeedback to locate and maintain the target elbow flexion angle for 15 seconds. We calculated absolute (accuracy) and variable (variability) errors using the differences between target and reproduced angles. Training protocols using 15-Hz vibration enhanced accuracy and decreased variability of elbow JPS (P < or = .005), whereas 5-Hz vibration did not affect accuracy (F(1,61) = 2.625, P = .100) but did decrease variability (F(1,61) = 7.250, P = .009). The control condition and 0-Hz training protocol had no effect on accuracy or variability (P > or = .200). Our results suggest these neuromuscular control exercises, which included low-magnitude, low-frequency handheld vibration, may enhance elbow JPS. Future researchers should examine vibration of various durations and frequencies, should include injured participants and functional multijoint and multiplanar measures, and should examine long-term effects of training protocols on JPS and injury.

  6. Improvement of absolute positioning of precision stage based on cooperation the zero position pulse signal and incremental displacement signal

    NASA Astrophysics Data System (ADS)

    Wang, H. H.; Shi, Y. P.; Li, X. H.; Ni, K.; Zhou, Q.; Wang, X. H.

    2018-03-01

    In this paper, a scheme to measure the position of precision stages, with a high precision, is presented. The encoder is composed of a scale grating and a compact two-probe reading head, to read the zero position pulse signal and continuous incremental displacement signal. The scale grating contains different codes, multiple reference codes with different spacing superimposed onto the incremental grooves with an equal spacing structure. The codes of reference mask in the reading head is the same with the reference codes on the scale grating, and generate pulse signal to locate the reference position primarily when the reading head moves along the scale grating. After locating the reference position in a section by means of the pulse signal, the reference position can be located precisely with the amplitude of the incremental displacement signal. A kind of reference codes and scale grating were designed, and experimental results show that the primary precision of the design achieved is 1 μ m. The period of the incremental signal is 1μ m, and 1000/N nm precision can be achieved by subdivide the incremental signal in N times.

  7. Improvements on the accuracy of beam bugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.J.; Fessenden, T.

    1998-08-17

    At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as ''beam bugs'', have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less

  8. Improvements on the accuracy of beam bugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y J; Fessenden, T

    1998-09-02

    At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as "beam bugs", have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less

  9. Time-series modeling and prediction of global monthly absolute temperature for environmental decision making

    NASA Astrophysics Data System (ADS)

    Ye, Liming; Yang, Guixia; Van Ranst, Eric; Tang, Huajun

    2013-03-01

    A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (˜10-year) environmental planning and decision making.

  10. Understanding the effects of Doppler phenomena in white light Fabry-Perot interferometers for simultaneous position and velocity measurement.

    PubMed

    Moro, Erik A; Todd, Michael D; Puckett, Anthony D

    2012-09-20

    In static tests, low-power (<5 mW) white light extrinsic Fabry-Perot interferometric position sensors offer high-accuracy (μm) absolute measurements of a target's position over large (cm) axial-position ranges, and since position is demodulated directly from phase in the interferogram, these sensors are robust to fluctuations in measured power levels. However, target surface dynamics distort the interferogram via Doppler shifting, introducing a bias in the demodulation process. With typical commercial off-the-shelf hardware, a broadband source centered near 1550 nm, and an otherwise typical setup, the bias may be as large as 50-100 μm for target surface velocities as low as 0.1 mm/s. In this paper, the authors derive a model for this Doppler-induced position bias, relating its magnitude to three swept-filter tuning parameters. Target velocity (magnitude and direction) is calculated using this relationship in conjunction with a phase-diversity approach, and knowledge of the target's velocity is then used to compensate exactly for the position bias. The phase-diversity approach exploits side-by-side measurement signals, transmitted through separate swept filters with distinct tuning parameters, and permits simultaneous measurement of target velocity and target position, thereby mitigating the most fundamental performance limitation that exists on dynamic white light interferometric position sensors.

