Sample records for absolute quantitation itraq-based

  1. Proteome Analysis Using Isobaric Tags for Relative and Absolute Analysis Quantitation (iTRAQ) Reveals Alterations in Stress-Induced Dysfunctional Chicken Muscle.

    PubMed

    Xing, Tong; Wang, Chong; Zhao, Xue; Dai, Chen; Zhou, Guanghong; Xu, Xinglian

    2017-04-05

    The current study was designed to investigate changes in the protein profiles of pale, soft, and exudative (PSE)-like muscles of broilers subjected to transportation under high-temperature conditions, using isobaric tags for relative and absolute analysis quantitation (iTRAQ). Arbor Acres chickens (n = 112) were randomly divided into two treatments: unstressed control (CON) and 0.5 h of transport (T). Birds were transported according to a designed protocol. Pectoralis major (PM) muscle samples in the T group were collected and classified as normal (T-NOR) or PSE-like (T-PSE). Plasma activities of stress indicators, muscle microstructure, and proteome were measured. Results indicated that broilers in the T-PSE group exhibited higher activities of plasma stress indicators. The microstructure of T-PSE group showed a looser network and larger intercellular spaces in comparison to the other groups. Proteomic analysis, based on iTRAQ, revealed 29 differentially expressed proteins in the T-NOR and T-PSE groups that were involved in protein turnover, signal transduction, stress and defense, calcium handling, cell structure, and metabolism. In particular, proteins relating to the glycolysis pathway, calcium signaling, and molecular chaperones exhibited significant differences that may contribute to the inferior post-mortem meat quality. Overall, the proteomic results provide a further understanding of the mechanism of meat quality changes in response to stress.

  2. ITRAQ-based quantitative proteomic analysis of Cynops orientalis limb regeneration.

    PubMed

    Tang, Jie; Yu, Yuan; Zheng, Hanxue; Yin, Lu; Sun, Mei; Wang, Wenjun; Cui, Jihong; Liu, Wenguang; Xie, Xin; Chen, Fulin

    2017-09-22

    Salamanders regenerate their limbs after amputation. However, the molecular mechanism of this unique regeneration remains unclear. In this study, isobaric tags for relative and absolute quantification (iTRAQ) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) was employed to quantitatively identify differentially expressed proteins in regenerating limbs 3, 7, 14, 30 and 42 days post amputation (dpa). Of 2636 proteins detected in total, 253 proteins were differentially expressed during different regeneration stages. Among these proteins, Asporin, Cadherin-13, Keratin, Collagen alpha-1(XI) and Titin were down-regulated. CAPG, Coronin-1A, AnnexinA1, Cathepsin B were up-regulated compared with the control. The identified proteins were further analyzed to obtain information about their expression patterns and functions in limb regeneration. Functional analysis indicated that the differentially expressed proteins were associated with wound healing, immune response, cellular process, metabolism and binding. This work indicated that significant proteome alternations occurred during salamander limb regeneration. The results may provide fundamental knowledge to understand the mechanism of limb regeneration.

  3. Identification of cellular MMP substrates using quantitative proteomics: isotope-coded affinity tags (ICAT) and isobaric tags for relative and absolute quantification (iTRAQ).

    PubMed

    Butler, Georgina S; Dean, Richard A; Morrison, Charlotte J; Overall, Christopher M

    2010-01-01

    Identification of protease substrates is essential to understand the functional consequences of normal proteolytic processing and dysregulated proteolysis in disease. Quantitative proteomics and mass spectrometry can be used to identify protease substrates in the cellular context. Here we describe the use of two protein labeling techniques, Isotope-Coded Affinity Tags (ICAT and Isobaric Tags for Relative and Absolute Quantification (iTRAQ), which we have used successfully to identify novel matrix metalloproteinase (MMP) substrates in cell culture systems (1-4). ICAT and iTRAQ can label proteins and protease cleavage products of secreted proteins, protein domains shed from the cell membrane or pericellular matrix of protease-transfected cells that have accumulated in conditioned medium, or cell surface proteins in membrane preparations; isotopically distinct labels are used for control cells. Tryptic digestion and tandem mass spectrometry of the generated fragments enable sequencing of differentially labeled but otherwise identical pooled peptides. The isotopic tag, which is unique for each label, identifies the peptides originating from each sample, for instance, protease-transfected or control cells, and comparison of the peak areas enables relative quantification of the peptide in each sample. Thus proteins present in altered amounts between protease-expressing and null cells are implicated as protease substrates and can be further validated as such.

  4. Electron Transfer Dissociation of iTRAQ Labeled Peptide Ions

    PubMed Central

    Han, Hongling; Pappin, Darryl J.; Ross, Philip L; McLuckey, Scott A.

    2009-01-01

    Triply and doubly charged iTRAQ (isobaric tagging for relative and absolute quantitation) labeled peptide cations from a tryptic peptide mixture of bovine carbonic anhydrase II were subjected to electron transfer ion/ion reactions to investigate the effect of charge bearing modifications associated with iTRAQ on the fragmentation pattern. It was noted that electron transfer dissociation (ETD) of triply charged or activated ETD (ETD + supplemental collisional activation of intact electron transfer species) of doubly charged iTRAQ tagged peptide ions yielded extensive sequence information, in analogy with ETD of unmodified peptide ions. That is, addition of the fixed charge iTRAQ tag showed relatively little deleterious effect on the ETD performance of the modified peptides. ETD of the triply charged iTRAQ labeled peptide ions followed by collision-induced dissociation (CID) of the product ion at m/z 162 yielded the reporter ion at m/z 116, which is the reporter ion used for quantitation via CID of the same precursor ions. The reporter ion formed via the two-step activation process is expected to provide quantitative information similar to that directly produced from CID. A 103 Da neutral loss species observed in the ETD spectra of all the triply and doubly charged iTRAQ labeled peptide ions is unique to the 116 Da iTRAQ reagent, which implies that this process also has potential for quantitation of peptides/proteins. Therefore, ETD with or without supplemental collisional activation, depending on the precursor ion charge state, has the potential to directly identify and quantify the peptides/proteins simultaneously using existing iTRAQ reagents. PMID:18646790

  5. IsobariQ: software for isobaric quantitative proteomics using IPTL, iTRAQ, and TMT.

    PubMed

    Arntzen, Magnus Ø; Koehler, Christian J; Barsnes, Harald; Berven, Frode S; Treumann, Achim; Thiede, Bernd

    2011-02-04

    Isobaric peptide labeling plays an important role in relative quantitative comparisons of proteomes. Isobaric labeling techniques utilize MS/MS spectra for relative quantification, which can be either based on the relative intensities of reporter ions in the low mass region (iTRAQ and TMT) or on the relative intensities of quantification signatures throughout the spectrum due to isobaric peptide termini labeling (IPTL). Due to the increased quantitative information found in MS/MS fragment spectra generated by the recently developed IPTL approach, new software was required to extract the quantitative information. IsobariQ was specifically developed for this purpose; however, support for the reporter ion techniques iTRAQ and TMT is also included. In addition, to address recently emphasized issues about heterogeneity of variance in proteomics data sets, IsobariQ employs the statistical software package R and variance stabilizing normalization (VSN) algorithms available therein. Finally, the functionality of IsobariQ is validated with data sets of experiments using 6-plex TMT and IPTL. Notably, protein substrates resulting from cleavage by proteases can be identified as shown for caspase targets in apoptosis.

  6. Statistical inference from multiple iTRAQ experiments without using common reference standards.

    PubMed

    Herbrich, Shelley M; Cole, Robert N; West, Keith P; Schulze, Kerry; Yager, James D; Groopman, John D; Christian, Parul; Wu, Lee; O'Meally, Robert N; May, Damon H; McIntosh, Martin W; Ruczinski, Ingo

    2013-02-01

    Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of all samples, or "masterpool", in one of the channels as a reference sample standard to estimate protein relative abundances in the biological samples and to combine abundance estimates from multiple experiments. In this manuscript, we show that using a masterpool is counterproductive. We obtain more precise estimates of protein relative abundance by using the available biological data instead of the masterpool and do not need to occupy a channel that could otherwise be used for another biological sample. In addition, we introduce a simple statistical method to associate proteomic data from multiple iTRAQ experiments with a numeric response and show that this approach is more powerful than the conventionally employed masterpool-based approach. We illustrate our methods using data from four replicate iTRAQ experiments on aliquots of the same pool of plasma samples and from a 406-sample project designed to identify plasma proteins that covary with nutrient concentrations in chronically undernourished children from South Asia.

  7. Toxicoproteomics in Aquatic Toxicology: iTRAQ Reveals Insight into Proteins Affected by 17alpha-ethinylestradiol, Dieldrin, and 17â-trenbolone

    EPA Science Inventory

    Toxicoproteomics is an emerging discipline in toxicology for characterizing chemical modes of action at the molecular level. We have successfully utilized a quantitative proteomics method termed isobaric tagging for relative and absolute quantitation (iTRAQ) to measure protein re...

  8. Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ.

    PubMed

    Rudrabhatla, Parvathi; Grant, Philip; Jaffe, Howard; Strong, Michael J; Pant, Harish C

    2010-11-01

    Aberrant hyperphosphorylation of neuronal cytoskeletal proteins is one of the major pathological hallmarks of neurodegenerative disorders such as Alzheimer disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Human NF-M/H display a large number of multiple KSP repeats in the carboxy-terminal tail domain, which are phosphorylation sites of proline-directed serine/threonine (pSer/Thr-Pro, KS/T-P) kinases. The phosphorylation sites of NF-M/H have not been characterized in AD brain. Here, we use quantitative phosphoproteomic methodology, isobaric tag for relative and absolute quantitation (iTRAQ), for the characterization of NF-M/H phosphorylation sites in AD brain. We identified 13 hyperphosphorylated sites of NF-M; 9 Lys-Ser-Pro (KSP) sites; 2 variant motifs, Glu-Ser-Pro (ESP) Ser-736 and Leu-Ser-Pro (LSP) Ser-837; and 2 non-S/T-P motifs, Ser-783 and Ser-788. All the Ser/Thr residues are phosphorylated at significantly greater abundance in AD brain compared with control brain. Ten hyperphosphorylated KSP sites have been identified on the C-terminal tail domain of NF-H, with greater abundance of phosphorylation in AD brain compared with control brain. Our data provide the direct evidence that NF-M/H are hyperphosphorylated in AD compared with control brain and suggest the role of both proline-directed and non-proline-directed protein kinases in AD. This study represents the first comprehensive iTRAQ analyses and quantification of phosphorylation sites of human NF-M and NF-H from AD brain and suggests that aberrant hyperphosphorylation of neuronal intermediate filament proteins is involved in AD.

  9. Detection of Protein Modifications and Counterfeit Protein Pharmaceuticals Using iTRAQ and MALDI TOF/TOF Mass Spectrometry: Studies with Insulins

    PubMed Central

    Ye, Hongping; Hill, John; Kauffman, John; Gryniewicz, Connie; Han, Xianlin

    2013-01-01

    iTRAQ (isotope tags for relative and absolute quantification) reagent coupled with MALDI TOF/TOF mass spectrometric analysis has been evaluated as both a qualitative and quantitative method for the detection of modifications to active pharmaceutical ingredients derived from recombinant DNA technologies, and as a method to detect counterfeit drug products. Five types of insulin (human, bovine, porcine, Lispro, Lantus®) were used as model products in the study because of their minor variations in amino acid sequence. Several experiments were conducted in which each insulin variant was separately digested with Glu-C, and the digestate was labeled with one of four different iTRAQ reagents. All digestates were then combined for desalting and MALDI TOF/TOF mass spectrometric analysis. When the digestion procedure was optimized, the insulin sequence coverage was 100%. Five different types of insulin were readily differentiated, including Human insulin (P28K29) and Lispro (K28P29), which only differ by the interchange of two contiguous residues. Moreover, quantitative analyses show that the results obtained from the iTRAQ method agree well with those determined by other conventional methods. Collectively, the iTRAQ method can be used as a qualitative and quantitative technique for the detection of protein modification and counterfeiting. PMID:18489896

  10. Analysis of Reproducibility of Proteome Coverage and Quantitation Using Isobaric Mass Tags (iTRAQ and TMT).

    PubMed

    Casey, Tammy M; Khan, Javed M; Bringans, Scott D; Koudelka, Tomas; Takle, Pari S; Downs, Rachael A; Livk, Andreja; Syme, Robert A; Tan, Kar-Chun; Lipscombe, Richard J

    2017-02-03

    This study aimed to compare the depth and reproducibility of total proteome and differentially expressed protein coverage in technical duplicates and triplicates using iTRAQ 4-plex, iTRAQ 8-plex, and TMT 6-plex reagents. The analysis was undertaken because comprehensive comparisons of isobaric mass tag reproducibility have not been widely reported in the literature. The highest number of proteins was identified with 4-plex, followed by 8-plex and then 6-plex reagents. Quantitative analyses revealed that more differentially expressed proteins were identified with 4-plex reagents than 8-plex reagents and 6-plex reagents. Replicate reproducibility was determined to be ≥69% for technical duplicates and ≥57% for technical triplicates. The results indicate that running an 8-plex or 6-plex experiment instead of a 4-plex experiment resulted in 26 or 39% fewer protein identifications, respectively. When 4-plex spectra were searched with three software tools-ProteinPilot, Mascot, and Proteome Discoverer-the highest number of protein identifications were obtained with Mascot. The analysis of negative controls demonstrated the importance of running experiments as replicates. Overall, this study demonstrates the advantages of using iTRAQ 4-plex reagents over iTRAQ 8-plex and TMT 6-plex reagents, provides estimates of technical duplicate and triplicate reproducibility, and emphasizes the value of running replicate samples.

  11. Qualitative and quantitative comparison of brand name and generic protein pharmaceuticals using isotope tags for relative and absolute quantification and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry.

    PubMed

    Ye, Hongping; Hill, John; Kauffman, John; Han, Xianlin

    2010-05-01

    The capability of iTRAQ (isotope tags for relative and absolute quantification) reagents coupled with matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) as a qualitative and quantitative technique for the analysis of complicated protein pharmaceutical mixtures was evaluated. Mixtures of Somavert and Miacalcin with a small amount of bovine serum albumin (BSA) as an impurity were analyzed. Both Somavert and Miacalcin were qualitatively identified, and BSA was detected at levels as low as 0.8mol%. Genotropin and Somavert were compared in a single experiment, and all of the distinct amino acid residues from the two proteins were readily identified. Four somatropin drug products (Genotropin, Norditropin, Jintropin, and Omnitrope) were compared using the iTRAQ/MALDI-MS method to determine the similarity between their primary structures and quantify the amount of protein in each product. All four product samples were well labeled and successfully compared when a filtration cleanup step preceded iTRAQ labeling. The quantitative accuracy of the iTRAQ method was evaluated. In all cases, the accuracy of experimentally determined protein ratios was higher than 90%, and the relative standard deviation (RSD) was less than 10%. The iTRAQ and global internal standard technology (GIST) methods were compared, and the iTRAQ method provided both higher sequence coverage and enhanced signal intensity. Published by Elsevier Inc.

  12. Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes.

    PubMed

    Adav, Sunil S; Li, An A; Manavalan, Arulmani; Punt, Peter; Sze, Siu Kwan

    2010-08-06

    The natural lifestyle of Aspergillus niger made them more effective secretors of hydrolytic proteins and becomes critical when this species were exploited as hosts for the commercial secretion of heterologous proteins. The protein secretion profile of A. niger and its mutant at different pH was explored using iTRAQ-based quantitative proteomics approach coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). This study characterized 102 highly confident unique proteins in the secretome with zero false discovery rate based on decoy strategy. The iTRAQ technique identified and relatively quantified many hydrolyzing enzymes such as cellulases, hemicellulases, glycoside hydrolases, proteases, peroxidases, and protein translocating transporter proteins during fermentation. The enzymes have potential application in lignocellulosic biomass hydrolysis for biofuel production, for example, the cellulolytic and hemicellulolytic enzymes glucan 1,4-alpha-glucosidase, alpha-glucosidase C, endoglucanase, alpha l-arabinofuranosidase, beta-mannosidase, glycosyl hydrolase; proteases such as tripeptidyl-peptidase, aspergillopepsin, and other enzymes including cytochrome c oxidase, cytochrome c oxidase, glucose oxidase were highly expressed in A. niger and its mutant secretion. In addition, specific enzyme production can be stimulated by controlling pH of the culture medium. Our results showed comprehensive unique secretory protein profile of A. niger, its regulation at different pH, and the potential application of iTRAQ-based quantitative proteomics for the microbial secretome analysis.

  13. iTRAQ Quantitative Proteomic Comparison of Metastatic and Non-Metastatic Uveal Melanoma Tumors

    PubMed Central

    Crabb, John W.; Hu, Bo; Crabb, John S.; Triozzi, Pierre; Saunthararajah, Yogen; Singh, Arun D.

    2015-01-01

    Background Uveal melanoma is the most common malignancy of the adult eye. The overall mortality rate is high because this aggressive cancer often metastasizes before ophthalmic diagnosis. Quantitative proteomic analysis of primary metastasizing and non-metastasizing tumors was pursued for insights into mechanisms and biomarkers of uveal melanoma metastasis. Methods Eight metastatic and 7 non-metastatic human primary uveal melanoma tumors were analyzed by LC MS/MS iTRAQ technology with Bruch’s membrane/choroid complex from normal postmortem eyes as control tissue. Tryptic peptides from tumor and control proteins were labeled with iTRAQ tags, fractionated by cation exchange chromatography, and analyzed by LC MS/MS. Protein identification utilized the Mascot search engine and the human Uni-Prot/Swiss-Protein database with false discovery ≤ 1%; protein quantitation utilized the Mascot weighted average method. Proteins designated differentially expressed exhibited quantitative differences (p ≤ 0.05, t-test) in a training set of five metastatic and five non-metastatic tumors. Logistic regression models developed from the training set were used to classify the metastatic status of five independent tumors. Results Of 1644 proteins identified and quantified in 5 metastatic and 5 non-metastatic tumors, 12 proteins were found uniquely in ≥ 3 metastatic tumors, 28 were found significantly elevated and 30 significantly decreased only in metastatic tumors, and 31 were designated differentially expressed between metastatic and non-metastatic tumors. Logistic regression modeling of differentially expressed collagen alpha-3(VI) and heat shock protein beta-1 allowed correct prediction of metastasis status for each of five independent tumor specimens. Conclusions The present data provide new clues to molecular differences in metastatic and non-metastatic uveal melanoma tumors. While sample size is limited and validation required, the results support collagen alpha-3(VI) and

  14. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics.

    PubMed

    Chahrour, Osama; Cobice, Diego; Malone, John

    2015-09-10

    Mass-spectrometry based proteomics has evolved as a promising technology over the last decade and is undergoing a dramatic development in a number of different areas, such as; mass spectrometric instrumentation, peptide identification algorithms and bioinformatic computational data analysis. The improved methodology allows quantitative measurement of relative or absolute protein amounts, which is essential for gaining insights into their functions and dynamics in biological systems. Several different strategies involving stable isotopes label (ICAT, ICPL, IDBEST, iTRAQ, TMT, IPTL, SILAC), label-free statistical assessment approaches (MRM, SWATH) and absolute quantification methods (AQUA) are possible, each having specific strengths and weaknesses. Inductively coupled plasma mass spectrometry (ICP-MS), which is still widely recognised as elemental detector, has recently emerged as a complementary technique to the previous methods. The new application area for ICP-MS is targeting the fast growing field of proteomics related research, allowing absolute protein quantification using suitable elemental based tags. This document describes the different stable isotope labelling methods which incorporate metabolic labelling in live cells, ICP-MS based detection and post-harvest chemical label tagging for protein quantification, in addition to summarising their pros and cons. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Comparative analysis of two femtosecond LASIK platforms using iTRAQ quantitative proteomics.

    PubMed

    D'Souza, Sharon; Petznick, Andrea; Tong, Louis; Hall, Reece C; Rosman, Mohamad; Chan, Cordelia; Koh, Siew Kwan; Beuerman, Roger W; Zhou, Lei; Mehta, Jodhbir S

    2014-05-06

    New femtosecond laser platforms may reduce ocular surface interference and LASIK-associated dry eye. This study investigated tear protein profiles in subjects who underwent LASIK using two femtosecond lasers to assess differences in protein expression. This was a randomized interventional clinical trial involving 22 patients who underwent femtosecond laser refractive surgery with a contralateral paired eye design. Corneal flaps of 22 subjects were created by either Visumax or Intralase laser. Tear samples were collected preoperatively, and at 1 week and 3 months postoperatively using Schirmer's strips. Tear protein ratios were calculated relative to preoperative protein levels at baseline. The main outcome measures were the levels of a panel of dry eye protein markers analyzed using isobaric tagging for relative and absolute quantitation (iTRAQ) mass spectrometry. A total of 824 unique proteins were quantifiable. Tear protein ratios were differentially regulated between the eyes treated with different lasers. The secretoglobulins Lipophilin A (1.80-fold) and Lipophilin C (1.77) were significantly upregulated (P < 0.05) at 1 week postoperatively in Visumax but not in Intralase-treated eyes. At 1 week, orosomucoid1 was upregulated (1.78) in Intralase but not Visumax-treated eyes. In the same eyes, lysozyme, cathepsin B, and lipo-oxygenase were downregulated at 0.44-, 0.64-, and 0.64-folds, respectively. Transglutaminase-2 was downregulated in both groups of eyes. Different laser platforms induce distinct biological responses in the cornea and ocular surface, which manifests as different levels of tear proteins. This study has implications for surgical technology and modulation of wound healing responses. (ClinicalTrials.gov number, NCT01252654.). Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  16. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Development of Quantitative Proteomics Using iTRAQ Based on the Immunological Response of Galleria mellonella Larvae Challenged with Fusarium oxysporum Microconidia

    PubMed Central

    Muñoz-Gómez, Amalia; Corredor, Mauricio; Benítez-Páez, Alfonso; Peláez, Carlos

    2014-01-01

    Galleria mellonella has emerged as a potential invertebrate model for scrutinizing innate immunity. Larvae are easy to handle in host-pathogen assays. We undertook proteomics research in order to understand immune response in a heterologous host when challenged with microconidia of Fusarium oxysporum. The aim of this study was to investigate hemolymph proteins that were differentially expressed between control and immunized larvae sets, tested with F. oxysporum at two temperatures. The iTRAQ approach allowed us to observe the effects of immune challenges in a lucid and robust manner, identifying more than 50 proteins, 17 of them probably involved in the immune response. Changes in protein expression were statistically significant, especially when temperature was increased because this was notoriously affected by F. oxysporum 104 or 106 microconidia/mL. Some proteins were up-regulated upon immune fungal microconidia challenge when temperature changed from 25 to 37°C. After analysis of identified proteins by bioinformatics and meta-analysis, results revealed that they were involved in transport, immune response, storage, oxide-reduction and catabolism: 20 from G. mellonella, 20 from the Lepidoptera species and 19 spread across bacteria, protista, fungi and animal species. Among these, 13 proteins and 2 peptides were examined for their immune expression, and the hypothetical 3D structures of 2 well-known proteins, unannotated for G. mellonella, i.e., actin and CREBP, were resolved using peptides matched with Bombyx mori and Danaus plexippus, respectively. The main conclusion in this study was that iTRAQ tool constitutes a consistent method to detect proteins associated with the innate immune system of G. mellonella in response to infection caused by F. oxysporum. In addition, iTRAQ was a reliable quantitative proteomic approach to detect and quantify the expression levels of immune system proteins and peptides, in particular, it was found that 104 microconidia/mL at

  18. Protein S100-A8: A potential metastasis-associated protein for breast cancer determined via iTRAQ quantitative proteomic and clinicopathological analysis.

    PubMed

    Zhong, Jing-Min; Li, Jing; Kang, An-Ding; Huang, San-Qian; Liu, Wen-Bin; Zhang, Yun; Liu, Zhi-Hong; Zeng, Liang

    2018-04-01

    Breast cancer is the most common malignancy in females, with metastasis of this type of cancer frequently proving lethal. However, there are still no effective biomarkers to predict breast cancer metastasis. The aim of the present study was, therefore, to analyze breast cancer metastasis-associated proteins and evaluate the association between protein S100-A8 and the prognosis of breast cancer. The isobaric tags for relative and absolute quantitation (iTRAQ) proteomic technique was used to analyze the differential expression of proteins between fresh primary breast tumor (PBT) tissue and fresh paired metastatic lymph nodes (PMLN) tissue. Subsequently, immunohistochemical staining was used to locate and assess the expression of protein S100-A8 in benign breast disease (n=15), primary breast cancer with (n=109) or without (n=83) metastasis, and in paired metastatic lymph nodes (n=109) formalin fixed paraffin embedded (FFPE) tissue. Staining scores were evaluated and the association between protein S100-A8 expression levels and the clinicopathological characteristics of 192 patients with breast cancer were evaluated using the χ 2 test. Kaplan-Meier and Cox hazards regression analyses were utilized to investigate the association between the expression of protein S100-A8 and the prognosis of patients with breast cancer. A total of 4,837 proteins were identified using the iTRAQ proteomic technique. Among these proteins, 643 differentially expressed proteins were revealed. Protein S100-A8 expression levels were identified to differ between PBT and PMLN tissues. Immunohistochemical staining suggested a significant difference between NMBT and PMLN (P=0.002), and also between PBT and PMLN (P<0.001). Cox hazards regression model analyses suggested that histological grade (P=0.031) and nodal status (P=0.001) were risk factors for lymph nodes metastasis of breast cancer. Kaplan-Meier analyses revealed no significant relationship between protein S100-A8 expression level and

  19. Standardization approaches in absolute quantitative proteomics with mass spectrometry.

    PubMed

    Calderón-Celis, Francisco; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo

    2017-07-31

    Mass spectrometry-based approaches have enabled important breakthroughs in quantitative proteomics in the last decades. This development is reflected in the better quantitative assessment of protein levels as well as to understand post-translational modifications and protein complexes and networks. Nowadays, the focus of quantitative proteomics shifted from the relative determination of proteins (ie, differential expression between two or more cellular states) to absolute quantity determination, required for a more-thorough characterization of biological models and comprehension of the proteome dynamism, as well as for the search and validation of novel protein biomarkers. However, the physico-chemical environment of the analyte species affects strongly the ionization efficiency in most mass spectrometry (MS) types, which thereby require the use of specially designed standardization approaches to provide absolute quantifications. Most common of such approaches nowadays include (i) the use of stable isotope-labeled peptide standards, isotopologues to the target proteotypic peptides expected after tryptic digestion of the target protein; (ii) use of stable isotope-labeled protein standards to compensate for sample preparation, sample loss, and proteolysis steps; (iii) isobaric reagents, which after fragmentation in the MS/MS analysis provide a final detectable mass shift, can be used to tag both analyte and standard samples; (iv) label-free approaches in which the absolute quantitative data are not obtained through the use of any kind of labeling, but from computational normalization of the raw data and adequate standards; (v) elemental mass spectrometry-based workflows able to provide directly absolute quantification of peptides/proteins that contain an ICP-detectable element. A critical insight from the Analytical Chemistry perspective of the different standardization approaches and their combinations used so far for absolute quantitative MS-based (molecular and

  20. Non-gel Based Proteomics to Study Steroid Receptor Agonists in the Fathead Minnow

    EPA Science Inventory

    Toxicoproteomics is an emerging field that is greatly enabled by non-gel based methods using LC MS/MS for biomarker discovery and characterization for endocrine disrupting chemicals. Using iTRAQ (isobaric tagging for relative and absolute quantitation), we quantified a diverse r...

  1. Development and application of absolute quantitative detection by duplex chamber-based digital PCR of genetically modified maize events without pretreatment steps.

    PubMed

    Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao

    2016-04-15

    The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Quantitative analysis of UV-A shock and short term stress using iTRAQ, pseudo selective reaction monitoring (pSRM) and GC-MS based metabolite analysis of the cyanobacterium Nostoc punctiforme ATCC 29133.

    PubMed

    Wase, Nishikant; Pham, Trong Khoa; Ow, Saw Yen; Wright, Phillip C

    2014-09-23

    A quantitative proteomics and metabolomics analysis was performed using iTRAQ, HPLC and GC-MS in the filamentous cyanobacterium Nostoc punctiforme ATCC 29133 to understand the effect of short and long term UV-A exposure. Changes in the proteome were measured for short-term stress (4-24h) using iTRAQ. Changes in the photosynthetic pigments and intracellular metabolites were observed at exposures of up to 7days (pigments) and up to 11days (intracellular metabolites). To assess iTRAQ measurement quality, pseudo selected reaction monitoring (pSRM) was used, with this confirming underestimation of protein abundance levels by iTRAQ. Our results suggest that short term UV-A radiation lowers the abundance of PS-I and PS-II proteins. We also observed an increase in abundance of intracellular redox homeostasis proteins and plastocyanin. Additionally, we observed statistically significant changes in scytonemin, Chlorophyll A, astaxanthin, zeaxanthin, and β-carotene. Assessment of intracellular metabolites showed significant changes in several, suggesting their potential role in the Nostoc's stress mitigation strategy. Cyanobacteria under UV-A radiation have reduced growth due to intensive damage to essential functions, but the organism shows a defense response by remodeling bioenergetics pathway, induction of the UV protection compound scytonemin and increased levels of proline and tyrosine as a mitigation response. The effect of UV-A radiation on the proteome and intracellular metabolites of N. punctiforme ATCC 29133 including photosynthetic pigments has been described. We also verify the expression of 13 iTRAQ quantified protein using LC-pSRM. Overall we observed that UV-A radiation has a drastic effect on the photosynthetic machinery, photosynthetic pigments and intracellular amino acids. As a mitigation strategy against UV-A radiation, proline, glycine, and tyrosine were accumulated. Copyright © 2014. Published by Elsevier B.V.

  3. Determining absolute protein numbers by quantitative fluorescence microscopy.

    PubMed

    Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry

    2014-01-01

    Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers--fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. © 2014 Elsevier Inc. All rights reserved.

  4. Detection of protein modifications and counterfeit protein pharmaceuticals using isotope tags for relative and absolute quantification and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry: studies of insulins.

    PubMed

    Ye, Hongping; Hill, John; Kauffman, John; Gryniewicz, Connie; Han, Xianlin

    2008-08-15

    Isotope tags for relative and absolute quantification (iTRAQ) reagent coupled with matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometric analysis has been evaluated as both a qualitative and quantitative method for the detection of modifications to active pharmaceutical ingredients derived from recombinant DNA technologies and as a method to detect counterfeit drug products. Five types of insulin (human, bovine, porcine, Lispro, and Lantus) were used as model products in the study because of their minor variations in amino acid sequence. Several experiments were conducted in which each insulin variant was separately digested with Glu-C, and the digestate was labeled with one of four different iTRAQ reagents. All digestates were then combined for desalting and MALDI-TOF/TOF mass spectrometric analysis. When the digestion procedure was optimized, the insulin sequence coverage was 100%. Five different types of insulin were readily differentiated, including human insulin (P28K29) and Lispro insulin (K28P29), which differ only by the interchange of two contiguous residues. Moreover, quantitative analyses show that the results obtained from the iTRAQ method agree well with those determined by other conventional methods. Collectively, the iTRAQ method can be used as a qualitative and quantitative technique for the detection of protein modification and counterfeiting.

  5. iTRAQ reveals proteomic changes during intestine regeneration in the sea cucumber Apostichopus japonicus.

    PubMed

    Sun, Lina; Xu, Dongxue; Xu, Qinzeng; Sun, Jingchun; Xing, Lili; Zhang, Libin; Yang, Hongsheng

    2017-06-01

    Sea cucumbers have a striking capacity to regenerate most of their viscera after evisceration, which has drawn the interest of many researchers. In this study, the isobaric tag for relative and absolute quantitation (iTRAQ) was utilized to investigate protein abundance changes during intestine regeneration in sea cucumbers. A total of 4073 proteins were identified, and 2321 proteins exhibited significantly differential expressions, with 1100 upregulated and 1221 downregulated proteins. Our results suggest that intestine regeneration constitutes a complex life activity regulated by the cooperation of various biological processes, including cytoskeletal changes, extracellular matrix (ECM) remodeling and ECM-receptor interactions, protein synthesis, signal recognition and transduction, energy production and conversion, and substance transport and metabolism. Additionally, real-time PCR showed mRNA expression of differentially expressed genes correlated positively with their protein levels. Our results provided a basis for studying the regulatory mechanisms associated with sea cucumber regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes.

    PubMed

    Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan

    2015-04-24

    Aspergillus sp. plays an essential role in lignocellulosic biomass recycling and is also exploited as cell factories for the production of industrial enzymes. This study profiled the secretome of Aspergillus fumigatus when grown with cellulose, xylan and starch by high throughput quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ). Post translational modifications (PTMs) of proteins play a critical role in protein functions. However, our understanding of the PTMs in secretory proteins is limited. Here, we present the identification of PTMs such as deamidation of secreted proteins of A. fumigatus. This study quantified diverse groups of extracellular secreted enzymes and their functional classification revealed cellulases and glycoside hydrolases (32.9%), amylases (0.9%), hemicellulases (16.2%), lignin degrading enzymes (8.1%), peptidases and proteases (11.7%), chitinases, lipases and phosphatases (7.6%), and proteins with unknown function (22.5%). The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulates expression of specific cellulases and hemicellulases, and their abundance level as a function of substrate. In-depth data analysis revealed deamidation as a major PTM of key cellulose hydrolyzing enzymes like endoglucanases, cellobiohydrolases and glucosidases. Hemicellulose degrading endo-1,4-beta-xylanase, monosidases, xylosidases, lignin degrading laccase, isoamyl alcohol oxidase and oxidoreductases were also found to be deamidated. The filamentous fungi play an essential role in lignocellulosic biomass recycling and fungal strains belonging to Aspergillus were also exploited as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. In this study, extracellular proteins secreted by thermophilic A. fumigatus when grown with cellulose, xylan and starch were profiled using isobaric tags for relative and absolute quantification (iTRAQ) by

  7. iTRAQ Quantitative Proteomic Analysis of Vitreous from Patients with Retinal Detachment.

    PubMed

    Santos, Fátima Milhano; Gaspar, Leonor Mesquita; Ciordia, Sergio; Rocha, Ana Sílvia; Castro E Sousa, João Paulo; Paradela, Alberto; Passarinha, Luís António; Tomaz, Cândida Teixeira

    2018-04-11

    Rhegmatogenous retinal detachment (RRD) is a potentially blinding condition characterized by a physical separation between neurosensory retina and retinal pigment epithelium. Quantitative proteomics can help to understand the changes that occur at the cellular level during RRD, providing additional information about the molecular mechanisms underlying its pathogenesis. In the present study, iTRAQ labeling was combined with two-dimensional LC-ESI-MS/MS to find expression changes in the proteome of vitreous from patients with RRD when compared to control samples. A total of 150 proteins were found differentially expressed in the vitreous of patients with RRD, including 96 overexpressed and 54 underexpressed. Several overexpressed proteins, several such as glycolytic enzymes (fructose-bisphosphate aldolase A, gamma-enolase, and phosphoglycerate kinase 1), glucose transporters (GLUT-1), growth factors (metalloproteinase inhibitor 1), and serine protease inhibitors (plasminogen activator inhibitor 1) are regulated by HIF-1, which suggests that HIF-1 signaling pathway can be triggered in response to RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Nevertheless, the differentially expressed proteins found in this study suggest that different mechanisms are activated after RRD to promote the survival of retinal cells through complex cellular responses.

  8. iTRAQ Quantitative Proteomic Analysis of Vitreous from Patients with Retinal Detachment

    PubMed Central

    Gaspar, Leonor Mesquita; Ciordia, Sergio; Rocha, Ana Sílvia; Castro e Sousa, João Paulo; Paradela, Alberto

    2018-01-01

    Rhegmatogenous retinal detachment (RRD) is a potentially blinding condition characterized by a physical separation between neurosensory retina and retinal pigment epithelium. Quantitative proteomics can help to understand the changes that occur at the cellular level during RRD, providing additional information about the molecular mechanisms underlying its pathogenesis. In the present study, iTRAQ labeling was combined with two-dimensional LC-ESI-MS/MS to find expression changes in the proteome of vitreous from patients with RRD when compared to control samples. A total of 150 proteins were found differentially expressed in the vitreous of patients with RRD, including 96 overexpressed and 54 underexpressed. Several overexpressed proteins, several such as glycolytic enzymes (fructose-bisphosphate aldolase A, gamma-enolase, and phosphoglycerate kinase 1), glucose transporters (GLUT-1), growth factors (metalloproteinase inhibitor 1), and serine protease inhibitors (plasminogen activator inhibitor 1) are regulated by HIF-1, which suggests that HIF-1 signaling pathway can be triggered in response to RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Nevertheless, the differentially expressed proteins found in this study suggest that different mechanisms are activated after RRD to promote the survival of retinal cells through complex cellular responses. PMID:29641463

  9. iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus.

    PubMed

    Gao, Kun; Deng, Xiang-Yuan; Shang, Meng-Ke; Qin, Guang-Xing; Hou, Cheng-Xiang; Guo, Xi-Jie

    2017-01-30

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) specifically infects the epithelial cells in the midgut of silkworm and causes them to death, which negatively affects the sericulture industry. In order to determine the midgut response at the protein levels to the virus infection, differential proteomes of the silkworm midgut responsive to BmCPV infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) labeling followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 193, 408, 189 differentially expressed proteins (DEPs) were reliably quantified by iTRAQ analysis in the midgut of BmCPV-infected and control larvae at 24, 48, 72h post infection (hpi) respectively. KEGG enrichment analysis showed that Oxidative phosphorylation, amyotrophic lateral sclerosis, Toll-like receptor signaling pathway, steroid hormone biosynthesis were the significant pathways (Q value≤0.05) both at 24 and 48hpi. qRT-PCR was used to further verify gene transcription of 30 DEPs from iTRAQ, showing that the regulations of 24 genes at the transcript level were consistent with those at the proteomic level. Moreover, the cluster analysis of the three time groups showed that there were seven co-regulated DEPs including BGIBMGA002620-PA, which was a putative p62/sequestosome-1 protein in silkworm. It was upregulated at both the mRNA level and the proteomic level and may play an important role in regulating the autophagy and apoptosis (especially apoptosis) induced by BmCPV infection. This was the first report using an iTRAQ approach to analyze proteomes of the silkworm midgut against BmCPV infection, which contributes to understanding the defense mechanisms of silkworm midgut to virus infection. The domesticated silkworm, Bombyx mori, is renowned for silk production as well as being a traditional lepidopteron model insect served as a subject for morphological, genetic, physiological, and developmental studies. Bombyx mori cytoplasmic polyhedrosis

  10. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach

    PubMed Central

    Bennett, Bryson D; Yuan, Jie; Kimball, Elizabeth H; Rabinowitz, Joshua D

    2009-01-01

    This protocol provides a method for quantitating the intracellular concentrations of endogenous metabolites in cultured cells. The cells are grown in stable isotope-labeled media to near-complete isotopic enrichment and then extracted in organic solvent containing unlabeled internal standards in known concentrations. The ratio of endogenous metabolite to internal standard in the extract is determined using mass spectrometry (MS). The product of this ratio and the unlabeled standard amount equals the amount of endogenous metabolite present in the cells. The cellular concentration of the metabolite can then be calculated on the basis of intracellular volume of the extracted cells. The protocol is exemplified using Escherichia coli and primary human fibroblasts fed uniformly with 13C-labeled carbon sources, with detection of 13C-assimilation by liquid chromatography–tandem MS. It enables absolute quantitation of several dozen metabolites over ~1 week of work. PMID:18714298

  11. Absolute quantitation of isoforms of post-translationally modified proteins in transgenic organism.

    PubMed

    Li, Yaojun; Shu, Yiwei; Peng, Changchao; Zhu, Lin; Guo, Guangyu; Li, Ning

    2012-08-01

    Post-translational modification isoforms of a protein are known to play versatile biological functions in diverse cellular processes. To measure the molar amount of each post-translational modification isoform (P(isf)) of a target protein present in the total protein extract using mass spectrometry, a quantitative proteomic protocol, absolute quantitation of isoforms of post-translationally modified proteins (AQUIP), was developed. A recombinant ERF110 gene overexpression transgenic Arabidopsis plant was used as the model organism for demonstration of the proof of concept. Both Ser-62-independent (14)N-coded synthetic peptide standards and (15)N-coded ERF110 protein standard isolated from the heavy nitrogen-labeled transgenic plants were employed simultaneously to determine the concentration of all isoforms (T(isf)) of ERF110 in the whole plant cell lysate, whereas a pair of Ser-62-dependent synthetic peptide standards were used to quantitate the Ser-62 phosphosite occupancy (R(aqu)). The P(isf) was finally determined by integrating the two empirically measured variables using the following equation: P(isf) = T(isf) · R(aqu). The absolute amount of Ser-62-phosphorylated isoform of ERF110 determined using AQUIP was substantiated with a stable isotope labeling in Arabidopsis-based relative and accurate quantitative proteomic approach. The biological role of the Ser-62-phosphorylated isoform was demonstrated in transgenic plants.

  12. Involvement of GABA Transporters in Atropine-Treated Myopic Retina As Revealed by iTRAQ Quantitative Proteomics

    PubMed Central

    2015-01-01

    Atropine, a muscarinic antagonist, is known to inhibit myopia progression in several animal models and humans. However, the mode of action is not established yet. In this study, we compared quantitative iTRAQ proteomic analysis in the retinas collected from control and lens-induced myopic (LIM) mouse eyes treated with atropine. The myopic group received a (−15D) spectacle lens over the right eye on postnatal day 10 with or without atropine eye drops starting on postnatal day 24. Axial length was measured by optical low coherence interferometry (OLCI), AC-Master, and refraction was measured by automated infrared photorefractor at postnatal 24, 38, and 52 days. Retinal tissue samples were pooled from six eyes for each group. The experiments were repeated twice, and technical replicates were also performed for liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. MetaCore was used to perform protein profiling for pathway analysis. We identified a total of 3882 unique proteins with <1% FDR by analyzing the samples in replicates for two independent experiments. This is the largest number of mouse retina proteome reported to date. Thirty proteins were found to be up-regulated (ratio for myopia/control > global mean ratio + 1 standard deviation), and 28 proteins were down-regulated (ratio for myopia/control < global mean ratio - 1 standard deviation) in myopic eyes as compared with control retinas. Pathway analysis using MetaCore revealed regulation of γ-aminobutyric acid (GABA) levels in the myopic eyes. Detailed analysis of the quantitative proteomics data showed that the levels of GABA transporter 1 (GAT-1) were elevated in myopic retina and significantly reduced after atropine treatment. These results were further validated with immunohistochemistry and Western blot analysis. In conclusion, this study provides a comprehensive quantitative proteomic analysis of atropine-treated mouse retina and suggests the involvement of GABAergic signaling in the

  13. Detection of medically important Candida species by absolute quantitation real-time polymerase chain reaction.

    PubMed

    Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong

    2015-01-01

    The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 10(3) copies were achieved. A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised.

  14. Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jian-Ying; Chen, Lijun; Zhang, Bai

    The identification of protein biomarkers requires large-scale analysis of human specimens to achieve statistical significance. In this study, we evaluated the long-term reproducibility of an iTRAQ (isobaric tags for relative and absolute quantification) based quantitative proteomics strategy using one channel for universal normalization across all samples. A total of 307 liquid chromatography tandem mass spectrometric (LC-MS/MS) analyses were completed, generating 107 one-dimensional (1D) LC-MS/MS datasets and 8 offline two-dimensional (2D) LC-MS/MS datasets (25 fractions for each set) for human-in-mouse breast cancer xenograft tissues representative of basal and luminal subtypes. Such large-scale studies require the implementation of robust metrics to assessmore » the contributions of technical and biological variability in the qualitative and quantitative data. Accordingly, we developed a quantification confidence score based on the quality of each peptide-spectrum match (PSM) to remove quantification outliers from each analysis. After combining confidence score filtering and statistical analysis, reproducible protein identification and quantitative results were achieved from LC-MS/MS datasets collected over a 16 month period.« less

  15. Quantitative proteomics analysis by iTRAQ in human nuclear cataracts of different ages and normal lens nuclei.

    PubMed

    Zhou, Hai Yan; Yan, Hong; Wang, Li Li; Yan, Wei Jia; Shui, Ying Bo; Beebe, David C

    2015-08-01

    The goal of this study was to quantitatively identify the differentially expressed proteins in nuclear cataracts of different ages and normal lens nuclei in humans. Forty-eight human lens nucleus samples with hardness grades III, IV were obtained during cataract surgery by extracapsular cataract extraction. Seven normal transparent human lens nuclei were obtained from fresh normal cadaver eyes during corneal transplantation surgery. Lens nuclei were divided into seven groups according to age and optic axis: Group A (average age 80.8 ± 1.2 years), Group B (average age 57.0 ± 4.0 years), Group C average age 80.3 ± 4.5 years), Group D (average age 56.9 ± 4.2 years), Group E (average age 78.1 ± 2.5 years), Group F (average age 57.6 ± 3.3 years) and Group G (seven normal transparent human lenses from normal cadaver eyes, average age 34.7 ± 4.2 years). Water-soluble, water-insoluble, and water-insoluble-urea-soluble protein fractions were extracted from samples. The three-part protein fractions from the individual lenses were combined to form the total proteins of each sample. The proteomic profiles of each group were further analyzed using 8-plex iTRAQ labeling combined with 2D-LC-MS/MS. The data were analyzed with the ProteinPilot software for peptide matching, protein identification, and quantification. Differentially expressed proteins were validated by Western blotting. We employed biological and technical replicates and selected the intersection of the two results, which included 80 proteins. Nine proteins were differentially expressed among the 80 proteins identified using proteomic techniques. In age-related nuclear cataracts (ARNC), the expression levels of fatty acid-binding protein and pterin-4-alpha-carbinolamine dehydratase were upregulated, whereas the levels of alpha-crystallin B chain (CRYAB), GSH synthetase, phakinin, gamma-crystallin C, phosphoglycerate kinase 1, betaine-homocysteine S-methyltransferase 1 (BHMT1), and spectrin beta chain were

  16. Dioscin Inhibits HSC-T6 Cell Migration via Adjusting SDC-4 Expression: Insights from iTRAQ-Based Quantitative Proteomics.

    PubMed

    Yin, Lianhong; Qi, Yan; Xu, Youwei; Xu, Lina; Han, Xu; Tao, Xufeng; Song, Shasha; Peng, Jinyong

    2017-01-01

    Hepatic stellate cells (HSCs) migration, an important bioprocess, contributes to the development of liver fibrosis. Our previous studies have found the potent activity of dioscin against liver fibrosis by inhibiting HSCs proliferation, triggering the senescence and inducing apoptosis of activated HSCs, but the molecular mechanisms associated with cell migration were not clarified. In this work, iTRAQ (isobaric tags for relative and absolution quantitation)-based quantitative proteomics study was carried out, and a total of 1566 differentially expressed proteins with fold change ≥2.0 and p < 0.05 were identified in HSC-T6 cells treated by dioscin (5.0 μg/mL). Based on Gene Ontology classification, String and KEGG pathway assays, the effects of dioscin to inhibit cell migration via regulating SDC-4 were carried out. The results of wound-healing, cell migration and western blotting assays indicated that dioscin significantly inhibit HSC-T6 cell migration through SDC-4-dependent signal pathway by affecting the expression levels of Fn, PKCα, Src, FAK, and ERK1/2. Specific SDC-4 knockdown by shRNA also blocked HSC-T6 cell migration, and dioscin slightly enhanced the inhibiting effect. Taken together, the present work showed that SDC-4 played a crucial role on HSC-T6 cell adhesion and migration of dioscin against liver fibrosis, which may be one potent therapeutic target for fibrotic diseases.

  17. iTRAQ Protein Profile Differential Analysis of Dormant and Germinated Grassbur Twin Seeds Reveals that Ribosomal Synthesis and Carbohydrate Metabolism Promote Germination Possibly Through the PI3K Pathway.

    PubMed

    Zhang, Guo-Liang; Zhu, Yue; Fu, Wei-Dong; Wang, Peng; Zhang, Rui-Hai; Zhang, Yan-Lei; Song, Zhen; Xia, Gui-Xian; Wu, Jia-He

    2016-06-01

    Grassbur is a destructive and invasive weed in pastures, and its burs can cause gastric damage to animals. The strong adaptability and reproductive potential of grassbur are partly due to a unique germination mechanism whereby twin seeds develop in a single bur: one seed germinates, but the other remains dormant. To investigate the molecular mechanism of seed germination in twin seeds, we used isobaric tags for relative and absolute quantitation (iTRAQ) to perform a dynamic proteomic analysis of germination and dormancy. A total of 1,984 proteins were identified, 161 of which were considered to be differentially accumulated. The differentially accumulated proteins comprised 102 up-regulated and 59 down-regulated proteins. These proteins were grouped into seven functional categories, ribosomal proteins being the predominant group. The authenticity and accuracy of the results were confirmed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time reverse transcription-PCR (qPCR). A dynamic proteomic analysis revealed that ribosome synthesis and carbohydrate metabolism affect seed germination possibly through the phosphoinositide 3-kinase (PI3K) pathway. As the PI3K pathway is generally activated by insulin, analyses of seeds treated with exogenous insulin by qPCR, ELISA and iTRAQ confirmed that the PI3K pathway can be activated, which suppresses dormancy and promotes germination in twin grassbur seeds. Together, these results show that the PI3K pathway may play roles in stimulating seed germination in grassbur by modulating ribosomal synthesis and carbohydrate metabolism. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Strong, sudden cooling alleviates the inflammatory responses in heat-stressed dairy cows based on iTRAQ proteomic analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Jianbo; Min, Li; Zheng, Nan; Fan, Caiyun; Zhao, Shengguo; Zhang, Yangdong; Wang, Jiaqi

    2018-02-01

    This study was designed to investigate the effects of sudden cooling on the physiological responses of 12 heat-stressed Holstein dairy cows using an isobaric tags for relative and absolute quantification (iTRAQ) labeling approach. Plasma samples were collected from these cows during heat stress (HS), and after strong, sudden cooling in the summer (16 days later). We compared plasma proteomic data before and after sudden cooling to identify the differentially abundant proteins. The results showed that sudden cooling in summer effectively alleviated the negative consequences of HS on body temperature and production variables. Expressions of plasma hemoglobin alpha and hemoglobin beta were upregulated, whereas lipopolysaccharide-binding protein (LBP) and haptoglobin were downregulated in this process. The increase of hemoglobin after cooling may improve oxygen transport and alleviate the rise in respiration rates in heat-stressed dairy cows. The decrease of LBP and haptoglobin suggests that the inflammatory responses caused by HS are relieved after cooling. Our findings provide new insight into the physiological changes that occur when heat-stressed dairy cows experience strong, sudden cooling.

  19. Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells.

    PubMed

    Tan, Hwee Tong; Tan, Sandra; Lin, Qingsong; Lim, Teck Kwang; Hew, Choy Leong; Chung, Maxey C M

    2008-06-01

    Colorectal cancer is one of the most common cancers in developed countries, and its incidence is negatively associated with high dietary fiber intake. Butyrate, a short-chain fatty acid fermentation by-product of fiber induces cell maturation with the promotion of growth arrest, differentiation, and/or apoptosis of cancer cells. The stimulation of cell maturation by butyrate in colonic cancer cells follows a temporal progression from the early phase of growth arrest to the activation of apoptotic cascades. Previously we performed two-dimensional DIGE to identify differentially expressed proteins induced by 24-h butyrate treatment of HCT-116 colorectal cancer cells. Herein we used quantitative proteomics approaches using iTRAQ (isobaric tags for relative and absolute quantitation), a stable isotope labeling methodology that enables multiplexing of four samples, for a temporal study of HCT-116 cells treated with butyrate. In addition, cleavable ICAT, which selectively tags cysteine-containing proteins, was also used, and the results complemented those obtained from the iTRAQ strategy. Selected protein targets were validated by real time PCR and Western blotting. A model is proposed to illustrate our findings from this temporal analysis of the butyrate-responsive proteome that uncovered several integrated cellular processes and pathways involved in growth arrest, apoptosis, and metastasis. These signature clusters of butyrate-regulated pathways are potential targets for novel chemopreventive and therapeutic drugs for treatment of colorectal cancer.

  20. Investigation of Pokemon-regulated proteins in hepatocellular carcinoma using mass spectrometry-based multiplex quantitative proteomics.

    PubMed

    Bi, Xin; Jin, Yibao; Gao, Xiang; Liu, Feng; Gao, Dan; Jiang, Yuyang; Liu, Hongxia

    2013-01-01

    Pokemon is a transcription regulator involved in embryonic development, cellular differentiation and oncogenesis. It is aberrantly overexpressed in multiple human cancers including Hepatocellular carcinoma (HCC) and is considered as a promising biomarker for HCC. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy was used to investigate the proteomic profile associated with Pokemon in human HCC cell line QGY7703 and human hepatocyte line HL7702. Samples were labeled with four-plex iTRAQ reagents followed by two-dimensional liquid chromatography coupled with tandem mass spectrometry analysis. A total of 24 differentially expressed proteins were selected as significant. Nine proteins were potentially up-regulated by Pokemon while 15 proteins were potentially down-regulated and many proteins were previously identified as potential biomarkers for HCC. Gene ontology (GO) term enrichment revealed that the listed proteins were mainly involved in DNA metabolism and biosynthesis process. The changes of glucose-6-phosphate 1-dehydrogenase (G6PD, up-regulated) and ribonucleoside-diphosphate reductase large sub-unit (RIM1, down-regulated) were validated by Western blotting analysis and denoted as Pokemon's function of oncogenesis. We also found that Pokemon potentially repressed the expression of highly clustered proteins (MCM3, MCM5, MCM6, MCM7) which played key roles in promoting DNA replication. Altogether, our results may help better understand the role of Pokemon in HCC and promote the clinical applications.

  1. iTRAQ proteomic analysis of the hippocampus in a rat model of nicotine-induced conditioned place preference.

    PubMed

    Zhu, Beibei; Li, Xiangyu; Chen, Huan; Wang, Hongjuan; Zhu, Xinchao; Hou, Hongwei; Hu, Qingyuan

    2017-05-13

    Repeated exposures to nicotine are known to result in persistent changes in proteins expression in addiction-related brain regions, such as the striatum, nucleus accumbens and prefrontal cortex, but the changes induced in the protein content of the hippocampus remain poorly studied. This study established a rat model of nicotine-induced conditioned place preference (CPP), and screened for proteins that were differentially expressed in the hippocampus of these rats using isobaric tags for relative and absolute quantitation labeling (iTRAQ) coupled with 2D-LC MS/MS. The nicotine-induced CPP was established by subcutaneously injecting rats with 0.2 mg/kg nicotine. Relative to the control (saline) group, the nicotine group showed 0.67- and 1.5-fold changes in 117 and 10 hippocampal proteins, respectively. These differentially expressed proteins are mainly involved in calcium-mediated signaling, neurotransmitter transport, GABAergic synapse function, long-term synaptic potentiation and nervous system development. Furthermore, RT-PCR was used to confirmed the results of the proteomic analysis. Our findings identify several proteins and cellular signaling pathways potentially involved in the molecular mechanisms in the hippocampus that underlie nicotine addiction. These results provide insights into the mechanisms of nicotine treatment in hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Proteomic analysis by iTRAQ in red claw crayfish, Cherax quadricarinatus, hematopoietic tissue cells post white spot syndrome virus infection.

