Sample records for absolute pressure sensors

  1. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  2. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  3. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  4. A temperature and pressure controlled calibration system for pressure sensors

    NASA Technical Reports Server (NTRS)

    Chapman, John J.; Kahng, Seun K.

    1989-01-01

    A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.

  5. HOPG/ZnO/HOPG pressure sensor

    NASA Astrophysics Data System (ADS)

    Jahangiri, Mojtaba; Yousefiazari, Ehsan; Ghalamboran, Milad

    2017-12-01

    Pressure sensor is one of the most commonly used sensors in the research laboratories and industries. These are generally categorized in three different classes of absolute pressure sensors, gauge pressure sensors, and differential pressure sensors. In this paper, we fabricate and assess the pressure sensitivity of the current vs. voltage diagrams in a graphite/ZnO/graphite structure. Zinc oxide layers are deposited on highly oriented pyrolytic graphite (HOPG) substrates by sputtering a zinc target under oxygen plasma. The top electrode is also a slice of HOPG which is placed on the ZnO layer and connected to the outside electronic circuits. By recording the I-V characteristics of the device under different forces applied to the top HOPG electrode, the pressure sensitivity is demonstrated; at the optimum biasing voltage, the device current changes 10 times upon changing the pressure level on the top electrode by 20 times. Repeatability and reproducibility of the observed effect is studied on the same and different samples. All the materials used for the fabrication of this pressure sensor are biocompatible, the fabricated device is anticipated to find potential applications in biomedical engineering.

  6. Pressure sensor for high-temperature liquids

    DOEpatents

    Forster, George A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

  7. Suppression of span in sealed microcavity Fabry-Perot pressure sensors

    NASA Astrophysics Data System (ADS)

    Mishra, Shivam; Rajappa, Balasubramaniam; Chandra, Sudhir

    2017-01-01

    Optical microelectromechanical system pressure sensors working on the principle of extrinsic Fabry-Perot (FP) interferometer are designed and fabricated for pressure range of 1-bar absolute. Anodic bonding of silicon with glass is performed under atmospheric pressure to form FP cavity. This process results in entrapment of gas in the sealed microcavity. The effect of trapped gas is investigated on sensor characteristics. A closed-loop solution is derived for the deflection of the diaphragm of a sealed microcavity pressure sensor. Phenomenon of "suppression of span" is brought out. The sensors are tested using white light interferometry technique. The residual pressure of the trapped gas is estimated from the experiments. The developed model has been used to estimate the deflection sensitivity of the free diaphragm and the extent of suppression of span after bonding.

  8. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  9. Design optimization and fabrication of a novel structural piezoresistive pressure sensor for micro-pressure measurement

    NASA Astrophysics Data System (ADS)

    Li, Chuang; Cordovilla, Francisco; Ocaña, José L.

    2018-01-01

    This paper presents a novel structural piezoresistive pressure sensor with a four-beams-bossed-membrane (FBBM) structure that consisted of four short beams and a central mass to measure micro-pressure. The proposed structure can alleviate the contradiction between sensitivity and linearity to realize the micro measurement with high accuracy. In this study, the design, fabrication and test of the sensor are involved. By utilizing the finite element analysis (FEA) to analyze the stress distribution of sensitive elements and subsequently deducing the relationships between structural dimensions and mechanical performance, the optimization process makes the sensor achieve a higher sensitivity and a lower pressure nonlinearity. Based on the deduced equations, a series of optimized FBBM structure dimensions are ultimately determined. The designed sensor is fabricated on a silicon wafer by using traditional MEMS bulk-micromachining and anodic bonding technology. Experimental results show that the sensor achieves the sensitivity of 4.65 mV/V/kPa and pressure nonlinearity of 0.25% FSS in the operating range of 0-5 kPa at room temperature, indicating that this novel structure sensor can be applied in measuring the absolute micro pressure lower than 5 kPa.

  10. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution

    NASA Astrophysics Data System (ADS)

    Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng

    2018-05-01

    The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.

  11. Pressure-Sensor Assembly Technique

    NASA Technical Reports Server (NTRS)

    Pruzan, Daniel A.

    2003-01-01

    Nielsen Engineering & Research (NEAR) recently developed an ultrathin data acquisition system for use in turbomachinery testing at NASA Glenn Research Center. This system integrates a microelectromechanical- systems- (MEMS-) based absolute pressure sensor [0 to 50 psia (0 to 345 kPa)], temperature sensor, signal-conditioning application-specific integrated circuit (ASIC), microprocessor, and digital memory into a package which is roughly 2.8 in. (7.1 cm) long by 0.75 in. (1.9 cm) wide. Each of these components is flip-chip attached to a thin, flexible circuit board and subsequently ground and polished to achieve a total system thickness of 0.006 in. (0.15 mm). Because this instrument is so thin, it can be quickly adhered to any surface of interest where data can be collected without disrupting the flow being investigated. One issue in the development of the ultrathin data acquisition system was how to attach the MEMS pressure sensor to the circuit board in a manner which allowed the sensor s diaphragm to communicate with the ambient fluid while providing enough support for the chip to survive the grinding and polishing operations. The technique, developed by NEAR and Jabil Technology Services Group (San Jose, CA), is described below. In the approach developed, the sensor is attached to the specially designed circuit board, see Figure 1, using a modified flip-chip technique. The circular diaphragm on the left side of the sensor is used to actively measure the ambient pressure, while the diaphragm on the right is used to compensate for changes in output due to temperature variations. The circuit board is fabricated with an access hole through it so that when the completed system is installed onto a wind tunnel model (chip side down), the active diaphragm is exposed to the environment. After the sensor is flip-chip attached to the circuit board, the die is underfilled to support the chip during the subsequent grinding and polishing operations. To prevent this

  12. Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Yu, Qingxu; Zhou, Xinlei

    2011-03-01

    Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer (EFPI) have been extensively applied in various industrial and biomedical fields. In this paper, some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique, diaphragm-based EFPI sensors, and white light interference technology have been reviewed. Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced. Signal demodulation algorithms based on the cross correlation and mean square error (MSE) estimation have been proposed for retrieving the cavity length of EFPI. Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out. For downhole monitoring, an EFPI and a fiber Bragg grating (FBG) cascade multiplexing fiber-optic sensor system has been developed, which can operate in temperature 300 °C with a good long-term stability and extremely low temperature cross-sensitivity. Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection. Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.

  13. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  14. Capacitance pressure sensor

    DOEpatents

    Eaton, William P.; Staple, Bevan D.; Smith, James H.

    2000-01-01

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  15. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  16. Incorporation of beams into bossed diaphragm for a high sensitivity and overload micro pressure sensor

    NASA Astrophysics Data System (ADS)

    Yu, Zhongliang; Zhao, Yulong; Sun, Lu; Tian, Bian; Jiang, Zhuangde

    2013-01-01

    The paper presents a piezoresistive absolute micro pressure sensor, which is of great benefits for altitude location. In this investigation, the design, fabrication, and test of the sensor are involved. By analyzing the stress distribution of sensitive elements using finite element method, a novel structure through the introduction of sensitive beams into traditional bossed diaphragm is built up. The proposed configuration presents its advantages in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the equations about the sensor. Nonlinear optimization by MATLAB is carried out to determine the structure dimensions. The output signals in both static and dynamic environments are evaluated. Silicon bulk micromachining technology is utilized to fabricate the sensor prototype, and the fabrication process is discussed. Experimental results demonstrate the sensor features a high sensitivity of 11.098 μV/V/Pa in the operating range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure to promise its survival under atmosphere. Due to the excellent performance above, the sensor can be applied in measuring the absolute micro pressure lower than 500 Pa.

  17. Absolute Radiometric Calibration of Narrow-Swath Imaging Sensors with Reference to Non-Coincident Wide-Swath Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald

    2012-01-01

    An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.

  18. The trade-off characteristics of acoustic and pressure sensors for the NASP

    NASA Technical Reports Server (NTRS)

    Winkler, Martin; Bush, Chuck

    1992-01-01

    Results of a trade study for the development of pressure and acoustic sensors for use on the National Aerospace Plane (NASP) are summarized. Pressure sensors are needed to operate to 100 psia; acoustic sensors are needed that can give meaningful information about a 200 dB sound pressure level (SPL) environment. Both sensors will have to operate from a high temperature of 2000 F down to absolute zero. The main conclusions of the study are the following: (1) Diaphragm materials limit minimum size and maximum frequency response attainable. (2) No transduction is available to meet all the NASP requirements with existing technology. (3) Capacitive sensors are large relative to the requirement, have limited resolution and frequency response due to noise, and cable length is limited to approximately 20 feet. (4) Eddy current sensors are large relative to the requirement and have limited cable lengths. (5) Fiber optic sensors provide the possibility for a small sensor, even though present developments do not exhibit that characteristic. The need to use sapphire at high temperature complicates the design. Present high temperature research sensors suffer from poor resolution. A significant development effort will be required to realize the potential of fiber optics. (6) Short-term development seems to favor eddy current techniques with the penalty of larger size and reduced dynamic range for acoustic sensors. (7) Long-term development may favor fiber optics with the penalties of cost, schedule, and uncertainty.

  19. Pressure sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the needmore » for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.« less

  20. Geometry optimization for micro-pressure sensor considering dynamic interference

    NASA Astrophysics Data System (ADS)

    Yu, Zhongliang; Zhao, Yulong; Li, Lili; Tian, Bian; Li, Cun

    2014-09-01

    Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz1/4. The favorable overall performances enable the sensor more suitable for altimetry.

  1. Micro packaged MEMS pressure sensor for intracranial pressure measurement

    NASA Astrophysics Data System (ADS)

    Xiong, Liu; Yan, Yao; Jiahao, Ma; Yanhang, Zhang; Qian, Wang; Zhaohua, Zhang; Tianling, Ren

    2015-06-01

    This paper presents a micro packaged MEMS pressure sensor for intracranial pressure measurement which belongs to BioMEMS. It can be used in lumbar puncture surgery to measure intracranial pressure. Miniaturization is key for lumbar puncture surgery because the sensor must be small enough to allow it be placed in the reagent chamber of the lumbar puncture needle. The size of the sensor is decided by the size of the sensor chip and package. Our sensor chip is based on silicon piezoresistive effect and the size is 400 × 400 μm2. It is much smaller than the reported polymer intracranial pressure sensors such as liquid crystal polymer sensors. In terms of package, the traditional dual in-line package obviously could not match the size need, the minimal size of recently reported MEMS-based intracranial pressure sensors after packaging is 10 × 10 mm2. In this work, we are the first to introduce a quad flat no-lead package as the package form of piezoresistive intracranial pressure sensors, the whole size of the sensor is minimized to only 3 × 3 mm2. Considering the liquid measurement environment, the sensor is gummed and waterproof performance is tested; the sensitivity of the sensor is 0.9 × 10-2 mV/kPa. Project supported by the National Natural Science Foundation of China (Nos. 61025021, 61434001), and the ‘Thousands Talents’ Program for Pioneer Researchers and Its Innovation Team, China.

  2. Optimal Design of the Absolute Positioning Sensor for a High-Speed Maglev Train and Research on Its Fault Diagnosis

    PubMed Central

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project. PMID:23112619

  3. Optimal design of the absolute positioning sensor for a high-speed maglev train and research on its fault diagnosis.

    PubMed

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project.

  4. Graphene Squeeze-Film Pressure Sensors.

    PubMed

    Dolleman, Robin J; Davidovikj, Dejan; Cartamil-Bueno, Santiago J; van der Zant, Herre S J; Steeneken, Peter G

    2016-01-13

    The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area.

  5. High pressure fiber optic sensor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, Renato; Xia, Hua; Lee, Boon K

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  6. Electronically-Scanned Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  7. Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan

    2018-04-01

    This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.

  8. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  9. Fixture For Mounting A Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Cagle, Christopher M.

    1995-01-01

    Fixture for mounting pressure sensor in aerodynamic model simplifies task of removal and replacement of sensor in event sensor becomes damaged. Makes it unnecessary to dismantle model. Also minimizes any change in aerodynamic characteristics of model in event of replacement. Removable pressure sensor installed in fixture in wall of model. Wires from sensor pass through channel under surface.

  10. Fabrication and characterization of 3C-silicon carbide micro sensor for wireless blood pressure measurements

    NASA Astrophysics Data System (ADS)

    Basak, Nupur

    A potentially implantable single crystal 3C-SiC pressure sensor for blood pressure measurement was designed, simulated, fabricated, characterized and optimized. This research uses a single crystal 3C-SiC, for the first time, to demonstrate its application as a blood pressure measurement sensor. The sensor, which uses the epitaxial grown 3C-SiC membrane to measure changes in pressure, is designed to be wireless, biocompatible and linear. The SiC material was chosen for its superior physical, chemical and mechanical properties; the capacitive sensor uses a 3C-SiC membrane as one of the electrodes; and, the sensor system is wireless for comfort and to allow for convenient reading of real-time pressure data (wireless communication is enabled by connecting the sensor parallel to a planar inductor). Together, the variable capacitive sensor and planar inductor create a pressure sensitive resonant circuit. The sensor system described above allows for implantation into a human patient's body, after which the planar inductor can be coupled with an external inductor to receive data for real-time blood pressure measurement. Electroplating, thick photo-resist characterization, RIE etching, oxidation, CVD, chemical mechanical polishing and wafer bonding were optimized during the process of fabricating the sensor system and, in addition to detailing the sensor system simulation and characterization; the optimized processes are detailed in the dissertation. This absolute pressure sensor is designed to function optimally within the human blood pressure range of 50-350mmHg. The layout and modeling of the sensor uses finite element analysis (FEA) software. The simulations for membrane deflection, stress analysis and electro-mechanical analysis are performed for 100 μm2 and 400μm2sensors. The membrane deflection-pressure, capacitance-pressure and resonant frequency-pressure graphs were obtained, and detailed in the dissertation, along with the planar inductor simulation for

  11. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window

    PubMed Central

    Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin

    2016-01-01

    A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10−4 pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range. PMID:27187393

  12. Simultaneous measurement of absolute strain and differential strain based on fiber Bragg grating Fabry-Perot sensor

    NASA Astrophysics Data System (ADS)

    Wang, Kuiru; Wang, Bo; Yan, Binbin; Sang, Xinzhu; Yuan, Jinhui; Peng, Gang-Ding

    2013-10-01

    We present a fiber Bragg grating Fabry-Perot (FBG-FP) sensor using the fast Fourier transform (FFT) demodulation for measuring the absolute strain and differential strain simultaneously. The amplitude and phase characteristics of Fourier transform spectrum have been studied. The relation between the amplitude of Fourier spectrum and the differential strain has been presented. We fabricate the fiber grating FP cavity sensor, and carry out the experiment on the measurement of absolute strain and differential strain. Experimental results verify the demodulation method, and show that this sensor has a good accuracy in the scope of measurement. The demodulating method can expand the number of multiplexed sensors combining with wavelength division multiplexing and time division multiplexing.

  13. Blood pressure monitor with a position sensor for wrist placement to eliminate hydrostatic pressure effect on blood pressure measurement.

    PubMed

    Sato, Hironori; Koshimizu, Hiroshi; Yamashita, Shingo; Ogura, Toshihiko

    2013-01-01

    Accurate measurement of blood pressure at wrist requires the heart and wrist to be kept at the same level to avoid the effects of hydrostatic pressure. Although a blood pressure monitor with a position sensor that guides appropriate forearm angle without use of a chair and desk has already been proposed, a similar functioning device for measuring upper arm blood pressure with a chair and desk is needed. In this study, a calculation model was first used to explore design of such a system. The findings were then implemented into design of a new blood pressure monitor. Results of various methods were compared. The calculation model of the wrist level from arthrosis angles and interarticulars lengths was developed and considered using published anthropometric dimensions. It is compared with 33 volunteer persons' experimental results. The calculated difference of level was -4.1 to 7.9 (cm) with a fixed chair and desk. The experimental result was -3.0 to 5.5 (cm) at left wrist and -2.1 to 6.3(cm) at right wrist. The absolute difference level equals ±4.8 (mmHg) of blood pressure readings according to the calculated result. This meets the AAMI requirements for a blood pressure monitor. In the conclusion, the calculation model is able to effectively evaluate the difference between the heart and wrist level. Improving the method for maintaining wrist to heart level will improve wrist blood pressure measurement accuracy when also sitting in the chair at a desk. The leading angle of user's forearm using a position sensor is shown to work for this purpose.

  14. Alpha-Particle Gas-Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Buehler, M. C.; Bell, L. D.; Hecht, M. H.

    1996-01-01

    An approximate model was developed to establish design curves for the saturation region and a more complete model developed to characterize the current-voltage curves for an alpha-particle pressure sensor. A simple two-parameter current-voltage expression was developed to describe the dependence of the ion current on pressure. The parameters are the saturation-current pressure coefficient and mu/D, the ion mobility/diffusion coefficient. The sensor is useful in the pressure range between 0.1 and 1000 mb using a 1 - mu Ci(241) Am source. Experimental results, taken between 1 and up to 200 mb, show the sensor operates with an anode voltage of 5 V and a sensitivity of 20 fA/mb in nitrogen.

  15. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N.; Geohegan, David B.

    2016-11-15

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  16. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N.; Geohegan, David B.

    2016-12-13

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  17. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  18. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N.; Geohegan, David B.

    2016-10-25

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  19. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N.; Geohegan, David B.

    2017-09-12

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  20. MSTAR: an absolute metrology sensor with sub-micron accuracy for space-based applications

    NASA Technical Reports Server (NTRS)

    Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan P.; Jeganathan, Muthu

    2004-01-01

    The MSTAR sensor is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with subnanometer accuracy.

  1. Distributed pressure sensors for a urethral catheter.

    PubMed

    Ahmadi, Mahdi; Rajamani, Rajesh; Timm, Gerald; Sezen, A S

    2015-01-01

    A flexible strip that incorporates multiple pressure sensors and is capable of being fixed to a urethral catheter is developed. The urethral catheter thus instrumented will be useful for measurement of pressure in a human urethra during urodynamic testing in a clinic. This would help diagnose the causes of urinary incontinence in patients. Capacitive pressure sensors are fabricated on a flexible polyimide-copper substrate using surface micromachining processes and alignment/assembly of the top and bottom portions of the sensor strip. The developed sensor strip is experimentally evaluated in an in vitro test rig using a pressure chamber. The sensor strip is shown to have adequate sensitivity and repeatability. While the calibration factors for the sensors on the strip vary from one sensor to another, even the least sensitive sensor has a resolution better than 0.1 psi.

  2. Applications of pressure-sensitive dielectric elastomer sensors

    NASA Astrophysics Data System (ADS)

    Böse, Holger; Ocak, Deniz; Ehrlich, Johannes

    2016-04-01

    Dielectric elastomer sensors for the measurement of compression loads with high sensitivity are described. The basic design of the sensors exhibits two profiled surfaces between which an elastomer film is confined. All components of the sensor were prepared with silicone whose stiffness can be varied in a wide range. Depending on details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression and electrode layers on the elastomer profiles and in the elastomer film approach each other. Different designs of the pressure sensor give rise to very different sensor characteristics in terms of the dependence of electric capacitance on compression force. Due to their inherent flexibility, the pressure sensors can be used on compliant substrates such as seats or beds or on the human body. This gives rise to numerous possible applications. The contribution describes also some examples of possible sensor applications. A glove was equipped with various sensors positioned at the finger tips. When grabbing an object with the glove, the sensors can detect the gripping forces of the individual fingers with high sensitivity. In a demonstrator of the glove equipped with seven sensors, the capacitances representing the gripping forces are recorded on a display. In another application example, a lower limb prosthesis was equipped with a pressure sensor to detect the load on the remaining part of the leg and the load is displayed in terms of the measured capacitance. The benefit of such sensors is to detect an eventual overload in order to prevent possible pressure sores. A third example introduces a seat load sensor system based on four extended pressure sensor mats. The sensor system detects the load distribution of a person on the seat. The examples emphasize the high performance of the new pressure sensor technology.

  3. Absolute calibration accuracy of L4 TM and L5 TM sensor image pairs

    USGS Publications Warehouse

    Chander, G.; Micijevic, E.

    2006-01-01

    The Landsat suite of satellites has collected the longest continuous archive of multispectral data of any land-observing space program. From the Landsat program's inception in 1972 to the present, the Earth science user community has benefited from a historical record of remotely sensed data. However, little attention has been paid to ensuring that the data are calibrated and comparable from mission to mission, Launched in 1982 and 1984 respectively, the Landsat 4 (L4) and Landsat 5 (L5) Thematic Mappers (TM) are the backbone of an extensive archive of moderate resolution Earth imagery. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The approach involves comparing image statistics derived from large common areas observed eight days apart by the two sensors. The average percent differences in reflectance estimates obtained from the L4 TM agree with those from the L5 TM to within 15 percent. Additional work to characterize the absolute differences between the two sensors over the entire mission is in progress.

  4. A transparent bending-insensitive pressure sensor

    NASA Astrophysics Data System (ADS)

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  5. The digital compensation technology system for automotive pressure sensor

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Li, Quanling; Lu, Yi; Luo, Zai

    2011-05-01

    Piezoresistive pressure sensor be made of semiconductor silicon based on Piezoresistive phenomenon, has many characteristics. But since the temperature effect of semiconductor, the performance of silicon sensor is also changed by temperature, and the pressure sensor without temperature drift can not be produced at present. This paper briefly describe the principles of sensors, the function of pressure sensor and the various types of compensation method, design the detailed digital compensation program for automotive pressure sensor. Simulation-Digital mixed signal conditioning is used in this dissertation, adopt signal conditioning chip MAX1452. AVR singlechip ATMEGA128 and other apparatus; fulfill the design of digital pressure sensor hardware circuit and singlechip hardware circuit; simultaneously design the singlechip software; Digital pressure sensor hardware circuit is used to implementing the correction and compensation of sensor; singlechip hardware circuit is used to implementing to controll the correction and compensation of pressure sensor; singlechip software is used to implementing to fulfill compensation arithmetic. In the end, it implement to measure the output of sensor, and contrast to the data of non-compensation, the outcome indicates that the compensation precision of compensated sensor output is obviously better than non-compensation sensor, not only improving the compensation precision but also increasing the stabilization of pressure sensor.

  6. Acceleration sensitivity of micromachined pressure sensors

    NASA Astrophysics Data System (ADS)

    August, Richard; Maudie, Theresa; Miller, Todd F.; Thompson, Erik

    1999-08-01

    Pressure sensors serve a variety of automotive applications, some which may experience high levels of acceleration such as tire pressure monitoring. To design pressure sensors for high acceleration environments it is important to understand their sensitivity to acceleration especially if thick encapsulation layers are used to isolate the device from the hostile environment in which they reside. This paper describes a modeling approach to determine their sensitivity to acceleration that is very general and is applicable to different device designs and configurations. It also describes the results of device testing of a capacitive surface micromachined pressure sensor at constant acceleration levels from 500 to 2000 g's.

  7. Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…

  8. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  9. A silicon micromachined resonant pressure sensor

    NASA Astrophysics Data System (ADS)

    Tang, Zhangyang; Fan, Shangchun; Cai, Chenguang

    2009-09-01

    This paper describes the design, fabrication and test of a silicon micromachined resonant pressure sensor. A square membrane and a doubly clamped resonant beam constitute a compound structure. The former senses the pressure directly, while the latter changes its resonant frequency according to deformation of the membrane. The final output relation between the resonant frequency and the applied pressure is deducted according to the structure mechanical properties. Sensors are fabricated by micromachining technology, and then sealed in vaccum. These sensors are tested by open-loop and close-loop system designed on purpose. The experiment results demonstrate that the sensor has a sensitivity of 49.8Hz/kPa and repeatability of 0.08%.

  10. Flight testing of a luminescent surface pressure sensor

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  11. Pressure Measurement Sensor

    NASA Technical Reports Server (NTRS)

    1997-01-01

    FFPI Industries Inc. is the manufacturer of fiber-optic sensors that furnish accurate pressure measurements in internal combustion chambers. Such an assessment can help reduce pollution emitted by these engines. A chief component in the sensor owes its seven year- long development to Lewis Research Center funding to embed optical fibers and sensors in metal parts. NASA support to Texas A&M University played a critical role in developing this fiber optic technology and led to the formation of FFPI Industries and the production of fiber sensor products. The simple, rugged design of the sensor offers the potential for mass production at low cost. Widespread application of the new technology is forseen, from natural gas transmission, oil refining and electrical power generation to rail transport and the petrochemical paper product industry.

  12. Self-correcting electronically scanned pressure sensor

    NASA Technical Reports Server (NTRS)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  13. High-temperature fiber optic pressure sensor

    NASA Technical Reports Server (NTRS)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  14. Pressure sensor to determine spatial pressure distributions on boundary layer flows

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Piroozan, Parham; Corke, Thomas C.

    1997-03-01

    The determination of pressures along the surface of a wind tunnel proves difficult with methods that must introduce devices into the flow stream. This paper presents a sensor that is part of the wall. A special interferometric reflection moire technique is developed and used to produce signals that measures pressure both in static and dynamic settings. The sensor developed is an intelligent sensor that combines optics and electronics to analyze the pressure patterns. The sensor provides the input to a control system that is capable of modifying the shape of the wall and preserve the stability of the flow.

  15. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site

    NASA Technical Reports Server (NTRS)

    Mishra, Nischal; Helder, Dennis; Angal, Amit; Choi, Jason; Xiong, Xiaoxiong

    2014-01-01

    The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55 deg, +23.39 deg) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as the radiometer to develop an absolute calibration model for the spectral channels covered by this instrument from visible to shortwave infrared. Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm, was used to extend the model to cover visible and near-infrared regions. A simple Bidirectional Reflectance Distribution function (BRDF) model was generated using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Libya 4 and the resulting model was validated with nadir data acquired from satellite sensors such as Aqua MODIS and Landsat 7 (L7) Enhanced Thematic Mapper (ETM+). The improvements in the absolute calibration model to account for the BRDF due to off-nadir measurements and annual variations in the atmosphere are summarized. BRDF models due to off-nadir viewing angles have been derived using the measurements from EO-1 Hyperion. In addition to L7 ETM+, measurements from other sensors such as Aqua MODIS, UK-2 Disaster Monitoring Constellation (DMC), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and Operational Land Imager (OLI) onboard Landsat 8 (L8), which was launched in February 2013, were employed to validate the model. These satellite sensors differ in terms of the width of their spectral bandpasses, overpass time, off-nadir-viewing capabilities, spatial resolution and temporal revisit time, etc. The results demonstrate that the proposed empirical calibration model has accuracy of the order of 3% with an uncertainty of about 2% for the sensors used in the study.

  16. Method and Apparatus for Characterizing Pressure Sensors using Modulated Light Beam Pressure

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor)

    2003-01-01

    Embodiments of apparatuses and methods are provided that use light sources instead of sound sources for characterizing and calibrating sensors for measuring small pressures to mitigate many of the problems with using sound sources. In one embodiment an apparatus has a light source for directing a beam of light on a sensing surface of a pressure sensor for exerting a force on the sensing surface. The pressure sensor generates an electrical signal indicative of the force exerted on the sensing surface. A modulator modulates the beam of light. A signal processor is electrically coupled to the pressure sensor for receiving the electrical signal.

  17. Microfabricated pressure and shear stress sensors

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)

    2009-01-01

    A microfabricated pressure sensor. The pressure sensor comprises a raised diaphragm disposed on a substrate. The diaphragm is configured to bend in response to an applied pressure difference. A strain gauge of a conductive material is coupled to a surface of the raised diaphragm and to at least one of the substrate and a piece rigidly connected to the substrate.

  18. Novel designs for application specific MEMS pressure sensors.

    PubMed

    Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse; Thomsen, Erik V

    2010-01-01

    In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar), low temperature dependence and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0-350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed.

  19. Passive blast pressure sensor

    DOEpatents

    King, Michael J.; Sanchez, Roberto J.; Moss, William C.

    2013-03-19

    A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.

  20. Comparisons between wave directional spectra from SAR and pressure sensor arrays

    NASA Technical Reports Server (NTRS)

    Pawka, S. S.; Inman, D. L.; Hsiao, S. V.; Shemdin, O. H.

    1980-01-01

    Simultaneous directional wave measurements were made at Torrey Pines Beach, California, by a synthetic aperture radar (SAR) and a linear array of pressure sensors. The measurements were conducted during the West Coast Experiment in March 1977. Quantitative comparisons of the normalized directional spectra from the two systems were made for wave periods of 6.9-17.0 s. The comparison results were variable but generally showed good agreement of the primary mode of the normalized directional energy. An attempt was made to quantify the physical criteria for good wave imaging in the SAR. A frequency band analysis of wave parameters such as band energy, slope, and orbital velocity did not show good correlation with the directional comparisons. It is noted that absolute values of the wave height spectrum cannot be derived from the SAR images yet and, consequently, no comparisons of absolute energy levels with corresponding array measurements were intended.

  1. Urodynamic pressure sensor

    NASA Technical Reports Server (NTRS)

    Moore, Thomas

    1991-01-01

    A transducer system was developed for measuring the closing pressure profile along the female urethra, which provides up to five sensors within the functional length of the urethra. This new development is an improvement over an earlier measurement method that has a smaller sensor area and was unable to respond to transient events. Three sensors were constructed; one of them was subjected to approximately eight hours of use in a clinical setting during which 576 data points were obtained. The complete instrument system, including the signal conditioning electronics, data acquisition unit, and the computer with its display and printer is described and illustrated.

  2. Flexible Sensors for Pressure Therapy: Effect of Substrate Curvature and Stiffness on Sensor Performance.

    PubMed

    Khodasevych, Iryna; Parmar, Suresh; Troynikov, Olga

    2017-10-20

    Flexible pressure sensors are increasingly being used in medical and non-medical applications, and particularly in innovative health monitoring. Their efficacy in medical applications such as compression therapy depends on the accuracy and repeatability of their output, which in turn depend on factors such as sensor type, shape, pressure range, and conformability of the sensor to the body surface. Numerous researchers have examined the effects of sensor type and shape, but little information is available on the effect of human body parameters such as support surfaces' curvature and the stiffness of soft tissues on pressure sensing performance. We investigated the effects of body parameters on the performance of pressure sensors using a custom-made human-leg-like test setup. Pressure sensing parameters such as accuracy, drift and repeatability were determined in both static (eight hours continuous pressure) and dynamic (10 cycles of pressure application of 30 s duration) testing conditions. The testing was performed with a focus on compression therapy application for venous leg ulcer treatments, and was conducted in a low-pressure range of 20-70 mmHg. Commercially available sensors manufactured by Peratech and Sensitronics were used under various loading conditions to determine the influence of stiffness and curvature. Flat rigid, flat soft silicone and three cylindrical silicone surfaces of radii of curvature of 3.5 cm, 5.5 cm and 6.5 cm were used as substrates under the sensors. The Peratech sensor averaged 94% accuracy for both static and dynamic measurements on all substrates; the Sensitronics sensor averaged 88% accuracy. The Peratech sensor displayed moderate variations and the Sensitronics sensor large variations in output pressure readings depending on the underlying test surface, both of which were reduced markedly by individual pressure calibration for surface type. Sensor choice and need for calibration to surface type are important considerations for

  3. Flexible Sensors for Pressure Therapy: Effect of Substrate Curvature and Stiffness on Sensor Performance

    PubMed Central

    Khodasevych, Iryna; Parmar, Suresh

    2017-01-01

    Flexible pressure sensors are increasingly being used in medical and non-medical applications, and particularly in innovative health monitoring. Their efficacy in medical applications such as compression therapy depends on the accuracy and repeatability of their output, which in turn depend on factors such as sensor type, shape, pressure range, and conformability of the sensor to the body surface. Numerous researchers have examined the effects of sensor type and shape, but little information is available on the effect of human body parameters such as support surfaces’ curvature and the stiffness of soft tissues on pressure sensing performance. We investigated the effects of body parameters on the performance of pressure sensors using a custom-made human-leg-like test setup. Pressure sensing parameters such as accuracy, drift and repeatability were determined in both static (eight hours continuous pressure) and dynamic (10 cycles of pressure application of 30 s duration) testing conditions. The testing was performed with a focus on compression therapy application for venous leg ulcer treatments, and was conducted in a low-pressure range of 20–70 mmHg. Commercially available sensors manufactured by Peratech and Sensitronics were used under various loading conditions to determine the influence of stiffness and curvature. Flat rigid, flat soft silicone and three cylindrical silicone surfaces of radii of curvature of 3.5 cm, 5.5 cm and 6.5 cm were used as substrates under the sensors. The Peratech sensor averaged 94% accuracy for both static and dynamic measurements on all substrates; the Sensitronics sensor averaged 88% accuracy. The Peratech sensor displayed moderate variations and the Sensitronics sensor large variations in output pressure readings depending on the underlying test surface, both of which were reduced markedly by individual pressure calibration for surface type. Sensor choice and need for calibration to surface type are important considerations for

  4. Pressure sensor for sealed containers

    DOEpatents

    Hodges, Franklin R.

    2001-01-01

    A magnetic pressure sensor for sensing a pressure change inside a sealed container. The sensor includes a sealed deformable vessel having a first end attachable to an interior surface of the sealed container, and a second end. A magnet mounted to the vessel second end defining a distance away from the container surface provides an externally detectable magnetic field. A pressure change inside the sealed container causes deformation of the vessel changing the distance of the magnet away from the container surface, and thus the detectable intensity of the magnetic field.

  5. Microoptomechanical sensor for intracranial pressure monitoring

    NASA Astrophysics Data System (ADS)

    Andreeva, A. V.; Luchinin, V. V.; Lutetskiy, N. A.; Sergushichev, A. N.

    2014-12-01

    The main idea of this research is the development of microoptomechanical sensor for intracranial pressure monitoring. Currently, the authors studied the scientific and technical knowledge in this field, as well as develop and test a prototype of microoptomechanical sensor for intracranial pressure (ICP) monitoring.

  6. Novel Designs for Application Specific MEMS Pressure Sensors

    PubMed Central

    Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse; Thomsen, Erik V.

    2010-01-01

    In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar), low temperature dependence and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0–350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed. PMID:22163425

  7. The baseline pressure of intracranial pressure (ICP) sensors can be altered by electrostatic discharges.

    PubMed

    Eide, Per K; Bakken, André

    2011-08-22

    The monitoring of intracranial pressure (ICP) has a crucial role in the surveillance of patients with brain injury. During long-term monitoring of ICP, we have seen spontaneous shifts in baseline pressure (ICP sensor zero point), which are of technical and not physiological origin. The aim of the present study was to explore whether or not baseline pressures of ICP sensors can be affected by electrostatics discharges (ESD's), when ESD's are delivered at clinically relevant magnitudes. We performed bench-testing of a set of commercial ICP sensors. In our experimental setup, the ICP sensor was placed in a container with 0.9% NaCl solution. A test person was charged 0.5-10 kV, and then delivered ESD's to the sensor by touching a metal rod that was located in the container. The continuous pressure signals were recorded continuously before/after the ESD's, and the pressure readings were stored digitally using a computerized system A total of 57 sensors were tested, including 25 Codman ICP sensors and 32 Raumedic sensors. When charging the test person in the range 0.5-10 kV, typically ESD's in the range 0.5-5 kV peak pulse were delivered to the ICP sensor. Alterations in baseline pressure ≥ 2 mmHg was seen in 24 of 25 (96%) Codman sensors and in 17 of 32 (53%) Raumedic sensors. Lasting changes in baseline pressure > 10 mmHg that in the clinical setting would affect patient management, were seen frequently for both sensor types. The changes in baseline pressure were either characterized by sudden shifts or gradual drifts in baseline pressure. The baseline pressures of commercial solid ICP sensors can be altered by ESD's at discharge magnitudes that are clinically relevant. Shifts in baseline pressure change the ICP levels visualised to the physician on the monitor screen, and thereby reveal wrong ICP values, which likely represent a severe risk to the patient.

  8. The baseline pressure of intracranial pressure (ICP) sensors can be altered by electrostatic discharges

    PubMed Central

    2011-01-01

    Background The monitoring of intracranial pressure (ICP) has a crucial role in the surveillance of patients with brain injury. During long-term monitoring of ICP, we have seen spontaneous shifts in baseline pressure (ICP sensor zero point), which are of technical and not physiological origin. The aim of the present study was to explore whether or not baseline pressures of ICP sensors can be affected by electrostatics discharges (ESD's), when ESD's are delivered at clinically relevant magnitudes. Methods We performed bench-testing of a set of commercial ICP sensors. In our experimental setup, the ICP sensor was placed in a container with 0.9% NaCl solution. A test person was charged 0.5 - 10 kV, and then delivered ESD's to the sensor by touching a metal rod that was located in the container. The continuous pressure signals were recorded continuously before/after the ESD's, and the pressure readings were stored digitally using a computerized system Results A total of 57 sensors were tested, including 25 Codman ICP sensors and 32 Raumedic sensors. When charging the test person in the range 0.5-10 kV, typically ESD's in the range 0.5 - 5 kV peak pulse were delivered to the ICP sensor. Alterations in baseline pressure ≥ 2 mmHg was seen in 24 of 25 (96%) Codman sensors and in 17 of 32 (53%) Raumedic sensors. Lasting changes in baseline pressure > 10 mmHg that in the clinical setting would affect patient management, were seen frequently for both sensor types. The changes in baseline pressure were either characterized by sudden shifts or gradual drifts in baseline pressure. Conclusions The baseline pressures of commercial solid ICP sensors can be altered by ESD's at discharge magnitudes that are clinically relevant. Shifts in baseline pressure change the ICP levels visualised to the physician on the monitor screen, and thereby reveal wrong ICP values, which likely represent a severe risk to the patient. PMID:21859487

  9. Fully wireless pressure sensor based on endoscopy images

    NASA Astrophysics Data System (ADS)

    Maeda, Yusaku; Mori, Hirohito; Nakagawa, Tomoaki; Takao, Hidekuni

    2018-04-01

    In this paper, the result of developing a fully wireless pressure sensor based on endoscopy images for an endoscopic surgery is reported for the first time. The sensor device has structural color with a nm-scale narrow gap, and the gap is changed by air pressure. The structural color of the sensor is acquired from camera images. Pressure detection can be realized with existing endoscope configurations only. The inner air pressure of the human body should be measured under flexible-endoscope operation using the sensor. Air pressure monitoring, has two important purposes. The first is to quantitatively measure tumor size under a constant air pressure for treatment selection. The second purpose is to prevent the endangerment of a patient due to over transmission of air. The developed sensor was evaluated, and the detection principle based on only endoscopy images has been successfully demonstrated.

  10. Ultrahigh Temperature Capacitive Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  11. Device for determining carbon activity through pressure

    DOEpatents

    Roche, Michael F.

    1976-01-01

    A hollow iron capsule of annular shape having an interior layer of Fe.sub.0.947 0 and a near absolute internal vacuum is submersed within a molten metal with the inner chamber of the capsule connected to a pressure sensor. Carbon present in the molten metal diffuses through the capsule wall and reacts with the Fe.sub.0.947 0 layer to generate a CO.sub.2 --CO gas mixture within the internal chamber. The total absolute pressure of the gas measured by the pressure sensor is directly proportional to the carbon activity of the molten metal.

  12. Micromachined pressure sensors: Review and recent developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, W.P.; Smith, J.H.

    1997-03-01

    Since the discovery of piezoresistivity in silicon in the mid 1950s, silicon-based pressure sensors have been widely produced. Micromachining technology has greatly benefited from the success of the integrated circuits industry, burrowing materials, processes, and toolsets. Because of this, microelectromechanical systems (MEMS) are now poised to capture large segments of existing sensor markets and to catalyze the development of new markets. Given the emerging importance of MEMS, it is instructive to review the history of micromachined pressure sensors, and to examine new developments in the field. Pressure sensors will be the focus of this paper, starting from metal diaphragm sensorsmore » with bonded silicon strain gauges, and moving to present developments of surface-micromachined, optical, resonant, and smart pressure sensors. Considerations for diaphragm design will be discussed in detail, as well as additional considerations for capacitive and piezoresistive devices.« less

  13. Optical detection system for MEMS-type pressure sensor

    NASA Astrophysics Data System (ADS)

    Sareło, K.; Górecka-Drzazga, A.; Dziuban, J. A.

    2015-07-01

    In this paper a special optical detection system designed for a MEMS-type (micro-electro-mechanical system) silicon pressure sensor is presented. The main part of the optical system—a detection unit with a perforated membrane—is bonded to the silicon sensor, and placed in a measuring system. An external light source illuminates the membrane of the pressure sensor. Owing to the light reflected from the deflected membrane sensor, the optical pattern consisting of light points is visible, and pressure can be estimated. The optical detection unit (20   ×   20   ×   20.4 mm3) is fabricated using microengineering techniques. Its dimensions are adjusted to the dimensions of the pressure sensor (5   ×   5 mm2 silicon membrane). Preliminary tests of the optical detection unit integrated with the silicon pressure sensor are carried out. For the membrane sensor from 15 to 60 µm thick, a repeatable detection of the differential pressure in the range of 0 to 280 kPa is achieved. The presented optical microsystem is especially suitable for the pressure measurements in a high radiation environment.

  14. A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range

    PubMed Central

    Tian, He; Shu, Yi; Wang, Xue-Feng; Mohammad, Mohammad Ali; Bie, Zhi; Xie, Qian-Yi; Li, Cheng; Mi, Wen-Tian; Yang, Yi; Ren, Tian-Ling

    2015-01-01

    Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (<5 kPa) to enable ultra-sensitive detection. However, the sensitivity drops significantly at high pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation have pressures below 10 kPa, and 10–100 kPa, respectively. Maintaining a high sensitivity in a wide pressure range is in great demand. Here, a flexible, wide range and ultra-sensitive resistive pressure sensor with a foam-like structure based on laser-scribed graphene (LSG) is demonstrated. Benefitting from the large spacing between graphene layers and the unique v-shaped microstructure of the LSG, the sensitivity of the pressure sensor is as high as 0.96 kPa−1 in a wide pressure range (0 ~ 50 kPa). Considering both sensitivity and pressure sensing range, the pressure sensor developed in this work is the best among all reported pressure sensors to date. A model of the LSG pressure sensor is also established, which agrees well with the experimental results. This work indicates that laser scribed flexible graphene pressure sensors could be widely used for artificial e-skin, medical-sensing, bio-sensing and many other areas. PMID:25721159

  15. Design, fabrication and metrological evaluation of wearable pressure sensors.

    PubMed

    Goy, C B; Menichetti, V; Yanicelli, L M; Lucero, J B; López, M A Gómez; Parodi, N F; Herrera, M C

    2015-04-01

    Pressure sensors are valuable transducers that are necessary in a huge number of medical application. However, the state of the art of compact and lightweight pressure sensors with the capability of measuring the contact pressure between two surfaces (contact pressure sensors) is very poor. In this work, several types of wearable contact pressure sensors are fabricated using different conductive textile materials and piezo-resistive films. The fabricated sensors differ in size, the textile conductor used and/or the number of layers of the sandwiched piezo-resistive film. The intention is to study, through the obtaining of their calibration curves, their metrological properties (repeatability, sensitivity and range) and determine which physical characteristics improve their ability for measuring contact pressures. It has been found that it is possible to obtain wearable contact pressure sensors through the proposed fabrication process with satisfactory repeatability, range and sensitivity; and that some of these properties can be improved by the physical characteristics of the sensors.

  16. Semiconductor nanomembrane-based sensors for high frequency pressure measurements

    NASA Astrophysics Data System (ADS)

    Ruan, Hang; Kang, Yuhong; Homer, Michelle; Claus, Richard O.; Mayo, David; Sibold, Ridge; Jones, Tyler; Ng, Wing

    2017-04-01

    This paper demonstrates improvements on semiconductor nanomembrane based high frequency pressure sensors that utilize silicon on insulator techniques in combination with nanocomposite materials. The low-modulus, conformal nanomembrane sensor skins with integrated interconnect elements and electronic devices could be applied to vehicles or wind tunnel models for full spectrum pressure analysis. Experimental data demonstrates that: 1) silicon nanomembrane may be used as single pressure sensor transducers and elements in sensor arrays, 2) the arrays may be instrumented to map pressure over the surfaces of test articles over a range of Reynolds numbers, temperature and other environmental conditions, 3) in the high frequency range, the sensor is comparable to the commercial high frequency sensor, and 4) in the low frequency range, the sensor is much better than the commercial sensor. This supports the claim that nanomembrane pressure sensors may be used for wide bandwidth flow analysis.

  17. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...

  18. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...

  19. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...

  20. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...

  1. Isolating Gas Sensor From Pressure And Temperature Effects

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  2. Optical fiber pressure sensors for adaptive wings

    NASA Astrophysics Data System (ADS)

    Duncan, Paul G.; Jones, Mark E.; Shinpaugh, Kevin A.; Poland, Stephen H.; Murphy, Kent A.; Claus, Richard O.

    1997-06-01

    Optical fiber pressure sensors have been developed for use on a structurally-adaptive `smart wing'; further details of the design, fabrication and testing of the smart wing concept are presented in companion papers. This paper describes the design, construction, and performance of the pressure sensor and a combined optical and electronic signal processing system implemented to permit the measurement of a large number of sensors distributed over the control surfaces of a wing. Optical fiber pressure sensors were implemented due to anticipated large electromagnetic interference signals within the operational environment. The sensors utilized the principle of the extrinsic Fabry-Perot interferometer (EFPI) already developed for the measurement of strain and temperature. Here, the cavity is created inside a micromachined hollow-core tube with a silicon diaphragm at one end. The operation of the sensor is similar to that of the EFPI strain gage also discussed in several papers at this conference. The limitations placed upon the performance of the digital signal processing system were determined by the required pressure range of the sensors and the cycle time of the control system used to adaptively modify the shape of the wing. Sensor calibration and the results of testing performed are detailed.

  3. A simple sensing mechanism for wireless, passive pressure sensors.

    PubMed

    Drazan, John F; Wassick, Michael T; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H

    2016-08-01

    We have developed a simple wireless pressure sensor that consists of only three electrically isolated components. Two conductive spirals are separated by a closed cell foam that deforms when exposed to changing pressures. This deformation changes the capacitance and thus the resonant frequency of the sensors. Prototype sensors were submerged and wirelessly interrogated while being exposed to physiologically relevant pressures from 10 to 130 mmHg. Sensors consistently exhibited a sensitivity of 4.35 kHz/mmHg which is sufficient for resolving physiologically relevant pressure changes in vivo. These simple sensors have the potential for in vivo pressure sensing.