  11. a Portable Apparatus for Absolute Measurements of the Earth's Gravity.

    NASA Astrophysics Data System (ADS)

    Zumberge, Mark Andrew

    We have developed a new, portable apparatus for making absolute measurements of the acceleration due to the earth's gravity. We use the method of interferometrically determining the acceleration of a freely falling corner -cube prism. The falling object is surrounded by a chamber which is driven vertically inside a fixed vacuum chamber. This falling chamber is servoed to track the falling corner -cube to shield it from drag due to background gas. In addition, the drag-free falling chamber removes the need for a magnetic release, shields the falling object from electrostatic forces, and provides a means of both gently arresting the falling object and quickly returning it to its start position, to allow rapid acquisition of data. A synthesized long period isolation device reduces the noise due to seismic oscillations. A new type of Zeeman laser is used as the light source in the interferometer, and is compared with the wavelength of an iodine stabilized laser. The times of occurrence of 45 interference fringes are measured to within 0.2 nsec over a 20 cm drop and are fit to a quadratic by an on-line minicomputer. 150 drops can be made in ten minutes resulting in a value of g having a precision of 3 to 6 parts in 10('9). Systematic errors have been determined to be less than 5 parts in 10('9) through extensive tests. Three months of gravity data have been obtained with a reproducibility ranging from 5 to 10 parts in 10('9). The apparatus has been designed to be easily portable. Field measurements are planned for the immediate future. An accuracy of 6 parts in 10('9) corresponds to a height sensitivity of 2 cm. Vertical motions in the earth's crust and tectonic density changes that may precede earthquakes are to be investigated using this apparatus.

  12. Accuracy Study of the Space-Time CE/SE Method for Computational Aeroacoustics Problems Involving Shock Waves

    NASA Technical Reports Server (NTRS)

    Wang, Xiao Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.

    1999-01-01

    The space-time conservation element and solution element(CE/SE) method is used to study the sound-shock interaction problem. The order of accuracy of numerical schemes is investigated. The linear model problem.govemed by the 1-D scalar convection equation, sound-shock interaction problem governed by the 1-D Euler equations, and the 1-D shock-tube problem which involves moving shock waves and contact surfaces are solved to investigate the order of accuracy of numerical schemes. It is concluded that the accuracy of the CE/SE numerical scheme with designed 2nd-order accuracy becomes 1st order when a moving shock wave exists. However, the absolute error in the CE/SE solution downstream of the shock wave is on the same order as that obtained using a fourth-order accurate essentially nonoscillatory (ENO) scheme. No special techniques are used for either high-frequency low-amplitude waves or shock waves.

  13. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  14. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  15. Planck absolute entropy of a rotating BTZ black hole

    NASA Astrophysics Data System (ADS)

    Riaz, S. M. Jawwad

    2018-04-01

    In this paper, the Planck absolute entropy and the Bekenstein-Smarr formula of the rotating Banados-Teitelboim-Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.

  16. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  17. Respiratory monitoring by inductive plethysmography in unrestrained subjects using position sensor-adjusted calibration.