    PubMed

    Jeswin, Joseph; Xie, Xiao-lu; Ji, Qiao-lin; Wang, Ke-jian; Liu, Hai-peng

    2016-03-01

    To elucidate proteomic changes of Hpt cells from red claw crayfish, Cherax quadricarinatus, we have carried out isobaric tags for relative and absolute quantitation (iTRAQ) of cellular proteins at both early (1 hpi) and late stage (12 hpi) post white spot syndrome virus (WSSV) infection. Protein database search revealed 594 protein hits by Mascot, in which 17 and 30 proteins were present as differentially expressed proteins at early and late viral infection, respectively. Generally, these differentially expressed proteins include: 1) the metabolic process related proteins in glycolysis and glucogenesis, DNA replication, nucleotide/amino acid/fatty acid metabolism and protein biosynthesis; 2) the signal transduction related proteins like small GTPases, G-protein-alpha stimulatory subunit, proteins bearing PDZ- or 14-3-3-domains that help holding together and organize signaling complexes, casein kinase I and proteins of the MAP-kinase signal transduction pathway; 3) the immune defense related proteins such as α-2 macroglobulin, transglutaminase and trans-activation response RNA-binding protein 1. Taken together, these protein information shed new light on the host cellular response against WSSV infection in a crustacean cell culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. High-Resolution Enabled 12-Plex DiLeu Isobaric Tags for Quantitative Proteomics

    PubMed Central

    2015-01-01

    Multiplex isobaric tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ)) are a valuable tool for high-throughput mass spectrometry based quantitative proteomics. We have developed our own multiplex isobaric tags, DiLeu, that feature quantitative performance on par with commercial offerings but can be readily synthesized in-house as a cost-effective alternative. In this work, we achieve a 3-fold increase in the multiplexing capacity of the DiLeu reagent without increasing structural complexity by exploiting mass defects that arise from selective incorporation of 13C, 15N, and 2H stable isotopes in the reporter group. The inclusion of eight new reporter isotopologues that differ in mass from the existing four reporters by intervals of 6 mDa yields a 12-plex isobaric set that preserves the synthetic simplicity and quantitative performance of the original implementation. We show that the new reporter variants can be baseline-resolved in high-resolution higher-energy C-trap dissociation (HCD) spectra, and we demonstrate accurate 12-plex quantitation of a DiLeu-labeled Saccharomyces cerevisiae lysate digest via high-resolution nano liquid chromatography–tandem mass spectrometry (nanoLC–MS2) analysis on an Orbitrap Elite mass spectrometer. PMID:25405479

  4. iTRAQ Analysis Reveals Mechanisms of Growth Defects Due to Excess Zinc in Arabidopsis1[W][OA

    PubMed Central

    Fukao, Yoichiro; Ferjani, Ali; Tomioka, Rie; Nagasaki, Nahoko; Kurata, Rie; Nishimori, Yuka; Fujiwara, Masayuki; Maeshima, Masayoshi

    2011-01-01

    The micronutrient zinc is essential for all living organisms, but it is toxic at high concentrations. Here, to understand the effects of excess zinc on plant cells, we performed an iTRAQ (for isobaric tags for relative and absolute quantification)-based quantitative proteomics approach to analyze microsomal proteins from Arabidopsis (Arabidopsis thaliana) roots. Our approach was sensitive enough to identify 521 proteins, including several membrane proteins. Among them, IRT1, an iron and zinc transporter, and FRO2, a ferric-chelate reductase, increased greatly in response to excess zinc. The expression of these two genes has been previously reported to increase under iron-deficient conditions. Indeed, the concentration of iron was significantly decreased in roots and shoots under excess zinc. Also, seven subunits of the vacuolar H+-ATPase (V-ATPase), a proton pump on the tonoplast and endosome, were identified, and three of them decreased significantly in response to excess zinc. In addition, excess zinc in the wild type decreased V-ATPase activity and length of roots and cells to levels comparable to those of the untreated de-etiolated3-1 mutant, which bears a mutation in V-ATPase subunit C. Interestingly, excess zinc led to the formation of branched and abnormally shaped root hairs, a phenotype that correlates with decreased levels of proteins of several root hair-defective mutants. Our results point out mechanisms of growth defects caused by excess zinc in which cross talk between iron and zinc homeostasis and V-ATPase activity might play a central role. PMID:21325567

  5. Role of the Tomato Non-Ripening Mutation in Regulating Fruit Quality Elucidated Using iTRAQ Protein Profile Analysis

    PubMed Central

    Yuan, Xin-Yu; Wang, Rui-Heng; Zhao, Xiao-Dan; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Natural mutants of the Non-ripening (Nor) gene repress the normal ripening of tomato fruit. The molecular mechanism of fruit ripening regulation by the Nor gene is unclear. To elucidate how the Nor gene can affect ripening and fruit quality at the protein level, we used the fruits of Nor mutants and wild-type Ailsa Craig (AC) to perform iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The Nor mutation altered tomato fruit ripening and affected quality in various respects, including ethylene biosynthesis by down-regulating the abundance of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), pigment biosynthesis by repressing phytoene synthase 1 (PSY1), ζ-carotene isomerase (Z-ISO), chalcone synthase 1 (CHS1) and other proteins, enhancing fruit firmness by increasing the abundance of cellulose synthase protein, while reducing those of polygalacturonase 2 (PG2) and pectate lyase (PL), altering biosynthesis of nutrients such as carbohydrates, amino acids, and anthocyanins. Conversely, Nor mutation also enhanced the fruit’s resistance to some pathogens by up-regulating the expression of several genes associated with stress and defense. Therefore, the Nor gene is involved in the regulation of fruit ripening and quality. It is useful in the future as a means to improve fruit quality in tomato. PMID:27732677

  6. RECENT ADVANCES IN QUANTITATIVE NEUROPROTEOMICS

    PubMed Central

    Craft, George E; Chen, Anshu; Nairn, Angus C

    2014-01-01

    The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to

  7. Recent advances in quantitative neuroproteomics.

    PubMed

    Craft, George E; Chen, Anshu; Nairn, Angus C

    2013-06-15

    The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed

  8. Extraction efficiency and implications for absolute quantitation of propranolol in mouse brain, liver and kidney thin tissue sections using droplet-based liquid microjunction surface sampling-HPLC ESI-MS/MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Weiskittel, Taylor M.; Vavek, Marissa

    Currently, absolute quantitation aspects of droplet-based surface sampling for thin tissue analysis using a fully automated autosampler/HPLC-ESI-MS/MS system are not fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from thin tissue sections. Methods: Adjacent thin tissue sections of propranolol dosed mouse brain (10- μm-thick), kidney (10- μm-thick) and liver (8-, 10-, 16- and 24- μm-thick) were obtained. Absolute concentration of propranolol was determined in tissue punches from serial sections using standard bulk tissue extraction protocols and subsequent HPLC separations and tandem mass spectrometric analysis. Thesemore » values were used to determine propranolol extraction efficiency from the tissues with the droplet-based surface sampling approach. Results: Extraction efficiency of propranolol using 10- μm-thick brain, kidney and liver thin tissues using droplet-based surface sampling varied between ~45-63%. Extraction efficiency decreased from ~65% to ~36% with liver thickness increasing from 8 μm to 24 μm. Randomly selecting half of the samples as standards, precision and accuracy of propranolol concentrations obtained for the other half of samples as quality control metrics were determined. Resulting precision ( ±15%) and accuracy ( ±3%) values, respectively, were within acceptable limits. In conclusion, comparative quantitation of adjacent mouse thin tissue sections of different organs and of various thicknesses by droplet-based surface sampling and by bulk extraction of tissue punches showed that extraction efficiency was incomplete using the former method, and that it depended on the organ and tissue thickness. However, once extraction efficiency was determined and applied, the droplet-based approach provided the required quantitation accuracy and precision for assay validations. Furthermore, this means that once the extraction

  9. Extraction efficiency and implications for absolute quantitation of propranolol in mouse brain, liver and kidney thin tissue sections using droplet-based liquid microjunction surface sampling-HPLC ESI-MS/MS

    DOE PAGES

    Kertesz, Vilmos; Weiskittel, Taylor M.; Vavek, Marissa; ...

    2016-06-22

    Currently, absolute quantitation aspects of droplet-based surface sampling for thin tissue analysis using a fully automated autosampler/HPLC-ESI-MS/MS system are not fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from thin tissue sections. Methods: Adjacent thin tissue sections of propranolol dosed mouse brain (10- μm-thick), kidney (10- μm-thick) and liver (8-, 10-, 16- and 24- μm-thick) were obtained. Absolute concentration of propranolol was determined in tissue punches from serial sections using standard bulk tissue extraction protocols and subsequent HPLC separations and tandem mass spectrometric analysis. Thesemore » values were used to determine propranolol extraction efficiency from the tissues with the droplet-based surface sampling approach. Results: Extraction efficiency of propranolol using 10- μm-thick brain, kidney and liver thin tissues using droplet-based surface sampling varied between ~45-63%. Extraction efficiency decreased from ~65% to ~36% with liver thickness increasing from 8 μm to 24 μm. Randomly selecting half of the samples as standards, precision and accuracy of propranolol concentrations obtained for the other half of samples as quality control metrics were determined. Resulting precision ( ±15%) and accuracy ( ±3%) values, respectively, were within acceptable limits. In conclusion, comparative quantitation of adjacent mouse thin tissue sections of different organs and of various thicknesses by droplet-based surface sampling and by bulk extraction of tissue punches showed that extraction efficiency was incomplete using the former method, and that it depended on the organ and tissue thickness. However, once extraction efficiency was determined and applied, the droplet-based approach provided the required quantitation accuracy and precision for assay validations. Furthermore, this means that once the extraction

  10. Looking for prosocial genes: ITRAQ analysis of proteins involved in MDMA-induced sociability in mice.

    PubMed

    Kuteykin-Teplyakov, Konstantin; Maldonado, Rafael

    2014-11-01

    Social behavior plays a fundamental role in life of many animal species, allowing the interaction between individuals and sharing of experiences, needs, and goals across them. In humans, some neuropsychiatric diseases, including anxiety, posttraumatic stress disorder and autism spectrum disorders, are often characterized by impaired sociability. Here we report that N-Methyl-3,4-methylenedioxyamphetamine (MDMA, "Ecstasy") at low dose (3mg/kg) has differential effects on mouse social behavior. In some animals, MDMA promotes sociability without hyperlocomotion, whereas in other mice it elevates locomotor activity without affecting sociability. Both WAY-100635, a selective antagonist of 5-HT1A receptor, and L-368899, a selective oxytocin receptor antagonist, abolish prosocial effects of MDMA. Differential quantitative analysis of brain proteome by isobaric tag for relative and absolute quantification technology (iTRAQ) revealed 21 specific proteins that were highly correlated with sociability, and allowed to distinguish between entactogenic prosocial and hyperlocomotor effects of MDMA on proteome level. Our data suggest particular relevance of neurotransmission mediated by GABA B receptor, as well as proteins involved in energy maintenance for MDMA-induced sociability. Functional association network for differentially expressed proteins in cerebral cortex, hippocampus and amygdala were identified. These results provide new information for understanding the neurobiological substrate of sociability and may help to discover new therapeutic approaches to modulate social behavior in patients suffering from social fear and low sociability. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  11. Improvement of Quantitative Measurements in Multiplex Proteomics Using High-Field Asymmetric Waveform Spectrometry.

    PubMed

    Pfammatter, Sibylle; Bonneil, Eric; Thibault, Pierre

    2016-12-02

    Quantitative proteomics using isobaric reagent tandem mass tags (TMT) or isobaric tags for relative and absolute quantitation (iTRAQ) provides a convenient approach to compare changes in protein abundance across multiple samples. However, the analysis of complex protein digests by isobaric labeling can be undermined by the relative large proportion of co-selected peptide ions that lead to distorted reporter ion ratios and affect the accuracy and precision of quantitative measurements. Here, we investigated the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS) in proteomic experiments to reduce sample complexity and improve protein quantification using TMT isobaric labeling. LC-FAIMS-MS/MS analyses of human and yeast protein digests led to significant reductions in interfering ions, which increased the number of quantifiable peptides by up to 68% while significantly improving the accuracy of abundance measurements compared to that with conventional LC-MS/MS. The improvement in quantitative measurements using FAIMS is further demonstrated for the temporal profiling of protein abundance of HEK293 cells following heat shock treatment.

  12. iTRAQ-Based Quantitative Proteomics of Developing and Ripening Muscadine Grape Berry

    PubMed Central

    Kambiranda, Devaiah; Katam, Ramesh; Basha, Sheikh M.; Siebert, Shalom

    2014-01-01

    Grapes are among the widely cultivated fruit crops in the world. Grape berries like other nonclimacteric fruits undergo a complex set of dynamic, physical, physiological, and biochemical changes during ripening. Muscadine grapes are widely cultivated in the southern United States for fresh fruit and wine. To date, changes in the metabolites composition of muscadine grapes have been well documented; however, the molecular changes during berry development and ripening are not fully known. The aim of this study was to investigate changes in the berry proteome during ripening in muscadine grape cv. Noble. Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS was used to detect statistically significant changes in the berry proteome. A total of 674 proteins were detected, and 76 were differentially expressed across four time points in muscadine berry. Proteins obtained were further analyzed to provide information about its potential functions during ripening. Several proteins involved in abiotic and biotic stimuli and sucrose and hexose metabolism were upregulated during berry ripening. Quantitative real-time PCR analysis validated the protein expression results for nine proteins. Identification of vicilin-like antimicrobial peptides indicates additional disease tolerance proteins are present in muscadines for berry protection during ripening. The results provide new information for characterization and understanding muscadine berry proteome and grape ripening. PMID:24251720

  13. MilQuant: a free, generic software tool for isobaric tagging-based quantitation.

    PubMed

    Zou, Xiao; Zhao, Minzhi; Shen, Hongyan; Zhao, Xuyang; Tong, Yuanpeng; Wang, Qingsong; Wei, Shicheng; Ji, Jianguo

    2012-09-18

    Isobaric tagging techniques such as iTRAQ and TMT are widely used in quantitative proteomics and especially useful for samples that demand in vitro labeling. Due to diversity in choices of MS acquisition approaches, identification algorithms, and relative abundance deduction strategies, researchers are faced with a plethora of possibilities when it comes to data analysis. However, the lack of generic and flexible software tool often makes it cumbersome for researchers to perform the analysis entirely as desired. In this paper, we present MilQuant, mzXML-based isobaric labeling quantitator, a pipeline of freely available programs that supports native acquisition files produced by all mass spectrometer types and collection approaches currently used in isobaric tagging based MS data collection. Moreover, aside from effective normalization and abundance ratio deduction algorithms, MilQuant exports various intermediate results along each step of the pipeline, making it easy for researchers to customize the analysis. The functionality of MilQuant was demonstrated by four distinct datasets from different laboratories. The compatibility and extendibility of MilQuant makes it a generic and flexible tool that can serve as a full solution to data analysis of isobaric tagging-based quantitation. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. iTRAQ-based quantitative protein expression profiling and MRM verification of markers in type 2 diabetes.

    PubMed

    Kaur, Prabhjit; Rizk, Nasser M; Ibrahim, Sereen; Younes, Noura; Uppal, Arushi; Dennis, Kevin; Karve, Tejaswita; Blakeslee, Kenneth; Kwagyan, John; Zirie, Mahmoud; Ressom, Habtom W; Cheema, Amrita K

    2012-11-02

    The pathogenesis of Type 2 diabetes mellitus (T2DM) is complex owing to molecular heterogeneity in the afflicted population. Current diagnostic methods rely on blood glucose measurements, which are noninformative with respect to progression of the disease to other associated pathologies. Thus, predicting the risk and development of T2DM-related complications, such as cardiovascular disease, remains a major challenge. We have used a combination of quantitative methods for characterization of circulating serum biomarkers of T2DM using a cohort of nondiabetic control subjects (n = 76) and patients diagnosed with T2DM (n = 106). In this case-control study, the samples were randomly divided as training and validation data sets. In the first step, iTRAQ (isobaric tagging for relative and absolute quantification) based protein expression profiling was performed for identification of proteins displaying a significant differential expression in the two study groups. Five of these protein markers were selected for validation using multiple reaction-monitoring mass spectrometry (MRM-MS) and further confirmed with Western blot and QPCR analysis. Functional pathway analysis identified perturbations in lipid and small molecule metabolism as well as pathways that lead to disruption of glucose homeostasis and blood coagulation. These putative biomarkers may be clinically useful for subset stratification of T2DM patients as well as for the development of novel therapeutics targeting the specific pathology.

  15. CPTAC Evaluates Long-Term Reproducibility of Quantitative Proteomics Using Breast Cancer Xenografts | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Liquid chromatography tandem-mass spectrometry (LC-MS/MS)- based methods such as isobaric tags for relative and absolute quantification (iTRAQ) and tandem mass tags (TMT) have been shown to provide overall better quantification accuracy and reproducibility over other LC-MS/MS techniques. However, large scale projects like the Clinical Proteomic Tumor Analysis Consortium (CPTAC) require comparisons across many genomically characterized clinical specimens in a single study and often exceed the capability of traditional iTRAQ-based quantification.

  16. Establishing Ion Ratio Thresholds Based on Absolute Peak Area for Absolute Protein Quantification using Protein Cleavage Isotope Dilution Mass Spectrometry

    PubMed Central

    Loziuk, Philip L.; Sederoff, Ronald R.; Chiang, Vincent L.; Muddiman, David C.

    2014-01-01

    Quantitative mass spectrometry has become central to the field of proteomics and metabolomics. Selected reaction monitoring is a widely used method for the absolute quantification of proteins and metabolites. This method renders high specificity using several product ions measured simultaneously. With growing interest in quantification of molecular species in complex biological samples, confident identification and quantitation has been of particular concern. A method to confirm purity or contamination of product ion spectra has become necessary for achieving accurate and precise quantification. Ion abundance ratio assessments were introduced to alleviate some of these issues. Ion abundance ratios are based on the consistent relative abundance (RA) of specific product ions with respect to the total abundance of all product ions. To date, no standardized method of implementing ion abundance ratios has been established. Thresholds by which product ion contamination is confirmed vary widely and are often arbitrary. This study sought to establish criteria by which the relative abundance of product ions can be evaluated in an absolute quantification experiment. These findings suggest that evaluation of the absolute ion abundance for any given transition is necessary in order to effectively implement RA thresholds. Overall, the variation of the RA value was observed to be relatively constant beyond an absolute threshold ion abundance. Finally, these RA values were observed to fluctuate significantly over a 3 year period, suggesting that these values should be assessed as close as possible to the time at which data is collected for quantification. PMID:25154770

  17. Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics.

    PubMed

    Jarnuczak, Andrew F; Lee, Dave C H; Lawless, Craig; Holman, Stephen W; Eyers, Claire E; Hubbard, Simon J

    2016-09-02

    Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472.

  18. The absolute counting of red cell-derived microparticles with red cell bead by flow rate based assay.

    PubMed

    Nantakomol, Duangdao; Imwong, Malika; Soontarawirat, Ingfar; Kotjanya, Duangporn; Khakhai, Chulalak; Ohashi, Jun; Nuchnoi, Pornlada

    2009-05-01

    Activation of red blood cell is associated with the formation of red cell-derived microparticles (RMPs). Analysis of circulating RMPs is becoming more refined and clinically useful. A quantitative Trucount tube method is the conventional method uses for quantitating RMPs. In this study, we validated a quantitative method called "flow rate based assay using red cell bead (FCB)" to measure circulating RMPs in the peripheral blood of healthy subjects. Citrated blood samples collected from 30 cases of healthy subjects were determined the RMPs count by using double labeling of annexin V-FITC and anti-glycophorin A-PE. The absolute RMPs numbers were measured by FCB, and the results were compared with the Trucount or with flow rate based calibration (FR). Statistical correlation and agreement were analyzed using linear regression and Bland-Altman analysis. There was no significant difference in the absolute number of RMPs quantitated by FCB when compared with those two reference methods including the Trucount tube and FR method. The absolute RMPs count obtained from FCB method was highly correlated with those obtained from Trucount tube (r(2) = 0.98, mean bias 4 cell/microl, limit of agreement [LOA] -20.3 to 28.3 cell/microl), and FR method (r(2) = 1, mean bias 10.3 cell/microl, and LOA -5.5 to 26.2 cell/microl). This study demonstrates that FCB is suitable and more affordable for RMPs quantitation in the clinical samples. This method is a low cost and interchangeable to latex bead-based method for generating the absolute counts in the resource-limited areas. (c) 2008 Clinical Cytometry Society.

  19. Study of quantitative changes of cereal allergenic proteins after food processing.

    PubMed

    Flodrová, Dana; Benkovská, Dagmar; Laštovičková, Markéta

    2015-03-30

    Within last few years, the occurrence of food allergens and corresponding food allergies has been increasing, therefore research into the individual allergens is required. In the present work, the effect of cereal processing on the amounts of allergenic proteins is studied by modern proteomic-based approaches. The most important wheat and barley allergens are low-molecular-weight (LMW) proteins. Therefore we investigated the relative quantitative changes of these proteins after food technological processing, namely wheat couscous production and barley malting. A comparative study using mass spectrometry in connection with the technique of isobaric tag for relative and absolute quantification (iTRAQ) revealed that the amount of wheat allergenic LMW proteins decreased significantly during couscous production (approximately to 5-26% of their initial content in wheat flour). After barley malting, the amounts of the majority of LMW proteins decreased as well, although to a lesser extent than in the case of wheat/couscous. The level of two allergens even slightly increased. Suggested proteomic strategy proved as universal and sensitive method for fast and reliable identification of various cereal allergens and monitoring of their quantitative changes during food processing. Such information is important for consumers who suffer from allergies. © 2014 Society of Chemical Industry.

  20. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves

    PubMed Central

    Li, Liang; Shang, Qing-Mao

    2016-01-01

    Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses. PMID:27551830

  1. Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhou; Adams, Rachel M; Chourey, Karuna

    2012-01-01

    A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification. Isobaricmore » chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. Based on the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.« less

  2. An MRM-based workflow for absolute quantitation of lysine-acetylated metabolic enzymes in mouse liver.

    PubMed

    Xu, Leilei; Wang, Fang; Xu, Ying; Wang, Yi; Zhang, Cuiping; Qin, Xue; Yu, Hongxiu; Yang, Pengyuan

    2015-12-07

    As a key post-translational modification mechanism, protein acetylation plays critical roles in regulating and/or coordinating cell metabolism. Acetylation is a prevalent modification process in enzymes. Protein acetylation modification occurs in sub-stoichiometric amounts; therefore extracting biologically meaningful information from these acetylation sites requires an adaptable, sensitive, specific, and robust method for their quantification. In this work, we combine immunoassays and multiple reaction monitoring-mass spectrometry (MRM-MS) technology to develop an absolute quantification for acetylation modification. With this hybrid method, we quantified the acetylation level of metabolic enzymes, which could demonstrate the regulatory mechanisms of the studied enzymes. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of protein acetylation in physiology and pathophysiology.

  3. Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803.

    PubMed

    Qiao, Jianjun; Wang, Jiangxin; Chen, Lei; Tian, Xiaoxu; Huang, Siqiang; Ren, Xiaoyue; Zhang, Weiwen

    2012-11-02

    Recent progress in metabolic engineering has led to autotrophic production of ethanol in various cyanobacterial hosts. However, cyanobacteria are known to be sensitive to ethanol, which restricts further efforts to increase ethanol production levels in these renewable host systems. To understand the mechanisms of ethanol tolerance so that engineering more robust cyanobacterial hosts can be possible, in this study, the responses of model cyanobacterial Synechocystis sp. PCC 6803 to ethanol were determined using a quantitative proteomics approach with iTRAQ LC-MS/MS technologies. The resulting high-quality proteomic data set consisted of 24,887 unique peptides corresponding to 1509 identified proteins, a coverage of approximately 42% of the predicted proteins in the Synechocystis genome. Using a cutoff of 1.5-fold change and a p-value less than 0.05, 135 and 293 unique proteins with differential abundance levels were identified between control and ethanol-treated samples at 24 and 48 h, respectively. Functional analysis showed that the Synechocystis cells employed a combination of induced common stress response, modifications of cell membrane and envelope, and induction of multiple transporters and cell mobility-related proteins as protection mechanisms against ethanol toxicity. Interestingly, our proteomic analysis revealed that proteins related to multiple aspects of photosynthesis were up-regulated in the ethanol-treated Synechocystis cells, consistent with increased chlorophyll a concentration in the cells upon ethanol exposure. The study provided the first comprehensive view of the complicated molecular mechanisms against ethanol stress and also provided a list of potential gene targets for further engineering ethanol tolerance in Synechocystis PCC 6803.

  4. Comparative Transcriptome and iTRAQ Proteome Analyses of Citrus Root Responses to Candidatus Liberibacter asiaticus Infection

    PubMed Central

    Jiang, Nong-hui; Jiang, Bo; Zhang, Yong-yan; Wu, Bo; Hu, Min-lun; Zeng, Ji-wu; Yan, Hua-xue; Yi, Gan-jun; Zhong, Guang-yan

    2015-01-01

    Root samples of ‘Sanhu’ red tangerine trees infected with and without Candidatus Liberibacter asiaticus (CLas) were collected at 50 days post inoculation and subjected to RNA-sequencing and isobaric tags for relative and absolute quantification (iTRAQ) to profile the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Quantitative real-time PCR was subsequently used to confirm the expression of 16 selected DEGs. Results showed that a total of 3956 genes and 78 proteins were differentially regulated by HLB-infection. Among the most highly up-regulated DEPs were sperm specific protein 411, copper ion binding protein, germin-like proteins, subtilisin-like proteins and serine carboxypeptidase-like 40 proteins whose transcript levels were concomitantly up-regulated as shown by RNA-seq data. Comparison between our results and those of the previously reported showed that known HLB-modulated biological pathways including cell-wall modification, protease-involved protein degradation, carbohydrate metabolism, hormone synthesis and signaling, transcription activities, and stress responses were similarly regulated by HLB infection but different or root-specific changes did exist. The root unique changes included the down-regulation in genes of ubiquitin-dependent protein degradation pathway, secondary metabolism, cytochrome P450s, UDP-glucosyl transferases and pentatricopeptide repeat containing proteins. Notably, nutrient absorption was impaired by HLB-infection as the expression of the genes involved in Fe, Zn, N and P adsorption and transportation were significantly changed. HLB-infection induced some cellular defense responses but simultaneously reduced the biosynthesis of the three major classes of secondary metabolites, many of which are known to have anti-pathogen activities. Genes involved in callose deposition were up-regulated whereas those involved in callose degradation were also up-regulated, indicating that the sieve tube elements in

  5. Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin.

    PubMed

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy.

  6. Quantitative Proteomic Analysis of Human Lung Tumor Xenografts Treated with the Ectopic ATP Synthase Inhibitor Citreoviridin

    PubMed Central

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy. PMID:23990911

  7. Absolute Scale Quantitative Off-Axis Electron Holography at Atomic Resolution

    NASA Astrophysics Data System (ADS)

    Winkler, Florian; Barthel, Juri; Tavabi, Amir H.; Borghardt, Sven; Kardynal, Beata E.; Dunin-Borkowski, Rafal E.

    2018-04-01

    An absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe2 flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.

  8. Amino acid analysis in physiological samples by GC-MS with propyl chloroformate derivatization and iTRAQ-LC-MS/MS.

    PubMed

    Dettmer, Katja; Stevens, Axel P; Fagerer, Stephan R; Kaspar, Hannelore; Oefner, Peter J

    2012-01-01

    Two mass spectrometry-based methods for the quantitative analysis of free amino acids are described. The first method uses propyl chloroformate/propanol derivatization and gas chromatography-quadrupole mass spectrometry (GC-qMS) analysis in single-ion monitoring mode. Derivatization is carried out directly in aqueous samples, thereby allowing automation of the entire procedure, including addition of reagents, extraction, and injection into the GC-MS. The method delivers the quantification of 26 amino acids. The isobaric tagging for relative and absolute quantification (iTRAQ) method employs the labeling of amino acids with isobaric iTRAQ tags. The tags contain two different cleavable reporter ions, one for the sample and one for the standard, which are detected by fragmentation in a tandem mass spectrometer. Reversed-phase liquid chromatography of the labeled amino acids is performed prior to mass spectrometric analysis to separate isobaric amino acids. The commercial iTRAQ kit allows for the analysis of 42 physiological amino acids with a respective isotope-labeled standard for each of these 42 amino acids.

  9. Data set of the protein expression profiles of Luminal A, Claudin-low and overexpressing HER2+ breast cancer cell lines by iTRAQ labelling and tandem mass spectrometry

    PubMed Central

    Calderón-González, Karla Grisel; Valero Rustarazo, Ma Luz; Labra-Barrios, Maria Luisa; Bazán-Méndez, César Isaac; Tavera-Tapia, Alejandra; Herrera-Aguirre, Marí;aEsther; Sánchez del Pino, Manuel M.; Gallegos-Pérez, José Luis; González-Márquez, Humberto; Hernández-Hernández, Jose Manuel; León-Ávila, Gloria; Rodríguez-Cuevas, Sergio; Guisa-Hohenstein, Fernando; Luna-Arias, Juan Pedro

    2015-01-01

    Breast cancer is the most common and the leading cause of mortality in women worldwide. There is a dire necessity of the identification of novel molecules useful in diagnosis and prognosis. In this work we determined the differentially expression profiles of four breast cancer cell lines compared to a control cell line. We identified 1020 polypeptides labelled with iTRAQ with more than 95% in confidence. We analysed the common proteins in all breast cancer cell lines through IPA software (IPA core and Biomarkers). In addition, we selected the specific overexpressed and subexpressed proteins of the different molecular classes of breast cancer cell lines, and classified them according to protein class and biological process. Data in this article is related to the research article “Determination of the protein expression profiles of breast cancer cell lines by Quantitative Proteomics using iTRAQ Labelling and Tandem Mass Spectrometry” (Calderón-González et al. [1] in press). PMID:26217805

  10. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  11. 2-DE Compared with iTRAQ-based Proteomic Analysis of the Functional Regulation of Proteins in Rhodococcus sp. BAP-1 Response to Fluoranthene

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Wang, Hongqi; Kong, Dekang

    2018-01-01

    Although the degradation pathways of Polycyclic aromatic hydrocarbons (PAHs) have been extensively studied in many bacteria, the variations in the expression levels of the key functional regulation of proteins during catabolism are still not quantitatively understood. In this study, we compared two proteomic methods, that one is two-dimensional gel electrophoresis (2-DE), a traditional widely used way and the other is isobaric tags for relative and absolute quantization (iTRAQ), an innovative approach, in order to analyze the functional regulation at the protein level in high effective fluoranthene-degrading bacteria named Rhodococcus sp. BAP-1. The number of differentially expressed proteins identified using iTRAQ is much larger than employing 2-DE. Response to fluoranthene, the key over expressed proteins in BAP-1 were NADPH-dependent FMN reductase, 30S ribosomal protein S2, S-ribosylhomocysteinase, etc.; the significant down-regulated proteins were cytochrome ubiquinol oxidase subunit, NAD(P) transhydrogenase subunit alpha, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, et al.

  12. Proteomics analysis of maize (Zea mays L.) grain based on iTRAQ reveals molecular mechanisms of poor grain filling in inferior grains.

    PubMed

    Yu, Tao; Li, Geng; Liu, Peng; Dong, Shuting; Zhang, Jiwang; Zhao, Bin

    2017-06-01

    In maize, inferior grains (IG) located on the upper part of the ear have poor grain filling process compared to superior grains (SG) located on the middle and lower parts of the ear. This difference limits satisfactory yield and quality; however, the underlying molecular mechanisms remain unknown. Here, using the isobaric tag for relative and absolute quantification (iTRAQ) technology, the proteomes of IG and SG during early and middle grain filling stages were investigated. In total, 4720 proteins were identified in maize grain and 305 differentially accumulated proteins (DiAPs) were detected between IG and SG. These DiAPs were involved in diverse cellular and metabolic processes with preferred distribution in protein synthesis/destination and metabolism. Compared to SG, DiAPs related to cell growth/division and starch synthesis were lag-accumulated and down-regulated in IG, respectively, resulting in smaller sink sizes and lower sink activities in IG. Meanwhile, impediment of the glycolysis pathway in IG may lead to reduce energy supply and building materials for substance synthesis. Additionally, reactive oxygen species (ROS) homeostasis and the defense system were disturbed in IG, which might lead to reduce protection against various environmental stresses. The present study provides new information on the proteomic differences between IG and SG, and explains possible molecular mechanisms for poor grain filling in IG. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Comparative proteomic analysis of Cronobacter sakazakii by iTRAQ provides insights into response to desiccation.

    PubMed

    Hu, Shuangfang; Yu, Yigang; Wu, Xinwei; Xia, Xingzhou; Xiao, Xinglong; Wu, Hui

    2017-10-01

    Cronobacter sakazakii is a foodborne pathogen throughout the world and survives extremely desiccation stress. However, the molecular basis involved in desiccation resistance of C. sakazakii is still unknown. In this study, the potential desiccation resistance factors of C. sakazakii ATCC 29544 were determined using iTRAQ-based quantitative proteomic analysis. A total of 2775 proteins were identified by iTRAQ, of which 233 showed a different protein expression between control group and desiccation stress group. Among these 233 proteins identified as desiccation resistance proteins, there were 146 proteins downregulated and 87 proteins upregulated. According to the comprehensive proteome coverage analysis, C. sakazakii increased its resistance to desiccation by reducing the gene involved with unnecessary survival functions such as those used for virulence, adhesion, invasion and flagella assembly, while increasing gene expression of genes used in withstanding osmotic stress such as those genes involved in trehalose and betaine uptake. However, the mechanism involved in amino acid metabolism in an osmotic stress response, including the producing of γ-aminobutyric acid in C. sakazakii is still uncertain. This is the first report to determine the potential desiccation resistant factors of C. sakazakii at the proteomic levels. Copyright © 2017. Published by Elsevier Ltd.

  14. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples.

    PubMed

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-03-18

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems.

  15. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples

    PubMed Central

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-01-01

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems. PMID:26999129

  16. Absolute Quantitation of Water and Metabolites in the Human Brain. II. Metabolite Concentrations

    NASA Astrophysics Data System (ADS)

    Kreis, R.; Ernst, T.; Ross, B. D.

    A method for determining absolute metabolite concentrations with in vivo1H magnetic resonance spectroscopy is presented. Using the compartmentation model introduced in the preceding paper of this series ( J. Magn. Reson. B102, 1, 1993), it is possible to express NMR results in terms of most commonly used concentration units. The proposed scheme, involving the measurement of an external standard as well as of the localized water signal, is verified on cerebral spectra obtained from 22 subjects. Besides concentrations, longitudinal and transverse relaxation times are determined for parietal white and occipital gray matter. The determination of these quantities crucially depends on the analysis of the T2 signal decay as a function of echo time. The in vivo concentrations of the four metabolites N-acetyl aspartate, creatine plus phosphocreatine, choline, and myo-inositol are in good agreement with biochemical determinations performed in vitro. Two clinical examples emphasize the relevance of absolute quantitation in the investigation of human neuropathology and normal development.

  17. Hyperplex-MRM: a hybrid multiple reaction monitoring method using mTRAQ/iTRAQ labeling for multiplex absolute quantification of human colorectal cancer biomarker.

    PubMed

    Yin, Hong-Rui; Zhang, Lei; Xie, Li-Qi; Huang, Li-Yong; Xu, Ye; Cai, San-Jun; Yang, Peng-Yuan; Lu, Hao-Jie

    2013-09-06

    Novel biomarker verification assays are urgently required to improve the efficiency of biomarker development. Benefitting from lower development costs, multiple reaction monitoring (MRM) has been used for biomarker verification as an alternative to immunoassay. However, in general MRM analysis, only one sample can be quantified in a single experiment, which restricts its application. Here, a Hyperplex-MRM quantification approach, which combined mTRAQ for absolute quantification and iTRAQ for relative quantification, was developed to increase the throughput of biomarker verification. In this strategy, equal amounts of internal standard peptides were labeled with mTRAQ reagents Δ0 and Δ8, respectively, as double references, while 4-plex iTRAQ reagents were used to label four different samples as an alternative to mTRAQ Δ4. From the MRM trace and MS/MS spectrum, total amounts and relative ratios of target proteins/peptides of four samples could be acquired simultaneously. Accordingly, absolute amounts of target proteins/peptides in four different samples could be achieved in a single run. In addition, double references were used to increase the reliability of the quantification results. Using this approach, three biomarker candidates, ademosylhomocysteinase (AHCY), cathepsin D (CTSD), and lysozyme C (LYZ), were successfully quantified in colorectal cancer (CRC) tissue specimens of different stages with high accuracy, sensitivity, and reproducibility. To summarize, we demonstrated a promising quantification method for high-throughput verification of biomarker candidates.

  18. Quantitative Proteomic Analysis Reveals That Anti-Cancer Effects of Selenium-Binding Protein 1 In Vivo Are Associated with Metabolic Pathways

    PubMed Central

    Ying, Qi; Ansong, Emmanuel; Diamond, Alan M.; Lu, Zhaoxin; Yang, Wancai; Bie, Xiaomei

    2015-01-01

    Previous studies have shown the tumor-suppressive role of selenium-binding protein 1 (SBP1), but the underlying mechanisms are unclear. In this study, we found that induction of SBP1 showed significant inhibition of colorectal cancer cell growth and metastasis in mice. We further employed isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins that were involved in SBP1-mediated anti-cancer effects in tumor tissues. We identified 132 differentially expressed proteins, among them, 53 proteins were upregulated and 79 proteins were downregulated. Importantly, many of the differentially altered proteins were associated with lipid/glucose metabolism, which were also linked to Glycolysis, MAPK, Wnt, NF-kB, NOTCH and epithelial-mesenchymal transition (EMT) signaling pathways. These results have revealed a novel mechanism that SBP1-mediated cancer inhibition is through altering lipid/glucose metabolic signaling pathways. PMID:25974208

  19. Absolute detector-based spectrally tunable radiant source using digital micromirror device and supercontinuum fiber laser.

    PubMed

    Li, Zhigang; Wang, Xiaoxu; Zheng, Yuquan; Li, Futian

    2017-06-10

    High-accuracy absolute detector-based spectroradiometric calibration techniques traceable to cryogenic absolute radiometers have made progress rapidly in recent decades under the impetus of atmospheric quantitative spectral remote sensing. A high brightness spectrally tunable radiant source using a supercontinuum fiber laser and a digital micromirror device (DMD) has been developed to meet demands of spectroradiometric calibrations for ground-based, aeronautics-based, and aerospace-based remote sensing instruments and spectral simulations of natural scenes such as the sun and atmosphere. Using a supercontinuum fiber laser as a radiant source, the spectral radiance of the spectrally tunable radiant source is 20 times higher than the spectrally tunable radiant source using conventional radiant sources such as tungsten halogen lamps, xenon lamps, or LED lamps, and the stability is better than ±0.3%/h. Using a DMD, the spectrally tunable radiant source possesses two working modes. In narrow-band modes, it is calibrated by an absolute detector, and in broad-band modes, it can calibrate for remote sensing instrument. The uncertainty of the spectral radiance of the spectrally tunable radiant source is estimated at less than 1.87% at 350 nm to 0.85% at 750 nm, and compared to only standard lamp-based calibration, a greater improvement is gained.

  20. Quantitative proteomics analysis with iTRAQ in human lenses with nuclear cataracts of different axial lengths.

    PubMed

    Zhou, Haiyan; Yan, Hong; Yan, Weijia; Wang, Xinchuan; Ma, Yong; Wang, Jianping

    2016-01-01

    The goal of this study was to identify and quantify the differentially expressed proteins in human nuclear cataract with different axial lengths. Thirty-six samples of human lens nuclei with hardness grade III or IV were obtained during cataract surgery with extracapsular cataract extraction (ECCE). Six healthy transparent human lens nuclei were obtained from fresh healthy cadaver eyes during corneal transplantation surgery. The lens nuclei were divided into seven groups (six lenses in each group) according to the optic axis: Group A (mean axial length 28.7±1.5 mm; average age 59.8±1.9 years), Group B (mean axial length 23.0±0.4 mm; average age 60.3±2.5 years), Group C (mean axial length 19.9±0.5 mm; average age 55.1±2.5 years), Group D (mean axial length 28.7±1.4 mm; average age 58.0±4.0 years), Group E (mean axial length 23.0±0.3 mm; average age 56.9±4.2 years), and Group F (mean axial length 20.7±0.6 mm; average age 57.6±5.3 years). The six healthy transparent human lenses were included in a younger group with standard optic axes, Group G (mean axial length 23.0±0.5 mm; average age 34.7±4.2 years).Water-soluble, water-insoluble, and water-insoluble-urea-soluble protein fractions were extracted from the samples. The three-part protein fractions from the individual lenses were combined to form the total proteins of each sample. The proteomic profiles of each group were analyzed using 8-plex isobaric tagging for relative and absolute protein quantification (iTRAQ) labeling combined with two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS). The data were analyzed with ProteinPilot software for peptide matching, protein identification, and quantification. Differentially expressed proteins were validated with western blotting. We employed biological and technical replicates and selected the intersection of the two sets of results, which included 40 proteins. From the 40 proteins identified, six were selected as differentially

  1. Mass spectrometry–based relative quantification of proteins in precatalytic and catalytically active spliceosomes by metabolic labeling (SILAC), chemical labeling (iTRAQ), and label-free spectral count

    PubMed Central

    Schmidt, Carla; Grønborg, Mads; Deckert, Jochen; Bessonov, Sergey; Conrad, Thomas; Lührmann, Reinhard; Urlaub, Henning

    2014-01-01

    The spliceosome undergoes major changes in protein and RNA composition during pre-mRNA splicing. Knowing the proteins—and their respective quantities—at each spliceosomal assembly stage is critical for understanding the molecular mechanisms and regulation of splicing. Here, we applied three independent mass spectrometry (MS)–based approaches for quantification of these proteins: (1) metabolic labeling by SILAC, (2) chemical labeling by iTRAQ, and (3) label-free spectral count for quantification of the protein composition of the human spliceosomal precatalytic B and catalytic C complexes. In total we were able to quantify 157 proteins by at least two of the three approaches. Our quantification shows that only a very small subset of spliceosomal proteins (the U5 and U2 Sm proteins, a subset of U5 snRNP-specific proteins, and the U2 snRNP-specific proteins U2A′ and U2B′′) remains unaltered upon transition from the B to the C complex. The MS-based quantification approaches classify the majority of proteins as dynamically associated specifically with the B or the C complex. In terms of experimental procedure and the methodical aspect of this work, we show that metabolically labeled spliceosomes are functionally active in terms of their assembly and splicing kinetics and can be utilized for quantitative studies. Moreover, we obtain consistent quantification results from all three methods, including the relatively straightforward and inexpensive label-free spectral count technique. PMID:24448447

  2. Proteomic analysis of cow, yak, buffalo, goat and camel milk whey proteins: quantitative differential expression patterns.

    PubMed

    Yang, Yongxin; Bu, Dengpan; Zhao, Xiaowei; Sun, Peng; Wang, Jiaqi; Zhou, Lingyun

    2013-04-05

    To aid in unraveling diverse genetic and biological unknowns, a proteomic approach was used to analyze the whey proteome in cow, yak, buffalo, goat, and camel milk based on the isobaric tag for relative and absolute quantification (iTRAQ) techniques. This analysis is the first to produce proteomic data for the milk from the above-mentioned animal species: 211 proteins have been identified and 113 proteins have been categorized according to molecular function, cellular components, and biological processes based on gene ontology annotation. The results of principal component analysis showed significant differences in proteomic patterns among goat, camel, cow, buffalo, and yak milk. Furthermore, 177 differentially expressed proteins were submitted to advanced hierarchical clustering. The resulting clustering pattern included three major sample clusters: (1) cow, buffalo, and yak milk; (2) goat, cow, buffalo, and yak milk; and (3) camel milk. Certain proteins were chosen as characterization traits for a given species: whey acidic protein and quinone oxidoreductase for camel milk, biglycan for goat milk, uncharacterized protein (Accession Number: F1MK50 ) for yak milk, clusterin for buffalo milk, and primary amine oxidase for cow milk. These results help reveal the quantitative milk whey proteome pattern for analyzed species. This provides information for evaluating adulteration of specific specie milk and may provide potential directions for application of specific milk protein production based on physiological differences among animal species.

  3. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of Cryptococcus humicola response to aluminum stress.

    PubMed

    Zhang, Jingjing; Zhang, Lei; Qiu, Jinkui; Nian, Hongjuan

    2015-10-01

    Cryptococcus humicola is a highly aluminum (Al) tolerant yeast strain isolated from a tea field. Here the relative changes of protein expression in C. humicola undergoing aluminum stress were analyzed to understand the genetic basis of aluminum tolerance. In this work, iTRAQ-based (isobaric tags for relative and absolute quantification) quantitative proteomic technology was used to detect statistically significant proteins associated with the response to aluminum stress. A total of 625 proteins were identified and were mainly involved in translation/ribosomal structure and biogenesis, posttranslational modification/protein turnover/chaperones, energy production and conversion, and amino acid transport and metabolism. Of these proteins, 59 exhibited differential expression during aluminum stress. Twenty-nine proteins up-regulated by aluminum were mainly involved in translation/ribosomal structure and biogenesis, posttranslational modification/protein turnover and chaperones, and lipid transport and metabolism. Thirty proteins down-regulated by aluminum were mainly associated with energy transport and metabolism, translation/ribosomal structure and biogenesis, posttranslational modification/protein turnover/chaperones, and lipid transport and metabolism. The potential functions of some proteins in aluminum tolerance are discussed. These functional changes may be beneficial for cells to protect themselves from aluminum toxic conditions. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  4. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling.

    PubMed

    Yang, Mei; Cong, Min; Peng, Xiuming; Wu, Junrui; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing

    2016-05-18

    Milk fat globule membrane (MFGM) proteins have many functions. To explore the different proteomics of human and bovine MFGM, MFGM proteins were separated from human and bovine colostrum and mature milk, and analyzed by the iTRAQ proteomic approach. A total of 411 proteins were recognized and quantified. Among these, 232 kinds of differentially expressed proteins were identified. These differentially expressed proteins were analyzed based on multivariate analysis, gene ontology (GO) annotation and KEGG pathway. Biological processes involved were response to stimulus, localization, establishment of localization, and the immune system process. Cellular components engaged were the extracellular space, extracellular region parts, cell fractions, and vesicles. Molecular functions touched upon were protein binding, nucleotide binding, and enzyme inhibitor activity. The KEGG pathway analysis showed several pathways, including regulation of the actin cytoskeleton, focal adhesion, neurotrophin signaling pathway, leukocyte transendothelial migration, tight junction, complement and coagulation cascades, vascular endothelial growth factor signaling pathway, and adherens junction. These results enhance our understanding of different proteomes of human and bovine MFGM across different lactation phases, which could provide important information and potential directions for the infant milk powder and functional food industries.

  5. Quantitative Proteomics Analysis of Streptomyces coelicolor Development Demonstrates That Onset of Secondary Metabolism Coincides with Hypha Differentiation*

    PubMed Central

    Manteca, Angel; Sanchez, Jesus; Jung, Hye R.; Schwämmle, Veit; Jensen, Ole N.

    2010-01-01

    Streptomyces species produce many clinically important secondary metabolites, including antibiotics and antitumorals. They have a complex developmental cycle, including programmed cell death phenomena, that makes this bacterium a multicellular prokaryotic model. There are two differentiated mycelial stages: an early compartmentalized vegetative mycelium (first mycelium) and a multinucleated reproductive mycelium (second mycelium) arising after programmed cell death processes. In the present study, we made a detailed proteomics analysis of the distinct developmental stages of solid confluent Streptomyces coelicolor cultures using iTRAQ (isobaric tags for relative and absolute quantitation) labeling and LC-MS/MS. A new experimental approach was developed to obtain homogeneous samples at each developmental stage (temporal protein analysis) and also to obtain membrane and cytosolic protein fractions (spatial protein analysis). A total of 345 proteins were quantified in two biological replicates. Comparative bioinformatics analyses revealed the switch from primary to secondary metabolism between the initial compartmentalized mycelium and the multinucleated hyphae. PMID:20224110

  6. NMR-based metabolomics reveals the metabolite profiles of Vibrio parahaemolyticus under ferric iron stimulation.

    PubMed

    Zhou, Jun; Lu, Chenyang; Zhang, Dijun; Ma, Chennv; Su, Xiurong

    2017-08-01

    Vibrio parahaemolyticus is a halophilic bacterium endemic to coastal areas, and its pathogenicity has caused widespread seafood poisoning. In our previous research, the protein expression of V. parahaemolyticus in Fe 3+ medium was determined using isobaric tags for relative and absolute quantitation (iTRAQ). Here, nuclear magnetic resonance (NMR) was used to detect changes in the V. parahaemolyticus metabolome. NMR spectra were obtained using methanol-water extracts of intracellular metabolites from V. parahaemolyticus under various culture conditions, and 62 metabolites were identified, including serine, arginine, alanine, ornithine, tryptophan, glutamine, malate, NAD + , NADP + , oxypurinol, xanthosine, dCTP, uracil, thymine, hypoxanthine, and betaine. Among these, 21 metabolites were up-regulated after the stimulation of the cells by ferric iron, and 9 metabolites were down-regulated. These metabolites are involved in amino acid and protein synthesis, energy metabolism, DNA and RNA synthesis and osmolality. Based on these results, we conclude that Fe 3+ influences the metabolite profiles of V. parahaemolyticus.

  7. Population-based absolute risk estimation with survey data

    PubMed Central

    Kovalchik, Stephanie A.; Pfeiffer, Ruth M.

    2013-01-01

    Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614

  8. Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery.

    PubMed

    Xiao, Hua; Langerman, Alexander; Zhang, Yan; Khalid, Omar; Hu, Shen; Cao, Cheng-Xi; Lingen, Mark W; Wong, David T W

    2015-11-01

    Specific biomarkers are urgently needed for the detection and progression of oral cancer. The objective of this study was to discover cancer biomarkers from oral epithelium through utilizing high throughput quantitative proteomics approaches. Morphologically malignant, epithelial dysplasia, and adjacent normal epithelial tissues were laser capture microdissected (LCM) from 19 patients and used for proteomics analysis. Total proteins from each group were extracted, digested and then labelled with corresponding isobaric tags for relative and absolute quantitation (iTRAQ). Labelled peptides from each sample were combined and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) for protein identification and quantification. In total, 500 proteins were identified and 425 of them were quantified. When compared with adjacent normal oral epithelium, 17 and 15 proteins were consistently up-regulated or down-regulated in malignant and epithelial dysplasia, respectively. Half of these candidate biomarkers were discovered for oral cancer for the first time. Cornulin was initially confirmed in tissue protein extracts and was further validated in tissue microarray. Its presence in the saliva of oral cancer patients was also explored. Myoglobin and S100A8 were pre-validated by tissue microarray. These data demonstrated that the proteomic biomarkers discovered through this strategy are potential targets for oral cancer detection and salivary diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Absolute quantitation of NAPQI-modified rat serum albumin by LC-MS/MS: monitoring acetaminophen covalent binding in vivo.

    PubMed

    LeBlanc, André; Shiao, Tze Chieh; Roy, René; Sleno, Lekha

    2014-09-15

    Acetaminophen is known to cause hepatoxicity via the formation of a reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), as a result of covalent binding to liver proteins. Serum albumin (SA) is known to be covalently modified by NAPQI and is present at high concentrations in the bloodstream and is therefore a potential biomarker to assess the levels of protein modification by NAPQI. A newly developed method for the absolute quantitation of serum albumin containing NAPQI covalently bound to its active site cysteine (Cys34) is described. This optimized assay represents the first absolute quantitation of a modified protein, with very low stoichiometric abundance, using a protein-level standard combined with isotope dilution. The LC-MS/MS assay is based on a protein standard modified with a custom-designed reagent, yielding a surrogate peptide (following digestion) that is a positional isomer to the target peptide modified by NAPQI. To illustrate the potential of this approach, the method was applied to quantify NAPQI-modified SA in plasma from rats dosed with acetaminophen. The resulting method is highly sensitive (capable of quantifying down to 0.0006% of total RSA in its NAPQI-modified form) and yields excellent precision and accuracy statistics. A time-course pharmacokinetic study was performed to test the usefulness of this method for following acetaminophen-induced covalent binding at four dosing levels (75-600 mg/kg IP), showing the viability of this approach to directly monitor in vivo samples. This approach can reliably quantify NAPQI-modified albumin, allowing direct monitoring of acetaminophen-related covalent binding.

  10. SWATH™- and iTRAQ-based quantitative proteomic analyses reveal an overexpression and biological relevance of CD109 in advanced NSCLC.

    PubMed

    Zhang, Fanglin; Lin, Hechun; Gu, Aiqin; Li, Jing; Liu, Lei; Yu, Tao; Cui, Yongqi; Deng, Wei; Yan, Mingxia; Li, Jinjun; Yao, Ming

    2014-05-06

    To identify cancer-related proteins, we used isobaric tags in a relative and absolute quantitation (iTRAQ) proteomic approach and SWATH™ quantification approach to analyze the secretome of an isogenic pair of highly metastatic and low metastatic non-small-cell lung cancer (NSCLC) cell lines. In addition, we compared two groups of pooled serum samples (12 early-stage and 12 late-stage patients) to mine data for candidates screened by iTRAQ-labeled proteomic analysis. A total of 110 proteins and 71 proteins were observed to be significantly differentially expressed in the cell line secretome and NSCLC sera, respectively. Among these proteins, CD109 was found to be highly expressed in both the highly metastatic cell line secretome and the group of late-stage patients. A sandwich ELISA assay also demonstrated an elevation of serum CD109 levels in individual NSCLC patients (n=30) compared with healthy subjects (n=19). Furthermore, CD109 displayed higher expression in lung cancer tissues compared with their matched noncancerous lung tissues (n=72). In addition, the knockdown of CD109 influenced several NSCLC cell bio-functions, for instance, depressing cell growth, affecting cell cycle phases. These phenomena suggest that CD109 plays a critical role in NSCLC progression. We simultaneously applied two quantitative proteomic approaches-iTRAQ-labeling and SWATH™-to analyze the secretome of metastatic cell lines, in order to explore the cancer-associated proteins in conditioned media. In this study, our results indicate that CD109 plays a critical role in non-small-cell lung cancer (NSCLC) progression, and is overexpressed in advanced NSCLC. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Absolute angular encoder based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang

    2015-08-01

    A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.

  12. Strigolactone-regulated proteins revealed by iTRAQ-based quantitative proteomics in Arabidopsis.

    PubMed

    Li, Zhou; Czarnecki, Olaf; Chourey, Karuna; Yang, Jun; Tuskan, Gerald A; Hurst, Gregory B; Pan, Chongle; Chen, Jin-Gui

    2014-03-07

    Strigolactones (SLs) are a new class of plant hormones. In addition to acting as a key inhibitor of shoot branching, SLs stimulate seed germination of root parasitic plants and promote hyphal branching and root colonization of symbiotic arbuscular mycorrhizal fungi. They also regulate many other aspects of plant growth and development. At the transcription level, SL-regulated genes have been reported. However, nothing is known about the proteome regulated by this new class of plant hormones. A quantitative proteomics approach using an isobaric chemical labeling reagent, iTRAQ, to identify the proteome regulated by SLs in Arabidopsis seedlings is presented. It was found that SLs regulate the expression of about three dozen proteins that have not been previously assigned to SL pathways. These findings provide a new tool to investigate the molecular mechanism of action of SLs.

  13. Isobaric Tags for Relative and Absolute Quantitation-Based Proteomic Analysis of Patent and Constricted Ductus Arteriosus Tissues Confirms the Systemic Regulation of Ductus Arteriosus Closure.

    PubMed

    Hong, Haifa; Ye, Lincai; Chen, Huiwen; Xia, Yu; Liu, Yue; Liu, Jinfen; Lu, Yanan; Zhang, Haibo

    2015-08-01

    We aimed to evaluate global changes in protein expression associated with patency by undertaking proteomic analysis of human constricted and patent ductus arteriosus (DA). Ten constricted and 10 patent human DAs were excised from infants with ductal-dependent heart disease during surgery. Using isobaric tags for relative and absolute quantitation-based quantitative proteomics, 132 differentially expressed proteins were identified. Of 132 proteins, voltage-gated sodium channel 1.3 (SCN3A), myosin 1d (Myo1d), Rho GTPase activating protein 26 (ARHGAP26), and retinitis pigmentosa 1 (RP1) were selected for validation by Western blot and quantitative real-time polymerase chain reaction analyses. Significant upregulation of SCN3A, Myo1d, and RP1 messenger RNA, and protein levels was observed in the patent DA group (all P ≤ 0.048). ARHGAP26 messenger RNA and protein levels were decreased in patent DA tissue (both P ≤ 0.018). Immunohistochemistry analysis revealed that Myo1d, ARHGAP26, and RP1 were specifically expressed in the subendothelial region of constricted DAs; however, diffuse expression of these proteins was noted in the patent group. Proteomic analysis revealed global changes in the expression of proteins that regulate oxygen sensing, ion channels, smooth muscle cell migration, nervous system, immune system, and metabolism, suggesting a basis for the systemic regulation of DA patency by diverse signaling pathways, which will be confirmed in further studies.

  14. Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy.

    PubMed

    Wang, Jigang; Zhang, Jianbin; Lee, Yew-Mun; Koh, Pin-Lang; Ng, Shukie; Bao, Feichao; Lin, Qingsong; Shen, Han-Ming

    2016-10-02

    Autophagy is an intracellular degradation mechanism in response to nutrient starvation. Via autophagy, some nonessential cellular constituents are degraded in a lysosome-dependent manner to generate biomolecules that can be utilized for maintaining the metabolic homeostasis. Although it is known that under starvation the global protein synthesis is significantly reduced mainly due to suppression of MTOR (mechanistic target of rapamycin serine/threonine kinase), emerging evidence demonstrates that de novo protein synthesis is involved in the autophagic process. However, characterizing these de novo proteins has been an issue with current techniques. Here, we developed a novel method to identify newly synthesized proteins during starvation-mediated autophagy by combining bio-orthogonal noncanonical amino acid tagging (BONCAT) and isobaric tags for relative and absolute quantitation (iTRAQ TM ). Using bio-orthogonal metabolic tagging, L-azidohomoalanine (AHA) was incorporated into newly synthesized proteins which were then enriched with avidin beads after a click reaction between alkyne-bearing biotin and AHA's bio-orthogonal azide moiety. The enriched proteins were subjected to iTRAQ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Via the above approach, we identified and quantified a total of 1176 proteins and among them 711 proteins were found to meet our defined criteria as de novo synthesized proteins during starvation-mediated autophagy. The characterized functional profiles of the 711 newly synthesized proteins by bioinformatics analysis suggest their roles in ensuring the prosurvival outcome of autophagy. Finally, we performed validation assays for some selected proteins and found that knockdown of some genes has a significant impact on starvation-induced autophagy. Thus, we think that the BONCAT-iTRAQ approach is effective in the identification of newly synthesized proteins and provides

  15. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  16. Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals

    PubMed Central

    Xia, Jun; Danielli, Amos; Liu, Yan; Wang, Lidai; Maslov, Konstantin; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is a hybrid imaging technique that has broad preclinical and clinical applications. Based on the photoacoustic effect, PAT directly measures specific optical absorption, which is the product of the tissue-intrinsic optical absorption coefficient and the local optical fluence. Therefore, quantitative PAT, such as absolute oxygen saturation (sO2) quantification, requires knowledge of the local optical fluence, which can be estimated only through invasive measurements or sophisticated modeling of light transportation. In this work, we circumvent this requirement by taking advantage of the dynamics in sO2. The new method works when the sO2 transition can be simultaneously monitored with multiple wavelengths. For each wavelength, the ratio of photoacoustic amplitudes measured at different sO2 states is utilized. Using the ratio cancels the contribution from optical fluence and allows calibration-free quantification of absolute sO2. The new method was validated through both phantom and in vivo experiments. PMID:23903146

  17. Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Jun; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing; Chongqing Key Laboratory of Neurobiology, Chongqing

    Purpose: Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). Methods: CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ™), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology andmore » proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. Results: Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. Conclusions: CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation. - Highlights: • The first proteomic study on the cerebrospinal fluid of tuberculous meningitis patients using iTRAQ. • Identify 4 differential proteins invloved in the lipid metabolism. • Elevated expression of Apo

  18. The application of absolute quantitative (1)H NMR spectroscopy in drug discovery and development.

    PubMed

    Singh, Suruchi; Roy, Raja

    2016-07-01

    The identification of a drug candidate and its structural determination is the most important step in the process of the drug discovery and for this, nuclear magnetic resonance (NMR) is one of the most selective analytical techniques. The present review illustrates the various perspectives of absolute quantitative (1)H NMR spectroscopy in drug discovery and development. It deals with the fundamentals of quantitative NMR (qNMR), the physiochemical properties affecting qNMR, and the latest referencing techniques used for quantification. The precise application of qNMR during various stages of drug discovery and development, namely natural product research, drug quantitation in dosage forms, drug metabolism studies, impurity profiling and solubility measurements is elaborated. To achieve this, the authors explore the literature of NMR in drug discovery and development between 1963 and 2015. It also takes into account several other reviews on the subject. qNMR experiments are used for drug discovery and development processes as it is a non-destructive, versatile and robust technique with high intra and interpersonal variability. However, there are several limitations also. qNMR of complex biological samples is incorporated with peak overlap and a low limit of quantification and this can be overcome by using hyphenated chromatographic techniques in addition to NMR.