  4. Miniature piezoresistive solid state integrated pressure sensors

    NASA Technical Reports Server (NTRS)

    Kahng, S. K.

    1980-01-01

    The characteristics of silicon pressure sensors with an ultra-small diaphragm are described. The pressure sensors utilize rectangular diaphragm as small as 0.0127 x 0.0254 cm and a p-type Wheatstone bridge consisting of diffused piezoresistive elements, 0.000254 cm by 0.00254 cm. These sensors exhibit as high as 0.5 MHz natural frequency and 1 mV/V/psi pressure sensitivity. Fabrication techniques and high frequency results from shock tube testing and low frequency comparison with microphones are presented.

  5. Calculation Of Pneumatic Attenuation In Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1991-01-01

    Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.

  6. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sensors, and dewpoint sensors. 1065.215 Section 1065.215 Protection of Environment ENVIRONMENTAL... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature sensors, and dewpoint sensors. (a) Application. Use instruments as specified in this section to measure...

  7. Ultrahigh-Sensitivity Piezoresistive Pressure Sensors for Detection of Tiny Pressure.

    PubMed

    Li, Hongwei; Wu, Kunjie; Xu, Zeyang; Wang, Zhongwu; Meng, Yancheng; Li, Liqiang

    2018-06-20

    High-sensitivity pressure sensors are crucial for the ultrasensitive touch technology and E-skin, especially at the tiny-pressure range below 100 Pa. However, it is highly challenging to substantially promote sensitivity beyond the current level at several to 200 kPa -1 and to improve the detection limit lower than 0.1 Pa, which is significant for the development of pressure sensors toward ultrasensitive and highly precise detection. Here, we develop an efficient strategy to greatly improve the sensitivity near to 2000 kPa -1 using short-channel coplanar device structure and sharp microstructure, which is systematically proposed for the first time and rationalized by the mathematic calculation and analysis. Significantly, benefiting from the ultrahigh sensitivity, the detection limit is improved to be as small as 0.075 Pa. The sensitivity and detection limit are both superior to the current levels and far surpass the function of human skin. Furthermore, the sensor shows fast response time (50 μs), excellent reproducibility and stability, and low power consumption. Remarkably, the sensor shows excellent detection capacity in the tiny-pressure range, including light-emitting diode switching with a pressure of 7 Pa, ringtone (2-20 Pa) recognition, and ultrasensitive (0.1 Pa) electronic glove. This work represents a performance and strategic progress in the field of pressure sensing.

  8. Thermoelectric Control Of Temperatures Of Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  9. Use of Nanocomposites for Flexible Pressure Sensors =

    NASA Astrophysics Data System (ADS)

    Sepulveda, Alexandra Conceicao Teixeira

    Polymer nanocomposites (PNCs) are defined as polymers bonded with nanoparticles to create materiais with improved properties. The development of this type of material is rapidly emerging as a multidisciplinary research activity, since their final properties can benefit many different fields of application, namely in the development of electrical devices as studied herein. A fabrication technique to produce conductive PNCs was developed in this work and used to fabricate flexible capacitive pressure sensors. The process is based on vertically aligned-carbon nanotubes (A-CNTs) embedded in a flexible and biocompatible matrix of polydimethylsiloxane (PDMS). Thin A-CNTs/PDMS nanocomposite films ( 400 mum) were produced using wetting of as-grown A-CNTs with uncured PDMS and the resulting nanocomposites were used to fabricate flexible pressure sensors. The sensing capability of this A-CNTs/PDMS nanocomposite is attributed to the distinctive combination of mechanical flexibility and electrical properties. The fabricated nanocomposites were characterized and mechanical and electrical properties evaluated. The PDMS is significantly modified by the reinforcing A-CNT fibers, demonstrating non-isotropic (as opposed to the isotropic neat PDMS) elastic properties ali different than the PDMS (Young's modulus of 0.8 MPa), including an anisotropy ratio of 4.8 and increases in the modulus of A-CNTs/PDMS nanocomposites over PDMS by more than 900 % and 100 %, in the CNTs longitudinal and transverse directions, respectively. Regarding the electrical measurements, A-CNTs/PDMS nanocomposites presented an electrical conductivity of 0.35 Sim. The rather low conductivity does not compromise the developed capacitive sensor, but since passive telemetry is required to measure and power the sensor, solutions to overcome this problem were also studied. The configuration of the developed flexible sensor is similar to typical silicon-based capacitive pressure sensors. It is composed of three thin

  10. A miniature fiber optic pressure sensor for intradiscal pressure measurements of rodents

    NASA Astrophysics Data System (ADS)

    Nesson, Silas; Yu, Miao; Hsieh, Adam H.

    2007-04-01

    Lower back pain continues to be a leading cause of disability in people of all ages, and has been associated with degenerative disc disease. It is well accepted that mechanical stress, among other factors, can play a role in the development of disc degeneration. Pressures generated in the intervertebral disc have been measured both in vivo and in vitro for humans and animals. However, thus far it has been difficult to measure pressure experimentally in rodent discs due to their small size. With the prevalent use of rodent tail disc models in mechanobiology, it is important to characterize the intradiscal pressures generated with externally applied stresses. In this paper, a miniature fiber optic Fabry-Perot interferometric pressure sensor with an outer diameter of 360 μm was developed to measure intradiscal pressures in rat caudal discs. A low coherence interferometer based optical system was used, which includes a broadband light source, a high-speed spectrometer, and a Fabry-Perot sensor. The sensor employs a capillary tube, a flexible, polymer diaphragm coated with titanium as a partial mirror, and a fiber tip as another mirror. The pressure induced deformation of the diaphragm results in a cavity length change of the Fabry-Perot interferometer which can be calculated from the wavelength shift of interference fringes. The sensor exhibited good linearity with small applied pressures. Our validation experiments show that owing to the small size, inserting the sensor does not disrupt the annulus fibrosus and will not alter intradiscal pressures generated. Measurements also demonstrate the feasibility of using this sensor to quantify external load intradiscal pressure relationships in small animal discs.

  11. Downhole pressure sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1980-01-01

    Sensor remains accurate in spite of varying temperatures. Very accurate, sensitive, and stable downhole pressure measurements are needed for vaiety of reservoir engineering applications, such as deep petroleum reservoirs, especially gas reservoirs, and in areas of high geothermal gradient.

  12. Embedding Piezoresistive Pressure Sensors to Obtain Online Pressure Profiles Inside Fiber Composite Laminates

    PubMed Central

    Kahali Moghaddam, Maryam; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-01-01

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy’s law in porous media to control the resin flow during infusion. PMID:25825973

  13. Embedding piezoresistive pressure sensors to obtain online pressure profiles inside fiber composite laminates.

    PubMed

    Moghaddam, Maryam Kahali; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-03-27

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy's law in porous media to control the resin flow during infusion.

  14. Manifold absolute pressure estimation using neural network with hybrid training algorithm

    PubMed Central

    Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli

    2017-01-01

    In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value. PMID:29190779

  15. Electronically scanned pressure sensor module with in SITU calibration capability

    NASA Technical Reports Server (NTRS)

    Gross, C. (Inventor)

    1978-01-01

    This high data rate pressure sensor module helps reduce energy consumption in wind tunnel facilities without loss of measurement accuracy. The sensor module allows for nearly a two order of magnitude increase in data rates over conventional electromechanically scanned pressure sampling techniques. The module consists of 16 solid state pressure sensor chips and signal multiplexing electronics integrally mounted to a four position pressure selector switch. One of the four positions of the pressure selector switch allows the in situ calibration of the 16 pressure sensors; the three other positions allow 48 channels (three sets of 16) pressure inputs to be measured by the sensors. The small size of the sensor module will allow mounting within many wind tunnel models, thus eliminating long tube lengths and their corresponding slow pressure response.

  16. Measuring Time-Averaged Blood Pressure

    NASA Technical Reports Server (NTRS)

    Rothman, Neil S.

    1988-01-01

    Device measures time-averaged component of absolute blood pressure in artery. Includes compliant cuff around artery and external monitoring unit. Ceramic construction in monitoring unit suppresses ebb and flow of pressure-transmitting fluid in sensor chamber. Transducer measures only static component of blood pressure.

  17. Tests Of Array Of Flush Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Larson, Larry J.; Moes, Timothy R.; Siemers, Paul M., III

    1992-01-01

    Report describes tests of array of pressure sensors connected to small orifices flush with surface of 1/7-scale model of F-14 airplane in wind tunnel. Part of effort to determine whether pressure parameters consisting of various sums, differences, and ratios of measured pressures used to compute accurately free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and mach number. Such arrays of sensors and associated processing circuitry integrated into advanced aircraft as parts of flight-monitoring and -controlling systems.

  18. Organic electronics based pressure sensor towards intracranial pressure monitoring

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Varadan, Vijay K.

    2010-04-01

    The intra-cranial space, which houses the brain, contains cerebrospinal fluid (CSF) that acts as a fluid suspension medium for the brain. The CSF is always in circulation, is secreted in the cranium and is drained out through ducts called epidural veins. The venous drainage system has inherent resistance to the flow. Pressure is developed inside the cranium, which is similar to a rigid compartment. Normally a pressure of 5-15 mm Hg, in excess of atmospheric pressure, is observed at different locations inside the cranium. Increase in Intra-Cranial Pressure (ICP) can be caused by change in CSF volume caused by cerebral tumors, meningitis, by edema of a head injury or diseases related to cerebral atrophy. Hence, efficient ways of monitoring ICP need to be developed. A sensor system and monitoring scheme has been discussed here. The system architecture consists of a membrane less piezoelectric pressure sensitive element, organic thin film transistor (OTFT) based signal transduction, and signal telemetry. The components were fabricated on flexible substrate and have been assembled using flip-chip packaging technology. Material science and fabrication processes, subjective to the device performance, have been discussed. Capability of the device in detecting pressure variation, within the ICP pressure range, is investigated and applicability of measurement scheme to medical conditions has been argued for. Also, applications of such a sensor-OTFT assembly for logic sensor switching and patient specific-secure monitoring system have been discussed.

  19. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.

    PubMed

    Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori

    2015-01-01

    We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840-0.988 for the thinly clothed condition and 0.867-0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing.

  20. Size effect of optical silica microsphere pressure sensors

    NASA Astrophysics Data System (ADS)

    Jiao, Xinbing; Hao, Ruirui; Pan, Qian; Zhao, Xinwei; Bai, Xue

    2018-07-01

    Two types of optical pressure sensors with silica microspheres are proposed. The size effect of optical silica microsphere pressure sensors is studied by using a single-wavelength laser beam and polarimeters. The silica microspheres with diameters of 1.0 μm, 1.5 μm and 2.0 μm are prepared on garnet substrates by a self-assembly method. The pressure and the optical properties of the silica microspheres are measured by a resistance strain sensor and Thorlabs Stokes polarimeters as a function of the external direct current (DC) voltage. The optical silica microsphere sensor in transmission mode is suitable for pressure measuring. The results show that the pressure increases, while the diameter of the silica microspheres decreases. The maximum internal pressure can reach up to 7.3 × 107 Pa when the diameter of the silica microspheres is 1.0 μm.

  1. A Ubiquitous Blood Pressure Sensor Worn at the Ear

    NASA Astrophysics Data System (ADS)

    Koizumi, Hiroshi; Shimada, Junichi; Uenishi, Yuji; Tochikubo, Osamu

    2009-12-01

    Blood pressure (BP) measurement and BP control are important for the prevention of lifestyle diseases, especially hypertension, which can lead to more serious conditions, such as cardiac infarction and cerebral apoplexy. The purpose of our study is to develop a ubiquitous blood pressure sensor that is more comfortable and less disruptive of users' daily activities than conventional blood pressure sensors. Our developed sensor is worn at an ear orifice and measures blood pressure at the tragus. This paper describes the concept, configuration, and the optical and electronic details of the developed ear-worn blood pressure sensor and presents preliminary evaluation results. The developed sensor causes almost no discomfort and produces signals whose quality is high enough for detecting BP at an ear, making it suitable for ubiquitous usage.

  2. Method for making a dynamic pressure sensor and a pressure sensor made according to the method

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Robbins, William E. (Inventor); Robins, Glenn M. (Inventor)

    1994-01-01

    A method for providing a perfectly flat top with a sharp edge on a dynamic pressure sensor using a cup-shaped stretched membrane as a sensing element is described. First, metal is deposited on the membrane and surrounding areas. Next, the side wall of the pressure sensor with the deposited metal is machined to a predetermined size. Finally, deposited metal is removed from the top of the membrane in small steps, by machining or lapping while the pressure sensor is mounted in a jig or the wall of a test object, until the true top surface of the membrane appears. A thin indicator layer having a color contrasting with the color of the membrane may be applied to the top of the membrane before metal is deposited to facilitate the determination of when to stop metal removal from the top surface of the membrane.

  3. Direct Left Atrial Pressure Monitoring in Severe Heart Failure: Long-Term Sensor Performance

    PubMed Central

    Ritzema, Jay; Eigler, Neal L.; Melton, Iain C.; Krum, Henry; Adamson, Philip B.; Kar, Saibal; Shah, Prediman K.; Whiting, James S.; Heywood, J. Thomas; Rosero, Spencer; Singh, Jagmeet P.; Saxon, Leslie; Matthews, Ray; Crozier, Ian G.; Abraham, William T.

    2010-01-01

    We report the stability, accuracy, and development history of a new left atrial pressure (LAP) sensing system in ambulatory heart failure (HF) patients. A total of 84 patients with advanced HF underwent percutaneous transseptal implantation of the pressure sensor. Quarterly noninvasive calibration by modified Valsalva maneuver was achieved in all patients, and 96.5% of calibration sessions were successful with a reproducibility of 1.2 mmHg. Absolute sensor drift was maximal after 3 months at 4.7 mmHg (95% CI, 3.2–6.2 mmHg) and remained stable through 48 months. LAP was highly correlated with simultaneous pulmonary wedge pressure at 3 and 12 months (r = 0.98, average difference of 0.8 ± 4.0 mmHg). Freedom from device failure was 95% (n = 37) at 2 years and 88% (n = 12) at 4 years. Causes of failure were identified and mitigated with 100% freedom from device failure and less severe anomalies in the last 41 consecutive patients (p = 0.005). Accurate and reliable LAP measurement using a chronic implanted monitoring system is safe and feasible in patients with advanced heart failure. PMID:20945124

  4. High precision silicon piezo resistive SMART pressure sensor

    NASA Astrophysics Data System (ADS)

    Brown, Rod

    2005-01-01

    Instruments for test and calibration require a pressure sensor that is precise and stable. Market forces also dictate a move away from single measurand test equipment and, certainly in the case of pressure, away from single range equipment. A pressure `module' is required which excels in pressure measurement but is interchangble with sensors for other measurands. A communications interface for such a sensor has been specified. Instrument Digital Output Sensor (IDOS) that permits this interchanagability and allows the sensor to be inside or outside the measuring instrument. This paper covers the design and specification of a silicon diaphragm piezo resistive SMART sensor using this interface. A brief history of instrument sensors will be given to establish the background to this development. Design choices of the silicon doping, bridge energisation method, temperature sensing, signal conversion, data processing, compensation method, communications interface will be discussed. The physical format of the `in-instrument' version will be shown and then extended to the packaging design for the external version. Test results will show the accuracy achieved exceeds the target of 0.01%FS over a range of temperatures.

  5. Flexible pressure sensors for burnt skin patient monitoring

    NASA Astrophysics Data System (ADS)

    Hong, Gwang-Wook; Kim, Se-Hoon; Kim, Joo-Hyung

    2015-04-01

    To monitor hypertrophic scars in burnt skin we proposed and demonstrated a hybrid polymer/carbon tube-based flexible pressure sensor. To monitor the pressure on skin by measurement, we were focusing on the fabrication of a well-defined hybrid polydimethylsiloxsane/functionalized multi-walled carbon tube array formed on the patterned interdigital transducer in a controllable way for the application of flexible pressure sensing devices. As a result, the detection at the pressure of 20 mmHg is achieved, which is a suggested optimal value of resistance for sensing pressure. It should be noted that the achieved value of resistance at the pressure of 20 mmHg is highly desirable for the further development of sensitive flexible pressure sensors. In addition we demonstrate a feasibility of a wearable pressure sensor which can be in real-time detection of local pressure by wireless communication module. Keywords:

  6. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  7. Fiber optic plantar pressure/shear sensor

    NASA Astrophysics Data System (ADS)

    Soetanto, William; Nguyen, Ngoc T.; Wang, Wei-Chih

    2011-04-01

    A full-scale foot pressure/shear sensor that has been developed to help diagnose the cause of ulcer formation in diabetic patients is presented. The design involves a tactile sensor array using intersecting optical fibers embedded in soft elastomer. The basic configuration incorporates a mesh that is comprised of two sets of parallel optical fiber plane; the planes are configured so the parallel rows of fiber of the top and bottom planes are perpendicular to each other. Threedimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution and the shifting of the layers relative to each other. In this paper we will present the latest development on the fiber optic plantar pressure/shear sensor which can measure normal force up from 19.09 kPa to 1000 kPa.

  8. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  9. Development of two-dimensional interdigitated center of pressure sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Byungseok; Pines, Darryll J.

    2017-12-01

    This paper presents the development of a two-dimensional (2D) flexible patch sensor to detect and monitor the center of pressure (CoP) location and the total magnitude of a spatially distributed pressure to the specific surface areas of engineering structures. The CoP sensor with the contact mode induced by a pressure distribution was formulated by force sensitive resistor technology and was mainly composed of a thin conductive polymer layer, adhesive spacers, and two interdigitated patterned electrode films with unique sensing aperture shadings. By properly mapping the interdigitated electrode patterns to the top and bottom surfaces of the conductive polymer, the proposed sensor ideally enables to measure an overall applied pressure level and its centroid location within a predetermined sensing region in real-time. The CoP sensor containing 36 sensing sections within a dimension of around 3 × 3 inches was prototyped and experimentally investigated to verify its capability to identify the CoP location and magnitude due to the presence of a permanent magnet-based local pressure distribution. Only five electric wires connected to the CoP sensor to inspect the pressure-sensing positions of 36 segments. The evaluation results of the measured sensor data demonstrate good agreements with the actual test parameters such as the total pressure and its centroid position with about 5% locational error. However, to provide accurate information on the overall pressure range, the compensation factors must be determined and applied to the individual sensing sections of the sensor.

  10. A platform-based foot pressure/shear sensor

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Te; Liu, Chao Shih; Soetanto, William; Wang, Wei-Chih

    2012-04-01

    The proposed research is aimed at developing, fabricating and implementing a flexible fiber optic bend loss sensor for the measurement of plantar pressure and shear stress for diabetic patients. The successful development of the sensor will greatly impact the study of diabetic foot ulcers by allowing clinicians to measure a parameter (namely, shear stress) that has been implicated in ulceration, but heretofore, has not been routinely quantified on high risk patients. A full-scale foot pressure/shear sensor involves a tactile sensor array using intersecting optical waveguides is presented. The basic configuration of the optical sensor systems incorporates a mesh that is comprised of two sets of parallel optical waveguide planes; the planes are configured so the parallel rows of waveguides of the top and bottom planes are perpendicular to each other. The planes are sandwiched together creating one sensing sheet. Two-dimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution. The shifting of the layers relative to each other allows determination of the shear stress in the plane of the sensor. This paper presents latest development and improvement in the sensors design. Fabrication and results from the latest tests will be described.

  11. Peristaltic pump-based low range pressure sensor calibration system

    NASA Astrophysics Data System (ADS)

    Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  12. Optical Pressure-Temperature Sensor for a Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Wiley, John; Korman, Valentin; Gregory, Don

    2008-01-01

    A compact sensor for measuring temperature and pressure in a combusti on chamber has been proposed. The proposed sensor would include two optically birefringent, transmissive crystalline wedges: one of sapph ire (Al2O3) and one of magnesium oxide (MgO), the optical properties of both of which vary with temperature and pressure. The wedges wou ld be separated by a vapor-deposited thin-film transducer, which wou ld be primarily temperaturesensitive (in contradistinction to pressur e- sensitive) when attached to a crystalline substrate. The sensor w ould be housed in a rugged probe to survive the extreme temperatures and pressures in a combustion chamber.

  13. Optical Fibre Pressure Sensors in Medical Applications.

    PubMed

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-07-15

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

  14. Optical Fibre Pressure Sensors in Medical Applications

    PubMed Central

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-01-01

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas. PMID:26184228

  15. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics.

    PubMed

    Lee, Jaehong; Kwon, Hyukho; Seo, Jungmok; Shin, Sera; Koo, Ja Hoon; Pang, Changhyun; Son, Seungbae; Kim, Jae Hyung; Jang, Yong Hoon; Kim, Dae Eun; Lee, Taeyoon

    2015-04-17

    A flexible and sensitive textile-based pressure sensor is developed using highly conductive fibers coated with dielectric rubber materials. The pressure sensor exhibits superior sensitivity, very fast response time, and high stability, compared with previous textile-based pressure sensors. By using a weaving method, the pressure sensor can be applied to make smart gloves and clothes that can control machines wirelessly as human-machine interfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A miniature pressure sensor for blast event evaluation

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Wenhui; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2011-06-01

    Traumatic brain injury (TBI) is a great potential threat to people who deal with explosive devices. Protection from TBI has attracted more and more interest. Great efforts have been taken to the studies on the understanding of the propagation of the blast events and its effect on TBI. However, one of the biggest challenges is that the current available pressure sensors are not fast enough to capture the blast wave especially the transient period. This paper reports an ultrafast pressure sensor that could be very useful for analysis of the fast changing blast signal. The sensor is based on Fabry-Perot (FP) principle. It uses a 45º angle polished fiber sitting in a V-groove on a silicon chip. The endface of the angle polished fiber and the diaphragm which is lifted off on the side wall of the V-groove form the FP cavity. The sensor is very small and can be mounted on different locations of a helmet to measure blast pressure simultaneously. The tests were conducted at Natick Soldier Research, Development, and Engineering Center (NSRDEC) in Natick, MA. The sensors were mounted in a shock tube, side by side with the reference sensors, to measure a rapidly increased pressure. The results demonstrated that our sensors' responses agreed well with those from the electrical reference sensors and their response time is comparable.

  17. Fast pressure-sensor system

    NASA Technical Reports Server (NTRS)

    Gross, C.

    1976-01-01

    Miniature silicon-diaphragm sensors and signal multiplexer are mounted to ganged zero-operate-calibrate pressure selector switches. Device allows in-situ calibration, can be computer controlled, and measures at approximately 10,000 readings per second.

  18. Peristaltic pump-based low range pressure sensor calibration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinayakumar, K. B.; Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 5600012; Naveen Kumar, G.

    2015-11-15

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressuremore » leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.« less

  19. Implantation of a novel telemetric intraocular pressure sensor in patients with glaucoma (ARGOS study): 1-year results.

    PubMed

    Koutsonas, Antonis; Walter, Peter; Roessler, Gernot; Plange, Niklas

    2015-01-22

    We investigated the safety of a telemetric IOP sensor and the accuracy of its IOP measurements in six patients with open-angle glaucoma and cataract. The study design was a prospective, single-center clinical trial. Here we present 1-year follow-up data. A ring-shaped telemetric IOP sensor was implanted in the ciliary sulcus after implantation of the intracapsular lens, during planned cataract surgery. The sensor is encapsulated in silicone rubber and consists of a miniature device with eight pressure-sensitive capacitors and a circular microcoil antenna. IOP measurements are performed with a reader unit held in front of the eye. IOP is calculated as the differences between the absolute pressure inside the eye (pressure sensor) and that outside the eye (reader unit). The sensor was successfully implanted in all patients. Four patients developed sterile anterior chamber inflammation that resolved completely within 9 days after surgery with anti-inflammatory treatment. All patients showed mild to moderate pupillary distortion and pigment dispersion after surgery. Telemetric IOP measurement was performed in all patients at all visits, and the patients successfully performed self-tonometry at home after receiving instructions. Telemetric IOP values showed similar profiles compared to those of Goldmann applanation tonometry (GAT). Three patients showed a relevant IOP step during follow-up, and in one patient, negative values were obtained throughout the study. Despite early postoperative anterior chamber inflammation, the IOP sensor was well tolerated by all patients. We describe the first prospective clinical study of a noncontact IOP sensor that potentially enables continuous IOP monitoring in patients with glaucoma. The sensor shape and size needs to be adapted to avoid pupillary distortion and to confirm that IOP measurements are accurately recorded in comparison to those of GAT. ( www.germanctr.de; number DRKS00003335.). Copyright 2015 The Association for Research

  20. Optical fiber pressure sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Song, Dongcao

    In oil field, it is important to measure the high pressure and temperature for down-hole oil exploration and well-logging, the available traditional electronic sensor is challenged due to the harsh, flammable environment. Recently, applications based on fiber Bragg grating (FBG) sensor in the oil industry have become a popular research because of its distinguishing advantages such as electrically passive operation, immunity to electromagnetic interference, high resolution, insensitivity to optical power fluctuation etc. This thesis is divided into two main sections. In the first section, the design of high pressure sensor based on FBG is described. Several sensing elements based on FBG for high pressure measurements have been proposed, for example bulk-modulus or free elastic modulus. But the structure of bulk-modulus and free elastic modulus is relatively complex and not easy to fabricate. In addition, the pressure sensitivity is not high and the repeatability of the structure has not been investigated. In this thesis, a novel host material of carbon fiber laminated composite (CFLC) for high pressure sensing is proposed. The mechanical characteristics including principal moduli in three directions and the shape repeatability are investigated. Because of it's Young's modulus in one direction and anisotropic characteristics, the pressure sensor made by CFLC has excellent sensitivity. This said structure can be used in very high pressure measurement due to carbon fiber composite's excellent shape repetition even under high pressure. The experimental results show high pressure sensitivity of 0.101nm/MPa and high pressure measurement up to 70MPa. A pressure sensor based on CFLC and FBG with temperature compensation has been designed. In the second section, the design of low pressure sensor based on FBG is demonstrated. Due to the trade off between measurement range and sensitivity, a sensor for lower pressure range needs more sensitivity. A novel material of carbon

  1. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    PubMed Central

    Zhang, Guodong; Zhao, Yulong; Zhao, Yun; Wang, Xinchen; Ren, Wei; Li, Hui; Zhao, You

    2018-01-01

    With the development of energetic materials (EMs) and microelectromechanical systems (MEMS) initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size. PMID:29494519

  2. Acoustic Detection Of Loose Particles In Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Kwok, Lloyd C.

    1995-01-01

    Particle-impact-noise-detector (PIND) apparatus used in conjunction with computer program analyzing output of apparatus to detect extraneous particles trapped in pressure sensors. PIND tester essentially shaker equipped with microphone measuring noise in pressure sensor or other object being shaken. Shaker applies controlled vibration. Output of microphone recorded and expressed in terms of voltage, yielding history of noise subsequently processed by computer program. Data taken at sampling rate sufficiently high to enable identification of all impacts of particles on sensor diaphragm and on inner surfaces of sensor cavities.

  3. An Universal packaging technique for low-drift implantable pressure sensors.

    PubMed

    Kim, Albert; Powell, Charles R; Ziaie, Babak

    2016-04-01

    Monitoring bodily pressures provide valuable diagnostic and prognostic information. In particular, long-term measurement through implantable sensors is highly desirable in situations where percutaneous access can be complicated or dangerous (e.g., intracranial pressure in hydrocephalic patients). In spite of decades of progress in the fabrication of miniature solid-state pressure sensors, sensor drift has so far severely limited their application in implantable systems. In this paper, we report on a universal packaging technique for reducing the sensor drift. The described method isolates the pressure sensor from a major source of drift, i.e., contact with the aqueous surrounding environment, by encasing the sensor in a silicone-filled medical-grade polyurethane balloon. In-vitro soak tests for 100 days using commercial micromachined piezoresistive pressure sensors demonstrate a stable operation with the output remaining within 1.8 cmH2O (1.3 mmHg) of a reference pressure transducer. Under similar test conditions, a non-isolated sensor fluctuates between 10 and 20 cmH2O (7.4-14.7 mmHg) of the reference, without ever settling to a stable operation regime. Implantation in Ossabow pigs demonstrate the robustness of the package and its in-vivo efficacy in reducing the baseline drift.

  4. An Annular Mechanical Temperature Compensation Structure for Gas-Sealed Capacitive Pressure Sensor

    PubMed Central

    Hao, Xiuchun; Jiang, Yonggang; Takao, Hidekuni; Maenaka, Kazusuke; Higuchi, Kohei

    2012-01-01

    A novel gas-sealed capacitive pressure sensor with a temperature compensation structure is reported. The pressure sensor is sealed by Au-Au diffusion bonding under a nitrogen ambient with a pressure of 100 kPa and integrated with a platinum resistor-based temperature sensor for human activity monitoring applications. The capacitance-pressure and capacitance-temperature characteristics of the gas-sealed capacitive pressure sensor without temperature compensation structure are calculated. It is found by simulation that a ring-shaped structure on the diaphragm of the pressure sensor can mechanically suppress the thermal expansion effect of the sealed gas in the cavity. Pressure sensors without/with temperature compensation structures are fabricated and measured. Through measured results, it is verified that the calculation model is accurate. Using the compensation structures with a 900 μm inner radius, the measured temperature coefficient is much reduced as compared to that of the pressure sensor without compensation. The sensitivities of the pressure sensor before and after compensation are almost the same in the pressure range from 80 kPa to 100 kPa. PMID:22969385

  5. Fiber-linked interferometric pressure sensor

    NASA Technical Reports Server (NTRS)

    Beheim, G.; Fritsch, K.; Poorman, R. N.

    1987-01-01

    A fiber-optic pressure sensor is described which uses a diaphragm to modulate the mirror separation of a Fabry-Perot cavity (the sensing cavity). A multimode optical fiber delivers broadband light to the sensing cavity and returns the spectrally modulated light which the cavity reflects. The sensor's output spectrum is analyzed using a tunable Fabry-Perot cavity (the reference cavity) to determine the mismatch in the mirror separations of the two cavities. An electronic servo control uses this result to cause the mirror separation of the reference cavity to equal that of the sensing cavity. The displacement of the pressure-sensing diaphragm is then obtained by measuring the capacitance of the reference cavity's metal-coated mirrors. Relative to other fiber-optic sensors, an important advantage of this instrument is its high immunity to the effects of variations in both the transmissivity of the fiber link and the wavelength of the optical source.

  6. Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed

    NASA Technical Reports Server (NTRS)

    Lekki, John D.

    2002-01-01

    Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.

  7. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    PubMed

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  8. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ~3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  9. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    PubMed Central

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-01-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics. PMID:28361867

  10. Non-Intrusive Pressure/Multipurpose Sensor and Method

    NASA Technical Reports Server (NTRS)

    Smith, William C. (Inventor)

    2001-01-01

    Method and apparatus are provided for determining pressure using a non-intrusive sensor that is easily attachable to the plumbing of a pressurized system. A bent mode implementation and a hoop mode implementation of the invention are disclosed. Each of these implementations is able to nonintrusively measure pressure while fluid is flowing. As well, each implementation may be used to measure mass flow rate simultaneously with pressure. An ultra low noise control system is provided for making pressure measurements during gas flow. The control system includes two tunable digital bandpass filters with center frequencies that are responsive to a clock frequency. The clock frequency is divided by a factor of N to produce a driving vibrational signal for resonating a metal sensor section.

  11. Test Structures for Rapid Prototyping of Gas and Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Cheng, L. J.; Martin, D.

    1996-01-01

    A multi-project ceramic substrate was used in developing a gas sensor and pressure sensor. The ceramic substrate cantained 36 chips with six variants including sensors, process control monitors, and an interconnect ship. Tha gas sensor is being developed as an air quality monitor and the pressure gauge as a barometer.

  12. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures

    DOE PAGES

    McCoy, Chad August; Knudson, Marcus David; Root, Seth

    2017-11-13

    Measurement of the Hugoniot and sound velocity provides information on the bulk modulus and Grüneisen parameter of a material at extreme conditions. The capability to launch multilayered (copper/aluminum) flyer plates at velocities in excess of 20 km/s with the Sandia Z accelerator has enabled high-precision sound-velocity measurements at previously inaccessible pressures. For these experiments, the sound velocity of the copper flyer must be accurately known in the multi-Mbar regime. Here we describe the development of copper as an absolutely calibrated sound-velocity standard for high-precision measurements at pressures in excess of 400 GPa. Using multilayered flyer plates, we performed absolute measurementsmore » of the Hugoniot and sound velocity of copper for pressures from 500 to 1200 GPa. These measurements enabled the determination of the Grüneisen parameter for dense liquid copper, clearly showing a density dependence above the melt transition. As a result, combined with earlier data at lower pressures, these results constrain the sound velocity as a function of pressure, enabling the use of copper as a Hugoniot and sound-velocity standard for pressures up to 1200 GPa.« less

  13. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Chad August; Knudson, Marcus David; Root, Seth

    Measurement of the Hugoniot and sound velocity provides information on the bulk modulus and Grüneisen parameter of a material at extreme conditions. The capability to launch multilayered (copper/aluminum) flyer plates at velocities in excess of 20 km/s with the Sandia Z accelerator has enabled high-precision sound-velocity measurements at previously inaccessible pressures. For these experiments, the sound velocity of the copper flyer must be accurately known in the multi-Mbar regime. Here we describe the development of copper as an absolutely calibrated sound-velocity standard for high-precision measurements at pressures in excess of 400 GPa. Using multilayered flyer plates, we performed absolute measurementsmore » of the Hugoniot and sound velocity of copper for pressures from 500 to 1200 GPa. These measurements enabled the determination of the Grüneisen parameter for dense liquid copper, clearly showing a density dependence above the melt transition. As a result, combined with earlier data at lower pressures, these results constrain the sound velocity as a function of pressure, enabling the use of copper as a Hugoniot and sound-velocity standard for pressures up to 1200 GPa.« less

  14. Fiber optic photoelastic pressure sensor for high temperature gases

    NASA Technical Reports Server (NTRS)

    Wesson, Laurence N.; Redner, Alex S.; Baumbick, Robert J.

    1990-01-01

    A novel fiber optic pressure sensor based on the photoelastic effects has been developed for extremely high temperature gases. At temperatures varying from 25 to 650 C, the sensor experiences no change in the peak pressure of the transfer function and only a 10 percent drop in dynamic range. Refinement of the sensor has resulted in an optoelectronic interface and processor software which can calculate pressure values within 1 percent of full scale at any temperature within the full calibrated temperature range.

  15. Fiber optic pressure sensors in skin-friction measurements

    NASA Technical Reports Server (NTRS)

    Kidwell, R.

    1985-01-01

    Fiber optic lever pressure sensors intended for use in a low speed wind tunnel environment were designed, constructed and tested for the measurement of normal and shear displacements associated with the pressures acting on a flat aluminum plate. On-site tests performed along with several static and dynamic measurements made have established that, with proper modifications and improvements, the design concepts are acceptable and can be utilized for their intended use. Several elastomers were investigated for use in sensors and for their incorporation into these sensors. Design and assembly techniques for probes and complete sensors were developed.

  16. Development of an in-fiber white-light interferometric distance sensor for absolute measurement of arbitrary small distances.

    PubMed

    Majumdar, Ayan; Huang, Haiying

    2008-05-20

    The fabrication, implementation, and evaluation of an in-fiber white-light interferometric distance sensor that is capable of measuring the absolute value of an arbitrary small distance are presented. Taking advantage of the mode-coupling effect of a long-period fiber grating, an additional cavity distance is added to the optical path difference of the distance sensor; therefore, it can generate a sufficient number of fringes for distance demodulation even if the free-space cavity distance is very small. It is experimentally verified that the distance sensor is capable of measuring small distances that are beyond the capability of a Fabry-Perot interferometric distance sensor.

  17. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  18. Discrete sensors distribution for accurate plantar pressure analyses.

    PubMed

    Claverie, Laetitia; Ille, Anne; Moretto, Pierre

    2016-12-01

    The aim of this study was to determine the distribution of discrete sensors under the footprint for accurate plantar pressure analyses. For this purpose, two different sensor layouts have been tested and compared, to determine which was the most accurate to monitor plantar pressure with wireless devices in research and/or clinical practice. Ten healthy volunteers participated in the study (age range: 23-58 years). The barycenter of pressures (BoP) determined from the plantar pressure system (W-inshoe®) was compared to the center of pressures (CoP) determined from a force platform (AMTI) in the medial-lateral (ML) and anterior-posterior (AP) directions. Then, the vertical ground reaction force (vGRF) obtained from both W-inshoe® and force platform was compared for both layouts for each subject. The BoP and vGRF determined from the plantar pressure system data showed good correlation (SCC) with those determined from the force platform data, notably for the second sensor organization (ML SCC= 0.95; AP SCC=0.99; vGRF SCC=0.91). The study demonstrates that an adjusted placement of removable sensors is key to accurate plantar pressure analyses. These results are promising for a plantar pressure recording outside clinical or laboratory settings, for long time monitoring, real time feedback or for whatever activity requiring a low-cost system. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Touch Sensor Responds to Contact Pressure

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1982-01-01

    Optical tactile sensor for mechanical hands senses contact pressure via change in light reflected from an elastic covering. Pressure against a cell cover causes distortion, which changes internal reflection of light. Change is sensed by detector, and output signal informs operator of contact. The greater the pressure and distortion, the greater the change in light reflection.

  20. Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range.

    PubMed

    Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.

  1. Plantar pressure cartography reconstruction from 3 sensors.

    PubMed

    Abou Ghaida, Hussein; Mottet, Serge; Goujon, Jean-Marc

    2014-01-01

    Foot problem diagnosis is often made by using pressure mapping systems, unfortunately located and used in the laboratories. In the context of e-health and telemedicine for home monitoring of patients having foot problems, our focus is to present an acceptable system for daily use. We developed an ambulatory instrumented insole using 3 pressures sensors to visualize plantar pressure cartographies. We show that a standard insole with fixed sensor position could be used for different foot sizes. The results show an average error measured at each pixel of 0.01 daN, with a standard deviation of 0.005 daN.

  2. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    NASA Astrophysics Data System (ADS)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  3. [Intracranial pressure monitoring apparatus for clinical use balanced pressure sensors].

    PubMed

    Numoto, M

    1976-04-01

    Three types of pressure sensors, (1) electric pressure switch, (2) fiber optic pressure switch and (3) pressure indicating bag for intracranial pressure monitoring which were developed by the author are described. Advantages and disadvantages between them are also discussed. The electric pressure switch is relatively simple in construction but has a possibility of producing micro-shock hazard in case of accidental electric leakage. The fiber optic pressure switch is the safest for the micro shock but its structure is rather complicated and fragile. The pressure indicating bag is simple to make and durable to use. However, it has a hydrostatic effect.

  4. Surface acoustic wave oxygen pressure sensor

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  5. Central arterial pressure assessment with intensity POF sensor

    NASA Astrophysics Data System (ADS)

    Leitão, Cátia; Gonçalves, Steve; Antunes, Paulo; Bastos, José M.; Pinto, João. L.; André, Paulo

    2015-09-01

    The central pressure monitoring is considered a new key factor in hypertension assessment and cardiovascular prevention. In this work, it is presented the central arterial systolic pressure assessment with an intensity based POF sensor. The device was tested in four subjects, and stable pulse waves were obtained, allowing the calculation of the central pressure for all the subjects. The results shown that the sensor performs reliably, being a simple and low-cost solution to the intended application.

  6. Vibration modes interference in the MEMS resonant pressure sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Fangfang; Li, Anlin; Bu, Zhenxiang; Wang, Lingyun; Sun, Daoheng; Du, Xiaohui; Gu, Dandan

    2017-11-01

    A new type of coupled balanced-mass double-ended tuning fork resonator (CBDETF) pressure sensor is fabricated and tested. However, the low accuracy of the CBDETF pressure sensor is not satisfied to us. Based on systematic analysis and tests, the coupling effect between the operational mode and interference mode is considered to be the main cause for the sensor in accuracy. To solve this problem, the stiffness of the serpentine beams is increased to pull up the resonant frequency of the interfering mode and make it separate far from the operational mode. Finally, the accuracy of the CBDETF pressure sensor is improved from + /-0.5% to less than + /-0.03% of the Full Scale (F.S.).

  7. Low-Cost Fiber Optic Pressure Sensor

    DOEpatents

    Sheem, Sang K.

    2004-05-18

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  8. Low-Cost Fiber Optic Pressure Sensor

    DOEpatents

    Sheem, Sang K.

    2003-07-22

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  9. Operation tools with dielectric elastomer pressure sensors

    NASA Astrophysics Data System (ADS)

    Böse, Holger; Müller, Dominik; Ehrlich, Johannes

    2017-04-01

    New sensors based on dielectric elastomers have recently been shown to exhibit high sensitivity for compression loads. The basic design of these sensors exhibits two profiled surfaces coated with electrode layers between which an elastomer film with the counter-electrode is confined. All components of the sensor are prepared with silicone whose stiffness can be varied in a wide range. Depending on the details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression, the elastomer profiles are deformed and the electrode layers on the elastomer profiles and in the elastomer film approach each other. Beside the detection of pressure, such sensors can also be used for operation tools in human-machine interfaces. To demonstrate this potential, a touch pad with six pressure-sensitive fields is presented. The corresponding sensors integrated in the touch fields detect the exerted forces of the finger, show them on a display and control the brightness of some LEDs. As a second example, the integration of sensor-based control fields on an automotive steering wheel is shown. Finally, the sensors can also be used in fabrics to control arbitrary functions of wearable electronic devices.

  10. A miniature 48-channel pressure sensor module capable of in situ calibration

    NASA Technical Reports Server (NTRS)

    Gross, C.; Juanarena, D. B.

    1977-01-01

    A new high data rate pressure sensor module with in situ calibration capability has been developed by the Langley Research Center to help reduce energy consumption in wind-tunnel facilities without loss of measurement accuracy. The sensor module allows for nearly a two order of magnitude increase in data rates over conventional electromechanically scanned pressure sampling techniques. This module consists of 16 solid state pressure sensor chips and signal multiplexing electronics integrally mounted to a four position pressure selector switch. One of the four positions of the pressure selector switch allows the in situ calibration of the 16 pressure sensors; the three other positions allow 48 channels (three sets of 16) pressure inputs to be measured by sensors. The small size of the sensor module will allow mounting within many wind-tunnel models, thus eliminating long tube lengths and their corresponding slow pressure response.

  11. Campaign-Style Measurements of Vertical Seafloor Deformation in the Cascadia Subduction Zone Using an Absolute Self-Calibrating Pressure Recorder

    NASA Astrophysics Data System (ADS)

    Cook, M. J.; Sasagawa, G. S.; Roland, E. C.; Schmidt, D. A.; Wilcock, W. S. D.; Zumberge, M. A.

    2017-12-01

    Seawater pressure can be used to measure vertical seafloor deformation since small seafloor height changes produce measurable pressure changes. However, resolving secular vertical deformation near subduction zones can be difficult due to pressure gauge drift. A typical gauge drift rate of about 10 cm/year exceeds the expected secular rate of 1 cm/year or less in Cascadia. The absolute self-calibrating pressure recorder (ASCPR) was developed to solve the issue of gauge drift by using a deadweight calibrator to make campaign-style measurements of the absolute seawater pressure. Pressure gauges alternate between observing the ambient seawater pressure and the deadweight calibrator pressure, which is an accurately known reference value, every 10-20 minutes for several hours. The difference between the known reference pressure and the observed seafloor pressure allows offsets and transients to be corrected to determine the true, absolute seafloor pressure. Absolute seafloor pressure measurements provide a great utility for geodetic deformation studies. The measurements provide instrument-independent, benchmark values that can be used far into the future as epoch points in long-term time series or as important calibration points for other continuous pressure records. The ASCPR was first deployed in Cascadia in 2014 and 2015, when seven concrete seafloor benchmarks were placed along a trench-perpendicular profile extending from 20 km to 105 km off the central Oregon coast. Two benchmarks have ASCPR measurements that span three years, one benchmark spans two years, and four benchmarks span one year. Measurement repeatability is currently 3 to 4 cm, but we anticipate accuracy on the order of 1 cm with improvements to the instrument metrology and processing tidal and non-tidal oceanographic signals.

  12. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors.

    PubMed

    Poeggel, Sven; Duraibabu, Dineshbabu; Kalli, Kyriacos; Leen, Gabriel; Dooly, Gerard; Lewis, Elfed; Kelly, Jimmy; Munroe, Maria

    2015-07-13

    This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry-Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of sp = 2-10 nm/kPa and a resolution of better than ΔP = 10 Pa protect (0.1 cm H2O). A static pressure test in 38 cm H2O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H2O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by k = 10.7 pm/K, which results in a temperature resolution of better than ΔT = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes.

  13. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors

    PubMed Central

    Poeggel, Sven; Duraibabu, Dineshbabu; Kalli, Kyriacos; Leen, Gabriel; Dooly, Gerard; Lewis, Elfed; Kelly, Jimmy; Munroe, Maria

    2015-01-01

    This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry–Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of sp = 2–10 nmkPa and a resolution of better than ΔP = 10 Pa (0.1 cm H2O). A static pressure test in 38 cmH2O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H2O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by k=10.7 pmK, which results in a temperature resolution of better than ΔT = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes. PMID:26184331

  14. Self-Correcting Electronically-Scanned Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Gross, C.; Basta, T.

    1982-01-01

    High-data-rate sensor automatically corrects for temperature variations. Multichannel, self-correcting pressure sensor can be used in wind tunnels, aircraft, process controllers and automobiles. Offers data rates approaching 100,000 measurements per second with inaccuracies due to temperature shifts held below 0.25 percent (nominal) of full scale over a temperature span of 55 degrees C.

  15. Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.

    PubMed

    Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao

    2017-07-19

    Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.

  16. Ultrasonic level sensors for liquids under high pressure

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.

    1986-01-01

    An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.