    PubMed

    Brüllmann, Gregor; Fritsch, Karsten; Thurnheer, Robert; Bloch, Konrad E

    2010-01-01

    Portable respiratory inductive plethysmography (RIP) is promising for noninvasive monitoring of breathing patterns in unrestrained subjects. However, its use has been hampered by requiring recalibration after changes in body position. To facilitate RIP application in unrestrained subjects, we developed a technique for adjustment of RIP calibration using position sensor feedback. Five healthy subjects and 12 patients with lung disease were monitored by portable RIP with sensors incorporated within a body garment. Unrestrained individuals were studied during 40-60 min while supine, sitting and upright/walking. Position was changed repeatedly every 5-10 min. Initial qualitative diagnostic calibration followed by volume scaling in absolute units during 20 breaths in different positions by flow meter provided position-specific volume-motion coefficients for RIP. These were applied during subsequent monitoring in corresponding positions according to feedback from 4 accelerometers placed at the chest and thigh. Accuracy of RIP was evaluated by face mask pneumotachography. Position sensor feedback allowed accurate adjustment of RIP calibration during repeated position changes in subjects and patients as reflected in a minor mean difference (bias) in breath-by-breath tidal volumes estimated by RIP and flow meter of 0.02 liters (not significant) and limits of agreement (+/-2 SD) of +/-19% (2,917 comparisons). An average of 10 breaths improved precision of RIP (limits of agreement +/-14%). RIP calibration incorporating position sensor feedback greatly enhances the application of RIP as a valuable, unobtrusive tool to investigate respiratory physiology and ventilatory limitation in unrestrained healthy subjects and patients with lung disease during everyday activities including position changes. Copyright 2009 S. Karger AG, Basel.

  18. Molecular tools for diagnosis of visceral leishmaniasis: systematic review and meta-analysis of diagnostic test accuracy.

    PubMed

    de Ruiter, C M; van der Veer, C; Leeflang, M M G; Deborggraeve, S; Lucas, C; Adams, E R

    2014-09-01

    Molecular methods have been proposed as highly sensitive tools for the detection of Leishmania parasites in visceral leishmaniasis (VL) patients. Here, we evaluate the diagnostic accuracy of these tools in a meta-analysis of the published literature. The selection criteria were original studies that evaluate the sensitivities and specificities of molecular tests for diagnosis of VL, adequate classification of study participants, and the absolute numbers of true positives and negatives derivable from the data presented. Forty studies met the selection criteria, including PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), and loop-mediated isothermal amplification (LAMP). The sensitivities of the individual studies ranged from 29 to 100%, and the specificities ranged from 25 to 100%. The pooled sensitivity of PCR in whole blood was 93.1% (95% confidence interval [CI], 90.0 to 95.2), and the specificity was 95.6% (95% CI, 87.0 to 98.6). The specificity was significantly lower in consecutive studies, at 63.3% (95% CI, 53.9 to 71.8), due either to true-positive patients not being identified by parasitological methods or to the number of asymptomatic carriers in areas of endemicity. PCR for patients with HIV-VL coinfection showed high diagnostic accuracy in buffy coat and bone marrow, ranging from 93.1 to 96.9%. Molecular tools are highly sensitive assays for Leishmania detection and may contribute as an additional test in the algorithm, together with a clear clinical case definition. We observed wide variety in reference standards and study designs and now recommend consecutively designed studies. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Measurement of sitting balance using the Manchester Active Position Seat (MAPS): a feasibility study.

    PubMed

    Powell, E S; Pyburn, R E; Hill, E; Smith, K S; Ribbands, M S; Mickelborough, J; Pomeroy, V M

    2002-09-01

    Evaluation of the effectiveness of therapy to improve sitting balance has been hampered by the limited number of sensitive objective clinical measures. We developed the Manchester Active Position Seat (MAPS) to provide a portable system to track change in the position of centre of force over time. (1) To investigate whether there is correspondence between the measurement of position change by a forceplate and by MAPS. (2) To explore whether and how MAPS measures changes in position when seated healthy adults change posture. A feasibility study. (1) An adult subject sat on MAPS placed on top of a forceplate. The x and y coordinates of the centre of pressure recorded from the forceplate and centre of force from MAPS during movement were compared graphically. (2) Four adults sat on MAPS using a standardized starting position and moving into six sets of six standardized target postures in a predetermined randomized order. The absolute shift in centre of force from the starting position was calculated. (1) The pattern of change of position over time was similar for the forceplate and for MAPS although there was a measurement difference, which increased with distance from the centre. (2) The direction of change of position corresponded to the direction of movement to the target postures but the amount of change varied between subjects. MAPS shows promise as an objective clinical measure of sitting balance, but peripheral accuracy of measurement needs to be improved.