  19. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.).

    PubMed

    Wang, Shuzhen; Chen, Wenyue; Xiao, Wenfei; Yang, Changdeng; Xin, Ya; Qiu, Jieren; Hu, Weimin; Ying, Wu; Fu, Yaping; Tong, Jianxin; Hu, Guocheng; Chen, Zhongzhong; Fang, Xianping; Yu, Hong; Lai, Wenguo; Ruan, Songlin; Ma, Huasheng

    2015-01-01

    Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various

  20. Proteomic analysis of maize grain development using iTRAQ reveals temporal programs of diverse metabolic processes.

    PubMed

    Yu, Tao; Li, Geng; Dong, Shuting; Liu, Peng; Zhang, Jiwang; Zhao, Bin

    2016-11-04

    Grain development in maize is an essential process in the plant's life cycle and is vital for use of the plant as a crop for animals and humans. However, little is known regarding the protein regulatory networks that control grain development. Here, isobaric tag for relative and absolute quantification (iTRAQ) technology was used to analyze temporal changes in protein expression during maize grain development. Maize grain proteins and changes in protein expression at eight developmental stages from 3 to 50 d after pollination (DAP) were performed using iTRAQ-based proteomics. Overall, 4751 proteins were identified; 2639 of these were quantified and 1235 showed at least 1.5-fold changes in expression levels at different developmental stages and were identified as differentially expressed proteins (DEPs). The DEPs were involved in different cellular and metabolic processes with a preferential distribution to protein synthesis/destination and metabolism categories. A K-means clustering analysis revealed coordinated protein expression associated with different functional categories/subcategories at different development stages. Our results revealed developing maize grain display different proteomic characteristics at distinct stages, such as numerous DEPs for cell growth/division were highly expressed during early stages, whereas those for starch biosynthesis and defense/stress accumulated in middle and late stages, respectively. We also observed coordinated expression of multiple proteins of the antioxidant system, which are essential for the maintenance of reactive oxygen species (ROS) homeostasis during grain development. Particularly, some DEPs, such as zinc metallothionein class II, pyruvate orthophosphate dikinase (PPDK) and 14-3-3 proteins, undergo major changes in expression at specific developmental stages, suggesting their roles in maize grain development. These results provide a valuable resource for analyzing protein function on a global scale and also

  1. Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7-T MRI.

    PubMed

    Kim, Seung-Goo; Knösche, Thomas R

    2016-10-01

    Absolute pitch (AP) is known as the ability to recognize and label the pitch chroma of a given tone without external reference. Known brain structures and functions related to AP are mainly of macroscopic aspects. To shed light on the underlying neural mechanism of AP, we investigated the intracortical myeloarchitecture in musicians with and without AP using the quantitative mapping of the longitudinal relaxation rates with ultra-high-field magnetic resonance imaging at 7 T. We found greater intracortical myelination for AP musicians in the anterior region of the supratemporal plane, particularly the medial region of the right planum polare (PP). In the same region of the right PP, we also found a positive correlation with a behavioral index of AP performance. In addition, we found a positive correlation with a frequency discrimination threshold in the anterolateral Heschl's gyrus in the right hemisphere, demonstrating distinctive neural processes of absolute recognition and relative discrimination of pitch. Regarding possible effects of local myelination in the cortex and the known importance of the anterior superior temporal gyrus/sulcus for the identification of auditory objects, we argue that pitch chroma may be processed as an identifiable object property in AP musicians. Hum Brain Mapp 37:3486-3501, 2016. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. Development of MRM-based assays for the absolute quantitation of plasma proteins.

    PubMed

    Kuzyk, Michael A; Parker, Carol E; Domanski, Dominik; Borchers, Christoph H

    2013-01-01

    Multiple reaction monitoring (MRM), sometimes called selected reaction monitoring (SRM), is a directed tandem mass spectrometric technique performed on to triple quadrupole mass spectrometers. MRM assays can be used to sensitively and specifically quantify proteins based on peptides that are specific to the target protein. Stable-isotope-labeled standard peptide analogues (SIS peptides) of target peptides are added to enzymatic digests of samples, and quantified along with the native peptides during MRM analysis. Monitoring of the intact peptide and a collision-induced fragment of this peptide (an ion pair) can be used to provide information on the absolute peptide concentration of the peptide in the sample and, by inference, the concentration of the intact protein. This technique provides high specificity by selecting for biophysical parameters that are unique to the target peptides: (1) the molecular weight of the peptide, (2) the generation of a specific fragment from the peptide, and (3) the HPLC retention time during LC/MRM-MS analysis. MRM is a highly sensitive technique that has been shown to be capable of detecting attomole levels of target peptides in complex samples such as tryptic digests of human plasma. This chapter provides a detailed description of how to develop and use an MRM protein assay. It includes sections on the critical "first step" of selecting the target peptides, as well as optimization of MRM acquisition parameters for maximum sensitivity of the ion pairs that will be used in the final method, and characterization of the final MRM assay.

  3. Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7‐T MRI

    PubMed Central

    Knösche, Thomas R.

    2016-01-01

    Abstract Absolute pitch (AP) is known as the ability to recognize and label the pitch chroma of a given tone without external reference. Known brain structures and functions related to AP are mainly of macroscopic aspects. To shed light on the underlying neural mechanism of AP, we investigated the intracortical myeloarchitecture in musicians with and without AP using the quantitative mapping of the longitudinal relaxation rates with ultra‐high‐field magnetic resonance imaging at 7 T. We found greater intracortical myelination for AP musicians in the anterior region of the supratemporal plane, particularly the medial region of the right planum polare (PP). In the same region of the right PP, we also found a positive correlation with a behavioral index of AP performance. In addition, we found a positive correlation with a frequency discrimination threshold in the anterolateral Heschl's gyrus in the right hemisphere, demonstrating distinctive neural processes of absolute recognition and relative discrimination of pitch. Regarding possible effects of local myelination in the cortex and the known importance of the anterior superior temporal gyrus/sulcus for the identification of auditory objects, we argue that pitch chroma may be processed as an identifiable object property in AP musicians. Hum Brain Mapp 37:3486–3501, 2016. © 2016 Wiley Periodicals, Inc. PMID:27160707

  4. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    PubMed

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. © 2016 American Heart Association, Inc.

  5. Identification of Tengfu Jiangya Tablet Target Biomarkers with Quantitative Proteomic Technique

    PubMed Central

    Xu, Jingwen; Zhang, Shijun; Jiang, Haiqiang; Wang, Nan; Lin, Haiqing

    2017-01-01

    Tengfu Jiangya Tablet (TJT) is a well accepted antihypertension drug in China and its major active components were Uncaria total alkaloids and Semen Raphani soluble alkaloid. To further explore treatment effects mechanism of TJT on essential hypertension, a serum proteomic study was performed. Potential biomarkers were quantified in serum of hypertension individuals before and after taking TJT with isobaric tags for relative and absolute quantitation (iTRAQ) coupled two-dimensional liquid chromatography followed electrospray ionization-tandem mass spectrometry (2D LC-MS/MS) proteomics technique. Among 391 identified proteins with high confidence, 70 proteins were differentially expressed (fold variation criteria, >1.2 or <0.83) between two groups (39 upregulated and 31 downregulated). Combining with Gene Ontology annotation, KEGG pathway analysis, and literature retrieval, 5 proteins were chosen as key target biomarkers during TJT therapeutic process. And the alteration profiles of these 5 proteins were verified by ELISA and Western Blot. Proteins Kininogen 1 and Keratin 1 are members of Kallikrein system, while Myeloperoxidase, Serum Amyloid protein A, and Retinol binding protein 4 had been reported closely related to vascular endothelial injury. Our study discovered 5 target biomarkers of the compound Chinese medicine TJT. Secondly, this research initially revealed the antihypertension therapeutic mechanism of this drug from a brand-new aspect. PMID:28408942

  6. A Java program for LRE-based real-time qPCR that enables large-scale absolute quantification.

    PubMed

    Rutledge, Robert G

    2011-03-02

    Linear regression of efficiency (LRE) introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples.

  7. Investigation of the therapy targets of Yi-Qi-Yang-Yin-Hua-Tan-Qu-Yu recipe on type 2 diabetes by serum proteome labeled with iTRAQ.

    PubMed

    Zhao, Jing; Xie, Ming; Liu, Jin-Na; Wang, Bang-Zhong

    2018-04-11

    Ethnopharmacology relevance Based on basic theories of Chinese medicine, Yi-Qi-Yang-Yin-Hua-Tan-Qu-Yu (YQYYHTQY) recipe was constituted by eleven kinds of Chinese herbs and effective in treatment of type 2 diabetes (T2DM). But the therapy target was unclear. In this study, we used the serum proteome labeled by iTRAQ to find therapy target of YQYYHTQY recipe on T2DM. The rat model was induced by high-fat diet (HFD) and streptozotocin (STZ, 30mg/kg). Drugs were administered to rats once daily for 14 days. Related laboratory parameters were observed. Serum proteome were compared between T2DM and YQYYHTQY group using the iTRAQ labeling quantitative proteomics technique. Functional differential proteins were analysis by STRING software. Target proteins were confirmed by ELISA kits. Hyperglycemia, hyperinsulinemia, insulin resistance, decrease of glucose transporter, depilation, less activity, flock together, depression, ecchymosis of tongue and tail appearance, the typical diabetic patients "a little more than three" symptoms, as well as the decrease of grip strength, serum cyclic adenosine monophosphate (cAMP)/ cyclic guanosine monophosphate (cGMP) ratio, serum high density lipoprotein-cholesterol (HDL-C) and the increase of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), thromboxane B 2 (TXB 2 )/ 6-keto prostaglandin F1α (6-keto PGF1α) ratio, endothelin-1 (ET-1) levels were found in T2DM group. After drugs treatment, all the above indexes almost were improved in different degrees and effect of YQYYHTQY recipe was superior to pioglitazone hydrochloride. In addition, there were 23 differential proteins, 5 up-regulated and 18 down-regulated proteins. Of them, there were 4 proteins related with diabetes, blood and behavior. Cell division control protein 42 homolog (CDC42) and Ras homolog gene family member A (RhoA) were the therapy targets of YQYYHTQY recipe on T2DM. YQYYHTQY recipe showed therapy effect on T2DM. CDC42 and

  8. Insight into Enzymatic Degradation of Corn, Wheat, and Soybean Cell Wall Cellulose Using Quantitative Secretome Analysis of Aspergillus fumigatus.

    PubMed

    Sharma Ghimire, Prakriti; Ouyang, Haomiao; Wang, Qian; Luo, Yuanming; Shi, Bo; Yang, Jinghua; Lü, Yang; Jin, Cheng

    2016-12-02

    Lignocelluloses contained in animal forage cannot be digested by pigs or poultry with 100% efficiency. On contrary, Aspergillus fumigatus, a saprophytic filamentous fungus, is known to harbor 263 glycoside hydrolase encoding genes, suggesting that A. fumigatus is an efficient lignocellulose degrader. Hence the present study uses corn, wheat, or soybean as a sole carbon source to culture A. fumigatus under animal physiological condition to understand how cellulolytic enzymes work together to achieve an efficient degradation of lignocellulose. Our results showed that A. fumigatus produced different sets of enzymes to degrade lignocelluloses derived from corn, wheat, or soybean cell wall. In addition, the cellulolytic enzymes produced by A. fumigatus were stable under acidic condition or at higher temperatures. Using isobaric tags for a relative and absolute quantification (iTRAQ) approach, a total of ∼600 extracellular proteins were identified and quantified, in which ∼50 proteins were involved in lignocellulolysis, including cellulases, hemicellulases, lignin-degrading enzymes, and some hypothetical proteins. Data are available via ProteomeXchange with identifier PXD004670. On the basis of quantitative iTRAQ results, 14 genes were selected for further confirmation by RT-PCR. Taken together, our results indicated that the expression and regulation of lignocellulolytic proteins in the secretome of A. fumigatus were dependent on both nature and complexity of cellulose, thus suggesting that a different enzyme system is required for degradation of different lignocelluloses derived from plant cells. Although A. fumigatus is a pathogenic fungus and cannot be directly used as an enzyme source, as an efficient lignocellulose degrader its strategy to synergistically degrade various lignocelluloses with different enzymes can be used to design enzyme combination for optimal digestion and absorption of corn, wheat, or soybean that are used as forage of pig and poultry.

  9. Quantitative Proteomics Analysis of Herbaceous Peony in Response to Paclobutrazol Inhibition of Lateral Branching

    PubMed Central

    Zhao, Daqiu; Gong, Saijie; Hao, Zhaojun; Meng, Jiasong; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the “wedding flower”. However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application. PMID:26473855

  10. Identification of Potential Biomarkers for Rhegmatogenous Retinal Detachment Associated with Choroidal Detachment by Vitreous iTRAQ-Based Proteomic Profiling

    PubMed Central

    Wu, Zhifeng; Ding, Nannan; Yu, Mengxi; Wang, Ke; Luo, Shasha; Zou, Wenjun; Zhou, Ying; Yan, Biao; Jiang, Qin

    2016-01-01

    Rhegmatogenous retinal detachment associated with choroidal detachment (RRDCD) is a complicated and serious type of rhegmatogenous retinal detachment (RRD). In this study, we identified differentially expressed proteins in the vitreous humors of RRDCD and RRD using isobaric tags for relative and absolute quantitation (iTRAQ) combined with nano-liquid chromatography-electrospray ion trap-mass spectrometry-mass spectrometry (nano-LC-ESI-MS/MS) and bioinformatic analysis. Our result shows that 103 differentially expressed proteins, including 54 up-regulated and 49 down-regulated proteins were identified in RRDCD. Gene ontology (GO) analysis suggested that most of the differentially expressed proteins were extracellular.The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis suggested that proteins related to complement and coagulation cascades were significantly enriched. iTRAQ-based proteomic profiling reveals that complement and coagulation cascades and inflammation may play important roles in the pathogenesis of RRDCD. This study may provide novel insights into the pathogenesis of RRDCD and offer potential opportunities for the diagnosis and treatment of RRDCD. PMID:27941623

  11. A Java Program for LRE-Based Real-Time qPCR that Enables Large-Scale Absolute Quantification

    PubMed Central

    Rutledge, Robert G.

    2011-01-01

    Background Linear regression of efficiency (LRE) introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. Findings Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. Conclusions The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples. PMID:21407812

  12. A multiplexed quantitative proteomics approach for investigating protein expression in the developing central nervous system.

    PubMed

    Orme, Rowan P; Gates, Monte A; Fricker-Gates, Rosemary A

    2010-08-15

    Cell transplantation using stem cell-derived neurons is commonly viewed as a candidate therapy for neurodegenerative diseases. However, methods for differentiating stem cells into homogenous populations of neurons suitable for transplant remain elusive. This suggests that there are as yet unknown signalling factors working in vivo to specify neuronal cell fate during development. These factors could be manipulated to better differentiate stem cells into neural populations useful for therapeutic transplantation. Here a quantitative proteomics approach is described for investigating cell signalling in the developing central nervous system (CNS), using the embryonic ventral mesencephalon as a model. Briefly, total protein was extracted from embryonic ventral midbrain tissue before, during and after the birth of dopaminergic neurons, and digested using trypsin. Two-dimensional liquid chromatography, coupled with tandem mass spectrometry, was then used to identify proteins from the tryptic peptides. Isobaric tagging for relative and absolute quantification (iTRAQ) reagents were used to label the tryptic peptides and facilitate relative quantitative analysis. The success of the experiment was confirmed by the identification of proteins known to be expressed in the developing ventral midbrain, as well as by Western blotting, and immunolabelling of embryonic tissue sections. This method of protein discovery improves upon previous attempts to identify novel signalling factors through microarray analysis. Importantly, the methods described here could be applied to virtually any aspect of development. (c) 2010 Elsevier B.V. All rights reserved.

  13. High-throughput quantitation of amino acids in rat and mouse biological matrices using stable isotope labeling and UPLC-MS/MS analysis.

    PubMed

    Takach, Edward; O'Shea, Thomas; Liu, Hanlan

    2014-08-01

    Quantifying amino acids in biological matrices is typically performed using liquid chromatography (LC) coupled with fluorescent detection (FLD), requiring both derivatization and complete baseline separation of all amino acids. Due to its high specificity and sensitivity, the use of UPLC-MS/MS eliminates the derivatization step and allows for overlapping amino acid retention times thereby shortening the analysis time. Furthermore, combining UPLC-MS/MS with stable isotope labeling (e.g., isobaric tag for relative and absolute quantitation, i.e., iTRAQ) of amino acids enables quantitation while maintaining sensitivity, selectivity and speed of analysis. In this study, we report combining UPLC-MS/MS analysis with iTRAQ labeling of amino acids resulting in the elution and quantitation of 44 amino acids within 5 min demonstrating the speed and convenience of this assay over established approaches. This chromatographic analysis time represented a 5-fold improvement over the conventional HPLC-MS/MS method developed in our laboratory. In addition, the UPLC-MS/MS method demonstrated improvements in both specificity and sensitivity without loss of precision. In comparing UPLC-MS/MS and HPLC-MS/MS results of 32 detected amino acids, only 2 amino acids exhibited imprecision (RSD) >15% using UPLC-MS/MS, while 9 amino acids exhibited RSD >15% using HPLC-MS/MS. Evaluating intra- and inter-assay precision over 3 days, the quantitation range for 32 detected amino acids in rat plasma was 0.90-497 μM, with overall mean intra-day precision of less than 15% and mean inter-day precision of 12%. This UPLC-MS/MS assay was successfully implemented for the quantitative analysis of amino acids in rat and mouse plasma, along with mouse urine and tissue samples, resulting in the following concentration ranges: 0.98-431 μM in mouse plasma for 32 detected amino acids; 0.62-443 μM in rat plasma for 32 detected amino acids; 0.44-8590μM in mouse liver for 33 detected amino acids; 0.61-1241

  14. Multicomponent quantitative spectroscopic analysis without reference substances based on ICA modelling.

    PubMed

    Monakhova, Yulia B; Mushtakova, Svetlana P

    2017-05-01

    A fast and reliable spectroscopic method for multicomponent quantitative analysis of targeted compounds with overlapping signals in complex mixtures has been established. The innovative analytical approach is based on the preliminary chemometric extraction of qualitative and quantitative information from UV-vis and IR spectral profiles of a calibration system using independent component analysis (ICA). Using this quantitative model and ICA resolution results of spectral profiling of "unknown" model mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated without reference solutions. Good recoveries generally between 95% and 105% were obtained. The method can be applied to any spectroscopic data that obey the Beer-Lambert-Bouguer law. The proposed method was tested on analysis of vitamins and caffeine in energy drinks and aromatic hydrocarbons in motor fuel with 10% error. The results demonstrated that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of spectral overlap and the absence/inaccessibility of reference materials.

  15. Quantitative Analysis of Tissue Samples by Combining iTRAQ Isobaric Labeling with Selected/Multiple Reaction Monitoring (SRM/MRM).

    PubMed

    Narumi, Ryohei; Tomonaga, Takeshi

    2016-01-01

    Mass spectrometry-based phosphoproteomics is an indispensible technique used in the discovery and quantification of phosphorylation events on proteins in biological samples. The application of this technique to tissue samples is especially useful for the discovery of biomarkers as well as biological studies. We herein describe the application of a large-scale phosphoproteome analysis and SRM/MRM-based quantitation to develop a strategy for the systematic discovery and validation of biomarkers using tissue samples.

  16. Spinal intra-operative three-dimensional navigation with infra-red tool tracking: correlation between clinical and absolute engineering accuracy

    NASA Astrophysics Data System (ADS)

    Guha, Daipayan; Jakubovic, Raphael; Gupta, Shaurya; Yang, Victor X. D.

    2017-02-01

    Computer-assisted navigation (CAN) may guide spinal surgeries, reliably reducing screw breach rates. Definitions of screw breach, if reported, vary widely across studies. Absolute quantitative error is theoretically a more precise and generalizable metric of navigation accuracy, but has been computed variably and reported in fewer than 25% of clinical studies of CAN-guided pedicle screw accuracy. We reviewed a prospectively-collected series of 209 pedicle screws placed with CAN guidance to characterize the correlation between clinical pedicle screw accuracy, based on postoperative imaging, and absolute quantitative navigation accuracy. We found that acceptable screw accuracy was achieved for significantly fewer screws based on 2mm grade vs. Heary grade, particularly in the lumbar spine. Inter-rater agreement was good for the Heary classification and moderate for the 2mm grade, significantly greater among radiologists than surgeon raters. Mean absolute translational/angular accuracies were 1.75mm/3.13° and 1.20mm/3.64° in the axial and sagittal planes, respectively. There was no correlation between clinical and absolute navigation accuracy, in part because surgeons appear to compensate for perceived translational navigation error by adjusting screw medialization angle. Future studies of navigation accuracy should therefore report absolute translational and angular errors. Clinical screw grades based on post-operative imaging, if reported, may be more reliable if performed in multiple by radiologist raters.

  17. Quantitative SIMS Imaging of Agar-Based Microbial Communities.

    PubMed

    Dunham, Sage J B; Ellis, Joseph F; Baig, Nameera F; Morales-Soto, Nydia; Cao, Tianyuan; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2018-05-01

    After several decades of widespread use for mapping elemental ions and small molecular fragments in surface science, secondary ion mass spectrometry (SIMS) has emerged as a powerful analytical tool for molecular imaging in biology. Biomolecular SIMS imaging has primarily been used as a qualitative technique; although the distribution of a single analyte can be accurately determined, it is difficult to map the absolute quantity of a compound or even to compare the relative abundance of one molecular species to that of another. We describe a method for quantitative SIMS imaging of small molecules in agar-based microbial communities. The microbes are cultivated on a thin film of agar, dried under nitrogen, and imaged directly with SIMS. By use of optical microscopy, we show that the area of the agar is reduced by 26 ± 2% (standard deviation) during dehydration, but the overall biofilm morphology and analyte distribution are largely retained. We detail a quantitative imaging methodology, in which the ion intensity of each analyte is (1) normalized to an external quadratic regression curve, (2) corrected for isomeric interference, and (3) filtered for sample-specific noise and lower and upper limits of quantitation. The end result is a two-dimensional surface density image for each analyte. The sample preparation and quantitation methods are validated by quantitatively imaging four alkyl-quinolone and alkyl-quinoline N-oxide signaling molecules (including Pseudomonas quinolone signal) in Pseudomonas aeruginosa colony biofilms. We show that the relative surface densities of the target biomolecules are substantially different from values inferred through direct intensity comparison and that the developed methodologies can be used to quantitatively compare as many ions as there are available standards.

  18. Quantitative proteome analysis using isobaric peptide termini labeling (IPTL).

    PubMed

    Arntzen, Magnus O; Koehler, Christian J; Treumann, Achim; Thiede, Bernd

    2011-01-01

    The quantitative comparison of proteome level changes across biological samples has become an essential feature in proteomics that remains challenging. We have recently introduced isobaric peptide termini labeling (IPTL), a novel strategy for isobaric quantification based on the derivatization of peptide termini with complementary isotopically labeled reagents. Unlike non-isobaric quantification methods, sample complexity at the MS level is not increased, providing improved sensitivity and protein coverage. The distinguishing feature of IPTL when comparing it to more established isobaric labeling methods (iTRAQ and TMT) is the presence of quantification signatures in all sequence-determining ions in MS/MS spectra, not only in the low mass reporter ion region. This makes IPTL a quantification method that is accessible to mass spectrometers with limited capabilities in the low mass range. Also, the presence of several quantification points in each MS/MS spectrum increases the robustness of the quantification procedure.

  19. Absolute quantification of microbial taxon abundances.

    PubMed

    Props, Ruben; Kerckhof, Frederiek-Maarten; Rubbens, Peter; De Vrieze, Jo; Hernandez Sanabria, Emma; Waegeman, Willem; Monsieurs, Pieter; Hammes, Frederik; Boon, Nico

    2017-02-01

    High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys.

  20. Absolute Quantitation of DNA Methylation of 28 Candidate Genes in Prostate Cancer Using Pyrosequencing

    PubMed Central

    Vasiljeviš, Nataڑa; Wu, Keqiang; Brentnall, Adam R.; Kim, Dae Cheol; Thorat, Mangesh A.; Kudahetti, Sakunthala C.; Mao, Xueying; Xue, Liyan; Yu, Yongwei; Shaw, Greg L.; Beltran, Luis; Lu, Yong-Jie; Berney, Daniel M.; Cuzick, Jack; Lorincz, Attila T.

    2011-01-01

    Aberrant DNA methylation plays a pivotal role in carcinogenesis and its mapping is likely to provide biomarkers for improved diagnostic and risk assessment in prostate cancer (PCa). We quantified and compared absolute methylation levels among 28 candidate genes in 48 PCa and 29 benign prostate hyperplasia (BPH) samples using the pyrosequencing (PSQ) method to identify genes with diagnostic and prognostic potential. RARB, HIN1, BCL2, GSTP1, CCND2, EGFR5, APC, RASSF1A, MDR1, NKX2-5, CDH13, DPYS, PTGS2, EDNRB, MAL, PDLIM4, HLAa, ESR1 and TIG1 were highly methylated in PCa compared to BPH (p < 0.001), while SERPINB5, CDH1, TWIST1, DAPK1, THRB, MCAM, SLIT2, CDKN2a and SFN were not. RARB methylation above 21% completely distinguished PCa from BPH. Separation based on methylation level of SFN, SLIT2 and SERPINB5 distinguished low and high Gleason score cancers, e.g. SFN and SERPINB5 together correctly classified 81% and 77% of high and low Gleason score cancers respectively. Several genes including CDH1 previously reported as methylation markers in PCa were not confirmed in our study. Increasing age was positively associated with gene methylation (p < 0.0001). Accurate quantitative measurement of gene methylation in PCa appears promising and further validation of genes like RARB, HIN1, BCL2, APC and GSTP1 is warranted for diagnostic potential and SFN, SLIT2 and SERPINB5 for prognostic potential. PMID:21694441

  1. A comparative proteomics method for multiple samples based on a 18O-reference strategy and a quantitation and identification-decoupled strategy.

    PubMed

    Wang, Hongbin; Zhang, Yongqian; Gui, Shuqi; Zhang, Yong; Lu, Fuping; Deng, Yulin

    2017-08-15

    Comparisons across large numbers of samples are frequently necessary in quantitative proteomics. Many quantitative methods used in proteomics are based on stable isotope labeling, but most of these are only useful for comparing two samples. For up to eight samples, the iTRAQ labeling technique can be used. For greater numbers of samples, the label-free method has been used, but this method was criticized for low reproducibility and accuracy. An ingenious strategy has been introduced, comparing each sample against a 18 O-labeled reference sample that was created by pooling equal amounts of all samples. However, it is necessary to use proportion-known protein mixtures to investigate and evaluate this new strategy. Another problem for comparative proteomics of multiple samples is the poor coincidence and reproducibility in protein identification results across samples. In present study, a method combining 18 O-reference strategy and a quantitation and identification-decoupled strategy was investigated with proportion-known protein mixtures. The results obviously demonstrated that the 18 O-reference strategy had greater accuracy and reliability than other previously used comparison methods based on transferring comparison or label-free strategies. By the decoupling strategy, the quantification data acquired by LC-MS and the identification data acquired by LC-MS/MS are matched and correlated to identify differential expressed proteins, according to retention time and accurate mass. This strategy made protein identification possible for all samples using a single pooled sample, and therefore gave a good reproducibility in protein identification across multiple samples, and allowed for optimizing peptide identification separately so as to identify more proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. High-performance multi-channel fiber-based absolute distance measuring interferometer system

    NASA Astrophysics Data System (ADS)

    Deck, Leslie L.

    2009-08-01

    I describe the principle of operation and performance of a fiber-based absolute distance measuring interferometer system with 60 independent simultaneous channels. The system was designed for demanding applications requiring passive, electrically immune sensors with an extremely long MTTF. In addition to providing better than 0.3nm measurement repeatability at 5KHz for all channels, the system demonstrated absolute distance uncertainty of less than 5nm over a 500 micron measurement range.

  3. Identification of p90 Ribosomal S6 Kinase 2 as a Novel Host Protein in HBx Augmenting HBV Replication by iTRAQ-Based Quantitative Comparative Proteomics.

    PubMed

    Yan, Li-Bo; Yu, You-Jia; Zhang, Qing-Bo; Tang, Xiao-Qiong; Bai, Lang; Huang, FeiJun; Tang, Hong

    2018-05-01

    The aim of this study was to screen for novel host proteins that play a role in HBx augmenting Hepatitis B virus (HBV) replication. Three HepG2 cell lines stably harboring different functional domains of HBx (HBx, HBx-Cm6, and HBx-Cm16) were cultured. ITRAQ technology integrated with LC-MS/MS analysis was applied to identify the proteome differences among these three cell lines. In brief, a total of 70 different proteins were identified among HepG2-HBx, HepG2-HBx-Cm6, and HepG2-HBx-Cm16 by double repetition. Several differentially expressed proteins, including p90 ribosomal S6 kinase 2 (RSK2), were further validated. RSK2 was expressed at higher levels in HepG2-HBx and HepG2-HBx-Cm6 compared with HepG2-HBx-Cm16. Furthermore, levels of HBV replication intermediates were decreased after silencing RSK2 in HepG2.2.15. An HBx-minus HBV mutant genome led to decreased levels of HBV replication intermediates and these decreases were restored to levels similar to wild-type HBV by transient ectopic expression of HBx. After silencing RSK2 expression, the levels of HBV replication intermediates synthesized from the HBx-minus HBV mutant genome were not restored to levels that were observed with wild-type HBV by transient HBx expression. Based on iTRAQ quantitative comparative proteomics, RSK2 was identified as a novel host protein that plays a role in HBx augmenting HBV replication. © 2018 The Authors. Proteomics - Clinical Application Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A novel approach for human whole transcriptome analysis based on absolute gene expression of microarray data.

    PubMed

    Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R; Del Río-Navarro, Blanca E; Mendoza-Vargas, Alfredo; Sánchez, Filiberto; Ochoa-Leyva, Adrian

    2017-01-01

    In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6-10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly

  5. A novel approach for human whole transcriptome analysis based on absolute gene expression of microarray data

    PubMed Central

    Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R.; del Río-Navarro, Blanca E.; Mendoza-Vargas, Alfredo; Sánchez, Filiberto

    2017-01-01

    Background In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. Methods We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6–10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). Results From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were

  6. Combined serum and EPS-urine proteomic analysis using iTRAQ technology for discovery of potential prostate cancer biomarkers.

    PubMed

    Zhang, Mo; Chen, Lizhu; Yuan, Zhengwei; Yang, Zeyu; Li, Yue; Shan, Liping; Yin, Bo; Fei, Xiang; Miao, Jianing; Song, Yongsheng

    2016-11-01

    Prostate cancer (PCa) is one of the most common malignant tumors and a major cause of cancer-related death for men worldwide. The aim of our study was to identify potential non-invasive serum and expressed prostatic secretion (EPS)-urine biomarkers for accurate diagnosis of PCa. Here, we performed a combined isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to compare protein profiles using pooled serum and EPS-urine samples from 4 groups of patients: benign prostate hyperplasia (BPH), high grade prostatic intraepithelial neoplasia (HGPIN), localized PCa and metastatic PCa. The differentially expressed proteins were rigorously selected and further validated in a large and independent cohort using classical ELISA and Western blot assays. Finally, we established a multiplex biomarker panel consisting of 3 proteins (serum PF4V1, PSA, and urinary CRISP3) with an excellent diagnostic capacity to differentiate PCa from BPH [area under the receiver operating characteristic curve (AUC) of 0.941], which showed an evidently greater discriminatory ability than PSA alone (AUC, 0.757) (P<0.001). Importantly, even when PSA level was in the gray zone (4-10 ng/mL), a combination of PF4V1 and CRISP3 could achieve a relatively high diagnostic efficacy (AUC, 0.895). Furthermore, their combination also had the potential to distinguish PCa from HGPIN (AUC, 0.934). Our results demonstrated that the combined application of serum and EPS-urine biomarkers can improve the diagnosis of PCa and provide a new prospect for non-invasive PCa detection.

  7. Neutron activation analysis of certified samples by the absolute method

    NASA Astrophysics Data System (ADS)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  8. Quantitative proteomic analysis of bacterial enzymes released in cheese during ripening.

    PubMed

    Jardin, Julien; Mollé, Daniel; Piot, Michel; Lortal, Sylvie; Gagnaire, Valérie

    2012-04-02

    Due to increasingly available bacterial genomes in databases, proteomic tools have recently been used to screen proteins expressed by micro-organisms in food in order to better understand their metabolism in situ. While the main objective is the systematic identification of proteins, the next step will be to bridge the gap between identification and quantification of these proteins. For that purpose, a new mass spectrometry-based approach was applied, using isobaric tagging reagent for quantitative proteomic analysis (iTRAQ), which are amine specific and yield labelled peptides identical in mass. Experimental Swiss-type cheeses were manufactured from microfiltered milk using Streptococcus thermophilus ITG ST20 and Lactobacillus helveticus ITG LH1 as lactic acid starters. At three ripening times (7, 20 and 69 days), cheese aqueous phases were extracted and enriched in bacterial proteins by fractionation. Each sample, standardised in protein amount prior to proteomic analyses, was: i) analysed by 2D-electrophoresis for qualitative analysis and ii) submitted to trypsinolysis, and labelled with specific iTRAQ tag, one per ripening time. The three labelled samples were mixed together and analysed by nano-LC coupled on-line with ESI-QTOF mass spectrometer. Thirty proteins, both from bacterial or bovine origin, were identified and efficiently quantified. The free bacterial proteins detected were enzymes from the central carbon metabolism as well as stress proteins. Depending on the protein considered, the quantity of these proteins in the cheese aqueous extract increased from 2.5 to 20 fold in concentration from day 7 to day 69 of ripening. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution

    NASA Astrophysics Data System (ADS)

    Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng

    2018-05-01

    The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.

  10. iTRAQ-based Quantitative Proteomics Study in Patients with Refractory Mycoplasma pneumoniae Pneumonia.

    PubMed

    Yu, Jia-Lu; Song, Qi-Fang; Xie, Zhi-Wei; Jiang, Wen-Hui; Chen, Jia-Hui; Fan, Hui-Feng; Xie, Ya-Ping; Lu, Gen

    2017-09-25

    Mycoplasma pneumoniae (MP) is a leading cause of community-acquired pneumonia in children and young adults. Although MP pneumonia is usually benign and self-limited, in some cases it can develop into life-threating refractory MP pneumonia (RMPP). However, the pathogenesis of RMPP is poorly understood. The identification and characterization of proteins related to RMPP could provide a proof of principle to facilitate appropriate diagnostic and therapeutic strategies for treating paients with MP. In this study, we used a quantitative proteomic technique (iTRAQ) to analyze MP-related proteins in serum samples from 5 patients with RMPP, 5 patients with non-refractory MP pneumonia (NRMPP), and 5 healthy children. Functional classification, sub-cellular localization, and protein interaction network analysis were carried out based on protein annotation through evolutionary relationship (PANTHER) and Cytoscape analysis. A total of 260 differentially expressed proteins were identified in the RMPP and NRMPP groups. Compared to the control group, the NRMPP and RMPP groups showed 134 (70 up-regulated and 64 down-regulated) and 126 (63 up-regulated and 63 down-regulated) differentially expressed proteins, respectively. The complex functional classification and protein interaction network of the identified proteins reflected the complex pathogenesis of RMPP. Our study provides the first comprehensive proteome map of RMPP-related proteins from MP pneumonia. These profiles may be useful as part of a diagnostic panel, and the identified proteins provide new insights into the pathological mechanisms underlying RMPP.

  11. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics.

    PubMed

    Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S; Overall, Christopher M

    2010-05-01

    Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses

  12. Multiplex N-terminome Analysis of MMP-2 and MMP-9 Substrate Degradomes by iTRAQ-TAILS Quantitative Proteomics*

    PubMed Central

    Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S.; Overall, Christopher M.

    2010-01-01

    Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses

  13. Quantitative proteomics analysis by iTRAQ revealed underlying changes in thermotolerance of Arthrospira platensis.

    PubMed

    Chang, Rong; Lv, Bingxin; Li, Bosheng

    2017-08-08

    Growth temperature is a critical factor that affects cultivation of Arthrospira platensis which is a type of cyanobacterium widely known as Spirulina that has significant commercial value. To investigate the molecular mechanism underlying the thermotolerance of Spirulina, differential protein expression profiling was carried out using iTRAQ-based quantitative proteomic analysis. This study only analyzed changes in thylakoids. Among the 2085 proteins quantified, 43 differentially expressed proteins were selected based on the fold change cutoff scores of ≥2 or ≤0.5 for up-regulation or down-regulation, respectively. An analysis of these 43 proteins found that 23% of them are photosynthetic system proteins which include photosynthetic enzymes and pigment proteins. The dynamic change of these proteins indicates that photosynthetic system functions were profoundly affected under heat stress and the light-dependent reactions were probably the most sensitive to temperature changes. Meanwhile, to cope with the low energy production due to impaired photosynthesis there was a considerable down-shift in protein synthesis which is a very energy demanding process. The impaired photosynthesis led to low energy generation that was compensated by a down-shift in translation (the most energy-demanding process) and an up-shift of glycolysis. The reduction of many ribosome proteins may lead to a loss in translation efficiency; therefore, Spirulina may adopted a different mechanism to increase translational elongation under heat stress to compensate for this loss, such as elevate L7/L12 proteins. Changes were also found in the classical heat shock proteins, the ROS scavenging system, DNA-binding proteins, and some membrane proteins. In conclusion, this research demonstrate that heat stress induces profound changes in cellular physiology and shed light on the mechanism of the heat stress response and thermotolerance of Arthrospira platensis. Arthrospira platensis, widely known as

  14. Absolute Quantitation of Human Milk Oligosaccharides Reveals Phenotypic Variations during Lactation.

    PubMed

    Xu, Gege; Davis, Jasmine Cc; Goonatilleke, Elisha; Smilowitz, Jennifer T; German, J Bruce; Lebrilla, Carlito B

    2017-01-01

    The quantitation of human milk oligosaccharides (HMOs) is challenging because of the structural complexity and lack of standards. The objective of our study was to rapidly measure the absolute concentrations of HMOs in milk using LC-mass spectrometry (MS) and to determine the phenotypic secretor status of the mothers. This quantitative method for measuring HMO concentration was developed by using ultraperformance LC multiple reaction monitoring MS. It was validated and applied to milk samples from Malawi (88 individuals; 88 samples from postnatal month 6) and the United States (Davis, California; 45 individuals, mean age: 32 y; 103 samples collected on postnatal days 10, 26, 71, or 120, repeated measures included). The concentrations of α(1,2)-fucosylated HMOs were used to determine the mothers' phenotypic secretor status with high sensitivity and specificity. We used Friedman's test and Wilcoxon's signed rank test to evaluate the change in HMO concentration during the course of lactation, and Student's t test was used to compare secretors and nonsecretors. A decrease (P < 0.05) in HMO concentration was observed during the course of lactation for the US mothers, corresponding to 19.3 ± 2.9 g/L for milk collected on postnatal day 10, decreasing to 8.53 ± 1.18 g/L on day 120 (repeated measures; n = 14). On postnatal day 180, the total concentration of HMOs in Malawi milk samples from secretors (6.46 ± 1.74 mg/mL) was higher (P < 0.05) than that in samples from nonsecretors (5.25 ± 2.55 mg/mL ). The same trend was observed for fucosylated species; the concentration was higher in Malawi milk samples from secretors (4.91 ± 1.22 mg/mL) than from nonsecretors (3.42 ± 2.27 mg/mL) (P < 0.05). HMOs significantly decrease during the course of lactation. Secretor milk contains higher concentrations of total and fucosylated HMOs than does nonsecretor milk. These HMO concentrations can be correlated to the health of breastfed infants in order to investigate the protective

  15. The response of growth and patulin production of postharvest pathogen Penicillium expansum to exogenous potassium phosphite treatment.

    PubMed

    Lai, Tongfei; Wang, Ying; Fan, Yaya; Zhou, Yingying; Bao, Ying; Zhou, Ting

    2017-03-06

    In this study, the effects of exogenous potassium phosphite (Phi) on growth and patulin production of postharvest pathogen Penicillium expansum were assessed. The results indicated that P. expansum under 5mmol/L Phi stress presented obvious development retardation, yield reduction of patulin and lower infectivity to apple fruit. Meanwhile, expression analysis of 15 genes related to patulin biosynthesis suggested that Phi mainly affected the early steps of patulin synthetic route at transcriptional level. Furthermore, a global view of proteome and transcriptome alteration of P. expansum spores during 6h of Phi stress was evaluated by iTRAQ (isobaric tags for relative and absolute quantitation) and RNA-seq (RNA sequencing) approaches. A total of 582 differentially expressed proteins (DEPs) and 177 differentially expressed genes (DEGs) were acquired, most of which participated in carbohydrate metabolism, amino acid metabolism, lipid metabolism, genetic information processing and biosynthesis of secondary metabolites. Finally, 39 overlapped candidates were screened out through correlational analysis between iTRAQ and RNA-seq datasets. These findings will afford more precise and directional clues to explore the inhibitory mechanism of Phi on growth and patulin biosynthesis of P. expansum, and be beneficial to develop effective controlling approaches based on Phi. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat.

    PubMed

    Geng, Xingxia; Ye, Jiali; Yang, Xuetong; Li, Sha; Zhang, Lingli; Song, Xiyue

    2018-01-23

    Cytoplasmic male sterility (CMS) where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ) of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH)-dehydrogenase and adenosine-triphosphate (ATP) synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR) analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.

  17. Absolute Quantitation of Glycoforms of Two Human IgG Subclasses Using Synthetic Fc Peptides and Glycopeptides

    NASA Astrophysics Data System (ADS)

    Roy, Rini; Ang, Evelyn; Komatsu, Emy; Domalaon, Ronald; Bosseboeuf, Adrien; Harb, Jean; Hermouet, Sylvie; Krokhin, Oleg; Schweizer, Frank; Perreault, Hélène

    2018-05-01

    Immunoglobulins, such as immunoglobulin G (IgG), are of prime importance in the immune system. Polyclonal human IgG comprises four subclasses, of which IgG1 and IgG2 are the most abundant in healthy individuals. In an effort to develop an absolute MALDI-ToF-MS quantitative method for these subclasses and their Fc N-glycoforms, (glyco)peptides were synthesized using a solid-phase approach and used as internal standards. Tryptic digest glycopeptides from monoclonal IgG1 and IgG2 samples were first quantified using EEQYN(GlcNAc)STYR and EEQFN(GlcNAc)STFR standards, respectively. For IgG1, a similar glycopeptide where tyrosine (Y) was isotopically labelled was used to quantify monoclonal IgG1 that had been treated with the enzyme Endo-F2, i.e., yielding tryptic glycopeptide EEQYN(GlcNAc)STYR. The next step was to quantify single subclasses within polyclonal human IgG samples. Although ion abundances in the MALDI spectra often showed higher signals for IgG2 than IgG1, depending on the spotting solvent used, determination of amounts using the newly developed quantitative method allowed to obtain accurate concentrations where IgG1 species were predominant. It was observed that simultaneous analysis of IgG1 and IgG2 yielded non-quantitative results and that more success was obtained when subclasses were quantified one by one. More experiments served to assess the respective extraction and ionization efficiencies of EEQYNSTYR/EEQFNSTFR and EEQYN(GlcNAc)STYR/EEQFN(GlcNAc)STFR mixtures under different solvent and concentration conditions.

  18. Digital evaluation of absolute marginal discrepancy: A comparison of ceramic crowns fabricated with conventional and digital techniques.

    PubMed

    Liang, Shanshan; Yuan, Fusong; Luo, Xu; Yu, Zhuoren; Tang, Zhihui

    2018-04-05

    Marginal discrepancy is key to evaluating the accuracy of fixed dental prostheses. An improved method of evaluating marginal discrepancy is needed. The purpose of this in vitro study was to evaluate the absolute marginal discrepancy of ceramic crowns fabricated using conventional and digital methods with a digital method for the quantitative evaluation of absolute marginal discrepancy. The novel method was based on 3-dimensional scanning, iterative closest point registration techniques, and reverse engineering theory. Six standard tooth preparations for the right maxillary central incisor, right maxillary second premolar, right maxillary second molar, left mandibular lateral incisor, left mandibular first premolar, and left mandibular first molar were selected. Ten conventional ceramic crowns and 10 CEREC crowns were fabricated for each tooth preparation. A dental cast scanner was used to obtain 3-dimensional data of the preparations and ceramic crowns, and the data were compared with the "virtual seating" iterative closest point technique. Reverse engineering software used edge sharpening and other functional modules to extract the margins of the preparations and crowns. Finally, quantitative evaluation of the absolute marginal discrepancy of the ceramic crowns was obtained from the 2-dimensional cross-sectional straight-line distance between points on the margin of the ceramic crowns and the standard preparations based on the circumferential function module along the long axis. The absolute marginal discrepancy of the ceramic crowns fabricated using conventional methods was 115 ±15.2 μm, and 110 ±14.3 μm for those fabricated using the digital technique was. ANOVA showed no statistical difference between the 2 methods or among ceramic crowns for different teeth (P>.05). The digital quantitative evaluation method for the absolute marginal discrepancy of ceramic crowns was established. The evaluations determined that the absolute marginal discrepancies were

  19. Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry.

    PubMed

    Keshishian, Hasmik; Burgess, Michael W; Specht, Harrison; Wallace, Luke; Clauser, Karl R; Gillette, Michael A; Carr, Steven A

    2017-08-01

    Proteomic characterization of blood plasma is of central importance to clinical proteomics and particularly to biomarker discovery studies. The vast dynamic range and high complexity of the plasma proteome have, however, proven to be serious challenges and have often led to unacceptable tradeoffs between depth of coverage and sample throughput. We present an optimized sample-processing pipeline for analysis of the human plasma proteome that provides greatly increased depth of detection, improved quantitative precision and much higher sample analysis throughput as compared with prior methods. The process includes abundant protein depletion, isobaric labeling at the peptide level for multiplexed relative quantification and ultra-high-performance liquid chromatography coupled to accurate-mass, high-resolution tandem mass spectrometry analysis of peptides fractionated off-line by basic pH reversed-phase (bRP) chromatography. The overall reproducibility of the process, including immunoaffinity depletion, is high, with a process replicate coefficient of variation (CV) of <12%. Using isobaric tags for relative and absolute quantitation (iTRAQ) 4-plex, >4,500 proteins are detected and quantified per patient sample on average, with two or more peptides per protein and starting from as little as 200 μl of plasma. The approach can be multiplexed up to 10-plex using tandem mass tags (TMT) reagents, further increasing throughput, albeit with some decrease in the number of proteins quantified. In addition, we provide a rapid protocol for analysis of nonfractionated depleted plasma samples analyzed in 10-plex. This provides ∼600 quantified proteins for each of the ten samples in ∼5 h of instrument time.

  20. A novel specific duplex real-time RT-PCR method for absolute quantitation of Grapevine Pinot gris virus in plant material and single mites.

    PubMed

    Morán, Félix; Olmos, Antonio; Lotos, Leonidas; Predajňa, Lukáš; Katis, Nikolaos; Glasa, Miroslav; Maliogka, Varvara; Ruiz-García, Ana B

    2018-01-01

    Grapevine Pinot gris virus (GPGV) is a widely distributed grapevine pathogen that has been associated to the grapevine leaf mottling and deformation disease. With the aim of better understanding the disease epidemiology and providing efficient control strategies a specific and quantitative duplex TaqMan real-time RT-PCR assay has been developed. This method has allowed reliable quantitation of the GPGV titer ranging from 30 up to 3 x 108 transcript copies, with a detection limit of 70 viral copies in plant material. The assay targets a grapevine internal control that reduces the occurrence of false negative results, thus increasing the diagnostic sensitivity of the technique. Viral isolates both associated and non-associated to symptoms from Greece, Slovakia and Spain have been successfully detected. The method has also been applied to the absolute quantitation of GPGV in its putative transmission vector Colomerus vitis. Moreover, the viral titer present in single mites has been determined. In addition, in the current study a new polymorphism in the GPGV genome responsible for a shorter movement protein has been found. A phylogenetic study based on this genomic region has shown a high variability among Spanish isolates and points to a different evolutionary origin of this new polymorphism. The methodology here developed opens new possibilities for basic and epidemiological studies as well as for the establishment of efficient control strategies.

  1. Liquid chromatography-mass spectrometry-based quantitative proteomics.

    PubMed

    Linscheid, Michael W; Ahrends, Robert; Pieper, Stefan; Kühn, Andreas

    2009-01-01

    During the last decades, molecular sciences revolutionized biomedical research and gave rise to the biotechnology industry. During the next decades, the application of the quantitative sciences--informatics, physics, chemistry, and engineering--to biomedical research brings about the next revolution that will improve human healthcare and certainly create new technologies, since there is no doubt that small changes can have great effects. It is not a question of "yes" or "no," but of "how much," to make best use of the medical options we will have. In this context, the development of accurate analytical methods must be considered a cornerstone, since the understanding of biological processes will be impossible without information about the minute changes induced in cells by interactions of cell constituents with all sorts of endogenous and exogenous influences and disturbances. The first quantitative techniques, which were developed, allowed monitoring relative changes only, but they clearly showed the significance of the information obtained. The recent advent of techniques claiming to quantify proteins and peptides not only relative to each other, but also in an absolute fashion, promised another quantum leap, since knowing the absolute amount will allow comparing even unrelated species and the definition of parameters will permit to model biological systems much more accurate than before. To bring these promises to life, several approaches are under development at this point in time and this review is focused on those developments.

  2. Inhalation of Roman chamomile essential oil attenuates depressive-like behaviors in Wistar Kyoto rats.

    PubMed

    Kong, Yingying; Wang, Ting; Wang, Rong; Ma, Yichuan; Song, Shanshan; Liu, Juan; Hu, Weiwei; Li, Shengtian

    2017-06-01

    The idea of aromatherapy, using essential oils, has been considered as an alternative antidepressant treatment. In the present study, we investigated the effect of Roman chamomile essential oil inhalation for two weeks on depressive-like behaviors in Wistar-Kyoto (WKY) rats. We found that inhalation of either Roman chamomile or one of its main components α-pinene, attenuated depressive-like behavior in WKY rats in the forced swim test. Using isobaric tags for relative and absolute quantitation analysis (iTRAQ), we found that inhalation of α-pinene increased expression of proteins that are involved in oxidative phosphorylation, such as cytochrome c oxidase subunit 6C-2, cytochrome c oxidase subunit 7A2, ATPase inhibitor in the hippocampus, and cytochrome c oxidase subunit 6C-2, ATP synthase subunit e, Acyl carrier protein, and Cytochrome b-c1 complex subunit 6 in the PFC (prefrontal cortex). In addition, using the quantitative real-time polymerase chain reaction technique, we confirmed an increase of parvalbumin mRNA expression in the hippocampus, which was shown to be upregulated by 2.8-fold in iTRAQ analysis, in α-pinene treated WKY rats. These findings collectively suggest the involvement of mitochondrial functions and parvalbumin-related signaling in the antidepressant effect of α-pinene inhalation.

  3. Assessing Epistemic Sophistication by Considering Domain-Specific Absolute and Multiplicistic Beliefs Separately

    ERIC Educational Resources Information Center

    Peter, Johannes; Rosman, Tom; Mayer, Anne-Kathrin; Leichner, Nikolas; Krampen, Günter

    2016-01-01

    Background: Particularly in higher education, not only a view of science as a means of finding absolute truths (absolutism), but also a view of science as generally tentative (multiplicism) can be unsophisticated and obstructive for learning. Most quantitative epistemic belief inventories neglect this and understand epistemic sophistication as…

  4. Investigation of serum biomarkers in primary gout patients using iTRAQ-based screening.

    PubMed

    Ying, Ying; Chen, Yong; Zhang, Shun; Huang, Haiyan; Zou, Rouxin; Li, Xiaoke; Chu, Zanbo; Huang, Xianqian; Peng, Yong; Gan, Minzhi; Geng, Baoqing; Zhu, Mengya; Ying, Yinyan; Huang, Zuoan

    2018-03-21

    Primary gout is a major disease that affects human health; however, its pathogenesis is not well known. The purpose of this study was to identify biomarkers to explore the underlying mechanisms of primary gout. We used the isobaric tags for relative and absolute quantitation (iTRAQ) technique combined with liquid chromatography-tandem mass spectrometry to screen differentially expressed proteins between gout patients and controls. We also identified proteins potentially involved in gout pathogenesis by analysing biological processes, cellular components, molecular functions, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and protein-protein interactions. We further verified some samples using enzyme-linked immunosorbent assay (ELISA). Statistical analyses were carried out using SPSS v. 20.0 and ROC (receiver operating characterstic) curve analyses were carried out using Medcalc software. Two-sided p-values <0.05 were deemed to be statistically significant for all analyses. We identified 95 differentially expressed proteins (50 up-regulated and 45 down-regulated), and selected nine proteins (α-enolase (ENOA), glyceraldehyde-3-phosphate dehydrogenase (G3P), complement component C9 (CO9), profilin-1 (PROF1), lipopolysaccharide-binding protein (LBP), tubulin beta-4A chain (TBB4A), phosphoglycerate kinase (PGK1), glucose-6-phosphate isomerase (G6PI), and transketolase (TKT)) for verification. This showed that the level of TBB4A was significantly higher in primary gout than in controls (p=0.023). iTRAQ technology was useful in the selection of differentially expressed proteins from proteomes, and provides a strong theoretical basis for the study of biomarkers and mechanisms in primary gout. In addition, TBB4A protein may be associated with primary gout.

  5. Assessing epistemic sophistication by considering domain-specific absolute and multiplicistic beliefs separately.

    PubMed

    Peter, Johannes; Rosman, Tom; Mayer, Anne-Kathrin; Leichner, Nikolas; Krampen, Günter

    2016-06-01

    Particularly in higher education, not only a view of science as a means of finding absolute truths (absolutism), but also a view of science as generally tentative (multiplicism) can be unsophisticated and obstructive for learning. Most quantitative epistemic belief inventories neglect this and understand epistemic sophistication as disagreement with absolute statements. This article suggests considering absolutism and multiplicism as separate dimensions. Following our understanding of epistemic sophistication as a cautious and reluctant endorsement of both positions, we assume evaluativism (a contextually adaptive view of knowledge as personally constructed and evidence-based) to be reflected by low agreement with both generalized absolute and generalized multiplicistic statements. Three studies with a total sample size of N = 416 psychology students were conducted. A domain-specific inventory containing both absolute and multiplicistic statements was developed. Expectations were tested by exploratory factor analysis, confirmatory factor analysis, and correlational analyses. Results revealed a two-factor solution with an absolute and a multiplicistic factor. Criterion validity of both factors was confirmed. Cross-sectional analyses revealed that agreement to generalized multiplicistic statements decreases with study progress. Moreover, consistent with our understanding of epistemic sophistication as a reluctant attitude towards generalized epistemic statements, evidence for a negative relationship between epistemic sophistication and need for cognitive closure was found. We recommend including multiplicistic statements into epistemic belief questionnaires and considering them as a separate dimension, especially when investigating individuals in later stages of epistemic development (i.e., in higher education). © 2015 The British Psychological Society.

  6. A Comprehensive Analysis of Chromoplast Differentiation Reveals Complex Protein Changes Associated with Plastoglobule Biogenesis and Remodeling of Protein Systems in Sweet Orange Flesh1[OPEN

    PubMed Central

    Wang, Lun; Deng, Xiuxin

    2015-01-01

    Globular and crystalloid chromoplasts were observed to be region specifically formed in sweet orange (Citrus sinensis) flesh and converted from amyloplasts during fruit maturation, which was associated with the composition of specific carotenoids and the expression of carotenogenic genes. Subsequent isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analyses of purified plastids from the flesh during chromoplast differentiation and senescence identified 1,386 putative plastid-localized proteins, 1,016 of which were quantified by spectral counting. The iTRAQ values reflecting the expression abundance of three identified proteins were validated by immunoblotting. Based on iTRAQ data, chromoplastogenesis appeared to be associated with three major protein expression patterns: (1) marked decrease in abundance of the proteins participating in the translation machinery through ribosome assembly; (2) increase in abundance of the proteins involved in terpenoid biosynthesis (including carotenoids), stress responses (redox, ascorbate, and glutathione), and development; and (3) maintenance of the proteins for signaling and DNA and RNA. Interestingly, a strong increase in abundance of several plastoglobule-localized proteins coincided with the formation of plastoglobules in the chromoplast. The proteomic data also showed that stable functioning of protein import, suppression of ribosome assembly, and accumulation of chromoplast proteases are correlated with the amyloplast-to-chromoplast transition; thus, these processes may play a collective role in chromoplast biogenesis and differentiation. By contrast, the chromoplast senescence process was inferred to be associated with significant increases in stress response and energy supply. In conclusion, this comprehensive proteomic study identified many potentially new plastid-localized proteins and provides insights into the potential developmental and molecular mechanisms underlying chromoplast

  7. Proteomics approaches advance our understanding of plant self-incompatibility response.

    PubMed

    Sankaranarayanan, Subramanian; Jamshed, Muhammad; Samuel, Marcus A

    2013-11-01

    Self-incompatibility (SI) in plants is a genetic mechanism that prevents self-fertilization and promotes out-crossing needed to maintain genetic diversity. SI has been classified into two broad categories: the gametophytic self-incompatibility (GSI) and the sporophytic self-incompatibility (SSI) based on the genetic mechanisms involved in 'self' pollen rejection. Recent proteomic approaches to identify potential candidates involved in SI have shed light onto a number of previously unidentified mechanisms required for SI response. SI proteome research has progressed from the use of isoelectric focusing in early days to the latest third-generation technique of comparative isobaric tag for relative and absolute quantitation (iTRAQ) used in recent times. We will focus on the proteome-based approaches used to study self-incompatibility (GSI and SSI), recent developments in the field of incompatibility research with emphasis on SSI and future prospects of using proteomic approaches to study self-incompatibility.

  8. Colonization State Influences the Hemocyte Proteome in a Beneficial Squid–Vibrio Symbiosis*

    PubMed Central

    Schleicher, Tyler R.; VerBerkmoes, Nathan C.; Shah, Manesh; Nyholm, Spencer V.