  17. Capacitive Micro Pressure Sensor Integrated with a Ring Oscillator Circuit on Chip

    PubMed Central

    Dai, Ching-Liang; Lu, Po-Wei; Chang, Chienliu; Liu, Cheng-Yang

    2009-01-01

    The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0–300 kPa. PMID:22303167

  18. Capacitive micro pressure sensor integrated with a ring oscillator circuit on chip.

    PubMed

    Dai, Ching-Liang; Lu, Po-Wei; Chang, Chienliu; Liu, Cheng-Yang

    2009-01-01

    The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0-300 kPa.

  19. Development of a directional sensitive pressure and shear sensor

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Dee, Jeffrey; Ledoux, William; Sangeorzan, Bruce; Reinhall, Per G.

    2002-06-01

    Diabetes mellitus is a disease that impacts the lives of millions of people around the world. Lower limb complications associated with diabetes include the development of plantar ulcers that can lead to infection and subsequent amputation. Shear stress is thought to be a major contributing factor to ulcer development, but due in part to technical difficulties with transducing shear stress, there is no widely used shear measurement sensor. As such, we are currently developing a directionally sensitive pressure/shear sensor based on fiber optic technology. The pressure/shear sensor consists of an array of optical fibers lying in perpendicular rows and columns separated by elastomeric pads. A map of pressure and shear stress is constructed based on observed macro bending through the intensity attenuation from the physical deformation of two adjacent perpendicular fibers. The sensor has been shown to have low noise and responded linearly to applied loads. The smallest detectable force on each sensor element based on the current setup is ~0.1 lbs. (0.4N). The smallest area we have resolved in our mesh sensor is currently ~1 cm2.

  20. An ultra-fast fiber optic pressure sensor for blast event measurements

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Zou, Xiaotian; Tian, Ye; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2012-05-01

    Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry-Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event.

  1. Inductive passive sensor for intraparenchymal and intraventricular monitoring of intracranial pressure.

    PubMed

    Behfar, Mohammad H; Abada, Emily; Sydanheimo, Lauri; Goldman, Ken; Fleischman, Aaron J; Gupta, Nalin; Ukkonen, Leena; Roy, Shuvo

    2016-08-01

    Accurate measurement of intracranial hypertension is crucial for the management of elevated intracranial pressure (ICP). Catheter-based intraventricular ICP measurement is regarded as the gold standard for accurate ICP monitoring. However, this method is invasive, time-limited, and associated with complications. In this paper, we propose an implantable passive sensor that could be used for continuous intraparenchymal and intraventricular ICP monitoring. Moreover, the sensor can be placed simultaneously along with a cerebrospinal fluid shunt system in order to monitor its function. The sensor consists of a flexible coil which is connected to a miniature pressure sensor via an 8-cm long, ultra-thin coaxial cable. An external orthogonal-coil RF probe communicates with the sensor to detect pressure variation. The performance of the sensor was evaluated in an in vitro model for intraparenchymal and intraventricular ICP monitoring. The findings from this study demonstrate proof-of-concept of intraparenchymal and intraventricular ICP measurement using inductive passive pressure sensors.

  2. Tunable-Sensitivity flexible pressure sensor based on graphene transparent electrode

    NASA Astrophysics Data System (ADS)

    Luo, Shi; Yang, Jun; Song, Xuefen; Zhou, Xi; Yu, Leyong; Sun, Tai; Yu, Chongsheng; Huang, Deping; Du, Chunlei; Wei, Dapeng

    2018-07-01

    Tunable-sensitivity and flexibility are considered as two crucial characteristics for future pressure sensors or electronic skins. By the theoretical calculation model, we simulated the relationship curve between the sensitivity and PDMS pyramids with different spacings, and found that the spacing of pyramids is a main factor to affect the sensitivity of the capacitance pressure sensor. Furthermore, we fabricated the capacitance pressure sensors using graphene electrodes and the PDMS pyramid dielectric layers with different spacings. The measurement data were consistent with the simulation results that the sensitivity increases with the spacing of pyramids. In addition, graphene electrode exhibits prefect flexibility and reliability, while the ITO electrode would be destroyed rapidly after bending. These graphene pressure sensors exhibit the potential in the application in the wearable products for monitoring breath, pulse, and other physiological signals.

  3. A CMOS Pressure Sensor Tag Chip for Passive Wireless Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-01-01

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of −20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation. PMID:25806868

  4. A CMOS pressure sensor tag chip for passive wireless applications.

    PubMed

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-03-23

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of -20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation.

  5. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    NASA Astrophysics Data System (ADS)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-06-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  6. Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles.

    PubMed

    Kim, Hyeohn; Kim, Gwangmook; Kim, Taehoon; Lee, Sangwoo; Kang, Donyoung; Hwang, Min-Soo; Chae, Youngcheol; Kang, Shinill; Lee, Hyungsuk; Park, Hong-Gyu; Shim, Wooyoung

    2018-02-01

    The fundamental challenge in designing transparent pressure sensors is the ideal combination of high optical transparency and high pressure sensitivity. Satisfying these competing demands is commonly achieved by a compromise between the transparency and usage of a patterned dielectric surface, which increases pressure sensitivity, but decreases transparency. Herein, a design strategy for fabricating high-transparency and high-sensitivity capacitive pressure sensors is proposed, which relies on the multiple states of nanoparticle dispersity resulting in enhanced surface roughness and light transmittance. We utilize two nanoparticle dispersion states on a surface: (i) homogeneous dispersion, where each nanoparticle (≈500 nm) with a size comparable to the visible light wavelength has low light scattering; and (ii) heterogeneous dispersion, where aggregated nanoparticles form a micrometer-sized feature, increasing pressure sensitivity. This approach is experimentally verified using a nanoparticle-dispersed polymer composite, which has high pressure sensitivity (1.0 kPa -1 ), and demonstrates excellent transparency (>95%). We demonstrate that the integration of nanoparticle-dispersed capacitor elements into an array readily yields a real-time pressure monitoring application and a fully functional touch device capable of acting as a pressure sensor-based input device, thereby opening up new avenues to establish processing techniques that are effective on the nanoscale yet applicable to macroscopic processing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  8. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  9. Development of microbend sensors for pressure, load, and displacement measurements in civil engineering

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Cosentino, Paul J.; Doi, Shinobu; Kumar, Girish; Verghese, John

    1994-05-01

    We are developing low cost, rugged, and reliable fiberoptic sensors to meet current and future needs in civil engineering, including those of smart civil structures. Our work has concentrated on load, pressure, and displacement sensors, including pore water pressure sensors. We have built and demonstrated sensors in the laboratory with loads up to 50 lb., water pressures of 100 psi, and displacements up to 1 mm. Repeatability of sensor measurements are within 5% and are being improved with continued development. The range and sensitivity of the sensors can be easily changed without changing the basic sensor design. We also have multiplexed two water pressure sensors on a single fiber. We describe the sensor construction and experimental performance.

  10. Piezoelectric power generation for sensor applications: design of a battery-less wireless tire pressure sensor

    NASA Astrophysics Data System (ADS)

    Makki, Noaman; Pop-Iliev, Remon

    2011-06-01

    An in-wheel wireless and battery-less piezo-powered tire pressure sensor is developed. Where conventional battery powered Tire Pressure Monitoring Systems (TPMS) are marred by the limited battery life, TPMS based on power harvesting modules provide virtually unlimited sensor life. Furthermore, the elimination of a permanent energy reservoir simplifies the overall sensor design through the exclusion of extra circuitry required to sense vehicle motion and conserve precious battery capacity during vehicle idling periods. In this paper, two design solutions are presented, 1) with very low cost highly flexible piezoceramic (PZT) bender elements bonded directly to the tire to generate power required to run the sensor and, 2) a novel rim mounted PZT harvesting unit that can be used to power pressure sensors incorporated into the valve stem requiring minimal change to the presently used sensors. While both the designs eliminate the use of environmentally unfriendly battery from the TPMS design, they offer advantages of being very low cost, service free and easily replaceable during tire repair and replacement.

  11. Static and cyclic performance evaluation of sensors for human interface pressure measurement.

    PubMed

    Dabling, Jeffrey G; Filatov, Anton; Wheeler, Jason W

    2012-01-01

    Researchers and clinicians often desire to monitor pressure distributions on soft tissues at interfaces to mechanical devices such as prosthetics, orthotics or shoes. The most common type of sensor used for this type of applications is a Force Sensitive Resistor (FSR) as these are convenient to use and inexpensive. Several other types of sensors exist that may have superior sensing performance but are less ubiquitous or more expensive, such as optical or capacitive sensors. We tested five sensors (two FSRs, one optical, one capacitive and one fluid pressure) in a static drift and cyclic loading configuration. The results show that relative to the important performance characteristics for soft tissue pressure monitoring (i.e. hysteresis, drift), many of the sensors tested have significant limitations. The FSRs exhibited hysteresis, drift and loss of sensitivity under cyclic loading. The capacitive sensor had substantial drift. The optical sensor had some hysteresis and temperature-related drift. The fluid pressure sensor performed well in these tests but is not as flat as the other sensors and is not commercially available. Researchers and clinicians should carefully consider the convenience and performance trade-offs when choosing a sensor for soft-tissue pressure monitoring.

  12. Microfabricated Nickel Based Sensors for Hostile and High Pressure Environments

    NASA Astrophysics Data System (ADS)

    Holt, Christopher Michael Bjustrom

    This thesis outlines the development of two platforms for integrating microfabricated sensors with high pressure feedthroughs for application in hostile high temperature high pressure environments. An application in oil well production logging is explored and two sensors were implemented with these platforms for application in an oil well. The first platform developed involved microfabrication directly onto a cut and polished high pressure feedthrough. This technique enables a system that is more robust than the wire bonded silicon die technique used for MEMS integration in pressure sensors. Removing wire bonds from the traditional MEMS package allows for direct interface of a microfabricated sensor with a hostile high pressure fluid environment which is not currently possible. During the development of this platform key performance metrics included pressure testing to 70MPa and temperature cycling from 20°C to 200°C. This platform enables electronics integration with a variety of microfabricated electrical and thermal based sensors which can be immersed within the oil well environment. The second platform enabled free space fabrication of nickel microfabricated devices onto an array of pins using a thick tin sacrificial layer. This technique allowed microfabrication of metal MEMS that are released by distances of 1cm from their substrate. This method is quite flexible and allows for fabrication to be done on any pin array substrate regardless of surface quality. Being able to place released MEMS sensors directly onto traditional style circuit boards, ceramic circuit boards, electrical connectors, ribbon cables, pin headers, or high pressure feedthroughs greatly improves the variety of possible applications and reduces fabrication costs. These two platforms were then used to fabricate thermal conductivity sensors that showed excellent performance for distinguishing between oil, water, and gas phases. Testing was conducted at various flow rates and performance of

  13. Electrospray-printed nanostructured graphene oxide gas sensors.

    PubMed

    Taylor, Anthony P; Velásquez-García, Luis F

    2015-12-18

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors' response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ∼5 × 10(-4) T) at ∼1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.

  14. Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Zorman, Christian A.

    2016-01-01

    This paper describes the development of a packaged silicon carbide (SiC) based MEMS pressure sensor system designed specifically for a conventional turbofan engine. The electronic circuit is based on a Clapp-type oscillator that incorporates a 6H-SiC MESFET, a SiCN MEMS capacitive pressure sensor, titanate MIM capacitors, wirewound inductors, and thick film resistors. The pressure sensor serves as the capacitor in the LC tank circuit, thereby linking pressure to the resonant frequency of the oscillator. The oscillator and DC bias circuitry were fabricated on an alumina substrate and secured inside a metal housing. The packaged sensing system reliably operates at 0 to 350 psi and 25 to 540C. The system has a pressure sensitivity of 6.8 x 10E-2 MHzpsi. The packaged system shows negligible difference in frequency response between 25 and 400C. The fully packaged sensor passed standard benchtop acceptance tests and was evaluated on a flight-worthy engine.

  15. Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor

    PubMed Central

    Park, Jang-Ho; Jang, Dae-Geun; Park, Jung Wook; Youm, Se-Kyoung

    2015-01-01

    In this study, we developed a novel heart rate (HR) monitoring approach in which we measure the pressure variance of the surface of the ear canal. A scissor-shaped apparatus equipped with a piezoelectric film sensor and a hardware circuit module was designed for high wearability and to obtain stable measurement. In the proposed device, the film sensor converts in-ear pulse waves (EPW) into electrical current, and the circuit module enhances the EPW and suppresses noise. A real-time algorithm embedded in the circuit module performs morphological conversions to make the EPW more distinct and knowledge-based rules are used to detect EPW peaks. In a clinical experiment conducted using a reference electrocardiogram (ECG) device, EPW and ECG were concurrently recorded from 58 healthy subjects. The EPW intervals between successive peaks and their corresponding ECG intervals were then compared to each other. Promising results were obtained from the samples, specifically, a sensitivity of 97.25%, positive predictive value of 97.17%, and mean absolute difference of 0.62. Thus, highly accurate HR was obtained from in-ear pressure variance. Consequently, we believe that our proposed approach could be used to monitor vital signs and also utilized in diverse applications in the near future. PMID:26389912

  16. Integration of piezo-capacitive and piezo-electric nanoweb based pressure sensors for imaging of static and dynamic pressure distribution.

    PubMed

    Jeong, Y J; Oh, T I; Woo, E J; Kim, K J

    2017-07-01

    Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.

  17. Performance of an untethered micro-optical pressure sensor

    NASA Astrophysics Data System (ADS)

    Ioppolo, Tindaro; Manzo, Maurizio; Krueger, Paul

    2012-11-01

    We present analytical and computational studies of the performance of a novel untethered micro-optical pressure sensor for fluid dynamics measurements. In particular, resolution and dynamic range will be presented. The sensor concept is based on the whispering galley mode (WGM) shifts that are observed in micro-scale dielectric optical cavities. A micro-spherical optical cavity (liquid or solid) is embedded in a thin polymeric sheet. The applied external pressure perturbs the morphology of the optical cavity leading to a shift in its optical resonances. The optical sensors are interrogated remotely, by embedding quantum dots or fluorescent dye in the micro-optical cavity. This allows a free space coupling of excitation and monitoring of the optical modes without the need of optical fibers or other cabling. With appropriate excitation and monitoring equipment, the micro-scale sensors can be distributed over a surface (e.g., including flexible biological surfaces) to monitor the local pressure field. We acknowledge the financial support from the National Science Foundation through grant CBET-1133876 with Dr. Horst Henning Winter as the program director.

  18. Ultra fast all-optical fiber pressure sensor for blast event evaluation

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Wenhui; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2011-05-01

    Traumatic brain injury (TBI) is a great potential threat to soldiers who are exposed to explosions or athletes who receive cranial impacts. Protecting people from TBI has recently attracted a significant amount of attention due to recent military operations in the Middle East. Recording pressure transient data in a blast event is very critical to the understanding of the effects of blast events on TBI. However, due to the fast change of the pressure during blast events, very few sensors have the capability to effectively track the dynamic pressure transients. This paper reports an ultra fast, miniature and all-optical fiber pressure sensor which could be mounted at different locations of a helmet to measure the fast changing pressure simultaneously. The sensor is based on Fabry-Perot (FP) principle. The end face of the fiber is wet etched. A well controlled thickness silicon dioxide diaphragm is thermal bonded on the end face to form an FP cavity. A shock tube test was conducted at Natick Soldier Research Development and Engineering Center, where the sensors were mounted in a shock tube side by side with a reference sensor to measure the rapidly changing pressure. The results of the test demonstrated that the sensor developed had an improved rise time (shorter than 0.4 μs) when compared to a commercially available reference sensor.

  19. A minimally invasive in-fiber Bragg grating sensor for intervertebral disc pressure measurements

    NASA Astrophysics Data System (ADS)

    Dennison, Christopher R.; Wild, Peter M.; Wilson, David R.; Cripton, Peter A.

    2008-08-01

    We present an in-fiber Bragg grating (FBG) based intervertebral disc (IVD) pressure sensor that has pressure sensitivity seven times greater than that of a bare fiber, and a major diameter and sensing area of only 400 µm and 0.03 mm2, respectively. This is the only optical, the smallest and the most mechanically compliant disc pressure sensor reported in the literature. This is also an improvement over other FBG pressure sensors that achieve increased sensitivity through mechanical amplification schemes, usually resulting in major diameters and sensing lengths of many millimeters. Sensor sensitivity is predicted using numerical models, and the predicted sensitivity is verified through experimental calibrations. The sensor is validated by conducting IVD pressure measurements in porcine discs and comparing the FBG measurements to those obtained using the current standard sensor for IVD pressure. The predicted sensitivity of the FBG sensor matched with that measured experimentally. IVD pressure measurements showed excellent repeatability and agreement with those obtained from the standard sensor. Unlike the current larger sensors, the FBG sensor could be used in discs with small disc height (i.e. cervical or degenerated discs). Therefore, there is potential to conduct new measurements that could lead to new understanding of the biomechanics.

  20. Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors.

    PubMed

    Liu, Wenguang; Yan, Chaoyi

    2018-03-28

    We demonstrate the successful fabrication of highly sensitive capillary pressure sensors using an innovative 3D printing method. Unlike conventional capacitive pressure sensors where the capacitance changes were due to the pressure-induced interspace variations between the parallel plate electrodes, in our capillary sensors the capacitance was determined by the extrusion and extraction of liquid medium and consequent changes of dielectric constants. Significant pressure sensitivity advances up to 547.9 KPa -1 were achieved. Moreover, we suggest that our innovative capillary pressure sensors can adopt a wide range of liquid mediums, such as ethanol, deionized water, and their mixtures. The devices also showed stable performances upon repeated pressing cycles. The direct and versatile printing method combined with the significant performance advances are expected to find important applications in future stretchable and wearable electronics.

  1. Cantilever arrayed blood pressure sensor for arterial applanation tonometry.

    PubMed

    Lee, Byeungleul; Jeong, Jinwoo; Kim, Jinseok; Kim, Bonghwan; Chun, Kukjin

    2014-03-01

    The authors developed a cantilever-arrayed blood pressure sensor array fabricated by (111) silicon bulk-micromachining for the non-invasive and continuous measurement of blood pressure. The blood pressure sensor measures the blood pressure based on the change in the resistance of the piezoresistor on a 5-microm-thick-arrayed perforated membrane and 20-microm-thick metal pads. The length and the width of the unit membrane are 210 and 310 microm, respectively. The width of the insensible zone between the adjacent units is only 10 microm. The resistance change over contact force was measured to verify the performance. The good linearity of the result confirmed that the polydimethylsiloxane package transfers the forces appropriately. The measured sensitivity was about 4.5%/N. The maximum measurement range and the resolution of the fabricated blood pressure sensor were greater than 900 mmHg (= 120 kPa) and less than 1 mmHg (= 133.3 Pa), respectively.

  2. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    NASA Astrophysics Data System (ADS)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  3. Chronically implanted pressure sensors: challenges and state of the field.

    PubMed

    Yu, Lawrence; Kim, Brian J; Meng, Ellis

    2014-10-31

    Several conditions and diseases are linked to the elevation or depression of internal pressures from a healthy, normal range, motivating the need for chronic implantable pressure sensors. A simple implantable pressure transduction system consists of a pressure-sensing element with a method to transmit the data to an external unit. The biological environment presents a host of engineering issues that must be considered for long term monitoring. Therefore, the design of such systems must carefully consider interactions between the implanted system and the body, including biocompatibility, surgical placement, and patient comfort. Here we review research developments on implantable sensors for chronic pressure monitoring within the body, focusing on general design requirements for implantable pressure sensors as well as specifications for different medical applications. We also discuss recent efforts to address biocompatibility, efficient telemetry, and drift management, and explore emerging trends.

  4. Chronically Implanted Pressure Sensors: Challenges and State of the Field

    PubMed Central

    Yu, Lawrence; Kim, Brian J.; Meng, Ellis

    2014-01-01

    Several conditions and diseases are linked to the elevation or depression of internal pressures from a healthy, normal range, motivating the need for chronic implantable pressure sensors. A simple implantable pressure transduction system consists of a pressure-sensing element with a method to transmit the data to an external unit. The biological environment presents a host of engineering issues that must be considered for long term monitoring. Therefore, the design of such systems must carefully consider interactions between the implanted system and the body, including biocompatibility, surgical placement, and patient comfort. Here we review research developments on implantable sensors for chronic pressure monitoring within the body, focusing on general design requirements for implantable pressure sensors as well as specifications for different medical applications. We also discuss recent efforts to address biocompatibility, efficient telemetry, and drift management, and explore emerging trends. PMID:25365461

  5. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications

    PubMed Central

    Park, Jongsung; Kim, Ji-Kwan; Patil, Swati J.; Park, Jun-Kyu; Park, SuA; Lee, Dong-Weon

    2016-01-01

    This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm2 and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone) stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent. PMID:27271619

  6. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications.

    PubMed

    Park, Jongsung; Kim, Ji-Kwan; Patil, Swati J; Park, Jun-Kyu; Park, SuA; Lee, Dong-Weon

    2016-06-02

    This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm² and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone) stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  7. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  8. Implantable blood pressure sensor for analyzing elasticity in arteries

    NASA Astrophysics Data System (ADS)

    Franco-Ayala, Marco; Martínez-Piñón, Fernando; Reyes-Barranca, Alfredo; Sánchez de la Peña, Salvador; Álvarez-Chavez, José A.

    2009-03-01

    MEMS technology could be an option for the development of a pressure sensor which allows the monitoring of several electronic signals in humans. In this work, a comparison is made between the typical elasticity curves of several arteries in the human body and the elasticity obtained for MEMS silicon microstructures such as membranes and cantilevers employing Finite Element analysis tools. The purpose is to identify which types of microstructures are mechanically compatible with human arteries. The goal is to integrate a blood pressure sensor which can be implanted in proximity with an artery. The expected benefits for this type of sensor are mainly to reduce the problems associated with the use of bulk devices through the day and during several days. Such a sensor could give precise blood pressure readings in a continuous or periodic form, i.e. information that is especially important for some critical cases of hypertension patients.

  9. Spatially digitized tactile pressure sensors with tunable sensitivity and sensing range.

    PubMed

    Choi, Eunsuk; Sul, Onejae; Hwang, Soonhyung; Cho, Joonhyung; Chun, Hyunsuk; Kim, Hongjun; Lee, Seung-Beck

    2014-10-24

    When developing an electronic skin with touch sensation, an array of tactile pressure sensors with various ranges of pressure detection need to be integrated. This requires low noise, highly reliable sensors with tunable sensing characteristics. We demonstrate the operation of tactile pressure sensors that utilize the spatial distribution of contact electrodes to detect various ranges of tactile pressures. The device consists of a suspended elastomer diaphragm, with a carbon nanotube thin-film on the bottom, which makes contact with the electrodes on the substrate with applied pressure. The electrodes separated by set distances become connected in sequence with tactile pressure, enabling consecutive electrodes to produce a signal. Thus, the pressure is detected not by how much of a signal is produced but by which of the electrodes is registering an output. By modulating the diaphragm diameter, and suspension height, it was possible to tune the pressure sensitivity and sensing range. Also, adding a fingerprint ridge structure enabled the sensor to detect the periodicity of sub-millimeter grating patterns on a silicon wafer.

  10. Piezoresistive silicon pressure sensors in cryogenic environment

    NASA Technical Reports Server (NTRS)

    Kahng, Seun K.; Chapman, John J.

    1989-01-01

    This paper presents data on low-temperature measurements of silicon pressure sensors. It was found that both the piezoresistance coefficients and the charge-carrier mobility increase with decreasing temperature. For lightly doped semiconductor materials, the density of free charge carriers decreases with temperature and can freeze out eventually. However, the effect of carrier freeze-out can be minimized by increasing the impurity content to higher levels, at which the temperature dependency of piezoresistance coefficients is reduced. An impurity density of 1 x 10 to the 19th/cu cm was found to be optimal for cryogenic applications of pressure sensor dies.

  11. Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor.

    PubMed

    Wang, Xue; Wang, Shuang; Jiang, Junfeng; Liu, Kun; Zhang, Xuezhi; Xiao, Mengnan; Xiao, Hai; Liu, Tiegen

    2017-12-11

    We introduce a simple residual pressure self-measurement method for the Fabry-Perot (F-P) cavity of optical MEMS pressure sensor. No extra installation is required and the structure of the sensor is unchanged. In the method, the relationship between residual pressure and external pressure under the same diaphragm deflection condition at different temperatures is analyzed by using the deflection formula of the circular plate with clamped edges and the ideal gas law. Based on this, the residual pressure under the flat condition can be obtained by pressure scanning process and calculation process. We carried out the experiment to compare the residual pressures of two batches MEMS sensors fabricated by two kinds of bonding process. The measurement result indicates that our approach is reliable enough for the measurement.

  12. Advanced Packaging Technology Used in Fabricating a High-Temperature Silicon Carbide Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn M.

    2003-01-01

    The development of new aircraft engines requires the measurement of pressures in hot areas such as the combustor and the final stages of the compressor. The needs of the aircraft engine industry are not fully met by commercially available high-temperature pressure sensors, which are fabricated using silicon. Kulite Semiconductor Products and the NASA Glenn Research Center have been working together to develop silicon carbide (SiC) pressure sensors for use at high temperatures. At temperatures above 850 F, silicon begins to lose its nearly ideal elastic properties, so the output of a silicon pressure sensor will drift. SiC, however, maintains its nearly ideal mechanical properties to extremely high temperatures. Given a suitable sensor material, a key to the development of a practical high-temperature pressure sensor is the package. A SiC pressure sensor capable of operating at 930 F was fabricated using a newly developed package. The durability of this sensor was demonstrated in an on-engine test. The SiC pressure sensor uses a SiC diaphragm, which is fabricated using deep reactive ion etching. SiC strain gauges on the surface of the diaphragm sense the pressure difference across the diaphragm. Conventionally, the SiC chip is mounted to the package with the strain gauges outward, which exposes the sensitive metal contacts on the chip to the hostile measurement environment. In the new Kulite leadless package, the SiC chip is flipped over so that the metal contacts are protected from oxidation by a hermetic seal around the perimeter of the chip. In the leadless package, a conductive glass provides the electrical connection between the pins of the package and the chip, which eliminates the fragile gold wires used previously. The durability of the leadless SiC pressure sensor was demonstrated when two 930 F sensors were tested in the combustor of a Pratt & Whitney PW4000 series engine. Since the gas temperatures in these locations reach 1200 to 1300 F, the sensors were

  13. Touch-mode capacitive pressure sensor with graphene-polymer heterostructure membrane

    NASA Astrophysics Data System (ADS)

    Berger, Christian; Phillips, Rory; Pasternak, Iwona; Sobieski, Jan; Strupinski, Wlodek; Vijayaraghavan, Aravind

    2018-01-01

    We describe the fabrication and characterisation of a touch-mode capacitive pressure sensor (TMCPS) with a robust design that comprises a graphene-polymer heterostructure film, laminated onto the silicon dioxide surface of a silicon wafer, incorporating a SU-8 spacer grid structure. The spacer grid structure allows the flexible graphene-polymer film to be partially suspended above the substrate, such that a pressure on the membrane results in a reproducible deflection, even after exposing the membrane to pressures over 10 times the operating range. Sensors show reproducible pressure transduction in water submersion at varying depths under static and dynamic loading. The measured capacitance change in response to pressure is in good agreement with an analytical model of clamped plates in touch mode. The device shows a pressure sensitivity of 27.1 +/- 0.5 fF Pa-1 over a pressure range of 0.5 kPa-8.5 kPa. In addition, we demonstrate the operation of this device as a force-touch sensor in air.

  14. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures.

    PubMed

    Chen, Zefeng; Wang, Zhao; Li, Xinming; Lin, Yuxuan; Luo, Ningqi; Long, Mingzhu; Zhao, Ni; Xu, Jian-Bin

    2017-05-23

    The piezoelectric effect is widely applied in pressure sensors for the detection of dynamic signals. However, these piezoelectric-induced pressure sensors have challenges in measuring static signals that are based on the transient flow of electrons in an external load as driven by the piezopotential arisen from dynamic stress. Here, we present a pressure sensor with nanowires/graphene heterostructures for static measurements based on the synergistic mechanisms between strain-induced polarization charges in piezoelectric nanowires and the caused change of carrier scattering in graphene. Compared to the conventional piezoelectric nanowire or graphene pressure sensors, this sensor is capable of measuring static pressures with a sensitivity of up to 9.4 × 10 -3 kPa -1 and a fast response time down to 5-7 ms. This demonstration of pressure sensors shows great potential in the applications of electronic skin and wearable devices.

  15. Micro-Pressure Sensors for Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Catling, David C.

    1996-01-01

    The joint research interchange effort was directed at the following principal areas: u further development of NASA-Ames' Mars Micro-meteorology mission concept as a viable NASA space mission especially with regard to the science and instrument specifications u interaction with the flight team from NASA's New Millennium 'Deep-Space 2' (DS-2) mission with regard to selection and design of micro-pressure sensors for Mars u further development of micro-pressure sensors suitable for Mars The research work undertaken in the course of the Joint Research Interchange should be placed in the context of an ongoing planetary exploration objective to characterize the climate system on Mars. In particular, a network of small probes globally-distributed on the surface of the planet has often been cited as the only way to address this particular science goal. A team from NASA Ames has proposed such a mission called the Micrometeorology mission, or 'Micro-met' for short. Surface pressure data are all that are required, in principle, to calculate the Martian atmospheric circulation, provided that simultaneous orbital measurements of the atmosphere are also obtained. Consequently, in the proposed Micro-met mission a large number of landers would measure barometric pressure at various locations around Mars, each equipped with a micro-pressure sensor. Much of the time on the JRI was therefore spent working with the engineers and scientists concerned with Micro-met to develop this particular mission concept into a more realistic proposition.

  16. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit.

    PubMed

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Xiong, Jijun

    2016-06-18

    This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI) material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of -50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts), the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor's output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments.

  17. Validation of a new micro-manometer pressure sensor for cardiovascular measurements in mice.

    PubMed

    Trevino, Rodolfo J; Jones, Douglas L; Escobedo, Daniel; Porterfield, John; Larson, Erik; Chisholm, Gary B; Barton, Amanda; Feldman, Marc D

    2010-01-01

    Abstract The Scisense (London, ON, Canada) micro-manometer pressure sensor is currently being used by investigators to evaluate cardiovascular physiology in mice, but has not been validated to date. The purpose of the current study is to compare the 1.2 F Scisense pressure sensor to the current gold standard produced by Millar Instruments (Houston, TX) (1.4 F). In vitro comparisons were preformed including temperature drift, frequency response analysis up to 250 Hz, and damping coefficient and natural frequency determined via a pop test. The authors also performed in vivo comparisons including pressure drift, dose-response studies to IV isoproterenol, maximum adrenergic stimulation with IV dobutamine, and simultaneous placement of both micro-manometer pressure sensors in the same intact murine hearts. The authors conclude that both sensors are equivalent, and that the Scisense pressure sensor represents an alternative to the current gold standard, the Millar micro-manometer pressure sensor for in vivo pressure measurements in the mouse.

  18. Piezoresistive pressure sensor with high sensitivity for medical application using peninsula-island structure

    NASA Astrophysics Data System (ADS)

    Xu, Tingzhong; Wang, Hongyan; Xia, Yong; Zhao, Zhiming; Huang, Mimi; Wang, Jiuhong; Zhao, Libo; Zhao, Yulong; Jiang, Zhuangde

    2017-12-01

    A novel micro-electromechanical systems piezoresistive pressure sensor with a diagonally positioned peninsula-island structure has high sensitivity for ultralow- pressure measurement. The pressure sensor was designed with a working range of 0-500 Pa and had a high sensitivity of 0.06 mV·V-1·Pa-1. The trade-off between high sensitivity and linearity was alleviated. Moreover, the influence of the installation angle on the sensing chip output was analyzed, and an application experiment of the sensor was conducted using the built pipettor test platform. Findings indicated that the proposed pressure sensor had sufficient resolution ability and accuracy to detect the pressure variation in the pipettor chamber. Therefore, the proposed pressure sensor has strong potential for medical equipment application.

  19. Methods and Systems for Configuring Sensor Acquisition Based on Pressure Steps

    NASA Technical Reports Server (NTRS)

    DeDonato, Mathew (Inventor)

    2015-01-01

    Technologies are provided for underwater measurements. A system includes an underwater vessels including: a plurality of sensors disposed thereon for measuring underwater properties; and a programmable controller configured to selectively activate the plurality of sensors based at least in part on underwater pressure. A user may program at what pressure ranges certain sensors are activated to measure selected properties, and may also program the ascent/descent rate of the underwater vessel, which is correlated with the underwater pressure.

  20. Electrospray-printed nanostructured graphene oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Taylor, Anthony P.; Velásquez-García, Luis F.

    2015-12-01

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ˜5 × 10-4 T) at ˜1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.

  1. Novel High Temperature Capacitive Pressure Sensor Utilizing SiC Integrated Circuit Twin Ring Oscillators

    NASA Technical Reports Server (NTRS)

    Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.

    2017-01-01

    This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.

  2. A Quad-Cantilevered Plate micro-sensor for intracranial pressure measurement.

    PubMed

    Lalkov, Vasko; Qasaimeh, Mohammad A

    2017-07-01

    This paper proposes a new design for pressure-sensing micro-plate platform to bring higher sensitivity to a pressure sensor based on piezoresistive MEMS sensing mechanism. The proposed design is composed of a suspended plate having four stepped cantilever beams connected to its corners, and thus defined as Quad-Cantilevered Plate (QCP). Finite element analysis was performed to determine the optimal design for sensitivity and structural stability under a range of applied forces. Furthermore, a piezoresistive analysis was performed to calculate sensor sensitivity. Both the maximum stress and the change in resistance of the piezoresistor associated with the QCP were found to be higher compared to previously published designs, and linearly related to the applied pressure as desired. Therefore, the QCP demonstrates greater sensitivity, and could be potentially used as an efficient pressure sensor for intracranial pressure measurement.

  3. Graphene-based inline pressure sensor integrated with microfluidic elastic tube

    NASA Astrophysics Data System (ADS)

    Inoue, Nagisa; Onoe, Hiroaki

    2018-01-01

    We propose an inline pressure sensor composed of a polydimethylsiloxane (PDMS) microfluidic tube integrated with graphene sheets. The PDMS tube was fabricated through molding, and a multilayered graphene sheet was transferred on the surface of the PDMS tube. The pressure inside the tube was monitored using the changes in the electrical resistance of the transferred graphene. The proposed pressure sensor could be suitable for precise pressure measurement for a small amount of fluid in microfluidic systems including organ-on-a-chip devices.

  4. A Comparative Study of Sound Speed in Air at Room Temperature between a Pressure Sensor and a Sound Sensor

    ERIC Educational Resources Information Center

    Amrani, D.

    2013-01-01

    This paper deals with the comparison of sound speed measurements in air using two types of sensor that are widely employed in physics and engineering education, namely a pressure sensor and a sound sensor. A computer-based laboratory with pressure and sound sensors was used to carry out measurements of air through a 60 ml syringe. The fast Fourier…

  5. Parylene-on-oil packaging for long-term implantable pressure sensors.

    PubMed

    Shapero, Aubrey M; Liu, Yang; Tai, Yu-Chong

    2016-08-01

    This paper reports and analyzes the feasibility study of a parylene-on-oil encapsulation packaging method of pressure sensors targeted for long-term implantation. Commercial barometric digital-output pressure sensors are enclosed in silicone oil and then encapsulated in situ with parylene-C or -D (PA-C, PA-D) chemical vapor deposition. Experimentally, sensors encapsulated with 30,000 cSt silicone oil and 27 μm PA-D show good performance for 6 weeks in 77 °C saline with >99 % of original sensitivity, corresponding to an extrapolated lifetime of around 21 months in 37 °C saline. This work shows that, with proper designs, such a packaging method can preserve the original pressure sensor sensitivity without offset, validated throughout accelerated lifetime tests. In experiments, wires on the prototypes are used for external electronics but it is found that they contributed to early failures, which would be absent in real wireless versions, indicating a potential for even longer lifetimes. Finally, a verified model is presented to predict the pressure sensor sensitivity of parylene-on-oil packaging with and without the presence of a bubble in the oil.

  6. Passive tire pressure sensor and method

    DOEpatents

    Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook

    2006-08-29

    A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.

  7. Passive tire pressure sensor and method

    DOEpatents

    Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook

    2007-09-04

    A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.

  8. A Micromachined Piezoresistive Pressure Sensor with a Shield Layer

    PubMed Central

    Cao, Gang; Wang, Xiaoping; Xu, Yong; Liu, Sheng

    2016-01-01

    This paper presents a piezoresistive pressure sensor with a shield layer for improved stability. Compared with the conventional piezoresistive pressure sensors, the new one reported in this paper has an n-type shield layer that covers p-type piezoresistors. This shield layer aims to minimize the impact of electrical field and reduce the temperature sensitivity of piezoresistors. The proposed sensors have been successfully fabricated by bulk-micromachining techniques. A sensitivity of 0.022 mV/V/kPa and a maximum non-linearity of 0.085% FS are obtained in a pressure range of 1 MPa. After numerical simulation, the role of the shield layer has been experimentally investigated. It is demonstrated that the shield layer is able to reduce the drift caused by electrical field and ambient temperature variation. PMID:27529254

  9. The use of combined thermal/pressure polyvinylidene fluoride film airflow sensor in polysomnography.

    PubMed

    Kryger, Meir; Eiken, Todd; Qin, Li

    2013-12-01

    The technologies recommended by the American Academy of Sleep Medicine (AASM) to monitor airflow in polysomnography (PSG) include the simultaneous monitoring of two physical variables: air temperature (for thermal airflow) and air pressure (for nasal pressure). To comply with airflow monitoring standards in the sleep lab setting thus often requires the patient to wear two sensors under the nose during testing. We hypothesized that a single combined thermal/pressure sensor using polyvinylidene fluoride (PVDF) film responsive to both airflow temperature and pressure would be effective in documenting abnormal breathing events during sleep. Sixty patients undergoing routine PSG testing to rule out obstructive sleep apnea at two different sleep laboratories were asked to wear a third PVDF airflow sensor in addition to the traditional thermal sensor and pressure sensor. Apnea and hypopnea events were scored by the sleep lab technologists using the AASM guidelines (CMS option) using the thermal sensor for apnea and the pressure sensor for hypopnea (scorer 1). The digital PSG data were also forwarded to an outside registered polysomnographic technologist for scoring of respiratory events detected in the PVDF airflow channels (scorer 2). The Pearson correlation coefficient, r, between apnea and hypopnea indices obtained using the AASM sensors and the combined PVDF sensor was almost unity for the four calculated indices: apnea-hypopnea index (0.990), obstructive apnea index (0.992), hypopnea index (0.958), and central apnea index (1.0). The slope of the four relationships was virtually unity and the coefficient of determination (r (2)) was also close to 1. The results of intraclass correlation coefficients (>0.95) and Bland-Altman plots also provide excellent agreement between the combined PVDF sensor and the AASM sensors. The indices used to calculate apnea severity obtained with the combined PVDF thermal and pressure sensor were equivalent to those obtained using AASM

  10. An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications

    PubMed Central

    Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard

    2017-01-01

    A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m). PMID:28218727

  11. Review on pressure sensors for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Sikarwar, Samiksha; Satyendra; Singh, Shakti; Yadav, Bal Chandra

    2017-12-01

    This paper reports the state of art in a variety of pressure and the detailed study of various matrix based pressure sensors. The performances of the bridges, buildings, etc. are threatened by earthquakes, material degradations, and other environmental effects. Structural health monitoring (SHM) is crucial to protect the people and also for assets planning. This study is a contribution in developing the knowledge about self-sensing smart materials and structures for the construction industry. It deals with the study of self-sensing as well as mechanical and electrical properties of different matrices based on pressure sensors. The relationships among the compression, tensile strain, and crack length with electrical resistance change are also reviewed.

  12. Calibration Of Partial-Pressure-Of-Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Yount, David W.; Heronimus, Kevin

    1995-01-01

    Report and analysis of, and discussion of improvements in, procedure for calibrating partial-pressure-of-oxygen sensors to satisfy Spacelab calibration requirements released. Sensors exhibit fast drift, which results in short calibration period not suitable for Spacelab. By assessing complete process of determining total drift range available, calibration procedure modified to eliminate errors and still satisfy requirements without compromising integrity of system.

  13. High-sensitivity pressure sensor based on fiber Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Xu, Yao; Yang, Yuguang; Jin, Wenxing; Jiang, Youchao; Shen, Ya; Jian, Shuisheng

    2017-10-01

    In this paper we propose and experimentally demonstrate an optical fiber structure sensor based on a Mach-Zehnder interferometer for pressure measurement. The fiber sensor is composed of a single-mode-no-core-single-mode structure, a section of capillary pure silica tube and refractive index matching fluid (RIMF). As the pressure decreases, the sealed air in the tube expands and the liquid level of the RIMF increases, which causes a wavelength shift of the interferometer. The measurement of the pressure variation can thus be achieved by monitoring the wavelength shift. The experimental results agree well with the numerical simulation, and a maximum pressure sensitivity of 266.6 nm Mpa-1 is achieved experimentally. Furthermore, the proposed fiber sensor has the potential to obtain higher sensitivity by enlarging the length of the air cavity.

  14. Development of Clinically Relevant Implantable Pressure Sensors: Perspectives and Challenges

    PubMed Central

    Clausen, Ingelin; Glott, Thomas

    2014-01-01

    This review describes different aspects to consider when developing implantable pressure sensor systems. Measurement of pressure is in general highly important in clinical practice and medical research. Due to the small size, light weight and low energy consumption Micro Electro Mechanical Systems (MEMS) technology represents new possibilities for monitoring of physiological parameters inside the human body. Development of clinical relevant sensors requires close collaboration between technological experts and medical clinicians. Site of operation, size restrictions, patient safety, and required measurement range and resolution, are only some conditions that must be taken into account. An implantable device has to operate under very hostile conditions. Long-term in vivo pressure measurements are particularly demanding because the pressure sensitive part of the sensor must be in direct or indirect physical contact with the medium for which we want to detect the pressure. New sensor packaging concepts are demanded and must be developed through combined effort between scientists in MEMS technology, material science, and biology. Before launching a new medical device on the market, clinical studies must be performed. Regulatory documents and international standards set the premises for how such studies shall be conducted and reported. PMID:25248071

  15. Development of clinically relevant implantable pressure sensors: perspectives and challenges.

    PubMed

    Clausen, Ingelin; Glott, Thomas

    2014-09-22

    This review describes different aspects to consider when developing implantable pressure sensor systems. Measurement of pressure is in general highly important in clinical practice and medical research. Due to the small size, light weight and low energy consumption Micro Electro Mechanical Systems (MEMS) technology represents new possibilities for monitoring of physiological parameters inside the human body. Development of clinical relevant sensors requires close collaboration between technological experts and medical clinicians.  Site of operation, size restrictions, patient safety, and required measurement range and resolution, are only some conditions that must be taken into account. An implantable device has to operate under very hostile conditions. Long-term in vivo pressure measurements are particularly demanding because the pressure sensitive part of the sensor must be in direct or indirect physical contact with the medium for which we want to detect the pressure. New sensor packaging concepts are demanded and must be developed through combined effort between scientists in MEMS technology, material science, and biology. Before launching a new medical device on the market, clinical studies must be performed. Regulatory documents and international standards set the premises for how such studies shall be conducted and reported.

  16. Particle-based optical pressure sensors for 3D pressure mapping.

    PubMed

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%.

  17. Characteristics research of pressure sensor based on nanopolysilicon thin films resistors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Li, Dandan; Wen, Dianzhong

    2017-10-01

    To further improve the sensitivity temperature characteristics of pressure sensor, a kind of pressure sensor taking nanopolysilicon thin films as piezoresistors is proposed in this paper. On the basis of the microstructure analysis by X-ray diffraction (XRD) and scanning electron microscope (SEM) tests, the preparing process of nanopolysilicon thin films is optimized. The effects of film thickness and annealing temperature on the micro-structure of nanopolysilicon thin films were studied, respectively. In order to realize the measurement of external pressure, four nanopolysilicon thin films resistors were arranged at the edges of square silicon diaphragm connected to a Wheatstone bridge, and the chip of the sensor was designed and fabricated on a 〈100〉 orientation silicon wafer by microelectromechanical system (MEMS) technology. Experimental result shows that when I = 6.80 mA, the sensitivity of the sensor PS-1 is 0.308 mV/kPa, and the temperature coefficient of sensitivity (TCS) is about -1742 ppm/∘C in the range of -40-140∘C. It is possible to obviously improve the sensitivity temperature characteristics of pressure sensor by the proposed sensors.

  18. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit

    PubMed Central

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Xiong, Jijun

    2016-01-01

    This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI) material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of −50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts), the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor’s output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments. PMID:27322288

  19. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.

    PubMed

    Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo

    2016-04-26

    Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).

  20. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments.

    PubMed

    Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin

    2015-08-31

    Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively.

  1. Wireless measurement of tire pressure with passive quartz sensors

    NASA Astrophysics Data System (ADS)

    Grossmann, Rainer

    1999-05-01

    The air pressure in the tires of a vehicle affects its stability, handling and braking and may contribute to causing an accident. Under-inflated tires increase fuel consumption. Existing measurement systems for the monitoring of the tire pressure use active sensors which need a battery or bulky energy transmission. This work shows a new approach: Quartz crystals as sensors can operate passively, without energy supply, by giving an echo to a stimulus pulse. Strain influences the otherwise extremely stable natural frequency of a quartz crystal which is therefore ideally suited for pressure measurements. As the natural frequency lies in the Megahertz range, stimulation and response can be transmitted by a pair of small antennas. A wireless measurement system has been built with excellent accuracy and resolution and a lightweight sensor which is very reliable and in principle maintenance-free.

  2. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    NASA Technical Reports Server (NTRS)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  3. Absolute marine gravimetry with matter-wave interferometry.