  20. Application of Individualized Speed Thresholds to Interpret Position Specific Running Demands in Elite Professional Rugby Union: A GPS Study

    PubMed Central

    Reardon, Cillian; Tobin, Daniel P.; Delahunt, Eamonn

    2015-01-01

    A number of studies have used GPS technology to categorise rugby union locomotive demands. However, the utility of the results of these studies is confounded by small sample sizes, sub-elite player status and the global application of absolute speed thresholds to all player positions. Furthermore, many of these studies have used GPS units with low sampling frequencies. The aim of the present study was to compare and contrast the high speed running (HSR) demands of professional rugby union when utilizing micro-technology units sampling at 10 Hz and applying relative or individualised speed zones. The results of this study indicate that application of individualised speed zones results in a significant shift in the interpretation of the HSR demands of both forwards and backs and positional sub-categories therein. When considering the use of an absolute in comparison to an individualised HSR threshold, there was a significant underestimation for forwards of HSR distance (HSRD) (absolute = 269 ± 172.02, individualised = 354.72 ± 99.22, p < 0.001), HSR% (absolute = 5.15 ± 3.18, individualised = 7.06 ± 2.48, p < 0.001) and HSR efforts (HSRE) (absolute = 18.81 ± 12.25; individualised = 24.78 ± 8.30, p < 0.001). In contrast, there was a significant overestimation of the same HSR metrics for backs with the use of an absolute threshold (HSRD absolute = 697.79 ± 198.11, individualised = 570.02 ± 171.14, p < 0.001; HSR% absolute = 10.85 ± 2.82, individualised = 8.95 ± 2.76, p < 0.001; HSRE absolute = 41.55 ± 11.25; individualised = 34.54 ± 9.24, p < 0.001). This under- or overestimation associated with an absolute speed zone applies to varying degrees across the ten positional sub-categories analyzed and also to individuals within the same positional sub-category. The results of the present study indicated that although use of an individulised HSR threshold improves the interpretation of the HSR demands on a positional basis, inter-individual variability in maximum

  1. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  2. Improving the sensitivity and accuracy of gamma activation analysis for the rapid determination of gold in mineral ores.

    PubMed

    Tickner, James; Ganly, Brianna; Lovric, Bojan; O'Dwyer, Joel

    2017-04-01

    Mining companies rely on chemical analysis methods to determine concentrations of gold in mineral ore samples. As gold is often mined commercially at concentrations around 1 part-per-million, it is necessary for any analysis method to provide good sensitivity as well as high absolute accuracy. We describe work to improve both the sensitivity and accuracy of the gamma activation analysis (GAA) method for gold. We present analysis results for several suites of ore samples and discuss the design of a GAA facility designed to replace conventional chemical assay in industrial applications. Copyright © 2017. Published by Elsevier Ltd.

  3. Determination of the Absolute Number of Cytokine mRNA Molecules within Individual Activated Human T Cells

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.

  4. High-accuracy reference standards for two-photon absorption in the 680–1050 nm wavelength range

    PubMed Central

    de Reguardati, Sophie; Pahapill, Juri; Mikhailov, Alexander; Stepanenko, Yuriy; Rebane, Aleksander

    2016-01-01

    Degenerate two-photon absorption (2PA) of a series of organic fluorophores is measured using femtosecond fluorescence excitation method in the wavelength range, λ2PA = 680–1050 nm, and ~100 MHz pulse repetition rate. The function of relative 2PA spectral shape is obtained with estimated accuracy 5%, and the absolute 2PA cross section is measured at selected wavelengths with the accuracy 8%. Significant improvement of the accuracy is achieved by means of rigorous evaluation of the quadratic dependence of the fluorescence signal on the incident photon flux in the whole wavelength range, by comparing results obtained from two independent experiments, as well as due to meticulous evaluation of critical experimental parameters, including the excitation spatial- and temporal pulse shape, laser power and sample geometry. Application of the reference standards in nonlinear transmittance measurements is discussed. PMID:27137334