    2014-01-01

    The squid Euprymna scolopes and the luminescent bacterium Vibrio fischeri form a highly specific beneficial light organ symbiosis. Not only does the host have to select V. fischeri from the environment, but it must also prevent subsequent colonization by non-symbiotic microorganisms. Host macrophage-like hemocytes are believed to play a role in mediating the symbiosis with V. fischeri. Previous studies have shown that the colonization state of the light organ influences the host's hemocyte response to the symbiont. To further understand the molecular mechanisms behind this process, we used two quantitative mass-spectrometry-based proteomic techniques, isobaric tags for relative and absolute quantification (iTRAQ) and label-free spectral counting, to compare and quantify the adult hemocyte proteomes from colonized (sym) and uncolonized (antibiotic-treated/cured) squid. Overall, iTRAQ allowed for the quantification of 1,024 proteins with two or more peptides. Thirty-seven unique proteins were determined to be significantly different between sym and cured hemocytes (p value < 0.05), with 20 more abundant proteins and 17 less abundant in sym hemocytes. The label-free approach resulted in 1,241 proteins that were identified in all replicates. Of 185 unique proteins present at significantly different amounts in sym hemocytes (as determined by spectral counting), 92 were more abundant and 93 were less abundant. Comparisons between iTRAQ and spectral counting revealed that 30 of the 37 proteins quantified via iTRAQ exhibited trends similar to those identified by the label-free method. Both proteomic techniques mutually identified 16 proteins that were significantly different between the two groups of hemocytes (p value < 0.05). The presence of V. fischeri in the host light organ influenced the abundance of proteins associated with the cytoskeleton, adhesion, lysosomes, proteolysis, and the innate immune response. These data provide evidence that colonization by V. fischeri

  9. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    PubMed Central

    Deng, Mingjun; Li, Jiansong

    2017-01-01

    The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675

  10. Absolute Quantitation of Human Milk Oligosaccharides Reveals Phenotypic Variations during Lactation123

    PubMed Central

    Xu, Gege; Davis, Jasmine CC; Goonatilleke, Elisha; Smilowitz, Jennifer T; German, J Bruce; Lebrilla, Carlito B

    2017-01-01

    Background: The quantitation of human milk oligosaccharides (HMOs) is challenging because of the structural complexity and lack of standards. Objective: The objective of our study was to rapidly measure the absolute concentrations of HMOs in milk using LC-mass spectrometry (MS) and to determine the phenotypic secretor status of the mothers. Methods: This quantitative method for measuring HMO concentration was developed by using ultraperformance LC multiple reaction monitoring MS. It was validated and applied to milk samples from Malawi (88 individuals; 88 samples from postnatal month 6) and the United States (Davis, California; 45 individuals, mean age: 32 y; 103 samples collected on postnatal days 10, 26, 71, or 120, repeated measures included). The concentrations of α(1,2)-fucosylated HMOs were used to determine the mothers’ phenotypic secretor status with high sensitivity and specificity. We used Friedman’s test and Wilcoxon’s signed rank test to evaluate the change in HMO concentration during the course of lactation, and Student’s t test was used to compare secretors and nonsecretors. Results: A decrease (P < 0.05) in HMO concentration was observed during the course of lactation for the US mothers, corresponding to 19.3 ± 2.9 g/L for milk collected on postnatal day 10, decreasing to 8.53 ± 1.18 g/L on day 120 (repeated measures; n = 14). On postnatal day 180, the total concentration of HMOs in Malawi milk samples from secretors (6.46 ± 1.74 mg/mL) was higher (P < 0.05) than that in samples from nonsecretors (5.25 ± 2.55 mg/mL ). The same trend was observed for fucosylated species; the concentration was higher in Malawi milk samples from secretors (4.91 ± 1.22 mg/mL) than from nonsecretors (3.42 ± 2.27 mg/mL) (P < 0.05). Conclusions: HMOs significantly decrease during the course of lactation. Secretor milk contains higher concentrations of total and fucosylated HMOs than does nonsecretor milk. These HMO concentrations can be correlated to the

  11. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  12. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency.

    PubMed

    Yang, Lin-Tong; Qi, Yi-Ping; Lu, Yi-Bin; Guo, Peng; Sang, Wen; Feng, Hui; Zhang, Hong-Xing; Chen, Li-Song

    2013-11-20

    Seedlings of Citrus sinensis were fertilized with boron (B)-deficient (0μM H3BO3) or -sufficient (10μM H3BO3) nutrient solution for 15weeks. Thereafter, iTRAQ analysis was employed to compare the abundances of proteins from B-deficient and -sufficient roots. In B-deficient roots, 164 up-regulated and 225 down-regulated proteins were identified. These proteins were grouped into the following functional categories: protein metabolism, nucleic acid metabolism, stress responses, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, biological regulation and signal transduction, and lipid metabolism. The adaptive responses of roots to B-deficiency might include following several aspects: (a) decreasing root respiration; (b) improving the total ability to scavenge reactive oxygen species (ROS); and (c) enhancing cell transport. The differentially expressed proteins identified by iTRAQ are much larger than those detected using 2D gel electrophoresis, and many novel B-deficiency-responsive proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes were identified in this work. Our results indicate remarkable metabolic flexibility of citrus roots, which may contribute to the survival of B-deficient plants. This represents the most comprehensive analysis of protein profiles in response to B-deficiency. In this study, we identified many new proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes that were not previously known to be associated with root B-deficiency responses. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in response to B-deficiency and provides new information about the plant response to B-deficiency. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Identification of Novel Molecular Targets for Endometrial Cancer Using a Drill-Down LC-MS/MS Approach with iTRAQ

    PubMed Central

    Voisin, Sébastien N.; Krakovska, Olga; Matta, Ajay; DeSouza, Leroi V.; Romaschin, Alexander D.; Colgan, Terence J.; Siu, K. W. Michael

    2011-01-01

    Background The number of patients with endometrial carcinoma (EmCa) with advanced stage or high histological grade is increasing and prognosis has not improved for over the last decade. There is an urgent need for the discovery of novel molecular targets for diagnosis, prognosis and treatment of EmCa, which will have the potential to improve the clinical strategy and outcome of this disease. Methodology and Results We used a “drill-down” proteomics approach to facilitate the identification of novel molecular targets for diagnosis, prognosis and/or therapeutic intervention for EmCa. Based on peptide ions identified and their retention times in the first LC-MS/MS analysis, an exclusion list was generated for subsequent iterations. A total of 1529 proteins have been identified below the Proteinpilot® 5% error threshold from the seven sets of iTRAQ experiments performed. On average, the second iteration added 78% new peptides to those identified after the first run, while the third iteration added 36% additional peptides. Of the 1529 proteins identified, only 40 satisfied our criteria for significant differential expression in EmCa in comparison to normal proliferative tissues. These proteins included metabolic enzymes (pyruvate kinase M2 and lactate dehydrogenase A); calcium binding proteins (S100A6, calcyphosine and calumenin), and proteins involved in regulating inflammation, proliferation and invasion (annexin A1, interleukin enhancer-binding factor 3, alpha-1-antitrypsin, macrophage capping protein and cathepsin B). Network analyses revealed regulation of these molecular targets by c-myc, Her2/neu and TNF alpha, suggesting intervention with these pathways may be a promising strategy for the development of novel molecular targeted therapies for EmCa. Conclusions Our analyses revealed the significance of drill-down proteomics approach in combination with iTRAQ to overcome some of the limitations of current proteomics strategies. This study led to the

  14. Quantitative proteomic analysis reveals novel mitochondrial targets of estrogen deficiency in the aged female rat heart.

    PubMed

    Lancaster, T S; Jefferson, S J; Hunter, J Craig; Lopez, Veronica; Van Eyk, J E; Lakatta, E G; Korzick, D H

    2012-10-17

    The incidence of myocardial infarction rises sharply at menopause, implicating a potential role for estrogen (E(2)) loss in age-related increases in ischemic injury. We aimed to identify quantitative changes to the cardiac mitochondrial proteome of aging females, based on the hypothesis that E(2) deficiency exacerbates age-dependent disruptions in mitochondrial proteins. Mitochondria isolated from left ventricles of adult (6 mo) and aged (24 mo) F344 ovary-intact or ovariectomized (OVX) rats were labeled with 8plex isobaric tags for relative and absolute quantification (iTRAQ; n = 5-6/group). Groups studied were adult, adult OVX, aged, and aged OVX. In vivo coronary artery ligation and in vitro mitochondrial respiration studies were also performed in a subset of rats. We identified 965 proteins across groups and significant directional changes in 67 proteins of aged and/or aged OVX; 32 proteins were unique to aged OVX. Notably, only six proteins were similarly altered in adult OVX (voltage-dependent ion channel 1, adenine nucleotide translocator 1, cytochrome c oxidase subunits VIIc and VIc, catalase, and myosin binding protein C). Proteins affected by aging were primarily related to cellular metabolism, oxidative stress, and cell death. The largest change occurred in monoamine oxidase-A (MAO-A), a source of oxidative stress. While acute MAO-A inhibition induced mild uncoupling in aged mitochondria, reductions in infarct size were not observed. Age-dependent alterations in mitochondrial signaling indicate a highly selective myocardial response to E(2) deficiency. The combined proteomic and functional approaches described here offer possibility of new protein targets for experimentation and therapeutic intervention in the aged female population.

  15. Absolute Quantification of Norovirus Capsid Protein in Food, Water, and Soil Using Synthetic Peptides with Electrospray and MALDI Mass Spectrometry

    PubMed Central

    Hartmann, Erica M.; Colquhoun, David R.; Schwab, Kellogg J.; Halden, Rolf U.

    2015-01-01

    Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrixassisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences. PMID:25603302

  16. Quantitation of Localized 31P Magnetic Resonance Spectra Based on the Reciprocity Principle

    NASA Astrophysics Data System (ADS)

    Kreis, R.; Slotboom, J.; Pietz, J.; Jung, B.; Boesch, C.

    2001-04-01

    There is a need for absolute quantitation methods in 31P magnetic resonance spectroscopy, because none of the phosphorous-containing metabolites is necessarily constant in pathology. Here, a method for absolute quantitation of in vivo31P MR spectra that provides reproducible metabolite contents in institutional or standard units is described. It relies on the reciprocity principle, i.e., the proportionality between the B1 field map and the map of reception strength for a coil with identical relative current distributions in receive and transmit mode. Cerebral tissue contents of 31P metabolites were determined in a predominantly white matter-containing location in healthy subjects. The results are in good agreement with the literature and the interexamination coefficient of variance is better than that in most previous studies. A gender difference found for some of the 31P metabolites may be explained by different voxel composition.

  17. Estimating the absolute wealth of households.

    PubMed

    Hruschka, Daniel J; Gerkey, Drew; Hadley, Craig

    2015-07-01

    To estimate the absolute wealth of households using data from demographic and health surveys. We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. The median absolute wealth estimates of 1,403,186 households were 2056 international dollars per capita (interquartile range: 723-6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R(2)  = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality.

  18. Development of an SRM method for absolute quantitation of MYDGF/C19orf10 protein.

    PubMed

    Dwivedi, Ravi C; Krokhin, Oleg V; El-Gabalawy, Hani S; Wilkins, John A

    2016-06-01

    To develop a MS-based selected reaction monitoring (SRM) assay for quantitation of myeloid-derived growth factor (MYDGF) formerly chromosome 19 open reading frame (C19orf10). Candidate reporter peptides were identified in digests of recombinant MYDGF. Isotopically labeled forms of these reporter peptides were employed as internal standards for assay development. Two reference peptides were selected SYLYFQTFFK and GAEIEYAMAYSK with respective LOQ of 42 and 380 attomole per injection. Application of the assay to human serum and synovial fluid determined that the assay sensitivity was reduced and quantitation was not achievable. However, the partial depletion of albumin and immunoglobulin from synovial fluids provided estimates of 300-650 femtomoles per injection (0.7-1.6 nanomolar (nM) fluid concentrations) in three of the six samples analyzed. A validated sensitive assay for the quantitation of MYDGF in biological fluids was developed. However, the endogenous levels of MYDGF in such fluids are at or below the current levels of quantitation. The levels of MYDGF are lower than those previously reported using an ELISA. The current results suggest that additional steps may be required to remove high abundance proteins or to enrich MYDGF for SRM-based quantitation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Profiling the Aspergillus fumigatus Proteome in Response to Caspofungin ▿ †

    PubMed Central

    Cagas, Steven E.; Jain, Mohit Raja; Li, Hong; Perlin, David S.

    2011-01-01

    The proteomic response of Aspergillus fumigatus to caspofungin was evaluated by gel-free isobaric tagging for relative and absolute quantitation (iTRAQ) as a means to determine potential biomarkers of drug action. A cell fractionation approach yielding 4 subcellular compartment fractions was used to enhance the resolution of proteins for proteomic analysis. Using iTRAQ, a total of 471 unique proteins were identified in soluble and cell wall/plasma membrane fractions at 24 and 48 h of growth in rich media in a wild-type drug-susceptible strain. A total of 122 proteins showed at least a 2-fold change in relative abundance following exposure to caspofungin (CSF) at just below the minimum effective concentration (0.12 μg/ml). The largest changes were seen in the mitochondrial hypoxia response domain protein (AFUA_1G12250), the level of which decreased >16-fold in the secreted fraction, and ChiA1, the level of which decreased 12.1-fold in the cell wall/plasma membrane fraction. The level of the major allergen and cytotoxin AspF1 was also shown to decrease by 12.1-fold upon the addition of drug. A subsequent iTRAQ analysis of an echinocandin-resistant strain (fks1-S678P) was used to validate proteins specific to drug action. A total of 103 proteins in the 2 fractions tested by iTRAQ were differentially expressed in the wild-type susceptible strain but not significantly changed in the resistant strain. Of these potential biomarkers, 11 had levels that changed at least 12-fold. Microarray analysis of the susceptible strain was performed to evaluate the correlation between proteomics and genomics, with a total of 117 genes found to be changing at least 2-fold. Of these, a total of 22 proteins with significant changes identified by iTRAQ also showed significant gene expression level changes by microarray. Overall, these data have the potential to identify biomarkers that assess the relative efficacy of echinocandin drug therapy. PMID:20974863

  20. Digital PCR provides absolute quantitation of viral load for an occult RNA virus.

    PubMed

    White, Richard Allen; Quake, Stephen R; Curr, Kenneth

    2012-01-01

    Using a multiplexed LNA-based Taqman assay, RT-digital PCR (RT-dPCR) was performed in a prefabricated microfluidic device that monitored absolute viral load in native and immortalized cell lines, overall precision of detection, and the absolute detection limit of an occult RNA virus GB Virus Type C (GBV-C). RT-dPCR had on average a 10% lower overall coefficient of variation (CV, a measurement of precision) for viral load testing than RT-qPCR and had a higher overall detection limit, able to quantify as low as three 5'-UTR molecules of GBV-C genome. Two commercial high-yield in vitro transcription kits (T7 Ribomax Express by Promega and Ampliscribe T7 Flash by Epicentre) were compared to amplify GBV-C RNA genome with T7-mediated amplification. The Ampliscribe T7 Flash outperformed the T7 Ribomax Express in yield of full-length GBV-C RNA genome. THP-1 cells (a model of monocytic derived cells) were transfected with GBV-C, yielding infectious virions that replicated over a 120h time course and could be infected directly. This study provides the first evidence of GBV-C replication in monocytic derived clonal cells. Thus far, it is the only study using a microfluidic device that measures directly viral load of mammalian RNA virus in a digital format without need for a standard curve. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Two independent proteomic approaches provide a comprehensive analysis of the synovial fluid proteome response to Autologous Chondrocyte Implantation.

    PubMed

    Hulme, Charlotte H; Wilson, Emma L; Fuller, Heidi R; Roberts, Sally; Richardson, James B; Gallacher, Pete; Peffers, Mandy J; Shirran, Sally L; Botting, Catherine H; Wright, Karina T

    2018-05-02

    Autologous chondrocyte implantation (ACI) has a failure rate of approximately 20%, but it is yet to be fully understood why. Biomarkers are needed that can pre-operatively predict in which patients it is likely to fail, so that alternative or individualised therapies can be offered. We previously used label-free quantitation (LF) with a dynamic range compression proteomic approach to assess the synovial fluid (SF) of ACI responders and non-responders. However, we were able to identify only a few differentially abundant proteins at baseline. In the present study, we built upon these previous findings by assessing higher-abundance proteins within this SF, providing a more global proteomic analysis on the basis of which more of the biology underlying ACI success or failure can be understood. Isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic analysis was used to assess SF from ACI responders (mean Lysholm improvement of 33; n = 14) and non-responders (mean Lysholm decrease of 14; n = 13) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Differentially abundant proteins in iTRAQ and combined iTRAQ and LF datasets were investigated using pathway and network analyses. iTRAQ proteomic analysis confirmed our previous finding that there is a marked proteomic shift in response to cartilage harvest (70 and 54 proteins demonstrating ≥ 2.0-fold change and p < 0.05 between stages I and II in responders and non-responders, respectively). Further, it highlighted 28 proteins that were differentially abundant between responders and non-responders to ACI, which were not found in the LF study, 16 of which were altered at baseline. The differential expression of two proteins (complement C1s subcomponent and matrix metalloproteinase 3) was confirmed biochemically. Combination of the iTRAQ and LF proteomic datasets generated in-depth SF proteome information that was used to generate interactome networks representing ACI

  2. Quantitative Relationship Between AUEC of Absolute Neutrophil Count and Duration of Severe Neutropenia for G-CSF in Breast Cancer Patients.

    PubMed

    Li, Liang; Ma, Lian; Schrieber, Sarah J; Rahman, Nam Atiqur; Deisseroth, Albert; Farrell, Ann T; Wang, Yaning; Sinha, Vikram; Marathe, Anshu

    2018-02-02

    The aim of the study was to evaluate the quantitative relationship between duration of severe neutropenia (DSN, the efficacy endpoint) and area under effect curve of absolute neutrophil counts (ANC-AUEC, the pharmacodynamic endpoint), based on data from filgrastim products, a human granulocyte colony-stimulating factor (G-CSF). Clinical data from filgrastim product comparator and test arms of two randomized, parallel-group, phase III studies in breast cancer patients treated with myelosuppressive chemotherapy were utilized. A zero-inflated Poisson regression model best described the negative correlation between DSN and ANC-AUEC. The models predicted that with 10 × 10 9 day/L of increase in ANC-AUEC, the mean DSN would decrease from 1.1 days to 0.93 day in Trial 1 and from 1.2 days to 1.0 day in Trial 2. The findings of the analysis provide useful information regarding the relationship between ANC and DSN that can be used for dose selection and optimization of clinical trial design for G-CSF. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  3. Comparative analysis of methicillin-sensitive and resistant Staphylococcus aureus exposed to emodin based on proteomic profiling.

    PubMed

    Ji, Xiaoyu; Liu, Xiaoqiang; Peng, Yuanxia; Zhan, Ruoting; Xu, Hui; Ge, Xijin

    2017-12-09

    Emodin has a strong antibacterial activity, including methicillin-resistant Staphylococcus aureus (MRSA). However, the mechanism by which emodin induces growth inhibition against MRSA remains unclear. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ) proteomics approach was used to investigate the modes of action of emodin on a MRSA isolate and methicillin-sensitive S. aureus ATCC29213(MSSA). Proteomic analysis showed that expression levels of 145 and 122 proteins were changed significantly in MRSA and MSSA, respectively, after emodin treatment. Comparative analysis of the functions of differentially expressed proteins between the two strains was performed via bioinformatics tools blast2go and STRING database. Proteins related to pyruvate pathway imbalance induction, protein synthesis inhibition, and DNA synthesis suppression were found in both methicillin-sensitive and resistant strains. Moreover, Interference proteins related to membrane damage mechanism were also observed in MRSA. Our findings indicate that emodin is a potential antibacterial agent targeting MRSA via multiple mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Variance computations for functional of absolute risk estimates.

    PubMed

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  5. Variance computations for functional of absolute risk estimates

    PubMed Central

    Pfeiffer, R.M.; Petracci, E.

    2011-01-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates. PMID:21643476

  6. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  7. Profound Impact of Hfq on Nutrient Acquisition, Metabolism and Motility in the Plant Pathogen Agrobacterium tumefaciens

    PubMed Central

    Möller, Philip; Overlöper, Aaron; Förstner, Konrad U.; Wen, Tuan-Nan; Sharma, Cynthia M.; Lai, Erh-Min; Narberhaus, Franz

    2014-01-01

    As matchmaker between mRNA and sRNA interactions, the RNA chaperone Hfq plays a key role in riboregulation of many bacteria. Often, the global influence of Hfq on the transcriptome is reflected by substantially altered proteomes and pleiotropic phenotypes in hfq mutants. Using quantitative proteomics and co-immunoprecipitation combined with RNA-sequencing (RIP-seq) of Hfq-bound RNAs, we demonstrate the pervasive role of Hfq in nutrient acquisition, metabolism and motility of the plant pathogen Agrobacterium tumefaciens. 136 of 2544 proteins identified by iTRAQ (isobaric tags for relative and absolute quantitation) were affected in the absence of Hfq. Most of them were associated with ABC transporters, general metabolism and motility. RIP-seq of chromosomally encoded Hfq3xFlag revealed 1697 mRNAs and 209 non-coding RNAs (ncRNAs) associated with Hfq. 56 ncRNAs were previously undescribed. Interestingly, 55% of the Hfq-bound ncRNAs were encoded antisense (as) to a protein-coding sequence suggesting that A. tumefaciens Hfq plays an important role in asRNA-target interactions. The exclusive enrichment of 296 mRNAs and 31 ncRNAs under virulence conditions further indicates a role for post-transcriptional regulation in A. tumefaciens-mediated plant infection. On the basis of the iTRAQ and RIP-seq data, we assembled a comprehensive model of the Hfq core regulon in A. tumefaciens. PMID:25330313

  8. Profound impact of Hfq on nutrient acquisition, metabolism and motility in the plant pathogen Agrobacterium tumefaciens.

    PubMed

    Möller, Philip; Overlöper, Aaron; Förstner, Konrad U; Wen, Tuan-Nan; Sharma, Cynthia M; Lai, Erh-Min; Narberhaus, Franz

    2014-01-01

    As matchmaker between mRNA and sRNA interactions, the RNA chaperone Hfq plays a key role in riboregulation of many bacteria. Often, the global influence of Hfq on the transcriptome is reflected by substantially altered proteomes and pleiotropic phenotypes in hfq mutants. Using quantitative proteomics and co-immunoprecipitation combined with RNA-sequencing (RIP-seq) of Hfq-bound RNAs, we demonstrate the pervasive role of Hfq in nutrient acquisition, metabolism and motility of the plant pathogen Agrobacterium tumefaciens. 136 of 2544 proteins identified by iTRAQ (isobaric tags for relative and absolute quantitation) were affected in the absence of Hfq. Most of them were associated with ABC transporters, general metabolism and motility. RIP-seq of chromosomally encoded Hfq3xFlag revealed 1697 mRNAs and 209 non-coding RNAs (ncRNAs) associated with Hfq. 56 ncRNAs were previously undescribed. Interestingly, 55% of the Hfq-bound ncRNAs were encoded antisense (as) to a protein-coding sequence suggesting that A. tumefaciens Hfq plays an important role in asRNA-target interactions. The exclusive enrichment of 296 mRNAs and 31 ncRNAs under virulence conditions further indicates a role for post-transcriptional regulation in A. tumefaciens-mediated plant infection. On the basis of the iTRAQ and RIP-seq data, we assembled a comprehensive model of the Hfq core regulon in A. tumefaciens.

  9. Absolute x-ray energy calibration and monitoring using a diffraction-based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Duffy, Thomas S.

    2016-07-27

    In this paper, we report some recent developments of the diffraction-based absolute X-ray energy calibration method. In this calibration method, high spatial resolution of the measured detector offset is essential. To this end, a remotely controlled long-translation motorized stage was employed instead of the less convenient gauge blocks. It is found that the precision of absolute X-ray energy calibration (ΔE/E) is readily achieved down to the level of 10{sup −4} for high-energy monochromatic X-rays (e.g. 80 keV). Examples of applications to pair distribution function (PDF) measurements and energy monitoring for high-energy X-rays are presented.

  10. A fast signal subspace approach for the determination of absolute levels from phased microphone array measurements

    NASA Astrophysics Data System (ADS)

    Sarradj, Ennes

    2010-04-01

    Phased microphone arrays are used in a variety of applications for the estimation of acoustic source location and spectra. The popular conventional delay-and-sum beamforming methods used with such arrays suffer from inaccurate estimations of absolute source levels and in some cases also from low resolution. Deconvolution approaches such as DAMAS have better performance, but require high computational effort. A fast beamforming method is proposed that can be used in conjunction with a phased microphone array in applications with focus on the correct quantitative estimation of acoustic source spectra. This method bases on an eigenvalue decomposition of the cross spectral matrix of microphone signals and uses the eigenvalues from the signal subspace to estimate absolute source levels. The theoretical basis of the method is discussed together with an assessment of the quality of the estimation. Experimental tests using a loudspeaker setup and an airfoil trailing edge noise setup in an aeroacoustic wind tunnel show that the proposed method is robust and leads to reliable quantitative results.

  11. High-coverage quantitative proteomics using amine-specific isotopic labeling.

    PubMed

    Melanson, Jeremy E; Avery, Steven L; Pinto, Devanand M

    2006-08-01

    Peptide dimethylation with isotopically coded formaldehydes was evaluated as a potential alternative to techniques such as the iTRAQ method for comparative proteomics. The isotopic labeling strategy and custom-designed protein quantitation software were tested using protein standards and then applied to measure proteins levels associated with Alzheimer's disease (AD). The method provided high accuracy (10% error), precision (14% RSD) and coverage (70%) when applied to the analysis of a standard solution of BSA by LC-MS/MS. The technique was then applied to measure protein abundance levels in brain tissue afflicted with AD relative to normal brain tissue. 2-D LC-MS analysis identified 548 unique proteins (p<0.05). Of these, 349 were quantified with two or more peptides that met the statistical criteria used in this study. Several classes of proteins exhibited significant changes in abundance. For example, elevated levels of antioxidant proteins and decreased levels of mitochondrial electron transport proteins were observed. The results demonstrate the utility of the labeling method for high-throughput quantitative analysis.

  12. A novel approach of an absolute coding pattern based on Hamiltonian graph

    NASA Astrophysics Data System (ADS)

    Wang, Ya'nan; Wang, Huawei; Hao, Fusheng; Liu, Liqiang

    2017-02-01

    In this paper, a novel approach of an optical type absolute rotary encoder coding pattern is presented. The concept is based on the principle of the absolute encoder to find out a unique sequence that ensures an unambiguous shaft position of any angular. We design a single-ring and a n-by-2 matrix absolute encoder coding pattern by using the variations of Hamiltonian graph principle. 12 encoding bits is used in the single-ring by a linear array CCD to achieve an 1080-position cycle encoding. Besides, a 2-by-2 matrix is used as an unit in the 2-track disk to achieve a 16-bits encoding pattern by using an area array CCD sensor (as a sample). Finally, a higher resolution can be gained by an electronic subdivision of the signals. Compared with the conventional gray or binary code pattern (for a 2n resolution), this new pattern has a higher resolution (2n*n) with less coding tracks, which means the new pattern can lead to a smaller encoder, which is essential in the industrial production.

  13. Differential protein expression analysis using stable isotope labeling and PQD linear ion trap MS technology.

    PubMed

    Armenta, Jenny M; Hoeschele, Ina; Lazar, Iulia M

    2009-07-01

    An isotope tags for relative and absolute quantitation (iTRAQ)-based reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) method was developed for differential protein expression profiling in complex cellular extracts. The estrogen positive MCF-7 cell line, cultured in the presence of 17beta-estradiol (E2) and tamoxifen (Tam), was used as a model system. MS analysis was performed with a linear trap quadrupole (LTQ) instrument operated by using pulsed Q dissociation (PQD) detection. Optimization experiments were conducted to maximize the iTRAQ labeling efficiency and the number of quantified proteins. MS data filtering criteria were chosen to result in a false positive identification rate of <4%. The reproducibility of protein identifications was approximately 60%-67% between duplicate, and approximately 50% among triplicate LC-MS/MS runs, respectively. The run-to-run reproducibility, in terms of relative standard deviations (RSD) of global mean iTRAQ ratios, was better than 10%. The quantitation accuracy improved with the number of peptides used for protein identification. From a total of 530 identified proteins (P < 0.001) in the E2/Tam treated MCF-7 cells, a list of 255 proteins (quantified by at least two peptides) was generated for differential expression analysis. A method was developed for the selection, normalization, and statistical evaluation of such datasets. An approximate approximately 2-fold change in protein expression levels was necessary for a protein to be selected as a biomarker candidate. According to this data processing strategy, approximately 16 proteins involved in biological processes such as apoptosis, RNA processing/metabolism, DNA replication/transcription/repair, cell proliferation and metastasis, were found to be up- or down-regulated.

  14. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  15. Describing the Diapause-Preparatory Proteome of the Beetle Colaphellus bowringi and Identifying Candidates Affecting Lipid Accumulation Using Isobaric Tags for Mass Spectrometry-Based Proteome Quantification (iTRAQ)

    PubMed Central

    Tan, Qian-Qian; Liu, Wen; Zhu, Fen; Lei, Chao-Liang; Hahn, Daniel A.; Wang, Xiao-Ping

    2017-01-01

    Prior to entering diapause, insects must prepare themselves physiologically to withstand the stresses of arresting their development for a lengthy period. While studies describing the biochemical and cellular milieu of the maintenance phase of diapause are accumulating, few studies have taken an “omics” approach to describing molecular events during the diapause preparatory phase. We used isobaric tags and mass spectrometry (iTRAQ) to quantitatively compare the expression profiles of proteins identified during the onset of diapause preparation phase in the heads of adult female cabbage beetles, Colaphellus bowringi. A total of 3,175 proteins were identified, 297 of which were differentially expressed between diapause-destined and non-diapause-destined female adults and could therefore be involved in diapause preparation in this species. Comparison of identified proteins with protein function databases shows that many of these differentially expressed proteins enhanced in diapause destined beetles are involved in energy production and conversion, carbohydrate metabolism and transport, and lipid metabolism. Further hand annotation of differentially abundant peptides nominates several associated with stress hardiness, including HSPs and antioxidants, as well as neural development. In contrast, non-diapause destined beetles show substantial increases in cuticle proteins, suggesting additional post-emergence growth. Using RNA interference to silence a fatty acid-binding protein (FABP) that was highly abundant in the head of diapause-destined females prevented the accumulation of lipids in the fat body, a common product of diapause preparation in this species and others. Surprisingly, RNAi against the FABP also affected the transcript abundance of several heat shock proteins. These results suggest that the identified differentially expressed proteins that play vital roles in lipid metabolism may also contribute somehow to enhanced hardiness to environmental stress

  16. Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics

    PubMed Central

    Li, Qian-Feng; Xiong, Min; Xu, Peng; Huang, Li-Chun; Zhang, Chang-Quan; Liu, Qiao-Quan

    2016-01-01

    Brassinosteroids (BRs), essential plant-specific steroidal hormones, function in a wide spectrum of plant growth and development events, including seed germination. Rice is not only a monocotyledonous model plant but also one of the most important staple food crops of human beings. Rice seed germination is a decisive event for the next-generation of plant growth and successful seed germination is critical for rice yield. However, little is known about the molecular mechanisms on how BR modulates seed germination in rice. In the present study, we used isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach to study BR-regulated proteome during the early stage of seed germination. The results showed that more than 800 BR-responsive proteins were identified, including 88 reliable target proteins responsive to stimuli of both BR-deficiency and BR-insensitivity. Moreover, 90% of the 88 target proteins shared a similar expression change pattern. Gene ontology and string analysis indicated that ribosomal structural proteins, as well as proteins involved in protein biosynthesis and carbohydrate metabolisms were highly clustered. These findings not only enrich BR-regulated protein database in rice seeds, but also allow us to gain novel insights into the molecular mechanism of BR regulated seed germination. PMID:27703189

  17. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis

    PubMed Central

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Background Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. Results The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Conclusions

  18. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis.

    PubMed

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Expression analyses of

  19. Absolute Quantification of Middle- to High-Abundant Plasma Proteins via Targeted Proteomics.

    PubMed

    Dittrich, Julia; Ceglarek, Uta

    2017-01-01

    The increasing number of peptide and protein biomarker candidates requires expeditious and reliable quantification strategies. The utilization of liquid chromatography coupled to quadrupole tandem mass spectrometry (LC-MS/MS) for the absolute quantitation of plasma proteins and peptides facilitates the multiplexed verification of tens to hundreds of biomarkers from smallest sample quantities. Targeted proteomics assays derived from bottom-up proteomics principles rely on the identification and analysis of proteotypic peptides formed in an enzymatic digestion of the target protein. This protocol proposes a procedure for the establishment of a targeted absolute quantitation method for middle- to high-abundant plasma proteins waiving depletion or enrichment steps. Essential topics as proteotypic peptide identification and LC-MS/MS method development as well as sample preparation and calibration strategies are described in detail.

  20. Comparative study of label and label-free techniques using shotgun proteomics for relative protein quantification.

    PubMed

    Sjödin, Marcus O D; Wetterhall, Magnus; Kultima, Kim; Artemenko, Konstantin

    2013-06-01

    The analytical performance of three different strategies, iTRAQ (isobaric tag for relative and absolute quantification), dimethyl labeling (DML) and label free (LF) for relative protein quantification using shotgun proteomics have been evaluated. The methods have been explored using samples containing (i) Bovine proteins in known ratios and (ii) Bovine proteins in known ratios spiked into Escherichia coli. The latter case mimics the actual conditions in a typical biological sample with a few differentially expressed proteins and a bulk of proteins with unchanged ratios. Additionally, the evaluation was performed on both QStar and LTQ-FTICR mass spectrometers. LF LTQ-FTICR was found to have the highest proteome coverage while the highest accuracy based on the artificially regulated proteins was found for DML LTQ-FTICR (54%). A varying linearity (k: 0.55-1.16, r(2): 0.61-0.96) was shown for all methods within selected dynamic ranges. All methods were found to consistently underestimate Bovine protein ratios when matrix proteins were added. However, LF LTQ-FTICR was more tolerant toward a compression effect. A single peptide was demonstrated to be sufficient for a reliable quantification using iTRAQ. A ranking system utilizing several parameters important for quantitative proteomics demonstrated that the overall performance of the five different methods was; DML LTQ-FTICR>iTRAQ QStar>LF LTQ-FTICR>DML QStar>LF QStar. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Comparative proteomic analysis of eggplant (Solanum melongena L.) heterostylous pistil development

    PubMed Central

    Li, Wenjia; Jiang, Yaqing; Song, Shiwei; Li, Yan; Chen, Riyuan

    2017-01-01

    Heterostyly is a common floral polymorphism, but the proteomic basis of this trait is still largely unexplored. In this study, self- and cross-pollination of L-morph and S-morph flowers and comparison of embryo sac development in eggplant (Solanum melongena L.) suggested that lower fruit set from S-morph flowers results from stigma-pollen incompatibility. To explore the molecular mechanism underlying heterostyly development, we conducted isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis of eggplant pistils for L- and S-morph flowers. A total of 5,259 distinct proteins were identified during heterostyly development. Compared S-morph flowers with L-morph, we discovered 57 and 184 differentially expressed proteins (DEPs) during flower development and maturity, respectively. Quantitative real time polymerase chain reactions were used for nine genes to verify DEPs from the iTRAQ approach. During flower development, DEPs were mainly involved in morphogenesis, biosynthetic processes, and metabolic pathways. At flower maturity, DEPs primarily participated in biosynthetic processes, metabolic pathways, and the formation of ribosomes and proteasomes. Additionally, some proteins associated with senescence and programmed cell death were found to be upregulated in S-morph pistils, which may lead to the lower fruit set in S-morph flowers. Although the exact roles of these related proteins are not yet known, this was the first attempt to use an iTRAQ approach to analyze proteomes of heterostylous eggplant flowers, and these results will provide insights into biochemical events taking place during the development of heterostyly. PMID:28586360

  2. Changes in proteomic profiles in different prostate lobes of male rats throughout growth and development and aging stages of the life span

    PubMed Central

    Das, Arunangshu; Bortner, James D.; Aliaga, Cesar A.; Baker, Aaron; Stanley, Anne; Stanley, Bruce A.; Kaag, Mathew; Richie, John P.; El-Bayoumy, Karam

    2012-01-01

    Background Aging-related changes in important cellular pathways in the prostate may promote a permissive environment for an increased risk for prostatic disease development such as prostate cancer. Our objectives were to examine for such changes, by systematically determining the effects of growth and development and aging on proteomic profiles in different lobes of the rat prostate. Methods Prostate lobes (dorsolateral lobe, DL and ventral lobe, VL) were obtained from male Fisher rats of various ages representing young (4 months), mature (12 months), old (18 months), and very old (24 months). Differentially expressed proteins between age groups in each lobe were identified using a proteomic approach, isobaric Tags for Relative and Absolute Quantitation (iTRAQ). Select changes in the DL and VL were verified by immunoblot analysis. Results iTRAQ identified 317 proteins with high confidence. iTRAQ discovered 12 and 6 proteins significantly modulated in response to growth and development in the DL and VL, respectively, and 42 and 29 proteins significantly modulated in response to aging in the DL and VL, respectively. Proteins modulated during growth and development in the DL and VL are involved in a variety of biological processes including cell communication and development, whereas proteins modulated during aging were predominantly related to antioxidant activity and immunity. Immunoblot analysis verified age-related changes for α-1 antitrypsin, annexin A1, hypoxia up-regulated protein 1, and 78 kDa glucose-regulated protein. Conclusions Aging results in changes in numerous prostatic proteins and pathways which are mainly linked to inflammation and may lead to prostatic disease development. PMID:22911278

  3. Changes in proteomic profiles in different prostate lobes of male rats throughout growth and development and aging stages of the life span.

    PubMed

    Das, Arunangshu; Bortner, James D; Aliaga, Cesar A; Baker, Aaron; Stanley, Anne; Stanley, Bruce A; Kaag, Matthew; Richie, John P; El-Bayoumy, Karam

    2013-03-01

    Aging-related changes in important cellular pathways in the prostate may promote a permissive environment for an increased risk for prostatic disease development such as prostate cancer. Our objectives were to examine for such changes, by systematically determining the effects of growth and development and aging on proteomic profiles in different lobes of the rat prostate. Prostate lobes (dorsolateral lobe, DL and ventral lobe, VL) were obtained from male Fisher rats of various ages representing young (4 months), mature (12 months), old (18 months), and very old (24 months). Differentially expressed proteins between age groups in each lobe were identified using a proteomic approach, isobaric Tags for Relative and Absolute Quantitation (iTRAQ). Select changes in the DL and VL were verified by immunoblot analysis. iTRAQ identified 317 proteins with high confidence. iTRAQ discovered 12 and 6 proteins significantly modulated in response to growth and development in the DL and VL, respectively, and 42 and 29 proteins significantly modulated in response to aging in the DL and VL, respectively. Proteins modulated during growth and development in the DL and VL are involved in a variety of biological processes including cell communication and development, whereas proteins modulated during aging were predominantly related to antioxidant activity and immunity. Immunoblot analysis verified age-related changes for α-1 antitrypsin, annexin A1, hypoxia up-regulated protein 1, and 78 kDa glucose-regulated protein. Aging results in changes in numerous prostatic proteins and pathways which are mainly linked to inflammation and may lead to prostatic disease development. Copyright © 2012 Wiley Periodicals, Inc.

  4. Identification of potential bladder cancer markers in urine by abundant-protein depletion coupled with quantitative proteomics.

    PubMed

    Chen, Chien-Lun; Lin, Tsung-Shih; Tsai, Cheng-Han; Wu, Chih-Ching; Chung, Ting; Chien, Kun-Yi; Wu, Maureen; Chang, Yu-Sun; Yu, Jau-Song; Chen, Yi-Ting

    2013-06-24

    In this study, we evaluated the reproducibility of abundant urine protein depletion by hexapeptide-based library beads and an antibody-based affinity column using the iTRAQ technique. The antibody-based affinity-depletion approach, which proved superior, was then applied in conjunction with iTRAQ to discover proteins that were differentially expressed between pooled urine samples from hernia and bladder cancer patients. Several proteins, including seven apolipoproteins, TIM, SAA4, and proEGF were further verified in 111 to 203 individual urine samples from patients with hernia, bladder cancer, or kidney cancer. Six apolipoproteins (APOA1, APOA2, APOB, APOC2, APOC3, and APOE) were able to differentiate bladder cancer from hernia. SAA4 was significantly increased in bladder cancer subgroups, whereas ProEGF was significantly decreased in bladder cancer subgroups. Additionally, the combination of SAA4 and ProEGF exhibited higher diagnostic capacity (AUC=0.80 and p<0.001) in discriminating bladder cancer from hernia than either marker alone. Using MetaCore software to interpret global changes of the urine proteome caused by bladder cancer, we found that the most notable alterations were in immune-response/alternative complement and blood-coagulation pathways. This study confirmed the clinical significance of the urine proteome in the development of non-invasive biomarkers for the detection of bladder cancer. In this study, we evaluated the reproducibility of abundant urine protein depletion by hexapeptide-based library beads and an antibody-based affinity column using the iTRAQ technique. The antibody-based affinity-depletion approach, which proved superior, was then applied in conjunction with iTRAQ to discover proteins that were differentially expressed between pooled urine samples from hernia and bladder cancer patients. Several proteins, including seven apolipoproteins, TIM, SAA4, and proEGF were further verified in 111 to 203 individual urine samples from patients

  5. Development of a duplex droplet digital PCR assay for absolute quantitative detection of "Candidatus Liberibacter asiaticus".

    PubMed

    Selvaraj, Vijayanandraj; Maheshwari, Yogita; Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg; Yokomi, Raymond

    2018-01-01

    Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium "Candidatus Liberibacter asiaticus" (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer.

  6. Development of a duplex droplet digital PCR assay for absolute quantitative detection of "Candidatus Liberibacter asiaticus"

    PubMed Central

    Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg

    2018-01-01

    Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium “Candidatus Liberibacter asiaticus” (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer. PMID:29772016

  7. Translational value of liquid chromatography coupled with tandem mass spectrometry-based quantitative proteomics for in vitro-in vivo extrapolation of drug metabolism and transport and considerations in selecting appropriate techniques.

    PubMed

    Al Feteisi, Hajar; Achour, Brahim; Rostami-Hodjegan, Amin; Barber, Jill

    2015-01-01

    Drug-metabolizing enzymes and transporters play an important role in drug absorption, distribution, metabolism and excretion and, consequently, they influence drug efficacy and toxicity. Quantification of drug-metabolizing enzymes and transporters in various tissues is therefore essential for comprehensive elucidation of drug absorption, distribution, metabolism and excretion. Recent advances in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) have improved the quantification of pharmacologically relevant proteins. This report presents an overview of mass spectrometry-based methods currently used for the quantification of drug-metabolizing enzymes and drug transporters, mainly focusing on applications and cost associated with various quantitative strategies based on stable isotope-labeled standards (absolute quantification peptide standards, quantification concatemers, protein standards for absolute quantification) and label-free analysis. In mass spectrometry, there is no simple relationship between signal intensity and analyte concentration. Proteomic strategies are therefore complex and several factors need to be considered when selecting the most appropriate method for an intended application, including the number of proteins and samples. Quantitative strategies require appropriate mass spectrometry platforms, yet choice is often limited by the availability of appropriate instrumentation. Quantitative proteomics research requires specialist practical skills and there is a pressing need to dedicate more effort and investment to training personnel in this area. Large-scale multicenter collaborations are also needed to standardize quantitative strategies in order to improve physiologically based pharmacokinetic models.

  8. Mathematics of quantitative kinetic PCR and the application of standard curves.

    PubMed

    Rutledge, R G; Côté, C

    2003-08-15

    Fluorescent monitoring of DNA amplification is the basis of real-time PCR, from which target DNA concentration can be determined from the fractional cycle at which a threshold amount of amplicon DNA is produced. Absolute quantification can be achieved using a standard curve constructed by amplifying known amounts of target DNA. In this study, the mathematics of quantitative PCR are examined in detail, from which several fundamental aspects of the threshold method and the application of standard curves are illustrated. The construction of five replicate standard curves for two pairs of nested primers was used to examine the reproducibility and degree of quantitative variation using SYBER Green I fluorescence. Based upon this analysis the application of a single, well- constructed standard curve could provide an estimated precision of +/-6-21%, depending on the number of cycles required to reach threshold. A simplified method for absolute quantification is also proposed, in which quantitative scale is determined by DNA mass at threshold.

  9. Miniature Dual-Mode Absolute Scalar Magnetometer Based on the Rubidium Isotope 87Rb

    NASA Astrophysics Data System (ADS)

    Korth, H.; Strohbehn, K.; Kitching, J.

    2016-10-01

    Miniaturized absolute scalar magnetometer based on the rubidium isotope 87Rb takes advantage of recent breakthroughs in micro-fabricated atomic devices, has a total mass of 210 g and uses <1 W of power, and maintains a sensitivity of 0.1 nT rms.

  10. Quantitative interaction proteomics using mass spectrometry.

    PubMed

    Wepf, Alexander; Glatter, Timo; Schmidt, Alexander; Aebersold, Ruedi; Gstaiger, Matthias

    2009-03-01

    We present a mass spectrometry-based strategy for the absolute quantification of protein complex components isolated through affinity purification. We quantified bait proteins via isotope-labeled reference peptides corresponding to an affinity tag sequence and prey proteins by label-free correlational quantification using the precursor ion signal intensities of proteotypic peptides generated in reciprocal purifications. We used this method to quantitatively analyze interaction stoichiometries in the human protein phosphatase 2A network.

  11. Inner Blood-Retinal Barrier Dominantly Expresses Breast Cancer Resistance Protein: Comparative Quantitative Targeted Absolute Proteomics Study of CNS Barriers in Pig.

    PubMed

    Zhang, Zhengyu; Uchida, Yasuo; Hirano, Satoshi; Ando, Daisuke; Kubo, Yoshiyuki; Auriola, Seppo; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi; Urtti, Arto; Terasaki, Tetsuya; Tachikawa, Masanori

    2017-11-06

    The purpose of this study was to determine absolute protein expression levels of transporters at the porcine inner blood-retinal barrier (BRB) and to compare the transporter protein expression quantitatively among the inner BRB, outer BRB, blood-brain barrier (BBB), and blood-cerebrospinal fluid barrier (BCSFB). Crude membrane fractions of isolated retinal capillaries (inner BRB) and isolated retinal pigment epithelium (RPE, outer BRB) were prepared from porcine eyeballs, while plasma membrane fractions were prepared from isolated porcine brain capillaries (BBB) and isolated choroid plexus (BCSFB). Protein expression levels of 32 molecules, including 16 ATP-binding-cassette (ABC) transporters and 13 solute-carrier (SLC) transporters, were measured using a quantitative targeted absolute proteomic technique. At the inner BRB, five molecules were detected: breast cancer resistance protein (BCRP, ABCG2; 22.8 fmol/μg protein), multidrug resistance protein 1 (MDR1, ABCB1; 8.70 fmol/μg protein), monocarboxylate transporter 1 (MCT1, SLC16A1; 4.83 fmol/μg protein), glucose transporter 1 (GLUT1, SLC2A1; 168 fmol/μg protein), and sodium-potassium adenosine triphosphatase (Na + /K + -ATPase; 53.7 fmol/μg protein). Other proteins were under the limits of quantification. Expression of MCT1 was at least 17.6-, 11.0-, and 19.2-fold greater than those of MCT2, 3, and 4, respectively. The transporter protein expression at the inner BRB was most highly correlated with that at the BBB (R 2 = 0.8906), followed by outer BRB (R 2 = 0.7988) and BCSFB (R 2 = 0.4730). Sodium-dependent multivitamin transporter (SMVT, SLC5A6) and multidrug resistance-associated protein 1 (MRP1, ABCC1) were expressed at the outer BRB (0.378 and 1.03 fmol/μg protein, respectively) but were under the limit of quantification at the inner BRB. These findings may be helpful for understanding differential barrier function.

  12. iTRAQ-based proteomic profile analysis of ISKNV-infected CPB cells with emphasizing on glucose metabolism, apoptosis and autophagy pathways.

    PubMed

    Wu, Shiwei; Yu, Lujun; Fu, Xiaozhe; Yan, Xi; Lin, Qiang; Liu, Lihui; Liang, Hongru; Li, Ningqiu

    2018-05-04

    Infectious spleen and kidney necrosis virus (ISKNV) has caused significant losses in the cultured mandarin fish (Siniperca chuatsi) industry. The molecular mechanisms that underlie interaction between ISKNV and hosts are not fully understood. In this study, the proteomic profile of CPB cells at progressive time points after ISKNV infection was analyzed by isobaric tags for relative and absolute quantitation (iTRAQ). A total of 2731 proteins corresponding to 6363 novel peptides (false discovery rate <0.01) were identified. In the samples harvested 24 h (early-stage) and 72 h (late-stage) post-infection, 232 and 199 differentially expressed proteins were identified comparing with mock-infected cells, respectively. Western-blotting analysis of several proteins as G6PDH, β-tubulin and RPL11 were done to validate iTRAQ data. Among those differentially expressed proteins, several glucose metabolism-related enzymes, including glucose-6-phosphate dehydrogenase (G6PDH), pyruvate dehydrogenase phosphatase (PDP) and fumarate hydratase (FH), were up-regulated, while pyruvate dehydrogenase kinase (PDK) and enolase (ENO) were down-regulated at 24 h poi, suggesting that ISKNV enhanced glucose metabolism in CPB cells in early-stage infection. Simultaneously, expression of apoptosis-related proteins including Caspase 8, phosphoinositide 3-kinases (PI3Ks), and regulatory-associated protein of mTOR-like isoform X3 changed upon ISKNV infection, indicating that ISKNV induced apoptosis of CPB cells. Autophagy-related proteins including LC3 and PI3Ks were up-regulated at 24 h poi, indicating that ISKNV induced autophagy of CPB cells in early-stage infection. These findings may improve the understanding of ISKNV and host interaction and help clarify its pathogenesis mechanisms. Copyright © 2018. Published by Elsevier Ltd.

  13. Experimental validation of a Monte-Carlo-based inversion scheme for 3D quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Buchmann, Jens; Kaplan, Bernhard A.; Prohaska, Steffen; Laufer, Jan

    2017-03-01

    Quantitative photoacoustic tomography (qPAT) aims to extract physiological parameters, such as blood oxygen saturation (sO2), from measured multi-wavelength image data sets. The challenge of this approach lies in the inherently nonlinear fluence distribution in the tissue, which has to be accounted for by using an appropriate model, and the large scale of the inverse problem. In addition, the accuracy of experimental and scanner-specific parameters, such as the wavelength dependence of the incident fluence, the acoustic detector response, the beam profile and divergence, needs to be considered. This study aims at quantitative imaging of blood sO2, as it has been shown to be a more robust parameter compared to absolute concentrations. We propose a Monte-Carlo-based inversion scheme in conjunction with a reduction in the number of variables achieved using image segmentation. The inversion scheme is experimentally validated in tissue-mimicking phantoms consisting of polymer tubes suspended in a scattering liquid. The tubes were filled with chromophore solutions at different concentration ratios. 3-D multi-spectral image data sets were acquired using a Fabry-Perot based PA scanner. A quantitative comparison of the measured data with the output of the forward model is presented. Parameter estimates of chromophore concentration ratios were found to be within 5 % of the true values.

  14. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    PubMed

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  15. Differences in proteomic profiles of milk fat globule membrane in yak and cow milk.

    PubMed

    Ji, Xiaoxi; Li, Xisheng; Ma, Ying; Li, Day

    2017-04-15

    Milk fat globule membrane (MFGM) is an important milk component which is rich in bioactive proteins. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic approach was used to investigate the differences in the MFGM proteins between yak and cow milk. Over 450 proteins were identified between the yak and cow MFGM. The MFGM proteins with significant differences were compared based on the relative abundance. Proteins such as Glycosylation-dependent cell adhesion molecule 1 (GlyCAM1), CD59 molecule and lactadherin, were identified having a much higher abundance (4.6-10.1 fold) in yak MFGM than cow MFGM. These proteins are thought to have biological functions such as the antimicrobial and antitumor effects. This may be due to the need that yak produces high nutritive milk including high levels of bioactive compounds in order to resist the extreme high altitude environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Quantitation of Met tyrosine phosphorylation using MRM-MS.

    PubMed

    Meng, Zhaojing; Srivastava, Apurva K; Zhou, Ming; Veenstra, Timothy

    2013-01-01

    Phosphorylation has long been accepted as a key cellular regulator of cell signaling pathways. The recent development of multiple-reaction monitoring mass spectrometry (MRM-MS) provides a useful tool for measuring the absolute quantity of phosphorylation occupancy at pivotal sites within signaling proteins, even when the phosphorylation sites are in close proximity. Here, we described a targeted quantitation approach to measure the absolute phosphorylation occupancy at Y1234 and Y1235 of Met. The approach is utilized to obtain absolute occupancy of the two phosphorylation sites in the full-length recombinant Met. It is further applied to quantitate the phosphorylation state of these two sites in SNU-5 cells treated with a Met inhibitor.

  17. Absolute quantification of histone PTM marks by MRM-based LC-MS/MS.

    PubMed

    Gao, Jun; Liao, Rijing; Yu, Yanyan; Zhai, Huili; Wang, Yingqi; Sack, Ragna; Peters, Antoine H F M; Chen, Jiajia; Wu, Haiping; Huang, Zheng; Hu, Min; Qi, Wei; Lu, Chris; Atadja, Peter; Oyang, Counde; Li, En; Yi, Wei; Zhou, Shaolian

    2014-10-07

    The N-terminal tails of core histones harbor the sites of numerous post-translational modifications (PTMs) with important roles in the regulation of chromatin structure and function. Profiling histone PTM marks provides data that help understand the epigenetics events in cells and their connections with cancer and other diseases. Our previous study demonstrated that specific derivatization of histone peptides by NHS propionate significantly improved their chromatographic performance on reversed phase columns for LC/MS analysis. As a step forward, we recently developed a multiple reaction monitoring (MRM) based LC-MS/MS method to analyze 42 targeted histone peptides. By using stable isotopic labeled peptides as internal standards that are spiked into the reconstituted solutions, this method allows to measure absolute concentration of the tryptic peptides of H3 histone proteins extracted from cancer cell lines. The method was thoroughly validated for the accuracy and reproducibility through analyzing recombinant histone proteins and cellular samples. The linear dynamic range of the MRM assays was achieved in 3 orders of magnitude from 1 nM to 1 μM for all targeted peptides. Excellent intrabatch and interbatch reproducibility (<15% CV) was obtained. This method has been used to study translocated NSD2 (a histone lysine methyltransferase that catalyzes the histone lysine 36 methylation) function with its overexpression in KMS11 multiple myeloma cells. From the results we have successfully quantitated both individual and combinatorial histone marks in parental and NSD2 selective knockout KMS11 cells.

  18. Quantitative endoscopy: initial accuracy measurements.

    PubMed

    Truitt, T O; Adelman, R A; Kelly, D H; Willging, J P

    2000-02-01

    The geometric optics of an endoscope can be used to determine the absolute size of an object in an endoscopic field without knowing the actual distance from the object. This study explores the accuracy of a technique that estimates absolute object size from endoscopic images. Quantitative endoscopy involves calibrating a rigid endoscope to produce size estimates from 2 images taken with a known traveled distance between the images. The heights of 12 samples, ranging in size from 0.78 to 11.80 mm, were estimated with this calibrated endoscope. Backup distances of 5 mm and 10 mm were used for comparison. The mean percent error for all estimated measurements when compared with the actual object sizes was 1.12%. The mean errors for 5-mm and 10-mm backup distances were 0.76% and 1.65%, respectively. The mean errors for objects <2 mm and > or =2 mm were 0.94% and 1.18%, respectively. Quantitative endoscopy estimates endoscopic image size to within 5% of the actual object size. This method remains promising for quantitatively evaluating object size from endoscopic images. It does not require knowledge of the absolute distance of the endoscope from the object, rather, only the distance traveled by the endoscope between images.

  19. Immunodepletion Plasma Proteomics by TripleTOF 5600 and Orbitrap Elite/LTQ-Orbitrap Velos/Q Exactive Mass Spectrometers

    PubMed Central

    Patel, Bhavinkumar B.; Kelsen, Steven G.; Braverman, Alan; Swinton, Derrick J.; Gafken, Philip R.; Jones, Lisa A.; Lane, William S.; Neveu, John M.; Leung, Hon-Chiu E.; Shaffer, Scott A.; Leszyk, John D.; Stanley, Bruce A.; Fox, Todd E.; Stanley, Anne; Hall, Michael J.; Hampel, Heather; South, Christopher D.; de la Chapelle, Albert; Burt, Randall W.; Jones, David A.; Kopelovich, Levy; Yeung, Anthony T.

    2013-01-01

    Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions. 480 LC-MS/MS runs delivered >250 GB of data in two months. Several analysis algorithms were compared. At 1 % false discovery rate, the relative comparative findings concluded that the Thermo Scientific Q Exactive Mass Spectrometer resulted in the highest number of identified proteins and unique sequences with iTRAQ quantitation. The confidence of iTRAQ fold-change for each protein is dependent on the overall ion statistics (Mascot Protein Score) attainable by each instrument. The benchmarking also suggested how to further improve the mass spectrometry parameters and HPLC conditions. Our findings highlight the special challenges presented by the low abundance peptide ions of iTRAQ plasma proteome because the dynamic range of plasma protein abundance is uniquely high compared with cell lysates, necessitating high instrument sensitivity. PMID:24004147

  20. Probative value of absolute and relative judgments in eyewitness identification.

    PubMed

    Clark, Steven E; Erickson, Michael A; Breneman, Jesse

    2011-10-01

    It is well-accepted that eyewitness identification decisions based on relative judgments are less accurate than identification decisions based on absolute judgments. However, the theoretical foundation for this view has not been established. In this study relative and absolute judgments were compared through simulations of the WITNESS model (Clark, Appl Cogn Psychol 17:629-654, 2003) to address the question: Do suspect identifications based on absolute judgments have higher probative value than suspect identifications based on relative judgments? Simulations of the WITNESS model showed a consistent advantage for absolute judgments over relative judgments for suspect-matched lineups. However, simulations of same-foils lineups showed a complex interaction based on the accuracy of memory and the similarity relationships among lineup members.