    PubMed

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  4. Fabrication and Performance of MEMS-Based Pressure Sensor Packages Using Patterned Ultra-Thick Photoresists

    PubMed Central

    Chen, Lung-Tai; Chang, Jin-Sheng; Hsu, Chung-Yi; Cheng, Wood-Hi

    2009-01-01

    A novel plastic packaging of a piezoresistive pressure sensor using a patterned ultra-thick photoresist is experimentally and theoretically investigated. Two pressure sensor packages of the sacrifice-replacement and dam-ring type were used in this study. The characteristics of the packaged pressure sensors were investigated by using a finite-element (FE) model and experimental measurements. The results show that the thermal signal drift of the packaged pressure sensor with a small sensing-channel opening or with a thin silicon membrane for the dam-ring approach had a high packaging induced thermal stress, leading to a high temperature coefficient of span (TCO) response of −0.19% span/°C. The results also show that the thermal signal drift of the packaged pressure sensors with a large sensing-channel opening for sacrifice-replacement approach significantly reduced packaging induced thermal stress, and hence a low TCO response of −0.065% span/°C. However, the packaged pressure sensors of both the sacrifice-replacement and dam-ring type still met the specification −0.2% span/°C of the unpackaged pressure sensor. In addition, the size of proposed packages was 4 × 4 × 1.5 mm3 which was about seven times less than the commercialized packages. With the same packaging requirement, the proposed packaging approaches may provide an adequate solution for use in other open-cavity sensors, such as gas sensors, image sensors, and humidity sensors. PMID:22454580

  5. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments

    PubMed Central

    Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin

    2015-01-01

    Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively. PMID:26334279

  6. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  7. One-Dimensional Contact Mode Interdigitated Center of Pressure Sensor (CMIPS)

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Kang, Jinho; Park, Cheol; Harrison, Joycelyn S.; Guerreiro, Nelson M.; Hubbard, James E.

    2009-01-01

    A one dimensional contact mode interdigitated center of pressure sensor (CMIPS) has been developed. The experimental study demonstrated that the CMIPS has the capability to measure the overall pressure as well as the center of pressure in one dimension, simultaneously. A theoretical model for the CMIPS is established here based on the equivalent circuit of the configuration of the CMIPS as well as the material properties of the sensor. The experimental results match well with theoretical modeling predictions. A system mapped with two or more pieces of the CMIPS can be used to obtain information from the pressure distribution in multi-dimensions.

  8. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    PubMed

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  9. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor

    PubMed Central

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-01-01

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations. PMID:27455271

  10. Fabrications and Performance of Wireless LC Pressure Sensors through LTCC Technology.

    PubMed

    Lin, Lin; Ma, Mingsheng; Zhang, Faqiang; Liu, Feng; Liu, Zhifu; Li, Yongxiang

    2018-01-25

    This paper presents a kind of passive wireless pressure sensor comprised of a planar spiral inductor and a cavity parallel plate capacitor fabricated through low-temperature co-fired ceramic (LTCC) technology. The LTCC material with a low Young's modulus of ~65 GPa prepared by our laboratory was used to obtain high sensitivity. A three-step lamination process was applied to construct a high quality cavity structure without using any sacrificial materials. The effects of the thickness of the sensing membranes on the sensitivity and detection range of the pressure sensors were investigated. The sensor with a 148 μm sensing membrane showed the highest sensitivity of 3.76 kHz/kPa, and the sensor with a 432 μm sensing membrane presented a high detection limit of 2660 kPa. The tunable sensitivity and detection limit of the wireless pressure sensors can meet the requirements of different scenes.

  11. Alumina ceramic based high-temperature performance of wireless passive pressure sensor

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wu, Guozhu; Guo, Tao; Tan, Qiulin

    2016-12-01

    A wireless passive pressure sensor equivalent to inductive-capacitive (LC) resonance circuit and based on alumina ceramic is fabricated by using high temperature sintering ceramic and post-fire metallization processes. Cylindrical copper spiral reader antenna and insulation layer are designed to realize the wireless measurement for the sensor in high temperature environment. The high temperature performance of the sensor is analyzed and discussed by studying the phase-frequency and amplitude-frequency characteristics of reader antenna. The average frequency change of sensor is 0.68 kHz/°C when the temperature changes from 27°C to 700°C and the relative change of twice measurements is 2.12%, with high characteristic of repeatability. The study of temperature-drift characteristic of pressure sensor in high temperature environment lays a good basis for the temperature compensation methods and insures the pressure signal readout accurately.

  12. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.

    PubMed

    Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai

    2017-02-14

    The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.

  13. Thin film devices used as oxygen partial pressure sensors

    NASA Technical Reports Server (NTRS)

    Canady, K. S.; Wortman, J. J.

    1970-01-01

    Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes.

  14. The Responsivity of a Miniaturized Passive Implantable Wireless Pressure Sensor.

    PubMed

    Jiang, Hao; Lan, Di; Goldman, Ken; Etemadi, Mozziyar; Shahnasser, Hamid; Roy, Shuvo

    2011-01-01

    A miniature batteryless implantable wireless pressure sensor that can be used deep inside the body is desired by the medical community. MEMS technology makes it possible to achieve high responsivity that directly determines the operating distance between a miniature implanted sensor and the external RF probe, while providing the read-out. In this paper, for the first time, an analytical expression of the system responsivity versus the sensor design is derived using an equivalent circuit model. Also, the integration of micro-coil inductors and pressure sensitive capacitors on a single silicon chip using MEMS fabrication techniques is demonstrated. Further, the derived analytical design theory is validated by the measured responsivity of these sensors.

  15. Test of FBG sensors for monitoring high pressure pipes

    NASA Astrophysics Data System (ADS)

    Paolozzi, Antonio; Paris, Claudio; Vendittozzi, Cristian; Felli, Ferdinando; Mongelli, Marialuisa; De Canio, Gerardo; Colucci, Alessandro; Asanuma, Hiroshi

    2017-04-01

    Fibre Bragg Grating (FBG) sensors are increasingly being used on a wide range of civil, industrial and aerospace structures. The sensors are created inside optical fibres (usually standard telecommunication fibres); the optical fibres technology allows to install the sensors on structures working in harsh environments, since the materials are almost insensitive to corrosion, the monitoring system can be positioned far away from the sensors without sensible signal losses, and there is no risk of electric discharge. FBG sensors can be used to create strain gages, thermometers or accelerometers, depending on the coating on the grating, on the way the grating is fixed to the structure, and on the presence of a specifically designed interface that can act as a transducer. This paper describes a test of several different FBG sensors to monitor an high pressure pipe that feeds the hydraulic actuators of a 6 degrees-of-freedom shaking table at the ENEA Casaccia research centre. A bare FBG sensor and a copper coated FBG sensor have been glued on the pipe. A third sensor has been mounted on a special interface to amplify the vibrations; this last sensor can be placed on the steel pipe by a magnetic mounting system, that also allows the its removal. All the sensor are placed parallel to the axis of the pipe. The analysis of the data recorded when the shaking table is operated will allow to determine which kind of sensor is best suited for structural monitoring of high pressure pipelines.

  16. Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability.

    PubMed

    Lee, Kilsoo; Lee, Jaehong; Kim, Gwangmook; Kim, Youngjae; Kang, Subin; Cho, Sungjun; Kim, SeulGee; Kim, Jae-Kang; Lee, Wooyoung; Kim, Dae-Eun; Kang, Shinill; Kim, DaeEun; Lee, Taeyoon; Shim, Wooyoung

    2017-11-01

    Fabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes. This study utilizes a writing activity with a pencil and paper, which enables the construction of a fundamental capacitor that can be used as a flexible capacitive pressure sensor with high pressure sensitivity and short response time and that it can be inexpensively fabricated over large areas. Furthermore, the paper-based pressure sensors are integrated into a fully functional 3D touch-pad device, which is a step toward the realization of omnipresent electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications.

    PubMed

    Jiang, Yonggang; Li, Jian; Zhou, Zhiwen; Jiang, Xinggang; Zhang, Deyuan

    2016-10-17

    Single-crystal silicon carbide (SiC)-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG) method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1-0.9 MPa, with a resolution of 0.27% F.S. (full scale) at room temperature.

  18. Improvement of a sensor unit for wrist blood pressure monitoring system

    NASA Astrophysics Data System (ADS)

    Koo, Sangjun; Kwon, Jongwon; Park, Yongman; Ayuzenara, Odgerel; Kim, Hiesik

    2007-12-01

    A blood pressure sensor unit for ubiquitous healthcare monitoring was newly developed. The digital wrist band-type blood pressure devices for home are popular already in the market. It is useful for checking blood pressure level at home and control of hypertension. Especially, it is very essential home device to check the health condition of blood circulation disease. Nowadays many product types are available. But the measurement of blood pressure is not accurate enough compared with the mechanical type. It needs to be upgraded to assure the precise health data enough to use in the hospital. The structure, feature and output signal of capacitor type pressure sensors are analyzed. An improved design of capacitor sensor is suggested. It shows more precise health data after use on a wrist band type health unit. They can be applied for remote u-health medical service.

  19. Multi-channel electronically scanned cryogenic pressure sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Kruse, Nancy M. H. (Inventor)

    1995-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multielement array. These dies are bonded at specific sites on a glass, prepatterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  20. Using smartphone pressure sensors to measure vertical velocities of elevators, stairways, and drones

    NASA Astrophysics Data System (ADS)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are derived. The approximation considered is valid in the first hundred meters of the inner layers of the atmosphere. In addition to pressure, acceleration values were also recorded using the built-in accelerometer. Numerical integration was performed, obtaining both vertical velocity and altitude. We show that data obtained using the pressure sensor is significantly less noisy than that obtained using the accelerometer. Error accumulation is also evident in the numerical integration of the acceleration values. In the proposed experiments, the pressure sensor also outperforms GPS, because this sensor does not receive satellite signals indoors and, in general, the operating frequency is considerably lower than that of the pressure sensor. In the cases in which it is possible, comparison with reference values taken from the architectural plans of buildings validates the results obtained using the pressure sensor. This proposal is ideally performed as an external or outreach activity with students to gain insight about fundamental questions in mechanics, fluids, and thermodynamics.

  1. Optical fibre pressure and temperature sensor system designed for urodynamic applications

    NASA Astrophysics Data System (ADS)

    Duraibabu, Dineshbabu; Kelly, Niall; Poeggel, Sven; Flood, Hugh; Yuan, Hongwei; Dooly, Gerard; McGrath, Deirdre; Tosi, Daniele; Lewis, Elfed; Leen, Gabriel

    2016-05-01

    This paper presents an optical fibre pressure and temperature sensor (OFPTS) system, which is adapted for use as a urodynamic pressure measurement system (UPS) for differential pressure measurement with temperature compensation. The OFTPS is based on a Fabry Perot interferometer (FPI), which acts as a pressure sensor and includes an embedded fibre Bragg grating (FBG) for temperature measurement. The sensor system is evaluated in a lower urinary tract (LUT) simulator, which simulates the bladder, rectum and detrusor muscle. The system was benchmarked against a commercially available urodynamic system, at the University Hospital Limerick (UHL) Urology Clinic. Both systems demonstrate a high correlation with a relative pressure variation of less than +/-2.8cmH2O for abdominal and +/-4cmH2O for vesical pressure. The repetitive measurement of the OFPTS system in the LUT simulator against the commercial system demonstrated the high repeatability. Furthermore, the low fabrication cost makes the OFPTS a potentially interesting instrument for urodynamic and other medical applications.

  2. Mixed Traffic Information Collection System based on Pressure Sensor

    NASA Astrophysics Data System (ADS)

    Liao, Wenzhe; Liu, Mingsheng; Meng, Qingli

    The traffic information collection is the base of Intelligent Traffic.At present, there exist mixed traffic situation in urban road in China. This paper researched and implemented a system through collecting the vehicle and bicycle mixed traffic flow parameters based on pressure sensor. According to information collection requirements, we selected pressure sensor, designed the data collection, storage and other hardware circuitries and information processing software. The experiment shows that the system can meet the demand of traffic information collection in the actual.

  3. A flexible touch-pressure sensor array with wireless transmission system for robotic skin

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping

    2016-06-01

    Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.

  4. A flexible touch-pressure sensor array with wireless transmission system for robotic skin.

    PubMed

    Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping

    2016-06-01

    Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.

  5. FBG based high sensitive pressure sensor and its low-cost interrogation system with enhanced resolution

    NASA Astrophysics Data System (ADS)

    Pachava, Vengal Rao; Kamineni, Srimannarayana; Madhuvarasu, Sai Shankar; Putha, Kishore; Mamidi, Venkata Reddy

    2015-12-01

    A fiber Bragg grating (FBG) pressure sensor with high sensitivity and resolution has been designed and demonstrated. The sensor is configured by firmly fixing the FBG with a metal bellows structure. The sensor works by means of measuring the Bragg wavelength shift of the FBG with respect to pressure change. From the experimental results, the pressure sensitivity of the sensor is found to be 90.6 pm/psi, which is approximately 4000 times as that of a bare fiber Bragg grating. A very good linearity of 99.86% is observed between the Bragg wavelength of the FBG and applied pressure. The designed sensor shows good repeatability with a negligible hysteresis error of ± 0.29 psi. A low-cost interrogation system that includes a long period grating (LPG) and a photodiode (PD) accompanied with simple electronic circuitry is demonstrated for the FBG sensor, which enables the sensor to attain high resolution of up to 0.025 psi. Thermal-strain cross sensitivity of the FBG pressure sensor is compensated using a reference FBG temperature sensor. The designed sensor can be used for liquid level, specific gravity, and static/dynamic low pressure measurement applications.

  6. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  7. Optical fiber pressure and acceleration sensor fabricated on a fiber endface

    DOEpatents

    Zhu, Yizheng; Wang, Xingwei; Xu, Juncheng; Wang, Anbo

    2006-05-30

    A fiber optic sensor has a hollow tube bonded to the endface of an optical fiber, and a diaphragm bonded to the hollow tube. The fiber endface and diaphragm comprise an etalon cavity. The length of the etalon cavity changes when applied pressure or acceleration flexes the diaphragm. The entire structure can be made of fused silica. The fiber, tube, and diaphragm can be bonded with a fusion splice. The present sensor is particularly well suited for measuring pressure or acceleration in high temperature, high pressure and corrosive environments (e.g., oil well downholes and jet engines). The present sensors are also suitable for use in biological and medical applications.

  8. Enhanced performance of microfluidic soft pressure sensors with embedded solid microspheres

    NASA Astrophysics Data System (ADS)

    Shin, Hee-Sup; Ryu, Jaiyoung; Majidi, Carmel; Park, Yong-Lae

    2016-02-01

    The cross-sectional geometry of an embedded microchannel influences the electromechanical response of a soft microfluidic sensor to applied surface pressure. When a pressure is exerted on the surface of the sensor deforming the soft structure, the cross-sectional area of the embedded channel filled with a conductive fluid decreases, increasing the channel’s electrical resistance. This electromechanical coupling can be tuned by adding solid microspheres into the channel. In order to determine the influence of microspheres, we use both analytic and computational methods to predict the pressure responses of soft microfluidic sensors with two different channel cross-sections: a square and an equilateral triangular. The analytical models were derived from contact mechanics in which microspheres were regarded as spherical indenters, and finite element analysis (FEA) was used for simulation. For experimental validation, sensor samples with the two different channel cross-sections were prepared and tested. For comparison, the sensor samples were tested both with and without microspheres. All three results from the analytical models, the FEA simulations, and the experiments showed reasonable agreement confirming that the multi-material soft structure significantly improved its pressure response in terms of both linearity and sensitivity. The embedded solid particles enhanced the performance of soft sensors while maintaining their flexible and stretchable mechanical characteristic. We also provide analytical and experimental analyses of hysteresis of microfluidic soft sensors considering a resistive force to the shape recovery of the polymer structure by the embedded viscous fluid.

  9. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity.

    PubMed

    Su, Bin; Gong, Shu; Ma, Zheng; Yap, Lim Wei; Cheng, Wenlong

    2015-04-24

    A bio-inspired flexible pressure sensor is generated with high sensitivity (50.17 kPa(-1)), quick responding time (<20 ms), and durable stability (negligible loading-unloading signal changes over 10 000 cycles). Notably, the key resource of surface microstructures upon sensor substrates results from the direct molding of natural mimosa leaves, presenting a simple, environment-friendly and easy scale-up fabrication process for these flexible pressure sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand

    NASA Astrophysics Data System (ADS)

    Rocha, Rui Pedro; Alhais Lopes, Pedro; de Almeida, Anibal T.; Tavakoli, Mahmoud; Majidi, Carmel

    2018-03-01

    We demonstrate fabrication, characterization, and implementation of ‘soft-matter’ pressure and bending sensors for a soft robotic hand. The elastomer-based sensors are embedded in a robot finger composed of a 3D printed endoskeleton and covered by an elastomeric skin. Two types of sensors are evaluated, resistive pressure sensors and capacitive pressure sensors. The sensor is fabricated entirely out of insulating and conductive rubber, the latter composed of polydimethylsiloxane (PDMS) elastomer embedded with a percolating network of structured carbon black (CB). The sensor-integrated fingers have a simple materials architecture, can be fabricated with standard rapid prototyping methods, and are inexpensive to produce. When incorporated into a robotic hand, the CB-PDMS sensors and PDMS carrier medium function as an ‘artificial skin’ for touch and bend detection. Results show improved response with a capacitive sensor architecture, which, unlike a resistive sensor, is robust to electromechanical hysteresis, creep, and drift in the CB-PDMS composite. The sensorized fingers are integrated in an anthropomorphic hand and results for a variety of grasping tasks are presented.

  11. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications

    PubMed Central

    Jiang, Yonggang; Li, Jian; Zhou, Zhiwen; Jiang, Xinggang; Zhang, Deyuan

    2016-01-01

    Single-crystal silicon carbide (SiC)-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG) method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1–0.9 MPa, with a resolution of 0.27% F.S. (full scale) at room temperature. PMID:27763494

  12. Development, Fabrication, and Characterization of Hydrogel Based Piezoresistive Pressure Sensors with Perforated Diaphragms

    PubMed Central

    Orthner, M.P.; Buetefisch, Sebastian; Magda, J.; Rieth, L.W.; Solzbacher, F.

    2010-01-01

    Hydrogels have been demonstrated to swell in response to a number of external stimuli including pH, CO2, glucose, and ionic strength making them useful for detection of metabolic analytes. To measure hydrogel swelling pressure, we have fabricated and tested novel perforated diaphragm piezoresistive pressure sensor arrays that couple the pressure sensing diaphragm with a perforated semi-permeable membrane. The 2×2 arrays measure approximately 3 × 5 mm2 and consist of four square sensing diaphragms with widths of 1.0, 1.25, and 1.5 mm used to measure full scale pressures of 50, 25, and 5 kPa, respectively. An optimized geometry of micro pores was etched in silicon diaphragm to allow analyte diffusion into the sensor cavity where the hydrogel material is located. The 14-step front side wafer process was carried out by a commercial foundry service (MSF, Frankfurt (Oder), Germany) and diaphragm pores were created using combination of potassium hydroxide (KOH) etching and deep reactive ion etching (DRIE). Sensor characterization was performed (without the use of hydrogels) using a custom bulge testing apparatus that simultaneously measured deflection, pressure, and electrical output. Test results are used to quantify the sensor sensitivity and demonstrate proof-of-concept. Simulations showed that the sensitivity was slightly improved for the perforated diaphragm designs while empirical electrical characterization showed that the perforated diaphragm sensors were slightly less sensitive than solid diaphragm sensors. This discrepancy is believed to be due to the influence of compressive stress found within passivation layers and poor etching uniformity. The new perforated diaphragm sensors were fully functional with sensitivities ranging from 23 to 252 μV/V-kPa (FSO= 5 to 80mV), and show a higher nonlinearity at elevated pressures than identical sensors with solid diaphragms. Sensors (1.5×1.5 mm2) with perforated diaphragms (pores=40 μm) have a nonlinearity of

  13. Simulation and optimization of silicon-on-sapphire pressure sensor

    NASA Astrophysics Data System (ADS)

    Kulesh, N. A.; Kudyukov, E. V.; Balymov, K. G.; Beloyshov, A. A.

    2017-09-01

    In this paper, finite element analysis software COMSOL Multiphysics was used to simulate the performance of silicon-on-sapphire piezoresistive pressure sensor, aiming to elaborate a flexible model suitable for further optimization and customization of the currently produced pressure sensors. The base model was built around the cylindrical pressure cell made of titanium alloy having a circular diaphragm with monocrystalline sapphire layer attached. The monocrystalline piezoresistive elements were placed on top of the double-layer diaphragm and electrically connected to form the Wheatstone bridge. Verification of the model and parametric study included three main areas: geometrical parameters of the cell, position of the elements on the diaphragm, and operation at elevated temperature. Optimization of the cell geometry included variation of bossed titanium diaphragm parameters as well as rounding-off radiuses near the edges of the diaphragm. Influence of the temperature was considered separately for thermal expansion of the mechanical components and for the changes of electrical and piezoresistive properties of the piezoresistive elements. In conclusion, the simulation results were compared to the experimental data obtained for three different constructions of the commercial pressure sensors produced by SPA of Automatics named after Academician N.A. Semikhatov.

  14. Fabrication and Characteristics of an nc-Si/c-Si Heterojunction MOSFETs Pressure Sensor

    PubMed Central

    Zhao, Xiaofeng; Wen, Dianzhong; Li, Gang

    2012-01-01

    A novel nc-Si/c-Si heterojunction MOSFETs pressure sensor is proposed in this paper, with four p-MOSFETs with nc-Si/c-Si heterojunction as source and drain. The four p-MOSFETs are designed and fabricated on a square silicon membrane by CMOS process and MEMS technology where channel resistances of the four nc-Si/c-Si heterojunction MOSFETs form a Wheatstone bridge. When the additional pressure is P, the nc-Si/c-Si heterojunction MOSFETs pressure sensor can measure this additional pressure P. The experimental results show that when the supply voltage is 3 V, length-width (L:W) ratio is 2:1, and the silicon membrane thickness is 75 μm, the full scale output voltage of the pressure sensor is 15.50 mV at room temperature, and pressure sensitivity is 0.097 mV/kPa. When the supply voltage and L:W ratio are the same as the above, and the silicon membrane thickness is 45 μm, the full scale output voltage is 43.05 mV, and pressure sensitivity is 2.153 mV/kPa. Therefore, the sensor has higher sensitivity and good temperature characteristics compared to the traditional piezoresistive pressure sensor. PMID:22778646

  15. Wireless Prototype Based on Pressure and Bending Sensors for Measuring Gate Quality

    PubMed Central

    Grenez, Florent; Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez

    2013-01-01

    This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently. PMID:23899935

  16. Diaphragm-Free Fiber-Optic Fabry-Perot Interferometric Gas Pressure Sensor for High Temperature Application.

    PubMed

    Liang, Hao; Jia, Pinggang; Liu, Jia; Fang, Guocheng; Li, Zhe; Hong, Yingping; Liang, Ting; Xiong, Jijun

    2018-03-28

    A diaphragm-free fiber-optic Fabry-Perot (FP) interferometric gas pressure sensor is designed and experimentally verified in this paper. The FP cavity was fabricated by inserting a well-cut fiber Bragg grating (FBG) and hollow silica tube (HST) from both sides into a silica casing. The FP cavity length between the ends of the SMF and HST changes with the gas density. Using temperature decoupling method to improve the accuracy of the pressure sensor in high temperature environments. An experimental system for measuring the pressure under different temperatures was established to verify the performance of the sensor. The pressure sensitivity of the FP gas pressure sensor is 4.28 nm/MPa with a high linear pressure response over the range of 0.1-0.7 MPa, and the temperature sensitivity is 14.8 pm/°C under the range of 20-800 °C. The sensor has less than 1.5% non-linearity at different temperatures by using temperature decoupling method. The simple fabrication and low-cost will help sensor to maintain the excellent features required by pressure measurement in high temperature applications.

  17. Inductive Linear-Position Sensor/Limit-Sensor Units

    NASA Technical Reports Server (NTRS)

    Alhom, Dean; Howard, David; Smith, Dennis; Dutton, Kenneth

    2007-01-01

    A new sensor provides an absolute position measurement. A schematic view of a motorized linear-translation stage that contains, at each end, an electronic unit that functions as both (1) a non-contact sensor that measures the absolute position of the stage and (2) a non-contact equivalent of a limit switch that is tripped when the stage reaches the nominal limit position. The need for such an absolute linear position-sensor/limit-sensor unit arises in the case of a linear-translation stage that is part of a larger system in which the actual stopping position of the stage (relative to the nominal limit position) must be known. Because inertia inevitably causes the stage to run somewhat past the nominal limit position, tripping of a standard limit switch or other limit sensor does not provide the required indication of the actual stopping position. This innovative sensor unit operates on an electromagnetic-induction principle similar to that of linear variable differential transformers (LVDTs)

  18. Tekscan pressure sensor output changes in the presence of liquid exposure.

    PubMed

    Jansson, Kyle S; Michalski, Max P; Smith, Sean D; LaPrade, Robert F; Wijdicks, Coen A

    2013-02-01

    The purpose of the study was to evaluate the load output of a pressure sensor in the presence of liquid saturation in a controlled environment. We hypothesized that a calibrated pressure sensor would provide diminishing load outputs over time in controlled environments of both humidified air and while submerged in saline and the sensors would reach a steady state output once saturated. A consistent compressive load was repeatedly applied to pressure sensors over time (Model 4000, Tekscan, Inc., South Boston, MA) with a tensile testing machine (Instron ElectroPuls E10000, Norwood, MA). All sensors were initially calibrated in a dry environment and were tested in three groups: humid air, submerged in 0.9% saline solution, and dry. Linear regression of load output over time for the pressure sensors exposed to humidity and submerged showed a 4.6% and 4.7% decline in load output each hour for the initial 6h, respectively (β=-0.046, 95% CI: [-0.053 to -0.039]; p<0.001) (β=-0.047, 95% CI: [-0.053 to -0.042; p<0.001). Tests after 72 h of exposure had linear regression decline in load output over time of 0.40% and 0.47% per hour for humidified and submerged sensors, respectively (β=-0.004, 95% CI: [-0.006 to -0.003]; p<0.001) (β=-0.047, 95% CI: [-0.053 to -0.042]; p<0.001). Because outcomes in biomedical research can affect clinical practices and treatments, the diminishing load output of the sensor in the presence of liquids should be accounted for. We recommend soaking sensors for more than 48 h prior to testing in a moist environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Microelectromechanical system pressure sensor integrated onto optical fiber by anodic bonding.

    PubMed

    Saran, Anish; Abeysinghe, Don C; Boyd, Joseph T

    2006-03-10

    Optical microelectromechanical system pressure sensors based on the principle of Fabry-Perot interferometry have been developed and fabricated using the technique of silicon-to-silicon anodic bonding. The pressure sensor is then integrated onto an optical fiber by a novel technique of anodic bonding without use of any adhesives. In this anodic bonding technique we use ultrathin silicon of thickness 10 microm to bond the optical fiber to the sensor head. The ultrathin silicon plays the role of a stress-reducing layer, which helps the bonding of an optical fiber to silicon having conventional wafer thickness. The pressure-sensing membrane is formed by 8 microm thick ultrathin silicon acting as a membrane, thus eliminating the need for bulk silicon etching. The pressure sensor integrated onto an optical fiber is tested for static response, and experimental results indicate degradation in the fringe visibility of the Fabry-Perot interferometer. This effect was mainly due to divergent light rays from the fiber degrading the fringe visibility. This effect is demonstrated in brief by an analytical model.

  20. Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing.

    PubMed

    Jin, Hanbyul; Jung, Sungchul; Kim, Junhyung; Heo, Sanghyun; Lim, Jaeik; Park, Wonsang; Chu, Hye Yong; Bien, Franklin; Park, Kibog

    2017-09-07

    We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multi-functional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future.

  1. Evaluation of eating and rumination behaviour in cows using a noseband pressure sensor

    PubMed Central

    2013-01-01

    Background An automated technique for recording eating and rumination behaviour was evaluated in ten lactating Brown Swiss cows by comparing data obtained from a pressure sensor with data obtained via direct observation over a 24-hour period. The recording device involved a pressure sensor integrated in the noseband of a halter. The analysed variables included number and duration of individual rumination, eating and resting phases, total daily length of these phases and number of cuds chewed per day. Results Eating and rumination phases were readily differentiated based on characteristic pressure profiles. Chewing movements during rumination were regular and generated regular waveforms with uniform amplitudes, whereas eating generated irregular waveforms with variable amplitudes. There was complete or almost complete agreement and no significant differences between data obtained via direct observation and pressure sensor technique. Both methods yielded an average of 16 daily eating phases with a mean duration of 28.3 minutes. Total time spent eating was 445.0 minutes for direct observation and 445.4 minutes for the pressure sensor technique. Both techniques recorded an average of 13.3 rumination phases with a mean duration of 30.3 (direct observation) and of 30.2 (pressure sensor) minutes. Total time spent ruminating per day, number of cuds per day and chewing cycles per cud were 389.3 and 388.3 minutes, 410.1 and 410.0 and 60.0 and 60.3 for direct observation and pressure sensor technique, respectively. There was a significant difference between the two methods with respect to mean number of chewing cycles per day (24′669, direct observation vs. 24′751, pressure sensor, P < 0.05, paired t-test). There were strong correlations between the two recording methods with correlation coefficients ranging from 0.98 to 1.00. Conclusions The results confirmed that measurements of eating and rumination variables obtained via the pressure sensor technique are in

  2. Novel threshold pressure sensors based on nonlinear dynamics of MEMS resonators

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad H.; Alsaleem, Fadi M.; Ouakad, Hassen M.

    2018-06-01

    Triggering an alarm in a car for low air-pressure in the tire or tripping an HVAC compressor if the refrigerant pressure is lower than a threshold value are examples for applications where measuring the amount of pressure is not as important as determining if the pressure has exceeded a threshold value for an action to occur. Unfortunately, current technology still relies on analog pressure sensors to perform this functionality by adding a complex interface (extra circuitry, controllers, and/or decision units). In this paper, we demonstrate two new smart tunable-threshold pressure switch concepts that can reduce the complexity of a threshold pressure sensor. The first concept is based on the nonlinear subharmonic resonance of a straight double cantilever microbeam with a proof mass and the other concept is based on the snap-through bi-stability of a clamped-clamped MEMS shallow arch. In both designs, the sensor operation concept is simple. Any actuation performed at a certain pressure lower than a threshold value will activate a nonlinear dynamic behavior (subharmonic resonance or snap-through bi-stability) yielding a large output that would be interpreted as a logic value of ONE, or ON. Once the pressure exceeds the threshold value, the nonlinear response ceases to exist, yielding a small output that would be interpreted as a logic value of ZERO, or OFF. A lumped, single degree of freedom model for the double cantilever beam, that is validated using experimental data, and a continuous beam model for the arch beam, are used to simulate the operation range of the proposed sensors by identifying the relationship between the excitation signal and the critical cut-off pressure.

  3. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Li, Chen; Tan, Qiu-Lin; Xue, Chen-Yang; Zhang, Wen-Dong; Li, Yun-Zhi; Xiong, Ji-Jun

    2015-04-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. Project supported by the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 51425505), the National Natural Science Foundation of China (Grant No. 61471324), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China (Grant No. 2013-077), and the Graduate Students Outstanding Innovation Project of Shanxi Province, China (Grant No. 20143020).

  4. Fiber-optic photoelastic pressure sensor with fiber-loss compensation

    NASA Technical Reports Server (NTRS)

    Beheim, G.; Anthan, D. J.

    1987-01-01

    A new fiber-optic pressure sensor is described that has high immunity to the effects of fiber-loss variations. This device uses the photoelastic effect to modulate the proportion of the light from each of two input fibers that is coupled into each of two output fibers. This four-fiber link permits two detectors to be used to measure the sensor's responses to the light from each of two independently controlled sources. These four detector outputs are processed to yield a loss-compensated signal that is a stable and sensitive pressure indicator.

  5. Balloon-borne pressure sensor performance evaluation utilizing tracking radars

    NASA Technical Reports Server (NTRS)

    Norcross, G. A.; Brooks, R. L.

    1983-01-01

    The pressure sensors on balloon-borne sondes relate the sonde measurements to height above the Earth's surface through the hypsometric equation. It is crucial that sondes used to explore the vertical structure of the atmosphere do not contribute significant height errors to their measurements of atmospheric constituent concentrations and properties. A series of radiosonde flights was conducted. In most cases, each flight consisted of two sondes attached to a single balloon and each flight was tracked by a highly accurate C-band radar. For the first 19 radiosonde flights, the standard aneroid cell baroswitch assembly used was the pressure sensor. The last 26 radiosondes were equipped with a premium grade aneroid cell baroswitch assembly sensor and with a hypsometer. It is shown that both aneroid cell baroswitch sensors become increasingly inaccurate with altitude. The hypsometer radar differences are not strongly dependent upon altitude and it is found that the standard deviation of the differences at 35 km is 0.179 km.

  6. [Pressure sensors to prevent cardiac decompensation].

    PubMed

    Klug, Didier

    2017-11-01

    Most cases of hospitalisation for heart failure are preceded by episodes of cardiac decompensation. Preventing these episodes would improve quality of life and reduce mortality and treatment costs. The monitoring of intracardiac pressures, using innovative sensors, coupled with telemedicine, offers interesting perspectives. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Final report on EURAMET.M.P-K4.2010: Key and supplementary comparison of national pressure standards in the range 1 Pa to 15 kPa of absolute and gauge pressure

    NASA Astrophysics Data System (ADS)

    Krajíček, Zdeněk; Bergoglio, Mercede; Jousten, Karl; Otal, Pierre; Sabuga, Wladimir; Saxholm, Sari; Pražák, Dominik; Vičar, Martin

    2014-01-01

    This report describes a EURAMET comparison of five European National Metrology Institutes in low gauge and absolute pressure in gas (nitrogen), denoted as EURAMET.M.P-K4.2010. Its main intention is to state equivalence of the pressure standards, in particular those based on the technology of force-balanced piston gauges such as e.g. FRS by Furness Controls, UK and FPG8601 by DHI-Fluke, USA. It covers the range from 1 Pa to 15 kPa, both gauge and absolute. The comparison in absolute mode serves as a EURAMET Key Comparison which can be linked to CCM.P-K4 and CCM.P-K2 via PTB. The comparison in gauge mode is a supplementary comparison. The comparison was carried out from September 2008 till October 2012. The participating laboratories were the following: CMI, INRIM, LNE, MIKES, PTB-Berlin (absolute pressure 1 kPa and below) and PTB-Braunschweig (absolute pressure 1 kPa and above and gauge pressure). CMI was the pilot laboratory and provided a transfer standard for the comparison. This transfer standard was also the laboratory standard of CMI at the same time, which resulted in a unique and logistically difficult star comparison. Both in gauge and absolute pressures all the participating institutes successfully proved their equivalence with respect to the reference value and all also proved mutual bilateral equivalences in all the points. All the participating laboratories are also equivalent with the reference values of CCM.P-K4 and CCM.P-K2 in the relevant points. The comparison also proved the ability of FPG8601 to serve as a transfer standard. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. A GENERIC PACKAGING TECHNIQUE USING FLUIDIC ISOLATION FOR LOW-DRIFT IMPLANTABLE PRESSURE SENSORS.

    PubMed

    Kim, A; Powell, C R; Ziaie, B

    2015-06-01

    This paper reports on a generic packaging method for reducing drift in implantable pressure sensors. The described technique uses fluidic isolation by encasing the pressure sensor in a liquid-filled medical-grade polyurethane balloon; thus, isolating it from surrounding aqueous environment that is the major source of baseline drift. In-vitro tests using commercial micromachined piezoresistive pressure sensors show an average baseline drift of 0.006 cmH 2 O/day (0.13 mmHg/month) for over 100 days of saline soak test, as compared to 0.101 cmH 2 O/day (2.23 mmHg/month) for a non-fluidic-isolated one soaked for 18 days. To our knowledge, this is the lowest reported drift for an implantable pressure sensor.

  9. Evaluation of Flexible Force Sensors for Pressure Monitoring in Treatment of Chronic Venous Disorders.

    PubMed

    Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga

    2017-08-21

    The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg.

  10. Evaluation of Flexible Force Sensors for Pressure Monitoring in Treatment of Chronic Venous Disorders

    PubMed Central

    Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga

    2017-01-01

    The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg. PMID:28825672

  11. Left Atrial Pressure Monitoring With an Implantable Wireless Pressure Sensor After Implantation of a Left Ventricular Assist Device

    PubMed Central

    Baranowski, Jacek; Delshad, Baz; Ahn, Henrik

    2017-01-01

    After implantation of a continuous-flow left ventricular assist device (LVAD), left atrial pressure (LAP) monitoring allows for the precise management of intravascular volume, inotropic therapy, and pump speed. In this case series of 4 LVAD recipients, we report the first clinical use of this wireless pressure sensor for the long-term monitoring of LAP during LVAD support. A wireless microelectromechanical system pressure sensor (Titan, ISS Inc., Ypsilanti, MI) was placed in the left atrium in four patients at the time of LVAD implantation. Titan sensor LAP was measured in all four patients on the intensive care unit and in three patients at home. Ramped speed tests were performed using LAP and echocardiography in three patients. The left ventricular end-diastolic diameter (cm), flow (L/min), power consumption (W), and blood pressure (mm Hg) were measured at each step. Measurements were performed over 36, 84, 137, and 180 days, respectively. The three discharged patients had equipment at home and were able to perform daily recordings. There were significant correlations between sensor pressure and pump speed, LV and LA size and pulmonary capillary wedge pressure, respectively (r = 0.92–0.99, p < 0.05). There was no device failure, and there were no adverse consequences of its use. PMID:27676410

  12. Thin and Flexible Carbon Nanotube-Based Pressure Sensors with Ultra-wide Sensing Range.

    PubMed

    Doshi, Sagar M; Thostenson, Erik T

    2018-06-26

    A scalable electrophoretic deposition (EPD) approach is used to create novel thin, flexible and lightweight carbon nanotube-based textile pressure sensors. The pressure sensors can be produced using an extensive variety of natural and synthetic fibers. These piezoresistive sensors are sensitive to pressures ranging from the tactile range (< 10 kPa), in the body weight range (~ 500 kPa), and very high pressures (~40 MPa). The EPD technique enables the creation of a uniform carbon nanotube-based nanocomposite coating, in the range of 250-750 nm thick, of polyethyleneimine (PEI) functionalized carbon nanotubes on non-conductive fibers. In this work, non-woven aramid fibers are coated by EPD onto a backing electrode followed by film formation onto the fibers creating a conductive network. The electrically conductive nanocomposite coating is firmly bonded to the fiber surface and shows piezoresistive electrical/mechanical coupling. The pressure sensor displays a large in-plane change in electrical conductivity with applied out-of-plane pressure. In-plane conductivity change results from fiber/fiber contact as well as the formation of a sponge-like piezoresistive nanocomposite "interphase" between the fibers. The resilience of the nanocomposite interphase enables sensing of high pressures without permanent changes to the sensor response, showing high repeatability.

  13. Pressure sensitivity analysis of fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih; Sridharan, Vasant; Kazemi, Alex

    2014-09-01

    Recent development in fiber optic sensing technology has mainly focused on discrete sensing, particularly, sensing systems with potential multiplexing and multi-parameter capabilities. Bragg grating fiber optic sensors have emerged as the non-disputed champion for multiplexing and simultaneous multi-parameter sensing for emerging high value structural components, advanced processing and manufacturing capabilities and increased critical infrastructure resilience applications. Although the number of potential applications for this sensing technology is large and spans the domains of medicine, manufacturing, aerospace, and public safety; critical issues such as fatigue life, sensitivity, accuracy, embeddability, material/sensor interface integrity, and universal demodulation systems still need to be addressed. The purpose of this paper is to primarily evaluate Commercial-Of-The-Shelf (COTS) Fiber Bragg Grating (FBG) sensors' sensitivity to pressure, often neglected in several applications. The COTS fiber sensitivity to pressure is further evaluated for two types of coatings (Polyimide and Acrylate), and different arrangements (arrayed and single).

  14. MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application

    NASA Astrophysics Data System (ADS)

    Fang, G. C.; Jia, P. G.; Cao, Q.; Xiong, J. J.

    2016-10-01

    We design and demonstrate a fiber-optic Fabry-Perot pressure sensor (FOFPPS) for high-temperature sensing by employing micro-electro-mechanical system (MEMS) technology. The FOFPPS is fabricated by anodically bonding the silicon wafer and the Pyrex glass together and fixing the facet of the optical fiber in parallel with the silicon surface by glass frit and organic adhesive. The silicon wafer can be reduced through dry etching technology to construct the sensitive diaphragm. The length of the cavity changes with the deformation of the diaphragm due to the loaded pressure, which leads to a wavelength shift of the interference spectrum. The pressure can be gauged by measuring the wavelength shift. The pressure experimental results show that the sensor has linear pressure sensitivities ranging from 0 kPa to 600 kPa at temperature range between 20°C to 300°C. The pressure sensitivity at 300°C is approximately 27.63 pm/kPa. The pressure sensitivities gradually decrease with increasing the temperature. The sensor also has a linear thermal drift when temperature changes from 20°C - 300°C.

  15. Large dynamic range pressure sensor based on two semicircle-holes microstructured fiber.

    PubMed

    Liu, Zhengyong; Htein, Lin; Lee, Kang-Kuen; Lau, Kin-Tak; Tam, Hwa-Yaw

    2018-01-08

    This paper presents a sensitive and large dynamic range pressure sensor based on a novel birefringence microstructured optical fiber (MOF) deployed in a Sagnac interferometer configuration. The MOF has two large semicircle holes in the cladding and a rectangular strut with germanium-doped core in the center. The fiber structure permits surrounding pressure to induce large effective index difference between the two polarized modes. The calculated and measured group birefringence of the fiber are 1.49 × 10 -4 , 1.23 × 10 -4 , respectively, at the wavelength of 1550 nm. Experimental results shown that the pressure sensitivity of the sensor varied from 45,000 pm/MPa to 50,000 pm/MPa, and minimum detectable pressure of 80 Pa and dynamic range of better than 116 dB could be achieved with the novel fiber sensor. The proposed sensor could be used in harsh environment and is an ideal candidate for downhole applications where high pressure measurement at elevated temperature up to 250 °C is needed.

  16. Pressure standards and sensors up to 3 GPa, actual state and development trends

    NASA Astrophysics Data System (ADS)

    Wisniewski, Roland; Molinar, Gianfranco

    1999-04-01

    Metrological problems connected with pressure standards and sensors up to 3 GPa as an introduction to the pressure measurements in the so-called “GIGAPASCAL REGION”, 1-100 GPa, are discussed. Re-examination of Bi I-Bi II phase transition pressure as a fixed point of the International Practical Pressure Scale and correction of the NaCl Pressure Scale is proposed. Well-established sensors as candidates for secondary pressure standards up to 3 GPa are briefly presented.

  17. PEDOT:PSS/QCM-based multimodal humidity and pressure sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muckley, Eric S.; Lynch, James; Kumar, Rajeev

    A room-temperature multimodal sensor composed of PEDOT:PSS deposited on an AT-cut quartz crystalmicrobalance (QCM) crystal has been fabricated. The nonlinear resistive and frequency sensor responses aredeconvolved using an articial neural network (ANN), which allows the single sensor to function simultane-ously as a relative humidity (RH) sensor and a pressure sensor using only two electrodes. We demonstratethat the predictive ability of the sensor is highly inuenced by the data used to train the ANN. When trainingsets are tailored to resemble the operating conditions of the sensor, the sensor achieves an average resolutionof < 3% RH from 0-100% RH, even after Hmore » 2O saturation occurs on the surface. Our results indicate thatANNs show strong promise for improving the resolution of low cost gas sensors and for expanding the rangeof environmental conditions in which a given sensor can operate.« less

  18. PEDOT:PSS/QCM-based multimodal humidity and pressure sensor

    DOE PAGES

    Muckley, Eric S.; Lynch, James; Kumar, Rajeev; ...

    2016-05-11

    A room-temperature multimodal sensor composed of PEDOT:PSS deposited on an AT-cut quartz crystalmicrobalance (QCM) crystal has been fabricated. The nonlinear resistive and frequency sensor responses aredeconvolved using an articial neural network (ANN), which allows the single sensor to function simultane-ously as a relative humidity (RH) sensor and a pressure sensor using only two electrodes. We demonstratethat the predictive ability of the sensor is highly inuenced by the data used to train the ANN. When trainingsets are tailored to resemble the operating conditions of the sensor, the sensor achieves an average resolutionof < 3% RH from 0-100% RH, even after Hmore » 2O saturation occurs on the surface. Our results indicate thatANNs show strong promise for improving the resolution of low cost gas sensors and for expanding the rangeof environmental conditions in which a given sensor can operate.« less

  19. Research of pressure sensor based on the fiber Bragg grating for permanent downwell monitoring application

    NASA Astrophysics Data System (ADS)

    Liu, Lina; Long, Pin; Liu, Tiegen

    2004-11-01

    Timely, accurate and reliable pressure information about how the reservoir is performing is an important component to optimizing oil yield and production rates. This paper reviews the use of fiber optical pressure sensor for downhole monitoring in the oil industry. Several types of pressure transducer with different characteristics have been introduced. Due to their multiplexing capabilities and versatility ,the use of Bragg grating sensors appears to be particularly suited for this application. A sensor for accurate and long term fluid pressure monitoring based on optical fiber Bragg gratings(FBGs) is developed. The sensor converts fluid pressure into optical fiber strain by means of a mechanical transducer to enhance its sensitivity to pressure. It can also implement distributed or multiplexed sensing. The sensor operation is studied at pressure up to 100 Mpa(1000bar) and the tested temperature to ~175°. It is possible to be used in the well.

  20. A miniature extrinsic fiber Fabry-Perot pressure sensor based on fiber etching

    NASA Astrophysics Data System (ADS)

    Ge, Yixian; Zhou, Junping; Wang, Tingting

    2011-11-01

    A miniature fiber optic pressure sensor based on Fabry-Perot interference fabricated on the tip of a single mode (SM) fiber is presented. The sensor measures only 125μm in diameter. A Fabry-Perot cavity and a thin silica diaphragm are fabricated by simple techniques involving only cleaving, wet chemical etching and fusion splicing. Interference pattern of the sensor is analyzed and issues in sensor design are discussed. The overall chemical reaction of the fiber wet etching is specifically represented. Pressure testing system is carried out. By tracing a peak point in the interference spectrum, the gap length of the sensor can be demodulated. Experimental results show the sensor has a good linearity. The sensor is made entirely of fused silica, whose structure has good stability, cabinet, simple for fabrication and low cost.