  5. Accuracy of smartphone apps for heart rate measurement.

    PubMed

    Coppetti, Thomas; Brauchlin, Andreas; Müggler, Simon; Attinger-Toller, Adrian; Templin, Christian; Schönrath, Felix; Hellermann, Jens; Lüscher, Thomas F; Biaggi, Patric; Wyss, Christophe A

    2017-08-01

    Background Smartphone manufacturers offer mobile health monitoring technology to their customers, including apps using the built-in camera for heart rate assessment. This study aimed to test the diagnostic accuracy of such heart rate measuring apps in clinical practice. Methods The feasibility and accuracy of measuring heart rate was tested on four commercially available apps using both iPhone 4 and iPhone 5. 'Instant Heart Rate' (IHR) and 'Heart Fitness' (HF) work with contact photoplethysmography (contact of fingertip to built-in camera), while 'Whats My Heart Rate' (WMH) and 'Cardiio Version' (CAR) work with non-contact photoplethysmography. The measurements were compared to electrocardiogram and pulse oximetry-derived heart rate. Results Heart rate measurement using app-based photoplethysmography was performed on 108 randomly selected patients. The electrocardiogram-derived heart rate correlated well with pulse oximetry ( r = 0.92), IHR ( r = 0.83) and HF ( r = 0.96), but somewhat less with WMH ( r = 0.62) and CAR ( r = 0.60). The accuracy of app-measured heart rate as compared to electrocardiogram, reported as mean absolute error (in bpm ± standard error) was 2 ± 0.35 (pulse oximetry), 4.5 ± 1.1 (IHR), 2 ± 0.5 (HF), 7.1 ± 1.4 (WMH) and 8.1 ± 1.4 (CAR). Conclusions We found substantial performance differences between the four studied heart rate measuring apps. The two contact photoplethysmography-based apps had higher feasibility and better accuracy for heart rate measurement than the two non-contact photoplethysmography-based apps.

  6. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  7. Establishment of a high accuracy geoid correction model and geodata edge match

    NASA Astrophysics Data System (ADS)

    Xi, Ruifeng

    This research has developed a theoretical and practical methodology for efficiently and accurately determining sub-decimeter level regional geoids and centimeter level local geoids to meet regional surveying and local engineering requirements. This research also provides a highly accurate static DGPS network data pre-processing, post-processing and adjustment method and a procedure for a large GPS network like the state level HRAN project. The research also developed an efficient and accurate methodology to join soil coverages in GIS ARE/INFO. A total of 181 GPS stations has been pre-processed and post-processed to obtain an absolute accuracy better than 1.5cm at 95% of the stations, and at all stations having a 0.5 ppm average relative accuracy. A total of 167 GPS stations in Iowa and around Iowa have been included in the adjustment. After evaluating GEOID96 and GEOID99, a more accurate and suitable geoid model has been established in Iowa. This new Iowa regional geoid model improved the accuracy from a sub-decimeter 10˜20 centimeter to 5˜10 centimeter. The local kinematic geoid model, developed using Kalman filtering, gives results better than third order leveling accuracy requirement with 1.5 cm standard deviation.

  8. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  9. On the accuracy of instantaneous gas exchange rates, energy expenditure and respiratory quotient calculations obtained from indirect whole room calorimetry.