  1. Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus.

    PubMed

    Liu, Beibei; Qin, Faliang; Liu, Wenwen; Wang, Xifeng

    2016-06-09

    Rice stripe virus-infected females of the small brown planthopper (SBPH, Laodelphax striatellus) usually lay fewer eggs with a longer hatch period, low hatchability, malformation and retarded or defective development compared with healthy females. To explore the molecular mechanism of those phenomena, we analyzed the differential proteomics profiling of the ova between viruliferous and healthy female insects using an isobaric tag for relative and absolute quantitation (iTRAQ) approach. We obtained 147 differentially accumulated proteins: 98 (66.7%) proteins increased, but 49 (33.3%) decreased in the ova of the viruliferous females. RT-qPCR was used to verify the 12 differential expressed proteins from iTRAQ, finding that trends in the transcriptional change for the 12 genes were consistent with those at the proteomic level. Differentially expressed proteins that were associated with meiosis (serine/threonine-protein phosphatase 2B and cyclin B3) and mitosis (cyclin B3 and dynein heavy chain) in viruliferous ova may contribute to low hatchability and defective or retarded development. Alterations in the abundance of proteins involved in the respiratory chain and nutrition metabolism may affect embryonic development. Our study begins to explain macroscopical developmental phenomena and explore the mechanisms by which Rice stripe virus impacts the development of SBPH.

  2. Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus

    PubMed Central

    Liu, Beibei; Qin, Faliang; Liu, Wenwen; Wang, Xifeng

    2016-01-01

    Rice stripe virus-infected females of the small brown planthopper (SBPH, Laodelphax striatellus) usually lay fewer eggs with a longer hatch period, low hatchability, malformation and retarded or defective development compared with healthy females. To explore the molecular mechanism of those phenomena, we analyzed the differential proteomics profiling of the ova between viruliferous and healthy female insects using an isobaric tag for relative and absolute quantitation (iTRAQ) approach. We obtained 147 differentially accumulated proteins: 98 (66.7%) proteins increased, but 49 (33.3%) decreased in the ova of the viruliferous females. RT-qPCR was used to verify the 12 differential expressed proteins from iTRAQ, finding that trends in the transcriptional change for the 12 genes were consistent with those at the proteomic level. Differentially expressed proteins that were associated with meiosis (serine/threonine-protein phosphatase 2B and cyclin B3) and mitosis (cyclin B3 and dynein heavy chain) in viruliferous ova may contribute to low hatchability and defective or retarded development. Alterations in the abundance of proteins involved in the respiratory chain and nutrition metabolism may affect embryonic development. Our study begins to explain macroscopical developmental phenomena and explore the mechanisms by which Rice stripe virus impacts the development of SBPH. PMID:27277140

  3. Integrative proteomics to understand the transmission mechanism of Barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi

    PubMed Central

    Wang, Hui; Wu, Keke; Liu, Yan; Wu, Yunfeng; Wang, Xifeng

    2015-01-01

    Barley yellow dwarf virus-GPV (BYDV-GPV) is transmitted by Rhopalosiphum padi and Schizaphis graminum in a persistent nonpropagative manner. To improve our understanding of its transmission mechanism by aphid vectors, we used two approaches, isobaric tags for relative and absolute quantitation (iTRAQ) and yeast two-hybrid (YTH) system, to identify proteins in R. padi that may interact with or direct the spread of BYDV-GPV along the circulative transmission pathway. Thirty-three differential aphid proteins in viruliferous and nonviruliferous insects were identified using iTRAQ coupled to 2DLC-MS/MS. With the yeast two-hybrid system, 25 prey proteins were identified as interacting with the readthrough protein (RTP) and eight with the coat protein (CP), which are encoded by BYDV-GPV. Among the aphid proteins identified, most were involved in primary energy metabolism, synaptic vesicle cycle, the proteasome pathway and the cell cytoskeleton organization pathway. In a systematic comparison of the two methods, we found that the information generated by the two methods was complementary. Taken together, our findings provide useful information on the interactions between BYDV-GPV and its vector R. padi to further our understanding of the mechanisms regulating circulative transmission in aphid vectors. PMID:26161807

  4. Absolute Magnitude Calibration for Dwarfs Based on the Colour-Magnitude Diagrams of Galactic Clusters

    NASA Astrophysics Data System (ADS)

    Karaali, S.; Gökçe, E. Yaz; Bilir, S.; Güçtekin, S. Tunçel

    2014-07-01

    We present two absolute magnitude calibrations for dwarfs based on colour-magnitude diagrams of Galactic clusters. The combination of the Mg absolute magnitudes of the dwarf fiducial sequences of the clusters M92, M13, M5, NGC 2420, M67, and NGC 6791 with the corresponding metallicities provides absolute magnitude calibration for a given (g - r)0 colour. The calibration is defined in the colour interval 0.25 ≤ (g - r)0 ≤ 1.25 mag and it covers the metallicity interval - 2.15 ≤ [Fe/H] ≤ +0.37 dex. The absolute magnitude residuals obtained by the application of the procedure to another set of Galactic clusters lie in the interval - 0.15 ≤ ΔMg ≤ +0.12 mag. The mean and standard deviation of the residuals are < ΔMg > = - 0.002 and σ = 0.065 mag, respectively. The calibration of the MJ absolute magnitude in terms of metallicity is carried out by using the fiducial sequences of the clusters M92, M13, 47 Tuc, NGC 2158, and NGC 6791. It is defined in the colour interval 0.90 ≤ (V - J)0 ≤ 1.75 mag and it covers the same metallicity interval of the Mg calibration. The absolute magnitude residuals obtained by the application of the procedure to the cluster M5 ([Fe/H] = -1.40 dex) and 46 solar metallicity, - 0.45 ≤ [Fe/H] ≤ +0.35 dex, field stars lie in the interval - 0.29 and + 0.35 mag. However, the range of 87% of them is rather shorter, - 0.20 ≤ ΔMJ ≤ +0.20 mag. The mean and standard deviation of all residuals are < ΔMJ > =0.05 and σ = 0.13 mag, respectively. The derived relations are applicable to stars older than 4 Gyr for the Mg calibration, and older than 2 Gyr for the MJ calibration. The cited limits are the ages of the youngest calibration clusters in the two systems.

  5. Accessibility of Nitroxide Side Chains: Absolute Heisenberg Exchange Rates from Power Saturation EPR

    PubMed Central

    Altenbach, Christian; Froncisz, Wojciech; Hemker, Roy; Mchaourab, Hassane; Hubbell, Wayne L.

    2005-01-01

    In site-directed spin labeling, the relative solvent accessibility of spin-labeled side chains is taken to be proportional to the Heisenberg exchange rate (Wex) of the nitroxide with a paramagnetic reagent in solution. In turn, relative values of Wex are determined by continuous wave power saturation methods and expressed as a proportional and dimensionless parameter Π. In the experiments presented here, NiEDDA is characterized as a paramagnetic reagent for solvent accessibility studies, and it is shown that absolute values of Wex can be determined from Π, and that the proportionality constant relating them is independent of the paramagnetic reagent and mobility of the nitroxide. Based on absolute exchange rates, an accessibility factor is defined (0 < ρ < 1) that serves as a quantitative measure of side-chain solvent accessibility. The accessibility factors for a nitroxide side chain at 14 different sites in T4 lysozyme are shown to correlate with a structure-based accessibility parameter derived from the crystal structure of the protein. These results provide a useful means for relating crystallographic and site-directed spin labeling data, and hence comparing crystal and solution structures. PMID:15994891

  6. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn.

    PubMed

    Dong, Yongbin; Wang, Qilei; Zhang, Long; Du, Chunguang; Xiong, Wenwei; Chen, Xinjian; Deng, Fei; Ma, Zhiyan; Qiao, Dahe; Hu, Chunhui; Ren, Yangliu; Li, Yuling

    2015-01-01

    The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize.

  7. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn

    PubMed Central

    Du, Chunguang; Xiong, Wenwei; Chen, Xinjian; Deng, Fei; Ma, Zhiyan; Qiao, Dahe; Hu, Chunhui; Ren, Yangliu; Li, Yuling

    2015-01-01

    The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize. PMID:26587848

  8. Nonmydriatic fluorescence-based quantitative imaging of human macular pigment distributions

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, Mohsen; Bernstein, Paul S.; Gellermann, Werner

    2006-10-01

    We have developed a CCD-camera-based nonmydriatic instrument that detects fluorescence from retinal lipofuscin chromophores ("autofluorescence") as a means to indirectly quantify and spatially image the distribution of macular pigment (MP). The lipofuscin fluorescence intensity is reduced at all retinal locations containing MP, since MP has a competing absorption in the blue-green wavelength region. Projecting a large diameter, 488 nm excitation spot onto the retina, centered on the fovea, but extending into the macular periphery, and comparing lipofuscin fluorescence intensities outside and inside the foveal area, it is possible to spatially map out the distribution of MP. Spectrally selective detection of the lipofuscin fluorescence reveals an important wavelength dependence of the obtainable image contrast and deduced MP optical density levels, showing that it is important to block out interfering fluorescence contributions in the detection setup originating from ocular media such as the lens. Measuring 70 healthy human volunteer subjects with no ocular pathologies, we find widely varying spatial extent of MP, distinctly differing distribution patterns of MP, and strongly differing absolute MP levels among individuals. Our population study suggests that MP imaging based on lipofuscin fluorescence is useful as a relatively simple, objective, and quantitative noninvasive optical technique suitable to rapidly screen MP levels and distributions in healthy humans with undilated pupils.

  9. Communicating cardiovascular disease risk: an interview study of General Practitioners' use of absolute risk within tailored communication strategies.

    PubMed

    Bonner, Carissa; Jansen, Jesse; McKinn, Shannon; Irwig, Les; Doust, Jenny; Glasziou, Paul; McCaffery, Kirsten

    2014-05-29

    Cardiovascular disease (CVD) prevention guidelines encourage assessment of absolute CVD risk - the probability of a CVD event within a fixed time period, based on the most predictive risk factors. However, few General Practitioners (GPs) use absolute CVD risk consistently, and communication difficulties have been identified as a barrier to changing practice. This study aimed to explore GPs' descriptions of their CVD risk communication strategies, including the role of absolute risk. Semi-structured interviews were conducted with a purposive sample of 25 GPs in New South Wales, Australia. Transcribed audio-recordings were thematically coded, using the Framework Analysis method to ensure rigour. GPs used absolute CVD risk within three different communication strategies: 'positive', 'scare tactic', and 'indirect'. A 'positive' strategy, which aimed to reassure and motivate, was used for patients with low risk, determination to change lifestyle, and some concern about CVD risk. Absolute risk was used to show how they could reduce risk. A 'scare tactic' strategy was used for patients with high risk, lack of motivation, and a dismissive attitude. Absolute risk was used to 'scare' them into taking action. An 'indirect' strategy, where CVD risk was not the main focus, was used for patients with low risk but some lifestyle risk factors, high anxiety, high resistance to change, or difficulty understanding probabilities. Non-quantitative absolute risk formats were found to be helpful in these situations. This study demonstrated how GPs use three different communication strategies to address the issue of CVD risk, depending on their perception of patient risk, motivation and anxiety. Absolute risk played a different role within each strategy. Providing GPs with alternative ways of explaining absolute risk, in order to achieve different communication aims, may improve their use of absolute CVD risk assessment in practice.

  10. Communicating cardiovascular disease risk: an interview study of General Practitioners’ use of absolute risk within tailored communication strategies

    PubMed Central

    2014-01-01

    Background Cardiovascular disease (CVD) prevention guidelines encourage assessment of absolute CVD risk - the probability of a CVD event within a fixed time period, based on the most predictive risk factors. However, few General Practitioners (GPs) use absolute CVD risk consistently, and communication difficulties have been identified as a barrier to changing practice. This study aimed to explore GPs’ descriptions of their CVD risk communication strategies, including the role of absolute risk. Methods Semi-structured interviews were conducted with a purposive sample of 25 GPs in New South Wales, Australia. Transcribed audio-recordings were thematically coded, using the Framework Analysis method to ensure rigour. Results GPs used absolute CVD risk within three different communication strategies: ‘positive’, ‘scare tactic’, and ‘indirect’. A ‘positive’ strategy, which aimed to reassure and motivate, was used for patients with low risk, determination to change lifestyle, and some concern about CVD risk. Absolute risk was used to show how they could reduce risk. A ‘scare tactic’ strategy was used for patients with high risk, lack of motivation, and a dismissive attitude. Absolute risk was used to ‘scare’ them into taking action. An ‘indirect’ strategy, where CVD risk was not the main focus, was used for patients with low risk but some lifestyle risk factors, high anxiety, high resistance to change, or difficulty understanding probabilities. Non-quantitative absolute risk formats were found to be helpful in these situations. Conclusions This study demonstrated how GPs use three different communication strategies to address the issue of CVD risk, depending on their perception of patient risk, motivation and anxiety. Absolute risk played a different role within each strategy. Providing GPs with alternative ways of explaining absolute risk, in order to achieve different communication aims, may improve their use of absolute CVD risk assessment

  11. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.

    PubMed

    Chahrour, Osama; Malone, John

    2017-01-01

    Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability.

    PubMed

    Alvarez, Sophie; Roy Choudhury, Swarup; Pandey, Sona

    2014-03-07

    Wheat is one of the most highly cultivated cereals in the world. Like other cultivated crops, wheat production is significantly affected by abiotic stresses such as drought. Multiple wheat varieties suitable for different geographical regions of the world have been developed that are adapted to different environmental conditions; however, the molecular basis of such adaptations remains unknown in most cases. We have compared the quantitative proteomics profile of the roots of two different wheat varieties, Nesser (drought-tolerant) and Opata (drought-sensitive), in the absence and presence of abscisic acid (ABA, as a proxy for drought). A labeling LC-based quantitative proteomics approach using iTRAQ was applied to elucidate the changes in protein abundance levels. Quantitative differences in protein levels were analyzed for the evaluation of inherent differences between the two varieties as well as the overall and variety-specific effect of ABA on the root proteome. This study reveals the most elaborate ABA-responsive root proteome identified to date in wheat. A large number of proteins exhibited inherently different expression levels between Nesser and Opata. Additionally, significantly higher numbers of proteins were ABA-responsive in Nesser roots compared with Opata roots. Furthermore, several proteins showed variety-specific regulation by ABA, suggesting their role in drought adaptation.

  13. Pixel-based absolute surface metrology by three flat test with shifted and rotated maps

    NASA Astrophysics Data System (ADS)

    Zhai, Dede; Chen, Shanyong; Xue, Shuai; Yin, Ziqiang

    2018-03-01

    In traditional three flat test, it only provides the absolute profile along one surface diameter. In this paper, an absolute testing algorithm based on shift-rotation with three flat test has been proposed to reconstruct two-dimensional surface exactly. Pitch and yaw error during shift procedure is analyzed and compensated in our method. Compared with multi-rotation method proposed before, it only needs a 90° rotation and a shift, which is easy to carry out especially in condition of large size surface. It allows pixel level spatial resolution to be achieved without interpolation or assumption to the test surface. In addition, numerical simulations and optical tests are implemented and show the high accuracy recovery capability of the proposed method.

  14. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    PubMed

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  15. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  16. A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine

    PubMed Central

    Calamia, Valentina; Mateos, Jesús; Fernández-Puente, Patricia; Lourido, Lucía; Rocha, Beatriz; Fernández-Costa, Carolina; Montell, Eulalia; Vergés, Josep; Ruiz-Romero, Cristina; Blanco, Francisco J.

    2014-01-01

    Osteoarthritis (OA) is the most common age-related rheumatic disease. Chondrocytes play a primary role in mediating cartilage destruction and extracellular matrix (ECM) breakdown, which are main features of the OA joint. Quantitative proteomics technologies are demonstrating a very interesting power for studying the molecular effects of some drugs currently used to treat OA patients, such as chondroitin sulfate (CS) and glucosamine (GlcN). In this work, we employed the iTRAQ (isobaric tags for relative and absolute quantitation) technique to assess the effect of CS and GlcN, both alone and in combination, in modifying cartilage ECM metabolism by the analysis of OA chondrocytes secretome. 186 different proteins secreted by the treated OA chondrocytes were identified. 36 of them presented statistically significant differences (p ≤ 0.05) between untreated and treated samples: 32 were increased and 4 decreased. The synergistic chondroprotective effect of CS and GlcN, firstly reported by our group at the intracellular level, is now demonstrated also at the extracellular level. PMID:24912619

  17. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  18. Linking Comparisons of Absolute Gravimeters: A Proof of Concept for a new Global Absolute Gravity Reference System.

    NASA Astrophysics Data System (ADS)

    Wziontek, H.; Palinkas, V.; Falk, R.; Vaľko, M.

    2016-12-01

    Since decades, absolute gravimeters are compared on a regular basis on an international level, starting at the International Bureau for Weights and Measures (BIPM) in 1981. Usually, these comparisons are based on constant reference values deduced from all accepted measurements acquired during the comparison period. Temporal changes between comparison epochs are usually not considered. Resolution No. 2, adopted by IAG during the IUGG General Assembly in Prague 2015, initiates the establishment of a Global Absolute Gravity Reference System based on key comparisons of absolute gravimeters (AG) under the International Committee for Weights and Measures (CIPM) in order to establish a common level in the microGal range. A stable and unique reference frame can only be achieved, if different AG are taking part in different kind of comparisons. Systematic deviations between the respective comparison reference values can be detected, if the AG can be considered stable over time. The continuous operation of superconducting gravimeters (SG) on selected stations further supports the temporal link of comparison reference values by establishing a reference function over time. By a homogenous reprocessing of different comparison epochs and including AG and SG time series at selected stations, links between several comparisons will be established and temporal comparison reference functions will be derived. By this, comparisons on a regional level can be traced to back to the level of key comparisons, providing a reference for other absolute gravimeters. It will be proved and discussed, how such a concept can be used to support the future absolute gravity reference system.

  19. Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy

    PubMed Central

    Wang, Jigang; Zhang, Jianbin; Lee, Yew-Mun; Koh, Pin-Lang; Ng, Shukie; Bao, Feichao; Lin, Qingsong; Shen, Han-Ming

    2016-01-01

    ABSTRACT Autophagy is an intracellular degradation mechanism in response to nutrient starvation. Via autophagy, some nonessential cellular constituents are degraded in a lysosome-dependent manner to generate biomolecules that can be utilized for maintaining the metabolic homeostasis. Although it is known that under starvation the global protein synthesis is significantly reduced mainly due to suppression of MTOR (mechanistic target of rapamycin serine/threonine kinase), emerging evidence demonstrates that de novo protein synthesis is involved in the autophagic process. However, characterizing these de novo proteins has been an issue with current techniques. Here, we developed a novel method to identify newly synthesized proteins during starvation-mediated autophagy by combining bio-orthogonal noncanonical amino acid tagging (BONCAT) and isobaric tags for relative and absolute quantitation (iTRAQTM). Using bio-orthogonal metabolic tagging, L-azidohomoalanine (AHA) was incorporated into newly synthesized proteins which were then enriched with avidin beads after a click reaction between alkyne-bearing biotin and AHA's bio-orthogonal azide moiety. The enriched proteins were subjected to iTRAQ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Via the above approach, we identified and quantified a total of 1176 proteins and among them 711 proteins were found to meet our defined criteria as de novo synthesized proteins during starvation-mediated autophagy. The characterized functional profiles of the 711 newly synthesized proteins by bioinformatics analysis suggest their roles in ensuring the prosurvival outcome of autophagy. Finally, we performed validation assays for some selected proteins and found that knockdown of some genes has a significant impact on starvation-induced autophagy. Thus, we think that the BONCAT-iTRAQ approach is effective in the identification of newly synthesized proteins and

  20. The Absolute Magnitude of the Sun in Several Filters

    NASA Astrophysics Data System (ADS)

    Willmer, Christopher N. A.

    2018-06-01

    This paper presents a table with estimates of the absolute magnitude of the Sun and the conversions from vegamag to the AB and ST systems for several wide-band filters used in ground-based and space-based observatories. These estimates use the dustless spectral energy distribution (SED) of Vega, calibrated absolutely using the SED of Sirius, to set the vegamag zero-points and a composite spectrum of the Sun that coadds space-based observations from the ultraviolet to the near-infrared with models of the Solar atmosphere. The uncertainty of the absolute magnitudes is estimated by comparing the synthetic colors with photometric measurements of solar analogs and is found to be ∼0.02 mag. Combined with the uncertainty of ∼2% in the calibration of the Vega SED, the errors of these absolute magnitudes are ∼3%–4%. Using these SEDs, for three of the most utilized filters in extragalactic work the estimated absolute magnitudes of the Sun are M B = 5.44, M V = 4.81, and M K = 3.27 mag in the vegamag system and M B = 5.31, M V = 4.80, and M K = 5.08 mag in AB.

  1. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  2. Absolute Quantification of Selected Proteins in the Human Osteoarthritic Secretome

    PubMed Central

    Peffers, Mandy J.; Beynon, Robert J.; Clegg, Peter D.

    2013-01-01

    Osteoarthritis (OA) is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA. PMID:24132152

  3. Characterization and comparison of proteomes of albino sea cucumber Apostichopus japonicus (Selenka) by iTRAQ analysis.

    PubMed

    Xia, Chang-Ge; Zhang, Dijun; Ma, Chengnv; Zhou, Jun; He, Shan; Su, Xiu-Rong

    2016-04-01

    Sea cucumber is a commercially important marine organism in China. Of the different colored varieties sold in China, albino sea cucumber has the greatest appeal among consumers. Identification of factors contributing to albinism in sea cucumber is therefore likely to provide a scientific basis for improving the cultivability of these strains. In this study, two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification labeling was used for the first time to quantitatively define the proteome of sea cucumbers and reveal proteomic characteristics unique to albino sea cucumbers. A total of 549 proteins were identified and quantified in albino sea cucumber and the functional annotations of 485 proteins have been exhibited based on COG database. Compared with green sea cucumber, 12 proteins were identified as differentially expressed in the intestine and 16 proteins in the body wall of albino sea cucumber. Among them, 5 proteins were up-regulated in the intestine and 8 proteins were down-regulated in body wall. Gene ontology annotations of these differentially expressed proteins consisted mostly of 'biological process'. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying albinism in sea cucumber. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Advancing Absolute Calibration for JWST and Other Applications

    NASA Astrophysics Data System (ADS)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  5. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  6. Identification of novel biomarker candidates for hypertrophic cardiomyopathy and other cardiovascular diseases leading to heart failure.

    PubMed

    Rehulkova, H; Rehulka, P; Myslivcova Fucikova, A; Stulik, J; Pudil, R

    2016-11-23

    In-depth proteome discovery analysis represents new strategy in an effort to identify novel reliable specific protein markers for hypertrophic cardiomyopathy and other life threatening cardiovascular diseases. To systematically identify novel protein biomarkers of cardiovascular diseases with high mortality we employed an isobaric tag for relative and absolute quantitation (iTRAQ) proteome technology to make comparative analysis of plasma samples obtained from patients suffering from non-obstructive hypertrophic cardiomyopathy, stable dilated cardiomyopathy, aortic valve stenosis, chronic stable coronary artery disease and stable arterial hypertension. We found 128 plasma proteins whose abundances were uniquely regulated among the analyzed cardiovascular pathologies. 49 of them have not been described yet. Additionally, application of statistical exploratory analyses of the measured protein profiles indicated the relationship in pathophysiology of the examined cardiovascular pathologies.

  7. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    NASA Technical Reports Server (NTRS)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  8. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  9. Absolute marine gravimetry with matter-wave interferometry.

    PubMed

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  10. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  11. Measurement of OEF and absolute CMRO2: MRI-based methods using interleaved and combined hypercapnia and hyperoxia

    PubMed Central

    Wise, Richard G.; Harris, Ashley D.; Stone, Alan; Murphy, Kevin

    2014-01-01

    Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (FMRI) is most commonly used in a semi-quantitative manner to infer changes in brain activity. Despite the basis of the image contrast lying in the cerebral venous blood oxygenation level, quantification of absolute cerebral metabolic rate of oxygen consumption (CMRO2) has only recently been demonstrated. Here we examine two approaches to the calibration of FMRI signal to measure absolute CMRO2 using hypercapnic and hyperoxic respiratory challenges. The first approach is to apply hypercapnia and hyperoxia separately but interleaved in time and the second is a combined approach in which we apply hyperoxic challenges simultaneously with different levels of hypercapnia. Eleven healthy volunteers were studied at 3T using a dual gradient-echo spiral readout pulsed arterial spin labelling (ASL) imaging sequence. Respiratory challenges were conducted using an automated system of dynamic end-tidal forcing. A generalised BOLD signal model was applied, within a Bayesian estimation framework, that aims to explain the effects of modulation of CBF and arterial oxygen content to estimate venous deoxyhaemoglobin concentration ([dHb]0). Using CBF measurements combined with the estimated oxygen extraction fraction (OEF), absolute CMRO2 was calculated. The interleaved approach to hypercapnia and hyperoxia, as well as yielding estimates of CMRO2 and OEF demonstrated a significant increase in regional CBF, venous oxygen saturation (SvO2) (a decrease in OEF) and absolute CMRO2 in visual cortex in response to a continuous (20 minute) visual task, demonstrating the potential for the method in measuring long term changes in CMRO2. The combined approach to oxygen and carbon dioxide modulation, as well as taking less time to acquire data, yielded whole brain grey matter estimates of CMRO2 and OEF of 184±45 μmol/100g/min and 0.42±0.12 respectively, along with additional estimates of the vascular parameters

  12. A general method for bead-enhanced quantitation by flow cytometry

    PubMed Central

    Montes, Martin; Jaensson, Elin A.; Orozco, Aaron F.; Lewis, Dorothy E.; Corry, David B.

    2009-01-01

    Flow cytometry provides accurate relative cellular quantitation (percent abundance) of cells from diverse samples, but technical limitations of most flow cytometers preclude accurate absolute quantitation. Several quantitation standards are now commercially available which, when added to samples, permit absolute quantitation of CD4+ T cells. However, these reagents are limited by their cost, technical complexity, requirement for additional software and/or limited applicability. Moreover, few studies have validated the use of such reagents in complex biological samples, especially for quantitation of non-T cells. Here we show that addition to samples of known quantities of polystyrene fluorescence standardization beads permits accurate quantitation of CD4+ T cells from complex cell samples. This procedure, here termed single bead-enhanced cytofluorimetry (SBEC), was equally capable of enumerating eosinophils as well as subcellular fragments of apoptotic cells, moieties with very different optical and fluorescent characteristics. Relative to other proprietary products, SBEC is simple, inexpensive and requires no special software, suggesting that the method is suitable for the routine quantitation of most cells and other particles by flow cytometry. PMID:17067632

  13. Quantitative proteomics in teleost fish: insights and challenges for neuroendocrine and neurotoxicology research.

    PubMed

    Martyniuk, Christopher J; Popesku, Jason T; Chown, Brittany; Denslow, Nancy D; Trudeau, Vance L

    2012-05-01

    Neuroendocrine systems integrate both extrinsic and intrinsic signals to regulate virtually all aspects of an animal's physiology. In aquatic toxicology, studies have shown that pollutants are capable of disrupting the neuroendocrine system of teleost fish, and many chemicals found in the environment can also have a neurotoxic mode of action. Omics approaches are now used to better understand cell signaling cascades underlying fish neurophysiology and the control of pituitary hormone release, in addition to identifying adverse effects of pollutants in the teleostean central nervous system. For example, both high throughput genomics and proteomic investigations of molecular signaling cascades for both neurotransmitter and nuclear receptor agonists/antagonists have been reported. This review highlights recent studies that have utilized quantitative proteomics methods such as 2D differential in-gel electrophoresis (DIGE) and isobaric tagging for relative and absolute quantitation (iTRAQ) in neuroendocrine regions and uses these examples to demonstrate the challenges of using proteomics in neuroendocrinology and neurotoxicology research. To begin to characterize the teleost neuroproteome, we functionally annotated 623 unique proteins found in the fish hypothalamus and telencephalon. These proteins have roles in biological processes that include synaptic transmission, ATP production, receptor activity, cell structure and integrity, and stress responses. The biological processes most represented by proteins detected in the teleost neuroendocrine brain included transport (8.4%), metabolic process (5.5%), and glycolysis (4.8%). We provide an example of using sub-network enrichment analysis (SNEA) to identify protein networks in the fish hypothalamus in response to dopamine receptor signaling. Dopamine signaling altered the abundance of proteins that are binding partners of microfilaments, integrins, and intermediate filaments, consistent with data suggesting dopaminergic

  14. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography.

    PubMed

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki

    2012-01-01

    Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young's moduli of seven tissue-mimicking materials (in vitro; Young's modulus range, 20-80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young's modulus ratio of two reference materials, one hard and one soft (Young's moduli of 7 and 30 kPa, respectively), the Young's moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young's moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young's moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified.

  15. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Guidelines for reporting quantitative mass spectrometry based experiments in proteomics.

    PubMed

    Martínez-Bartolomé, Salvador; Deutsch, Eric W; Binz, Pierre-Alain; Jones, Andrew R; Eisenacher, Martin; Mayer, Gerhard; Campos, Alex; Canals, Francesc; Bech-Serra, Joan-Josep; Carrascal, Montserrat; Gay, Marina; Paradela, Alberto; Navajas, Rosana; Marcilla, Miguel; Hernáez, María Luisa; Gutiérrez-Blázquez, María Dolores; Velarde, Luis Felipe Clemente; Aloria, Kerman; Beaskoetxea, Jabier; Medina-Aunon, J Alberto; Albar, Juan P

    2013-12-16

    Mass spectrometry is already a well-established protein identification tool and recent methodological and technological developments have also made possible the extraction of quantitative data of protein abundance in large-scale studies. Several strategies for absolute and relative quantitative proteomics and the statistical assessment of quantifications are possible, each having specific measurements and therefore, different data analysis workflows. The guidelines for Mass Spectrometry Quantification allow the description of a wide range of quantitative approaches, including labeled and label-free techniques and also targeted approaches such as Selected Reaction Monitoring (SRM). The HUPO Proteomics Standards Initiative (HUPO-PSI) has invested considerable efforts to improve the standardization of proteomics data handling, representation and sharing through the development of data standards, reporting guidelines, controlled vocabularies and tooling. In this manuscript, we describe a key output from the HUPO-PSI-namely the MIAPE Quant guidelines, which have developed in parallel with the corresponding data exchange format mzQuantML [1]. The MIAPE Quant guidelines describe the HUPO-PSI proposal concerning the minimum information to be reported when a quantitative data set, derived from mass spectrometry (MS), is submitted to a database or as supplementary information to a journal. The guidelines have been developed with input from a broad spectrum of stakeholders in the proteomics field to represent a true consensus view of the most important data types and metadata, required for a quantitative experiment to be analyzed critically or a data analysis pipeline to be reproduced. It is anticipated that they will influence or be directly adopted as part of journal guidelines for publication and by public proteomics databases and thus may have an impact on proteomics laboratories across the world. This article is part of a Special Issue entitled: Standardization and

  17. Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-Based Untargeted Quantitative Proteomic Approach To Identify Change of the Plasma Proteins by Salbutamol Abuse in Beef Cattle.

    PubMed

    Zhang, Kai; Tang, Chaohua; Liang, Xiaowei; Zhao, Qingyu; Zhang, Junmin

    2018-01-10

    Salbutamol, a selective β 2 -agonist, endangers the safety of animal products as a result of illegal use in food animals. In this study, an iTRAQ-based untargeted quantitative proteomic approach was applied to screen potential protein biomarkers in plasma of cattle before and after treatment with salbutamol for 21 days. A total of 62 plasma proteins were significantly affected by salbutamol treatment, which can be used as potential biomarkers to screen for the illegal use of salbutamol in beef cattle. Enzyme-linked immunosorbent assay measurements of five selected proteins demonstrated the reliability of iTRAQ-based proteomics in screening of candidate biomarkers among the plasma proteins. The plasma samples collected before and after salbutamol treatment were well-separated by principal component analysis (PCA) using the differentially expressed proteins. These results suggested that an iTRAQ-based untargeted quantitative proteomic strategy combined with PCA pattern recognition methods can discriminate differences in plasma protein profiles collected before and after salbutamol treatment.

  18. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE PAGES

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan; ...

    2016-04-20

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  19. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  20. [Progress in stable isotope labeled quantitative proteomics methods].

    PubMed

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  1. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. © 2013 John Wiley & Sons Ltd.

  2. Determination of the Absolute Number of Cytokine mRNA Molecules within Individual Activated Human T Cells

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.

  3. Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement

    NASA Astrophysics Data System (ADS)

    Yang, Juqing; Wang, Dayong; Fan, Baixing; Dong, Dengfeng; Zhou, Weihu

    2017-03-01

    In-situ intelligent manufacturing for large-volume equipment requires industrial robots with absolute high-accuracy positioning and orientation steering control. Conventional robots mainly employ an offline calibration technology to identify and compensate key robotic parameters. However, the dynamic and static parameters of a robot change nonlinearly. It is not possible to acquire a robot's actual parameters and control the absolute pose of the robot with a high accuracy within a large workspace by offline calibration in real-time. This study proposes a real-time online absolute pose steering control method for an industrial robot based on six degrees of freedom laser tracking measurement, which adopts comprehensive compensation and correction of differential movement variables. First, the pose steering control system and robot kinematics error model are constructed, and then the pose error compensation mechanism and algorithm are introduced in detail. By accurately achieving the position and orientation of the robot end-tool, mapping the computed Jacobian matrix of the joint variable and correcting the joint variable, the real-time online absolute pose compensation for an industrial robot is accurately implemented in simulations and experimental tests. The average positioning error is 0.048 mm and orientation accuracy is better than 0.01 deg. The results demonstrate that the proposed method is feasible, and the online absolute accuracy of a robot is sufficiently enhanced.

  4. Absolute photoionization cross-section of the methyl radical.

    PubMed

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  5. Quantitative optical metrology with CMOS cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.

    2004-08-01

    Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.

  6. The Impact of Situation-Based Learning to Students’ Quantitative Literacy

    NASA Astrophysics Data System (ADS)

    Latifah, T.; Cahya, E.; Suhendra

    2017-09-01

    Nowadays, the usage of quantities can be seen almost everywhere. There has been an increase of quantitative thinking, such as quantitative reasoning and quantitative literacy, within the context of daily life. However, many people today are still not fully equipped with the knowledge of quantitative thinking. There are still a lot of individuals not having enough quantitative skills to perform well within today’s society. Based on this issue, the research aims to improve students’ quantitative literacy in junior high school. The qualitative analysis of written student work and video observations during the experiment reveal that the impact of situation-based learning affects students’ quantitative literacy.

  7. Recent 5-year Findings and Technological Advances in the Proteomic Study of HIV-associated Disorders.

    PubMed

    Zhang, Lijun; Jia, Xiaofang; Jin, Jun-O; Lu, Hongzhou; Tan, Zhimi

    2017-04-01

    Human immunodeficiency virus-1 (HIV-1) mainly relies on host factors to complete its life cycle. Hence, it is very important to identify HIV-regulated host proteins. Proteomics is an excellent technique for this purpose because of its high throughput and sensitivity. In this review, we summarized current technological advances in proteomics, including general isobaric tags for relative and absolute quantitation (iTRAQ) and stable isotope labeling by amino acids in cell culture (SILAC), as well as subcellular proteomics and investigation of posttranslational modifications. Furthermore, we reviewed the applications of proteomics in the discovery of HIV-related diseases and HIV infection mechanisms. Proteins identified by proteomic studies might offer new avenues for the diagnosis and treatment of HIV infection and the related diseases. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  8. Online, absolute quantitation of propranolol from spatially distinct 20-μm and 40-μm dissections of brain, liver, and kidney thin tissue sections by laser microdissection – liquid vortex capture – mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Vavrek, Marissa; Freddo, Carol

    Here, spatial resolved quantitation of chemical species in thin tissue sections by mass spectrometric methods has been constrained by the need for matrix-matched standards or other arduous calibration protocols and procedures to mitigate matrix effects (e.g., spatially varying ionization suppression). Reported here is the use of laser cut and drop sampling with a laser microdissection-liquid vortex capture electrospray ionization tandem mass spectrometry (LMD-LVC/ESI-MS/MS) system for online and absolute quantitation of propranolol in mouse brain, kidney, and liver thin tissue sections of mice administered with the drug at a 7.5 mg/kg dose, intravenously. In this procedure either 20 μm x 20more » μm or 40 μm x 40 μm tissue microdissections were cut and dropped into the flowing solvent of the capture probe. During transport to the ESI source drug related material was completely extracted from the tissue into the solvent, which contained a known concentration of propranolol-d 7 as an internal standard. This allowed absolute quantitation to be achieved with an external calibration curve generated from standards containing the same fixed concentration of propranolold-d 7 and varied concentrations of propranolol. Average propranolol concentrations determined with the laser cut and drop sampling method closely agreed with concentration values obtained from 2.3 mm diameter tissue punches from serial sections that were extracted and quantified by HPLC/ESI-MS/MS measurements. In addition, the relative abundance of hydroxypropranolol glucuronide metabolites were recorded and found to be consistent with previous findings.« less

  9. Online, absolute quantitation of propranolol from spatially distinct 20-μm and 40-μm dissections of brain, liver, and kidney thin tissue sections by laser microdissection – liquid vortex capture – mass spectrometry

    DOE PAGES

    Kertesz, Vilmos; Vavrek, Marissa; Freddo, Carol; ...

    2016-05-23

    Here, spatial resolved quantitation of chemical species in thin tissue sections by mass spectrometric methods has been constrained by the need for matrix-matched standards or other arduous calibration protocols and procedures to mitigate matrix effects (e.g., spatially varying ionization suppression). Reported here is the use of laser cut and drop sampling with a laser microdissection-liquid vortex capture electrospray ionization tandem mass spectrometry (LMD-LVC/ESI-MS/MS) system for online and absolute quantitation of propranolol in mouse brain, kidney, and liver thin tissue sections of mice administered with the drug at a 7.5 mg/kg dose, intravenously. In this procedure either 20 μm x 20more » μm or 40 μm x 40 μm tissue microdissections were cut and dropped into the flowing solvent of the capture probe. During transport to the ESI source drug related material was completely extracted from the tissue into the solvent, which contained a known concentration of propranolol-d 7 as an internal standard. This allowed absolute quantitation to be achieved with an external calibration curve generated from standards containing the same fixed concentration of propranolold-d 7 and varied concentrations of propranolol. Average propranolol concentrations determined with the laser cut and drop sampling method closely agreed with concentration values obtained from 2.3 mm diameter tissue punches from serial sections that were extracted and quantified by HPLC/ESI-MS/MS measurements. In addition, the relative abundance of hydroxypropranolol glucuronide metabolites were recorded and found to be consistent with previous findings.« less

  10. Reliability and Validity of Quantifying Absolute Muscle Hardness Using Ultrasound Elastography

    PubMed Central

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki

    2012-01-01

    Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young’s moduli of seven tissue-mimicking materials (in vitro; Young’s modulus range, 20–80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young’s modulus ratio of two reference materials, one hard and one soft (Young’s moduli of 7 and 30 kPa, respectively), the Young’s moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young’s moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young’s moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified. PMID:23029231

  11. Proteomic Analysis of Detergent Resistant Membrane Domains during Early Interaction of Macrophages with Rough and Smooth Brucella melitensis

    PubMed Central

    Lauer, Sabine A.; Iyer, Srinivas; Sanchez, Timothy; Forst, Christian V.; Bowden, Brent; Carlson, Kay; Sriranganathan, Nammalwar; Boyle, Stephen M.

    2014-01-01

    The plasma membrane contains discrete nanometer-sized domains that are resistant to non-ionic detergents, and which are called detergent resistant membrane domains (DRMDs) or lipid rafts. Exposure of host cells to pathogenic bacteria has been shown to induce the re-distribution of specific host proteins between DRMDs and detergent soluble membranes, which leads to the initiation of cell signaling that enable pathogens to access host cells. DRMDs have been shown to play a role in the invasion of Brucella into host macrophages and the formation of replicative phagosomes called Brucella-containing vacuoles (BCVs). In this study we sought to characterize changes to the protein expression profiles in DRMDs and to respective cellular pathways and networks of Mono Mac 6 cells in response to the adherence of rough VTRM1 and smooth 16 M B. melitensis strains. DRMDs were extracted from Mono Mac 6 cells exposed for 2 minutes at 4°C to Brucella (no infection occurs) and from unexposed control cells. Protein expression was determined using the non-gel based quantitative iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) mass spectrometry technique. Using the identified iTRAQ proteins we performed enrichment analyses and probed constructed human biochemical networks for interactions and metabolic reactions. We identified 149 proteins, which either became enriched, depleted or whose amounts did not change in DRMDs upon Brucella exposure. Several of these proteins were distinctly enriched or depleted in DRMDs upon exposure to rough and smooth B. melitensis strains which results in the differential engagement of cellular pathways and networks immediately upon Brucella encounter. For some of the proteins such as myosin 9, small G protein signaling modulator 3, lysine-specific demethylase 5D, erlin-2, and voltage-dependent anion-selective channel protein 2, we observed extreme differential depletion or enrichment in DRMDs. The identified proteins and pathways could provide

  12. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  13. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations

    NASA Astrophysics Data System (ADS)

    Dannemiller, Karen C.; Lang-Yona, Naama; Yamamoto, Naomichi; Rudich, Yinon; Peccia, Jordan

    2014-02-01

    We examined fungal communities associated with the PM10 mass of Rehovot, Israel outdoor air samples collected in the spring and fall seasons. Fungal communities were described by 454 pyrosequencing of the internal transcribed spacer (ITS) region of the fungal ribosomal RNA encoding gene. To allow for a more quantitative comparison of fungal exposure in humans, the relative abundance values of specific taxa were transformed to absolute concentrations through multiplying these values by the sample's total fungal spore concentration (derived from universal fungal qPCR). Next, the sequencing-based absolute concentrations for Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, and Penicillium/Aspergillus spp. were compared to taxon-specific qPCR concentrations for A. alternata, C. cladosporioides, E. nigrum, and Penicillium/Aspergillus spp. derived from the same spring and fall aerosol samples. Results of these comparisons showed that the absolute concentration values generated from pyrosequencing were strongly associated with the concentration values derived from taxon-specific qPCR (for all four species, p < 0.005, all R > 0.70). The correlation coefficients were greater for species present in higher concentrations. Our microbial aerosol population analyses demonstrated that fungal diversity (number of fungal operational taxonomic units) was higher in the spring compared to the fall (p = 0.02), and principal coordinate analysis showed distinct seasonal differences in taxa distribution (ANOSIM p = 0.004). Among genera containing allergenic and/or pathogenic species, the absolute concentrations of Alternaria, Aspergillus, Fusarium, and Cladosporium were greater in the fall, while Cryptococcus, Penicillium, and Ulocladium concentrations were greater in the spring. The transformation of pyrosequencing fungal population relative abundance data to absolute concentrations can improve next-generation DNA sequencing-based quantitative aerosol exposure

  14. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  15. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window

    PubMed Central

    Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin

    2016-01-01

    A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10−4 pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range. PMID:27187393

  17. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  18. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).

  19. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  20. The segment as the minimal planning unit in speech production: evidence based on absolute response latencies.

    PubMed

    Kawamoto, Alan H; Liu, Qiang; Lee, Ria J; Grebe, Patricia R

    2014-01-01

    A minimal amount of information about a word must be phonologically and phonetically encoded before a person can begin to utter that word. Most researchers assume that the minimum is the complete word or possibly the initial syllable. However, there is some evidence that the initial segment is sufficient based on longer durations when the initial segment is primed. In two experiments in which the initial segment of a monosyllabic word is primed or not primed, we present additional evidence based on very short absolute response times determined on the basis of acoustic and articulatory onset relative to presentation of the complete target. We argue that the previous failures to find very short absolute response times when the initial segment is primed are due in part to the exclusive use of acoustic onset as a measure of response latency, the exclusion of responses with very short acoustic latencies, the manner of articulation of the initial segment (i.e., plosive vs. nonplosive), and individual differences. Theoretical implications of the segment as the minimal planning unit are considered.

  1. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging

    PubMed Central

    Yaginuma, Hideyuki; Kawai, Shinnosuke; Tabata, Kazuhito V.; Tomiyama, Keisuke; Kakizuka, Akira; Komatsuzaki, Tamiki; Noji, Hiroyuki; Imamura, Hiromi

    2014-01-01

    Recent advances in quantitative single-cell analysis revealed large diversity in gene expression levels between individual cells, which could affect the physiology and/or fate of each cell. In contrast, for most metabolites, the concentrations were only measureable as ensemble averages of many cells. In living cells, adenosine triphosphate (ATP) is a critically important metabolite that powers many intracellular reactions. Quantitative measurement of the absolute ATP concentration in individual cells has not been achieved because of the lack of reliable methods. In this study, we developed a new genetically-encoded ratiometric fluorescent ATP indicator “QUEEN”, which is composed of a single circularly-permuted fluorescent protein and a bacterial ATP binding protein. Unlike previous FRET-based indicators, QUEEN was apparently insensitive to bacteria growth rate changes. Importantly, intracellular ATP concentrations of numbers of bacterial cells calculated from QUEEN fluorescence were almost equal to those from firefly luciferase assay. Thus, QUEEN is suitable for quantifying the absolute ATP concentration inside bacteria cells. Finally, we found that, even for a genetically-identical Escherichia coli cell population, absolute concentrations of intracellular ATP were significantly diverse between individual cells from the same culture, by imaging QUEEN signals from single cells. PMID:25283467

  2. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  3. Physics of negative absolute temperatures.

    PubMed

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  4. iTRAQ-Based Proteomics Reveals Novel Biomarkers for Idiopathic Pulmonary Fibrosis

    PubMed Central

    Niu, Rui; Liu, Ying; Zhang, Ying; Zhang, Yuan; Wang, Hui; Wang, Yongbin; Wang, Wei; Li, Xiaohui

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a gradual lung disease with a survival of less than 5 years post-diagnosis for most patients. Poor molecular description of IPF has led to unsatisfactory interpretation of the pathogenesis of this disease, resulting in the lack of successful treatments. The objective of this study was to discover novel noninvasive biomarkers for the diagnosis of IPF. We employed a coupled isobaric tag for relative and absolute quantitation (iTRAQ)-liquid chromatography–tandem mass spectrometry (LC–MS/MS) approach to examine protein expression in patients with IPF. A total of 97 differentially expressed proteins (38 upregulated proteins and 59 downregulated proteins) were identified in the serum of IPF patients. Using String software, a regulatory network containing 87 nodes and 244 edges was built, and the functional enrichment showed that differentially expressed proteins were predominantly involved in protein activation cascade, regulation of response to wounding and extracellular components. A set of three most significantly upregulated proteins (HBB, CRP and SERPINA1) and four most significantly downregulated proteins (APOA2, AHSG, KNG1 and AMBP) were selected for validation in an independent cohort of IPF and other lung diseases using ELISA test. The results confirmed the iTRAQ profiling results and AHSG, AMBP, CRP and KNG1 were found as specific IPF biomarkers. ROC analysis indicated the diagnosis potential of the validated biomarkers. The findings of this study will contribute in understanding the pathogenesis of IPF and facilitate the development of therapeutic targets. PMID:28122020

  5. iTRAQ-Based Proteomics Reveals Novel Biomarkers for Idiopathic Pulmonary Fibrosis.

    PubMed

    Niu, Rui; Liu, Ying; Zhang, Ying; Zhang, Yuan; Wang, Hui; Wang, Yongbin; Wang, Wei; Li, Xiaohui

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a gradual lung disease with a survival of less than 5 years post-diagnosis for most patients. Poor molecular description of IPF has led to unsatisfactory interpretation of the pathogenesis of this disease, resulting in the lack of successful treatments. The objective of this study was to discover novel noninvasive biomarkers for the diagnosis of IPF. We employed a coupled isobaric tag for relative and absolute quantitation (iTRAQ)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach to examine protein expression in patients with IPF. A total of 97 differentially expressed proteins (38 upregulated proteins and 59 downregulated proteins) were identified in the serum of IPF patients. Using String software, a regulatory network containing 87 nodes and 244 edges was built, and the functional enrichment showed that differentially expressed proteins were predominantly involved in protein activation cascade, regulation of response to wounding and extracellular components. A set of three most significantly upregulated proteins (HBB, CRP and SERPINA1) and four most significantly downregulated proteins (APOA2, AHSG, KNG1 and AMBP) were selected for validation in an independent cohort of IPF and other lung diseases using ELISA test. The results confirmed the iTRAQ profiling results and AHSG, AMBP, CRP and KNG1 were found as specific IPF biomarkers. ROC analysis indicated the diagnosis potential of the validated biomarkers. The findings of this study will contribute in understanding the pathogenesis of IPF and facilitate the development of therapeutic targets.

  6. Absolute metrology for space interferometers

    NASA Astrophysics Data System (ADS)

    Salvadé, Yves; Courteville, Alain; Dändliker, René

    2017-11-01

    The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.

  7. Proteins differentially expressed during limonene biotransformation by Penicillium digitatum DSM 62840 were examined using iTRAQ labeling coupled with 2D-LC-MS/MS.

    PubMed

    Zhang, Lu-Lu; Zhang, Yan; Ren, Jing-Nan; Liu, Yan-Long; Li, Jia-Jia; Tai, Ya-Nan; Yang, Shu-Zhen; Pan, Si-Yi; Fan, Gang

    2016-10-01

    This study focused on the differences in protein expression at various periods during limonene biotransformation by Penicillium digitatum DSM 62840. A total of 3644 protein-species were quantified by iTRAQ during limonene biotransformation (0 and 12 h). A total of 643 proteins were differentially expressed, 316 proteins were significantly up-regulated and 327 proteins were markedly down-regulated. GO, COG, and pathway enrichment analysis showed that the differentially expressed proteins possessed catalytic and binding functions and were involved in a variety of cellular and metabolic process. Furthermore, the enzymes involved in limonene transformation might be related to cytochrome P-450. This study provided a powerful platform for further exploration of biotransformation, and the identified proteins provided insight into the mechanism of limonene transformation.

  8. Absolute measures of the completeness of the fossil record

    NASA Technical Reports Server (NTRS)

    Foote, M.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1999-01-01

    Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

  9. Quantitation without Calibration: Response Profile as an Indicator of Target Amount.

    PubMed

    Debnath, Mrittika; Farace, Jessica M; Johnson, Kristopher D; Nesterova, Irina V

    2018-06-21

    Quantitative assessment of biomarkers is essential in numerous contexts from decision-making in clinical situations to food quality monitoring to interpretation of life-science research findings. However, appropriate quantitation techniques are not as widely addressed as detection methods. One of the major challenges in biomarker's quantitation is the need to have a calibration for correlating a measured signal to a target amount. The step complicates the methodologies and makes them less sustainable. In this work we address the issue via a new strategy: relying on position of response profile rather than on an absolute signal value for assessment of a target's amount. In order to enable the capability we develop a target-probe binding mechanism based on a negative cooperativity effect. A proof-of-concept example demonstrates that the model is suitable for quantitative analysis of nucleic acids over a wide concentration range. The general principles of the platform will be applicable toward a variety of biomarkers such as nucleic acids, proteins, peptides, and others.

  10. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    PubMed

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science

  11. Proof of the quantitative potential of immunofluorescence by mass spectrometry.

    PubMed

    Toki, Maria I; Cecchi, Fabiola; Hembrough, Todd; Syrigos, Konstantinos N; Rimm, David L

    2017-03-01

    Protein expression in formalin-fixed, paraffin-embedded patient tissue is routinely measured by Immunohistochemistry (IHC). However, IHC has been shown to be subject to variability in sensitivity, specificity and reproducibility, and is generally, at best, considered semi-quantitative. Mass spectrometry (MS) is considered by many to be the criterion standard for protein measurement, offering high sensitivity, specificity, and objective molecular quantification. Here, we seek to show that quantitative immunofluorescence (QIF) with standardization can achieve quantitative results comparable to MS. Epidermal growth factor receptor (EGFR) was measured by quantitative immunofluorescence in 15 cell lines with a wide range of EGFR expression, using different primary antibody concentrations, including the optimal signal-to-noise concentration after quantitative titration. QIF target measurement was then compared to the absolute EGFR concentration measured by Liquid Tissue-selected reaction monitoring mass spectrometry. The best agreement between the two assays was found when the EGFR primary antibody was used at the optimal signal-to-noise concentration, revealing a strong linear regression (R 2 =0.88). This demonstrates that quantitative optimization of titration by calculation of signal-to-noise ratio allows QIF to be standardized to MS and can therefore be used to assess absolute protein concentration in a linear and reproducible manner.

  12. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-01

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k = 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k = 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  13. A generalized population dynamics model for reproductive interference with absolute density dependence.

    PubMed

    Kyogoku, Daisuke; Sota, Teiji

    2017-05-17

    Interspecific mating interactions, or reproductive interference, can affect population dynamics, species distribution and abundance. Previous population dynamics models have assumed that the impact of frequency-dependent reproductive interference depends on the relative abundances of species. However, this assumption could be an oversimplification inappropriate for making quantitative predictions. Therefore, a more general model to forecast population dynamics in the presence of reproductive interference is required. Here we developed a population dynamics model to describe the absolute density dependence of reproductive interference, which appears likely when encounter rate between individuals is important. Our model (i) can produce diverse shapes of isoclines depending on parameter values and (ii) predicts weaker reproductive interference when absolute density is low. These novel characteristics can create conditions where coexistence is stable and independent from the initial conditions. We assessed the utility of our model in an empirical study using an experimental pair of seed beetle species, Callosobruchus maculatus and Callosobruchus chinensis. Reproductive interference became stronger with increasing total beetle density even when the frequencies of the two species were kept constant. Our model described the effects of absolute density and showed a better fit to the empirical data than the existing model overall.

  14. iTRAQ-Based Quantitative Proteomic Analysis of Spirulina platensis in Response to Low Temperature Stress

    PubMed Central

    Li, Qingye; Chang, Rong; Sun, Yijun; Li, Bosheng

    2016-01-01

    Low temperature (LT) is one of the most important abiotic stresses that can significantly reduce crop yield. To gain insight into how Spirulina responds to LT stress, comprehensive physiological and proteomic analyses were conducted in this study. Significant decreases in growth and pigment levels as well as excessive accumulation of compatible osmolytes were observed in response to LT stress. An isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics approach was used to identify changes in protein abundance in Spirulina under LT. A total of 3,782 proteins were identified, of which 1,062 showed differential expression. Bioinformatics analysis indicated that differentially expressed proteins that were enriched in photosynthesis, carbohydrate metabolism, amino acid biosynthesis, and translation are important for the maintenance of cellular homeostasis and metabolic balance in Spirulina when subjected to LT stress. The up-regulation of proteins involved in gluconeogenesis, starch and sucrose metabolism, and amino acid biosynthesis served as coping mechanisms of Spirulina in response to LT stress. Moreover, the down-regulated expression of proteins involved in glycolysis, TCA cycle, pentose phosphate pathway, photosynthesis, and translation were associated with reduced energy consumption. The findings of the present study allow a better understanding of the response of Spirulina to LT stress and may facilitate in the elucidation of mechanisms underlying LT tolerance. PMID:27902743

  15. iTRAQ-Based Quantitative Proteomic Analysis of Spirulina platensis in Response to Low Temperature Stress.

    PubMed

    Li, Qingye; Chang, Rong; Sun, Yijun; Li, Bosheng

    2016-01-01

    Low temperature (LT) is one of the most important abiotic stresses that can significantly reduce crop yield. To gain insight into how Spirulina responds to LT stress, comprehensive physiological and proteomic analyses were conducted in this study. Significant decreases in growth and pigment levels as well as excessive accumulation of compatible osmolytes were observed in response to LT stress. An isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics approach was used to identify changes in protein abundance in Spirulina under LT. A total of 3,782 proteins were identified, of which 1,062 showed differential expression. Bioinformatics analysis indicated that differentially expressed proteins that were enriched in photosynthesis, carbohydrate metabolism, amino acid biosynthesis, and translation are important for the maintenance of cellular homeostasis and metabolic balance in Spirulina when subjected to LT stress. The up-regulation of proteins involved in gluconeogenesis, starch and sucrose metabolism, and amino acid biosynthesis served as coping mechanisms of Spirulina in response to LT stress. Moreover, the down-regulated expression of proteins involved in glycolysis, TCA cycle, pentose phosphate pathway, photosynthesis, and translation were associated with reduced energy consumption. The findings of the present study allow a better understanding of the response of Spirulina to LT stress and may facilitate in the elucidation of mechanisms underlying LT tolerance.

  16. Absolute spectrophotometry of Titan, Uranus, and Neptune 3500-10,500 A

    NASA Technical Reports Server (NTRS)

    Neff, J. S.; Humm, D. C.; Bergstralh, J. T.; Cochran, A. L.; Cochran, W. D.; Barker, E. S.; Tull, R. G.

    1984-01-01

    The present absolute measurements of Titan, Uranus and Neptune geometric albedo spectra in the 3500-10,500 A range have a resolution of about 7 A, together with high SNR, in virtue of the exceptional effeciency of the spectrograph and Reticon detector employed. The high precision and spectral resolution of the data, which are in excellent agreement with the Uranus albedo measurements of Lockwood et al. (1983), make possible quantitative measurements of the effects of Raman scattering by H2 in the Uranus and Neptune atmospheres.

  17. Quantitative proteome analysis of pluripotent cells by iTRAQ mass tagging reveals post-transcriptional regulation of proteins required for ES cell self-renewal.