  1. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars.

    PubMed

    Park, Heun; Jeong, Yu Ra; Yun, Junyeong; Hong, Soo Yeong; Jin, Sangwoo; Lee, Seung-Jung; Zi, Goangseup; Ha, Jeong Sook

    2015-10-27

    We report on the facile fabrication of a stretchable array of highly sensitive pressure sensors. The proposed pressure sensor consists of the top layer of Au-deposited polydimethylsiloxane (PDMS) micropillars and the bottom layer of conductive polyaniline nanofibers on a polyethylene terephthalate substrate. The sensors are operated by the changes in contact resistance between Au-coated micropillars and polyaniline according to the varying pressure. The fabricated pressure sensor exhibits a sensitivity of 2.0 kPa(-1) in the pressure range below 0.22 kPa, a low detection limit of 15 Pa, a fast response time of 50 ms, and high stability over 10000 cycles of pressure loading/unloading with a low operating voltage of 1.0 V. The sensor is also capable of noninvasively detecting human-pulse waveforms from carotid and radial artery. A 5 × 5 array of the pressure sensors on the deformable substrate, which consists of PDMS islands for sensors and the mixed thin film of PDMS and Ecoflex with embedded liquid metal interconnections, shows stable sensing of pressure under biaxial stretching by 15%. The strain distribution obtained by the finite element method confirms that the maximum strain applied to the pressure sensor in the strain-suppressed region is less than 0.04% under a 15% biaxial strain of the unit module. This work demonstrates the potential application of our proposed stretchable pressure sensor array for wearable and artificial electronic skin devices.

  2. A novel hydrogel based piezoresistive pressure sensor platform for chemical sensing

    NASA Astrophysics Data System (ADS)

    Orthner, Michael P.

    New hydrogel-based micropressure sensor arrays for use in the fields of chemical sensing, physiological monitoring, and medical diagnostics are developed and demonstrated. This sensor technology provides reliable, linear, and accurate measurements of hydrogel swelling pressures, a function of ambient chemical concentrations. For the first time, perforations were implemented into the pressure sensors piezoresistive diaphragms, used to simultaneously increase sensor sensitivity and permit diffusion of analytes into the hydrogel cavity. It was shown through analytical and numerical (finite element) methods that pore shape, location, and size can be used to modify the diaphragm mechanics and concentrate stress within the piezoresistors, thus improving electrical output (sensitivity). An optimized pore pattern was chosen based on these numerical calculations. Fabrication was performed using a 14-step semiconductor fabrication process implementing a combination of potassium hydroxide (KOH) and deep reactive ion etching (DRIE) to create perforations. The sensor arrays (2x2) measure approximately 3 x 5 mm2 and used to measure full scale pressures of 50, 25, and 5 kPa, respectively. These specifications were defined by the various swelling pressures of ionic strength, pH and glucose specific hydrogels that were targeted in this work. Initial characterization of the sensor arrays was performed using a custom built bulge testing apparatus that simultaneously measured deflection (optical profilometry), pressure, and electrical output. The new perforated diaphragm sensors were found to be fully functional with sensitivities ranging from 23 to 252 muV/V-kPa with full scale output (FSO) ranging from 5 to 80 mV. To demonstrate proof of concept, hydrogels sensitive to changes in ionic strength were synthesized using hydroxypropyl-methacrylate (HPMA), N,N-dimethylaminoethyl-methacrylate (DMA) and a tetra-ethyleneglycol-dimethacrylate (TEGDMA) crosslinker. This hydrogel quickly and

  3. PBO Borehole Strainmeters and Pore Pressure Sensors: Recording Hydrological Strain Signals

    NASA Astrophysics Data System (ADS)

    Gottlieb, M. H.; Hodgkinson, K. M.; Mencin, D.; Henderson, D. B.; Johnson, W.; Van Boskirk, E.; Pyatt, C.; Mattioli, G. S.

    2017-12-01

    UNAVCO operates a network of 75 borehole strainmeters along the west coast of the United States and Vancouver Island, Canada as part of the Plate Boundary Observatory (PBO), the geodetic component of the NSF-funded Earthscope program. Borehole strainmeters are designed to detect variations in the strain field at the nanostrain level and can easily detect transient strains caused by aseismic creep events, Episodic Tremor and Slip (ETS) events and seismically induced co- and post-seimic signals. In 2016, one strainmeter was installed in an Oklahoma oil field to characterize in-situ deformation during CO2 injection. Twenty-three strainmeter sites also have pore pressure sensors to measure fluctuations in groundwater pressure. Both the strainmeter network and the pore pressure sensors provide unique data against which those using water-level measurements, GPS time-series or InSAR data can compare possible subsidence signals caused by groundwater withdrawal or fluid re-injection. Operating for 12 years, the PBO strainmeter and pore pressure network provides a long-term, continuous, 1-sps record of deformation. PBO deploys GTSM21 tensor strainmeters from GTSM Technologies, which consist of four horizontal strain gauges stacked vertically, at different orientations, within a single 2 m-long instrument. The strainmeters are typically installed at depths of 200 to 250 m and grouted into the bottom of 15 cm diameter boreholes. The pore pressure sensors are Digiquartz Depth Sensors from Paros Scientific. These sensors are installed in 2" PVC, sampling groundwater through a screened section 15 m above the co-located strainmeter. These sensors are also recording at 1-sps with a resolution in the hundredths of hPa. High-rate local barometric pressure data and low-rate rainfall data also available at all locations. PBO Strainmeter and pore pressure data are available in SEED, SAC-ASCII and time-stamped ASCII format from the IRIS Data Managements Center. Strainmeter data are

  4. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range.

    PubMed

    Shi, Jidong; Wang, Liu; Dai, Zhaohe; Zhao, Lingyu; Du, Mingde; Li, Hongbian; Fang, Ying

    2018-05-30

    Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa -1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Embedding of MEMS pressure and temperature sensors in carbon fiber composites: a manufacturing approach

    NASA Astrophysics Data System (ADS)

    Javidinejad, Amir; Joshi, Shiv P.

    2000-06-01

    In this paper embedding of surface mount pressure and temperature sensors in the Carbon fiber composites are described. A commercially available surface mount pressure and temperature sensor are used for embedding in a composite lay- up of IM6/HST-7, IM6/3501 and AS4/E7T1-2 prepregs. The fabrication techniques developed here are the focus of this paper and provide for a successful embedding procedure of pressure sensors in fibrous composites. The techniques for positioning and insulating, the sensor and the lead wires, from the conductive carbon prepregs are described and illustrated. Procedural techniques are developed and discussed for isolating the sensor's flow-opening, from the exposure to the prepreg epoxy flow and exposure to the fibrous particles, during the autoclave curing of the composite laminate. The effects of the autoclave cycle (if any) on the operation of the embedded pressure sensor are discussed.

  6. A Wireless Embedded Sensor based on Magnetic Higher-order Harmonic Fields: Application to Liquid Pressure Monitoring

    PubMed Central

    Tan, Ee Lim; Pereles, Brandon D.

    2010-01-01

    A wireless sensor based on the magnetoelastic, magnetically soft ferromagnetic alloy was constructed for remote measurement of pressure in flowing fluids. The pressure sensor was a rectangular strip of ferromagnetic alloy Fe40Ni38Mo4B18 adhered on a solid polycarbonate substrate and protected by a thin polycarbonate film. Upon excitation of a time-varying magnetic field through an excitation coil, the magnetically soft sensor magnetized and produced higher-order harmonic fields, which were detected through a detection coil. Under varying pressures, the sensor's magnetoelastic property caused a change in its magnetization, altering the amplitudes of the higher-order harmonic fields. A theoretical model was developed to describe the effect of pressure on the sensor's higher order harmonic fields. Experimental observations showed the 2nd order harmonic field generated by the pressure sensor was correlated to the surrounding fluid pressure, consistent with the theoretical results. Furthermore, it was demonstrated that the sensor exhibited good repeatability and stability with minimal drift. Sensors with smaller dimensions were shown to have greater sensitivity but lower pressure range as compared to their larger counterparts. Since the sensor signal was also dependent on the location of the sensor with respect to the excitation/detection coil, a calibration algorithm was developed to eliminate signal variations due to the changing sensor location. Because of its wireless and passive nature, this sensor is useful for continuous and long-term monitoring of pressure at inaccessible areas. For example, sensors with these capabilities are suitable to be used in biomedical applications where permanent implantation and long-term monitoring are needed. PMID:20514363

  7. A hybrid demodulation method of fiber-optic Fabry-Perot pressure sensor

    NASA Astrophysics Data System (ADS)

    Yu, Le; Lang, Jianjun; Pan, Yong; Wu, Di; Zhang, Min

    2013-12-01

    The fiber-optic Fabry-Perot pressure sensors have been widely applied to measure pressure in oilfield. For multi-well it will take a long time (dozens of seconds) to demodulate downhole pressure values of all wells by using only one demodulation system and it will cost a lot when every well is equipped with one system, which heavily limits the sensor applied in oilfield. In present paper, a new hybrid demodulation method, combining the windowed nonequispaced discrete Fourier Transform (nDFT) method with segment search minimum mean square error estimation (MMSE) method, was developed, by which the demodulation time can be reduced to 200ms, i.e., measuring 10 channels/wells was less than 2s. Besides, experimental results showed the demodulation cavity length of the fiber-optic Fabry-Perot sensor has a maximum error of 0.5 nm and consequently pressure measurement accuracy can reach 0.4% F.S.

  8. Impact of the Absolute Difference in Diastolic Blood Pressure Between Arms in Patients With Coronary Artery Disease

    PubMed Central

    Hitaka, Yuka; Miura, Shin-ichiro; Koyoshi, Rie; Shiga, Yuhei; Miyase, Yuiko; Norimatsu, Kenji; Nakamura, Ayumi; Adachi, Sen; Kuwano, Takashi; Sugihara, Makoto; Ike, Amane; Nishikawa, Hiroaki; Saku, Keijiro

    2015-01-01

    Background We investigated the relationship between the severity and presence of coronary artery disease (CAD) and a difference in systolic and diastolic blood pressure (SBP and DBP) between arms or between lower limbs. Methods We enrolled 277 patients who underwent coronary angiography. We calculated the absolute (|right BP (rt. BP) - left BP (lt. BP)|) and relative (rt. BP - lt. BP) differences in SBP or DBP between arms or between lower limbs, and assessed the severity of CAD in terms of the Gensini score. Results The absolute difference in DBP between arms in the CAD group was significantly lower than that in the non-CAD group, whereas the absolute difference in DBP between lower limbs in the CAD group was significantly higher. There were no differences in the absolute or relative difference in SBP between arms or lower limbs between the groups. The absolute difference in DBP between arms decreased as the Gensini score increased. In a logistic regression analysis, the presence of CAD was independently associated with the absolute difference in DBP between arms, in addition to male, family history, dyslipidemia, diabetes mellitus and hypertension. Conclusion The absolute difference in DBP between arms in addition to traditional factors may be a critical risk factor for the presence of CAD. PMID:26491500

  9. Impact of the Absolute Difference in Diastolic Blood Pressure Between Arms in Patients With Coronary Artery Disease.

    PubMed

    Hitaka, Yuka; Miura, Shin-Ichiro; Koyoshi, Rie; Shiga, Yuhei; Miyase, Yuiko; Norimatsu, Kenji; Nakamura, Ayumi; Adachi, Sen; Kuwano, Takashi; Sugihara, Makoto; Ike, Amane; Nishikawa, Hiroaki; Saku, Keijiro

    2015-11-01

    We investigated the relationship between the severity and presence of coronary artery disease (CAD) and a difference in systolic and diastolic blood pressure (SBP and DBP) between arms or between lower limbs. We enrolled 277 patients who underwent coronary angiography. We calculated the absolute (|right BP (rt. BP) - left BP (lt. BP)|) and relative (rt. BP - lt. BP) differences in SBP or DBP between arms or between lower limbs, and assessed the severity of CAD in terms of the Gensini score. The absolute difference in DBP between arms in the CAD group was significantly lower than that in the non-CAD group, whereas the absolute difference in DBP between lower limbs in the CAD group was significantly higher. There were no differences in the absolute or relative difference in SBP between arms or lower limbs between the groups. The absolute difference in DBP between arms decreased as the Gensini score increased. In a logistic regression analysis, the presence of CAD was independently associated with the absolute difference in DBP between arms, in addition to male, family history, dyslipidemia, diabetes mellitus and hypertension. The absolute difference in DBP between arms in addition to traditional factors may be a critical risk factor for the presence of CAD.

  10. Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies

    NASA Astrophysics Data System (ADS)

    Hamel, Caroline; Pinet, Éric

    2006-02-01

    We present how fiber-optic temperature or pressure sensors could be applied to minimally invasive diagnostics and therapies. For instance a miniature pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes. These include intra-aortic balloon pumping (IABP) therapy and other applications requiring detection of fast and/or subtle fluid pressure variations such as for intracranial pressure monitoring or for urology diagnostics. As well, miniature temperature sensors permit minimally invasive direct temperature measurement in diagnostics or therapies requiring energy transfer to living tissues. The extremely small size of fiber-optic sensors that we have developed allows quick and precise in situ measurements exactly where the physical parameters need to be known. Furthermore, their intrinsic immunity to electromagnetic interference (EMI) allows for the safe use of EMI-generating therapeutic or diagnostic equipments without compromising the signal quality. With the trend of ambulatory health care and the increasing EMI noise found in modern hospitals, the use of multi-parameter fiber-optic sensors will improve constant patient monitoring without any concern about the effects of EMI disturbances. The advantages of miniature fiberoptic sensors will offer clinicians new monitoring tools that open the way for improved diagnostic accuracy and new therapeutic technologies.

  11. A novel integrated multifunction micro-sensor for three-dimensional micro-force measurements.

    PubMed

    Wang, Weizhong; Zhao, Yulong; Qin, Yafei

    2012-01-01

    An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10(-3) KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  12. Soft-Matter Resistive Sensor for Measuring Shear and Pressure Stresses

    NASA Astrophysics Data System (ADS)

    Tepayotl-Ramirez, Daniel; Roberts, Peter; Majidi, Carmel

    2013-03-01

    Building on emerging paradigms in soft-matter electronics, we introduce liquid-phase electronic sensors that simultaneously measures elastic pressure and shear deformation. The sensors are com- posed of a sheet of elastomer that is embedded with fluidic channels containing eutectic Gallium- Indium (EGaIn), a metal alloy that is liquid at room temperature. Applying pressure or shear traction to the surface of the surrounding elastomer causes the elastomer to elastically deform and changes the geometry and electrical properties of the embedded liquid-phase circuit elements. We introduce analytic models that predict the electrical response of the sensor to prescribed surface tractions. These models are validated with both Finite Element Analysis (FEA) and experimental measurements.

  13. Absolute position calculation for a desktop mobile rehabilitation robot based on three optical mouse sensors.

    PubMed

    Zabaleta, Haritz; Valencia, David; Perry, Joel; Veneman, Jan; Keller, Thierry

    2011-01-01

    ArmAssist is a wireless robot for post stroke upper limb rehabilitation. Knowing the position of the arm is essential for any rehabilitation device. In this paper, we describe a method based on an artificial landmark navigation system. The navigation system uses three optical mouse sensors. This enables the building of a cheap but reliable position sensor. Two of the sensors are the data source for odometry calculations, and the third optical mouse sensor takes very low resolution pictures of a custom designed mat. These pictures are processed by an optical symbol recognition algorithm which will estimate the orientation of the robot and recognize the landmarks placed on the mat. The data fusion strategy is described to detect the misclassifications of the landmarks in order to fuse only reliable information. The orientation given by the optical symbol recognition (OSR) algorithm is used to improve significantly the odometry and the recognition of the landmarks is used to reference the odometry to a absolute coordinate system. The system was tested using a 3D motion capture system. With the actual mat configuration, in a field of motion of 710 × 450 mm, the maximum error in position estimation was 49.61 mm with an average error of 36.70 ± 22.50 mm. The average test duration was 36.5 seconds and the average path length was 4173 mm.

  14. Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method.

    PubMed

    Wang, Zhihui; Zhang, Ling; Liu, Jin; Jiang, Hao; Li, Chunzhong

    2018-05-30

    Recently, flexible pressure sensors featuring high sensitivity, broad sensing range and real-time detection have aroused great attention owing to their crucial role in the development of artificial intelligent devices and healthcare systems. Herein, highly sensitive pressure sensors based on hemisphere-microarray flexible substrates are fabricated via inversely templating honeycomb structures deriving from a facile and static breath figure process. The interlocked and subtle microstructures greatly improve the sensing characteristics and compressibility of the as-prepared pressure sensor, endowing it a sensitivity as high as 196 kPa-1 and a wide pressure sensing range (0-100 kPa), as well as other superior performance, including a lower detection limit of 0.5 Pa, fast response time (<26 ms) and high reversibility (>10 000 cycles). Based on the outstanding sensing performance, the potential capability of our pressure sensor in capturing physiological information and recognizing speech signals has been demonstrated, indicating promising application in wearable and intelligent electronics.

  15. Highly Sensitive, Transparent, and Durable Pressure Sensors Based on Sea-Urchin Shaped Metal Nanoparticles.

    PubMed

    Lee, Donghwa; Lee, Hyungjin; Jeong, Youngjun; Ahn, Yumi; Nam, Geonik; Lee, Youngu

    2016-11-01

    Highly sensitive, transparent, and durable pressure sensors are fabricated using sea-urchin-shaped metal nanoparticles and insulating polyurethane elastomer. The pressure sensors exhibit outstanding sensitivity (2.46 kPa -1 ), superior optical transmittance (84.8% at 550 nm), fast response/relaxation time (30 ms), and excellent operational durability. In addition, the pressure sensors successfully detect minute movements of human muscles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Pressure mapping with textile sensors for compression therapy monitoring.

    PubMed

    Baldoli, Ilaria; Mazzocchi, Tommaso; Paoletti, Clara; Ricotti, Leonardo; Salvo, Pietro; Dini, Valentina; Laschi, Cecilia; Francesco, Fabio Di; Menciassi, Arianna

    2016-08-01

    Compression therapy is the cornerstone of treatment in the case of venous leg ulcers. The therapy outcome is strictly dependent on the pressure distribution produced by bandages along the lower limb length. To date, pressure monitoring has been carried out using sensors that present considerable drawbacks, such as single point instead of distributed sensing, no shape conformability, bulkiness and constraints on patient's movements. In this work, matrix textile sensing technologies were explored in terms of their ability to measure the sub-bandage pressure with a suitable temporal and spatial resolution. A multilayered textile matrix based on a piezoresistive sensing principle was developed, calibrated and tested with human subjects, with the aim of assessing real-time distributed pressure sensing at the skin/bandage interface. Experimental tests were carried out on three healthy volunteers, using two different bandage types, from among those most commonly used. Such tests allowed the trends of pressure distribution to be evaluated over time, both at rest and during daily life activities. Results revealed that the proposed device enables the dynamic assessment of compression mapping, with a suitable spatial and temporal resolution (20 mm and 10 Hz, respectively). In addition, the sensor is flexible and conformable, thus well accepted by the patient. Overall, this study demonstrates the adequacy of the proposed piezoresistive textile sensor for the real-time monitoring of bandage-based therapeutic treatments. © IMechE 2016.

  17. Battery-free, wireless sensors for full-body pressure and temperature mapping

    PubMed Central

    Han, Seungyong; Kim, Jeonghyun; Won, Sang Min; Ma, Yinji; Kang, Daeshik; Xie, Zhaoqian; Lee, Kyu-Tae; Chung, Ha Uk; Banks, Anthony; Min, Seunghwan; Heo, Seung Yun; Davies, Charles R.; Lee, Jung Woo; Lee, Chi-Hwan; Kim, Bong Hoon; Li, Kan; Zhou, Yadong; Wei, Chen; Feng, Xue; Huang, Yonggang; Rogers, John A.

    2018-01-01

    Thin, soft, skin-like sensors capable of precise, continuous measurements of physiological health have broad potential relevance to clinical health care. Use of sensors distributed over a wide area for full-body, spatiotemporal mapping of physiological processes would be a considerable advance for this field. We introduce materials, device designs, wireless power delivery and communication strategies, and overall system architectures for skin-like, battery-free sensors of temperature and pressure that can be used across the entire body. Combined experimental and theoretical investigations of the sensor operation and the modes for wireless addressing define the key features of these systems. Studies with human subjects in clinical sleep laboratories and in adjustable hospital beds demonstrate functionality of the sensors, with potential implications for monitoring of circadian cycles and mitigating risks for pressure-induced skin ulcers. PMID:29618561

  18. Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel.

    PubMed

    Jung, Taekeon; Yang, Sung

    2015-05-21

    Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98) using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30-1000 s(-1). The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability.

  19. Highly Stable Liquid Metal-Based Pressure Sensor Integrated with a Microfluidic Channel

    PubMed Central

    Jung, Taekeon; Yang, Sung

    2015-01-01

    Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98) using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30–1000 s−1. The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability. PMID:26007732

  20. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    NASA Astrophysics Data System (ADS)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  1. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity.

    PubMed

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-12-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  2. A miniature extrinsic fiber Fabry-Perot pressure sensor based on fiber etching

    NASA Astrophysics Data System (ADS)

    Ge, Yixian; Wang, Ming; Yang, Chundi

    2009-10-01

    This paper presents a miniature fiber optic pressure sensor based on Fabry-Perot interference fabricated on the tip of a single mode (SM) fiber. The sensor measures only 125μm in diameter. A Fabry-Perot cavity and a thin silica diaphragm are fabricated by simple techniques involving only fusion splicing, cleaving, and wet chemical etching. Interference pattern of the sensor is analyzed and issues in sensor design are discussed. The overall chemical reaction of the fiber wet etching is specifically represented. Pressure testing system is carried out. By tracing a peak point in the interference spectrum, the gap length of the sensor can be demodulated. The sensor is made entirely of fused silica, whose structure has good stability, cabinet, simple for fabrication and low cost. It may also find uses in medical applications.

  3. Development and investigation of MOEMS type displacement-pressure sensor for biological information monitoring

    NASA Astrophysics Data System (ADS)

    Ostasevicius, Vytautas; Malinauskas, Karolis; Janusas, Giedrius; Palevicius, Arvydas; Cekas, Elingas

    2016-04-01

    The aim of this paper is to develop and investigate MOEMS displacement-pressure sensor for biological information monitoring. Developing computational periodical microstructure models using COMSOL Multiphysics modeling software for modal and shape analysis and implementation of these results for design MOEMS displacement-pressure sensor for biological information monitoring was performed. The micro manufacturing technology of periodical microstructure having good diffraction efficiency was proposed. Experimental setup for characterisation of optical properties of periodical microstructure used for design of displacement-pressure sensor was created. Pulsating human artery dynamic characteristics in this paper were analysed.

  4. Active Temperature Compensation Using a High-Temperature, Fiber Optic, Hybrid Pressure and Temperature Sensor

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Palmer, Matthew E.; Davis, Matthew A.; Engelbrecht, Gordon P.

    2006-01-01

    Luna Innovations has developed a novel, fiber optic, hybrid pressure-temperature sensor system for extremely high-temperature environments that is capable of reliable operation up to 1050 °C. This system is based on the extremely high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were tested for operability in a relatively high neutron dose environment up to 6.9×1017 n/cm2. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to space nuclear applications. Successes and lessons learned will be highlighted. Additionally, development needs will be covered which will suggest a framework for a coherent plan to continue work in this area.

  5. Wireless prototype based on pressure and bending sensors for measuring gait [corrected] quality.

    PubMed

    Grenez, Florent; Viqueira Villarejo, María; García Zapirain, Begoña; Méndez Zorrilla, Amaia

    2013-07-29

    This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently.

  6. A Non-Intrusive Pressure Sensor by Detecting Multiple Longitudinal Waves

    PubMed Central

    Zhou, Hongliang; Lin, Weibin; Ge, Xiaocheng; Zhou, Jian

    2016-01-01

    Pressure vessels are widely used in industrial fields, and some of them are safety-critical components in the system—for example, those which contain flammable or explosive material. Therefore, the pressure of these vessels becomes one of the critical measurements for operational management. In the paper, we introduce a new approach to the design of non-intrusive pressure sensors, based on ultrasonic waves. The model of this sensor is built based upon the travel-time change of the critically refracted longitudinal wave (LCR wave) and the reflected longitudinal waves with the pressure. To evaluate the model, experiments are carried out to compare the proposed model with other existing models. The results show that the proposed model can improve the accuracy compared to models based on a single wave. PMID:27527183

  7. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    PubMed

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  8. Propagation of Radiosonde Pressure Sensor Errors to Ozonesonde Measurements

    NASA Technical Reports Server (NTRS)

    Stauffer, R. M.; Morris, G.A.; Thompson, A. M.; Joseph, E.; Coetzee, G. J. R.; Nalli, N. R.

    2014-01-01

    Several previous studies highlight pressure (or equivalently, pressure altitude) discrepancies between the radiosonde pressure sensor and that derived from a GPS flown with the radiosonde. The offsets vary during the ascent both in absolute and percent pressure differences. To investigate this problem further, a total of 731 radiosonde-ozonesonde launches from the Southern Hemisphere subtropics to Northern mid-latitudes are considered, with launches between 2005 - 2013 from both longer-term and campaign-based intensive stations. Five series of radiosondes from two manufacturers (International Met Systems: iMet, iMet-P, iMet-S, and Vaisala: RS80-15N and RS92-SGP) are analyzed to determine the magnitude of the pressure offset. Additionally, electrochemical concentration cell (ECC) ozonesondes from three manufacturers (Science Pump Corporation; SPC and ENSCI-Droplet Measurement Technologies; DMT) are analyzed to quantify the effects these offsets have on the calculation of ECC ozone (O3) mixing ratio profiles (O3MR) from the ozonesonde-measured partial pressure. Approximately half of all offsets are 0.6 hPa in the free troposphere, with nearly a third 1.0 hPa at 26 km, where the 1.0 hPa error represents 5 persent of the total atmospheric pressure. Pressure offsets have negligible effects on O3MR below 20 km (96 percent of launches lie within 5 percent O3MR error at 20 km). Ozone mixing ratio errors above 10 hPa (30 km), can approach greater than 10 percent ( 25 percent of launches that reach 30 km exceed this threshold). These errors cause disagreement between the integrated ozonesonde-only column O3 from the GPS and radiosonde pressure profile by an average of +6.5 DU. Comparisons of total column O3 between the GPS and radiosonde pressure profiles yield average differences of +1.1 DU when the O3 is integrated to burst with addition of the McPeters and Labow (2012) above-burst O3 column climatology. Total column differences are reduced to an average of -0.5 DU when

  9. Reproducibility of repeated measurements with the Kikuhime pressure sensor under pressure garments in burn scar treatment.

    PubMed

    Van den Kerckhove, Eric; Fieuws, Steffen; Massagé, Patrick; Hierner, Robert; Boeckx, Willy; Deleuze, Jean-Paul; Laperre, Jan; Anthonissen, Mieke

    2007-08-01

    This study investigated the reproducibility of repeated measurements with the Kikuhime pressure sensor under two different types of pressure garments used in the treatment and prevention of scars after burns. Also efficiency of garments was assessed in clinical circumstances by assessing pressure loss and residual pressure after 1 month. Intra- and inter-observer reproducibility and repeated measurements with 1-month time lapse were examined on 55 sites in 26 subjects by means of intra-class correlation coefficients and standard error of measurements. Results showed good to excellent ICC and low SEMs in the two conditions. There was a significant difference in pressure after 1 month between elastic tricot and weft knit garments, although evolution of pressure loss after 1 month was similar. Concerning different locations, there was a significant difference in pressure loss after 1 month between gloves and sleeves with the largest pressure loss for sleeves. Considering these results we concluded that the Kikuhime pressure sensor provides valid and reliable information and can be used in comparative clinical trials to evaluate pressure garments used in burn scar treatment. Secondly, elastic tricot garments in our study tended to have higher clinical pressures but both types of garments had similar pressure loss over time.

  10. Structural Engineering for High Sensitivity, Ultrathin Pressure Sensors Based on Wrinkled Graphene and Anodic Aluminum Oxide Membrane.

    PubMed

    Chen, Wenjun; Gui, Xuchun; Liang, Binghao; Yang, Rongliang; Zheng, Yongjia; Zhao, Chengchun; Li, Xinming; Zhu, Hai; Tang, Zikang

    2017-07-19

    Nature-motivated pressure sensors have been greatly important components integrated into flexible electronics and applied in artificial intelligence. Here, we report a high sensitivity, ultrathin, and transparent pressure sensor based on wrinkled graphene prepared by a facile liquid-phase shrink method. Two pieces of wrinkled graphene are face to face assembled into a pressure sensor, in which a porous anodic aluminum oxide (AAO) membrane with the thickness of only 200 nm was used to insulate the two layers of graphene. The pressure sensor exhibits ultrahigh operating sensitivity (6.92 kPa -1 ), resulting from the insulation in its inactive state and conduction under compression. Formation of current pathways is attributed to the contact of graphene wrinkles through the pores of AAO membrane. In addition, the pressure sensor is also an on/off and energy saving device, due to the complete isolation between the two graphene layers when the sensor is not subjected to any pressure. We believe that our high-performance pressure sensor is an ideal candidate for integration in flexible electronics, but also paves the way for other 2D materials to be involved in the fabrication of pressure sensors.

  11. An oxygen pressure sensor using surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  12. Demonstration of SiC Pressure Sensors at 750 C

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2014-01-01

    We report the first demonstration of MEMS-based 4H-SiC piezoresistive pressure sensors tested at 750 C and in the process confirmed the existence of strain sensitivity recovery with increasing temperature above 400 C, eventually achieving near or up to 100% of the room temperature values at 750 C. This strain sensitivity recovery phenomenon in 4H-SiC is uncharacteristic of the well-known monotonic decrease in strain sensitivity with increasing temperature in silicon piezoresistors. For the three sensors tested, the room temperature full-scale output (FSO) at 200 psig ranged between 29 and 36 mV. Although the FSO at 400 C dropped by about 60%, full recovery was achieved at 750 C. This result will allow the operation of SiC pressure sensors at higher temperatures, thereby permitting deeper insertion into the engine combustion chamber to improve the accurate quantification of combustor dynamics.

  13. Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution

    NASA Astrophysics Data System (ADS)

    Wisniewiski, David

    2015-03-01

    Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.

  14. Characterization of Piezoresistive PEDOT:PSS Pressure Sensors with Inter-Digitated and Cross-Point Electrode Structures

    PubMed Central

    Wang, Jer-Chyi; Karmakar, Rajat Subhra; Lu, Yu-Jen; Huang, Chiung-Yin; Wei, Kuo-Chen

    2015-01-01

    The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) pressure sensors with inter-digitated (IDE) and cross-point electrode (CPE) structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO) film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low and high pressure were similar to those of the pressure sensors with IDE without b-ITO and with CPE structures, respectively, leading to increased piezoresistive pressure sensitivity as the PEDOT:PSS film thickness decreased. A maximum sensitivity of more than 42 kΩ/Pa was achieved. When the normal pressure was applied, the increased number of conducting points or the reduced distance between the PEDOT oligomers within the PEDOT:PSS film resulted in a decrease of the resistance. The piezoresistive pressure sensors with a single carrier-conducting pathway, i.e., IDE without b-ITO and CPE structures, exhibited a small relaxation time and a superior reversible operation, which can be advantageous for fast piezoresistive response applications. PMID:25569756

  15. Characterization of piezoresistive PEDOT:PSS pressure sensors with inter-digitated and cross-point electrode structures.

    PubMed

    Wang, Jer-Chyi; Karmakar, Rajat Subhra; Lu, Yu-Jen; Huang, Chiung-Yin; Wei, Kuo-Chen

    2015-01-05

    The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) pressure sensors with inter-digitated (IDE) and cross-point electrode (CPE) structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO) film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low and high pressure were similar to those of the pressure sensors with IDE without b-ITO and with CPE structures, respectively, leading to increased piezoresistive pressure sensitivity as the PEDOT:PSS film thickness decreased. A maximum sensitivity of more than 42 kΩ/Pa was achieved. When the normal pressure was applied, the increased number of conducting points or the reduced distance between the PEDOT oligomers within the PEDOT:PSS film resulted in a decrease of the resistance. The piezoresistive pressure sensors with a single carrier-conducting pathway, i.e., IDE without b-ITO and CPE structures, exhibited a small relaxation time and a superior reversible operation, which can be advantageous for fast piezoresistive response applications.

  16. Monitoring pressure profiles across an airfoil with a fiber Bragg grating sensor array

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Anthony W.; Parkinson, Luke A.; Karas, Andrew R.; Hansen, Kristy L.; Arkwright, John W.

    2018-02-01

    Fluid flow over an airfoil section creates a pressure difference across the upper and lower surfaces, thus generating lift. Successful wing design is a combination of engineering design and experience in the field, with subtleties in design and manufacture having significant impact on the amount of lift produced. Current methods of airfoil optimization and validation typically involve computational fluid dynamics (CFD) and extensive wind tunnel testing with pressure sensors embedded into the airfoil to measure the pressure over the wing. Monitoring pressure along an airfoil in a wind tunnel is typically achieved using surface pressure taps that consist of hollow tubes running from the surface of the airfoil to individual pressure sensors external to the tunnel. These pressure taps are complex to configure and not ideal for in-flight testing. Fiber Bragg grating (FBG) pressure sensing arrays provide a highly viable option for both wind tunnel and inflight pressure measurement. We present a fiber optic sensor array that can detect positive and negative pressure suitable for validating CFD models of airfoil profile sections. The sensing array presented here consists of 6 independent sensing elements, each capable of a pressure resolution of less than 10 Pa over the range of 70 kPa to 120 kPa. The device has been tested with the sensor array attached to a 90mm chord length airfoil section subjected to low velocity flow. Results show that the arrays are capable of accurately detecting variations of the pressure profile along the airfoil as the angle of attack is varied from zero to the point at which stall occurs.

  17. Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure.

    PubMed

    Pang, Yu; Tian, He; Tao, Luqi; Li, Yuxing; Wang, Xuefeng; Deng, Ningqin; Yang, Yi; Ren, Tian-Ling

    2016-10-03

    A mechanical sensor with graphene porous network (GPN) combined with polydimethylsiloxane (PDMS) is demonstrated by the first time. Using the nickel foam as template and chemically etching method, the GPN can be created in the PDMS-nickel foam coated with graphene, which can achieve both pressure and strain sensing properties. Because of the pores in the GPN, the composite as pressure and strain sensor exhibit wide pressure sensing range and highest sensitivity among the graphene foam-based sensors, respectively. In addition, it shows potential applications in monitoring or even recognize the walking states, finger bending degree, and wrist blood pressure.

  18. High precision optical fiber Fabry-Perot sensor for gas pressure detection

    NASA Astrophysics Data System (ADS)

    Mao, Yan; Tong, Xing-lin

    2013-09-01

    An optical fiber Fabry-Perot (F-P) sensor with quartz diaphragm for gas pressure testing was designed and fabricated. It consisted of single-mode fiber, hollow glass tube and quartz diaphragm. It uses the double peak demodulation to obtain the initialized cavity length. The variety of cavity length can be calcultated by the single peak demodulation after changing the gas pressure. The results show that the sensor is small in size, whose sensitivity is 19 pm/kPa in the range of the 10 ~ 260 kPa gas pressure. And it has good linearity and repeatability.

  19. Design of a Pressure Sensor Based on Optical Fiber Bragg Grating Lateral Deformation

    PubMed Central

    Urban, Frantisek; Kadlec, Jaroslav; Vlach, Radek; Kuchta, Radek

    2010-01-01

    This paper describes steps involved in the design and realization of a new type of pressure sensor based on the optical fiber Bragg grating. A traditional pressure sensor has very limited usage in heavy industrial environments, particularly in explosive or electromagnetically noisy environments. Utilization of optics in these environments eliminates all surrounding influences. An initial motivation for our development was the research, experimental validation, and realization of a complex smart pressure sensor based on the optical principle. The main benefit of this solution consists of increasing sensitivity, resistance to electromagnetic interference, dimensions, and potential increased accuracy. PMID:22163521

  20. Lipid decorated liquid crystal pressure sensors

    NASA Astrophysics Data System (ADS)

    Lopatkina, Tetiana; Popov, Piotr; Honaker, Lawrence; Jakli, Antal; Mann, Elizabeth; Mann's Group Collaboration; Jakli's Group Collaboration

    Surfactants usually promote the alignment of liquid crystal (LC) director parallel to the surfactant chains, and thus on average normal to the substrate (homeotropic), whereas water promotes tangential (planar) alignment. A water-LC interface is therefore very sensitive to the presence of surfactants, such as lipids: this is the principle of LC-based chemical and biological sensing introduced by Abbott et al.Using a modified configuration, we found that at higher than 10 micro molar lipid concentration, the uniformly dark texture seen for homeotropic alignment between left-, and right-handed circular polarizers becomes unstable and slowly brightens again. This texture shows extreme sensitivity to external air pressure variations offering its use for sensitive pressure sensors. Our analysis indicates an osmotic pressure induced bending of the suspended films explaining both the birefringence and pressure sensitivity. In the talk we will discuss the experimental details of these effects. This work was financially supported by NSF DMR No. DMR-0907055.

  1. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity.

    PubMed

    Pang, Yu; Zhang, Kunning; Yang, Zhen; Jiang, Song; Ju, Zhenyi; Li, Yuxing; Wang, Xuefeng; Wang, Danyang; Jian, Muqiang; Zhang, Yingying; Liang, Renrong; Tian, He; Yang, Yi; Ren, Tian-Ling

    2018-03-27

    Recently, wearable pressure sensors have attracted tremendous attention because of their potential applications in monitoring physiological signals for human healthcare. Sensitivity and linearity are the two most essential parameters for pressure sensors. Although various designed micro/nanostructure morphologies have been introduced, the trade-off between sensitivity and linearity has not been well balanced. Human skin, which contains force receptors in a reticular layer, has a high sensitivity even for large external stimuli. Herein, inspired by the skin epidermis with high-performance force sensing, we have proposed a special surface morphology with spinosum microstructure of random distribution via the combination of an abrasive paper template and reduced graphene oxide. The sensitivity of the graphene pressure sensor with random distribution spinosum (RDS) microstructure is as high as 25.1 kPa -1 in a wide linearity range of 0-2.6 kPa. Our pressure sensor exhibits superior comprehensive properties compared with previous surface-modified pressure sensors. According to simulation and mechanism analyses, the spinosum microstructure and random distribution contribute to the high sensitivity and large linearity range, respectively. In addition, the pressure sensor shows promising potential in detecting human physiological signals, such as heartbeat, respiration, phonation, and human motions of a pushup, arm bending, and walking. The wearable pressure sensor array was further used to detect gait states of supination, neutral, and pronation. The RDS microstructure provides an alternative strategy to improve the performance of pressure sensors and extend their potential applications in monitoring human activities.

  2. MEMS capacitive pressure sensor monolithically integrated with CMOS readout circuit by using post CMOS processes

    NASA Astrophysics Data System (ADS)

    Jang, Munseon; Yun, Kwang-Seok

    2017-12-01

    In this paper, we presents a MEMS pressure sensor integrated with a readout circuit on a chip for an on-chip signal processing. The capacitive pressure sensor is formed on a CMOS chip by using a post-CMOS MEMS processes. The proposed device consists of a sensing capacitor that is square in shape, a reference capacitor and a readout circuitry based on a switched-capacitor scheme to detect capacitance change at various environmental pressures. The readout circuit was implemented by using a commercial 0.35 μm CMOS process with 2 polysilicon and 4 metal layers. Then, the pressure sensor was formed by wet etching of metal 2 layer through via hole structures. Experimental results show that the MEMS pressure sensor has a sensitivity of 11 mV/100 kPa at the pressure range of 100-400 kPa.

  3. Monolithic composite “pressure + acceleration + temperature + infrared” sensor using a versatile single-sided “SiN/Poly-Si/Al” process-module.

    PubMed

    Ni, Zao; Yang, Chen; Xu, Dehui; Zhou, Hong; Zhou, Wei; Li, Tie; Xiong, Bin; Li, Xinxin

    2013-01-16

    We report a newly developed design/fabrication module with low-cost single-sided "low-stress-silicon-nitride (LS-SiN)/polysilicon (poly-Si)/Al" process for monolithic integration of composite sensors for sensing-network-node applications. A front-side surface-/bulk-micromachining process on a conventional Si-substrate is developed, featuring a multifunctional SiN/poly-Si/Al layer design for diverse sensing functions. The first "pressure + acceleration + temperature + infrared" (PATIR) composite sensor with the chip size of 2.5 mm × 2.5 mm is demonstrated. Systematic theoretical design and analysis methods are developed. The diverse sensing components include a piezoresistive absolute-pressure sensor (up to 700 kPa, with a sensitivity of 49 mV/MPa under 3.3 V supplied voltage), a piezoresistive accelerometer (±10 g, with a sensitivity of 66 μV/g under 3.3 V and a -3 dB bandwidth of 780 Hz), a thermoelectric infrared detector (with a responsivity of 45 V/W and detectivity of 3.6 × 107 cm·Hz1/2/W) and a thermistor (-25-120 °C). This design/fabrication module concept enables a low-cost monolithically-integrated "multifunctional-library" technique. It can be utilized as a customizable tool for versatile application-specific requirements, which is very useful for small-size, low-cost, large-scale sensing-network node developments.

  4. Battery-free, wireless sensors for full-body pressure and temperature mapping.

    PubMed

    Han, Seungyong; Kim, Jeonghyun; Won, Sang Min; Ma, Yinji; Kang, Daeshik; Xie, Zhaoqian; Lee, Kyu-Tae; Chung, Ha Uk; Banks, Anthony; Min, Seunghwan; Heo, Seung Yun; Davies, Charles R; Lee, Jung Woo; Lee, Chi-Hwan; Kim, Bong Hoon; Li, Kan; Zhou, Yadong; Wei, Chen; Feng, Xue; Huang, Yonggang; Rogers, John A

    2018-04-04

    Thin, soft, skin-like sensors capable of precise, continuous measurements of physiological health have broad potential relevance to clinical health care. Use of sensors distributed over a wide area for full-body, spatiotemporal mapping of physiological processes would be a considerable advance for this field. We introduce materials, device designs, wireless power delivery and communication strategies, and overall system architectures for skin-like, battery-free sensors of temperature and pressure that can be used across the entire body. Combined experimental and theoretical investigations of the sensor operation and the modes for wireless addressing define the key features of these systems. Studies with human subjects in clinical sleep laboratories and in adjustable hospital beds demonstrate functionality of the sensors, with potential implications for monitoring of circadian cycles and mitigating risks for pressure-induced skin ulcers. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors

    NASA Astrophysics Data System (ADS)

    Park, Ick-Joon; Jeong, Chan-Yong; Cho, In-Tak; Lee, Jong-Ho; Cho, Eou-Sik; Kwon, Sang Jik; Kim, Bosul; Cheong, Woo-Seok; Song, Sang-Hun; Kwon, Hyuck-In

    2012-10-01

    In this work, we present the results concerning the use of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) as a driving transistor of the flexible thermal and pressure sensors which are applicable to artificial skin systems. Although the a-IGZO TFT has been attracting much attention as a driving transistor of the next-generation flat panel displays, no study has been performed about the application of this new device to the driving transistor of the flexible sensors yet. The proposed thermal sensor pixel is composed of the series-connected a-IGZO TFT and ZnO-based thermistor fabricated on a polished metal foil, and the ZnO-based thermistor is replaced by the pressure sensitive rubber in the pressure sensor pixel. In both sensor pixels, the a-IGZO TFT acts as the driving transistor and the temperature/pressure-dependent resistance of the ZnO-based thermistor/pressure-sensitive rubber mainly determines the magnitude of the output currents. The fabricated a-IGZO TFT-driven flexible thermal sensor shows around a seven times increase in the output current as the temperature increases from 20 °C to 100 °C, and the a-IGZO TFT-driven flexible pressure sensors also exhibit high sensitivity under various pressure environments.

  6. Application and Optimization of Stiffness Abruption Structures for Pressure Sensors with High Sensitivity and Anti-Overload Ability

    PubMed Central

    Xu, Tingzhong; Lu, Dejiang; Zhao, Libo; Jiang, Zhuangde; Wang, Hongyan; Guo, Xin; Li, Zhikang; Zhou, Xiangyang; Zhao, Yulong

    2017-01-01

    The influence of diaphragm bending stiffness distribution on the stress concentration characteristics of a pressure sensing chip had been analyzed and discussed systematically. According to the analysis, a novel peninsula-island-based diaphragm structure was presented and applied to two differenet diaphragm shapes as sensing chips for pressure sensors. By well-designed bending stiffness distribution of the diaphragm, the elastic potential energy induced by diaphragm deformation was concentrated above the gap position, which remarkably increased the sensitivity of the sensing chip. An optimization method and the distribution pattern of the peninsula-island based diaphragm structure were also discussed. Two kinds of sensing chips combined with the peninsula-island structures distributing along the side edge and diagonal directions of rectangular diaphragm were fabricated and analyzed. By bonding the sensing chips with anti-overload glass bases, these two sensing chips were demonstrated by testing to achieve not only high sensitivity, but also good anti-overload ability. The experimental results showed that the proposed structures had the potential to measure ultra-low absolute pressures with high sensitivity and good anti-overload ability in an atmospheric environment. PMID:28846599

  7. Fiber-optic interferometric sensors for measurements of pressure fluctuations - Experimental evaluation

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Soderman, P. T.

    1993-01-01

    A fiber optic interferometric sensor that is being developed at NASA Ames Research Center for pressure fluctuation measurements in wind tunnels is considered. Preliminary evaluation indicates that the fiber optic interferometric sensor can be successfully used as an aeroacoustic sensor and is capable of providing a powerful instrument to solve complex acoustic measurement problems in wind tunnels.