    PubMed

    Gribok, Andrei; Hoyt, Reed; Buller, Mark; Rumpler, William

    2013-06-01

    This paper analyzes the accuracy of metabolic rate calculations performed in the whole room indirect calorimeter using the molar balance equations. The equations are treated from the point of view of cause-effect relationship where the gaseous exchange rates representing the unknown causes need to be inferred from a known, noisy effect-gaseous concentrations. Two methods of such inference are analyzed. The first method is based on the previously published regularized deconvolution of the molar balance equation and the second one, proposed in this paper, relies on regularized differentiation of gaseous concentrations. It is found that both methods produce similar results for the absolute values of metabolic variables and their accuracy. The uncertainty for O2 consumption rate is found to be 7% and for CO2 production--3.2%. The uncertainties in gaseous exchange rates do not depend on the absolute values of O2 consumption and CO2 production. In contrast, the absolute uncertainty in respiratory quotient is a function of the gaseous exchange rates and varies from 9.4% during the night to 2.3% during moderate exercise. The uncertainty in energy expenditure was found to be 5.9% and independent of the level of gaseous exchange. For both methods, closed form analytical formulas for confidence intervals are provided allowing quantification of uncertainty for four major metabolic variables in real world studies.

  10. Climate Change Accuracy: Requirements and Economic Value

    NASA Astrophysics Data System (ADS)

    Wielicki, B. A.; Cooke, R.; Mlynczak, M. G.; Lukashin, C.; Thome, K. J.; Baize, R. R.

    2014-12-01

    Higher than normal accuracy is required to rigorously observe decadal climate change. But what level is needed? How can this be quantified? This presentation will summarize a new more rigorous and quantitative approach to determining the required accuracy for climate change observations (Wielicki et al., 2013, BAMS). Most current global satellite observations cannot meet this accuracy level. A proposed new satellite mission to resolve this challenge is CLARREO (Climate Absolute Radiance and Refractivity Observatory). CLARREO is designed to achieve advances of a factor of 10 for reflected solar spectra and a factor of 3 to 5 for thermal infrared spectra (Wielicki et al., Oct. 2013 BAMS). The CLARREO spectrometers are designed to serve as SI traceable benchmarks for the Global Satellite Intercalibration System (GSICS) and to greatly improve the utility of a wide range of LEO and GEO infrared and reflected solar passive satellite sensors for climate change observations (e.g. CERES, MODIS, VIIIRS, CrIS, IASI, Landsat, SPOT, etc). Providing more accurate decadal change trends can in turn lead to more rapid narrowing of key climate science uncertainties such as cloud feedback and climate sensitivity. A study has been carried out to quantify the economic benefits of such an advance as part of a rigorous and complete climate observing system. The study concludes that the economic value is $12 Trillion U.S. dollars in Net Present Value for a nominal discount rate of 3% (Cooke et al. 2013, J. Env. Sys. Dec.). A brief summary of these two studies and their implications for the future of climate science will be presented.

  11. Population-based absolute risk estimation with survey data

    PubMed Central

    Kovalchik, Stephanie A.; Pfeiffer, Ruth M.

    2013-01-01

    Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614

  12. Absolute Pitch: Effects of Timbre on Note-Naming Ability

    PubMed Central

    Vanzella, Patrícia; Schellenberg, E. Glenn

    2010-01-01

    Background Absolute pitch (AP) is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names), it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP. Methods/Principal Findings A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung) voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones) than for vocal (natural and synthesized voices) test tones. This difference could not be attributed solely to vibrato (pitch variation), which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age. Conclusions/Significance Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP. PMID:21085598

  13. Absolute marine gravimetry with matter-wave interferometry.

    PubMed

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  14. Evaluating the accuracy and large inaccuracy of two continuous glucose monitoring systems.

    PubMed

    Leelarathna, Lalantha; Nodale, Marianna; Allen, Janet M; Elleri, Daniela; Kumareswaran, Kavita; Haidar, Ahmad; Caldwell, Karen; Wilinska, Malgorzata E; Acerini, Carlo L; Evans, Mark L; Murphy, Helen R; Dunger, David B; Hovorka, Roman