    PubMed

    O'Brien, Robert N; Shen, Zhouxin; Tachikawa, Kiyoshi; Lee, Pei Angel; Briggs, Steven P

    2010-10-01

    Embryonic stem cells and embryonal carcinoma cells share two key characteristics: pluripotency (the ability to differentiate into endoderm, ectoderm, and mesoderm) and self-renewal (the ability to grow without change in an untransformed, euploid state). Much has been done to identify and characterize transcription factors that are necessary or sufficient to maintain these characteristics. Oct-4 and Nanog are necessary to maintain pluripotency; they are down-regulated at the mRNA level by differentiation. There may be additional regulatory genes whose mRNA levels are unchanged but whose proteins are destabilized during differentiation. We generated proteome-wide, quantitative profiles of ES and embryonal carcinoma cells during differentiation, replicating a microarray-based study by Aiba et al. (Aiba, K., Sharov, A. A., Carter, M. G., Foroni, C., Vescovi, A. L., and Ko, M. S. (2006) Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells. Stem Cells 24, 889-895) who triggered differentiation by treatment with 1 μM all-trans-retinoic acid. We identified several proteins whose levels decreased during differentiation in both cell types but whose mRNA levels were unchanged. We confirmed several of these cases by RT-PCR and Western blot. Racgap1 (also known as mgcRacgap) was particularly interesting because it is required for viability of preimplantation embryos and hematopoietic stem cells, and it is also required for differentiation. To confirm our observation that RACGAP-1 declines during retinoic acid-mediated differentiation, we used multiple reaction monitoring, a targeted mass spectrometry-based quantitation method, and determined that RACGAP-1 levels decline by half during retinoic acid-mediated differentiation. We knocked down Racgap-1 mRNA levels using a panel of five shRNAs. This resulted in a loss of self-renewal that correlated with the level of knockdown. We conclude

  18. Comparative proteomic study on Brassica hexaploid and its parents provides new insights into the effects of polyploidization.

    PubMed

    Shen, Yanyue; Zhang, Yu; Zou, Jun; Meng, Jinling; Wang, Jianbo

    2015-01-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. Although genomic and transcriptomic changes have been observed in polyploids, the effects of polyploidization on proteomic divergence are poorly understood. In this study, we reported quantitative analysis of proteomic changes in leaves of Brassica hexaploid and its parents using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with mass spectrometry. A total of 2044 reproducible proteins were quantified by at least two unique peptides. We detected 452 proteins differentially expressed between Brassica hexaploid and its parents, and 100 proteins were non-additively expressed in Brassica hexaploid, which suggested a trend of non-additive protein regulation following genomic merger and doubling. Functional categories of cellular component biogenesis, immune system process, and response to stimulus, were significantly enriched in non-additive proteins, probably providing a driving force for variation and adaptation in allopolyploids. In particular, majority of the total 452 differentially expressed proteins showed expression level dominance of one parental expression, and there was an expression level dominance bias toward the tetraploid progenitor. In addition, the percentage of differentially expressed proteins that matched previously reported differentially genes were relatively low. This study aimed to get new insights into the effects of polyploidization on proteomic divergence. Using iTRAQ LC-MS/MS technology, we identified 452 differentially expressed proteins between allopolyploid and its parents which involved in response to stimulus, multi-organism process, and immune system process, much more than previous studies using 2-DE coupled with mass spectrometry technology. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in allopolyploid and its parents, which will lead to a better understanding of

  19. Progress in quantitative GPR development at CNDE

    NASA Astrophysics Data System (ADS)

    Eisenmann, David; Margetan, F. J.; Chiou, C.-P.; Roberts, Ron; Wendt, Scott

    2014-02-01

    Ground penetrating radar (GPR) uses electromagnetic (EM) radiation pulses to locate and map embedded objects. Commercial GPR instruments are generally geared toward producing images showing the location and extent of buried objects, and often do not make full use of available absolute amplitude information. At the Center for Nondestructive Evaluation (CNDE) at Iowa State University efforts are underway to develop a more quantitative approach to GPR inspections in which absolute amplitudes and spectra of measured signals play a key role. Guided by analogous work in ultrasonic inspection, there are three main thrusts to the effort. These focus, respectively, on the development of tools for: (1) analyzing raw GPR data; (2) measuring the EM properties of soils and other embedding media; and (3) simulating GPR inspections. This paper reviews progress in each category. The ultimate goal of the work is to develop model-based simulation tools that can be used assess the usefulness of GPR for a given inspection scenario, to optimize inspection choices, and to determine inspection reliability.

  20. Quantitative learning strategies based on word networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng

    2018-02-01

    Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.

  1. Models of Quantitative Estimations: Rule-Based and Exemplar-Based Processes Compared

    ERIC Educational Resources Information Center

    von Helversen, Bettina; Rieskamp, Jorg

    2009-01-01

    The cognitive processes underlying quantitative estimations vary. Past research has identified task-contingent changes between rule-based and exemplar-based processes (P. Juslin, L. Karlsson, & H. Olsson, 2008). B. von Helversen and J. Rieskamp (2008), however, proposed a simple rule-based model--the mapping model--that outperformed the…

  2. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  3. Quantitative ptychographic reconstruction by applying a probe constraint

    NASA Astrophysics Data System (ADS)

    Reinhardt, J.; Schroer, C. G.

    2018-04-01

    The coherent scanning technique X-ray ptychography has become a routine tool for high-resolution imaging and nanoanalysis in various fields of research such as chemistry, biology or materials science. Often the ptychographic reconstruction results are analysed in order to yield absolute quantitative values for the object transmission and illuminating probe function. In this work, we address a common ambiguity encountered in scaling the object transmission and probe intensity via the application of an additional constraint to the reconstruction algorithm. A ptychographic measurement of a model sample containing nanoparticles is used as a test data set against which to benchmark in the reconstruction results depending on the type of constraint used. Achieving quantitative absolute values for the reconstructed object transmission is essential for advanced investigation of samples that are changing over time, e.g., during in-situ experiments or in general when different data sets are compared.

  4. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Absolute coverage groups. 404.1205 Section... Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent... are not under a retirement system. An absolute coverage group may include positions which were...

  5. Classification of cassava genotypes based on qualitative and quantitative data.

    PubMed

    Oliveira, E J; Oliveira Filho, O S; Santos, V S

    2015-02-02

    We evaluated the genetic variation of cassava accessions based on qualitative (binomial and multicategorical) and quantitative traits (continuous). We characterized 95 accessions obtained from the Cassava Germplasm Bank of Embrapa Mandioca e Fruticultura; we evaluated these accessions for 13 continuous, 10 binary, and 25 multicategorical traits. First, we analyzed the accessions based only on quantitative traits; next, we conducted joint analysis (qualitative and quantitative traits) based on the Ward-MLM method, which performs clustering in two stages. According to the pseudo-F, pseudo-t2, and maximum likelihood criteria, we identified five and four groups based on quantitative trait and joint analysis, respectively. The smaller number of groups identified based on joint analysis may be related to the nature of the data. On the other hand, quantitative data are more subject to environmental effects in the phenotype expression; this results in the absence of genetic differences, thereby contributing to greater differentiation among accessions. For most of the accessions, the maximum probability of classification was >0.90, independent of the trait analyzed, indicating a good fit of the clustering method. Differences in clustering according to the type of data implied that analysis of quantitative and qualitative traits in cassava germplasm might explore different genomic regions. On the other hand, when joint analysis was used, the means and ranges of genetic distances were high, indicating that the Ward-MLM method is very useful for clustering genotypes when there are several phenotypic traits, such as in the case of genetic resources and breeding programs.

  6. Absolute Quantification of Human Milk Caseins and the Whey/Casein Ratio during the First Year of Lactation.

    PubMed

    Liao, Yalin; Weber, Darren; Xu, Wei; Durbin-Johnson, Blythe P; Phinney, Brett S; Lönnerdal, Bo

    2017-11-03

    Whey proteins and caseins in breast milk provide bioactivities and also have different amino acid composition. Accurate determination of these two major protein classes provides a better understanding of human milk composition and function, and further aids in developing improved infant formulas based on bovine whey proteins and caseins. In this study, we implemented a LC-MS/MS quantitative analysis based on iBAQ label-free quantitation, to estimate absolute concentrations of α-casein, β-casein, and κ-casein in human milk samples (n = 88) collected between day 1 and day 360 postpartum. Total protein concentration ranged from 2.03 to 17.52 with a mean of 9.37 ± 3.65 g/L. Casein subunits ranged from 0.04 to 1.68 g/L (α-), 0.04 to 4.42 g/L (β-), and 0.10 to 1.72 g/L (α-), with β-casein having the highest average concentration among the three subunits. Calculated whey/casein ratio ranged from 45:55 to 97:3. Linear regression analyses show significant decreases in total protein, β-casein, κ-casein, total casein, and a significant increase of whey/casein ratio during the course of lactation. Our study presents a novel and accurate quantitative analysis of human milk casein content, demonstrating a lower casein content than earlier believed, which has implications for improved infants formulas.

  7. On the Perceptual Subprocess of Absolute Pitch.

    PubMed

    Kim, Seung-Goo; Knösche, Thomas R

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them.

  8. On the Perceptual Subprocess of Absolute Pitch

    PubMed Central

    Kim, Seung-Goo; Knösche, Thomas R.

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them. PMID:29085275

  9. Portable smartphone based quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2018-01-01

    To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.

  10. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  11. The Austrian absolute gravity base net: 27 years of spatial and temporal acquisition of gravity data

    NASA Astrophysics Data System (ADS)

    Ullrich, Christian; Ruess, Diethard

    2014-05-01

    Since 1987 the BEV (Federal Office of Metrology and Surveying) has been operating the absolute gravimeters JILAg-6 and FG5 which are used for basic measurements to determine or review fundamental gravity stations in Austria and abroad. Overall more than 70 absolute gravity stations were installed in Austria and neighbouring countries and some of them have been regularly monitored. A few stations are part of international projects like ECGN (European Combined Geodetic network) and UNIGRACE (Unification of Gravity System in Central and Eastern Europe). As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Thus the BEV maintains the national standard for gravimetry in Austria, which is validated and confirmed by international comparisons. Since 1989 the Austrian absolute gravimeters participated seven times in the ICAG's (International Comparison of Absolute Gravimeters) at the BIPM in Paris and Luxemburg and as well participated three times at the ECAG (European Comparison of Absolute Gravimeters) in Luxemburg. The results of these ICAG's and especially the performance of the Austrian absolute gravimeter are reported in this presentation. We also present some examples and interpretation of long time monitoring stations of absolute gravity in several Austrian locations. Some stations are located in large cities like Vienna and Graz and some others are situated in mountainous regions. Mountain stations are at the Conrad Observatory where a SG (Superconducting Gravimeter) is permanently monitoring and in Obergurgl (Tyrolia) at an elevation of approx. 2000 m which is very strong influenced from the glacier retreat.

  12. An absolute photometric system at 10 and 20 microns

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lebofsky, M. J.; Low, F. J.

    1985-01-01

    Two new direct calibrations at 10 and 20 microns are presented in which terrestrial flux standards are referred to infrared standard stars. These measurements give both good agreement and higher accuracy when compared with previous direct calibrations. As a result, the absolute calibrations at 10 and 20 microns have now been determined with accuracies of 3 and 8 percent, respectively. A variety of absolute calibrations based on extrapolation of stellar spectra from the visible to 10 microns are reviewed. Current atmospheric models of A-type stars underestimate their fluxes by about 10 percent at 10 microns, whereas models of solar-type stars agree well with the direct calibrations. The calibration at 20 microns can probably be determined to about 5 percent by extrapolation from the more accurate result at 10 microns. The photometric system at 10 and 20 microns is updated to reflect the new absolute calibration, to base its zero point directly on the colors of A0 stars, and to improve the accuracy in the comparison of the standard stars.

  13. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry.

    PubMed

    Wang, G; Wu, K; Hu, H; Li, G; Wang, L J

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  14. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  15. Temporal Dynamics of Microbial Rhodopsin Fluorescence Reports Absolute Membrane Voltage

    PubMed Central

    Hou, Jennifer H.; Venkatachalam, Veena; Cohen, Adam E.

    2014-01-01

    Plasma membrane voltage is a fundamentally important property of a living cell; its value is tightly coupled to membrane transport, the dynamics of transmembrane proteins, and to intercellular communication. Accurate measurement of the membrane voltage could elucidate subtle changes in cellular physiology, but existing genetically encoded fluorescent voltage reporters are better at reporting relative changes than absolute numbers. We developed an Archaerhodopsin-based fluorescent voltage sensor whose time-domain response to a stepwise change in illumination encodes the absolute membrane voltage. We validated this sensor in human embryonic kidney cells. Measurements were robust to variation in imaging parameters and in gene expression levels, and reported voltage with an absolute accuracy of 10 mV. With further improvements in membrane trafficking and signal amplitude, time-domain encoding of absolute voltage could be applied to investigate many important and previously intractable bioelectric phenomena. PMID:24507604

  16. Quantitative Evaluation of 2 Scatter-Correction Techniques for 18F-FDG Brain PET/MRI in Regard to MR-Based Attenuation Correction.

    PubMed

    Teuho, Jarmo; Saunavaara, Virva; Tolvanen, Tuula; Tuokkola, Terhi; Karlsson, Antti; Tuisku, Jouni; Teräs, Mika

    2017-10-01

    In PET, corrections for photon scatter and attenuation are essential for visual and quantitative consistency. MR attenuation correction (MRAC) is generally conducted by image segmentation and assignment of discrete attenuation coefficients, which offer limited accuracy compared with CT attenuation correction. Potential inaccuracies in MRAC may affect scatter correction, because the attenuation image (μ-map) is used in single scatter simulation (SSS) to calculate the scatter estimate. We assessed the impact of MRAC to scatter correction using 2 scatter-correction techniques and 3 μ-maps for MRAC. Methods: The tail-fitted SSS (TF-SSS) and a Monte Carlo-based single scatter simulation (MC-SSS) algorithm implementations on the Philips Ingenuity TF PET/MR were used with 1 CT-based and 2 MR-based μ-maps. Data from 7 subjects were used in the clinical evaluation, and a phantom study using an anatomic brain phantom was conducted. Scatter-correction sinograms were evaluated for each scatter correction method and μ-map. Absolute image quantification was investigated with the phantom data. Quantitative assessment of PET images was performed by volume-of-interest and ratio image analysis. Results: MRAC did not result in large differences in scatter algorithm performance, especially with TF-SSS. Scatter sinograms and scatter fractions did not reveal large differences regardless of the μ-map used. TF-SSS showed slightly higher absolute quantification. The differences in volume-of-interest analysis between TF-SSS and MC-SSS were 3% at maximum in the phantom and 4% in the patient study. Both algorithms showed excellent correlation with each other with no visual differences between PET images. MC-SSS showed a slight dependency on the μ-map used, with a difference of 2% on average and 4% at maximum when a μ-map without bone was used. Conclusion: The effect of different MR-based μ-maps on the performance of scatter correction was minimal in non-time-of-flight 18 F-FDG PET

  17. Absolute and relative educational inequalities in depression in Europe.

    PubMed

    Dudal, Pieter; Bracke, Piet

    2016-09-01

    To investigate (1) the size of absolute and relative educational inequalities in depression, (2) their variation between European countries, and (3) their relationship with underlying prevalence rates. Analyses are based on the European Social Survey, rounds three and six (N = 57,419). Depression is measured using the shortened Centre of Epidemiologic Studies Depression Scale. Education is coded by use of the International Standard Classification of Education. Country-specific logistic regressions are applied. Results point to an elevated risk of depressive symptoms among the lower educated. The cross-national patterns differ between absolute and relative measurements. For men, large relative inequalities are found for countries including Denmark and Sweden, but are accompanied by small absolute inequalities. For women, large relative and absolute inequalities are found in Belgium, Bulgaria, and Hungary. Results point to an empirical association between inequalities and the underlying prevalence rates. However, the strength of the association is only moderate. This research stresses the importance of including both measurements for comparative research and suggests the inclusion of the level of population health in research into inequalities in health.

  18. Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fang; Liu, Tao; Qian, Weijun

    2011-07-22

    Liquid chromatography-mass spectrometry (LC-MS)-based quantitative proteomics has become increasingly applied for a broad range of biological applications due to growing capabilities for broad proteome coverage and good accuracy in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations, and highlight their potential applications.

  19. Reproducibility and quantitation of amplicon sequencing-based detection

    PubMed Central

    Zhou, Jizhong; Wu, Liyou; Deng, Ye; Zhi, Xiaoyang; Jiang, Yi-Huei; Tu, Qichao; Xie, Jianping; Van Nostrand, Joy D; He, Zhili; Yang, Yunfeng

    2011-01-01

    To determine the reproducibility and quantitation of the amplicon sequencing-based detection approach for analyzing microbial community structure, a total of 24 microbial communities from a long-term global change experimental site were examined. Genomic DNA obtained from each community was used to amplify 16S rRNA genes with two or three barcode tags as technical replicates in the presence of a small quantity (0.1% wt/wt) of genomic DNA from Shewanella oneidensis MR-1 as the control. The technical reproducibility of the amplicon sequencing-based detection approach is quite low, with an average operational taxonomic unit (OTU) overlap of 17.2%±2.3% between two technical replicates, and 8.2%±2.3% among three technical replicates, which is most likely due to problems associated with random sampling processes. Such variations in technical replicates could have substantial effects on estimating β-diversity but less on α-diversity. A high variation was also observed in the control across different samples (for example, 66.7-fold for the forward primer), suggesting that the amplicon sequencing-based detection approach could not be quantitative. In addition, various strategies were examined to improve the comparability of amplicon sequencing data, such as increasing biological replicates, and removing singleton sequences and less-representative OTUs across biological replicates. Finally, as expected, various statistical analyses with preprocessed experimental data revealed clear differences in the composition and structure of microbial communities between warming and non-warming, or between clipping and non-clipping. Taken together, these results suggest that amplicon sequencing-based detection is useful in analyzing microbial community structure even though it is not reproducible and quantitative. However, great caution should be taken in experimental design and data interpretation when the amplicon sequencing-based detection approach is used for quantitative

  20. iTRAQ-Based Quantitative Proteomic Analysis of the Initiation of Head Regeneration in Planarians.

    PubMed

    Geng, Xiaofang; Wang, Gaiping; Qin, Yanli; Zang, Xiayan; Li, Pengfei; Geng, Zhi; Xue, Deming; Dong, Zimei; Ma, Kexue; Chen, Guangwen; Xu, Cunshuan

    2015-01-01

    The planarian Dugesia japonica has amazing ability to regenerate a head from the anterior ends of the amputated stump with maintenance of the original anterior-posterior polarity. Although planarians present an attractive system for molecular investigation of regeneration and research has focused on clarifying the molecular mechanism of regeneration initiation in planarians at transcriptional level, but the initiation mechanism of planarian head regeneration (PHR) remains unclear at the protein level. Here, a global analysis of proteome dynamics during the early stage of PHR was performed using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy, and our data are available via ProteomeXchange with identifier PXD002100. The results showed that 162 proteins were differentially expressed at 2 h and 6 h following amputation. Furthermore, the analysis of expression patterns and functional enrichment of the differentially expressed proteins showed that proteins involved in muscle contraction, oxidation reduction and protein synthesis were up-regulated in the initiation of PHR. Moreover, ingenuity pathway analysis showed that predominant signaling pathways such as ILK, calcium, EIF2 and mTOR signaling which were associated with cell migration, cell proliferation and protein synthesis were likely to be involved in the initiation of PHR. The results for the first time demonstrated that muscle contraction and ILK signaling might played important roles in the initiation of PHR at the global protein level. The findings of this research provide a molecular basis for further unraveling the mechanism of head regeneration initiation in planarians.

  1. Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome.

    PubMed

    Marimuthu, Arivusudar; Chavan, Sandip; Sathe, Gajanan; Sahasrabuddhe, Nandini A; Srikanth, Srinivas M; Renuse, Santosh; Ahmad, Sartaj; Radhakrishnan, Aneesha; Barbhuiya, Mustafa A; Kumar, Rekha V; Harsha, H C; Sidransky, David; Califano, Joseph; Pandey, Akhilesh; Chatterjee, Aditi

    2013-11-01

    Protein biomarker discovery for early detection of head and neck squamous cell carcinoma (HNSCC) is a crucial unmet need to improve patient outcomes. Mass spectrometry-based proteomics has emerged as a promising tool for identification of biomarkers in different cancer types. Proteins secreted from cancer cells can serve as potential biomarkers for early diagnosis. In the current study, we have used isobaric tag for relative and absolute quantitation (iTRAQ) labeling methodology coupled with high resolution mass spectrometry to identify and quantitate secreted proteins from a panel of head and neck carcinoma cell lines. In all, we identified 2,472 proteins, of which 225 proteins were secreted at higher or lower abundance in HNSCC-derived cell lines. Of these, 148 were present in higher abundance and 77 were present in lower abundance in the cancer-cell derived secretome. We detected a higher abundance of some previously known markers for HNSCC including insulin like growth factor binding protein 3, IGFBP3 (11-fold) and opioid growth factor receptor, OGFR (10-fold) demonstrating the validity of our approach. We also identified several novel secreted proteins in HNSCC including olfactomedin-4, OLFM4 (12-fold) and hepatocyte growth factor activator, HGFA (5-fold). IHC-based validation was conducted in HNSCC using tissue microarrays which revealed overexpression of IGFBP3 and OLFM4 in 70% and 75% of the tested cases, respectively. Our study illustrates quantitative proteomics of secretome as a robust approach for identification of potential HNSCC biomarkers. This article is part of a Special Issue entitled: An Updated Secretome. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Comprehensive Panel of Real-Time TaqMan™ Polymerase Chain Reaction Assays for Detection and Absolute Quantification of Filoviruses, Arenaviruses, and New World Hantaviruses

    PubMed Central

    Trombley, Adrienne R.; Wachter, Leslie; Garrison, Jeffrey; Buckley-Beason, Valerie A.; Jahrling, Jordan; Hensley, Lisa E.; Schoepp, Randal J.; Norwood, David A.; Goba, Augustine; Fair, Joseph N.; Kulesh, David A.

    2010-01-01

    Viral hemorrhagic fever is caused by a diverse group of single-stranded, negative-sense or positive-sense RNA viruses belonging to the families Filoviridae (Ebola and Marburg), Arenaviridae (Lassa, Junin, Machupo, Sabia, and Guanarito), and Bunyaviridae (hantavirus). Disease characteristics in these families mark each with the potential to be used as a biological threat agent. Because other diseases have similar clinical symptoms, specific laboratory diagnostic tests are necessary to provide the differential diagnosis during outbreaks and for instituting acceptable quarantine procedures. We designed 48 TaqMan™-based polymerase chain reaction (PCR) assays for specific and absolute quantitative detection of multiple hemorrhagic fever viruses. Forty-six assays were determined to be virus-specific, and two were designated as pan assays for Marburg virus. The limit of detection for the assays ranged from 10 to 0.001 plaque-forming units (PFU)/PCR. Although these real-time hemorrhagic fever virus assays are qualitative (presence of target), they are also quantitative (measure a single DNA/RNA target sequence in an unknown sample and express the final results as an absolute value (e.g., viral load, PFUs, or copies/mL) on the basis of concentration of standard samples and can be used in viral load, vaccine, and antiviral drug studies. PMID:20439981

  3. Unravelling proteome changes of chicken egg whites under carbon dioxide modified atmosphere packaging.

    PubMed

    Xu, Lei; Jia, Fei; Luo, Changyao; Yu, Qianqian; Dai, Ruitong; Li, Xingmin

    2018-01-15

    Unfertilized chicken eggs within 24h of laying were chosen and stored at 25°C and 45% humidity for 0, 20, and 40days. The experimental group (EG) was the carbon dioxide-modified atmosphere packaging (CDMAP) group, whereas the control group (CG) contained eggs without special handling. Egg freshness indexes were measured. The proteome of the egg whites was determined by LC-MS/MS using isobaric tags for relative and absolute quantitation (iTRAQ). A total of 87 proteins were detected. The results indicated that CDMAP can control the change in protein abundance. Using a correlation analysis between the protein abundance and freshness indexes of the EG, Beta-hexosaminidase, Trypsin inhibitor ClTI-1 and Apolipoprotein D were determined to be potential predictors of egg freshness. In comparing the proteomes of the EG and CG, it was concluded that CDMAP could affect the proteins related to egg vitelline membranes, eggshell matrix and metabolic intensity to maintain egg freshness. Copyright © 2017. Published by Elsevier Ltd.

  4. Model-Based Linkage Analysis of a Quantitative Trait.

    PubMed

    Song, Yeunjoo E; Song, Sunah; Schnell, Audrey H

    2017-01-01

    Linkage Analysis is a family-based method of analysis to examine whether any typed genetic markers cosegregate with a given trait, in this case a quantitative trait. If linkage exists, this is taken as evidence in support of a genetic basis for the trait. Historically, linkage analysis was performed using a binary disease trait, but has been extended to include quantitative disease measures. Quantitative traits are desirable as they provide more information than binary traits. Linkage analysis can be performed using single-marker methods (one marker at a time) or multipoint (using multiple markers simultaneously). In model-based linkage analysis the genetic model for the trait of interest is specified. There are many software options for performing linkage analysis. Here, we use the program package Statistical Analysis for Genetic Epidemiology (S.A.G.E.). S.A.G.E. was chosen because it also includes programs to perform data cleaning procedures and to generate and test genetic models for a quantitative trait, in addition to performing linkage analysis. We demonstrate in detail the process of running the program LODLINK to perform single-marker analysis, and MLOD to perform multipoint analysis using output from SEGREG, where SEGREG was used to determine the best fitting statistical model for the trait.

  5. High-resolution absolute position detection using a multiple grating

    NASA Astrophysics Data System (ADS)

    Schilling, Ulrich; Drabarek, Pawel; Kuehnle, Goetz; Tiziani, Hans J.

    1996-08-01

    To control electro-mechanical engines, high-resolution linear and rotary encoders are needed. Interferometric methods (grating interferometers) promise a resolution of a few nanometers, but have an ambiguity range of some microns. Incremental encoders increase the absolute measurement range by counting the signal periods starting from a defined initial point. In many applications, however, it is not possible to move to this initial point, so that absolute encoders have to be used. Absolute encoders generally have a scale with two or more tracks placed next to each other. Therefore, they use a two-dimensional grating structure to measure a one-dimensional position. We present a new method, which uses a one-dimensional structure to determine the position in one dimension. It is based on a grating with a large grating period up to some millimeters, having the same diffraction efficiency in several predefined diffraction orders (multiple grating). By combining the phase signals of the different diffraction orders, it is possible to establish the position in an absolute range of the grating period with a resolution like incremental grating interferometers. The principal functionality was demonstrated by applying the multiple grating in a heterodyne grating interferometer. The heterodyne frequency was generated by a frequency modulated laser in an unbalanced interferometer. In experimental measurements an absolute range of 8 mm was obtained while achieving a resolution of 10 nm.

  6. New design and facilities for the International Database for Absolute Gravity Measurements (AGrav): A support for the Establishment of a new Global Absolute Gravity Reference System

    NASA Astrophysics Data System (ADS)

    Wziontek, Hartmut; Falk, Reinhard; Bonvalot, Sylvain; Rülke, Axel

    2017-04-01

    After about 10 years of successful joint operation by BGI and BKG, the International Database for Absolute Gravity Measurements "AGrav" (see references hereafter) was under a major revision. The outdated web interface was replaced by a responsive, high level web application framework based on Python and built on top of Pyramid. Functionality was added, like interactive time series plots or a report generator and the interactive map-based station overview was updated completely, comprising now clustering and the classification of stations. Furthermore, the database backend was migrated to PostgreSQL for better support of the application framework and long-term availability. As comparisons of absolute gravimeters (AG) become essential to realize a precise and uniform gravity standard, the database was extended to document the results on international and regional level, including those performed at monitoring stations equipped with SGs. By this it will be possible to link different AGs and to trace their equivalence back to the key comparisons under the auspices of International Committee for Weights and Measures (CIPM) as the best metrological realization of the absolute gravity standard. In this way the new AGrav database accommodates the demands of the new Global Absolute Gravity Reference System as recommended by the IAG Resolution No. 2 adopted in Prague 2015. The new database will be presented with focus on the new user interface and new functionality, calling all institutions involved in absolute gravimetry to participate and contribute with their information to built up a most complete picture of high precision absolute gravimetry and improve its visibility. A Digital Object Identifier (DOI) will be provided by BGI to contributors to give a better traceability and facilitate the referencing of their gravity surveys. Links and references: BGI mirror site : http://bgi.obs-mip.fr/data-products/Gravity-Databases/Absolute-Gravity-data/ BKG mirror site: http

  7. Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water.

    PubMed

    Chung, S H; Cerussi, A E; Merritt, S I; Ruth, J; Tromberg, B J

    2010-07-07

    We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R=0.96) with a difference of 1.1+/-0.91 degrees C over a range of 28-48 degrees C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.

  8. Generic method for the absolute quantification of glutathione S-conjugates: Application to the conjugates of acetaminophen, clozapine and diclofenac.

    PubMed

    den Braver, Michiel W; Vermeulen, Nico P E; Commandeur, Jan N M

    2017-03-01

    Modification of cellular macromolecules by reactive drug metabolites is considered to play an important role in the initiation of tissue injury by many drugs. Detection and identification of reactive intermediates is often performed by analyzing the conjugates formed after trapping by glutathione (GSH). Although sensitivity of modern mass spectrometrical methods is extremely high, absolute quantification of GSH-conjugates is critically dependent on the availability of authentic references. Although 1 H NMR is currently the method of choice for quantification of metabolites formed biosynthetically, its intrinsically low sensitivity can be a limiting factor in quantification of GSH-conjugates which generally are formed at low levels. In the present study, a simple but sensitive and generic method for absolute quantification of GSH-conjugates is presented. The method is based on quantitative alkaline hydrolysis of GSH-conjugates and subsequent quantification of glutamic acid and glycine by HPLC after precolumn derivatization with o-phthaldialdehyde/N-acetylcysteine (OPA/NAC). Because of the lower stability of the glycine OPA/NAC-derivate, quantification of the glutamic acid OPA/NAC-derivate appeared most suitable for quantification of GSH-conjugates. The novel method was used to quantify the concentrations of GSH-conjugates of diclofenac, clozapine and acetaminophen and quantification was consistent with 1 H NMR, but with a more than 100-fold lower detection limit for absolute quantification. Copyright © 2017. Published by Elsevier B.V.

  9. Absolute quantitation of low abundance plasma APL1β peptides at sub-fmol/mL Level by SRM/MRM without immunoaffinity enrichment.

    PubMed

    Sano, Shozo; Tagami, Shinji; Hashimoto, Yuuki; Yoshizawa-Kumagaye, Kumiko; Tsunemi, Masahiko; Okochi, Masayasu; Tomonaga, Takeshi

    2014-02-07

    Selected/multiple reaction monitoring (SRM/MRM) has been widely used for the quantification of specific proteins/peptides, although it is still challenging to quantitate low abundant proteins/peptides in complex samples such as plasma/serum. To overcome this problem, enrichment of target proteins/peptides is needed, such as immunoprecipitation; however, this is labor-intense and generation of antibodies is highly expensive. In this study, we attempted to quantify plasma low abundant APLP1-derived Aβ-like peptides (APL1β), a surrogate marker for Alzheimer's disease, by SRM/MRM using stable isotope-labeled reference peptides without immunoaffinity enrichment. A combination of Cibacron Blue dye mediated albumin removal and acetonitrile extraction followed by C18-strong cation exchange multi-StageTip purification was used to deplete plasma proteins and unnecessary peptides. Optimal and validated precursor ions to fragment ion transitions of APL1β were developed on a triple quadruple mass spectrometer, and the nanoliquid chromatography gradient for peptide separation was optimized to minimize the biological interference of plasma. Using the stable isotope-labeled (SI) peptide as an internal control, absolute concentrations of plasma APL1β peptide could be quantified as several hundred amol/mL. To our knowledge, this is the lowest detection level of endogenous plasma peptide quantified by SRM/MRM.

  10. Absolute Helmholtz free energy of highly anharmonic crystals: theory vs Monte Carlo.

    PubMed

    Yakub, Lydia; Yakub, Eugene

    2012-04-14

    We discuss the problem of the quantitative theoretical prediction of the absolute free energy for classical highly anharmonic solids. Helmholtz free energy of the Lennard-Jones (LJ) crystal is calculated accurately while accounting for both the anharmonicity of atomic vibrations and the pair and triple correlations in displacements of the atoms from their lattice sites. The comparison with most precise computer simulation data on sublimation and melting lines revealed that theoretical predictions are in excellent agreement with Monte Carlo simulation data in the whole range of temperatures and densities studied.

  11. On the relationship between wave based control, absolute vibration suppression and input shaping

    NASA Astrophysics Data System (ADS)

    Peled, I.; O'Connor, W. J.; Halevi, Y.

    2013-08-01

    The modeling and control of continuous flexible structures is one of the most challenging problems in control theory. This topic gains more interest with the development of slender space structures, light weight aeronautical components or even traditional gears and drive shafts with flexible properties. Several control schemes are based on the traveling wave approach, rather than the more common modal methods. In this work we investigate the relationships between two of these methods. The Absolute Vibration Suppression (AVS) controller, which was developed for infinite dimension systems, is compared to Wave Based Control (WBC) which was designed primarily for lumped systems. The WBC was first adjusted to continuous systems and then the two controllers, whose algorithms seem different, are compared. The investigation shows that for the flexible shaft these two control laws are actually the same. Furthermore, when converted into an equivalent open loop controller they appear as an extension to continuous systems of the Input Shaping (IS) methodology.

  12. Distance-based microfluidic quantitative detection methods for point-of-care testing.

    PubMed

    Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James

    2016-04-07

    Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed.

  13. Systematic determination of absolute absorption cross-section of individual carbon nanotubes

    PubMed Central

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B.; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G.; Wang, Enge; Wang, Feng

    2014-01-01

    Optical absorption is the most fundamental optical property characterizing light–matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  14. Systematic determination of absolute absorption cross-section of individual carbon nanotubes.

    PubMed

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G; Wang, Enge; Wang, Feng

    2014-05-27

    Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  15. Structural Characterization and Absolute Quantification of Microcystin Peptides Using Collision-Induced and Ultraviolet Photo-Dissociation Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Attard, Troy J.; Carter, Melissa D.; Fang, Mengxuan; Johnson, Rudolph C.; Reid, Gavin E.

    2018-05-01

    Microcystin (MC) peptides produced by cyanobacteria pose a hepatotoxic threat to human health upon ingestion from contaminated drinking water. While rapid MC identification and quantification in contaminated body fluids or tissue samples is important for patient treatment and outcomes, conventional immunoassay-based measurement strategies typically lack the specificity required for unambiguous determination of specific MC variants, whose toxicity can significantly vary depending on their structures. Furthermore, the unambiguous identification and accurate quantitation of MC variants using tandem mass spectrometry (MS/MS)-based methods can be limited due to a current lack of appropriate stable isotope-labeled internal standards. To address these limitations, we have systematically examined here the sequence and charge state dependence to the formation and absolute abundance of both "global" and "variant-specific" product ions from representative MC-LR, MC-YR, MC-RR, and MC-LA peptides, using higher-energy collisional dissociation (HCD)-MS/MS, ion-trap collision-induced dissociation (CID)-MS/MS and CID-MS3, and 193 nm ultraviolet photodissociation (UPVD)-MS/MS. HCD-MS/MS was found to provide the greatest detection sensitivity for both global and variant-specific product ions in each of the MC variants, except for MC-YR where a variant-specific product uniquely formed via UPVD-MS/MS was observed with the greatest absolute abundance. A simple methodology for the preparation and characterization of 18O-stable isotope-labeled MC reference materials for use as internal standards was also developed. Finally, we have demonstrated the applicability of the methods developed herein for absolute quantification of MC-LR present in human urine samples, using capillary scale liquid chromatography coupled with ultra-high resolution / accurate mass spectrometry and HCD-MS/MS.

  16. Proteomic analysis in type 2 diabetes patients before and after a very low calorie diet reveals potential disease state and intervention specific biomarkers.

    PubMed

    Sleddering, Maria A; Markvoort, Albert J; Dharuri, Harish K; Jeyakar, Skhandhan; Snel, Marieke; Juhasz, Peter; Lynch, Moira; Hines, Wade; Li, Xiaohong; Jazet, Ingrid M; Adourian, Aram; Hilbers, Peter A J; Smit, Johannes W A; Van Dijk, Ko Willems

    2014-01-01

    Very low calorie diets (VLCD) with and without exercise programs lead to major metabolic improvements in obese type 2 diabetes patients. The mechanisms underlying these improvements have so far not been elucidated fully. To further investigate the mechanisms of a VLCD with or without exercise and to uncover possible biomarkers associated with these interventions, blood samples were collected from 27 obese type 2 diabetes patients before and after a 16-week VLCD (Modifast ∼ 450 kcal/day). Thirteen of these patients followed an exercise program in addition to the VCLD. Plasma was obtained from 27 lean and 27 obese controls as well. Proteomic analysis was performed using mass spectrometry (MS) and targeted multiple reaction monitoring (MRM) and a large scale isobaric tags for relative and absolute quantitation (iTRAQ) approach. After the 16-week VLCD, there was a significant decrease in body weight and HbA1c in all patients, without differences between the two intervention groups. Targeted MRM analysis revealed differences in several proteins, which could be divided in diabetes-associated (fibrinogen, transthyretin), obesity-associated (complement C3), and diet-associated markers (apolipoproteins, especially apolipoprotein A-IV). To further investigate the effects of exercise, large scale iTRAQ analysis was performed. However, no proteins were found showing an exercise effect. Thus, in this study, specific proteins were found to be differentially expressed in type 2 diabetes patients versus controls and before and after a VLCD. These proteins are potential disease state and intervention specific biomarkers. Controlled-Trials.com ISRCTN76920690.

  17. Proteomic Analysis in Type 2 Diabetes Patients before and after a Very Low Calorie Diet Reveals Potential Disease State and Intervention Specific Biomarkers

    PubMed Central

    Dharuri, Harish K.; Jeyakar, Skhandhan; Snel, Marieke; Juhasz, Peter; Lynch, Moira; Hines, Wade; Li, Xiaohong; Jazet, Ingrid M.; Adourian, Aram; Hilbers, Peter A. J.; Smit, Johannes W. A.; Van Dijk, Ko Willems

    2014-01-01

    Very low calorie diets (VLCD) with and without exercise programs lead to major metabolic improvements in obese type 2 diabetes patients. The mechanisms underlying these improvements have so far not been elucidated fully. To further investigate the mechanisms of a VLCD with or without exercise and to uncover possible biomarkers associated with these interventions, blood samples were collected from 27 obese type 2 diabetes patients before and after a 16-week VLCD (Modifast ∼450 kcal/day). Thirteen of these patients followed an exercise program in addition to the VCLD. Plasma was obtained from 27 lean and 27 obese controls as well. Proteomic analysis was performed using mass spectrometry (MS) and targeted multiple reaction monitoring (MRM) and a large scale isobaric tags for relative and absolute quantitation (iTRAQ) approach. After the 16-week VLCD, there was a significant decrease in body weight and HbA1c in all patients, without differences between the two intervention groups. Targeted MRM analysis revealed differences in several proteins, which could be divided in diabetes-associated (fibrinogen, transthyretin), obesity-associated (complement C3), and diet-associated markers (apolipoproteins, especially apolipoprotein A-IV). To further investigate the effects of exercise, large scale iTRAQ analysis was performed. However, no proteins were found showing an exercise effect. Thus, in this study, specific proteins were found to be differentially expressed in type 2 diabetes patients versus controls and before and after a VLCD. These proteins are potential disease state and intervention specific biomarkers. Trial Registration Controlled-Trials.com ISRCTN76920690 PMID:25415563

  18. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error

    NASA Astrophysics Data System (ADS)

    Khair, Ummul; Fahmi, Hasanul; Hakim, Sarudin Al; Rahim, Robbi

    2017-12-01

    Prediction using a forecasting method is one of the most important things for an organization, the selection of appropriate forecasting methods is also important but the percentage error of a method is more important in order for decision makers to adopt the right culture, the use of the Mean Absolute Deviation and Mean Absolute Percentage Error to calculate the percentage of mistakes in the least square method resulted in a percentage of 9.77% and it was decided that the least square method be worked for time series and trend data.

  19. Facing the Sunrise: Cultural Worldview Underlying Intrinsic-Based Encoding of Absolute Frames of Reference in Aymara

    ERIC Educational Resources Information Center

    Nunez, Rafael E.; Cornejo, Carlos

    2012-01-01

    The Aymara of the Andes use absolute (cardinal) frames of reference for describing the relative position of ordinary objects. However, rather than encoding them in available absolute lexemes, they do it in lexemes that are intrinsic to the body: "nayra" ("front") and "qhipa" ("back"), denoting east and west,…

  20. Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography

    PubMed Central

    Chang, Ki Soo; Yang, Sun Choel; Kim, Jae-Young; Kook, Myung Ho; Ryu, Seon Young; Choi, Hae Young; Kim, Geon Hee

    2012-01-01

    A method of measuring the precise temperature distribution of GaN-based light-emitting diodes (LEDs) by quantitative infrared micro-thermography is reported. To reduce the calibration error, the same measuring conditions were used for both calibration and thermal imaging; calibration was conducted on a highly emissive black-painted area on a dummy sapphire wafer loaded near the LED wafer on a thermoelectric cooler mount. We used infrared thermal radiation images of the black-painted area on the dummy wafer and an unbiased LED wafer at two different temperatures to determine the factors that degrade the accuracy of temperature measurement, i.e., the non-uniform response of the instrument, superimposed offset radiation, reflected radiation, and emissivity map of the LED surface. By correcting these factors from the measured infrared thermal radiation images of biased LEDs, we determined a precise absolute temperature image. Consequently, we could observe from where the local self-heat emerges and how it distributes on the emitting area of the LEDs. The experimental results demonstrated that highly localized self-heating and a remarkable temperature gradient, which are detrimental to LED performance and reliability, arise near the p-contact edge of the LED surface at high injection levels owing to the current crowding effect. PMID:22666050

  1. Quantitative proteomics identifies 38 proteins that are differentially expressed in cucumber in response to cucumber green mottle mosaic virus infection.

    PubMed

    Liu, Hua-Wei; Liang, Chao-Qiong; Liu, Peng-Fei; Luo, Lai-Xin; Li, Jian-Qiang

    2015-12-15

    Since it was first reported in 1935, Cucumber green mottle mosaic virus (CGMMV) has become a serious pathogen in a range of cucurbit crops. The virus is generally transmitted by propagation materials, and to date no effective chemical or cultural methods of control have been developed to combat its spread. The current study presents a preliminary analysis of the pathogenic mechanisms from the perspective of protein expression levels in an infected cucumber host, with the objective of elucidating the infection process and potential strategies to reduce both the economic and yield losses associated with CGMMV. Isobaric tags for relative and absolute quantitation (iTRAQ) technology coupled with liquid chromatography-tandem mass spectrometric (LC-MS/MS) were used to identify the differentially expressed proteins in cucumber plants infected with CGMMV compared with mock-inoculated plants. The functions of the proteins were deduced by functional annotation and their involvement in metabolic processes explored by KEGG pathway analysis to identify their interactions during CGMMV infection, while their in vivo expression was further verified by qPCR. Infection by CGMMV altered both the expression level and absolute quantity of 38 proteins (fold change >0.6) in cucumber hosts. Of these, 23 were found to be up-regulated, while 15 were down-regulated. Gene ontology (GO) analysis revealed that 22 of the proteins had a combined function and were associated with molecular function (MF), biological process (BP) and cellular component (CC). Several other proteins had a dual function with 1, 7, and 2 proteins being associated with BP/CC, BP/MF, CC/MF, respectively. The remaining 3 proteins were only involved in MF. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 18 proteins that were involved in 13 separate metabolic pathways. These pathways were subsequently merged to generate three network diagrams illustrating the interactions between the different

  2. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells.

    PubMed

    Ma, Jie; Sheng, Huachun; Li, Xiuli; Wang, Lijun

    2016-07-01

    Silicon (Si) can alleviate cadmium (Cd) stress in rice (Oryza sativa) plants, however, the understanding of the molecular mechanisms at the single-cell level remains limited. To address these questions, we investigated suspension cells of rice cultured in the dark environment in the absence and presence of Si with either short- (12 h) or long-term (5 d) Cd treatments using a combination of isobaric tags for relative and absolute quantitation (iTRAQ), fluorescent staining, and inductively coupled plasma mass spectroscopy (ICP-MS). We identified 100 proteins differentially regulated by Si under the short- or long-term Cd stress. 70% of these proteins were down-regulated, suggesting that Si may improve protein use efficiency by maintaining cells in the normal physiological status. Furthermore, we showed two different mechanisms for Si-mediated Cd tolerance. Under the short-term Cd stress, the Si-modified cell walls inhibited the uptake of Cd ions into cells and consequently reduced the expressions of glycosidase, cell surface non-specific lipid-transfer proteins (nsLTPs), and several stress-related proteins. Under the long-term Cd stress, the amount of Cd in the cytoplasm in Si-accumulating (+Si) cells was decreased by compartmentation of Cd into vacuoles, thus leading to a lower expression of glutathione S-transferases (GST). These results provide protein-level insights into the Si-mediated Cd detoxification in rice single cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4.

  4. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells.

    PubMed

    Thompson, Alison M; Gansen, Alexander; Paguirigan, Amy L; Kreutz, Jason E; Radich, Jerald P; Chiu, Daniel T

    2014-12-16

    Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques.

  5. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  6. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  7. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  8. A Method for Comprehensive Glycosite-Mapping and Direct Quantitation of Serum Glycoproteins.

    PubMed

    Hong, Qiuting; Ruhaak, L Renee; Stroble, Carol; Parker, Evan; Huang, Jincui; Maverakis, Emanual; Lebrilla, Carlito B

    2015-12-04

    A comprehensive glycan map was constructed for the top eight abundant glycoproteins in plasma using both specific and nonspecific enzyme digestions followed by nano liquid chromatography (LC)-chip/quadrupole time-of-flight mass spectrometry (MS) analysis. Glycopeptides were identified using an in-house software tool, GPFinder. A sensitive and reproducible multiple reaction monitoring (MRM) technique on a triple quadrupole MS was developed and applied to quantify immunoglobulins G, A, M, and their site-specific glycans simultaneously and directly from human serum/plasma without protein enrichments. A total of 64 glycopeptides and 15 peptides were monitored for IgG, IgA, and IgM in a 20 min ultra high performance (UP)LC gradient. The absolute protein contents were quantified using peptide calibration curves. The glycopeptide ion abundances were normalized to the respective protein abundances to separate protein glycosylation from protein expression. This technique yields higher method reproducibility and less sample loss when compared with the quantitation method that involves protein enrichments. The absolute protein quantitation has a wide linear range (3-4 orders of magnitude) and low limit of quantitation (femtomole level). This rapid and robust quantitation technique, which provides quantitative information for both proteins and glycosylation, will further facilitate disease biomarker discoveries.

  9. Does Homework Really Matter for College Students in Quantitatively-Based Courses?

    ERIC Educational Resources Information Center

    Young, Nichole; Dollman, Amanda; Angel, N. Faye

    2016-01-01

    This investigation was initiated by two students in an Advanced Computer Applications course. They sought to examine the influence of graded homework on final grades in quantitatively-based business courses. They were provided with data from three quantitatively-based core business courses over a period of five years for a total of 10 semesters of…

  10. Quantitative proteomics and bioinformatic analysis provide new insight into the dynamic response of porcine intestine to Salmonella Typhimurium.

    PubMed

    Collado-Romero, Melania; Aguilar, Carmen; Arce, Cristina; Lucena, Concepción; Codrea, Marius C; Morera, Luis; Bendixen, Emoke; Moreno, Ángela; Garrido, Juan J

    2015-01-01

    The enteropathogen Salmonella Typhimurium (S. Typhimurium) is the most commonly non-typhoideal serotype isolated in pig worldwide. Currently, one of the main sources of human infection is by consumption of pork meat. Therefore, prevention and control of salmonellosis in pigs is crucial for minimizing risks to public health. The aim of the present study was to use isobaric tags for relative and absolute quantification (iTRAQ) to explore differences in the response to Salmonella in two segment of the porcine gut (ileum and colon) along a time course of 1, 2, and 6 days post infection (dpi) with S. Typhimurium. A total of 298 proteins were identified in the infected ileum samples of which, 112 displayed significant expression differences due to Salmonella infection. In colon, 184 proteins were detected in the infected samples of which 46 resulted differentially expressed with respect to the controls. The higher number of changes in protein expression was quantified in ileum at 2 dpi. Further biological interpretation of proteomics data using bioinformatics tools demonstrated that the expression changes in colon were found in proteins involved in cell death and survival, tissue morphology or molecular transport at the early stages and tissue regeneration at 6 dpi. In ileum, however, changes in protein expression were mainly related to immunological and infection diseases, inflammatory response or connective tissue disorders at 1 and 2 dpi. iTRAQ has proved to be a proteomic robust approach allowing us to identify ileum as the earliest response focus upon S. Typhimurium in the porcine gut. In addition, new functions involved in the response to bacteria such as eIF2 signaling, free radical scavengers or antimicrobial peptides (AMP) expression have been identified. Finally, the impairment at of the enterohepatic circulation of bile acids and lipid metabolism by means the under regulation of FABP6 protein and FXR/RXR and LXR/RXR signaling pathway in ileum has been

  11. Quantitative proteomics and bioinformatic analysis provide new insight into the dynamic response of porcine intestine to Salmonella Typhimurium

    PubMed Central

    Collado-Romero, Melania; Aguilar, Carmen; Arce, Cristina; Lucena, Concepción; Codrea, Marius C.; Morera, Luis; Bendixen, Emoke; Moreno, Ángela; Garrido, Juan J.

    2015-01-01

    The enteropathogen Salmonella Typhimurium (S. Typhimurium) is the most commonly non-typhoideal serotype isolated in pig worldwide. Currently, one of the main sources of human infection is by consumption of pork meat. Therefore, prevention and control of salmonellosis in pigs is crucial for minimizing risks to public health. The aim of the present study was to use isobaric tags for relative and absolute quantification (iTRAQ) to explore differences in the response to Salmonella in two segment of the porcine gut (ileum and colon) along a time course of 1, 2, and 6 days post infection (dpi) with S. Typhimurium. A total of 298 proteins were identified in the infected ileum samples of which, 112 displayed significant expression differences due to Salmonella infection. In colon, 184 proteins were detected in the infected samples of which 46 resulted differentially expressed with respect to the controls. The higher number of changes in protein expression was quantified in ileum at 2 dpi. Further biological interpretation of proteomics data using bioinformatics tools demonstrated that the expression changes in colon were found in proteins involved in cell death and survival, tissue morphology or molecular transport at the early stages and tissue regeneration at 6 dpi. In ileum, however, changes in protein expression were mainly related to immunological and infection diseases, inflammatory response or connective tissue disorders at 1 and 2 dpi. iTRAQ has proved to be a proteomic robust approach allowing us to identify ileum as the earliest response focus upon S. Typhimurium in the porcine gut. In addition, new functions involved in the response to bacteria such as eIF2 signaling, free radical scavengers or antimicrobial peptides (AMP) expression have been identified. Finally, the impairment at of the enterohepatic circulation of bile acids and lipid metabolism by means the under regulation of FABP6 protein and FXR/RXR and LXR/RXR signaling pathway in ileum has been

  12. Wide-field absolute transverse blood flow velocity mapping in vessel centerline

    NASA Astrophysics Data System (ADS)

    Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang

    2018-02-01

    We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.

  13. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize.

    PubMed

    Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng

    2016-12-01

    This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.

  14. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    NASA Astrophysics Data System (ADS)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  15. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration.

    PubMed

    Owiti, Judith; Grossmann, Jonas; Gehrig, Peter; Dessimoz, Christophe; Laloi, Christophe; Hansen, Maria Benn; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-07-01

    The short storage life of harvested cassava roots is an important constraint that limits the full potential of cassava as a commercial food crop in developing countries. We investigated the molecular changes during physiological deterioration of cassava root after harvesting using isobaric tags for relative and absolute quantification (iTRAQ) of proteins in soluble and non-soluble fractions prepared during a 96 h post-harvest time course. Combining bioinformatic approaches to reduce information redundancy for unsequenced or partially sequenced plant species, we established a comprehensive proteome map of the cassava root and identified quantitatively regulated proteins. Up-regulation of several key proteins confirmed that physiological deterioration of cassava root after harvesting is an active process, with 67 and 170 proteins, respectively, being up-regulated early and later after harvesting. This included regulated proteins that had not previously been associated with physiological deterioration after harvesting, such as linamarase, glutamic acid-rich protein, hydroxycinnamoyl transferase, glycine-rich RNA binding protein, β-1,3-glucanase, pectin methylesterase, maturase K, dehydroascorbate reductase, allene oxide cyclase, and proteins involved in signal pathways. To confirm the regulation of these proteins, activity assays were performed for selected enzymes. Together, our results show that physiological deterioration after harvesting is a highly regulated complex process involving proteins that are potential candidates for biotechnology approaches to reduce such deterioration. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  16. MSTAR: an absolute metrology sensor with sub-micron accuracy for space-based applications

    NASA Technical Reports Server (NTRS)

    Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan P.; Jeganathan, Muthu

    2004-01-01

    The MSTAR sensor is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with subnanometer accuracy.

  17. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC

    NASA Astrophysics Data System (ADS)

    Sakwe, S. A.; Müller, R.; Wellmann, P. J.

    2006-04-01

    We have developed a KOH-based defect etching procedure for silicon carbide (SiC), which comprises in situ temperature measurement and control of melt composition. As benefit for the first time reproducible etching conditions were established (calibration plot, etching rate versus temperature and time); the etching procedure is time independent, i.e. no altering in KOH melt composition takes place, and absolute melt temperature values can be set. The paper describes this advanced KOH etching furnace, including the development of a new temperature sensor resistant to molten KOH. We present updated, absolute KOH etching parameters of n-type SiC and new absolute KOH etching parameters for low and highly p-type doped SiC, which are used for quantitative defect analysis. As best defect etching recipes we found T=530 °C/5 min (activation energy: 16.4 kcal/mol) and T=500 °C/5 min (activation energy: 13.5 kcal/mol) for n-type and p-type SiC, respectively.

  18. Absolute detector calibration using twin beams.

    PubMed

    Peřina, Jan; Haderka, Ondřej; Michálek, Václav; Hamar, Martin

    2012-07-01

    A method for the determination of absolute quantum detection efficiency is suggested based on the measurement of photocount statistics of twin beams. The measured histograms of joint signal-idler photocount statistics allow us to eliminate an additional noise superimposed on an ideal calibration field composed of only photon pairs. This makes the method superior above other approaches presently used. Twin beams are described using a paired variant of quantum superposition of signal and noise.

  19. A new method to calibrate the absolute sensitivity of a soft X-ray streak camera

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali

    2016-12-01

    In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.

  20. iTRAQ-based proteomic analysis of LI-F type peptides produced by Paenibacillus polymyxa JSa-9 mode of action against Bacillus cereus.

    PubMed

    Han, Jinzhi; Gao, Peng; Zhao, Shengming; Bie, Xiaomei; Lu, Zhaoxin; Zhang, Chong; Lv, Fengxia

    2017-01-06

    LI-F type peptides (AMP-jsa9) produced by Paenibacillus polymyxa JSa-9 are a group of cyclic lipodepsipeptide antibiotics that exhibit a broad antimicrobial spectrum against Gram-positive bacteria and filamentous fungi, especially Bacillus cereus and Fusarium moniliforme. In this study, to better understand the antibacterial mechanism of AMP-jsa9 against B. cereus, the ultrastructure of AMP-jsa9-treated B. cereus cells was observed by both atomic force microscopy and transmission electron microscopy, and quantitative proteomic analysis was performed on proteins extracted from treated and untreated bacterial cells by using isobaric tag for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS analysis to access differentially expressed proteins. Furthermore, multiple experiments were conducted to validate the results of the proteomic analysis, including determinations of ATP, NAD (+) H, NADP (+) H, reactive oxygen species (ROS), the activities of catalase (CAT) and superoxide dismutase (SOD), and the relative expression of target genes by quantitative real-time PCR. Bacterial cells exposed to AMP-jsa9 showed irregular surfaces with bleb projections and concaves; we hypothesize that AMP-jsa9 penetrated the cell wall and was anchored on the cytoplasmic membrane and that ROS accumulated in the cell membrane after treatment with AMP-jsa9, modulating the bacterial membrane properties and increasing membrane permeability. Consequently, the blebs were formed on the cell wall by the impulsive force of the leakage of intercellular contents. iTRAQ-based proteomic analysis detected a total of 1317 proteins, including 176 differentially expressed proteins (75 upregulated (fold >2) and 101 downregulated (fold <0.5)). Based on proteome analysis, the putative pathways of AMP-jsa9 action against B. cereus can be summarized as: (i) inhibition of bacterial sporulation, thiamine biosynthesis, energy metabolism, DNA transcription and translation, and cell wall biosynthesis

  1. [Reconstituting evaluation methods based on both qualitative and quantitative paradigms].

    PubMed

    Miyata, Hiroaki; Okubo, Suguru; Yoshie, Satoru; Kai, Ichiro

    2011-01-01

    Debate about the relationship between quantitative and qualitative paradigms is often muddled and confusing and the clutter of terms and arguments has resulted in the concepts becoming obscure and unrecognizable. In this study we conducted content analysis regarding evaluation methods of qualitative healthcare research. We extracted descriptions on four types of evaluation paradigm (validity/credibility, reliability/credibility, objectivity/confirmability, and generalizability/transferability), and classified them into subcategories. In quantitative research, there has been many evaluation methods based on qualitative paradigms, and vice versa. Thus, it might not be useful to consider evaluation methods of qualitative paradigm are isolated from those of quantitative methods. Choosing practical evaluation methods based on the situation and prior conditions of each study is an important approach for researchers.

  2. A Statistics-based Platform for Quantitative N-terminome Analysis and Identification of Protease Cleavage Products*

    PubMed Central

    auf dem Keller, Ulrich; Prudova, Anna; Gioia, Magda; Butler, Georgina S.; Overall, Christopher M.