  8. Piezoresistive Pressure Sensor Based on Synergistical Innerconnect Polyvinyl Alcohol Nanowires/Wrinkled Graphene Film.

    PubMed

    Liu, Weijie; Liu, Nishuang; Yue, Yang; Rao, Jiangyu; Cheng, Feng; Su, Jun; Liu, Zhitian; Gao, Yihua

    2018-04-01

    Piezoresistive sensor is a promising pressure sensor due to its attractive advantages including uncomplicated signal collection, simple manufacture, economical and practical characteristics. Here, a flexible and highly sensitive pressure sensor based on wrinkled graphene film (WGF)/innerconnected polyvinyl alcohol (PVA) nanowires/interdigital electrodes is fabricated. Due to the synergistic effect between WGF and innerconnected PVA nanowires, the as-prepared pressure sensor realizes a high sensitivity of 28.34 kPa -1 . In addition, the device is able to discern lightweight rice about 22.4 mg (≈2.24 Pa) and shows excellent durability and reliability after 6000 repeated loading and unloading cycles. What is more, the device can detect subtle pulse beat and monitor various human movement behaviors in real-time. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear

    DOEpatents

    Kholwadwala, Deepesh K.; Rohrer, Brandon R.; Spletzer, Barry L.; Galambos, Paul C.; Wheeler, Jason W.; Hobart, Clinton G.; Givler, Richard C.

    2008-09-23

    Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

  10. New calibration method for I-scan sensors to enable the precise measurement of pressures delivered by 'pressure garments'.

    PubMed

    Macintyre, Lisa

    2011-11-01

    Accurate measurement of the pressure delivered by medical compression products is highly desirable both in monitoring treatment and in developing new pressure inducing garments or products. There are several complications in measuring pressure at the garment/body interface and at present no ideal pressure measurement tool exists for this purpose. This paper summarises a thorough evaluation of the accuracy and reproducibility of measurements taken following both of Tekscan Inc.'s recommended calibration procedures for I-scan sensors; and presents an improved method for calibrating and using I-scan pressure sensors. The proposed calibration method enables accurate (±2.1 mmHg) measurement of pressures delivered by pressure garments to body parts with a circumference ≥30 cm. This method is too cumbersome for routine clinical use but is very useful, accurate and reproducible for product development or clinical evaluation purposes. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  11. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    PubMed

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  12. The Dependence of Cloud Property Trend Detection on Absolute Calibration Accuracy of Passive Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.

    2016-12-01

    Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection

  13. Wearable Resistive Pressure Sensor Based on Highly Flexible Carbon Composite Conductors with Irregular Surface Morphology.

    PubMed

    Kim, Kang-Hyun; Hong, Soon Kyu; Jang, Nam-Su; Ha, Sung-Hun; Lee, Hyung Woo; Kim, Jong-Man

    2017-05-24

    Wearable pressure sensors are crucial building blocks for potential applications in real-time health monitoring, artificial electronic skins, and human-to-machine interfaces. Here we present a highly sensitive, simple-architectured wearable resistive pressure sensor based on highly compliant yet robust carbon composite conductors made of a vertically aligned carbon nanotube (VACNT) forest embedded in a polydimethylsiloxane (PDMS) matrix with irregular surface morphology. A roughened surface of the VACNT/PDMS composite conductor is simply formed using a sandblasted silicon master in a low-cost and potentially scalable manner and plays an important role in improving the sensitivity of resistive pressure sensor. After assembling two of the roughened composite conductors, our sensor shows considerable pressure sensitivity of ∼0.3 kPa -1 up to 0.7 kPa as well as stable steady-state responses under various pressures, a wide detectable range of up to 5 kPa before saturation, a relatively fast response time of ∼162 ms, and good reproducibility over 5000 cycles of pressure loading/unloading. The fabricated pressure sensor can be used to detect a wide range of human motions ranging from subtle blood pulses to dynamic joint movements, and it can also be used to map spatial pressure distribution in a multipixel platform (in a 4 × 4 pixel array).

  14. Development and validation of a cerebral oximeter capable of absolute accuracy.

    PubMed

    MacLeod, David B; Ikeda, Keita; Vacchiano, Charles; Lobbestael, Aaron; Wahr, Joyce A; Shaw, Andrew D

    2012-12-01

    Cerebral oximetry may be a valuable monitor, but few validation data are available, and most report the change from baseline rather than absolute accuracy, which may be affected by individuals whose oximetric values are outside the expected range. The authors sought to develop and validate a cerebral oximeter capable of absolute accuracy. An in vivo research study. A university human physiology laboratory. Healthy human volunteers were enrolled in calibration and validation studies of 2 cerebral oximetric sensors, the Nonin 8000CA and 8004CA. The 8000CA validation study identified 5 individuals with atypical cerebral oxygenation values; their data were used to design the 8004CA sensor, which subsequently underwent calibration and validation. Volunteers were taken through a stepwise hypoxia protocol to a minimum saturation of peripheral oxygen. Arteriovenous saturation (70% jugular bulb venous saturation and 30% arterial saturation) at 6 hypoxic plateaus was used as the reference value for the cerebral oximeter. Absolute accuracy was defined using a combination of the bias and precision of the paired saturations (A(RMS)). In the validation study for the 8000CA sensor (n = 9, 106 plateaus), relative accuracy was an A(RMS) of 2.7, with an absolute accuracy of 8.1, meeting the criteria for a relative (trend) monitor, but not an absolute monitor. In the validation study for the 8004CA sensor (n = 11, 119 plateaus), the A(RMS) of the 8004CA was 4.1, meeting the prespecified success criterion of <5.0. The Nonin cerebral oximeter using the 8004CA sensor can provide absolute data on regional cerebral saturation compared with arteriovenous saturation, even in subjects previously shown to have values outside the normal population distribution curves. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Pressure sensor based on pristine multi-walled carbon nanotubes forest

    NASA Astrophysics Data System (ADS)

    Yasar, M.; Mohamed, N. M.; Hamid, N. H.; Shuaib, M.

    2016-11-01

    In the course of the most recent decade, carbon nanotubes (CNTs) have been developed as alternate material for many sensing applications because of their interesting properties. Their outstanding electromechanical properties make them suitable for pressure/strain sensing application. Other than in view of their structure and number of walls (i.e. Single-Walled CNTs and MultiWalled CNTs), carbon nanotubes can likewise be classified based on their orientation and combined arrangement. One such classification is vertically aligned Multi-Walled Carbon Nanotubes (VA-MWCNTs), regularly termed as CNTs arrays, foam or forest which is macro scale form of CNTs. Elastic behavior alongside exceptional electromechanical (high gauge factor) make it suitable for pressure sensing applications. This paper presents pressure sensor based on such carbon nanotubes forest in pristine form which enables it to perform over wider temperature range as compared to pressure sensors based on conventional materials such as Silicon.

  16. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling

    2017-03-01

    In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.

  17. Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity

    NASA Astrophysics Data System (ADS)

    Phuong Pham, Viet; Triet Nguyen, Minh; Park, Jin Woo; Kwak, Sung Soo; Nguyen, Dieu Hien Thi; Kyeom Mun, Mu; Danh Phan, Hoang; San Kim, Doo; Kim, Ki Hyun; Lee, Nae-Eung; Yeom, Geun Young

    2017-06-01

    Pressure sensing is one of the key functions for smart electronics. Considerably more effort is required to achieve the fabrication of pressure sensors that can imitate and overcome the sophisticated pressure sensing characteristics in nature and industry, especially in the innovation of materials and structures. Almost all of the pressure sensors reported until now have a high sensitivity at a low-pressure detection limit (<10 kPa). While the exploration of a pressure sensor with a high sensitivity and a high responsivity at a high-pressure is challenging, it is required for next generation smart electronics. Here, we report an exotic heterostructure pressure sensor based on ZnO/chlorine radical-trap doped bilayer graphene (ZGClG) as an ideal channel for pressure sensors. Using this ZGClG as the channel, this study shows the possibility of forming a pressure sensor with a high sensitivity (0.19 kPa-1) and a high responsivity (0.575 s) at V  =  1 V on glass substrate. Further, the pressure detection limit of this device was as high as 98 kPa. The investigation of the sensing mechanism under pressure has revealed that the significant improved sensing effect is related to the heavy p-type chlorine trap doping in the channel graphene with chlorine radicals without damaging the graphene. This work indicates that the ZGClG channel used for the pressure sensing device could also provide a simple and essential sensing platform for chemical-, medical-, and biological-sensing for future smart electronics.

  18. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor.

    PubMed

    Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro

    2016-09-01

    In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer's daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07-0.3 dB with a noise floor lower than 0.01 dB for multiple subjects.

  19. Slot Antenna Integrated Re-Entrant Resonator Based Wireless Pressure Sensor for High-Temperature Applications.

    PubMed

    Su, Shujing; Lu, Fei; Wu, Guozhu; Wu, Dezhi; Tan, Qiulin; Dong, Helei; Xiong, Jijun

    2017-08-25

    The highly sensitive pressure sensor presented in this paper aims at wireless passive sensing in a high temperature environment by using microwave backscattering technology. The structure of the re-entrant resonator was analyzed and optimized using theoretical calculation, software simulation, and its equivalent lump circuit model was first modified by us. Micro-machining and high-temperature co-fired ceramic (HTCC) process technologies were applied to fabricate the sensor, solving the common problem of cavity sealing during the air pressure loading test. In addition, to prevent the response signal from being immersed in the strong background clutter of the hermetic metal chamber, which makes its detection difficult, we proposed two key techniques to improve the signal to noise ratio: the suppression of strong background clutter and the detection of the weak backscattered signal of the sensor. The pressure sensor demonstrated in this paper works well for gas pressure loading between 40 and 120 kPa in a temperature range of 24 °C to 800 °C. The experimental results show that the sensor resonant frequency lies at 2.1065 GHz, with a maximum pressure sensitivity of 73.125 kHz/kPa.

  20. Wireless Capacitive Pressure Sensor With Directional RF Chip Antenna for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.

    2015-01-01

    This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.

  1. Performance, Calibration and Stability of the Mars InSight Mission Pressure Sensor

    NASA Astrophysics Data System (ADS)

    Banfield, Don; Banerdt, Bruce; Hurst, Ken; Grinblat, Jonny; murray, alex; Carpenter, Scott

    2017-10-01

    The NASA Mars InSight Discovery Mission is primarily aimed at understanding the seismic environment at Mars and in turn the interior structure of the planet. To this end, it carries a set of very sensitive seismometers to characterize fine ground movements from quakes, impacts and tides. However, to remove atmospheric perturbations that would otherwise corrupt the seismic signals, InSight also carries a pressure sensor of unprecedented sensitivity and frequency response for a Mars mission.The instrument is based on a commercial spacecraft pressure sensor built by the Tavis Corporation. Tavis heritage transducers have provided pressure measurements on several interplanetary missions, starting with a similar application on the Viking Landers. The sensor developed for the Insight mission is their most sensitive device. That same sensitivity was the root of the challenges faced in the design and development for Insight. It uses inductive sensing of a deformable membrane, and includes an internal temperature sensor to compensate for temperature effects in its overall response.The technical requirement on the pressure sensor performance is 0.01(f/0.1)^(-2/3) Pa/sqrt(Hz) between 0.01 and 0.1 Hz, and 0.01 Pa/sqrt(Hz) between 0.1 and 1 Hz. The actual noise spectrum is about 0.01(f/0.3)^(-2/3) Pa/sqrt(Hz) between 0.01 and 1 Hz, and its frequency response (including inlet plumbing) has good response up to about 10 Hz Nyquist (it will be sampled at 20 Hz).Achieving the required sensitivity proved to be a difficult engineering challenge, which necessitated extensive experimentation and prototyping of the electronics design. In addition, a late discovery of the introduction of noise by the signal processing chain into the measurement stream forced a last-minute change in the instrument’s firmware.The flight unit has been calibrated twice, separated by a time span of about 2 years due to the delay in launching the InSight mission. This has the benefit of allowing a direct

  2. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  3. Pressure sensor using liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  4. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    NASA Technical Reports Server (NTRS)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  5. Proceedings of a U.S. Geological Survey pressure-sensor Workshop, Denver, Colorado, July 28-31, 1992

    USGS Publications Warehouse

    Wilbourn, Sammy L.

    1994-01-01

    The U.S. Geological Survey (USGS) conducted a Pressure Sensor Workshop, oriented toward the measurement of stage in surface waters, in Denver, Colorado, July 28-31, 1992. Twenty attendees from the U.S. Geological Survey and the National Oceanic and Atmospheric Administration gave presentations concerning their experiences with the use of pressure sensors in hydrologic investigations. This report is a compilation of the abstracts of the presentations made at the workshop. Workshop participants concluded that each of the sensors evaluated by the U.S. Geological Survey has strengths and weaknesses. Personnel contemplating the use of pressure sensors discussed at this workshop should contact workshop attendees and consult with them about their experiences with those sensors. The attendees preferred to use stilling wells with float-operated water-level sensors as the primary means for monitoring water levels. However, pressure sensor systems were favored as replacements for mercury manometers and as alternatives to stilling wells at sites where stilling wells are not practical or cost effective.

  6. Integrated pressure and temperature sensor with high immunity against external disturbance for flexible endoscope operation

    NASA Astrophysics Data System (ADS)

    Maeda, Yusaku; Maeda, Kohei; Kobara, Hideki; Mori, Hirohito; Takao, Hidekuni

    2017-04-01

    In this study, an integrated pressure and temperature sensor device for a flexible endoscope with long-term stability in in vivo environments was developed and demonstrated. The sensor, which is embedded in the thin wall of the disposable endoscope hood, is intended for use in endoscopic surgery. The device surface is coated with a Cr layer to prevent photoelectronic generation induced by the strong light of the endoscope. The integrated temperature sensor allows compensation for the effect of the temperature drift on a pressure signal. The fabricated device pressure resolution is 0.4 mmHg; the corresponding pressure error is 3.2 mmHg. The packaged device was used in a surgical simulation in an animal experiment. Pressure and temperature monitoring was achieved even in a pH 1 acid solution. The device enables intraluminal pressure and temperature measurements of the stomach, which facilitate the maintenance of internal stomach conditions. The applicability of the sensor was successfully demonstrated in animal experiments.

  7. [Implantable sensors for outpatient assessment of ventricular filling pressure in advanced heart failure : Which telemonitoring design is optimal?

    PubMed

    Herrmann, E; Fichtlscherer, S; Hohnloser, S H; Zeiher, A M; Aßmus, B

    2016-12-01

    Patients with advanced heart failure suffer from frequent hospitalizations. Non-invasive hemodynamic telemonitoring for assessment of ventricular filling pressure has been shown to reduce hospitalizations. We report on the right ventricular (RVP), the pulmonary artery (PAP) and the left atrial pressure (LAP) sensor for non-invasive assessment of the ventricular filling pressure. A literature search concerning the available implantable pressure sensors for noninvasive haemodynamic telemonitoring in patients with advanced heart failure was performed. Until now, only implantation of the PAP-sensor was able to reduce hospitalizations for cardiac decompensation and to improve quality of life. The right ventricular pressure sensor missed the primary endpoint of a significant reduction of hospitalizations, clinical data using the left atrial pressure sensor are still pending. The implantation of a pressure sensor for assessment of pulmonary artery filling pressure is suitable for reducing hospitalizations for heart failure and for improving quality of life in patients with advanced heart failure.

  8. Design of Diaphragm and Coil for Stable Performance of an Eddy Current Type Pressure Sensor.

    PubMed

    Lee, Hyo Ryeol; Lee, Gil Seung; Kim, Hwa Young; Ahn, Jung Hwan

    2016-07-01

    The aim of this work was to develop an eddy current type pressure sensor and investigate its fundamental characteristics affected by the mechanical and electrical design parameters of sensor. The sensor has two key components, i.e., diaphragm and coil. On the condition that the outer diameter of sensor is 10 mm, two key parts should be designed so as to keep a good linearity and sensitivity. Experiments showed that aluminum is the best target material for eddy current detection. A round-grooved diaphragm is suggested in order to measure more precisely its deflection caused by applied pressures. The design parameters of a round-grooved diaphragm can be selected depending on the measuring requirements. A developed pressure sensor with diaphragm of t = 0.2 mm and w = 1.05 mm was verified to measure pressure up to 10 MPa with very good linearity and errors of less than 0.16%.

  9. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  10. Advanced Liquid-Free, Piezoresistive, SOI-Based Pressure Sensors for Measurements in Harsh Environments.

    PubMed

    Ngo, Ha-Duong; Mukhopadhyay, Biswaijit; Ehrmann, Oswin; Lang, Klaus-Dieter

    2015-08-18

    In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a "one-sensor-one-packaging_technology" concept. The second one uses a standard flip-chip bonding technique. The first sensor is a "floating-concept", capable of measuring pressures at temperatures up to 400 °C (constant load) with an accuracy of 0.25% Full Scale Output (FSO). A push rod (mounted onto the steel membrane) transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process). A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not "floating" but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA.

  11. Advanced Liquid-Free, Piezoresistive, SOI-Based Pressure Sensors for Measurements in Harsh Environments

    PubMed Central

    Ngo, Ha-Duong; Mukhopadhyay, Biswaijit; Ehrmann, Oswin; Lang, Klaus-Dieter

    2015-01-01

    In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a “one-sensor-one-packaging_technology” concept. The second one uses a standard flip-chip bonding technique. The first sensor is a “floating-concept”, capable of measuring pressures at temperatures up to 400 °C (constant load) with an accuracy of 0.25% Full Scale Output (FSO). A push rod (mounted onto the steel membrane) transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process). A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not “floating” but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA. PMID:26295235

  12. Combined application of FBG and PZT sensors for plantar pressure monitoring at low and high speed walking.

    PubMed

    Suresh, R; Bhalla, S; Singh, C; Kaur, N; Hao, J; Anand, S

    2015-01-01

    Clinical monitoring of planar pressure is vital in several pathological conditions, such as diabetes, where excess pressure might have serious repercussions on health of the patient, even to the extent of amputation. The main objective of this paper is to experimentally evaluate the combined application of the Fibre Bragg Grating (FBG) and the lead zirconate titanate (PZT) piezoceramic sensors for plantar pressure monitoring during walk at low and high speeds. For fabrication of the pressure sensors, the FBGs are embedded within layers of carbon composite material and stacked in an arc shape. From this embedding technique, average pressure sensitivity of 1.3 pm/kPa and resolution of nearly 0.8 kPa is obtained. These sensors are found to be suitable for measuring the static and the low-speed walk generated foot pressure. Simultaneously, PZT patches of size 10 × 10 × 0.3 mm were used as sensors, utilizing the d_{33} (thickness) coupling mode. A sensitivity of 7.06 mV/kPa and a pressure resolution of 0.14 kPa is obtained from these sensors, which are found to be suitable for foot pressure measurement during high speed walking and running. Both types of sensors are attached to the underside of the sole of commercially available shoes. In the experiments, a healthy male subject walks/runs over the treadmill wearing the fabricated shoes at various speeds and the peak pressure is measured using both the sensors. Commercially available low-cost hardware is used for interrogation of the two sensor types. The test results clearly show the feasibility of the FBG and the PZT sensors for measurement of plantar pressure. The PZT sensors are more accurate for measurement of pressure during walking at high speeds. The FBG sensors, on the other hand, are found to be suitable for static and quasi-dynamic (slow walking) conditions. Typically, the measured pressure varied from 400 to 600 kPa below the forefoot and 100 to 1000 kPa below the heel as the walking

  13. Diaphragm size and sensitivity for fiber optic pressure sensors

    NASA Technical Reports Server (NTRS)

    He, Gang; Cuomo, Frank W.; Zuckerwar, Allan J.

    1991-01-01

    A mechanism which leads to a significant increase in sensitivity and linear operating range in reflective type fiber optic pressure transducers with minute active dimensions is studied. A general theoretical formalism is presented which is in good agreement with the experimental data. These results are found useful in the development of small pressure sensors used in turbulent boundary layer studies and other applications.

  14. A Highly Sensitive Resistive Pressure Sensor Based on a Carbon Nanotube-Liquid Crystal-PDMS Composite.

    PubMed

    Pan, Jin; Liu, Shiyu; Yang, Yicheng; Lu, Jiangang

    2018-06-08

    Resistive pressure sensors generally employ microstructures such as pores and pyramids in the active layer or on the electrodes to reduce the Young’s modulus and improve the sensitivity. However, such pressure sensors always exhibit complex fabrication process and have difficulties in controlling the uniformity of microstructures. In this paper, we demonstrated a highly sensitive resistive pressure sensor based on a composite comprising of low-polarity liquid crystal (LPLC), multi-walled carbon nanotube (MWCNT), and polydimethylsiloxane (PDMS) elastomer. The LPLC in the PDMS forms a polymer-dispersed liquid crystal (PDLC) structure which can not only reduce the Young’s modulus but also contribute to the construction of conductive paths in the active layer. By optimizing the concentration of LC in PDMS elastomer, the resistive pressure sensor shows a high sensitivity of 5.35 kPa −1 , fast response (<150 ms), and great durability. Fabrication process is also facile and the uniformity of the microstructures can be readily controlled. The pressure sensor offers great potential for applications in emerging wearable devices and electronic skins.

  15. Low cost self-made pressure distribution sensors for ergonomic chair: Are they suitable for posture monitoring?

    PubMed

    Martinaitis, Arnas; Daunoraviciene, Kristina

    2018-05-18

    Long sitting causes many health problems for people. Healthy sitting monitoring systems, like real-time pressure distribution measuring, is in high demand and many methods of posture recognition were developed. Such systems are usually expensive and hardly available for the regular user. The aim of study is to develop low cost but sensitive enough pressure sensors and posture monitoring system. New self-made pressure sensors have been developed and tested, and prototype of pressure distribution measuring system was designed. Sensors measured at average noise amplitude of a = 56 mV (1.12%), average variation in sequential measurements of the same sensor s = 17 mV (0.34%). Signal variability between sensors averaged at 100 mV (2.0%). Weight to signal dependency graph was measured and hysteresis calculated. Results suggested the use of total sixteen sensors for posture monitoring system with accuracy of < 1.5% after relaxation and repeatability of around 2%. Results demonstrate that hand-made sensor sensitivity and repeatability are acceptable for posture monitoring, and it is possible to build low cost pressure distribution measurement system with graphical visualization without expensive equipment or complicated software.

  16. Fabrication and Structural Design of Micro Pressure Sensors for Tire Pressure Measurement Systems (TPMS)

    PubMed Central

    Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao

    2009-01-01

    In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy. PMID:22573960

  17. Fabrication and Structural Design of Micro Pressure Sensors for Tire Pressure Measurement Systems (TPMS).

    PubMed

    Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao

    2009-01-01

    In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy.

  18. A wet/wet differential pressure sensor for measuring vertical hydraulic gradient.

    PubMed

    Fritz, Brad G; Mackley, Rob D

    2010-01-01

    Vertical hydraulic gradient is commonly measured in rivers, lakes, and streams for studies of groundwater-surface water interaction. While a number of methods with subtle differences have been applied, these methods can generally be separated into two categories; measuring surface water elevation and pressure in the subsurface separately or making direct measurements of the head difference with a manometer. Making separate head measurements allows for the use of electronic pressure sensors, providing large datasets that are particularly useful when the vertical hydraulic gradient fluctuates over time. On the other hand, using a manometer-based method provides an easier and more rapid measurement with a simpler computation to calculate the vertical hydraulic gradient. In this study, we evaluated a wet/wet differential pressure sensor for use in measuring vertical hydraulic gradient. This approach combines the advantage of high-temporal frequency measurements obtained with instrumented piezometers with the simplicity and reduced potential for human-induced error obtained with a manometer board method. Our results showed that the wet/wet differential pressure sensor provided results comparable to more traditional methods, making it an acceptable method for future use.

  19. A simultaneous pressure and temperature sensor based on a superstructure fiber grating

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Min; Liu, Wen-Fung; Fu, Ming-Yue; Sheng, Hao-Jan; Bor, Sheau-Shung; Tien, Chuen-Lin

    2004-12-01

    We demonstrated that a high-sensitivity fiber sensor based on a superstructure fiber grating (SFG) can simultaneously measure the pressure and temperature by encapsulating the grating in a polymer-half-filled metal cylinder, in which there are two openings on opposite sides of the wall filled with the polymer to sense the pressure. The mechanism of sensing pressure is to transfer the pressure into the axial extended-strain. According to the optical characteristics of an SFG composed of a fiber Bragg grating (FBG) and long period grating (LPG), the various pressure and temperature will cause the variation of the center-wavelength and reflection simultaneously. Thus, the sensor can be used for the measurement both of the pressure and temperature. The pressure sensitivity of 2.28×10-2MPa-1 and the temperature sensitivity both of 0.015nm/°C and -0.143dB/°C are obtained.

  20. Research of distributed-fiber-optic pressure sensor

    NASA Astrophysics Data System (ADS)

    Lu, Xiao Ming; Ren, Xin; Chen, Yu-bao; Che, Rensheng

    1991-08-01

    The paper discribed the principle and method of distributed fiber optic pressure sensor utilizing OTDR technique. The relativity of the microbend loss and bend radius of the multimode optical fiber is discussed ,and its experimental curve is given. In this paper ,a new type of OTDR measuring system using single-chip microcomputer is introduced as well

  1. A pressure and shear sensor system for stress measurement at lower limb residuum/socket interface.

    PubMed

    Laszczak, P; McGrath, M; Tang, J; Gao, J; Jiang, L; Bader, D L; Moser, D; Zahedi, S

    2016-07-01

    A sensor system for measurement of pressure and shear at the lower limb residuum/socket interface is described. The system comprises of a flexible sensor unit and a data acquisition unit with wireless data transmission capability. Static and dynamic performance of the sensor system was characterised using a mechanical test machine. The static calibration results suggest that the developed sensor system presents high linearity (linearity error ≤ 3.8%) and resolution (0.9 kPa for pressure and 0.2 kPa for shear). Dynamic characterisation of the sensor system shows hysteresis error of approximately 15% for pressure and 8% for shear. Subsequently, a pilot amputee walking test was conducted. Three sensors were placed at the residuum/socket interface of a knee disarticulation amputee and simultaneous measurements were obtained during pilot amputee walking test. The pressure and shear peak values as well as their temporal profiles are presented and discussed. In particular, peak pressure and shear of approximately 58 kPa and 27 kPa, respectively, were recorded. Their temporal profiles also provide dynamic coupling information at this critical residuum/socket interface. These preliminary amputee test results suggest strong potential of the developed sensor system for exploitation as an assistive technology to facilitate socket design, socket fit and effective monitoring of lower limb residuum health. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Design of air blast pressure sensors based on miniature silicon membrane and piezoresistive gauges

    NASA Astrophysics Data System (ADS)

    Riondet, J.; Coustou, A.; Aubert, H.; Pons, P.; Lavayssière, M.; Luc, J.; Lefrançois, A.

    2017-11-01

    Available commercial piezoelectric pressure sensors are not able to accurately reproduce the ultra-fast transient pressure occurring during an air blast experiment. In this communication a new pressure sensor prototype based on a miniature silicon membrane and piezoresistive gauges is reported for significantly improving the performances in terms of time response. Simulation results demonstrate the feasibility of a pressure transducer having a fundamental resonant frequency almost ten times greater than the commercial piezoelectric sensors one. The sensor uses a 5μm-thick SOI membrane and four P-type silicon gauges (doping level ≅ 1019 at/cm3) in Wheatstone bridge configuration. To obtain a good trade-off between the fundamental mechanical resonant frequency and pressure sensitivity values, the typical dimension of the rectangular membrane is fixed to 30μm x 90μm with gauge dimension of 1μm x 5μm. The achieved simulated mechanical resonant frequency of these configuration is greater than 40MHz with a sensitivity of 0.04% per bar.

  3. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities

    NASA Astrophysics Data System (ADS)

    Domingues, M. Fátima; Rodriguez, Camilo A.; Martins, Joana; Tavares, Cátia; Marques, Carlos; Alberto, Nélia; André, Paulo; Antunes, Paulo

    2018-05-01

    In this work, a cost-effective procedure to manufacture optical fiber pressure sensors is presented. This has a high relevance for integration in robotic exoskeletons or for gait plantar pressure monitoring within the physical rehabilitation scenarios, among other applications. The sensing elements are based on Fabry-Perot interferometric (FPI) micro-cavities, created from the recycling of optical fibers previously destroyed by the catastrophic fuse effect. To produce the pressure sensors, the fiber containing the FPI micro-cavities was embedded in an epoxy resin cylinder used as pressure transducer and responsible to transfer the pressure applied on its surface to the optical fiber containing the FPI micro-cavity. Before the embedding process, some FPI sensors were also characterized to strain variations. After that, the effect of the encapsulation of the FPI structure into the resin was assessed, from which a slight decrease on the FPI interferogram fringes visibility was verified, indicating a small increase in the micro-cavity length. Up on the sensors characterization, a linear dependence of the wavelength shift with the induced pressure was obtained, which leads to a maximum sensitivity of 59.39 ± 1.7 pm/kPa. Moreover, direct dependence of the pressure sensitivity with the micro-cavity volume and length was found.

  4. Outflow monitoring of a pneumatic ventricular assist device using external pressure sensors.

    PubMed

    Kang, Seong Min; Her, Keun; Choi, Seong Wook

    2016-08-25

    In this study, a new algorithm was developed for estimating the pump outflow of a pneumatic ventricular assist device (p-VAD). The pump outflow estimation algorithm was derived from the ideal gas equation and determined the change in blood-sac volume of a p-VAD using two external pressure sensors. Based on in vitro experiments, the algorithm was revised to consider the effects of structural compliance caused by volume changes in an implanted unit, an air driveline, and the pressure difference between the sensors and the implanted unit. In animal experiments, p-VADs were connected to the left ventricles and the descending aorta of three calves (70-100 kg). Their outflows were estimated using the new algorithm and compared to the results obtained using an ultrasonic blood flow meter (UBF) (TS-410, Transonic Systems Inc., Ithaca, NY, USA). The estimated and measured values had a Pearson's correlation coefficient of 0.864. The pressure sensors were installed at the external controller and connected to the air driveline on the same side as the external actuator, which made the sensors easy to manage.

  5. Sleep state classification using pressure sensor mats.

    PubMed

    Baran Pouyan, M; Nourani, M; Pompeo, M

    2015-08-01

    Sleep state detection is valuable in assessing patient's sleep quality and in-bed general behavior. In this paper, a novel classification approach of sleep states (sleep, pre-wake, wake) is proposed that uses only surface pressure sensors. In our method, a mobility metric is defined based on successive pressure body maps. Then, suitable statistical features are computed based on the mobility metric. Finally, a customized random forest classifier is employed to identify various classes including a new class for pre-wake state. Our algorithm achieves 96.1% and 88% accuracies for two (sleep, wake) and three (sleep, pre-wake, wake) class identification, respectively.

  6. Piezoresistive pressure sensor array for robotic skin

    NASA Astrophysics Data System (ADS)

    Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.

    2016-05-01

    Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.

  7. Innovative Pressure Sensor Platform and Its Integration with an End-User Application

    PubMed Central

    Flores-Caballero, Antonio; Copaci, Dorin; Blanco, María Dolores; Moreno, Luis; Herrán, Jaime; Fernández, Iván; Ochoteco, Estíbaliz; Cabañero, German; Grande, Hans

    2014-01-01

    This paper describes the fully integration of an innovative and low-cost pressure sensor sheet based on a bendable and printed electronics technology. All integration stages are covered, from most low-level functional system, like physical analog sensor data acquisition, followed by embedded data processing, to end user interactive visual application. Data acquisition embedded software and hardware was developed using a Rapid Control Prototyping (RCP). Finally, after first electronic prototype successful testing, a Taylor-made electronics was developed, reducing electronics volume to 3.5 cm × 6 cm × 2 cm with a maximum power consumption of 765 mW for both electronics and pressure sensor sheet. PMID:24922455

  8. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM.

    PubMed

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2016-10-14

    A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  9. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy

    PubMed Central

    Douglass, K O; Olson, D A

    2016-01-01

    We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5 % with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12 % for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5 % on average. The pressures measured using WMS have an average difference of 0.6 % from the absolute pressure measured with a capacitance diaphragm sensor. PMID:27881884

  10. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm.

    PubMed

    Wang, Wenhui; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2010-04-26

    This paper presents an all-silica miniature optical fiber pressure/acoustic sensor based on the Fabry-Perot (FP) interferometric principle. The endface of the etched optical fiber tip and silica thin diaphragm on it form the FP structure. The uniform and thin silica diaphragm was fabricated by etching away the silicon substrate from a commercial silicon wafer that has a thermal oxide layer. The thin film was directly thermally bonded to the endface of the optical fiber thus creating the Fabry-Perot cavity. Thin films with a thickness from 1microm to 3microm have been bonded successfully. The sensor shows good linearity and hysteresis during measurement. A sensor with 0.75 microm-thick diaphragm thinned by post silica etching was demonstrated to have a sensitivity of 11 nm/kPa. The new sensor has great potential to be used as a non-intrusive pressure sensor in a variety of sensing applications.

  11. Monolithic Composite “Pressure + Acceleration + Temperature + Infrared” Sensor Using a Versatile Single-Sided “SiN/Poly-Si/Al” Process-Module

    PubMed Central

    Ni, Zao; Yang, Chen; Xu, Dehui; Zhou, Hong; Zhou, Wei; Li, Tie; Xiong, Bin; Li, Xinxin

    2013-01-01

    We report a newly developed design/fabrication module with low-cost single-sided “low-stress-silicon-nitride (LS-SiN)/polysilicon (poly-Si)/Al” process for monolithic integration of composite sensors for sensing-network-node applications. A front-side surface-/bulk-micromachining process on a conventional Si-substrate is developed, featuring a multifunctional SiN/poly-Si/Al layer design for diverse sensing functions. The first “pressure + acceleration + temperature + infrared” (PATIR) composite sensor with the chip size of 2.5 mm × 2.5 mm is demonstrated. Systematic theoretical design and analysis methods are developed. The diverse sensing components include a piezoresistive absolute-pressure sensor (up to 700 kPa, with a sensitivity of 49 mV/MPa under 3.3 V supplied voltage), a piezoresistive accelerometer (±10 g, with a sensitivity of 66 μV/g under 3.3 V and a −3 dB bandwidth of 780 Hz), a thermoelectric infrared detector (with a responsivity of 45 V/W and detectivity of 3.6 × 107 cm·Hz1/2/W) and a thermistor (−25–120 °C). This design/fabrication module concept enables a low-cost monolithically-integrated “multifunctional-library” technique. It can be utilized as a customizable tool for versatile application-specific requirements, which is very useful for small-size, low-cost, large-scale sensing-network node developments. PMID:23325169

  12. Temporal Dynamics of Microbial Rhodopsin Fluorescence Reports Absolute Membrane Voltage

    PubMed Central

    Hou, Jennifer H.; Venkatachalam, Veena; Cohen, Adam E.

    2014-01-01

    Plasma membrane voltage is a fundamentally important property of a living cell; its value is tightly coupled to membrane transport, the dynamics of transmembrane proteins, and to intercellular communication. Accurate measurement of the membrane voltage could elucidate subtle changes in cellular physiology, but existing genetically encoded fluorescent voltage reporters are better at reporting relative changes than absolute numbers. We developed an Archaerhodopsin-based fluorescent voltage sensor whose time-domain response to a stepwise change in illumination encodes the absolute membrane voltage. We validated this sensor in human embryonic kidney cells. Measurements were robust to variation in imaging parameters and in gene expression levels, and reported voltage with an absolute accuracy of 10 mV. With further improvements in membrane trafficking and signal amplitude, time-domain encoding of absolute voltage could be applied to investigate many important and previously intractable bioelectric phenomena. PMID:24507604

  13. Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks.

    PubMed

    He, Zhongfu; Chen, Wenjun; Liang, Binghao; Liu, Changyong; Yang, Leilei; Lu, Dongwei; Mo, Zichao; Zhu, Hai; Tang, Zikang; Gui, Xuchun

    2018-04-18

    Flexible pressure sensors are of great importance to be applied in artificial intelligence and wearable electronics. However, assembling a simple structure, high-performance capacitive pressure sensor, especially for monitoring the flow of liquids, is still a big challenge. Here, on the basis of a sandwich-like structure, we propose a facile capacitive pressure sensor optimized by a flexible, low-cost nylon netting, showing many merits including a high response sensitivity (0.33 kPa -1 ) in a low-pressure regime (<1 kPa), an ultralow detection limit as 3.3 Pa, excellent working stability after more than 1000 cycles, and synchronous monitoring for human pulses and clicks. More important, this sensor exhibits an ultrafast response speed (<20 ms), which enables its detection for the fast variations of a small applied pressure from the morphological changing processes of a droplet falling onto the sensor. Furthermore, a capacitive pressure sensor array is fabricated for demonstrating the ability to spatial pressure distribution. Our developed pressure sensors show great prospects in practical applications such as health monitoring, flexible tactile devices, and motion detection.

  14. Analysis of using PDMS polymer as the sensors of the pressure or weight

    NASA Astrophysics Data System (ADS)

    Jargus, Jan; Nedoma, Jan; Fajkus, Marcel; Novak, Martin; Mec, Pavel; Cvejn, Daniel; Bujdos, David; Vasinek, Vladimir

    2017-10-01

    Polydimethylsiloxane (PDMS) can be used for its optical properties, and its composition offers the possibility of use in the diverse environments (industry, photonics, medicine applications, security devices and etc.). Therefore authors of this article focused on more detailed working with this material. This material could be use for the sensory applications such as the sensor of pressure or weight, which may find use also in the field of security and defense. The article describes the process of making the prototype of the sensor and its verification based on laboratory results. Measurement methodology is based on the determination of the change of optical power at the output of the sensor prototype depending on the change in pressure or weight. We estimate the maximum load of the sensor on the basis of the laboratory results in the units of tons. Using a calibration measurement can determine the amount of pressure and weight with an accuracy of +/- 2 %.

  15. A Seafloor Test of the A-0-A Approach to Calibrating Pressure Sensors for Vertical Geodesy

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S. D.; Manalang, D.; Harrington, M.; Cram, G.; Tilley, J.; Burnett, J.; Martin, D.; Paros, J. M.

    2017-12-01

    Seafloor geodetic observations are critical for understanding the locking and slip of the megathrust in Cascadia and other subduction zones. Differences of bottom pressure time series have been used successfully in several subduction zones to detect slow-slip earthquakes centered offshore. Pressure sensor drift rates are much greater than the long-term rates of strain build-up and thus, in-situ calibration is required to measure secular strain. One approach to calibration is to use a dead-weight tester, a laboratory apparatus that produces an accurate reference pressure, to calibrate a pressure sensor deployed on the seafloor by periodically switching between the external pressure and the deadweight tester (Cook et al, this session). The A-0-A method replaces the dead weight tester by using the internal pressure of the instrument housing as the reference pressure. We report on the first non-proprietary ocean test of this approach on the MARS cabled observatory at a depth of 900 m depth in Monterey Bay. We use the Paroscientific Seismic + Oceanic Sensors module that is designed for combined geodetic, oceanographic and seismic observations. The module comprises a three-component broadband accelerometer, two pressure sensors that for this deployment measure ocean pressures, A, up to 2000 psia (14 MPa), and a barometer to measure the internal housing reference pressure, 0. A valve periodically switches between external and internal pressures for 5 minute calibrations. The seafloor test started in mid-June and the results of 30 calibrations collected over the first 6 weeks of operation are very encouraging. After correcting for variations in the internal temperature of the housing, the offset of the pressure sensors from the barometer reading as a function of time, can be fit with a straight line for each sensor with a rms misfit of 0.1 hPa (1 mm of water). The slopes of these lines (-4 cm/yr and -0.4 cm/yr) vary by an order of magnitude but the difference in the span

  16. Long-term monitoring FBG-based cable load sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Zhou, Zhi; Wang, Chuan; Ou, Jinping

    2006-03-01

    Stay cables are the main load-bearing components of stayed-cable bridges. The cables stress status is an important factor to the stayed-cable bridge structure safety evaluation. So it's very important not only to the bridge construction, but also to the long-term safety evaluation for the bridge structure in-service. The accurate measurement for cable load depends on an effective sensor, especially to meet the long time durability and measurement demand. FBG, for its great advantage of corrosion resistance, absolute measurement, high accuracy, electro-magnetic resistance, quasi-distribution sensing, absolute measurement and so on, is the most promising sensor, which can cater for the cable force monitoring. In this paper, a load sensor has been developed, which is made up of a bushing elastic supporting body, 4 FBGs uniformly-spaced attached outside of the bushing supporting body, and a temperature compensation FBG for other four FBGs, moreover a cover for protection of FBGs. Firstly, the sensor measuring principle is analyzed, and relationship equation of FBG wavelength shifts and extrinsic load has also been gotten. And then the sensor calibration experiments of a steel cable stretching test with the FBG load sensor and a reference electric pressure sensor is finished, and the results shows excellent linearity of extrinsic load and FBG wavelength shifts, and good repeatability, which indicates that such kind of FBG-based load sensor is suitable for load measurement, especially for long-term, real time monitoring of stay-cables.

  17. Design Optimization and Fabrication of a Novel Structural SOI Piezoresistive Pressure Sensor with High Accuracy

    PubMed Central

    Li, Chuang; Cordovilla, Francisco; Jagdheesh, R.

    2018-01-01

    This paper presents a novel structural piezoresistive pressure sensor with four-grooved membrane combined with rood beam to measure low pressure. In this investigation, the design, optimization, fabrication, and measurements of the sensor are involved. By analyzing the stress distribution and deflection of sensitive elements using finite element method, a novel structure featuring high concentrated stress profile (HCSP) and locally stiffened membrane (LSM) is built. Curve fittings of the mechanical stress and deflection based on FEM simulation results are performed to establish the relationship between mechanical performance and structure dimension. A combination of FEM and curve fitting method is carried out to determine the structural dimensions. The optimized sensor chip is fabricated on a SOI wafer by traditional MEMS bulk-micromachining and anodic bonding technology. When the applied pressure is 1 psi, the sensor achieves a sensitivity of 30.9 mV/V/psi, a pressure nonlinearity of 0.21% FSS and an accuracy of 0.30%, and thereby the contradiction between sensitivity and linearity is alleviated. In terms of size, accuracy and high temperature characteristic, the proposed sensor is a proper choice for measuring pressure of less than 1 psi. PMID:29393916

  18. Phase Interrogation Used for a Wireless Passive Pressure Sensor in an 800 °C High-Temperature Environment

    PubMed Central

    Zhang, Huixin; Hong, Yingping; Liang, Ting; Zhang, Hairui; Tan, Qiulin; Xue, Chenyang; Liu, Jun; Zhang, Wendong; Xiong, Jijun

    2015-01-01

    A wireless passive pressure measurement system for an 800 °C high-temperature environment is proposed and the impedance variation caused by the mutual coupling between a read antenna and a LC resonant sensor is analyzed. The system consists of a ceramic-based LC resonant sensor, a readout device for impedance phase interrogation, heat insulating material, and a composite temperature-pressure test platform. Performances of the pressure sensor are measured by the measurement system sufficiently, including pressure sensitivity at room temperature, zero drift from room temperature to 800 °C, and the pressure sensitivity under the 800 °C high temperature environment. The results show that the linearity of sensor is 0.93%, the repeatability is 6.6%, the hysteretic error is 1.67%, and the sensor sensitivity is 374 KHz/bar. The proposed measurement system, with high engineering value, demonstrates good pressure sensing performance in a high temperature environment. PMID:25690546

  19. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires

    NASA Astrophysics Data System (ADS)

    Gong, Shu; Schwalb, Willem; Wang, Yongwei; Chen, Yi; Tang, Yue; Si, Jye; Shirinzadeh, Bijan; Cheng, Wenlong

    2014-02-01

    Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution. Our gold nanowires-based pressure sensors can be operated at a battery voltage of 1.5 V with low energy consumption (<30 μW), and are able to detect pressing forces as low as 13 Pa with fast response time (<17 ms), high sensitivity (>1.14 kPa-1) and high stability (>50,000 loading-unloading cycles). In addition, our sensor can resolve pressing, bending, torsional forces and acoustic vibrations. The superior sensing properties in conjunction with mechanical flexibility and robustness enabled real-time monitoring of blood pulses as well as detection of small vibration forces from music.

  20. High temperature and frequency pressure sensor based on silicon-on-insulator layers

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Zhao, L. B.; Jiang, Z. D.

    2006-03-01

    Based on silicon on insulator (SOI) technology, a novel high temperature pressure sensor with high frequency response is designed and fabricated, in which a buried silicon dioxide layer in the silicon material is developed by the separation by implantation of oxygen (SIMOX) technology. This layer can isolate leak currents between the top silicon layer for the detecting circuit and body silicon at a temperature of about 200 °C. In addition, the technology of silicon and glass bonding is used to create a package of the sensor without internal strain. A structural model and test data from the sensor are presented. The experimental results showed that this kind of sensor possesses good static performance in a high temperature environment and high frequency dynamic characteristics, which may satisfy the pressure measurement demands of the oil industry, aviation and space, and so on.

  1. Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors

    PubMed Central

    Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun; Kobayashi, Yuka

    2016-01-01

    In this paper, we propose a blood pressure calculation and associated measurement method that by using a fiber Bragg grating (FBG) sensor. There are several points at which the pulse can be measured on the surface of the human body, and when a FBG sensor located at any of these points, the pulse wave signal can be measured. The measured waveform is similar to the acceleration pulse wave. The pulse wave signal changes depending on several factors, including whether or not the individual is healthy and/or elderly. The measured pulse wave signal can be used to calculate the blood pressure using a calibration curve, which is constructed by a partial least squares (PLS) regression analysis using a reference blood pressure and the pulse wave signal. In this paper, we focus on the influence of individual differences from calculated blood pressure based on each calibration curve. In our study, the calculated blood pressure from both the individual and overall calibration curves were compared, and our results show that the calculated blood pressure based on the overall calibration curve had a lower measurement accuracy than that based on an individual calibration curve. We also found that the influence of the individual differences on the calculated blood pressure when using the FBG sensor method were very low. Therefore, the FBG sensor method that we developed for measuring the blood pressure was found to be suitable for use by many people. PMID:28036015

  2. Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors.