    2013-02-01

    This study evaluated the accuracy and large inaccuracy of the Freestyle Navigator (FSN) (Abbott Diabetes Care, Alameda, CA) and Dexcom SEVEN PLUS (DSP) (Dexcom, Inc., San Diego, CA) continuous glucose monitoring (CGM) systems during closed-loop studies. Paired CGM and plasma glucose values (7,182 data pairs) were collected, every 15-60 min, from 32 adults (36.2±9.3 years) and 20 adolescents (15.3±1.5 years) with type 1 diabetes who participated in closed-loop studies. Levels 1, 2, and 3 of large sensor error with increasing severity were defined according to absolute relative deviation greater than or equal to ±40%, ±50%, and ±60% at a reference glucose level of ≥6 mmol/L or absolute deviation greater than or equal to ±2.4 mmol/L,±3.0 mmol/L, and ±3.6 mmol/L at a reference glucose level of <6 mmol/L. Median absolute relative deviation was 9.9% for FSN and 12.6% for DSP. Proportions of data points in Zones A and B of Clarke error grid analysis were similar (96.4% for FSN vs. 97.8% for DSP). Large sensor over-reading, which increases risk of insulin over-delivery and hypoglycemia, occurred two- to threefold more frequently with DSP than FSN (once every 2.5, 4.6, and 10.7 days of FSN use vs. 1.2, 2.0, and 3.7 days of DSP use for Level 1-3 errors, respectively). At levels 2 and 3, large sensor errors lasting 1 h or longer were absent with FSN but persisted with DSP. FSN and DSP differ substantially in the frequency and duration of large inaccuracy despite only modest differences in conventional measures of numerical and clinical accuracy. Further evaluations are required to confirm that FSN is more suitable for integration into closed-loop delivery systems.

  15. Systematic changes in position sense accompany normal aging across adulthood.

    PubMed

    Herter, Troy M; Scott, Stephen H; Dukelow, Sean P

    2014-03-25

    Development of clinical neurological assessments aimed at separating normal from abnormal capabilities requires a comprehensive understanding of how basic neurological functions change (or do not change) with increasing age across adulthood. In the case of proprioception, the research literature has failed to conclusively determine whether or not position sense in the upper limb deteriorates in elderly individuals. The present study was conducted a) to quantify whether upper limb position sense deteriorates with increasing age, and b) to generate a set of normative data that can be used for future comparisons with clinical populations. We examined position sense in 209 healthy males and females between the ages of 18 and 90 using a robotic arm position-matching task that is both objective and reliable. In this task, the robot moved an arm to one of nine positions and subjects attempted to mirror-match that position with the opposite limb. Measures of position sense were recorded by the robotic apparatus in hand-and joint-based coordinates, and linear regressions were used to quantify age-related changes and percentile boundaries of normal behaviour. For clinical comparisons, we also examined influences of sex (male versus female) and test-hand (dominant versus non-dominant) on all measures of position sense. Analyses of hand-based parameters identified several measures of position sense (Variability, Shift, Spatial Contraction, Absolute Error) with significant effects of age, sex, and test-hand. Joint-based parameters at the shoulder (Absolute Error) and elbow (Variability, Shift, Absolute Error) also exhibited significant effects of age and test-hand. The present study provides strong evidence that several measures of upper extremity position sense exhibit declines with age. Furthermore, this data provides a basis for quantifying when changes in position sense are related to normal aging or alternatively, pathology.

  16. Researches on the Orbit Determination and Positioning of the Chinese Lunar Exploration Program

    NASA Astrophysics Data System (ADS)

    Li, P. J.

    2015-07-01

    (DEM) as constraints in the lander positioning is helpful. The positioning method for the traverse of lunar rover is also investigated. The integration of delay-rate method is able to achieve higher precise positioning results than the point positioning method. This method provides a wide application of the VLBI data. In the automated sample return mission, the lunar orbit rendezvous and docking are involved. Precise orbit determination using the same-beam VLBI (SBI) measurement for two spacecraft at the same time is analyzed. The simulation results showed that the SBI data is able to improve the absolute and relative orbit accuracy for two targets by 1-2 orders of magnitude. In order to verify the simulation results and test the two-target POD software developed by SHAO (Shanghai Astronomical Observatory), the real SBI data of the SELENE (Selenological and Engineering Explorer) are processed. The POD results for the Rstar and the Vstar showed that the combination of SBI data could significantly improve the accuracy for the two spacecraft, especially for the Vstar with less ranging data, and the POD accuracy is improved by approximate one order of magnitude to the POD accuracy of the Rstar.