    2010-01-01

    Terminal amine isotopic labeling of substrates (TAILS), our recently introduced platform for quantitative N-terminome analysis, enables wide dynamic range identification of original mature protein N-termini and protease cleavage products. Modifying TAILS by use of isobaric tag for relative and absolute quantification (iTRAQ)-like labels for quantification together with a robust statistical classifier derived from experimental protease cleavage data, we report reliable and statistically valid identification of proteolytic events in complex biological systems in MS2 mode. The statistical classifier is supported by a novel parameter evaluating ion intensity-dependent quantification confidences of single peptide quantifications, the quantification confidence factor (QCF). Furthermore, the isoform assignment score (IAS) is introduced, a new scoring system for the evaluation of single peptide-to-protein assignments based on high confidence protein identifications in the same sample prior to negative selection enrichment of N-terminal peptides. By these approaches, we identified and validated, in addition to known substrates, low abundance novel bioactive MMP-2 targets including the plasminogen receptor S100A10 (p11) and the proinflammatory cytokine proEMAP/p43 that were previously undescribed. PMID:20305283

  3. Absolute cross-sections for DNA strand breaks and crosslinks induced by low energy electrons

    PubMed Central

    Chen, Wenzhuang; Chen, Shiliang; Dong, Yanfang; Cloutier, Pierre; Sanche, Léon

    2016-01-01

    Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2–20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of super-coiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure–response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2–20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions. PMID:27878170

  4. Absolute cross-sections for DNA strand breaks and crosslinks induced by low energy electrons.

    PubMed

    Chen, Wenzhuang; Chen, Shiliang; Dong, Yanfang; Cloutier, Pierre; Zheng, Yi; Sanche, Léon

    2016-12-07

    Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2-20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of supercoiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure-response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2-20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions.

  5. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  6. Absolute Calibration of Si iRMs used for Measurements of Si Paleo-nutrient proxies

    NASA Astrophysics Data System (ADS)

    Vocke, R. D., Jr.; Rabb, S. A.

    2016-12-01

    Silicon isotope variations (reported as δ30Si and δ29Si, relative to NBS28) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The resolution and comparability of such measurements depend on the quality of the isotopic Reference Materials (iRMs) defining the delta scale. We report new absolute Si isotopic measurements on the iRMs NBS28 (RM 8546 - Silica Sand), Diatomite, and Big Batch using the Avogadro measurement approach and comparing them with prior assessments of these iRMs. The Avogadro Si measurement technique was developed by the German Physikalish-Technische Bundesanstalt (PTB) to provide a precise and highly accurate method to measure absolute isotopic ratios in highly enriched 28Si (99.996%) material. These measurements are part of an international effort to redefine the kg and mole based on the Planck constant h and the Avogadro constant NA, respectively (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach produces absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement calibration. This is illustrated in Fig. 1 where absolute Si isotopic measurements on SRM 990, separated by 40+ years of advances in instrumentation, are compared. The availability of this new technique does not say that absolute Si isotopic ratios are or ever will be better for normal Si isotopic measurements when seeking isotopic variations in nature, because they are not. However, by determining the absolute isotopic ratios of all the Si iRM scale artifacts, such iRMs become traceable to the metric system (SI); thereby automatically conferring on all the artifact-based δ30Si and δ29Si measurements traceability to the base SI unit, the mole. Such traceability should help reduce the potential of bias between different iRMs and facilitate the replacement of delta

  7. Quantitation of 47 human tear proteins using high resolution multiple reaction monitoring (HR-MRM) based-mass spectrometry.

    PubMed

    Tong, Louis; Zhou, Xi Yuan; Jylha, Antti; Aapola, Ulla; Liu, Dan Ning; Koh, Siew Kwan; Tian, Dechao; Quah, Joanne; Uusitalo, Hannu; Beuerman, Roger W; Zhou, Lei

    2015-02-06

    Tear proteins are intimately related to the pathophysiology of the ocular surface. Many recent studies have demonstrated that the tear is an accessible fluid for studying eye diseases and biomarker discovery. This study describes a high resolution multiple reaction monitoring (HR-MRM) approach for developing assays for quantification of biologically important tear proteins. Human tear samples were collected from 1000 subjects with no eye complaints (411 male, 589 female, average age: 55.5±14.5years) after obtaining informed consent. Tear samples were collected using Schirmer's strips and pooled into a single global control sample. Quantification of proteins was carried out by selecting "signature" peptides derived by trypsin digestion. A 1-h nanoLC-MS/MS run was used to quantify the tear proteins in HR-MRM mode. Good reproducibility of signal intensity (using peak areas) was demonstrated for all 47 HR-MRM assays with an average coefficient of variation (CV%) of 4.82% (range: 1.52-10.30%). All assays showed consistent retention time with a CV of less than 0.80% (average: 0.57%). HR-MRM absolute quantitation of eight tear proteins was demonstrated using stable isotope-labeled peptides. In this study, we demonstrated for the first time the technique to quantify 47 human tear proteins in HR-MRM mode using approximately 1μl of human tear sample. These multiplexed HR-MRM-based assays show great promise of further development for biomarker validation in human tear samples. Both discovery-based and targeted quantitative proteomics can be achieved in a single quadrupole time-of-flight mass spectrometer platform (TripleTOF 5600 system). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Performance analysis of a film dosimetric quality assurance procedure for IMRT with regard to the employment of quantitative evaluation methods.

    PubMed

    Winkler, Peter; Zurl, Brigitte; Guss, Helmuth; Kindl, Peter; Stuecklschweiger, Georg

    2005-02-21

    A system for dosimetric verification of intensity-modulated radiotherapy (IMRT) treatment plans using absolute calibrated radiographic films is presented. At our institution this verification procedure is performed for all IMRT treatment plans prior to patient irradiation. Therefore clinical treatment plans are transferred to a phantom and recalculated. Composite treatment plans are irradiated to a single film. Film density to absolute dose conversion is performed automatically based on a single calibration film. A software application encompassing film calibration, 2D registration of measurement and calculated distributions, image fusion, and a number of visual and quantitative evaluation utilities was developed. The main topic of this paper is a performance analysis for this quality assurance procedure, with regard to the specification of tolerance levels for quantitative evaluations. Spatial and dosimetric precision and accuracy were determined for the entire procedure, comprising all possible sources of error. The overall dosimetric and spatial measurement uncertainties obtained thereby were 1.9% and 0.8 mm respectively. Based on these results, we specified 5% dose difference and 3 mm distance-to-agreement as our tolerance levels for patient-specific quality assurance for IMRT treatments.

  9. Epitope mapping and targeted quantitation of the cardiac biomarker troponin by SID-MRM mass spectrometry.

    PubMed

    Zhao, Cheng; Trudeau, Beth; Xie, Helen; Prostko, John; Fishpaugh, Jeffrey; Ramsay, Carol

    2014-06-01

    The absolute quantitation of the targeted protein using MS provides a promising method to evaluate/verify biomarkers used in clinical diagnostics. In this study, a cardiac biomarker, troponin I (TnI), was used as a model protein for method development. The epitope peptide of TnI was characterized by epitope excision followed with LC/MS/MS method and acted as the surrogate peptide for the targeted protein quantitation. The MRM-based MS assay using a stable internal standard that improved the selectivity, specificity, and sensitivity of the protein quantitation. Also, plasma albumin depletion and affinity enrichment of TnI by anti-TnI mAb-coated microparticles reduced the sample complexity, enhanced the dynamic range, and further improved the detecting sensitivity of the targeted protein in the biological matrix. Therefore, quantitation of TnI, a low abundant protein in human plasma, has demonstrated the applicability of the targeted protein quantitation strategy through its epitope peptide determined by epitope mapping method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. a Chiral Tagging Strategy for Determining Absolute Configuration and Enantiomeric Excess by Molecular Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Caminati, Walther; Patterson, David; Thomas, Javix; Xu, Yunjie; West, Channing; Pate, Brooks

    2017-06-01

    The introduction of three wave mixing rotational spectroscopy by Patterson, Schnell, and Doyle [1,2] has expanded applications of molecular rotational spectroscopy into the field of chiral analysis. Chiral analysis of a molecule is the quantitative measurement of the relative abundances of all stereoisomers of the molecule and these include both diastereomers (with distinct molecular rotational spectra) and enantiomers (with equivalent molecular rotational spectra). This work adapts a common strategy in chiral analysis of enantiomers to molecular rotational spectroscopy. A "chiral tag" is attached to the molecule of interest by making a weakly bound complex in a pulsed jet expansion. When this tag molecule is enantiopure, it will create diastereomeric complexes with the two enantiomers of the molecule being analyzed and these can be differentiated by molecule rotational spectroscopy. Identifying the structure of this complex, with knowledge of the absolute configuration of the tag, establishes the absolute configuration of the molecule of interest. Furthermore, the diastereomer complex spectra can be used to determine the enantiomeric excess of the sample. The ability to perform chiral analysis will be illustrated by a study of solketal using propylene oxide as the tag. The possibility of using current methods of quantum chemistry to assign a specific structure to the chiral tag complex will be discussed. Finally, chiral tag rotational spectroscopy offers a "gold standard" method for determining the absolute configuration of the molecule through determination of the substitution structure of the complex. When this measurement is possible, rotational spectroscopy can deliver a quantitative three dimensional structure of the molecule with correct stereochemistry as the analysis output. [1] David Patterson, Melanie Schnell, John M. Doyle, Nature 497, 475 (2013). [2] David Patterson, John M. Doyle, Phys. Rev. Lett. 111, 023008 (2013).

  11. A novel multi-walled carbon nanotube-based antibody conjugate for quantitative and semi-quantitative lateral flow assays.

    PubMed

    Sun, Wenjuan; Hu, Xiaolong; Liu, Jia; Zhang, Yurong; Lu, Jianzhong; Zeng, Libo

    2017-10-01

    In this study, the multi-walled carbon nanotubes (MWCNTs) were applied in lateral flow strips (LFS) for semi-quantitative and quantitative assays. Firstly, the solubility of MWCNTs was improved using various surfactants to enhance their biocompatibility for practical application. The dispersed MWCNTs were conjugated with the methamphetamine (MET) antibody in a non-covalent manner and then manufactured into the LFS for the quantitative detection of MET. The MWCNTs-based lateral flow assay (MWCNTs-LFA) exhibited an excellent linear relationship between the values of test line and MET when its concentration ranges from 62.5 to 1500 ng/mL. The sensitivity of the LFS was evaluated by conjugating MWCNTs with HCG antibody and the MWCNTs conjugated method is 10 times more sensitive than the one conjugated with classical colloidal gold nanoparticles. Taken together, our data demonstrate that MWCNTs-LFA is a more sensitive and reliable assay for semi-quantitative and quantitative detection which can be used in forensic analysis.

  12. Overcoming bioanalytical challenges in an Onglyza(®) intravenous [(14)C]microdose absolute bioavailability study with accelerator MS.

    PubMed

    Xu, Xiaohui Sophia; Dueker, Stephen R; Christopher, Lisa J; Lohstroh, Pete N; Keung, Chi Fung Anther; Cao, Kai Kevin; Bonacorsi, Samuel J; Cojocaru, Laura; Shen, Jim X; Humphreys, W Griffith; Stouffer, Bruce; Arnold, Mark E

    2012-08-01

    An absolute bioavailability study that utilized an intravenous [(14)C]microdose was conducted for saxagliptin (Onglyza(®)), a marketed drug product for the treatment of Type 2 diabetes mellitus. Concentrations of [(14)C]saxagliptin were determined by accelerator MS (AMS) after protein precipitation, chromatographic separation by UPLC and analyte fraction collection. A series of investigative experiments were conducted to maximize the release of the drug from high-affinity receptors and nonspecific adsorption, and to determine a suitable quantitation range. A technique-appropriate validation demonstrated the accuracy, precision, specificity, stability and recovery of the AMS methodology across the concentration range of 0.025 to 15.0 dpm/ml (disintegration per minute per milliliter), the equivalent of 1.91-1144 pg/ml. Based on the study sample analysis, the mean absolute bioavailability of saxagliptin was 50% in the eight subjects with a CV of 6.6%. Incurred sample reanalysis data fell well within acceptable limits. This study demonstrated that the optimized sample pretreatment and chromatographic separation procedures were critical for the successful implementation of an UPLC plus AMS method for [(14)C]saxagliptin. The use of multiple-point standards are useful, particularly during method development and validation, to evaluate and correct for concentration-dependent recovery, if observed, and to monitor and control process loss and operational variations.

  13. Comparative proteomics analysis of Spodoptera frugiperda cells during Autographa californica multiple nucleopolyhedrovirus infection.

    PubMed

    Yu, Qian; Xiong, Youhua; Gao, Hang; Liu, Jianliang; Chen, Zhiqiang; Wang, Qin; Wen, Dongling

    2015-08-04

    Increasing evidence sugggest that in addition of balculovirus controling insect host, host cells also responds to balculovirus infection. However, compared to existing knowledge on virus gene, host cell responses are relatively poorly understood. In this study, Spodoptera frugiperda (Sf9) cells were infected with Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The protein composition and protein changes of Spodoptera frugiperda (Sf9) cells of different infection stages were analysed by isobaric tag for relative and absolute quantification (iTRAQ) techniques. A total of 4004 Sf9 proteins were identified by iTRAQ and 413 proteins were found as more than 1.5-fold changes in abundance. The 413 proteins were categorised according to GO classification for insects and were categorised into: biological process, molecular function and cellular component. The determination of the protein changes in infected Sf9 cells would help to better understanding of host cell responses and facilitate better design of this virus-host cell interaction in pest insect control and other related fields.

  14. iTRAQ proteomics analysis reveals that PI3K is highly associated with bupivacaine-induced neurotoxicity pathways.

    PubMed

    Zhao, Wei; Liu, Zhongjie; Yu, Xujiao; Lai, Luying; Li, Haobo; Liu, Zipeng; Li, Le; Jiang, Shan; Xia, Zhengyuan; Xu, Shi-yuan

    2016-02-01

    Bupivacaine, a commonly used local anesthetic, has potential neurotoxicity through diverse signaling pathways. However, the key mechanism of bupivacaine-induced neurotoxicity remains unclear. Cultured human SH-SY5Y neuroblastoma cells were treated (bupivacaine) or untreated (control) with bupivacaine for 24 h. Compared to the control group, bupivacaine significantly increased cyto-inhibition, cellular reactive oxygen species, DNA damage, mitochondrial injury, apoptosis (increased TUNEL-positive cells, cleaved caspase 3, and Bcl-2/Bax), and activated autophagy (enhanced LC3II/LC3I ratio). To explore changes in protein expression and intercommunication among the pathways involved in bupivacaine-induced neurotoxicity, an 8-plex iTRAQ proteomic technique and bioinformatics analysis were performed. Compared to the control group, 241 differentially expressed proteins were identified, of which, 145 were up-regulated and 96 were down-regulated. Bioinformatics analysis of the cross-talk between the significant proteins with altered expression in bupivacaine-induced neurotoxicity indicated that phosphatidyl-3-kinase (PI3K) was the most frequently targeted protein in each of the interactions. We further confirmed these results by determining the downstream targets of the identified signaling pathways (PI3K, Akt, FoxO1, Erk, and JNK). In conclusion, our study demonstrated that PI3K may play a central role in contacting and regulating the signaling pathways that contribute to bupivacaine-induced neurotoxicity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A global algorithm for estimating Absolute Salinity

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  16. An automated LS(β)- NaI(Tl)(γ) coincidence system as absolute standard for radioactivity measurements.

    PubMed

    Joseph, Leena; Das, A P; Ravindra, Anuradha; Kulkarni, D B; Kulkarni, M S

    2018-07-01

    4πβ-γ coincidence method is a powerful and widely used method to determine the absolute activity concentration of radioactive solutions. A new automated liquid scintillator based coincidence system has been designed, developed, tested and established as absolute standard for radioactivity measurements. The automation is achieved using PLC (programmable logic controller) and SCADA (supervisory control and data acquisition). Radioactive solution of 60 Co was standardized to compare the performance of the automated system with proportional counter based absolute standard maintained in the laboratory. The activity concentrations determined using these two systems were in very good agreement; the new automated system can be used for absolute measurement of activity concentration of radioactive solutions. Copyright © 2018. Published by Elsevier Ltd.

  17. Identification of Proteins Related to Epigenetic Regulation in the Malignant Transformation of Aberrant Karyotypic Human Embryonic Stem Cells by Quantitative Proteomics

    PubMed Central

    Sun, Yi; Yang, Yixuan; Zeng, Sicong; Tan, Yueqiu; Lu, Guangxiu; Lin, Ge

    2014-01-01

    Previous reports have demonstrated that human embryonic stem cells (hESCs) tend to develop genomic alterations and progress to a malignant state during long-term in vitro culture. This raises concerns of the clinical safety in using cultured hESCs. However, transformed hESCs might serve as an excellent model to determine the process of embryonic stem cell transition. In this study, ITRAQ-based tandem mass spectrometry was used to quantify normal and aberrant karyotypic hESCs proteins from simple to more complex karyotypic abnormalities. We identified and quantified 2583 proteins, and found that the expression levels of 316 proteins that represented at least 23 functional molecular groups were significantly different in both normal and abnormal hESCs. Dysregulated protein expression in epigenetic regulation was further verified in six pairs of hESC lines in early and late passage. In summary, this study is the first large-scale quantitative proteomic analysis of the malignant transformation of aberrant karyotypic hESCs. The data generated should serve as a useful reference of stem cell-derived tumor progression. Increased expression of both HDAC2 and CTNNB1 are detected as early as the pre-neoplastic stage, and might serve as prognostic markers in the malignant transformation of hESCs. PMID:24465727

  18. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques

    PubMed Central

    Patrizio, Angela; Specht, Christian G.

    2016-01-01

    Abstract. The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function. PMID:27335891

  19. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques.

    PubMed

    Patrizio, Angela; Specht, Christian G

    2016-10-01

    The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function.

  20. Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy.

    PubMed

    Rinehart, Matthew T; Drake, Tyler K; Robles, Francisco E; Rohan, Lisa C; Katz, David; Wax, Adam

    2011-12-01

    Quantitative phase microscopy is applied to image temporal changes in the refractive index (RI) distributions of solutions created by microbicidal films undergoing hydration. We present a novel method of using an engineered polydimethylsiloxane structure as a static phase reference to facilitate calibration of the absolute RI across the entire field. We present a study of dynamic structural changes in microbicidal films during hydration and subsequent dissolution. With assumptions about the smoothness of the phase changes induced by these films, we calculate absolute changes in the percentage of film in regions across the field of view.

  1. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM.

    PubMed

    Nakamura, Kenji; Hirayama-Kurogi, Mio; Ito, Shingo; Kuno, Takuya; Yoneyama, Toshihiro; Obuchi, Wataru; Terasaki, Tetsuya; Ohtsuki, Sumio

    2016-08-01

    The purpose of the present study was to examine simultaneously the absolute protein amounts of 152 membrane and membrane-associated proteins, including 30 metabolizing enzymes and 107 transporters, in pooled microsomal fractions of human liver, kidney, and intestine by means of SWATH-MS with stable isotope-labeled internal standard peptides, and to compare the results with those obtained by MRM/SRM and high resolution (HR)-MRM/PRM. The protein expression levels of 27 metabolizing enzymes, 54 transporters, and six other membrane proteins were quantitated by SWATH-MS; other targets were below the lower limits of quantitation. Most of the values determined by SWATH-MS differed by less than 50% from those obtained by MRM/SRM or HR-MRM/PRM. Various metabolizing enzymes were expressed in liver microsomes more abundantly than in other microsomes. Ten, 13, and eight transporters listed as important for drugs by International Transporter Consortium were quantified in liver, kidney, and intestinal microsomes, respectively. Our results indicate that SWATH-MS enables large-scale multiplex absolute protein quantification while retaining similar quantitative capability to MRM/SRM or HR-MRM/PRM. SWATH-MS is expected to be useful methodology in the context of drug development for elucidating the molecular mechanisms of drug absorption, metabolism, and excretion in the human body based on protein profile information. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An accurate proteomic quantification method: fluorescence labeling absolute quantification (FLAQ) using multidimensional liquid chromatography and tandem mass spectrometry.

    PubMed

    Liu, Junyan; Liu, Yang; Gao, Mingxia; Zhang, Xiangmin

    2012-08-01

    A facile proteomic quantification method, fluorescent labeling absolute quantification (FLAQ), was developed. Instead of using MS for quantification, the FLAQ method is a chromatography-based quantification in combination with MS for identification. Multidimensional liquid chromatography (MDLC) with laser-induced fluorescence (LIF) detection with high accuracy and tandem MS system were employed for FLAQ. Several requirements should be met for fluorescent labeling in MS identification: Labeling completeness, minimum side-reactions, simple MS spectra, and no extra tandem MS fragmentations for structure elucidations. A fluorescence dye, 5-iodoacetamidofluorescein, was finally chosen to label proteins on all cysteine residues. The fluorescent dye was compatible with the process of the trypsin digestion and MALDI MS identification. Quantitative labeling was achieved with optimization of reacting conditions. A synthesized peptide and model proteins, BSA (35 cysteines), OVA (five cysteines), were used for verifying the completeness of labeling. Proteins were separated through MDLC and quantified based on fluorescent intensities, followed by MS identification. High accuracy (RSD% < 1.58) and wide linearity of quantification (1-10(5) ) were achieved by LIF detection. The limit of quantitation for the model protein was as low as 0.34 amol. Parts of proteins in human liver proteome were quantified and demonstrated using FLAQ. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  4. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  5. Genome-wide proteomics analysis on longissimus muscles in Qinchuan beef cattle.

    PubMed

    He, Hua; Chen, Si; Liang, Wei; Liu, Xiaolin

    2017-04-01

    To gain further insight into the molecular mechanism of bovine muscle development, we combined mass spectrometry characterization of proteins with Illumina deep sequencing of RNAs obtained from bovine longissimus muscle (LD) at prenatal and postnatal stages. For the proteomic study, each group of LD proteins was extracted and labeled using isobaric tags for relative and absolute quantitation (iTRAQ) method. Among the 1321 proteins identified from six samples, 390 proteins were differentially expressed in embryos at day 135 post-fertilization (Emb135d) vs. 30-month-old adult cattle (Emb135d vs. 30M) samples. Gene Ontology, Cluster of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes analyses were further conducted to better understand the different functions. Furthermore, we analyzed the relationship between transcript and protein regulation between samples by direct comparison of expression levels from transcriptomic and iTRAQ-based proteomics. Association results indicated that 1295 of 1321 proteins could be mapped to transcriptome sequencing data. This study provides the most comprehensive, targeted survey of bovine LD proteins to date and has shown the power of combining transcriptomic and proteomic approaches to provide molecular insights for understanding the developmental characteristics in bovine muscle, and even in other mammals. © 2016 Stichting International Foundation for Animal Genetics.

  6. Control of separation and quantitative analysis by GC-FTIR

    NASA Astrophysics Data System (ADS)

    Semmoud, A.; Huvenne, Jean P.; Legrand, P.

    1992-03-01

    Software for 3-D representations of the 'Absorbance-Wavenumber-Retention time' is used to control the quality of the GC separation. Spectral information given by the FTIR detection allows the user to be sure that a chromatographic peak is 'pure.' The analysis of peppermint essential oil is presented as an example. This assurance is absolutely required for quantitative applications. In these conditions, we have worked out a quantitative analysis of caffeine. Correlation coefficients between integrated absorbance measurements and concentration of caffeine are discussed at two steps of the data treatment.

  7. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model.

    PubMed

    Ohtsuki, Sumio; Ikeda, Chiemi; Uchida, Yasuo; Sakamoto, Yumi; Miller, Florence; Glacial, Fabienne; Decleves, Xavier; Scherrmann, Jean-Michel; Couraud, Pierre-Olivier; Kubo, Yoshiyuki; Tachikawa, Masanori; Terasaki, Tetsuya

    2013-01-07

    Human cerebral microvascular endothelial cell line hCMEC/D3 is an established model of the human blood-brain barrier (BBB). The purpose of the present study was to determine, by means of quantitative targeted absolute proteomics, the protein expression levels in hCMEC/D3 cells of multiple transporters, receptors and junction proteins for comparison with our previously reported findings in isolated human brain microvessels. Among 91 target molecules, 12 transporters, 2 receptors, 1 junction protein and 1 membrane marker were present at quantifiable levels in plasma membrane fraction of hCMEC/D3 cells. ABCA2, MDR1, MRP4, BCRP, GLUT1, 4F2hc, MCT1, ENT1, transferrin and insulin receptors and claudin-5 were detected in both hCMEC/D3 cells and human brain microvessels. After normalization based on Na(+)/K(+) ATPase expression, the differences in protein expression levels between hCMEC/D3 cells and human brain microvessels were within 4-fold for these proteins, with the exceptions of ENT1, transferrin receptor and claudin-5. ABCA8, LAT1, LRP1 and γ-GTP were below the limit of quantification in the cells, but were found in human brain microvessels. ABCA3, ABCA6, MRP1 and ATA1 were found only in hCMEC/D3 cells. Furthermore, compared with human umbilical vein endothelial cells (HUVECs) as reference nonbrain endothelial cells, MDR1 was found only in hCMEC/D3 cells, and GLUT1 expression was 15-fold higher in hCMEC/D3 cells than in HUVECs. In conclusion, this is the first study to examine the suitability and limitations of the hCMEC/D3 cell line as a BBB functional model in terms of quantitative expression levels of transporters, receptors and tight junction proteins.

  8. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  9. Biological characteristics of crucian by quantitative inspection method

    NASA Astrophysics Data System (ADS)

    Chu, Mengqi

    2015-04-01

    Biological characteristics of crucian by quantitative inspection method Through quantitative inspection method , the biological characteristics of crucian was preliminary researched. Crucian , Belongs to Cypriniformes, Cyprinidae, Carassius auratus, is a kind of main plant-eating omnivorous fish,like Gregarious, selection and ranking. Crucian are widely distributed, perennial water all over the country all have production. Determine the indicators of crucian in the experiment, to understand the growth, reproduction situation of crucian in this area . Using the measured data (such as the scale length ,scale size and wheel diameter and so on) and related functional to calculate growth of crucian in any one year.According to the egg shape, color, weight ,etc to determine its maturity, with the mean egg diameter per 20 eggs and the number of eggs per 0.5 grams, to calculate the relative and absolute fecundity of the fish .Measured crucian were female puberty. Based on the relation between the scale diameter and length and the information, linear relationship between crucian scale diameter and length: y=1.530+3.0649. From the data, the fertility and is closely relative to the increase of age. The older, the more mature gonad development. The more amount of eggs. In addition, absolute fecundity increases with the pituitary gland.Through quantitative check crucian bait food intake by the object, reveals the main food, secondary foods, and chance food of crucian ,and understand that crucian degree of be fond of of all kinds of bait organisms.Fish fertility with weight gain, it has the characteristics of species and populations, and at the same tmes influenced by the age of the individual, body length, body weight, environmental conditions (especially the nutrition conditions), and breeding habits, spawning times factors and the size of the egg. After a series of studies of crucian biological character, provide the ecological basis for local crucian's feeding, breeding

  10. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  11. Auditory working memory predicts individual differences in absolute pitch learning.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  12. Comparative iTRAQ-Based Quantitative Proteomic Analysis of Pelteobagrus vachelli Liver under Acute Hypoxia: Implications in Metabolic Responses.

    PubMed

    Zhang, Guosong; Zhang, Jiajia; Wen, Xin; Zhao, Cheng; Zhang, Hongye; Li, Xinru; Yin, Shaowu

    2017-09-01

    More and more frequently these days, aquatic ecosystems are being stressed by nutrient enrichment, pollutants, and global warming, leading to a serious depletion in oxygen concentrations. Although a sudden, significant lack of oxygen will result in mortality, fishes can have an acute behavior (e.g., an increase in breathing rate, reduction in swimming frequency) and physiology responses (e.g., increase in oxygen delivery, and reduction in oxygen consumption) to hypoxia, which allows them to maintain normal physical activity. Therefore, in order to shed further light on the molecular mechanisms of hypoxia adaptation in fishes, the authors conduct comparative quantitative proteomics on Pelteobagrus vachelli livers using iTRAQ. The research identifies 511 acute hypoxia-responsive proteins in P. vachelli. Furthermore, comparison of several of the diverse key pathways studied (e.g., peroxisome pathway, PPAR signaling pathway, lipid metabolism, glycolysis/gluco-neogenesis, and amino acid metabolism) help to articulate the different mechanisms involved in the hypoxia response of P. vachelli. Data from proteome analysis shows that P. vachelli can have an acute reaction to hypoxia, including detoxification of metabolic by-products and oxidative stress in light of continued metabolic activity (e.g., peroxisomes), an activation in the capacity of catabolism to get more energy (e.g., lipolysis and amino acid catabolism), a depression in the capacity of biosynthesis to reduce energy consumption (e.g., biosynthesis of amino acids and lipids), and a shift in the aerobic and anaerobic contributions to total metabolism. The observed hypoxia-related changes in the liver proteome of the fish can help to understand or can be related to the hypoxia-related response that takes place in similar conditions in the liver or other proteomes of mammals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Low absolute neutrophil counts in African infants.

    PubMed

    Kourtis, Athena P; Bramson, Brian; van der Horst, Charles; Kazembe, Peter; Ahmed, Yusuf; Chasela, Charles; Hosseinipour, Mina; Knight, Rodney; Lugalia, Lebah; Tegha, Gerald; Joaki, George; Jafali, Robert; Jamieson, Denise J

    2005-07-01

    Infants of African origin have a lower normal range of absolute neutrophil counts than white infants; this fact, however, remains under appreciated by clinical researchers in the United States. During the initial stages of a clinical trial in Malawi, the authors noted an unexpectedly high number of infants with absolute neutrophil counts that would be classifiable as neutropenic using the National Institutes of Health's Division of AIDS toxicity tables. The authors argue that the relevant Division of AIDS table does not take into account the available evidence of low absolute neutrophil counts in African infants and that a systematic collection of data from many African settings might help establish the absolute neutrophil count cutpoints to be used for defining neutropenia in African populations.

  14. Absolute colorimetric characterization of a DSLR camera

    NASA Astrophysics Data System (ADS)

    Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo

    2014-03-01

    A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.

  15. [Analysis of virulence factors of Porphyromonas endodontalis based on comparative proteomics technique].

    PubMed

    Li, H; Ji, H; Wu, S S; Hou, B X

    2016-12-09

    Objective: To analyze the protein expression profile and the potential virulence factors of Porphyromonas endodontalis (Pe) via comparison with that of two strains of Porphyromonas gingivalis (Pg) with high and low virulences, respectively. Methods: Whole cell comparative proteomics of Pe ATCC35406 was examined and compared with that of high virulent strain Pg W83 andlow virulent strain Pg ATCC33277, respectively. Isobaric tags for relative and absolute quantitation (iTRAQ) combined with nano liquid chromatography-tandem mass spectrometry (Nano-LC-MS/MS) were adopted to identify and quantitate the proteins of Pe and two strains of Pg with various virulences by using the methods of isotopically labeled peptides, mass spectrometric detection and bioinformatics analysis. The biological functions of similar proteins expressed by Pe ATCC35406 and two strains of Pg were quantified and analyzed. Results: Totally 1 210 proteins were identified while Pe compared with Pg W83. There were 130 proteins (10.74% of the total proteins) expressed similarly, including 89 known functional proteins and 41 proteins of unknown functions. Totally 1 223 proteins were identified when Pe compared with Pg ATCC33277. There were 110 proteins (8.99% of the total proteins) expressed similarly, including 72 known functional proteins and 38 proteins of unknown functions. The similarly expressed proteins in Pe and Pg strains with various virulences mainly focused on catalytic activity and binding function, including recombination activation gene (RagA), lipoprotein, chaperonin Dnak, Clp family proteins (ClpC and ClpX) and various iron-binding proteins. They were involved in metabolism and cellular processes. In addition, the type and number of similar virulence proteins between Pe and high virulence Pg were higher than those between Pe and low virulence Pg. Conclusions: Lipoprotein, oxygen resistance protein, iron binding protein were probably the potential virulence factors of Pe ATCC35406. It was

  16. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity

    PubMed Central

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A.; Bradford, William D.; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S.; Li, Rong

    2015-01-01

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein−based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. PMID:25823586

  17. Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR.

    PubMed

    Lee, Ji Yoon; Pajarillo, Edward Alain B; Kim, Min Jeong; Chae, Jong Pyo; Kang, Dae-Kyung

    2013-01-04

    Lactobacillus johnsonii PF01 has been reported to be highly resistant to bile, a key property of probiotic microorganisms. Here, we examine the nature of the bile-salt tolerance of L. johnsonii PF01. Growth inhibition and surface morphology and physiology aberrations were observed after overnight exposure to bile stress. Quantitative proteomic profiles using iTRAQ-LC-MS/MS technology identified 8307 peptides from both untreated PF01 cells and those exposed to 0.1%, 0.2%, and 0.3% bile salts. Some 215 proteins exhibited changed levels in response to bile stress; of these, levels of 94 peptides increased while those of 121 decreased. These were classified into the following categories: stress responses, cell division, transcription, translation, nucleotide metabolism, carbohydrate transport and metabolism, cell wall biosynthesis, and amino acid biosynthesis, and 16 of unidentified function. Analysis of the mRNA expression of selected genes by quantitative reverse transcriptase-PCR verified the proteomic data. Both proteomic and mRNA data provided evidence for increased phosphotransferase activity and cell wall biosynthesis. In addition, three bile salt hydrolases were significantly upregulated by bile exposure. These findings provide a basis for future evaluations of the tolerance of potential probiotic strains toward the various gastrointestinal challenges, including bile stress.

  18. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    PubMed

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  19. A standardized kit for automated quantitative assessment of candidate protein biomarkers in human plasma.

    PubMed

    Percy, Andrew J; Mohammed, Yassene; Yang, Juncong; Borchers, Christoph H

    2015-12-01

    An increasingly popular mass spectrometry-based quantitative approach for health-related research in the biomedical field involves the use of stable isotope-labeled standards (SIS) and multiple/selected reaction monitoring (MRM/SRM). To improve inter-laboratory precision and enable more widespread use of this 'absolute' quantitative technique in disease-biomarker assessment studies, methods must be standardized. Results/methodology: Using this MRM-with-SIS-peptide approach, we developed an automated method (encompassing sample preparation, processing and analysis) for quantifying 76 candidate protein markers (spanning >4 orders of magnitude in concentration) in neat human plasma. The assembled biomarker assessment kit - the 'BAK-76' - contains the essential materials (SIS mixes), methods (for acquisition and analysis), and tools (Qualis-SIS software) for performing biomarker discovery or verification studies in a rapid and standardized manner.

  20. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  1. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion.

    PubMed

    Fällman, Erik; Schedin, Staffan; Jass, Jana; Andersson, Magnus; Uhlin, Bernt Eric; Axner, Ove

    2004-06-15

    An optical force measurement system for quantitating forces in the pN range between micrometer-sized objects has been developed. The system was based upon optical tweezers in combination with a sensitive position detection system and constructed around an inverted microscope. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omnidirectional mechanical spring in response to an external force. The particle's displacement from the equilibrium position is therefore a direct measure of the exerted force. A weak probe laser beam, focused directly below the trapping focus, was used for position detection of the trapped particle (a polystyrene bead). The bead and the condenser focus the light to a distinct spot in the far field, monitored by a position sensitive detector. Various calibration procedures were implemented in order to provide absolute force measurements. The system has been used to measure the binding forces between Escherichia coli bacterial adhesins and galabiose-functionalized beads.

  2. Quantitative, spectrally-resolved intraoperative fluorescence imaging

    PubMed Central

    Valdés, Pablo A.; Leblond, Frederic; Jacobs, Valerie L.; Wilson, Brian C.; Paulsen, Keith D.; Roberts, David W.

    2012-01-01

    Intraoperative visual fluorescence imaging (vFI) has emerged as a promising aid to surgical guidance, but does not fully exploit the potential of the fluorescent agents that are currently available. Here, we introduce a quantitative fluorescence imaging (qFI) approach that converts spectrally-resolved data into images of absolute fluorophore concentration pixel-by-pixel across the surgical field of view (FOV). The resulting estimates are linear, accurate, and precise relative to true values, and spectral decomposition of multiple fluorophores is also achieved. Experiments with protoporphyrin IX in a glioma rodent model demonstrate in vivo quantitative and spectrally-resolved fluorescence imaging of infiltrating tumor margins for the first time. Moreover, we present images from human surgery which detect residual tumor not evident with state-of-the-art vFI. The wide-field qFI technique has broad implications for intraoperative surgical guidance because it provides near real-time quantitative assessment of multiple fluorescent biomarkers across the operative field. PMID:23152935

  3. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  4. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology.

    PubMed

    von Bergen, Martin; Jehmlich, Nico; Taubert, Martin; Vogt, Carsten; Bastida, Felipe; Herbst, Florian-Alexander; Schmidt, Frank; Richnow, Hans-Hermann; Seifert, Jana

    2013-10-01

    The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes ((13)C, (15)N, (36)S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.

  5. Towards absolute laser spectroscopic CO2 isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Anyangwe Nwaboh, Javis; Werhahn, Olav; Ebert, Volker

    2017-04-01

    Knowledge of isotope composition of carbon dioxide (CO2) in the atmosphere is necessary to identify sources and sinks of this key greenhouse gas. In the last years, laser spectroscopic techniques such as cavity ring-down spectroscopy (CRDS) and tunable diode laser absorption spectroscopy (TDLAS) have been shown to perform accurate isotope ratio measurements for CO2 and other gases like water vapour (H2O) [1,2]. Typically, isotope ratios are reported in literature referring to reference materials provided by e.g. the International Atomic Energy Agency (IAEA). However, there could be some benefit if field deployable absolute isotope ratio measurement methods were developed to address issues such as exhausted reference material like the Pee Dee Belemnite (PDB) standard. Absolute isotope ratio measurements would be particularly important for situations where reference materials do not even exist. Here, we present CRDS and TDLAS-based absolute isotope ratios (13C/12C ) in atmospheric CO2. We demonstrate the capabilities of the used methods by measuring CO2 isotope ratios in gas standards. We compare our results to values reported for the isotope certified gas standards. Guide to the expression of uncertainty in measurement (GUM) compliant uncertainty budgets on the CRDS and TDLAS absolute isotope ratio measurements are presented, and traceability is addressed. We outline the current impediments in realizing high accuracy absolute isotope ratio measurements using laser spectroscopic methods, propose solutions and the way forward. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] B. Kühnreich, S. Wagner, J. C. Habig,·O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119:177-187 (2015). [2] E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439-449 (2008).

  6. Absolute limit on rotation of gravitationally bound stars

    NASA Astrophysics Data System (ADS)

    Glendenning, N. K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 solar mass neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable.

  7. Absolute quantification methods in tissue near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Matcher, Steven J.; Kirkpatrick, Peter J.; Nahid, K.; Cope, Mark; Delpy, David T.

    1995-05-01

    Recent work aimed at providing an absolute measurement of tissue haemoglobin saturation and a new instrument development, the spatially resolved spectrometer (SRS), are discussed. The theoretical basis of operation of this device and its hardware implementation are described and the results of validation studies on tissue simulating phantoms are presented as are preliminary measurements on human volunteers and observations on patients undergoing neurosurgery. In its present form the instrument appears to produce absolute haemoglobin saturation values for resting human skeletal muscle and the normally perfused human head which are rather low based on physiological expectations. However, we obtained a tight correlation between the saturation values measured by the SRS instrument and those obtained from blood-gas analysis of samples drawn from a jugular bulb catheter in one neurosurgery subject during clamping of the right carotid arteries.

  8. Tissue Proteome Analysis of Different Grades of Human Gliomas Provides Major Cues for Glioma Pathogenesis.

    PubMed

    Gollapalli, Kishore; Ghantasala, Saicharan; Atak, Apurva; Rapole, Srikanth; Moiyadi, Aliasgar; Epari, Sridhar; Srivastava, Sanjeeva

    2017-05-01

    Gliomas are heterogeneous and most commonly occurring brain tumors. Blood-brain barrier restricts the entry of brain tumor proteins into blood stream thus limiting the usage of serum or plasma for proteomic analysis. Our study aimed at understanding the molecular basis of aggressiveness of various grades of brain tumors using isobaric tagging for relative and absolute quantification (iTRAQ) based mass spectrometry. Tissue proteomic analysis of various grades of gliomas was performed using four-plex iTRAQ. We labeled five sets (each set consists of control, grade-II, III, and IV tumor samples) of individual glioma patients using iTRAQ reagents. Significantly altered proteins were subjected to bioinformatics analysis using Database for Annotation, Visualization and Integrated Discovery (DAVID). Various metabolic pathways like glycolysis, TCA-cycle, electron transport chain, lactate metabolism, and blood coagulation pathways were majorly observed to be perturbed in gliomas. Most of the identified proteins involved in redox reactions, protein folding, pre-messenger RNA (mRNA) processing, antiapoptosis, and blood coagulation were found to be upregulated in gliomas. Transcriptomics data of glioblastoma multiforme (GBM), low-grade gliomas (LGGs), and controls were downloaded from The Cancer Genome Atlas (TCGA) data portal and further analyzed using BRB-Array tools. Expression levels of a few significantly altered proteins like lactate dehydrogenase, alpha-1 antitrypsin, fibrinogen alpha chain, nucleophosmin, annexin A5, thioredoxin, ferritin light chain, thymosin beta-4-like protein 3, superoxide dismutase-2, and peroxiredoxin-1 and 6 showed a positive correlation with increasing grade of gliomas thereby offering an insight into molecular basis behind their aggressive nature. Several proteins identified in different grades of gliomas are potential grade-specific markers, and perturbed pathways provide comprehensive overview of molecular cues involved in glioma

  9. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  10. NIST Stars: Absolute Spectrophotometric Calibration of Vega and Sirius

    NASA Astrophysics Data System (ADS)

    Deustua, Susana; Woodward, John T.; Rice, Joseph P.; Brown, Steven W.; Maxwell, Stephen E.; Alberding, Brian G.; Lykke, Keith R.

    2018-01-01

    Absolute flux calibration of standard stars, traceable to SI (International System of Units) standards, is essential for 21st century astrophysics. Dark energy investigations that rely on observations of Type Ia supernovae and precise photometric redshifts of weakly lensed galaxies require a minimum accuracy of 0.5 % in the absolute color calibration. Studies that aim to address fundamental stellar astrophysics also benefit. In the era of large telescopes and all sky surveys well-calibrated standard stars that do not saturate and that are available over the whole sky are needed. Significant effort has been expended to obtain absolute measurements of the fundamental standards Vega and Sirius (and other stars) in the visible and near infrared, achieving total uncertainties between1% and 3%, depending on wavelength, that do not meet the needed accuracy. The NIST Stars program aims to determine the top-of-the-atmosphere absolute spectral irradiance of bright stars to an uncertainty less than 1% from a ground-based observatory. NIST Stars has developed a novel, fully SI-traceable laboratory calibration strategy that will enable achieving the desired accuracy. This strategy has two key components. The first is the SI-traceable calibration of the entire instrument system, and the second is the repeated spectroscopic measurement of the target star throughout the night. We will describe our experimental strategy, present preliminary results for Vega and Sirius and an end-to-end uncertainty budget

  11. Proteomic analysis of porcine mesenchymal stem cells derived from bone marrow and umbilical cord: implication of the proteins involved in the higher migration capability of bone marrow mesenchymal stem cells.

    PubMed

    Huang, Lei; Niu, Chenguang; Willard, Belinda; Zhao, Weimin; Liu, Lan; He, Wei; Wu, Tianwen; Yang, Shulin; Feng, Shutang; Mu, Yulian; Zheng, Lemin; Li, Kui

    2015-04-15

    Mesenchymal stem cells (MSCs) have the ability to proliferate in vivo with a large variety of differentiation potentials and therefore are widely used as an ideal material for cell therapy. MSCs derived from pig and human sources are similar in many aspects, such as cell immunophenotype and functional characteristics. However, differences in proteomics and the molecular mechanisms of cell functions between porcine bone marrow MSCs (BM-MSCs) and umbilical cord MSCs (UC-MSCs) are largely unknown. To the best of our knowledge, MSCs collected from different tissue have specific phenotype and differentiation ability in response to microenvironment, known as a niche. Porcine BM-MSCs and UC-MSCs were evaluated with flow cytometric and adipogenic and osteogenic differentiation analyses. We used isobaric tagging for relative and absolute quantitation (iTRAQ), combined with liquid chromatography-tandem mass spectrometry, to identify differentially expressed proteins (DEPs) between these two types of MSCs. Kyoto Encyclopedia of Genes and Genomes pathway and phenotype analyses were used to understand the links between cell migration ability and DEPs. Two separate iTRAQ experiments were conducted, identifying 95 DEPs (95% confidence interval). Five of these proteins were verified by Western blotting. These 95 DEPs were classified in terms of biological regulation, metabolic process, developmental process, immune system process, reproduction, death, growth, signaling, localization, response to stimulus, biological adhesion, and cellular component organization. Our study is the first to show results indicating that porcine BM-MSCs have a higher migration capability than UC-MSCs. Finally, one of the DEPs, Vimentin, was verified to have a positive role in MSC migration. These results represent the first attempt to use proteomics specifically targeted to porcine MSCs of different tissues. The identified components should help reveal a variety of tissue-specific functions in tissue

  12. Proteome-wide analysis of Anopheles culicifacies mosquito midgut: new insights into the mechanism of refractoriness.

    PubMed

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Singh, Jagbir; Adak, Tridibesh; Sharma, Arun

    2018-05-08

    Midgut invasion, a major bottleneck for malaria parasites transmission is considered as a potential target for vector-parasite interaction studies. New intervention strategies are required to explore the midgut proteins and their potential role in refractoriness for malaria control in Anopheles mosquitoes. To better understand the midgut functional proteins of An. culicifacies susceptible and refractory species, proteomic approaches coupled with bioinformatics analysis is an effective means in order to understand the mechanism of refractoriness. In the present study, an integrated in solution- in gel trypsin digestion approach, along with Isobaric tag for relative and absolute quantitation (iTRAQ)-Liquid chromatography/Mass spectrometry (LC/MS/MS) and data mining were performed to identify the proteomic profile and differentially expressed proteins in Anopheles culicifacies susceptible species A and refractory species B. Shot gun proteomics approaches led to the identification of 80 proteins in An. culicifacies susceptible species A and 92 in refractory species B and catalogue was prepared. iTRAQ based proteomic analysis identified 48 differentially expressed proteins from total 130 proteins. Of these, 41 were downregulated and 7 were upregulated in refractory species B in comparison to susceptible species A. We report that the altered midgut proteins identified in naturally refractory mosquitoes are involved in oxidative phosphorylation, antioxidant and proteolysis process that may suggest their role in parasite growth inhibition. Furthermore, real time polymerase chain reaction (PCR) analysis of few proteins indicated higher expression of iTRAQ upregulated protein in refractory species than susceptible species. This study elucidates the first proteome of the midguts of An. culicifacies sibling species that attempts to analyze unique proteogenomic interactions to provide insights for better understanding of the mechanism of refractoriness. Functional implications

  13. Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy

    PubMed Central

    Rinehart, Matthew T.; Drake, Tyler K.; Robles, Francisco E.; Rohan, Lisa C.; Katz, David; Wax, Adam

    2011-01-01

    Quantitative phase microscopy is applied to image temporal changes in the refractive index (RI) distributions of solutions created by microbicidal films undergoing hydration. We present a novel method of using an engineered polydimethylsiloxane structure as a static phase reference to facilitate calibration of the absolute RI across the entire field. We present a study of dynamic structural changes in microbicidal films during hydration and subsequent dissolution. With assumptions about the smoothness of the phase changes induced by these films, we calculate absolute changes in the percentage of film in regions across the field of view. PMID:22191912

  14. Jasminum sambac flower absolutes from India and China--geographic variations.

    PubMed

    Braun, Norbert A; Sim, Sherina

    2012-05-01

    Seven Jasminum sambac flower absolutes from different locations in the southern Indian state of Tamil Nadu were analyzed using GC and GC-MS. Focus was placed on 41 key ingredients to investigate geographic variations in this species. These seven absolutes were compared with an Indian bud absolute and commercially available J. sambac flower absolutes from India and China. All absolutes showed broad variations for the 10 main ingredients between 8% and 96%. In addition, the odor of Indian and Chinese J. sambac flower absolutes were assessed.

  15. Quantitative ultra-fast MRI of HPMC swelling and dissolution.

    PubMed

    Chen, Ya Ying; Hughes, L P; Gladden, L F; Mantle, M D

    2010-08-01

    For the first time quantitative Rapid Acquisition with Relaxation Enhancement (RARE) based ultra-fast two-dimensional magnetic resonance imaging has been used to follow the dissolution of hydroxypropylmethyl cellulose (HPMC) in water. Quantitative maps of absolute water concentration, spin-spin relaxation times and water self-diffusion coefficient are obtained at a spatial resolution of 469 microm in less than 3 min each. These maps allow the dynamic development of the medium release rate HPMC/water system to be followed. It is demonstrated that the evolution of the gel layer and, in particular, the gradient in water concentration across it, is significantly different when comparing the quantitative RARE sequence with a standard (nonquantitative) implementation of RARE. The total gel thickness in the axial direction grows faster than that in the radial direction and that the dry core initially expands anisotropically. Additionally, while HPMC absorbs a large amount of water during the dissolution process, the concentration gradient of water within the gel layer is relatively small. For the first time MRI evidence is presented for a transition swollen glassy layer which resides between the outer edge of the dry tablet core and the inner edge of the gel layer. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  16. [Prognostic value of absolute monocyte count in chronic lymphocytic leukaemia].

    PubMed

    Szerafin, László; Jakó, János; Riskó, Ferenc

    2015-04-01

    The low peripheral absolute lymphocyte and high monocyte count have been reported to correlate with poor clinical outcome in various lymphomas and other cancers. However, a few data known about the prognostic value of absolute monocyte count in chronic lymphocytic leukaemia. The aim of the authors was to investigate the impact of absolute monocyte count measured at the time of diagnosis in patients with chronic lymphocytic leukaemia on the time to treatment and overal survival. Between January 1, 2005 and December 31, 2012, 223 patients with newly-diagnosed chronic lymphocytic leukaemia were included. The rate of patients needing treatment, time to treatment, overal survival and causes of mortality based on Rai stages, CD38, ZAP-70 positivity and absolute monocyte count were analyzed. Therapy was necessary in 21.1%, 57.4%, 88.9%, 88.9% and 100% of patients in Rai stage 0, I, II, III an IV, respectively; in 61.9% and 60.8% of patients exhibiting CD38 and ZAP-70 positivity, respectively; and in 76.9%, 21.2% and 66.2% of patients if the absolute monocyte count was <0.25 G/l, between 0.25-0.75 G/l and >0.75 G/l, respectively. The median time to treatment and the median overal survival were 19.5, 65, and 35.5 months; and 41.5, 65, and 49.5 months according to the three groups of monocyte counts. The relative risk of beginning the therapy was 1.62 (p<0.01) in patients with absolute monocyte count <0.25 G/l or >0.75 G/l, as compared to those with 0.25-0.75 G/l, and the risk of overal survival was 2.41 (p<0.01) in patients with absolute monocyte count lower than 0.25 G/l as compared to those with higher than 0.25 G/l. The relative risks remained significant in Rai 0 patients, too. The leading causes of mortality were infections (41.7%) and the chronic lymphocytic leukaemia (58.3%) in patients with low monocyte count, while tumours (25.9-35.3%) and other events (48.1 and 11.8%) occurred in patients with medium or high monocyte counts. Patients with low and high monocyte

  17. Slow erosion of a quantitative apple resistance to Venturia inaequalis based on an isolate-specific Quantitative Trait Locus.

    PubMed

    Caffier, Valérie; Le Cam, Bruno; Al Rifaï, Mehdi; Bellanger, Marie-Noëlle; Comby, Morgane; Denancé, Caroline; Didelot, Frédérique; Expert, Pascale; Kerdraon, Tifenn; Lemarquand, Arnaud; Ravon, Elisa; Durel, Charles-Eric

    2016-10-01

    Quantitative plant resistance affects the aggressiveness of pathogens and is usually considered more durable than qualitative resistance. However, the efficiency of a quantitative resistance based on an isolate-specific Quantitative Trait Locus (QTL) is expected to decrease over time due to the selection of isolates with a high level of aggressiveness on resistant plants. To test this hypothesis, we surveyed scab incidence over an eight-year period in an orchard planted with susceptible and quantitatively resistant apple genotypes. We sampled 79 Venturia inaequalis isolates from this orchard at three dates and we tested their level of aggressiveness under controlled conditions. Isolates sampled on resistant genotypes triggered higher lesion density and exhibited a higher sporulation rate on apple carrying the resistance allele of the QTL T1 compared to isolates sampled on susceptible genotypes. Due to this ability to select aggressive isolates, we expected the QTL T1 to be non-durable. However, our results showed that the quantitative resistance based on the QTL T1 remained efficient in orchard over an eight-year period, with only a slow decrease in efficiency and no detectable increase of the aggressiveness of fungal isolates over time. We conclude that knowledge on the specificity of a QTL is not sufficient to evaluate its durability. Deciphering molecular mechanisms associated with resistance QTLs, genetic determinants of aggressiveness and putative trade-offs within pathogen populations is needed to help in understanding the erosion processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling?

    PubMed

    Mei, Kai; Kopp, Felix K; Bippus, Rolf; Köhler, Thomas; Schwaiger, Benedikt J; Gersing, Alexandra S; Fehringer, Andreas; Sauter, Andreas; Münzel, Daniela; Pfeiffer, Franz; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B; Baum, Thomas

    2017-12-01

    Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. • BMD and quantitative bone parameters are assessable in ultra-low-dose in vivo MDCT scans. • Bone mineral density does not change significantly when sparse sampling is applied. • Quantitative trabecular bone microstructure measurements are sensitive to dose reduction. • Osteoporosis subjects could be differentiated even at 10% of original dose. • Radiation exposure should be considered when comparing quantitative bone parameters.

  19. Plasma protein absolute quantification by nano-LC Q-TOF UDMSE for clinical biomarker verification

    PubMed Central

    ILIES, MARIA; IUGA, CRISTINA ADELA; LOGHIN, FELICIA; DHOPLE, VISHNU MUKUND; HAMMER, ELKE

    2017-01-01

    Background and aims Proteome-based biomarker studies are targeting proteins that could serve as diagnostic, prognosis, and prediction molecules. In the clinical routine, immunoassays are currently used for the absolute quantification of such biomarkers, with the major limitation that only one molecule can be targeted per assay. The aim of our study was to test a mass spectrometry based absolute quantification method for the verification of plasma protein sets which might serve as reliable biomarker panels for the clinical practice. Methods Six EDTA plasma samples were analyzed after tryptic digestion using a high throughput data independent acquisition nano-LC Q-TOF UDMSE proteomics approach. Synthetic Escherichia coli standard peptides were spiked in each sample for the absolute quantification. Data analysis was performed using ProgenesisQI v2.0 software (Waters Corporation). Results Our method ensured absolute quantification of 242 non redundant plasma proteins in a single run analysis. The dynamic range covered was 105. 86% were represented by classical plasma proteins. The overall median coefficient of variation was 0.36, while a set of 63 proteins was found to be highly stable. Absolute protein concentrations strongly correlated with values reviewed in the literature. Conclusions Nano-LC Q-TOF UDMSE proteomic analysis can be used for a simple and rapid determination of absolute amounts of plasma proteins. A large number of plasma proteins could be analyzed, while a wide dynamic range was covered with low coefficient of variation at protein level. The method proved to be a reliable tool for the quantification of protein panel for biomarker verification in the clinical practice. PMID:29151793

  20. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars

    USGS Publications Warehouse

    Werner, S.C.; Tanaka, K.L.

    2011-01-01

    For the boundaries of each chronostratigraphic epoch on Mars, we present systematically derived crater-size frequencies based on crater counts of geologic referent surfaces and three proposed " standard" crater size-frequency production distributions as defined by (a) a simple -2 power law, (b) Neukum and Ivanov, (c) Hartmann. In turn, these crater count values are converted to model-absolute ages based on the inferred cratering rate histories. We present a new boundary definition for the Late Hesperian-Early Amazonian transition. Our fitting of crater size-frequency distributions to the chronostratigraphic record of Mars permits the assignment of cumulative counts of craters down to 100. m, 1. km, 2. km, 5. km, and 16. km diameters to martian epochs. Due to differences in the " standard" crater size-frequency production distributions, a generalized crater-density-based definition to the chronostratigraphic system cannot be provided. For the diameter range used for the boundary definitions, the resulting model absolute age fits vary within 1.5% for a given set of production function and chronology model ages. Crater distributions translated to absolute ages utilizing different curve descriptions can result in absolute age differences exceeding 10%. ?? 2011 Elsevier Inc.

  1. A Concurrent Mixed Methods Approach to Examining the Quantitative and Qualitative Meaningfulness of Absolute Magnitude Estimation Scales in Survey Research

    ERIC Educational Resources Information Center

    Koskey, Kristin L. K.; Stewart, Victoria C.

    2014-01-01

    This small "n" observational study used a concurrent mixed methods approach to address a void in the literature with regard to the qualitative meaningfulness of the data yielded by absolute magnitude estimation scaling (MES) used to rate subjective stimuli. We investigated whether respondents' scales progressed from less to more and…

  2. Fluorescence-based Western blotting for quantitation of protein biomarkers in clinical samples.

    PubMed

    Zellner, Maria; Babeluk, Rita; Diestinger, Michael; Pirchegger, Petra; Skeledzic, Senada; Oehler, Rudolf

    2008-09-01

    Since most high throughput techniques used in biomarker discovery are very time and cost intensive, highly specific and quantitative analytical alternative application methods are needed for the routine analysis. Conventional Western blotting allows detection of specific proteins to the level of single isotypes while its quantitative accuracy is rather limited. We report a novel and improved quantitative Western blotting method. The use of fluorescently labelled secondary antibodies strongly extends the dynamic range of the quantitation and improves the correlation with the protein amount (r=0.997). By an additional fluorescent staining of all proteins immediately after their transfer to the blot membrane, it is possible to visualise simultaneously the antibody binding and the total protein profile. This allows for an accurate correction for protein load. Applying this normalisation it could be demonstrated that fluorescence-based Western blotting is able to reproduce a quantitative analysis of two specific proteins in blood platelet samples from 44 subjects with different diseases as initially conducted by 2D-DIGE. These results show that the proposed fluorescence-based Western blotting is an adequate application technique for biomarker quantitation and suggest possibilities of employment that go far beyond.