    PubMed

    Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun; Kobayashi, Yuka

    2016-12-28

    In this paper, we propose a blood pressure calculation and associated measurement method that by using a fiber Bragg grating (FBG) sensor. There are several points at which the pulse can be measured on the surface of the human body, and when a FBG sensor located at any of these points, the pulse wave signal can be measured. The measured waveform is similar to the acceleration pulse wave. The pulse wave signal changes depending on several factors, including whether or not the individual is healthy and/or elderly. The measured pulse wave signal can be used to calculate the blood pressure using a calibration curve, which is constructed by a partial least squares (PLS) regression analysis using a reference blood pressure and the pulse wave signal. In this paper, we focus on the influence of individual differences from calculated blood pressure based on each calibration curve. In our study, the calculated blood pressure from both the individual and overall calibration curves were compared, and our results show that the calculated blood pressure based on the overall calibration curve had a lower measurement accuracy than that based on an individual calibration curve. We also found that the influence of the individual differences on the calculated blood pressure when using the FBG sensor method were very low. Therefore, the FBG sensor method that we developed for measuring the blood pressure was found to be suitable for use by many people.

  3. Absolute colorimetric characterization of a DSLR camera

    NASA Astrophysics Data System (ADS)

    Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo

    2014-03-01

    A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.

  4. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    PubMed Central

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-01-01

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998

  5. A comparative study of MOEM pressure sensors using MZI, DC, and racetrack resonator IO structures

    NASA Astrophysics Data System (ADS)

    Selvarajan, A.; Pattnaik, Prasant Kumar; Badrinarayana, T.; Srinivas, T.

    2006-03-01

    In recent years micro-electro-mechanical system (MEMS) sensors have drawn considerable attention due to their attraction in terms of miniaturization, batch fabrication and ease of integration with the required electronics circuitry. Micro-opto-electro-mechanical (MOEM) devices and systems, based on the principles of integrated optics and micromachining technology on silicon have immense potential for sensor applications. Employing optical techniques have important advantages such as functionality, large bandwidth and higher sensitivity. Pressure sensing is currently the most lucrative market for solid-state micro sensors. Pressure sensing using micromachined structures utilize the changes induced in either the resistive or capacitive properties of the electro-mechanical structure by the impressed pressure. Integrated optical pressure sensors can utilize the changes to the amplitude, phase, refractive index profile, optical path length, or polarization of the lightwave by the external pressure. In this paper we compare the performance characteristics of three types of MOEM pressure sensors based on Mach-Zehnder Interferometer (MZI), Directional Coupler (DC) and racetrack resonator (RR) integrated optical geometries. The first two configurations measure the pressure changes through a change in optical intensity while the third one measures the same in terms of frequency or wavelength change. The analysis of each sensors has been carried out in terms of mechanical and optical models and their interrelationship through optomechanical coupling. For a typical diaphragm of size 2mm × 1mm × 20 μm, normalized pressure sensitivity of 18.35 μW/mW/kPa, 29.37 μW/mW/kPa and 2.26 pm/kPa in case of MZI, DC and RR devices have been obtained respectively. The noise performance of these devices are also presented.

  6. Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor.

    PubMed

    Zhou, Yuman; He, Jianxin; Wang, Hongbo; Qi, Kun; Nan, Nan; You, Xiaolu; Shao, Weili; Wang, Lidan; Ding, Bin; Cui, Shizhong

    2017-10-11

    The wearable electronic skin with high sensitivity and self-power has shown increasing prospects for applications such as human health monitoring, robotic skin, and intelligent electronic products. In this work, we introduced and demonstrated a design of highly sensitive, self-powered, and wearable electronic skin based on a pressure-sensitive nanofiber woven fabric sensor fabricated by weaving PVDF electrospun yarns of nanofibers coated with PEDOT. Particularly, the nanofiber woven fabric sensor with multi-leveled hierarchical structure, which significantly induced the change in contact area under ultra-low load, showed combined superiority of high sensitivity (18.376 kPa -1 , at ~100 Pa), wide pressure range (0.002-10 kPa), fast response time (15 ms) and better durability (7500 cycles). More importantly, an open-circuit voltage signal of the PPNWF pressure sensor was obtained through applying periodic pressure of 10 kPa, and the output open-circuit voltage exhibited a distinct switching behavior to the applied pressure, indicating the wearable nanofiber woven fabric sensor could be self-powered under an applied pressure. Furthermore, we demonstrated the potential application of this wearable nanofiber woven fabric sensor in electronic skin for health monitoring, human motion detection, and muscle tremor detection.

  7. Design, Fabrication, and Implementation of a Wireless, Passive Implantable Pressure Sensor Based on Magnetic Higher-Order Harmonic Fields

    PubMed Central

    Tan, Ee Lim; DeRouin, Andrew J.; Pereles, Brandon D.; Ong, Keat Ghee

    2011-01-01

    A passive and wireless sensor was developed for monitoring pressure in vivo. Structurally, the pressure sensor, referred to as the magneto-harmonic pressure sensor, is an airtight chamber sealed with an elastic pressure membrane. A strip of magnetically-soft material is attached to the bottom of the chamber and a permanent magnet strip is embedded inside the membrane. Under the excitation of an externally applied AC magnetic field, the magnetically-soft strip produces a higher-order magnetic signature that can be remotely detected with an external receiving coil. As ambient pressure varies, the pressure membrane deflects, altering the separation distance between the magnetically-soft strip and the permanent magnet. This shifts the higher-order harmonic signal, allowing for detection of pressure change as a function of harmonic shifting. The wireless, passive nature of this sensor technology allows for continuous long-term pressure monitoring, particularly useful for biomedical applications such as monitoring pressure in aneurysm sac and sphincter of Oddi. In addition to demonstrating its pressure sensing capability, an animal model was used to investigate the efficacy and feasibility of the pressure sensor in a biological environment. PMID:25585564

  8. Stress modeling of microdiaphragm pressure sensors

    NASA Technical Reports Server (NTRS)

    Tack, P. C.; Busta, H. H.

    1986-01-01

    A finite element program analysis was used to model the stress distribution of two monocrystalline silicon diaphragm pressure sensors. One configuration consists of an anisotropically backside etched diaphragm into a 250 micron thick, (100) oriented, silicon wafer. The diaphragm and total chip dimensions are given. The device is rigidly clamped on the back to a support substrate. Another configuration consists of a monocrystalline, (100), microdiaphragm which is formed on top of the wafer and whose area is reduced by a factor of 25 over the first configuration. The diaphragm is rigidly clamped to the silicon wafer. The stresses were calculated at a gauge pressure of 300 mm Hg and used to estimate the piezoresistive responses of resistor elements which were placed parallel and perpendicular near the diaphragm edges.

  9. Deep-Sea DuraFET: A Pressure Tolerant pH Sensor Designed for Global Sensor Networks.

    PubMed

    Johnson, Kenneth S; Jannasch, Hans W; Coletti, Luke J; Elrod, Virginia A; Martz, Todd R; Takeshita, Yuichiro; Carlson, Robert J; Connery, James G

    2016-03-15

    Increasing atmospheric carbon dioxide is driving a long-term decrease in ocean pH which is superimposed on daily to seasonal variability. These changes impact ecosystem processes, and they serve as a record of ecosystem metabolism. However, the temporal variability in pH is observed at only a few locations in the ocean because a ship is required to support pH observations of sufficient precision and accuracy. This paper describes a pressure tolerant Ion Sensitive Field Effect Transistor pH sensor that is based on the Honeywell Durafet ISFET die. When combined with a AgCl pseudoreference sensor that is immersed directly in seawater, the system is capable of operating for years at a time on platforms that cycle from depths of several km to the surface. The paper also describes the calibration scheme developed to allow calibrated pH measurements to be derived from the activity of HCl reported by the sensor system over the range of ocean pressure and temperature. Deployments on vertical profiling platforms enable self-calibration in deep waters where pH values are stable. Measurements with the sensor indicate that it is capable of reporting pH with an accuracy of 0.01 or better on the total proton scale and a precision over multiyear periods of 0.005. This system enables a global ocean observing system for ocean pH.

  10. Evaluation of glued-diaphragm fibre optic pressure sensors in a shock tube

    NASA Astrophysics Data System (ADS)

    Sharifian, S. Ahmad; Buttsworth, David R.

    2007-02-01

    Glued-diaphragm fibre optic pressure sensors that utilize standard telecommunications components which are based on Fabry-Perot interferometry are appealing in a number of respects. Principally, they have high spatial and temporal resolution and are low in cost. These features potentially make them well suited to operation in extreme environments produced in short-duration high-enthalpy wind tunnel facilities where spatial and temporal resolution are essential, but attrition rates for sensors are typically very high. The sensors we consider utilize a zirconia ferrule substrate and a thin copper foil which are bonded together using an adhesive. The sensors show a fast response and can measure fluctuations with a frequency up to 250 kHz. The sensors also have a high spatial resolution on the order of 0.1 mm. However, with the interrogation and calibration processes adopted in this work, apparent errors of up to 30% of the maximum pressure have been observed. Such errors are primarily caused by mechanical hysteresis and adhesive viscoelasticity. If a dynamic calibration is adopted, the maximum measurement error can be limited to about 10% of the maximum pressure. However, a better approach is to eliminate the adhesive from the construction process or design the diaphragm and substrate in a way that does not require the adhesive to carry a significant fraction of the mechanical loading.

  11. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    USGS Publications Warehouse

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  12. Passive absolute age and temperature history sensor

    DOEpatents

    Robinson, Alex; Vianco, Paul T.

    2015-11-10

    A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.

  13. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    PubMed Central

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  14. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    PubMed

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-05-23

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

  15. Study on the Ag Nanowire/PDMS Pressure Sensors with Three-Layer and Back-to-Back Structures

    NASA Astrophysics Data System (ADS)

    Wu, Jianhao; Lan, Qiuming; Yang, Weijia; He, Xin; Yue, Yunting; Jiang, Jiayi; Jiang, Tinghui

    2018-01-01

    Ag nanowire (NW)/polydimethylsiloxane (PDMS) pressure sensors with the three-layer and back-to-back structures were fabricated by a coating-peeling method. The bending and pressing responses of the sensors were comparably investigated. The results reveal that two kinds of pressure sensors show similar response linearity in the bending test with a bending angle of 0-180°. However, the response sensitivity of the three-layer structured pressure sensor is superior to that of the back-to-back structural one, which exhibits that the relationship between the capacitance value (Y) and the bending angle (X) is: Y = 0.01244X + 2.9763. On the contrary, in the pressing test, the response sensitivity of the back-to-back structural sensor is better than that of the three-layer structural one. The relationship between capacitance value (Y) and the number of paper clips (pressure, X2) is Y = 0.09241X2 + 88.03597.

  16. Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals.

    PubMed

    Liu, Mengmeng; Pu, Xiong; Jiang, Chunyan; Liu, Ting; Huang, Xin; Chen, Libo; Du, Chunhua; Sun, Jiangman; Hu, Weiguo; Wang, Zhong Lin

    2017-11-01

    Wearable pressure sensors, which can perceive and respond to environmental stimuli, are essential components of smart textiles. Here, large-area all-textile-based pressure-sensor arrays are successfully realized on common fabric substrates. The textile sensor unit achieves high sensitivity (14.4 kPa -1 ), low detection limit (2 Pa), fast response (≈24 ms), low power consumption (<6 µW), and mechanical stability under harsh deformations. Thanks to these merits, the textile sensor is demonstrated to be able to recognize finger movement, hand gestures, acoustic vibrations, and real-time pulse wave. Furthermore, large-area sensor arrays are successfully fabricated on one textile substrate to spatially map tactile stimuli and can be directly incorporated into a fabric garment for stylish designs without sacrifice of comfort, suggesting great potential in smart textiles or wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Wireless Capacitive Pressure Sensor Operating up to 400 Celcius from 0 to 100 psi Utilizing Power Scavenging

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Harsh, Kevin; Mackey, Jonathan A.; Meredith, Roger D.; Zorman, Christian A.; Beheim, Glenn M.; Dynys, Frederick W.; Hunter, Gary W.

    2014-01-01

    In this paper, a wireless capacitive pressure sensor developed for the health monitoring of aircraft engines has been demonstrated. The sensing system is composed of a Clapp-type oscillator that operates at 131 MHz. The Clapp oscillator is fabricated on a alumina substrate and consists of a Cree SiC (silicon carbide) MESFET (Metal Semiconductor Field Effect Transistors), this film inductor, Compex chip capacitors and Sporian Microsystem capacitive pressure sensor. The resonant tank circuit within the oscillator is made up of the pressure sensor and a spiral thin film inductor, which is used to magnetically couple the wireless pressure sensor signal to a coil antenna placed over 1 meter away. 75% of the power used to bias the sensing system is generated from thermoelectric power modules. The wireless pressure sensor is operational at room temperature through 400 C from 0 to 100 psi and exhibits a frequency shift of over 600 kHz.

  18. Development of gait segmentation methods for wearable foot pressure sensors.

    PubMed

    Crea, S; De Rossi, S M M; Donati, M; Reberšek, P; Novak, D; Vitiello, N; Lenzi, T; Podobnik, J; Munih, M; Carrozza, M C

    2012-01-01

    We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure. The method is tested on a pool of 5 healthy subjects, through a leave-one-out cross validation. The results show high classification performances achieved using estimated biomechanical variables, being on average the 96%. Calibrated signals and raw voltage values show higher delays and dispersions in phase transition detection, suggesting a lower reliability for online applications.

  19. Improvements in absolute seismometer sensitivity calibration using local earth gravity measurements

    USGS Publications Warehouse

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    The ability to determine both absolute and relative seismic amplitudes is fundamentally limited by the accuracy and precision with which scientists are able to calibrate seismometer sensitivities and characterize their response. Currently, across the Global Seismic Network (GSN), errors in midband sensitivity exceed 3% at the 95% confidence interval and are the least‐constrained response parameter in seismic recording systems. We explore a new methodology utilizing precise absolute Earth gravity measurements to determine the midband sensitivity of seismic instruments. We first determine the absolute sensitivity of Kinemetrics EpiSensor accelerometers to 0.06% at the 99% confidence interval by inverting them in a known gravity field at the Albuquerque Seismological Laboratory (ASL). After the accelerometer is calibrated, we install it in its normal configuration next to broadband seismometers and subject the sensors to identical ground motions to perform relative calibrations of the broadband sensors. Using this technique, we are able to determine the absolute midband sensitivity of the vertical components of Nanometrics Trillium Compact seismometers to within 0.11% and Streckeisen STS‐2 seismometers to within 0.14% at the 99% confidence interval. The technique enables absolute calibrations from first principles that are traceable to National Institute of Standards and Technology (NIST) measurements while providing nearly an order of magnitude more precision than step‐table calibrations.

  20. A High Temperature Capacitive Pressure Sensor Based on Alumina Ceramic for in Situ Measurement at 600 °C

    PubMed Central

    Tan, Qiulin; Li, Chen; Xiong, Jijun; Jia, Pinggang; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Hong, Yingping; Ren, Zhong; Luo, Tao

    2014-01-01

    In response to the growing demand for in situ measurement of pressure in high-temperature environments, a high temperature capacitive pressure sensor is presented in this paper. A high-temperature ceramic material-alumina is used for the fabrication of the sensor, and the prototype sensor consists of an inductance, a variable capacitance, and a sealed cavity integrated in the alumina ceramic substrate using a thick-film integrated technology. The experimental results show that the proposed sensor has stability at 850 °C for more than 20 min. The characterization in high-temperature and pressure environments successfully demonstrated sensing capabilities for pressure from 1 to 5 bar up to 600 °C, limited by the sensor test setup. At 600 °C, the sensor achieves a linear characteristic response, and the repeatability error, hysteresis error and zero-point drift of the sensor are 8.3%, 5.05% and 1%, respectively. PMID:24487624

  1. 800 C Silicon Carbide (SiC) Pressure Sensors for Engine Ground Testing

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.

    2016-01-01

    MEMS-based 4H-SiC piezoresistive pressure sensors have been demonstrated at 800 C, leading to the discovery of strain sensitivity recovery with increasing temperatures above 400 C, eventually achieving up to, or near, 100 recovery of the room temperature values at 800 C. This result will allow the insertion of highly sensitive pressure sensors closer to jet, rocket, and hypersonic engine combustion chambers to improve the quantification accuracy of combustor dynamics, performance, and increase safety margin. Also, by operating at higher temperature and locating closer to the combustion chamber, reduction of the length (weight) of pressure tubes that are currently used will be achieved. This will result in reduced costlb to access space.

  2. Therapeutic hypertension system based on a microbreathing pressure sensor system.

    PubMed

    Diao, Ziji; Liu, Hongying; Zhu, Lan; Gao, Xiaoqiang; Zhao, Suwen; Pi, Xitian; Zheng, Xiaolin

    2011-01-01

    A novel therapeutic system for the treatment of hypertension was developed on the basis of a slow-breath training mechanism, using a microbreathing pressure sensor device for the detection of human respiratory signals attached to the abdomen. The system utilizes a single-chip AT89C51 microcomputer as a core processor, programmed by Microsoft Visual C++6.0 to communicate with a PC via a full-speed PDIUSBD12 interface chip. The programming is based on a slow-breath guided algorithm in which the respiratory signal serves as a physiological feedback parameter. Inhalation and exhalation by the subject is guided by music signals. Our study indicates that this microbreathing sensor system may assist in slow-breath training and may help to decrease blood pressure.

  3. A calculation and uncertainty evaluation method for the effective area of a piston rod used in quasi-static pressure calibration

    NASA Astrophysics Data System (ADS)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2018-04-01

    This paper describes the merits and demerits of different sensors for measuring propellant gas pressure, the applicable range of the frequently used dynamic pressure calibration methods, and the working principle of absolute quasi-static pressure calibration based on the drop-weight device. The main factors affecting the accuracy of pressure calibration are analyzed from two aspects of the force sensor and the piston area. To calculate the effective area of the piston rod and evaluate the uncertainty between the force sensor and the corresponding peak pressure in the absolute quasi-static pressure calibration process, a method for solving these problems based on the least squares principle is proposed. According to the relevant quasi-static pressure calibration experimental data, the least squares fitting model between the peak force and the peak pressure, and the effective area of the piston rod and its measurement uncertainty, are obtained. The fitting model is tested by an additional group of experiments, and the peak pressure obtained by the existing high-precision comparison calibration method is taken as the reference value. The test results show that the peak pressure obtained by the least squares fitting model is closer to the reference value than the one directly calculated by the cross-sectional area of the piston rod. When the peak pressure is higher than 150 MPa, the percentage difference is less than 0.71%, which can meet the requirements of practical application.

  4. A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets

    PubMed Central

    Rinaldi, Andrea; Tamburrano, Alessio; Fortunato, Marco; Sarto, Maria Sabrina

    2016-01-01

    The demand for high performance multifunctional wearable devices is more and more pushing towards the development of novel low-cost, soft and flexible sensors with high sensitivity. In the present work, we describe the fabrication process and the properties of new polydimethylsiloxane (PDMS) foams loaded with multilayer graphene nanoplatelets (MLGs) for application as high sensitive piezoresistive pressure sensors. The effective DC conductivity of the produced foams is measured as a function of MLG loading. The piezoresistive response of the MLG-PDMS foam-based sensor at different strain rates is assessed through quasi-static pressure tests. The results of the experimental investigations demonstrated that sensor loaded with 0.96 wt.% of MLGs is characterized by a highly repeatable pressure-dependent conductance after a few stabilization cycles and it is suitable for detecting compressive stresses as low as 10 kPa, with a sensitivity of 0.23 kPa−1, corresponding to an applied pressure of 70 kPa. Moreover, it is estimated that the sensor is able to detect pressure variations of ~1 Pa. Therefore, the new graphene-PDMS composite foam is a lightweight cost-effective material, suitable for sensing applications in the subtle or low and medium pressure ranges. PMID:27999251

  5. Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors.

    PubMed

    Chen, Yan-Sheng; Hsieh, Gen-Wen; Chen, Shih-Ping; Tseng, Pin-Yen; Wang, Cheng-Wei

    2015-01-14

    Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications.

  6. Polydimethylsiloxane pressure sensors for force analysis in tension band wiring of the olecranon.

    PubMed

    Zens, Martin; Goldschmidtboeing, Frank; Wagner, Ferdinand; Reising, Kilian; Südkamp, Norbert P; Woias, Peter

    2016-11-14

    Several different surgical techniques are used in the treatment of olecranon fractures. Tension band wiring is one of the most preferred options by surgeons worldwide. The concept of this technique is to transform a tensile force into a compression force that adjoins two surfaces of a fractured bone. Currently, little is known about the resulting compression force within a fracture. Sensor devices are needed that directly transduce the compression force into a measurement quality. This allows the comparison of different surgical techniques. Ideally the sensor devices ought to be placed in the gap between the fractured segments. The design, development and characterization of miniaturized pressure sensors fabricated entirely from polydimethylsiloxane (PDMS) for a placement within a fracture is presented. The pressure sensors presented in this work are tested, calibrated and used in an experimental in vitro study. The pressure sensors are highly sensitive with an accuracy of approximately 3 kPa. A flexible fabrication process for various possible applications is described. The first in vitro study shows that using a single-twist or double-twist technique in tension band wiring of the olecranon has no significant effect on the resulting compression forces. The in vitro study shows the feasibility of the proposed measurement technique and the results of a first exemplary study.

  7. Temperature characteristics research of SOI pressure sensor based on asymmetric base region transistor

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Li, Dandan; Yu, Yang; Wen, Dianzhong

    2017-07-01

    Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type silicon cup and a Wheatstone bridge with four piezoresistors ({R}1, {R}2, {R}3 and {R}4) locating on the edge of a square silicon membrane. The chip was designed and fabricated on a silicon on insulator (SOI) wafer by micro electromechanical system (MEMS) technology and bipolar transistor process. When the supply voltage is 5.0 V, the corresponding temperature coefficient of the sensitivity (TCS) for the sensor before and after temperature compensation are -1862 and -1067 ppm/°C, respectively. Through varying the ratio of the base region resistances {r}1 and {r}2, the TCS for the sensor with the compensation circuit is -127 ppm/°C. It is possible to use this compensation circuit to improve the temperature characteristics of the pressure sensor. Project supported by the National Natural Science Foundation of China (No. 61471159), the Natural Science Foundation of Heilongjiang Province (No. F201433), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. 2015018), and the Special Funds for Science and Technology Innovation Talents of Harbin in China (No. 2016RAXXJ016).

  8. Pressure-sensitive strain sensor based on a single percolated Ag nanowire layer embedded in colorless polyimide

    NASA Astrophysics Data System (ADS)

    Lee, Chan-Jae; Jun, Sungwoo; Ju, Byeong-Kwon; Kim, Jong-Woong

    2017-06-01

    This paper presents the fabrication of an elastomer-free, transparent, pressure-sensitive strain sensor consisting of a specially designed silver nanowire (AgNW) pattern and colorless polyimide (cPI). A percolated AgNW network was patterned with a simple tandem compound circuit, which was then embedded in the surface of the cPI via inverted layer processing. The resulting film-type sensor was highly transparent ( 93.5% transmittance at 550 nm) and mechanically stable (capable of resisting 10000 cycles of bending to a 500 μm radius of curvature). We demonstrated that a thin, transparent, and mechanically stable electrode can be produced using a combination of AgNWs and cPI, and used to produce a system sensitive to pressure-induced bending. The capacitance of the AgNW tandem compound electrode pattern grew via fringing, which increased with the pressure-induced bending applied to the surface of the sensor. The sensitivity was four times higher than that of an elastomeric pressure sensor made with the same design. Finally, we demonstrated a skin-like pressure sensor attached to the inside wrist of a human arm.

  9. Design of Novel FBG-Based Sensor of Differential Pressure with Magnetic Transfer.

    PubMed

    Lyu, Guohui; Che, Guohang; Li, Junqing; Jiang, Xu; Wang, Keda; Han, Yueqiang; Gao, Laixu

    2017-02-15

    In this paper, a differential pressure sensor with magnetic transfer is proposed, in which the non-electric measurement based on the fiber Bragg grating (FBG) with the position limiting mechanism is implemented without the direct contact of the sensing unit with the measuring fluid. The test shows that the designed sensor is effective for measuring differential pressure in the range of 0~10 kPa with a sensitivity of 0.0112 nm/kPa, which can be used in environments with high temperature, strong corrosion and high overload measurements.

  10. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.

    PubMed

    Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff

    2012-04-03

    A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.

  11. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity.

    PubMed

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  12. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity

    NASA Astrophysics Data System (ADS)

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  13. The Capability of Fiber Bragg Grating Sensors to Measure Amputees' Trans-Tibial Stump/Socket Interface Pressures

    PubMed Central

    Al-Fakih, Ebrahim A.; Abu Osman, Noor Azuan; Eshraghi, Arezoo; Adikan, Faisal Rafiq Mahamd

    2013-01-01

    This study presents the first investigation into the capability of fiber Bragg grating (FBG) sensors to measure interface pressure between the stump and the prosthetic sockets of a trans-tibial amputee. FBG element(s) were recoated with and embedded in a thin layer of epoxy material to form a sensing pad, which was in turn embedded in a silicone polymer material to form a pressure sensor. The sensor was tested in real time by inserting a heavy-duty balloon into the socket and inflating it by using an air compressor. This test was conducted to examine the sensitivity and repeatability of the sensor when subjected to pressure from the stump of the trans-tibial amputee and to mimic the actual environment of the amputee's Patellar Tendon (PT) bar. The sensor exhibited a sensitivity of 127 pm/N and a maximum FSO hysteresis of around ∼0.09 in real-time operation. Very good reliability was achieved when the sensor was utilized for in situ measurements. This study may lead to smart FBG-based amputee stump/socket structures for pressure monitoring in amputee socket systems, which will result in better-designed prosthetic sockets that ensure improved patient satisfaction. PMID:23941909

  14. The capability of fiber Bragg grating sensors to measure amputees' trans-tibial stump/socket interface pressures.

    PubMed

    Al-Fakih, Ebrahim A; Osman, Noor Azuan Abu; Eshraghi, Arezoo; Adikan, Faisal Rafiq Mahamd

    2013-08-12

    This study presents the first investigation into the capability of fiber Bragg grating (FBG) sensors to measure interface pressure between the stump and the prosthetic sockets of a trans-tibial amputee. FBG element(s) were recoated with and embedded in a thin layer of epoxy material to form a sensing pad, which was in turn embedded in a silicone polymer material to form a pressure sensor. The sensor was tested in real time by inserting a heavy-duty balloon into the socket and inflating it by using an air compressor. This test was conducted to examine the sensitivity and repeatability of the sensor when subjected to pressure from the stump of the trans-tibial amputee and to mimic the actual environment of the amputee's Patellar Tendon (PT) bar. The sensor exhibited a sensitivity of 127 pm/N and a maximum FSO hysteresis of around ~0.09 in real-time operation. Very good reliability was achieved when the sensor was utilized for in situ measurements. This study may lead to smart FBG-based amputee stump/socket structures for pressure monitoring in amputee socket systems, which will result in better-designed prosthetic sockets that ensure improved patient satisfaction.

  15. Consistency of L4 TM absolute calibration with respect to the L5 TM sensor based on near-simultaneous image acquisition

    NASA Astrophysics Data System (ADS)

    Chander, Gyanesh; Helder, Dennis L.; Malla, Rimy; Micijevic, Esad; Mettler, Cory J.

    2007-09-01

    The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the

  16. Consistency of L4 TM absolute calibration with respect to the L5 TM sensor based on near-simultaneous image acquisition

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Malla, R.; Micijevic, E.; Mettler, C.J.

    2007-01-01

    The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the

  17. The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor

    PubMed Central

    Meng, Xiawei; Zhao, Yulong

    2016-01-01

    A piezoresistive pressure sensor with a beam-membrane-dual-island structure is developed for micro-pressure monitoring in the field of aviation, which requires great sensitivity and overload resistance capacity. The design, fabrication, and test of the sensor are presented in this paper. By analyzing the stress distribution of sensitive elements using the finite element method, a novel structure incorporating sensitive beams with a traditional bossed diaphragm is built up. The proposed structure proved to be advantageous in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the sensor equations. Fabricated on an n-type single crystal silicon wafer, the sensor chips are wire-bonded to a printed circuit board (PCB) and packaged for experiments. The static and dynamic characteristics are tested and discussed. Experimental results show that the sensor has a sensitivity as high as 17.339 μV/V/Pa in the range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure. Due to the excellent performance, the sensor can be applied in measuring micro-pressure lower than 500 Pa. PMID:27005627

  18. Fast analytical model of MZI micro-opto-mechanical pressure sensor

    NASA Astrophysics Data System (ADS)

    Rochus, V.; Jansen, R.; Goyvaerts, J.; Neutens, P.; O’Callaghan, J.; Rottenberg, X.

    2018-06-01

    This paper presents a fast analytical procedure in order to design a micro-opto-mechanical pressure sensor (MOMPS) taking into account the mechanical nonlinearity and the optical losses. A realistic model of the photonic MZI is proposed, strongly coupled to a nonlinear mechanical model of the membrane. Based on the membrane dimensions, the residual stress, the position of the waveguide, the optical wavelength and the phase variation due to the opto-mechanical coupling, we derive an analytical model which allows us to predict the response of the total system. The effect of the nonlinearity and the losses on the total performance are carefully studied and measurements on fabricated devices are used to validate the model. Finally, a design procedure is proposed in order to realize fast design of this new type of pressure sensor.

  19. Simplifying the design of microstructured optical fibre pressure sensors.

    PubMed

    Osório, Jonas H; Chesini, Giancarlo; Serrão, Valdir A; Franco, Marcos A R; Cordeiro, Cristiano M B

    2017-06-07

    In this paper, we propose a way to simplify the design of microstructured optical fibres with high sensitivity to applied pressure. The use of a capillary fibre with an embedded core allows the exploration of the pressure-induced material birefringence due to the capillary wall displacements and the photoelastic effect. An analytical description of pressure-induced material birefringence is provided, and fibre modal characteristics are explored through numerical simulations. Moreover, a capillary fibre with an embedded core is fabricated and used to probe pressure variations. Even though the embedded-core fibre has a non-optimized structure, measurements showed a pressure sensitivity of (1.04 ± 0.01) nm/bar, which compares well with more complex, specially designed fibre geometries reported in the literature. These results demonstrate that this geometry enables a novel route towards the simplification of microstructured fibre-based pressure sensors.

  20. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials.

    PubMed

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; Di, Chong-an; Zhu, Daoben

    2015-09-21

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa(-1). More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  1. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben

    2015-09-01

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa-1. More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  2. Aneurysm Sac Pressure Measurement with Minimally Invasive Implantable Pressure Sensors: An Alternative to Current Surveillance Regimes after EVAR?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Fabian; Guenther, Rolf W.; Schmitz-Rode, Thomas

    Current protocols for surveillance after endovascular repair (EVAR) of abdominal aortic aneurysms are mostly based on costly and time-consuming imaging procedures and aim to detect adverse events such as graft migration, endoleaks or aneurysm sac enlargement. These imaging procedures are either associated with radiation exposure to the patients or may be harmful to the patient due to the use of iodine- or gadolinium-containing contrast agents. Furthermore the advantages of EVAR in the short term might be negated by the necessity for endograft surveillance over years. Thus, alternative modalities for follow-up are being investigated. One of these technologies provides pressure informationmore » directly from the aneurysm sac. This noninvasive, telemetric pressure sensing was tested in vitro as well as in first clinical trials and was able to identify successful aneurysm exclusion after EVAR. The telemetric pressure sensors showed a promising efficacy and accuracy in detecting type I and type III endoleaks and will help to clarify the clinical relevance of type II endoleaks. This article provides an overview of the in vitro sensors investigated as well as the first clinical trials and the sensors' potential to change the current endograft surveillance regimes.« less

  3. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    NASA Astrophysics Data System (ADS)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  4. Evaluation of a contact lens-embedded sensor for intraocular pressure measurement.

    PubMed

    Twa, Michael D; Roberts, Cynthia J; Karol, Huikai J; Mahmoud, Ashraf M; Weber, Paul A; Small, Robert H

    2010-08-01

    To evaluate a novel contact lens-embedded pressure sensor for continuous measurement of intraocular pressure (IOP). Repeated measurements of IOP and ocular pulse amplitude (OPA) were recorded in 12 eyes of 12 subjects in sitting and supine positions using 3 configurations of the dynamic contour tonometer: slit-lamp mounted (DCT), hand-held (HH), and contact lens-embedded sensor (CL). The IOP and OPA for each condition were compared using repeated measures ANOVA and the 95% limits of agreement were calculated. The sitting IOP (mean and 95% CI) for each configuration was DCT: 16.3 mm Hg (15.6 to 17.1 mm Hg), HH: 16.6 mm Hg (15.6 to 17.6 mm Hg), and CL: 15.7 mm Hg (15 to 16.3 mm Hg). The sitting OPA for each configuration was DCT: 2.4 mm Hg (2.1 to 2.6 mm Hg), HH: 2.4 mm Hg (2.1 to 2.7 mm Hg), and CL: 2.1 mm Hg (1.8 to 2.3 mm Hg). Supine IOP and OPA measurements with the CL and HH sensors were both greater than their corresponding sitting measurements, but were significantly less with the CL sensor than the HH sensor. The mean difference and 95% Limits of Agreement were smallest for the DCT and CL sensor comparisons (0.7+/-3.9 mm Hg) and widest for the CL and HH sensors (-1.9+/-7.25 mm Hg); these wider limits were attributed to greater HH measurement variability. The CL sensor was comparable to HH and DCT sensors with sitting subjects and is a viable method for measuring IOP and OPA. Supine measurements of IOP and OPA were greater than sitting conditions and were comparatively lower with the CL sensor. HH measurements were more variable than CL measurements and this influenced the Limits of Agreement for both sitting and supine conditions.

  5. Comparison in gas media (absolute and gauge mode)in the range from 25 kPa TO 200 kPa (EURAMET.M.P-K8)

    NASA Astrophysics Data System (ADS)

    Wuethrich, C.; Alisic, S.; Altintas, A.; van Andel, I.; C, In­Mook; Eltawil, A. A.; Farár, P.; Hetherington, P.; Koçaş, I.; Lefkopoulos, A.; Otal, P.; Prazak, D.; Sabuga, W.; Salustiano, R.; Sandu, I.; Sardi, M.; Saxholm, S.; Setina, J.; Spohr, I.; Steindl, D.; Testa, N.; Vámossy, C.; Grgec Bermanec, L.

    2016-01-01

    It was decided at the EURAMET TC-M meeting in Torino in 2006 to realize a comparison in gauge and absolute pressure up to 200 kPa as it would allow a link to the CCM.P-K6 and CCM.P-K2 comparisons to be established. This project interested a lot of laboratories from the beginning with 23 participants, 22 of which have submitted results. The circulation of the transfer standard began in July 2009 and lasted until January 2012. No major problems occurred during the transport. The measurand of the comparison is the effective area of a piston-cylinder determined in gauge and absolute pressure from 25 kPa to 200 kPa with pressure steps of 25 kPa. The transfer standard is a gas lubricated tungsten carbide piston-cylinder with an effective area of ~9.8 cm2, fabricated by DH Instruments and compatible with a PG-7601 pressure balance. Some participants used their own pressure balance while a pressure balance with a reference vacuum sensor has been circulated for the participants not equipped with this system. One participant (SMU, Slovakia) has never provided the measurement results and another participant (FORCE Technology, Denmark) submitted a revised set of measurement results after the pilot laboratory mentioned that the equivalence was not met. After the determination of the reference value, all the 22 participants who delivered the results in gauge pressure demonstrated equivalence respective to the reference value on most of the range. In absolute pressure the equivalence is demonstrated, for all nominal pressures, by all 17 participants who submitted results. The comparison is linked to the CCM.P-K6 for gauge pressure and to CCM.P-K2 for absolute pressure. The link does not strongly affect the equivalence of the results and an excellent degree of equivalence is achieved in gauge and absolute pressure. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb

  6. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  7. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization.

    PubMed

    Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel

    2018-05-03

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).

  8. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization

    PubMed Central

    Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel

    2018-01-01

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560

  9. A reliable measure of footwear upper comfort enabled by an innovative sock equipped with textile pressure sensors.

    PubMed

    Herbaut, Alexis; Simoneau-Buessinger, Emilie; Barbier, Franck; Cannard, Francis; Guéguen, Nils

    2016-10-01

    Footwear comfort is essential and pressure distribution on the foot was shown as a relevant objective measurement to assess it. However, asperities on the foot sides, especially the metatarsals and the instep, make its evaluation difficult with available equipment. Thus, a sock equipped with textile pressure sensors was designed. Results from the mechanical tests showed a high linearity of the sensor response under incremental loadings and allowed to determine the regression equation to convert voltage values into pressure measurements. The sensor response was also highly repeatable and the creep under constant loading was low. Pressure measurements on human feet associated with a perception questionnaire exhibited that significant relationships existed between pressure and comfort perceived on the first, the third and the fifth metatarsals and top of the instep. Practitioner Summary: A sock equipped with textile sensors was validated for measuring the pressure on the foot top, medial and lateral sides to evaluate footwear comfort. This device may be relevant to help individuals with low sensitivity, such as children, elderly or neuropathic, to choose the shoes that fit the best.

  10. Embedded infrared fiber-optic sensor for thermometry in a high temperature/pressure environment

    NASA Astrophysics Data System (ADS)

    Yoo, Wook Jae; Jang, Kyoung Won; Moon, Jinsoo; Han, Ki-Tek; Jeon, Dayeong; Lee, Bongsoo; Park, Byung Gi

    2012-11-01

    In this study, we developed an embedded infrared fiber-optic temperature sensor for thermometry in high temperature/pressure and water-chemistry environments by using two identical silver-halide optical fibers. The performance of the fabricated temperature sensor was assessed in an autoclave filled with an aqueous coolant solution containing boric acid and lithium hydroxide. We carried out real-time monitoring of the infrared radiation emitted from the signal and reference probes for various temperatures over a temperature range from 95 to 225 °C. In order to decide the temperature of the synthetic coolant solution, we measured the difference between the infrared radiation emitted from the two temperature-sensing probes. Thermometry with the proposed sensor is immune to any changes in the physical conditions and the emissivity of the heat source. From the experimental results, the embedded infrared fiber-optic temperature sensor can withstand, and normally operate in a high temperature/pressure test loop system corresponding to the coolant system used for nuclear power plant simulation. We expect that the proposed sensor can be developed to accurately monitor temperatures in harsh environments.

  11. Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors.

    PubMed

    Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju

    2018-01-10

    With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

  12. Power break off in a bulb turbine: wall pressure sensor investigation

    NASA Astrophysics Data System (ADS)

    Duquesne, P.; Maciel, Y.; Aeschlimann, V.; Ciocan, G. D.; Deschênes, C.

    2014-03-01

    A measurement campaign using unsteady wall pressure sensors on a bulb turbine draft tube was performed over the power and efficiency break off range of a N11 curve. This study is part of the BulbT project, undertaken by the Consortium on hydraulic machines and the LAMH (Hydraulic Machine Laboratory of Laval University). The chosen operating points include the best efficiency point for a high runner blade angle and a high N11. Three other points, with the same N11, have been selected in the break off zone of the efficiency curve. Flow conditions have been set using the guide vanes while the runner blade angle remained constant. The pressure sensors were developed from small piezoresistive chips with high frequency response. The calibration gave an instrumental error lower than 0.3% of the measurement range. The unsteady wall pressure was measured simultaneously at 13 locations inside the first part of the draft tube, which is conical, and at 16 locations in the circular to rectangular transition part just downstream. It was also measured at 11 locations along a streamwise line path at the bottom left part of the draft tube, where flow separation occurs, covering the whole streamwise extent of the draft tube. For seven radial-azimuthal planes, four sensors were distributed azimuthally. As confirmed by tuft visualizations, the break off phenomenon is correlated to the presence of flow separation inside the diffuser at the wall. The break off is linked to the appearance of a large recirculation in the draft tube. The efficiency drop increases with the size of the separated region. Analysis of the draft tube pressure coefficients confirms that the break off is related to diffuser losses. The streamwise evolution of the mean pressure coefficient is analyzed for the different operating conditions. An azimuthal dissymmetry of the mean pressure produced by the separation is detected. The pressure signals have been analyzed and used to track the separation zone depending on

  13. Design and Application of a High Sensitivity Piezoresistive Pressure Sensor for Low Pressure Conditions

    PubMed Central

    Yu, Huiyang; Huang, Jianqiu

    2015-01-01

    In this paper, a pressure sensor for low pressure detection (0.5 kPa–40 kPa) is proposed. In one structure (No. 1), the silicon membrane is partly etched to form a crossed beam on its top for stress concentration. An aluminum layer is also deposited as part of the beam. Four piezoresistors are fabricated. Two are located at the two ends of the beam. The other two are located at the membrane periphery. Four piezoresistors connect into a Wheatstone bridge. To demonstrate the stress concentrate effect of this structure, two other structures were designed and fabricated. One is a flat membrane structure (No. 2), the other is a structure with the aluminum beam, but without etched silicon (No. 3). The measurement results of these three structures show that the No.1 structure has the highest sensitivity, which is about 3.8 times that of the No. 2 structure and 2.7 times that of the No. 3 structure. They also show that the residual stress in the beam has some backside effect on the sensor performance. PMID:26371001

  14. Demonstration of a Packaged Capacitive Pressure Sensor System Suitable for Jet Turbofan Engine Health Monitoring

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Jordan, Jennifer L.; Meredith, Roger D.; Harsh, Kevin; Pilant, Evan; Usrey, Michael W.; Beheim, Glenn M.; Hunter, Gary W.; Zorman, Christian A.

    2016-01-01

    In this paper, the development and characterization of a packaged pressure sensor system suitable for jet engine health monitoring is demonstrated. The sensing system operates from 97 to 117 MHz over a pressure range from 0 to 350 psi and a temperature range from 25 to 500 deg. The sensing system consists of a Clapp-type oscillator that is fabricated on an alumina substrate and is comprised of a Cree SiC MESFET, MIM capacitors, a wire-wound inductor, chip resistors and a SiCN capacitive pressure sensor. The pressure sensor is located in the LC tank circuit of the oscillator so that a change in pressure causes a change in capacitance, thus changing the resonant frequency of the sensing system. The chip resistors, wire-wound inductors and MIM capacitors have all been characterized at temperature and operational frequency, and perform with less than 5% variance in electrical performance. The measured capacitive pressure sensing system agrees very well with simulated results. The packaged pressure sensing system is specifically designed to measure the pressure on a jet turbofan engine. The packaged system can be installed by way of borescope plug adaptor fitted to a borescope port exposed to the gas path of a turbofan engine.

  15. Dissolved oxygen measurements in aquatic environments: the effects of changing temperature and pressure on three sensor technologies.

    PubMed

    Markfort, Corey D; Hondzo, Miki

    2009-01-01

    Dissolved oxygen (DO) is probably the most important parameter related to water quality and biological habitat in aquatic environments. In situ DO sensors are some of the most valuable tools used by scientists and engineers for the evaluation of water quality in aquatic ecosystems. Presently, we cannot accurately measure DO concentrations under variable temperature and pressure conditions. Pressure and temperature influence polarographic and optical type DO sensors compared to the standard Winkler titration method. This study combines laboratory and field experiments to compare and quantify the accuracy and performance of commercially available macro and micro Clark-type oxygen sensors as well as optical sensing technology to the Winkler method under changing pressure and temperature conditions. Field measurements at various lake depths revealed sensor response time up to 11 min due to changes in water temperature, pressure, and DO concentration. Investigators should account for transient response in DO sensors before measurements are collected at a given location. We have developed an effective model to predict the transient response time for Clark-type oxygen sensors. The proposed procedure increases the accuracy of DO data collected in situ for profiling applications.

  16. System for detecting operating errors in a variable valve timing engine using pressure sensors

    DOEpatents

    Wiles, Matthew A.; Marriot, Craig D

    2013-07-02

    A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.

  17. Toward an injectable continuous osmotic glucose sensor.

    PubMed

    Johannessen, Erik; Krushinitskaya, Olga; Sokolov, Andrey; Philipp, Häfliger; Hoogerwerf, Arno; Hinderling, Christian; Kautio, Kari; Lenkkeri, Jaakko; Strömmer, Esko; Kondratyev, Vasily; Tønnessen, Tor Inge; Mollnes, Tom Eirik; Jakobsen, Henrik; Zimmer, Even; Akselsen, Bengt

    2010-07-01

    The growing pandemic of diabetes mellitus places a stringent social and economic burden on the society. A tight glycemic control circumvents the detrimental effects, but the prerogative is the development of new more effective tools capable of longterm tracking of blood glucose (BG) in vivo. Such discontinuous sensor technologies will benefit from an unprecedented marked potential as well as reducing the current life expectancy gap of eight years as part of a therapeutic regime. A sensor technology based on osmotic pressure incorporates a reversible competitive affinity assay performing glucose-specific recognition. An absolute change in particles generates a pressure that is proportional to the glucose concentration. An integrated pressure transducer and components developed from the silicon micro- and nanofabrication industry translate this pressure into BG data. An in vitro model based on a 3.6 x 8.7 mm large pill-shaped implant is equipped with a nanoporous membrane holding 4-6 nm large pores. The affinity assay offers a dynamic range of 36-720 mg/dl with a resolution of +/-16 mg/dl. An integrated 1 x 1 mm(2) large control chip samples the sensor signals for data processing and transmission back to the reader at a total power consumption of 76 microW. Current studies have demonstrated the design, layout, and performance of a prototype osmotic sensor in vitro using an affinity assay solution for up to four weeks. The small physical size conforms to an injectable device, forming the basis of a conceptual monitor that offers a tight glycemic control of BG. 2010 Diabetes Technology Society.