  17. The absolute dynamic ocean topography (ADOT)

    NASA Astrophysics Data System (ADS)

    Bosch, Wolfgang; Savcenko, Roman

    The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.

  18. Accuracy assessment of ALOS optical instruments: PRISM and AVNIR-2

    NASA Astrophysics Data System (ADS)

    Tadono, Takeo; Shimada, Masanobu; Iwata, Takanori; Takaku, Junichi; Kawamoto, Sachi

    2017-11-01

    This paper describes the updated results of calibration and validation to assess the accuracies for optical instruments onboard the Advanced Land Observing Satellite (ALOS, nicknamed "Daichi"), which was successfully launched on January 24th, 2006 and it is continuously operating very well. ALOS has an L-band Synthetic Aperture Radar called PALSAR and two optical instruments i.e. the Panchromatic Remotesensing Instrument for Stereo Mapping (PRISM) and the Advanced Visible and Near Infrared Radiometer type-2 (AVNIR-2). PRISM consists of three radiometers and is used to derive a digital surface model (DSM) with high spatial resolution that is an objective of the ALOS mission. Therefore, geometric calibration is important in generating a precise DSM with stereo pair images of PRISM. AVNIR-2 has four radiometric bands from blue to near infrared and uses for regional environment and disaster monitoring etc. The radiometric calibration and image quality evaluation are also important for AVNIR-2 as well as PRISM. This paper describes updated results of geometric calibration including geolocation determination accuracy evaluations of PRISM and AVNIR-2, image quality evaluation of PRISM, and validation of generated PRISM DSM. These works will be done during the ALOS mission life as an operational calibration to keep absolute accuracies of the standard products.

  19. Absolute configuration of a chiral CHD group via neutron diffraction: confirmation of the absolute stereochemistry of the enzymatic formation of malic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bau, R.; Brewer, I.; Chiang, M.Y.

    Neutron diffraction has been used to monitor the absolute stereochemistry of an enzymatic reaction. (-)(2S)malic-3-d acid was prepared by the action of fumarase on fumaric acid in D/sub 2/O. After a large number of cations were screened, it was found that (+)(R)..cap alpha..-phenylethylamine forms the large crystals necessary for a neutron diffraction analysis. The subsequent structure determination showed that (+)(R)..cap alpha..-phenylethylammonium (-)(2S)malate-3-d has an absolute configuration of R at the CHD site. This result confirms the absolute stereochemistry of fumarate-to-malate transformation as catalyzed by the enzyme fumarase.

  20. The Absolute Magnitude of the Sun in Several Filters

    NASA Astrophysics Data System (ADS)

    Willmer, Christopher N. A.

    2018-06-01

    This paper presents a table with estimates of the absolute magnitude of the Sun and the conversions from vegamag to the AB and ST systems for several wide-band filters used in ground-based and space-based observatories. These estimates use the dustless spectral energy distribution (SED) of Vega, calibrated absolutely using the SED of Sirius, to set the vegamag zero-points and a composite spectrum of the Sun that coadds space-based observations from the ultraviolet to the near-infrared with models of the Solar atmosphere. The uncertainty of the absolute magnitudes is estimated by comparing the synthetic colors with photometric measurements of solar analogs and is found to be ∼0.02 mag. Combined with the uncertainty of ∼2% in the calibration of the Vega SED, the errors of these absolute magnitudes are ∼3%–4%. Using these SEDs, for three of the most utilized filters in extragalactic work the estimated absolute magnitudes of the Sun are M B = 5.44, M V = 4.81, and M K = 3.27 mag in the vegamag system and M B = 5.31, M V = 4.80, and M K = 5.08 mag in AB.