  18. Autonomous sensor particle for parameter tracking in large vessels

    NASA Astrophysics Data System (ADS)

    Thiele, Sebastian; Da Silva, Marco Jose; Hampel, Uwe

    2010-08-01

    A self-powered and neutrally buoyant sensor particle has been developed for the long-term measurement of spatially distributed process parameters in the chemically harsh environments of large vessels. One intended application is the measurement of flow parameters in stirred fermentation biogas reactors. The prototype sensor particle is a robust and neutrally buoyant capsule, which allows free movement with the flow. It contains measurement devices that log the temperature, absolute pressure (immersion depth) and 3D-acceleration data. A careful calibration including an uncertainty analysis has been performed. Furthermore, autonomous operation of the developed prototype was successfully proven in a flow experiment in a stirred reactor model. It showed that the sensor particle is feasible for future application in fermentation reactors and other industrial processes.

  19. Fiber optic and laser sensors X; Proceedings of the Meeting, Boston, MA, Sept. 8-11, 1992

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Editor); Depaula, Ramon P. (Editor)

    1993-01-01

    Topics addressed include acoustic and pressure sensors; fiber optic gyros; electric and magnetic field sensors; bend, strain, and temperature sensors; industrial applications of sensors; and processing techniques. Particular attention is given to fiber optic interferometric acoustic sensors for wind tunnel applications, polished coupler and resonator fabrication, second-harmonic detection for rotation sensing in fiber optic gyros, simplified control theory in closed-loop fiber optic gyroscopes, and a Fabry-Perot sensor with digital signal processing for the measurement of magnetostriction. Also discussed are a Bragg fiber laser sensor, commercialization of fiber optic strain gauge systems, thermal ignition in hazardous environments due to stray light from optical fibers, a system for absolute measurements by interferometric sensors, and high-performance interferometric demodulation techniques.

  20. Development and characterization of a multilayer matrix textile sensor for interface pressure measurements

    NASA Astrophysics Data System (ADS)

    Baldoli, Ilaria; Maselli, Martina; Cecchi, Francesca; Laschi, Cecilia

    2017-10-01

    Matrix textile sensors hold great potential for measuring pressure distribution in applications of modern daily lives, mainly regarding the biomedical field, but also robotics, automotive systems, and wearable and consumer electronics. However, an experimental analysis of their metrological properties is lacking in the literature, thus compromising their widespread acceptance. In the present work, we report the characterization of an 8 × 8 textile sensor assembled by sandwiching a piezoresistive fabric sheet between two outer fabric layers embedding conductive rows and columns. The location of the applied pressure can be identified by detecting the position where the change of resistances occurs between the external conductive paths. The sensor structure, its electrical circuit and characteristics are described in detail, after studying both the integration levels of the hierarchical structure and the composition of the piezoresistive fabric sheet. The pressure measurement range and the calibration curve were studied by tuning circuital parameters. Repeatability, time drift, temperature dependence, signal-to-noise ratio and dynamic response were analyzed. Novel tests were employed to consider the sensor sensitivity to stretch, shear force and surface curvature. A special analysis was taken over hysteresis and dynamic accuracy, focusing on a possible compensating solution. Results indicated that the system provides overall good quality performances with the main drawback of a limited dynamic accuracy, typical of piezoresistive sensing elements. Nevertheless, the use of textiles allows the realization of lightweight, wearable, washable, thin and stretchable sensors. In addition fabric sensors are robust, cheap, easy-to-use and employable to cover large area three dimensional surfaces. The wide characterization reported here could provide precious insights and guidelines to help researchers and users in taking advantages from all of these benefits, supporting them in

  1. Measurement of sound pressure and temperature in tissue-mimicking material using an optical fiber Bragg grating sensor.

    PubMed

    Imade, Keisuke; Kageyama, Takashi; Koyama, Daisuke; Watanabe, Yoshiaki; Nakamura, Kentaro; Akiyama, Iwaki

    2016-10-01

    The experimental investigation of an optical fiber Bragg grating (FBG) sensor for biomedical application is described. The FBG sensor can be used to measure sound pressure and temperature rise simultaneously in biological tissues exposed to ultrasound. The theoretical maximum values that can be measured with the FBG sensor are 73.0 MPa and 30 °C. In this study, measurement of sound pressure up to 5 MPa was performed at an ultrasound frequency of 2 MHz. A maximum temperature change of 6 °C was measured in a tissue-mimicking material. Values yielded by the FBG sensor agreed with those measured using a thermocouple and a hydrophone. Since this sensor is used to monitor the sound pressure and temperature simultaneously, it can also be used for industrial applications, such as ultrasonic cleaning of semiconductors under controlled temperatures.

  2. Radiosonde pressure sensor performance - Evaluation using tracking radars

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Norcross, G. A.; Brooks, R. L.

    1984-01-01

    The standard balloon-borne radiosonde employed for synoptic meteorology provides vertical profiles of temperature, pressure, and humidity as a function of elapsed time. These parameters are used in the hypsometric equation to calculate the geopotential altitude at each sampling point during the balloon's flight. It is important that the vertical location information be accurate. The present investigation was conducted with the objective to evaluate the altitude determination accuracy of the standard radiosonde throughout the entire balloon profile. The tests included two other commercially available pressure sensors to see if they could provide improved accuracy in the stratosphere. The pressure-measuring performance of standard baroswitches, premium baroswitches, and hypsometers in balloon-borne sondes was correlated with tracking radars. It was found that the standard and premium baroswitches perform well up to about 25 km altitude, while hypsometers provide more reliable data above 25 km.

  3. Absolute and relative emissions analysis in practical combustion systems—effect of water vapor condensation

    NASA Astrophysics Data System (ADS)

    Richter, J. P.; Mollendorf, J. C.; DesJardin, P. E.

    2016-11-01

    Accurate knowledge of the absolute combustion gas composition is necessary in the automotive, aircraft, processing, heating and air conditioning industries where emissions reduction is a major concern. Those industries use a variety of sensor technologies. Many of these sensors are used to analyze the gas by pumping a sample through a system of tubes to reach a remote sensor location. An inherent characteristic with this type of sampling strategy is that the mixture state changes as the sample is drawn towards the sensor. Specifically, temperature and humidity changes can be significant, resulting in a very different gas mixture at the sensor interface compared with the in situ location (water vapor dilution effect). Consequently, the gas concentrations obtained from remotely sampled gas analyzers can be significantly different than in situ values. In this study, inherent errors associated with sampled combustion gas concentration measurements are explored, and a correction methodology is presented to determine the absolute gas composition from remotely measured gas species concentrations. For in situ (wet) measurements a heated zirconium dioxide (ZrO2) oxygen sensor (Bosch LSU 4.9) is used to measure the absolute oxygen concentration. This is used to correct the remotely sampled (dry) measurements taken with an electrochemical sensor within the remote analyzer (Testo 330-2LL). In this study, such a correction is experimentally validated for a specified concentration of carbon monoxide (5020 ppmv).

  4. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires.

    PubMed

    Wang, Jun; Jiu, Jinting; Nogi, Masaya; Sugahara, Tohru; Nagao, Shijo; Koga, Hirotaka; He, Peng; Suganuma, Katsuaki

    2015-02-21

    The next-generation application of pressure sensors is gradually being extended to include electronic artificial skin (e-skin), wearable devices, humanoid robotics and smart prosthetics. In these advanced applications, high sensing capability is an essential feature for high performance. Although surface patterning treatments and some special elastomeric interlayers have been applied to improve sensitivity, the process is complex and this inevitably raises the cost and is an obstacle to large-scale production. In the present study a simple printing process without complex patterning has been used for constructing the sensor, and an interlayer is employed comprising elastomeric composites filled with silver nanowires. By increasing the relative permittivity, εr, of the composite interlayer induced by compression at high nanowire concentration, it has been possible to achieve a maximum sensitivity of 5.54 kPa(-1). The improvement in sensitivity did not sacrifice or undermine the other features of the sensor. Thanks to the silver nanowire electrodes, the sensor is flexible and stable after 200 cycles at a bending radius of 2 mm, and exhibits outstanding reproducibility without hysteresis under similar pressure pulses. The sensor has been readily integrated onto an adhesive bandage and has been successful in detecting human movements. In addition to measuring pressure in direct contact, non-contact pressures such as air flow can also be detected.

  5. Van der Waals pressure sensors using reduced graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Jung, Ju Ra; Ahn, Sung Il

    2018-04-01

    Reduced graphene oxide (RGO) films intercalated with various polymers were fabricated by reaction-based self-assembly, and their characteristics as vacuum pressure sensors based on van der Waals interactions were studied. At low temperature, the electrical resistances of the samples decrease linearly with increasing vacuum pressure, whereas at high temperature the variation of the electrical resistance shows secondary order curves. Among all samples, the poly vinyl alcohol intercalated RGO shows the highest sensitivity, being almost two times more sensitive than reference RGO. All samples show almost the same signal for repetitive sudden pressure changes, indicating reasonable reproducibility and durability.

  6. A highly flexible piezoelectret-fiber pressure sensor based on highly aligned P(VDF-TrFE) electrospun fibers

    NASA Astrophysics Data System (ADS)

    Ke, Jun-Yi; Chu, Hsin-Jung; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2017-04-01

    P(VDF-TrFE) is a ferroelectric material having a strong piezoelectric effect, a good chemical stability, chemical resistance and biocompatibility. Therefore, it is suitable for the development of flexible pressure sensors in biological applications. Using electrospinning method and a drum collector, P(VDF-TrFE) nanofibers are aligned and formed an ultrathin film sheet with a thickness of 15 to 30 μm. A 140 °C annealing process and a corona discharge poling process are conducted to increase the performance of β phase piezoelectricity. Based on this technology, a highly flexible piezoelectret pressure sensor is developed for measuring muscle movement on the surface of human body. The orientation of electrospun P(VDFTrFE) fibers and poling direction are studied to enhance the sensitivity of the piezoelectret-fiber pressure sensor. Preliminary study shows that the sensitivity of piezoelectret-fiber pressure sensor can be 110.37 pC/Pa with a high signal to noise ratio. Sensor design, experimental studies, and biological application are detailed in this paper.

  7. Foot Modeling and Smart Plantar Pressure Reconstruction from Three Sensors

    PubMed Central

    Ghaida, Hussein Abou; Mottet, Serge; Goujon, Jean-Marc

    2014-01-01

    In order to monitor pressure under feet, this study presents a biomechanical model of the human foot. The main elements of the foot that induce the plantar pressure distribution are described. Then the link between the forces applied at the ankle and the distribution of the plantar pressure is established. Assumptions are made by defining the concepts of a 3D internal foot shape, which can be extracted from the plantar pressure measurements, and a uniform elastic medium, which describes the soft tissues behaviour. In a second part, we show that just 3 discrete pressure sensors per foot are enough to generate real time plantar pressure cartographies in the standing position or during walking. Finally, the generated cartographies are compared with pressure cartographies issued from the F-SCAN system. The results show 0.01 daN (2% of full scale) average error, in the standing position. PMID:25400713

  8. Foot modeling and smart plantar pressure reconstruction from three sensors.

    PubMed

    Ghaida, Hussein Abou; Mottet, Serge; Goujon, Jean-Marc

    2014-01-01

    In order to monitor pressure under feet, this study presents a biomechanical model of the human foot. The main elements of the foot that induce the plantar pressure distribution are described. Then the link between the forces applied at the ankle and the distribution of the plantar pressure is established. Assumptions are made by defining the concepts of a 3D internal foot shape, which can be extracted from the plantar pressure measurements, and a uniform elastic medium, which describes the soft tissues behaviour. In a second part, we show that just 3 discrete pressure sensors per foot are enough to generate real time plantar pressure cartographies in the standing position or during walking. Finally, the generated cartographies are compared with pressure cartographies issued from the F-SCAN system. The results show 0.01 daN (2% of full scale) average error, in the standing position.

  9. Fiber-optic interferometric sensors for measurements of pressure fluctuations: Experimental evaluation

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Soderman, P. T.

    1993-01-01

    This paper addresses an anechoic chamber evaluation of a fiber-optic interferometric sensor (fiber-optic microphone), which is being developed at NASA Ames Research Center for measurements of pressure fluctuations in wind tunnels.

  10. Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Zhang, Hongtao; Niezrecki, Christopher; Wang, Xingwei

    2011-06-01

    Traumatic brain injury (TBI, also called intracranial injury) is a high potential threat to our soldiers. A helmet structural health monitoring system can be effectively used to study the effects of ballistic/blast events on the helmet and human skull to prevent soldiers from TBI. However, one of the biggest challenges lies in that the pressure sensor installed inside the helmet system must be fast enough to capture the blast wave during the transient period. In this paper, an ultrafast optical fiber sensor is presented to measure the blast signal. The sensor is based on a Fabry-Pérot (FP) interferometeric principle. An FP cavity is built between the endface of an etched optical fiber tip and the silica thin diaphragm attached on the end of a multimode optical fiber. The sensor is small enough to be installed in different locations of a helmet to measure blast pressure simultaneously. Several groups of tests regarding multi-layer blast events were conducted to evaluate the sensors' performance. The sensors were mounted in different segments of a shock tube side by side with the reference sensors, to measure a rapidly increasing pressure. The segments of the shock tube were filled with different media. The results demonstrated that our sensors' responses agreed well with those from the electrical reference sensors. In addition, the home-made shock tube could provide a good resource to study the propagation of blast event in different media.

  11. The Use of a Pressure-Indicating Sensor Film to Provide Feedback upon Hydrogel-Forming Microneedle Array Self-Application In Vivo.

    PubMed

    Vicente-Pérez, Eva M; Quinn, Helen L; McAlister, Emma; O'Neill, Shannon; Hanna, Lezley-Anne; Barry, Johanne G; Donnelly, Ryan F

    2016-12-01

    To evaluate the combination of a pressure-indicating sensor film with hydrogel-forming microneedle arrays, as a method of feedback to confirm MN insertion in vivo. Pilot in vitro insertion studies were conducted using a Texture Analyser to insert MN arrays, coupled with a pressure-indicating sensor film, at varying forces into excised neonatal porcine skin. In vivo studies involved twenty human volunteers, who self-applied two hydrogel-forming MN arrays, one with a pressure-indicating sensor film incorporated and one without. Optical coherence tomography was employed to measure the resulting penetration depth and colorimetric analysis to investigate the associated colour change of the pressure-indicating sensor film. Microneedle insertion was achieved in vitro at three different forces, demonstrating the colour change of the pressure-indicating sensor film upon application of increasing pressure. When self-applied in vivo, there was no significant difference in the microneedle penetration depth resulting from each type of array, with a mean depth of 237 μm recorded. When the pressure-indicating sensor film was present, a colour change occurred upon each application, providing evidence of insertion. For the first time, this study shows how the incorporation of a simple, low-cost pressure-indicating sensor film can indicate microneedle insertion in vitro and in vivo, providing visual feedback to assure the user of correct application. Such a strategy may enhance usability of a microneedle device and, hence, assist in the future translation of the technology to widespread clinical use.

  12. Determination of the Pressure Equivalent Noise Signal of Vector Sensors in a Hybrid Array

    DTIC Science & Technology

    2012-12-01

    pressure sensors for acoustic signals raises the possibility of increased sonar array performance with smaller arrays. Caulk successfully...contribution of the preamplifier in the circuit was estimated as . So the Johnson noise of the sensor wires themselves is expected to dominate

  13. Continuous glucose monitoring--a study of the Enlite sensor during hypo- and hyperbaric conditions.

    PubMed

    Adolfsson, Peter; Örnhagen, Hans; Eriksson, Bengt M; Cooper, Ken; Jendle, Johan

    2012-06-01

    The performance and accuracy of the Enlite(™) (Medtronic, Inc., Northridge, CA) sensor may be affected by microbubble formation at the electrode surface during hypo- and hyperbaric conditions. The effects of acute pressure changes and of prewetting of sensors were investigated. On Day 1, 24 sensors were inserted on the right side of the abdomen and back in one healthy individual; 12 were prewetted with saline solution, and 12 were inserted dry. On Day 2, this procedure was repeated on the left side. All sensors were attached to an iPro continuous glucose monitoring (CGM) recorder. Hypobaric and hyperbaric tests were conducted in a pressure chamber, with each test lasting 105 min. Plasma glucose values were obtained at 5-min intervals with a HemoCue(®) (Ängelholm, Sweden) model 201 glucose analyzer for comparison with sensor glucose values. Ninety percent of the CGM systems operated during the tests. The mean absolute relative difference was lower during hyperbaric than hypobaric conditions (6.7% vs. 14.9%, P<0.001). Sensor sensitivity was slightly decreased (P<0.05) during hypobaric but not during hyperbaric conditions. Clarke Error Grid Analysis showed that 100% of the values were found in the A+B region. No differences were found between prewetted and dry sensors. The Enlite sensor performed adequately during acute pressure changes and was more accurate during hyperbaric than hypobaric conditions. Prewetting the sensors did not improve accuracy. Further studies on type 1 diabetes subjects are needed under various pressure conditions.

  14. Sensors and Micromachined Devices for the Automotive and New Markets: The Delphi Delco Electronics MEMS Story.

    NASA Astrophysics Data System (ADS)

    Logsdon, James

    2002-03-01

    This presentation will provide a brief history of the development of MEMS products and technology, beginning with the manifold absolute pressure sensor in the late seventies through the current variety of Delphi Delco Electronics sensors available today. The technology development of micromachining from uncompensated P plus etch stops to deep reactive ion etching and the technology development of wafer level packaging from electrostatic bonding to glass frit sealing and silicon to silicon direct bonding will be reviewed.

  15. MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing.

    PubMed

    Pang, Cheng; Bae, Hyungdae; Gupta, Ashwani; Bryden, Kenneth; Yu, Miao

    2013-09-23

    We present a micro-electro-mechanical systems (MEMS) based Fabry-Perot (FP) sensor along with an optical system-on-a-chip (SOC) interrogator for simultaneous pressure and temperature sensing. The sensor employs a simple structure with an air-backed silicon membrane cross-axially bonded to a 45° polished optical fiber. This structure renders two cascaded FP cavities, enabling simultaneous pressure and temperature sensing in close proximity along the optical axis. The optical SOC consists of a broadband source, a MEMS FP tunable filter, a photodetector, and the supporting circuitry, serving as a miniature spectrometer for retrieving the two FP cavity lengths. Within the measured pressure and temperature ranges, experimental results demonstrate that the sensor exhibits a good linear response to external pressure and temperature changes.

  16. Development of a high resolution plantar pressure monitoring pad based on fiber Bragg grating (FBG) sensors.

    PubMed

    Suresh, R; Bhalla, S; Hao, J; Singh, C

    2015-01-01

    High importance is given to plantar pressure monitoring in the field of biomedical engineering for the diagnosis of posture related ailments associated with diseases such as diabetes and gonarthrosis. This paper presents the proof-of-concept development of a new high resolution plantar pressure monitoring pad based on fiber Bragg grating (FBG) sensors. In the proposed configuration, the FBG sensors are embedded within layers of carbon composite material (CCM) in turn conforming to an arc shape. A total of four such arc shaped sensors are instrumented in the pad at the locations of the forefoot and the hind foot. As a test of the pad, static plantar pressure is monitored on normal subjects under various posture conditions. The pad is evaluated both as a standalone platform as well as a pad inserted inside a standard shoe. An average pressure sensitivity of 1.2 pm/kPa and a resolution of approximately 0.8 kPa is obtained in this special configuration. The pad is found to be suitable in both configurations- stand-alone pad as well as an insert inside a standard shoe. The proposed set up offers a cost-effective high resolution and accurate plantar pressure measurement system suitable for clinical deployment. The novelty of the developed pressure pad lies in its ability to be used both as platform type as well as inserted in-sole type sensor system.

  17. Pressure and Temperature Sensors Using Two Spin Crossover Materials.

    PubMed

    Jureschi, Catalin-Maricel; Linares, Jorge; Boulmaali, Ayoub; Dahoo, Pierre Richard; Rotaru, Aurelian; Garcia, Yann

    2016-02-02

    The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices.

  18. Design of a 0-50 mbar pressure measurement channel compatible with the LHC tunnel radiation environment

    NASA Astrophysics Data System (ADS)

    Casas, Juan; Jelen, Dorota; Trikoupis, Nikolaos

    2017-02-01

    The monitoring of cryogenic facilities often require the measurement of pressure in the sub 5’000 Pa range that are used for flow metering applications, for saturated superfluid helium, etc. The pressure measurement is based on the minute displacement of a sensing diaphragm often through contactless techniques by using capacitive or inductive methods. The LHC radiation environment forbid the use of standard commercial sensors because of the embedded electronics that are affected both by radiation induced drift and transient Single Event Effects (SEE). Passive pressure sensors from two manufacturers were investigated and a CERN designed radiation-tolerant electronics has been developed for measuring variable-reluctance sensors. During the last maintenance stop of the LHC accelerator, four absolute pressure sensors were installed in some of the low pressure bayonet heat exchangers and four differential pressure sensors on the venturi flowmeters that monitor the cooling flow of the 20.5 kA current leads of the ATLAS end-cap superconducting toroids. The pressure sensors operating range is about 1000 to 5000 Pa and the targeted uncertainty is +/- 50 Pa which would permit to measure the equivalent saturation temperature at 1.8 K within better than 0.01 K. This paper describes the radiation hard measuring head that is based on an inductive bridge, its associated radiation-tolerant electronics that is installed under the LHC superconducting magnets or the ATLAS detector cavern; and the first operational experience.

  19. Ultrasensitive and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated Interfacial Layers for Wearable Health-Monitoring and Human-Machine Interfaces.

    PubMed

    Chang, Hochan; Kim, Sungwoong; Jin, Sumin; Lee, Seung-Woo; Yang, Gil-Tae; Lee, Ki-Young; Yi, Hyunjung

    2018-01-10

    Flexible piezoresistive sensors have huge potential for health monitoring, human-machine interfaces, prosthetic limbs, and intelligent robotics. A variety of nanomaterials and structural schemes have been proposed for realizing ultrasensitive flexible piezoresistive sensors. However, despite the success of recent efforts, high sensitivity within narrower pressure ranges and/or the challenging adhesion and stability issues still potentially limit their broad applications. Herein, we introduce a biomaterial-based scheme for the development of flexible pressure sensors that are ultrasensitive (resistance change by 5 orders) over a broad pressure range of 0.1-100 kPa, promptly responsive (20 ms), and yet highly stable. We show that employing biomaterial-incorporated conductive networks of single-walled carbon nanotubes as interfacial layers of contact-based resistive pressure sensors significantly enhances piezoresistive response via effective modulation of the interlayer resistance and provides stable interfaces for the pressure sensors. The developed flexible sensor is capable of real-time monitoring of wrist pulse waves under external medium pressure levels and providing pressure profiles applied by a thumb and a forefinger during object manipulation at a low voltage (1 V) and power consumption (<12 μW). This work provides a new insight into the material candidates and approaches for the development of wearable health-monitoring and human-machine interfaces.

  20. A Flexible Sensor Technology for the Distributed Measurement of Interaction Pressure

    PubMed Central

    Donati, Marco; Vitiello, Nicola; De Rossi, Stefano Marco Maria; Lenzi, Tommaso; Crea, Simona; Persichetti, Alessandro; Giovacchini, Francesco; Koopman, Bram; Podobnik, Janez; Munih, Marko; Carrozza, Maria Chiara

    2013-01-01

    We present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant'Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes and shapes, and to measure different pressure ranges. In this work we present the main application areas for this technology. A first generation of the system was used to monitor human-robot interaction in upper- (NEUROExos; Scuola Superiore Sant'Anna) and lower-limb (LOPES; University of Twente) exoskeletons for rehabilitation. A second generation, with increased resolution and wireless connection, was used to develop a pressure-sensitive foot insole and an improved human-robot interaction measurement systems. The experimental characterization of the latter system along with its validation on three healthy subjects is presented here for the first time. A perspective on future uses and development of the technology is finally drafted. PMID:23322104

  1. Low-cost rapid miniature optical pressure sensors for blast wave measurements.

    PubMed

    Wu, Nan; Wang, Wenhui; Tian, Ye; Zou, Xiaotian; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2011-05-23

    This paper presents an optical pressure sensor based on a Fabry-Perot (FP) interferometer formed by a 45° angle polished single mode fiber and an external silicon nitride diaphragm. The sensor is comprised of two V-shape grooves with different widths on a silicon chip, a silicon nitride diaphragm released on the surface of the wider V-groove, and a 45° angle polished single mode fiber. The sensor is especially suitable for blast wave measurements: its compact structure ensures a high spatial resolution; its thin diaphragm based design and the optical demodulation scheme allow a fast response to the rapid changing signals experienced during blast events. The sensor shows linearity with the correlation coefficient of 0.9999 as well as a hysteresis of less than 0.3%. The shock tube test demonstrated that the sensor has a rise time of less than 2 µs from 0 kPa to 140 kPa.

  2. Research on a new fiber-optic axial pressure sensor of transformer winding based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Li, Lianqing; Zhao, Lin; Wang, Jiqiang; Liu, Tongyu

    2017-12-01

    Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7% FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.

  3. An optical fiber infrasound sensor: a new lower limit on atmospheric pressure noise between 1 and 10 Hz.

    PubMed

    Zumberge, Mark A; Berger, Jonathan; Hedlin, Michael A H; Husmann, Eric; Nooner, Scott; Hilt, Richard; Widmer-Schnidrig, Rudolf

    2003-05-01

    A new distributed sensor for detecting pressure variations caused by distant sources has been developed. The instrument reduces noise due to air turbulence in the infrasound band by averaging pressure along a line by means of monitoring strain in a long tubular diaphragm with an optical fiber interferometer. Above 1 Hz, the optical fiber infrasound sensor (OFIS) is less noisy than sensors relying on mechanical filters. Records collected from an 89-m-long OFS indicate a new low noise limit in the band from 1 to 10 Hz. Because the OFIS integrates pressure variations at light-speed rather than the speed of sound, phase delays of the acoustical signals caused by the sensor are negligible. Very long fiber-optic sensors are feasible and hold the promise of better wind-noise reduction than can be achieved with acoustical-mechanical systems.

  4. Development and testing of bio-inspired microelectromechanical pressure sensor arrays for increased situational awareness for marine vehicles

    NASA Astrophysics Data System (ADS)

    Dusek, J.; Kottapalli, A. G. P.; Woo, M. E.; Asadnia, M.; Miao, J.; Lang, J. H.; Triantafyllou, M. S.

    2013-01-01

    The lateral line found on most species of fish is a sensory organ without analog in humans. Using sensory feedback from the lateral line, fish are able to track prey, school, avoid obstacles, and detect vortical flow structures. Composed of both a superficial component, and a component contained within canals beneath the fish’s skin, the lateral line acts in a similar fashion to an array of differential pressure sensors. In an effort to enhance the situational and environmental awareness of marine vehicles, lateral-line-inspired pressure sensor arrays were developed to mimic the enhanced sensory capabilities observed in fish. Three flexible and waterproof pressure sensor arrays were fabricated for use as a surface-mounted ‘smart skin’ on marine vehicles. Two of the sensor arrays were based around the use of commercially available piezoresistive sensor dies, with innovative packaging schemes to allow for flexibility and underwater operation. The sensor arrays employed liquid crystal polymer and flexible printed circuit board substrates with metallic circuits and silicone encapsulation. The third sensor array employed a novel nanocomposite material set that allowed for the fabrication of a completely flexible sensor array. All three sensors were surface mounted on the curved hull of an autonomous kayak vehicle, and tested in both pool and reservoir environments. Results demonstrated that all three sensors were operational while deployed on the autonomous vehicle, and provided an accurate means for monitoring the vehicle dynamics.

  5. Design and simulation analysis of a novel pressure sensor based on graphene film

    NASA Astrophysics Data System (ADS)

    Nie, M.; Xia, Y. H.; Guo, A. Q.

    2018-02-01

    A novel pressure sensor structure based on graphene film as the sensitive membrane was proposed in this paper, which solved the problem to measure low and minor pressure with high sensitivity. Moreover, the fabrication process was designed which can be compatible with CMOS IC fabrication technology. Finite element analysis has been used to simulate the displacement distribution of the thin movable graphene film of the designed pressure sensor under the different pressures with different dimensions. From the simulation results, the optimized structure has been obtained which can be applied in the low measurement range from 10hPa to 60hPa. The length and thickness of the graphene film could be designed as 100μm and 0.2μm, respectively. The maximum mechanical stress on the edge of the sensitive membrane was 1.84kPa, which was far below the breaking strength of the silicon nitride and graphene film.

  6. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins.

    PubMed

    Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen

    2018-03-16

    Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O 3 ) microengineering technique. The UV/O 3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ∼ -0.101 ± 0.005 kPa -1 (<1 kPa), a fast response/relaxation speed of ∼10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O 3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.

  7. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins

    NASA Astrophysics Data System (ADS)

    Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen

    2018-03-01

    Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O3) microengineering technique. The UV/O3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ˜ -0.101 ± 0.005 kPa-1 (<1 kPa), a fast response/relaxation speed of ˜10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.

  8. Programmable assembly of pressure sensors using pattern-forming bacteria.

    PubMed

    Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong

    2017-11-01

    Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to assemble patterned materials. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height, and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration.

  9. A Novel Intracranial Pressure Readout Circuit for Passive Wireless LC Sensor.

    PubMed

    Wang, Fa; Zhang, Xuan; Shokoueinejad, Mehdi; Iskandar, Bermans J; Medow, Joshua E; Webster, John G

    2017-10-01

    We present a wide frequency range, low cost, wireless intracranial pressure monitoring system, which includes an implantable passive sensor and an external reader. The passive sensor consists of two spiral coils and transduces the pressure change to a resonant frequency shift. The external portable reader reads out the sensor's resonant frequency over a wide frequency range (35 MHz-2.7 GHz). We propose a novel circuit topology, which tracks the system's impedance and phase change at a high frequency with low-cost components. This circuit is very simple and reliable. A prototype has been developed, and measurement results demonstrate that the device achieves a suitable measurement distance (>2 cm), sufficient sample frequency (>6 Hz), fine resolution, and good measurement accuracy for medical practice. Responsivity of this prototype is 0.92 MHz/mmHg and resolution is 0.028 mmHg. COMSOL specific absorption rate simulation proves that this system is safe. Considerations to improve the device performance have been discussed, which include the size of antenna, the power radiation, the Analog-to-digital converter (ADC) choice, and the signal processing algorithm.

  10. Post-exercise contractility, diastolic function, and pressure: Operator-independent sensor-based intelligent monitoring for heart failure telemedicine

    PubMed Central

    Bombardini, Tonino; Gemignani, Vincenzo; Bianchini, Elisabetta; Pasanisi, Emilio; Pratali, Lorenza; Pianelli, Mascia; Faita, Francesco; Giannoni, Massimo; Arpesella, Giorgio; Sicari, Rosa; Picano, Eugenio

    2009-01-01

    Background New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates. Aim To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system. Methods We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording. Results Interpretable sensor recordings were obtained in all patients (feasibility = 100%). Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value) was more frequent in patients than controls (27% vs 8%, p < 0.05). At 100 bpm stress heart rate, systolic/diastolic time ratio (normal, < 1) was > 1 in 20 patients and in none of the controls (p < 0.01); at recovery systolic/diastolic ratio was > 1 in only 3 patients (p < 0.01 vs stress). Post-exercise reduced arterial pressure was sensed. Conclusion Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor. PMID:19442285

  11. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors

    NASA Astrophysics Data System (ADS)

    Sahatiya, Parikshit; Badhulika, Sushmee

    2017-03-01

    This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa-1.To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.

  12. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors.

    PubMed

    Sahatiya, Parikshit; Badhulika, Sushmee

    2017-03-03

    This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa -1 .To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.

  13. Dynamic tire pressure sensor for measuring ground vibration.

    PubMed

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  14. Dynamic Tire Pressure Sensor for Measuring Ground Vibration

    PubMed Central

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L.

    2012-01-01

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application. PMID:23202206

  15. Using Smartphone Pressure Sensors to Measure Vertical Velocities of Elevators, Stairways, and Drones

    ERIC Educational Resources Information Center

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…

  16. Fiber optic pressure sensors in skin-friction measurements

    NASA Technical Reports Server (NTRS)

    Cuomo, F. W.

    1986-01-01

    A fiber optic lever sensing technique that can be used to measure normal pressure as well as shear stresses is discussed. This method uses three unequal fibers combining small size and good sensitivity. Static measurements appear to confirm the theoretical models predicted by geometrical optics and dynamic tests performed at frequencies up to 10 kHz indicate a flat response within this frequency range. These sensors are intended for use in a low speed wind tunnel environment.

  17. High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing.

    PubMed

    Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L

    2016-07-01

    A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An arc tangent function demodulation method of fiber-optic Fabry-Perot high-temperature pressure sensor

    NASA Astrophysics Data System (ADS)

    Ren, Qianyu; Li, Junhong; Hong, Yingping; Jia, Pinggang; Xiong, Jijun

    2017-09-01

    A new demodulation algorithm of the fiber-optic Fabry-Perot cavity length based on the phase generated carrier (PGC) is proposed in this paper, which can be applied in the high-temperature pressure sensor. This new algorithm based on arc tangent function outputs two orthogonal signals by utilizing an optical system, which is designed based on the field-programmable gate array (FPGA) to overcome the range limit of the original PGC arc tangent function demodulation algorithm. The simulation and analysis are also carried on. According to the analysis of demodulation speed and precision, the simulation of different numbers of sampling points, and measurement results of the pressure sensor, the arc tangent function demodulation method has good demodulation results: 1 MHz processing speed of single data and less than 1% error showing practical feasibility in the fiber-optic Fabry-Perot cavity length demodulation of the Fabry-Perot high-temperature pressure sensor.

  19. Multi-Channel Electronically Scanned Cryogenic Pressure Sensor And Method For Making Same

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Holloway, Nancy M. (Inventor)

    2001-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multi-element array. These dies are bonded at specific sites on a glass, pre-patterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  20. Prediction of Composite Pressure Vessel Failure Location using Fiber Bragg Grating Sensors

    NASA Technical Reports Server (NTRS)

    Kreger, Steven T.; Taylor, F. Tad; Ortyl, Nicholas E.; Grant, Joseph

    2006-01-01

    Ten composite pressure vessels were instrumented with fiber Bragg grating sensors in order to assess the strain levels of the vessel under various loading conditions. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and present a possible methodology for predicting the failure location and strain level of composite pressure vessels.

  1. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks.

    PubMed

    Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif

    2017-03-19

    In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast.

  2. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks

    PubMed Central

    Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif

    2017-01-01

    In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast. PMID:28335494

  3. Highly Sensitive Flexible Pressure Sensors Based on Printed Organic Transistors with Centro-Apically Self-Organized Organic Semiconductor Microstructures.

    PubMed

    Yeo, So Young; Park, Sangsik; Yi, Yeon Jin; Kim, Do Hwan; Lim, Jung Ah

    2017-12-13

    A highly sensitive pressure sensor based on printed organic transistors with three-dimensionally self-organized organic semiconductor microstructures (3D OSCs) was demonstrated. A unique organic transistor with semiconductor channels positioned at the highest summit of printed cylindrical microstructures was achieved simply by printing an organic semiconductor and polymer blend on the plastic substrate without the use of additional etching or replication processes. A combination of the printed organic semiconductor microstructure and an elastomeric top-gate dielectric resulted in a highly sensitive organic field-effect transistor (FET) pressure sensor with a high pressure sensitivity of 1.07 kPa -1 and a rapid response time of <20 ms with a high reliability over 1000 cycles. The flexibility and high performance of the 3D OSC FET pressure sensor were exploited in the successful application of our sensors to real-time monitoring of the radial artery pulse, which is useful for healthcare monitoring, and to touch sensing in the e-skin of a realistic prosthetic hand.

  4. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  5. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-09-01

    A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s-1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  6. Programmable assembly of pressure sensors using pattern-forming bacteria

    PubMed Central

    Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D.; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong

    2017-01-01

    Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to mimic such natural processes to assemble patterned materials.. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration. PMID:28991268

  7. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-03-01

    A new laser air-motion sensor measures the true airspeed with an uncertainty of less than 0.1 m s-1 (standard error) and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard-error uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the Global Positioning System, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that the new laser air-motion sensor, combined with parametrized fits to correction factors for the measured dynamic and ambient pressure, provides a measurement of temperature that is independent of any other temperature sensor.

  8. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  9. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter.

    PubMed

    Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun

    2017-01-23

    In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.

  10. Urodynamic catheter moisture sensor: A novel device to improve leak point pressure detection.

    PubMed

    Marshall, Blake R; Arlen, Angela M; Kirsch, Andrew J

    2016-06-01

    High-quality urodynamic studies in patients with neurogenic lower urinary tract dysfunction are important, as UDS may be the only reliable gauge of potential risk for upper tract deterioration and the optimal tool to guide lower urinary tract management. Reliance on direct visualization of leakage during typical UDS remains a potential source of error. Given the necessity of accurate leak point pressures, we developed a wireless leak detection sensor to eliminate the need for visual inspection during UDS. A mean decrease in detrusor leak point pressure of 3 cm/H2 0 and a mean 11% decrease in capacity at leakage was observed when employing the sensor compared to visual inspection in children undergoing two fillings during a single UDS session. Removing the visual inspection component of UDS may improve accuracy of pressure readings. Neurourol. Urodynam. 35:647-648, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Development of a piezopolymer pressure sensor for a portable fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Pretlow, R. A.; Stoughton, J. W.; Baker, D. A.

    1993-01-01

    A piezopolymer pressure sensor has been developed for service in a portable fetal heart rate monitor, which will permit an expectant mother to perform the fetal nonstress test, a standard predelivery test, in her home. Several sensors are mounted in an array on a belt worn by the mother. The sensor design conforms to the distinctive features of the fetal heart tone, namely, the acoustic signature, frequency spectrum, signal amplitude, and localization. The components of a sensor serve to fulfill five functions: signal detection, acceleration cancellation, acoustical isolation, electrical shielding, and electrical isolation of the mother. A theoretical analysis of the sensor response yields a numerical value for the sensor sensitivity, which is compared to experiment in an in vitro sensor calibration. Finally, an in vivo test on patients within the last six weeks of term reveals that nonstress test recordings from the acoustic monitor compare well with those obtained from conventional ultrasound.

  12. Low-cost and disposable pressure sensor mat for non-invasive sleep and movement monitoring applications.

    PubMed

    Abraham, Jose K; Sullivan, Shawn; Ranganathan, Sridhar

    2011-01-01

    Sleep has profound effects on the physical and mental well-being of an individual. The National Institutes of Health (NIH) Sleep Disorder Research Plan gives particular emphasis to non-invasive sleep monitoring methods. Older adults experience sleep fragmentation due to sleep disorders. Unobtrusive non-contact monitoring can be the only realistic solution for long term home-based sleep monitoring. The demand for a low-cost and non-invasive sleep monitoring system for in-home use is more than before due to an increasingly stressful life style. Cost and complexity of current sensor elements hinder the development of low-cost sleep monitoring devices for in-home use. This paper presents the design, development and implementation of a low-cost and disposable pressure sensor mat that could be useful for in-home sleep and movement monitoring applications. The sensor mat design is based on a compressible foam sandwiched between two orthogonal arrays of cPaper capacitance sensors. A low-cost conducting paper has been developed for use as the capacitance sensor electrode. Typical mat design uses a 3 mm thick foam with 5 mm row/column grid array shows that it has a measurement resolution of 0.1 PSI pressure. The resolution can be controlled by both modifying properties of the conducting paper and the foam. Since this pressure mat design is based on low-cost paper, the sensor electrodes are disposable or semi-durable and hence it is ideal for the use in point-of-care physiological monitoring, pervasive healthcare and consumer electronic devices.

  13. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care

    NASA Astrophysics Data System (ADS)

    Chen, Lisa Y.; Tee, Benjamin C.-K.; Chortos, Alex L.; Schwartz, Gregor; Tse, Victor; J. Lipomi, Darren; Wong, H.-S. Philip; McConnell, Michael V.; Bao, Zhenan

    2014-10-01

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  14. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care.

    PubMed

    Chen, Lisa Y; Tee, Benjamin C-K; Chortos, Alex L; Schwartz, Gregor; Tse, Victor; Lipomi, Darren J; Wong, H-S Philip; McConnell, Michael V; Bao, Zhenan

    2014-10-06

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  15. Simultaneous Detection of Displacement, Rotation Angle, and Contact Pressure Using Sandpaper Molded Elastomer Based Triple Electrode Sensor

    PubMed Central

    Sul, Onejae; Lee, Seung-Beck

    2017-01-01

    In this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement. The sensor showed a 0.25 mm−1 displacement sensitivity with a ±33 μm accuracy, a 0.027 degree−1 of rotation sensitivity with ~0.95 degree accuracy, and a 4.96 kP−1 of pressure sensitivity. For possible application to joint movement detection, we demonstrated that our sensor effectively detected the up-and-down motion of a human forefinger and the bending and straightening motion of a human arm. PMID:28878166

  16. Simultaneous Detection of Displacement, Rotation Angle, and Contact Pressure Using Sandpaper Molded Elastomer Based Triple Electrode Sensor.

    PubMed

    Choi, Eunsuk; Sul, Onejae; Lee, Seung-Beck

    2017-09-06

    In this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement. The sensor showed a 0.25 mm −1 displacement sensitivity with a ±33 μm accuracy, a 0.027 degree −1 of rotation sensitivity with ~0.95 degree accuracy, and a 4.96 kP −1 of pressure sensitivity. For possible application to joint movement detection, we demonstrated that our sensor effectively detected the up-and-down motion of a human forefinger and the bending and straightening motion of a human arm.

  17. Assessing Walking Strategies Using Insole Pressure Sensors for Stroke Survivors.

    PubMed

    Munoz-Organero, Mario; Parker, Jack; Powell, Lauren; Mawson, Susan

    2016-10-01

    Insole pressure sensors capture the different forces exercised over the different parts of the sole when performing tasks standing up such as walking. Using data analysis and machine learning techniques, common patterns and strategies from different users to achieve different tasks can be automatically extracted. In this paper, we present the results obtained for the automatic detection of different strategies used by stroke survivors when walking as integrated into an Information Communication Technology (ICT) enhanced Personalised Self-Management Rehabilitation System (PSMrS) for stroke rehabilitation. Fourteen stroke survivors and 10 healthy controls have participated in the experiment by walking six times a distance from chair to chair of approximately 10 m long. The Rivermead Mobility Index was used to assess the functional ability of each individual in the stroke survivor group. Several walking strategies are studied based on data gathered from insole pressure sensors and patterns found in stroke survivor patients are compared with average patterns found in healthy control users. A mechanism to automatically estimate a mobility index based on the similarity of the pressure patterns to a stereotyped stride is also used. Both data gathered from stroke survivors and healthy controls are used to evaluate the proposed mechanisms. The output of trained algorithms is applied to the PSMrS system to provide feedback on gait quality enabling stroke survivors to self-manage their rehabilitation.

  18. Developing ultrasensitive pressure sensor based on graphene nanoribbon: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Kwon, Oh Kuen; Lee, Jun Ha; Kim, Ki-Sub; Kang, Jeong Won

    2013-01-01

    We propose schematics for an ultra-sensitive pressure sensor based on graphene-nanoribbon (GNR) and investigate its electromechanical properties using classical molecular dynamics simulations and piezo-electricity theory. Since the top plate applied to the actual pressure is large whereas the contact area on the GNR is very small, both the sensitivity and the sensing range can be adjusted by controlling the aspect ratio between the top plate and the contact point areas. Our calculation shows that the electrical conductivity of GNRs can be tuned by the applied pressure and the electric conductance of the deflected GNR linearly increases with increasing applied pressure for the linear elastic region in low pressure below the cut-off point. In the curves for both the deflection and potential energy, the linear elastic regime in low pressure was explicitly separated with the non-linear elastic regime in high pressure. The proposed GNR-based nanoelectromechanical devices have great potential for application as electromechanical memory, relay or switching devices.

  19. Textile Pressure Sensor Made of Flexible Plastic Optical Fibers

    PubMed Central

    Rothmaier, Markus; Luong, Minh Phi; Clemens, Frank

    2008-01-01

    In this paper we report the successful development of pressure sensitive textile prototypes based on flexible optical fibers technology. Our approach is based on thermoplastic silicone fibers, which can be integrated into woven textiles. As soon as pressure at a certain area of the textile is applied to these fibers they change their cross section reversibly, due to their elastomeric character, and a simultaneous change in transmitted light intensity can be detected. We have successfully manufactured two different woven samples with fibers of 0.51 and 0.98 mm diameter in warp and weft direction, forming a pressure sensitive matrix. Determining their physical behavior when a force is applied shows that pressure measurements are feasible. Their usable working range is between 0 and 30 N. Small drifts in the range of 0.2 to 4.6%, over 25 load cycles, could be measured. Finally, a sensor array of 2 × 2 optical fibers was tested for sensitivity, spatial resolution and light coupling between fibers at intersections. PMID:27879938

  20. Tuning the sensing range of silicon pressure sensor by trench etching technology

    NASA Astrophysics Data System (ADS)

    Chou, Yu-Tuan; Lin, Hung-Yi; Hu, Hsin-Hua

    2006-01-01

    The silicon pressure sensor has been developed for over thirty years and widely used in automobiles, medical instruments, commercial electronics, etc. There are many different specifications of silicon pressure sensors that cover a very large sensing range, from less than 1 psi to as high as 1000 psi. The key elements of the silicon pressure sensor are a square membrane and the piezoresistive strain gages near the boundary of the membrane. The dimensions of the membrane determine the full sensing range and the sensitivity of the silicon sensor, including thickness and in-plane length. Unfortunately, in order to change the sensing range, the manufacturers need to order a customized epi wafer to get the desired thickness. All masks (usually six) have to be re-laid and re-fabricated for different membrane sizes. The existing technology requires at least three months to deliver the prototype for specific customer requests or the new application market. This research proposes a new approach to dramatically reduce the prototyping time from three months to one week. The concept is to tune the rigidity of the sensing membrane by modifying the boundary conditions without changing the plenary size. An extra mask is utilized to define the geometry and location of deep-RIE trenches and all other masks remain the same. Membranes with different depths and different patterns of trenches are designed for different full sensing ranges. The simulation results show that for a 17um thick and 750um wide membrane, the adjustable range by tuning trench depth is about 45% (from 5um to 10um), and can go to as high as 100% by tuning both the pattern and depth of the trenches. Based on an actual test in a product fabrication line, we verified that the total delivery time can be minimized to one week to make the prototyping very effective and cost-efficient.