  3. SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle.

    PubMed

    Kettenbach, Arminja N; Sano, Hiroyuki; Keller, Susanna R; Lienhard, Gustav E; Gerber, Scott A

    2015-01-30

    The study of cellular signaling remains a significant challenge for translational and clinical research. In particular, robust and accurate methods for quantitative phosphoproteomics in tissues and tumors represent significant hurdles for such efforts. In the present work, we design, implement and validate a method for single-stage phosphopeptide enrichment and stable isotope chemical tagging, or SPECHT, that enables the use of iTRAQ, TMT and/or reductive dimethyl-labeling strategies to be applied to phosphoproteomics experiments performed on primary tissue. We develop and validate our approach using reductive dimethyl-labeling and HeLa cells in culture, and find these results indistinguishable from data generated from more traditional SILAC-labeled HeLa cells mixed at the cell level. We apply the SPECHT approach to the quantitative analysis of insulin signaling in a murine myotube cell line and muscle tissue, identify known as well as new phosphorylation events, and validate these phosphorylation sites using phospho-specific antibodies. Taken together, our work validates chemical tagging post-single-stage phosphoenrichment as a general strategy for studying cellular signaling in primary tissues. Through the use of a quantitatively reproducible, proteome-wide phosphopeptide enrichment strategy, we demonstrated the feasibility of post-phosphopeptide purification chemical labeling and tagging as an enabling approach for quantitative phosphoproteomics of primary tissues. Using reductive dimethyl labeling as a generalized chemical tagging strategy, we compared the performance of post-phosphopeptide purification chemical tagging to the well established community standard, SILAC, in insulin-stimulated tissue culture cells. We then extended our method to the analysis of low-dose insulin signaling in murine muscle tissue, and report on the analytical and biological significance of our results. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  5. Determination of the absolute configuration of two estrogenic nonylphenols in solution by chiroptical methods

    NASA Astrophysics Data System (ADS)

    Reinscheid, Uwe M.

    2009-01-01

    The absolute configurations of two estrogenic nonylphenols were determined in solution. Both nonylphenols, NP35 and NP112 could not be crystallized so that only solution methods are able to solve directly the question of absolute configuration. The conclusion based on experimental and calculated optical rotation and VCD data for the nonylphenol NP35 was independently confirmed by another study using a camphanoyl derivative and X-ray analysis of the obtained crystals. In case of NP112, the experimental rotation data are inconclusive. However, the comparison between experimental and calculated VCD data allowed the determination of the absolute configuration.

  6. Absolute gravimetry as an operational tool for geodynamics research

    NASA Astrophysics Data System (ADS)

    Torge, W.

    Relative gravimetric techniques have been used for nearly 30 years for measuring non-tidal gravity variations with time, and thus have contributed to geodynamics research by monitoring vertical crustal movements and internal mass shifts. With today's accuracy of about ± 0.05µms-2 (or 5µGal), significant results have been obtained in numerous control nets of local extension, especially in connection with seismic and volcanic events. Nevertheless, the main drawbacks of relative gravimetry, which are deficiencies in absolute datum and calibration, set a limit for its application, especially with respect to large-scale networks and long-term investigations. These problems can now be successfully attacked by absolute gravimetry, with transportable gravimeters available since about 20 years. While the absolute technique during the first two centuries of gravimetry's history was based on the pendulum method, the free-fall method can now be employed taking advantage of laser-interferometry, electronic timing, vacuum and shock absorbing techniques, and on-line computer-control. The accuracy inherent in advanced instruments is about ± 0.05 µms-2. In field work, generally an accuracy of ±0.1 µms-2 may be expected, strongly depending on local environmental conditions.

  7. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.

    PubMed

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong

    2015-03-30

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. Copyright © 2015 Zhu et al.

  8. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    NASA Astrophysics Data System (ADS)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  9. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    PubMed Central

    Gurley, Katelyn; Shang, Yu

    2012-01-01

    Abstract. This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (rV˙O2). The rBF and rV˙O2 signals were calibrated with absolute baseline BF and V˙O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482

  10. Automated absolute phase retrieval in across-track interferometry

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Zebker, Howard A.

    1992-01-01

    Discussed is a key element in the processing of topographic radar maps acquired by the NASA/JPL airborne synthetic aperture radar configured as an across-track interferometer (TOPSAR). TOPSAR utilizes a single transmit and two receive antennas; the three-dimensional target location is determined by triangulation based on a known baseline and two measured slant ranges. The slant range difference is determined very accurately from the phase difference between the signals received by the two antennas. This phase is measured modulo 2pi, whereas it is the absolute phase which relates directly to the difference in slant range. It is shown that splitting the range bandwidth into two subbands in the processor and processing each individually allows for the absolute phase. The underlying principles and system errors which must be considered are discussed, together with the implementation and results from processing data acquired during the summer of 1991.

  11. Absolute-gravity stations in Western Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Mäkinen, Jaakko; Rasindra, Ravik; Chand, Uttam; Tiwari, Virendra; Lukin, Valery; Anisimov, Michail; Melvaer, Yngve; Melland, Gudmund; Koivula, Hannu; Näränen, Jyri; Poutanen, Markku

    2013-04-01

    Absolute-gravity stations are an important part of the geodetic infrastructure of the Antarctic. They provide accurate starting values for gravity surveys performed e.g. for the determination of the geoid, for geological studies and for geophysical investigations. The time variation in gravity determined from repeated absolute-gravity measurements provides insights into the Glacial Isostatic Adjustment (GIA) and into solid Earth deformation due to variation in contemporary ice load. Given sufficient joint coverage with International Terrestrial Reference Frame (ITRF) sites, gravity rates in high latitudes could in principle provide an independent check of the geocentricity of the z-dot (velocities in the direction of the rotation axis of the Earth) of the ITRF. We review the absolute gravity stations in Western and Central Dronning Maud Land. The oldest station is at the Finnish base Aboa, with 5 measurements by the Finnish Geodetic Institute (FGI) starting with the FINNARP 1993 expedition. Measurements at Maitri (India) and Novolazarevskaya (Russia) were first performed in 2004 by the National Geophysical Research Institute (NGRI) of India, and by the FGI, respectively. In the season 2010/11 a new station was constructed at Troll (Norway). In the season 2011/12 the aforementioned four sites were occupied by the FG5-221 absolute gravimeter of the FGI. At Sanae IV (South Africa) there are previous occupations by the FG5-221, in 2003/4 and 2005/6. All these bases have continuous GNSS stations. Numerous supporting measurements have been made at the sites: microgravity networks, levelling and GNSS ties to excentres etc., for controlling the stability of the stations. At some sites, nearby glacier elevations were surveyed to monitor the attraction of the variable close-field snow and ice masses. We give a description of the sites and the measurements performed at them. The work has benefited from the co-operation in the COST Action ES0701 "Improved Constraints on Models

  12. Sensitivity analyses of exposure estimates from a quantitative job-exposure matrix (SYN-JEM) for use in community-based studies.

    PubMed

    Peters, Susan; Kromhout, Hans; Portengen, Lützen; Olsson, Ann; Kendzia, Benjamin; Vincent, Raymond; Savary, Barbara; Lavoué, Jérôme; Cavallo, Domenico; Cattaneo, Andrea; Mirabelli, Dario; Plato, Nils; Fevotte, Joelle; Pesch, Beate; Brüning, Thomas; Straif, Kurt; Vermeulen, Roel

    2013-01-01

    We describe the elaboration and sensitivity analyses of a quantitative job-exposure matrix (SYN-JEM) for respirable crystalline silica (RCS). The aim was to gain insight into the robustness of the SYN-JEM RCS estimates based on critical decisions taken in the elaboration process. SYN-JEM for RCS exposure consists of three axes (job, region, and year) based on estimates derived from a previously developed statistical model. To elaborate SYN-JEM, several decisions were taken: i.e. the application of (i) a single time trend; (ii) region-specific adjustments in RCS exposure; and (iii) a prior job-specific exposure level (by the semi-quantitative DOM-JEM), with an override of 0 mg/m(3) for jobs a priori defined as non-exposed. Furthermore, we assumed that exposure levels reached a ceiling in 1960 and remained constant prior to this date. We applied SYN-JEM to the occupational histories of subjects from a large international pooled community-based case-control study. Cumulative exposure levels derived with SYN-JEM were compared with those from alternative models, described by Pearson correlation ((Rp)) and differences in unit of exposure (mg/m(3)-year). Alternative models concerned changes in application of job- and region-specific estimates and exposure ceiling, and omitting the a priori exposure ranking. Cumulative exposure levels for the study subjects ranged from 0.01 to 60 mg/m(3)-years, with a median of 1.76 mg/m(3)-years. Exposure levels derived from SYN-JEM and alternative models were overall highly correlated (R(p) > 0.90), although somewhat lower when omitting the region estimate ((Rp) = 0.80) or not taking into account the assigned semi-quantitative exposure level (R(p) = 0.65). Modification of the time trend (i.e. exposure ceiling at 1950 or 1970, or assuming a decline before 1960) caused the largest changes in absolute exposure levels (26-33% difference), but without changing the relative ranking ((Rp) = 0.99). Exposure estimates derived from SYN

  13. Absolute quantification of DNA methylation using microfluidic chip-based digital PCR.

    PubMed

    Wu, Zhenhua; Bai, Yanan; Cheng, Zule; Liu, Fangming; Wang, Ping; Yang, Dawei; Li, Gang; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong

    2017-10-15

    Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quantitative EEG in Children and Adults With Attention Deficit Hyperactivity Disorder: Comparison of Absolute and Relative Power Spectra and Theta/Beta Ratio.

    PubMed

    Markovska-Simoska, Silvana; Pop-Jordanova, Nada

    2017-01-01

    In recent decades, resting state electroencephalographic (EEG) measures have been widely used to document underlying neurophysiological dysfunction in attention deficit hyperactivity disorder (ADHD). Although most EEG studies focus on children, there is a growing interest in adults with ADHD too. The aim of this study was to objectively assess and compare the absolute and relative EEG power as well as the theta/beta ratio in children and adults with ADHD. The evaluated sample comprised 30 male children and 30 male adults with ADHD diagnosed according to DSM-IV criteria. They were compared with 30 boys and 30 male adults matched by age. The mean age (±SD) of the children's group was 9 (±2.44) years and the adult group 35.8 (±8.65) years. EEG was recorded during an eyes-open condition. Spectral analysis of absolute (μV 2 ) and relative power (%) was carried out for 4 frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-21 Hz). The findings obtained for ADHD children are increased absolute power of slow waves (theta and delta), whereas adults exhibited no differences compared with normal subjects. For the relative power spectra there were no differences between the ADHD and control groups. Across groups, the children showed greater relative power than the adults in the delta and theta bands, but for the higher frequency bands (alpha and beta) the adults showed more relative power than children. Only ADHD children showed greater theta/beta ratio compared to the normal group. Classification analysis showed that ADHD children could be differentiated from the control group by the absolute theta values and theta/beta ratio at Cz, but this was not the case with ADHD adults. The question that should be further explored is if these differences are mainly due to maturation processes or if there is a core difference in cortical arousal between ADHD children and adults. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  15. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  16. Astigmatism error modification for absolute shape reconstruction using Fourier transform method

    NASA Astrophysics Data System (ADS)

    He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun

    2014-12-01

    A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.

  17. Globular Clusters: Absolute Proper Motions and Galactic Orbits

    NASA Astrophysics Data System (ADS)

    Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.

    2018-04-01

    We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

  18. Proteomic Analysis of the Human Skin Proteome after In Vivo Treatment with Sodium Dodecyl Sulphate

    PubMed Central

    Parkinson, Erika; Skipp, Paul; Aleksic, Maja; Garrow, Andrew; Dadd, Tony; Hughes, Michael; Clough, Geraldine; O′Connor, C. David

    2014-01-01

    Background Skin has a variety of functions that are incompletely understood at the molecular level. As the most accessible tissue in the body it often reveals the first signs of inflammation or infection and also represents a potentially valuable source of biomarkers for several diseases. In this study we surveyed the skin proteome qualitatively using gel electrophoresis, liquid chromatography tandem mass spectrometry (GeLC-MS/MS) and quantitatively using an isobaric tagging strategy (iTRAQ) to characterise the response of human skin following exposure to sodium dodecyl sulphate (SDS). Results A total of 653 skin proteins were assigned, 159 of which were identified using GeLC-MS/MS and 616 using iTRAQ, representing the most comprehensive proteomic study in human skin tissue. Statistical analysis of the available iTRAQ data did not reveal any significant differences in the measured skin proteome after 4 hours exposure to the model irritant SDS. Conclusions This study represents the first step in defining the critical response to an irritant at the level of the proteome and provides a valuable resource for further studies at the later stages of irritant exposure. PMID:24849295

  19. Volumetric vessel reconstruction method for absolute blood flow velocity measurement in Doppler OCT images

    NASA Astrophysics Data System (ADS)

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2017-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also relates to the geometry of both directions of the laser beam and the flow. In this paper, focusing on the analysis of cerebral hemodynamics, we presents a method to quantify the total absolute blood flow velocity in middle cerebral artery (MCA) based on volumetric vessel reconstruction from pure DOCT images. A modified region growing segmentation method is first used to localize the MCA on successive DOCT B-scan images. Vessel skeletonization, followed by an averaging gradient angle calculation method, is then carried out to obtain Doppler angles along the entire MCA. Once the Doppler angles are determined, the absolute blood flow velocity of each position on the MCA is easily found. Given a seed point position on the MCA, our approach could achieve automatic quantification of the fully distributed absolute BFV. Based on experiments conducted using a swept-source optical coherence tomography system, our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches in the rodent brain.

  20. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  1. Absolute pitch in a four-year-old boy with autism.

    PubMed

    Brenton, James N; Devries, Seth P; Barton, Christine; Minnich, Heike; Sokol, Deborah K

    2008-08-01

    Absolute pitch is the ability to identify the pitch of an isolated tone. We report on a 4-year-old boy with autism and absolute pitch, one of the youngest reported in the literature. Absolute pitch is thought to be attributable to a single gene, transmitted in an autosomal-dominant fashion. The association of absolute pitch with autism raises the speculation that this talent could be linked to a genetically distinct subset of children with autism. Further, the identification of absolute pitch in even young children with autism may lead to a lifelong skill.

  2. Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation.

    PubMed

    Zhou, Chun-Xue; Zhu, Xing-Quan; Elsheikha, Hany M; He, Shuai; Li, Qian; Zhou, Dong-Hui; Suo, Xun

    2016-10-04

    Toxoplasma gondii is a medically and economically important protozoan parasite. However, the molecular mechanisms of its sporulation remain largely unknown. Here, we applied iTRAQ coupled with 2D LC-MS/MS proteomic analysis to investigate the proteomic expression profile of T. gondii oocysts during sporulation. Of the 2095 non-redundant proteins identified, 587 were identified as differentially expressed proteins (DEPs). Based on Gene Ontology enrichment and KEGG pathway analyses the majority of these DEPs were found related to the metabolism of amino acids, carbon and energy. Protein interaction network analysis generated by STRING identified ATP-citrate lyase (ACL), GMP synthase, IMP dehydrogenase (IMPDH), poly (ADP-ribose) glycohydrolase (PARG), and bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) as the top five hubs. We also identified 25 parasite virulence factors that were expressed at relatively high levels in sporulated oocysts compared to non-sporulated oocysts, which might contribute to the infectivity of mature oocysts. Considering the importance of oocysts in the dissemination of toxoplasmosis these findings may help in the search of protein targets with a key role in infectiousness and ecological success of oocysts, creating new opportunities for the development of better means for disease prevention. The development of new preventative interventions against T. gondii infection relies on an improved understanding of the proteome and chemical pathways of this parasite. To identify proteins required for the development of environmentally resistant and infective T. gondii oocysts, we compared the proteome of non-sporulated (immature) oocysts with the proteome of sporulated (mature, infective) oocysts. iTRAQ 2D-LC-MS/MS analysis revealed proteomic changes that distinguish non-sporulated from sporulated oocysts. Many of the differentially expressed proteins were involved in metabolic pathways and 25 virulence factors were identified

  3. Ratio measures in leading medical journals: structured review of accessibility of underlying absolute risks

    PubMed Central

    Schwartz, Lisa M; Dvorin, Evan L; Welch, H Gilbert

    2006-01-01

    Objective To examine the accessibility of absolute risk in articles reporting ratio measures in leading medical journals. Design Structured review of abstracts presenting ratio measures. Setting Articles published between 1 June 2003 and 1 May 2004 in Annals of Internal Medicine, BMJ, Journal of the American Medical Association, Journal of the National Cancer Institute, Lancet, and New England Journal of Medicine. Participants 222 articles based on study designs in which absolute risks were directly calculable (61 randomised trials, 161 cohort studies). Main outcome measure Accessibility of the absolute risks underlying the first ratio measure in the abstract. Results 68% of articles (150/222) failed to report the underlying absolute risks for the first ratio measure in the abstract (range 55−81% across the journals). Among these articles, about half did report the underlying absolute risks elsewhere in the article (text, table, or figure) but half did not report them anywhere. Absolute risks were more likely to be reported in the abstract for randomised trials compared with cohort studies (62% v 21%; relative risk 3.0, 95% confidence interval 2.1 to 4.2) and for studies reporting crude compared with adjusted ratio measures (62% v 21%; relative risk 3.0, 2.1 to 4.3). Conclusion Absolute risks are often not easily accessible in articles reporting ratio measures and sometimes are missing altogether—this lack of accessibility can easily exaggerate readers' perceptions of benefit or harm. PMID:17060338

  4. Absolute Quantification of Rifampicin by MALDI Imaging Mass Spectrometry Using Multiple TOF/TOF Events in a Single Laser Shot

    NASA Astrophysics Data System (ADS)

    Prentice, Boone M.; Chumbley, Chad W.; Caprioli, Richard M.

    2017-01-01

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for the visualization of molecular distributions within tissue sections. While providing excellent molecular specificity and spatial information, absolute quantification by MALDI IMS remains challenging. Especially in the low molecular weight region of the spectrum, analysis is complicated by matrix interferences and ionization suppression. Though tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity and improve sensitivity by eliminating chemical noise, typical MALDI MS/MS modalities only scan for a single MS/MS event per laser shot. Herein, we describe TOF/TOF instrumentation that enables multiple fragmentation events to be performed in a single laser shot, allowing the intensity of the analyte to be referenced to the intensity of the internal standard in each laser shot while maintaining the benefits of MS/MS. This approach is illustrated by the quantitative analyses of rifampicin (RIF), an antibiotic used to treat tuberculosis, in pooled human plasma using rifapentine (RPT) as an internal standard. The results show greater than 4-fold improvements in relative standard deviation as well as improved coefficients of determination (R2) and accuracy (>93% quality controls, <9% relative errors). This technology is used as an imaging modality to measure absolute RIF concentrations in liver tissue from an animal dosed in vivo. Each microspot in the quantitative image measures the local RIF concentration in the tissue section, providing absolute pixel-to-pixel quantification from different tissue microenvironments. The average concentration determined by IMS is in agreement with the concentration determined by HPLC-MS/MS, showing a percent difference of 10.6%.

  5. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  6. Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection.

    PubMed

    Dapat, Clyde; Saito, Reiko; Suzuki, Hiroshi; Horigome, Tsuneyoshi

    2014-01-22

    The emergence of antiviral drug-resistant influenza viruses highlights the need for alternative therapeutic strategies. Elucidation of host factors required during virus infection provides information not only on the signaling pathways involved but also on the identification of novel drug targets. RNA interference screening method had been utilized by several studies to determine these host factors; however, proteomics data on influenza host factors are currently limited. In this study, quantitative phosphoproteomic analysis of human lung cell line (A549) infected with 2009 pandemic influenza virus A (H1N1) virus was performed. Phosphopeptides were enriched from tryptic digests of total protein of infected and mock-infected cells using a titania column on an automated purification system followed by iTRAQ labeling. Identification and quantitative analysis of iTRAQ-labeled phosphopeptides were performed using LC-MS/MS. We identified 366 phosphorylation sites on 283 proteins. Of these, we detected 43 upregulated and 35 downregulated proteins during influenza virus infection. Gene ontology enrichment analysis showed that majority of the identified proteins are phosphoproteins involved in RNA processing, immune system process and response to infection. Host-virus interaction network analysis had identified 23 densely connected subnetworks. Of which, 13 subnetworks contained proteins with altered phosphorylation levels during by influenza virus infection. Our results will help to identify potential drug targets that can be pursued for influenza antiviral drug development. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. LC-MS/MS Based Quantitation of ABC and SLC Transporter Proteins in Plasma Membranes of Cultured Primary Human Retinal Pigment Epithelium Cells and Immortalized ARPE19 Cell Line.

    PubMed

    Pelkonen, Laura; Sato, Kazuki; Reinisalo, Mika; Kidron, Heidi; Tachikawa, Masanori; Watanabe, Michitoshi; Uchida, Yasuo; Urtti, Arto; Terasaki, Tetsuya

    2017-03-06

    The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier between neural retina and choroid. The RPE has several important vision supporting functions, such as transport mechanisms that may also modify pharmacokinetics in the posterior eye segment. Expression of plasma membrane transporters in the RPE cells has not been quantitated. The aim of this study was to characterize and compare transporter protein expression in the ARPE19 cell line and hfRPE (human fetal RPE) cells by using quantitative targeted absolute proteomics (QTAP). Among 41 studied transporters, 16 proteins were expressed in hfRPE and 13 in ARPE19 cells. MRP1, MRP5, GLUT1, 4F2hc, TAUT, CAT1, LAT1, and MATE1 proteins were detected in both cell lines within 4-fold differences. MPR7, OAT2 and RFC1 were detected in the hfRPE cells, but their expression levels were below the limit of quantification in ARPE19 cells. PCFT was detected in both studied cell lines, but the expression was over 4-fold higher in hfRPE cells. MCT1, MCT4, MRP4, and Na + /K + ATPase were upregulated in the ARPE19 cell line showing over 4-fold differences in the quantitative expression values. Expression levels of 25 transporters were below the limit of quantification in both cell models. In conclusion, we present the first systematic and quantitative study on transporter protein expression in the plasma membranes of ARPE19 and hfRPE cells. Overall, transporter expression in the ARPE19 and hfRPE cells correlated well and the absolute expression levels were similar, but not identical. The presented quantitative expression levels could be a useful basis for further studies on drug permeation in the outer blood-retinal barrier.

  8. Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging

    DOE PAGES

    Dyck, Ondrej; Hu, Sheng; Das, Sanjib; ...

    2015-11-24

    Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. Our paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. One complementary spectrum image capturing the carbon and sulfur core loss edges is compared with themore » plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We also show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.« less

  9. Nanomolar detection of hypochlorite by a rhodamine-based chiral hydrazide in absolute aqueous media: application in tap water analysis with live-cell imaging.

    PubMed

    Goswami, Shyamaprosad; Das, Avijit Kumar; Manna, Abhishek; Maity, Anup Kumar; Saha, Partha; Quah, Ching Kheng; Fun, Hoong-Kun; Abdel-Aziz, Hatem A

    2014-07-01

    By employing the oxidation property of hypochlorite (OCl(-)), a novel rhodamine-based hydrazide of the chiral acid ((S)-(-)-2-pyrrolidone-5-carboxylic acid) (RHHP) was designed and synthesized for detection of OCl(-) absolutely in aqueous medium at nanomolar level. The structure of the chiral sensor was also proved by the X-ray crystallography. The bioactivity and the application of the probe for detection of OCl(-) in natural water system have been demonstrated. A plausible mechanism for oxidation of the sensor followed by hydrolysis is also proposed. The sensibility of the receptor toward OCl(-) was studied in absolute aqueous media, and the detection limit of hypochlorite-mediated oxidation to the receptor in nanomolar level makes this platform (RHHP) an ultrasensitive and unique system for OCl(-) oxidation.

  10. MR Imaging-based Semi-quantitative Methods for Knee Osteoarthritis

    PubMed Central

    JARRAYA, Mohamed; HAYASHI, Daichi; ROEMER, Frank Wolfgang; GUERMAZI, Ali

    2016-01-01

    Magnetic resonance imaging (MRI)-based semi-quantitative (SQ) methods applied to knee osteoarthritis (OA) have been introduced during the last decade and have fundamentally changed our understanding of knee OA pathology since then. Several epidemiological studies and clinical trials have used MRI-based SQ methods to evaluate different outcome measures. Interest in MRI-based SQ scoring system has led to continuous update and refinement. This article reviews the different SQ approaches for MRI-based whole organ assessment of knee OA and also discuss practical aspects of whole joint assessment. PMID:26632537

  11. High-throughput real-time quantitative reverse transcription PCR.

    PubMed

    Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F

    2006-02-01

    Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.

  12. Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities

    NASA Astrophysics Data System (ADS)

    Lawless, Mary K.; Mathies, Richard A.

    1992-06-01

    Absolute resonance Raman cross sections are measured for Nile blue 690 perchlorate dissolved in ethylene glycol with excitation at 514, 531, and 568 nm. These values and the absorption spectrum are modeled using a time-dependent wave packet formalism. The excited-state equilibrium geometry changes are quantitated for 40 resonance Raman active modes, seven of which (590, 1141, 1351, 1429, 1492, 1544, and 1640 cm-1 ) carry 70% of the total resonance Raman intensity. This demonstrates that in addition to the prominent 590 and 1640 cm-1 modes, a large number of vibrational degrees of freedom are Franck-Condon coupled to the electronic transition. After exposure of the explicit vibrational progressions, the residual absorption linewidth is separated into its homogeneous [350 cm-1 half-width at half-maximum (HWHM)] and inhomogeneous (313 cm-1 HWHM) components through an analysis of the absolute Raman cross sections. The value of the electronic dephasing time derived from this study (25 fs) compares well to previously published results. These data should be valuable in multimode modeling of femtosecond experiments on Nile blue.

  13. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  14. Monolithically integrated absolute frequency comb laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  15. Validation of Greyscale-Based Quantitative Ultrasound in Manual Wheelchair Users

    PubMed Central

    Collinger, Jennifer L.; Fullerton, Bradley; Impink, Bradley G.; Koontz, Alicia M.; Boninger, Michael L.

    2010-01-01

    Objective The primary aim of this study is to establish the validity of greyscale-based quantitative ultrasound (QUS) measures of the biceps and supraspinatus tendons. Design Nine QUS measures of the biceps and supraspinatus tendons were computed from ultrasound images collected from sixty-seven manual wheelchair users. Shoulder pathology was measured using questionnaires, physical examination maneuvers, and a clinical ultrasound grading scale. Results Increased age, duration of wheelchair use, and body mass correlated with a darker, more homogenous tendon appearance. Subjects with pain during physical examination tests for biceps tenderness and acromioclavicular joint tenderness exhibited significantly different supraspinatus QUS values. Even when controlling for tendon depth, QUS measures of the biceps tendon differed significantly between subjects with healthy tendons, mild tendinosis, and severe tendinosis. Clinical grading of supraspinatus tendon health was correlated with QUS measures of the supraspinatus tendon. Conclusions Quantitative ultrasound is valid method to quantify tendinopathy and may allow for early detection of tendinosis. Manual wheelchair users are at a high risk for developing shoulder tendon pathology and may benefit from quantitative ultrasound-based research that focuses on identifying interventions designed to reduce this risk. PMID:20407304

  16. Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis.

    PubMed

    Yee, A; Lam, M P Y; Tam, V; Chan, W C W; Chu, I K; Cheah, K S E; Cheung, K M C; Chan, D

    2016-03-01

    Intervertebral disc degeneration (IDD) can lead to symptomatic conditions including sciatica and back pain. The purpose of this study is to understand the extracellular matrix (ECM) changes in disc biology through comparative proteomic analysis of degenerated and non-degenerated human intervertebral disc (IVD) tissues of different ages. Seven non-degenerated (11-46 years of age) and seven degenerated (16-53 years of age) annulus fibrosus (AF) and nucleus pulposus (NP) samples were used. Proteins were extracted using guanidine hydrochloride, separated from large proteoglycans (PGs) by caesium chloride (CsCl) density gradient ultracentrifugation, and identified using liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS). For quantitative comparison, proteins were labeled with iTRAQ reagents. Collagen fibrils in the NP were assessed using scanning electron microscopy (SEM). In the AF, quantitative analysis revealed increased levels of HTRA1, COMP and CILP in degeneration when compared with samples from older individuals. Fibronectin showed increment with age and degeneration. In the NP, more CILP and CILP2 were present in degenerated samples of younger individuals. Reduced protein solubility was observed in degenerated and older non-degenerated samples correlated with an accumulation of type I collagen in the insoluble fibers. Characterization of collagen fibrils in the NP revealed smaller mean fibril diameters and decreased porosity in the degenerated samples. Our study identified distinct matrix changes associated with aging and degeneration in the intervertebral discs (IVDs). The nature of the ECM changes, together with observed decreased in solubility and changes in fibril diameter is consistent with a fibrotic-like environment. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  17. Quantitative Proteomic Profiling of Low-Dose Ionizing Radiation Effects in a Human Skin Model

    PubMed Central

    Hengel, Shawna M.; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.

    2014-01-01

    To assess responses to low-dose ionizing radiation (LD-IR) exposures potentially encountered during medical diagnostic procedures, nuclear accidents or terrorist acts, a quantitative proteomic approach was used to identify changes in protein abundance in a reconstituted human skin tissue model treated with 0.1 Gy of ionizing radiation. To improve the dynamic range of the assay, subcellular fractionation was employed to remove highly abundant structural proteins and to provide insight into radiation-induced alterations in protein localization. Relative peptide quantification across cellular fractions, control and irradiated samples was performing using 8-plex iTRAQ labeling followed by online two-dimensional nano-scale liquid chromatography and high resolution MS/MS analysis. A total of 107 proteins were detected with statistically significant radiation-induced change in abundance (>1.5 fold) and/or subcellular localization compared to controls. The top biological pathways identified using bioinformatics include organ development, anatomical structure formation and the regulation of actin cytoskeleton. From the proteomic data, a change in proteolytic processing and subcellular localization of the skin barrier protein, filaggrin, was identified, and the results were confirmed by western blotting. This data indicate post-transcriptional regulation of protein abundance, localization and proteolytic processing playing an important role in regulating radiation response in human tissues. PMID:28250387

  18. Maternal serum proteome changes between the first and third trimester of pregnancy in rural southern Nepal.

    PubMed

    Scholl, P F; Cole, R N; Ruczinski, I; Gucek, M; Diez, R; Rennie, A; Nathasingh, C; Schulze, K; Christian, P; Yager, J D; Groopman, J D; West, K P

    2012-05-01

    Characterization of normal changes in the serum proteome during pregnancy may enhance understanding of maternal physiology and lead to the development of new gestational biomarkers. In 23 Nepalese pregnant women who delivered at term, two-dimensional difference in-gel electrophoresis (DIGE) was used to assess changes in relative protein abundance between paired serum samples collected in the first and third trimesters. One-hundred and forty-five of over 700 protein spots in DIGE gels (pI 4.2-6.8) exhibited nominally significant (p < 0.05) differences in abundance across trimesters. Additional filtering using a Bonferroni correction reduced the number of significant (p < 0.00019) spots to 61. Mass spectrometric analysis detected 38 proteins associated with gestational age, cytoskeletal remodeling, blood pressure regulation, lipid and nutrient transport, and inflammation. One new protein, pregnancy-specific β-glycoprotein 4 was detected. A follow-up isotope tagging for relative and absolute quantitation (iTRAQ) experiment of six mothers from the DIGE study revealed 111 proteins, of which 11 exhibited significant (p < 0.05) differences between trimesters. Four of these proteins: gelsolin, complement C1r subcomponent, α-1-acid glycoprotein, and α-1B-glycoprotein also changed in the DIGE analysis. Although not previously associated with normal pregnancy, gelsolin decreased in abundance by the third trimester (p < 0.01) in DIGE, iTRAQ and Western analyses. Changes in abundance of proteins in serum that are associated with syncytiotrophoblasts (gelsolin, pregnancy-specific β-1 glycoprotein 1 and β-2-glycoprotein I) probably reflect dynamics of a placental proteome shed into maternal circulation during pregnancy. Measurement of changes in the maternal serum proteome, when linked with birth outcomes, may yield biomarkers for tracking reproductive health in resource poor settings in future studies. Published by Elsevier Ltd.

  19. Proteomic Markers of Functional Sperm Population in Bovines: Comparison of Low- and High-Density Spermatozoa Following Cryopreservation.

    PubMed

    D'Amours, Olivier; Frenette, Gilles; Bourassa, Sylvie; Calvo, Ézéchiel; Blondin, Patrick; Sullivan, Robert

    2018-01-05

    Mammalian semen contains a heterogeneous population of sperm cells. This heterogeneity results from variability in the complex processes of cell differentiation in the testis, biochemical modifications undergone by spermatozoa during transit along the male reproductive tract, interactions with secretions from accessory sex glands at ejaculation, and, in the context of reproductive technologies, in the ability of ejaculated spermatozoa to resist damage associated with freeze-thaw procedures. When submitted to density gradient centrifugation, ejaculated spermatozoa distribute themselves into two distinct populations: a low-density population characterized by low motility parameters, and a high-density population with high motility characteristics. To understand the origin of ejaculated spermatozoa heterogeneity, cryopreserved semen samples from bulls used by the artificial insemination (A.I.) industry were submitted to Percoll gradient centrifugation. Proteins from low and high density spermatozoa were then extracted with sodium deoxycholate and submitted to proteomic analysis using iTRAQ (isobaric tag for relative and absolute quantitation) methodologies. Quantification of selected sperm proteins was confirmed by multiple reaction monitoring (MRM). Overall, 31 different proteins were more abundant in low-density spermatozoa, while 80 different proteins were more abundant in the high-density subpopulation. Proteins enriched in high-density spermatozoa were markers of sperm functionality such as the glycolytic process, binding to the egg zona pellucida, and motility. Low-density spermatozoa were not solely characterized by loss of proteins and their associated functions. Chaperonin-containing TCP1s and chaperones are hallmarks of the low-density subpopulation. iTRAQ analysis revealed that other proteins such as binder of sperm proteins, histone, GPX5, ELSPBP1, and clusterin are overexpressed in low-density spermatozoa suggesting that these proteins represent defects

  20. Absolute flatness measurements of silicon mirrors by a three-intersection method by near-infrared interferometry

    PubMed Central

    2013-01-01

    Absolute flatness of three silicon plane mirrors have been measured by a three-intersection method based on the three-flat method using a near-infrared interferometer. The interferometer was constructed using a near-infrared laser diode with a 1,310-nm wavelength light where the silicon plane mirror is transparent. The height differences at the coordinate values between the absolute line profiles by the three-intersection method have been evaluated. The height differences of the three flats were 4.5 nm or less. The three-intersection method using the near-infrared interferometer was useful for measuring the absolute flatness of the silicon plane mirrors. PMID:23758916

  1. Quantitative phase-contrast digital holographic microscopy for cell dynamic evaluation

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Mohanty, Samarendra; Berns, Michael W.; Chen, Zhongping

    2009-02-01

    The laser microbeam uses lasers to alter and/or to ablate intracellular organelles and cellular and tissue samples, and, today, has become an important tool for cell biologists to study the molecular mechanism of complex biological systems by removing individual cells or sub-cellular organelles. However, absolute quantitation of the localized alteration/damage to transparent phase objects, such as the cell membrane or chromosomes, was not possible using conventional phase-contrast or differential interference contrast microscopy. We report the development of phase-contrast digital holographic microscopy for quantitative evaluation of cell dynamic changes in real time during laser microsurgery. Quantitative phase images are recorded during the process of laser microsurgery and thus, the dynamic change in phase can be continuously evaluated. Out-of-focus organelles are re-focused by numerical reconstruction algorithms.

  2. iTRAQ-based quantitative proteomic analysis of the earthworm Eisenia fetida response to Escherichia coli O157:H7.

    PubMed

    Wang, Xing; Li, Xiaoqin; Sun, Zhenjun

    2018-05-21

    Soil environment contaminated by Escherichia coli O157:H7 which come from the waste of infected animals. Earthworms can live in the pathogens-polluted soil by their innate immunity. How the proteins of earthworms E. fetida will response to E. coli O157:H7-contaminated-soil still unclear? To identify the defense proteins under E. coli O157:H7 stress, we performed a proteomic analysis of earthworm under E. coli O157:H7 exposure through an iTRAQ technology. In total, we found 283 non-redundant proteins, including fibrinolytic protease 1, lombricine kinase, lysozyme, gelsolin, coelomic cytolytic factor-1, antimicrobial peptide lumbricin-l, lysenin, and et al. The proteins participate in metabolic processes, transcription, defense response to bacterium, translation, response to stress, and transport. The study will contribute to understand why earthworm can live in the pathogens-polluted environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Differential proteomic analysis of cancer stem cell properties in hepatocellular carcinomas by isobaric tag labeling and mass spectrometry.

    PubMed

    Ko, Ching-Huai; Cheng, Chieh-Fang; Lai, Chin-Pen; Tzu, Te-Hui; Chiu, Chih-Wei; Lin, Mei-Wei; Wu, Si-Yuan; Sun, Chung-Yuan; Tseng, Hsiang-Wen; Wang, Chun-Chung; Kuo, Zong-Keng; Wang, Ling-Mei; Chen, Sung-Fang

    2013-08-02

    Malignant tumors are relatively resistant to treatment due to their heterogeneous nature, drug resistance, and tendency for metastasis. Recent studies suggest that a subpopulation of cancer cells is responsible for the malignant outcomes. These cells are considered as cancer stem cells (CSC). Although a number of molecules have been identified in different cancer cells as markers for cancer stem cells, no promising markers are currently available for hepatocellular carcinoma cells. In this study, two clones of Hep3B cell lines were functionally characterized as control or CSC-like cells, based on properties including spheroid formation, drug resistance, and tumor initiation. Furthermore, their protein expression profiles were investigated by isobaric tags for relative and absolute quantitation (iTRAQ), and a total of 1,127 proteins were identified and quantified from the combined fractions; 50 proteins exhibited at least 2-fold differences between these two clones. These 50 proteins were analyzed by GeneGo and were found to be associated with liver neoplasms, hepatocellular carcinoma (HCC), and liver diseases. They were also components of metabolic pathways, immune responses, and cytoskeleton remodeling. Among these proteins, the expressions of S100P, S100A14, and vimentin were verified in several HCC cell lines, and their expressions were correlated with tumorigenicity in HCC cell lines. The functional significance of vimentin and S100A14 were also investigated and verified.

  4. Simultaneous measurement of absolute strain and differential strain based on fiber Bragg grating Fabry-Perot sensor

    NASA Astrophysics Data System (ADS)

    Wang, Kuiru; Wang, Bo; Yan, Binbin; Sang, Xinzhu; Yuan, Jinhui; Peng, Gang-Ding

    2013-10-01

    We present a fiber Bragg grating Fabry-Perot (FBG-FP) sensor using the fast Fourier transform (FFT) demodulation for measuring the absolute strain and differential strain simultaneously. The amplitude and phase characteristics of Fourier transform spectrum have been studied. The relation between the amplitude of Fourier spectrum and the differential strain has been presented. We fabricate the fiber grating FP cavity sensor, and carry out the experiment on the measurement of absolute strain and differential strain. Experimental results verify the demodulation method, and show that this sensor has a good accuracy in the scope of measurement. The demodulating method can expand the number of multiplexed sensors combining with wavelength division multiplexing and time division multiplexing.

  5. Absolute charge calibration of scintillating screens for relativistic electron detection

    NASA Astrophysics Data System (ADS)

    Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S. D.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Karsch, S.; Pawelke, J.; Sauerbrey, R.; Cowan, T.; Krausz, F.; Schramm, U.

    2010-03-01

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm2. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm2 was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  6. Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading.

    PubMed

    Sahran, Shahnorbanun; Albashish, Dheeb; Abdullah, Azizi; Shukor, Nordashima Abd; Hayati Md Pauzi, Suria

    2018-04-18

    Feature selection (FS) methods are widely used in grading and diagnosing prostate histopathological images. In this context, FS is based on the texture features obtained from the lumen, nuclei, cytoplasm and stroma, all of which are important tissue components. However, it is difficult to represent the high-dimensional textures of these tissue components. To solve this problem, we propose a new FS method that enables the selection of features with minimal redundancy in the tissue components. We categorise tissue images based on the texture of individual tissue components via the construction of a single classifier and also construct an ensemble learning model by merging the values obtained by each classifier. Another issue that arises is overfitting due to the high-dimensional texture of individual tissue components. We propose a new FS method, SVM-RFE(AC), that integrates a Support Vector Machine-Recursive Feature Elimination (SVM-RFE) embedded procedure with an absolute cosine (AC) filter method to prevent redundancy in the selected features of the SV-RFE and an unoptimised classifier in the AC. We conducted experiments on H&E histopathological prostate and colon cancer images with respect to three prostate classifications, namely benign vs. grade 3, benign vs. grade 4 and grade 3 vs. grade 4. The colon benchmark dataset requires a distinction between grades 1 and 2, which are the most difficult cases to distinguish in the colon domain. The results obtained by both the single and ensemble classification models (which uses the product rule as its merging method) confirm that the proposed SVM-RFE(AC) is superior to the other SVM and SVM-RFE-based methods. We developed an FS method based on SVM-RFE and AC and successfully showed that its use enabled the identification of the most crucial texture feature of each tissue component. Thus, it makes possible the distinction between multiple Gleason grades (e.g. grade 3 vs. grade 4) and its performance is far superior to

  7. Zero absolute vorticity: insight from experiments in rotating laminar plane Couette flow.

    PubMed

    Suryadi, Alexandre; Segalini, Antonio; Alfredsson, P Henrik

    2014-03-01

    For pressure-driven turbulent channel flows undergoing spanwise system rotation, it has been observed that the absolute vorticity, i.e., the sum of the averaged spanwise flow vorticity and system rotation, tends to zero in the central region of the channel. This observation has so far eluded a convincing theoretical explanation, despite experimental and numerical evidence reported in the literature. Here we show experimentally that three-dimensional laminar structures in plane Couette flow, which appear under anticyclonic system rotation, give the same effect, namely, that the absolute vorticity tends to zero if the rotation rate is high enough. It is shown that this is equivalent to a local Richardson number of approximately zero, which would indicate a stable condition. We also offer an explanation based on Kelvin's circulation theorem to demonstrate that the absolute vorticity should remain constant and approximately equal to zero in the central region of the channel when going from the nonrotating fully turbulent state to any state with sufficiently high rotation.

  8. Absolute quantitation of phosphorus metabolites in the cerebral cortex of the newborn human infant and in the forearm muscles of young adults using a double-tuned surface coil

    NASA Astrophysics Data System (ADS)

    Cady, Ernest B.

    The application of a double-tuned surface coil with strong coupling for both 31P and 1H to the in vivo measurement of metabolite concentrations by NMR spectroscopy is demonstrated. It is shown that sample loading, although important for a coil tuned to a single frequency, does not necessarily have a significant effect on absolute quantitation results if the coil is strongly coupled to the sample for both nuclei. For the coil used in the present study, the spectrometer calibration coefficient is almost independent of loading and the 1H and 31P flip angles at the coil center produced by fixed length pulses could be arranged to be nearly equal over a range of loading conditions. In seven normal infants, of gestational plus postnatal age 35 to 37 weeks, the cerebral cortex nucleotide triphosphate concentration was 3.7 ± 0.6 m M/liter wet (mean ± SD). Metabolite concentrations were low in the cerebral cortex of a severely birth asphyxiated infant. The adenosine triphosphate concentration in the resting, fresh forearm muscles of six young adults was 6.3 ± 0.8 m M/liter wet.

  9. Dynamically consistent hydrography and absolute velocity in the eastern North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Wunsch, Carl

    1994-01-01

    The problem of mapping a dynamically consistent hydrographic field and associated absolute geostrophic flow in the eastern North Atlantic between 24 deg and 36 deg N is related directly to the solution of the so-called thermocline equations. A nonlinear optimization problem involving Needler's P equation is solved to find the hydrography and resulting flow that minimizes the vertical mixing above about 1500 m in the ocean and is simultaneously consistent with the observations. A sharp minimum (at least in some dimensions) is found, apparently corresponding to a solution nearly conserving potential vorticity and with vertical eddy coefficient less than about 10(exp -5) sq m/s. Estimates of `residual' quantities such as eddy coefficients are extremely sensitive to slight modifications to the observed fields. Boundary conditions, vertical velocities, etc., are a product of the optimization and produce estimates differing quantitatively from prior ones relying directly upon observed hydrography. The results are generally insensitive to particular elements of the solution methodology, but many questions remain concerning the extent to which different synoptic sections can be asserted to represent the same ocean. The method can be regarded as a practical generalization of the beta spiral and geostrophic balance inverses for the estimate of absolute geostrophic flows. Numerous improvements to the methodology used in this preliminary attempt are possible.

  10. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, Pat; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  11. Comparison of elicitation potential of chloroatranol and atranol--2 allergens in oak moss absolute.

    PubMed

    Johansen, Jeanne D; Bernard, Guillaume; Giménez-Arnau, Elena; Lepoittevin, Jean-Pierre; Bruze, Magnus; Andersen, Klaus E

    2006-04-01

    Chloroatranol and atranol are degradation products of chloroatranorin and atranorin, respectively, and have recently been identified as important contact allergens in the natural fragrance extract, oak moss absolute. Oak moss absolute is widely used in perfumery and is the cause of many cases of fragrance allergic contact dermatitis. Chloroatranol elicits reactions at very low levels of exposure. In oak moss absolute, chloroatranol and atranol are present together and both may contribute to the allergenicity and eliciting capacity of the natural extract. In this study, 10 eczema patients with known sensitization to chloroatranol and oak moss absolute were tested simultaneously to a serial dilution of chloroatranol and atranol in ethanol, in equimolar concentrations (0.0034-1072 microM). Dose-response curves were estimated and analysed by logistic regression. The estimated difference in elicitation potency of chloroatranol relative to atranol based on testing with equimolar concentrations was 217% (95% confidence interval 116-409%). Both substances elicited reactions at very low levels of exposure. It is concluded that the differences in elicitation capacity between the 2 substances are counterbalanced by exposure being greater to atranol than to chloroatranol and that both substances contribute to the clinical problems seen in oak moss absolute-sensitized individuals.

  12. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  13. PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data*

    PubMed Central

    Mitchell, Christopher J.; Kim, Min-Sik; Na, Chan Hyun; Pandey, Akhilesh

    2016-01-01

    Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, 15N, 13C, or 18O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25–45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis. PMID:27231314

  14. PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data.

    PubMed

    Mitchell, Christopher J; Kim, Min-Sik; Na, Chan Hyun; Pandey, Akhilesh

    2016-08-01

    Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, (15)N, (13)C, or (18)O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25-45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis. © 2016 by The American Society for Biochemistry and Molecular Biology

  15. The Case for Absolute Ligand Discrimination: Modeling Information Processing and Decision by Immune T Cells

    NASA Astrophysics Data System (ADS)

    François, Paul; Altan-Bonnet, Grégoire

    2016-03-01

    Some cells have to take decision based on the quality of surroundings ligands, almost irrespective of their quantity, a problem we name "absolute discrimination". An example of absolute discrimination is recognition of not-self by immune T Cells. We show how the problem of absolute discrimination can be solved by a process called "adaptive sorting". We review several implementations of adaptive sorting, as well as its generic properties such as antagonism. We show how kinetic proofreading with negative feedback implement an approximate version of adaptive sorting in the immune context. Finally, we revisit the decision problem at the cell population level, showing how phenotypic variability and feedbacks between population and single cells are crucial for proper decision.

  16. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations

    PubMed Central

    Wang-Renault, Shu-Fang; Letouzé, Eric; Imbeaud, Sandrine; Zucman-Rossi, Jessica; Deleuze, Jean-François; How-Kit, Alexandre

    2017-01-01

    Motivation Copy number variations (CNV) include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH) events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH) and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information. Results To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer), a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs) Affymetrix SNP Array data (Fig 1A). Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test), validated by another cohort of HCCs (p-value of 5.6e-7) (Fig 2B). Availability and implementation aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https

  17. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations.

    PubMed

    Renault, Victor; Tost, Jörg; Pichon, Fabien; Wang-Renault, Shu-Fang; Letouzé, Eric; Imbeaud, Sandrine; Zucman-Rossi, Jessica; Deleuze, Jean-François; How-Kit, Alexandre

    2017-01-01

    Copy number variations (CNV) include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH) events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH) and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information. To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer), a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs) Affymetrix SNP Array data (Fig 1A). Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test), validated by another cohort of HCCs (p-value of 5.6e-7) (Fig 2B). aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https://github.com/FJD-CEPH/aCNViewer and Docker https

  18. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  19. Digital encoding of cellular mRNAs enabling precise and absolute gene expression measurement by single-molecule counting.

    PubMed

    Fu, Glenn K; Wilhelmy, Julie; Stern, David; Fan, H Christina; Fodor, Stephen P A

    2014-03-18

    We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time monitoring or physical partitioning into multiple reactions (e.g., digital PCR). Further, since all mRNA molecules are encoded with molecular barcodes, amplification can be used to generate more material for multiple measurements and technical replicates can be carried out on limited samples. The method is particularly useful for small sample quantities, such as single-cell experiments. Digital encoding of cellular content preserves true abundance levels and overcomes distortions introduced by amplification.

  20. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  1. Planck absolute entropy of a rotating BTZ black hole

    NASA Astrophysics Data System (ADS)

    Riaz, S. M. Jawwad

    2018-04-01

    In this paper, the Planck absolute entropy and the Bekenstein-Smarr formula of the rotating Banados-Teitelboim-Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.

  2. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Quantitative Proteomic Analysis of Serum Exosomes from Patients with Locally Advanced Pancreatic Cancer Undergoing Chemoradiotherapy.

    PubMed

    An, Mingrui; Lohse, Ines; Tan, Zhijing; Zhu, Jianhui; Wu, Jing; Kurapati, Himabindu; Morgan, Meredith A; Lawrence, Theodore S; Cuneo, Kyle C; Lubman, David M

    2017-04-07

    Pancreatic cancer is the third leading cause of cancer-related death in the USA. Despite extensive research, minimal improvements in patient outcomes have been achieved. Early identification of treatment response and metastasis would be valuable to determine the appropriate therapeutic course for patients. In this work, we isolated exosomes from the serum of 10 patients with locally advanced pancreatic cancer at serial time points over a course of therapy, and quantitative analysis was performed using the iTRAQ method. We detected approximately 700-800 exosomal proteins per sample, several of which have been implicated in metastasis and treatment resistance. We compared the exosomal proteome of patients at different time points during treatment to healthy controls and identified eight proteins that show global treatment-specific changes. We then tested the effect of patient-derived exosomes on the migration of tumor cells and found that patient-derived exosomes, but not healthy controls, induce cell migration, supporting their role in metastasis. Our data show that exosomes can be reliably extracted from patient serum and analyzed for protein content. The differential loading of exosomes during a course of therapy suggests that exosomes may provide novel insights into the development of treatment resistance and metastasis.

  4. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides withmore » 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.« less

  5. Absolute GPS Positioning Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  6. The JILA (Joint Institute for Laboratory Astrophysics) portable absolute gravity apparatus

    NASA Astrophysics Data System (ADS)

    Faller, J. E.; Guo, Y. G.; Gschwind, J.; Niebauer, T. M.; Rinker, R. L.; Xue, J.

    1983-08-01

    We have developed a new and highly portable absolute gravity apparatus based on the principles of free-fall laser interferometry. A primary concern over the past several years has been the detection, understanding, and elimination of systematic errors. In the Spring of 1982, we used this instrument to carry out a survey at twelve sites in the United States. Over a period of eight weeks, the instrument was driven a distance of nearly 20,000 km to sites in California, New Mexico, Colorado, Wyoming, Maryland, and Massachusetts. The time required to carry out a measurement at each location was typically one day. Over the next several years, our intention is to see absolute gravity measurements become both usable and used in the field. To this end, and in the context of cooperative research programs with a number of scientific institutes throughout the world, we are building additional instruments (incorporating further refinements) which are to be used for geodetic, geophysical, geological, and tectonic studies. With these new instruments we expect to improve (perhaps by a factor of two) on the 6-10 microgal accuracy of our present instrument. Today, one can make absolutely gravity measurements as accurately as - possibly even more accurately than - one can make relative measurements. Given reasonable success with the new instruments in the field, the last years of this century should see absolute gravity measurement mature both as a new geodetic data type and as a useful geophysical tool.

  7. Microfluidics-based digital quantitative PCR for single-cell small RNA quantification.

    PubMed

    Yu, Tian; Tang, Chong; Zhang, Ying; Zhang, Ruirui; Yan, Wei

    2017-09-01

    Quantitative analyses of small RNAs at the single-cell level have been challenging because of limited sensitivity and specificity of conventional real-time quantitative PCR methods. A digital quantitative PCR (dqPCR) method for miRNA quantification has been developed, but it requires the use of proprietary stem-loop primers and only applies to miRNA quantification. Here, we report a microfluidics-based dqPCR (mdqPCR) method, which takes advantage of the Fluidigm BioMark HD system for both template partition and the subsequent high-throughput dqPCR. Our mdqPCR method demonstrated excellent sensitivity and reproducibility suitable for quantitative analyses of not only miRNAs but also all other small RNA species at the single-cell level. Using this method, we discovered that each sperm has a unique miRNA profile. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Absolute vacuum ultraviolet photoabsorption cross section studies of atomic and molecular species: Techniques and observational data

    NASA Technical Reports Server (NTRS)

    Judge, D. L.; Wu, C. Y. R.

    1990-01-01

    Absorption of a high energy photon (greater than 6 eV) by an isolated molecule results in the formation of highly excited quasi-discrete or continuum states which evolve through a wide range of direct and indirect photochemical processes. These are: photoionization and autoionization, photodissociation and predissociation, and fluorescence. The ultimate goal is to understand the dynamics of the excitation and decay processes and to quantitatively measure the absolute partial cross sections for all processes which occur in photoabsorption. Typical experimental techniques and the status of observational results of particular interest to solar system observations are presented.

  9. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Treesearch

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  10. Two overlapping two-component systems in Xanthomonas oryzae pv. oryzae contribute to full fitness in rice by regulating virulence factors expression

    PubMed Central

    Zheng, Dehong; Yao, Xiaoyan; Duan, Meng; Luo, Yufeng; Liu, Biao; Qi, Pengyuan; Sun, Ming; Ruan, Lifang

    2016-01-01

    Two-component signal transduction systems (TCSs) are widely used by bacteria to adapt to the environment. In the present study, StoS (stress tolerance-related oxygen sensor) and SreKRS (salt response kinase, regulator, and sensor) were found to positively regulate extracellular polysaccharide (EPS) production and swarming in the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). Surprisingly, the absence of stoS or sreKRS did not attenuate virulence. To better understand the intrinsic functions of StoS and SreKRS, quantitative proteomics isobaric tags for relative and absolute quantitation (iTRAQ) was employed. Consistent with stoS and sreK mutants exhibiting a similar phenotype, the signalling circuits of StoS and SreKRS overlapped. Carbohydrate metabolism proteins and chemotaxis proteins, which could be responsible for EPS and swarming regulation, respectively, were reprogrammed in stoS and sreK mutants. Moreover, StoS and SreKRS demonstrated moderate expression of the major virulence factor, hypersensitive response and pathogenicity (Hrp) proteins through the HrpG-HrpX circuit. Most importantly, Xoo equipped with StoS and SreKRS outcompetes strains without StoS or SreKRS in co-infected rice and grows outside the host. Therefore, we propose that StoS and SreKRS adopt a novel strategy involving the moderation of Hrp protein expression and the promotion of EPS and motility to adapt to the environment. PMID:26957113

  11. A Comparative Proteomic Analysis of the Buds and the Young Expanding Leaves of the Tea Plant (Camellia sinensis L.)

    PubMed Central

    Li, Qin; Li, Juan; Liu, Shuoqian; Huang, Jianan; Lin, Haiyan; Wang, Kunbo; Cheng, Xiaomei; Liu, Zhonghua

    2015-01-01

    Tea (Camellia sinensis L.) is a perennial woody plant that is widely cultivated to produce a popular non-alcoholic beverage; this beverage has received much attention due to its pleasant flavor and bioactive ingredients, particularly several important secondary metabolites. Due to the significant changes in the metabolite contents of the buds and the young expanding leaves of tea plants, high-performance liquid chromatography (HPLC) analysis and isobaric tags for relative and absolute quantitation (iTRAQ) analysis were performed. A total of 233 differentially expressed proteins were identified. Among these, 116 proteins were up-regulated and 117 proteins were down-regulated in the young expanding leaves compared with the buds. A large array of diverse functions was revealed, including roles in energy and carbohydrate metabolism, secondary metabolite metabolism, nucleic acid and protein metabolism, and photosynthesis- and defense-related processes. These results suggest that polyphenol biosynthesis- and photosynthesis-related proteins regulate the secondary metabolite content of tea plants. The energy and antioxidant metabolism-related proteins may promote tea leaf development. However, reverse transcription quantitative real-time PCR (RT-qPCR) showed that the protein expression levels were not well correlated with the gene expression levels. These findings improve our understanding of the molecular mechanism of the changes in the metabolite content of the buds and the young expanding leaves of tea plants. PMID:26096006

  12. Spatial carrier color digital speckle pattern interferometry for absolute three-dimensional deformation measurement

    NASA Astrophysics Data System (ADS)

    Gao, Xinya; Wang, Yonghong; Li, Junrui; Dan, Xizuo; Wu, Sijin; Yang, Lianxiang

    2017-06-01

    It is difficult to measure absolute three-dimensional deformation using traditional digital speckle pattern interferometry (DSPI) when the boundary condition of an object being tested is not exactly given. In practical applications, the boundary condition cannot always be specifically provided, limiting the use of DSPI in real-world applications. To tackle this problem, a DSPI system that is integrated by the spatial carrier method and a color camera has been established. Four phase maps are obtained simultaneously by spatial carrier color-digital speckle pattern interferometry using four speckle interferometers with different illumination directions. One out-of-plane and two in-plane absolute deformations can be acquired simultaneously without knowing the boundary conditions using the absolute deformation extraction algorithm based on four phase maps. Finally, the system is proved by experimental results through measurement of the deformation of a flat aluminum plate with a groove.

  13. Hydraulic head estimation at unobserved locations: Approximating the distribution of the absolute error based on geologic interpretations

    NASA Astrophysics Data System (ADS)

    Langousis, Andreas; Kaleris, Vassilios; Xeygeni, Vagia; Magkou, Foteini

    2017-04-01

    Assessing the availability of groundwater reserves at a regional level, requires accurate and robust hydraulic head estimation at multiple locations of an aquifer. To that extent, one needs groundwater observation networks that can provide sufficient information to estimate the hydraulic head at unobserved locations. The density of such networks is largely influenced by the spatial distribution of the hydraulic conductivity in the aquifer, and it is usually determined through trial-and-error, by solving the groundwater flow based on a properly selected set of alternative but physically plausible geologic structures. In this work, we use: 1) dimensional analysis, and b) a pulse-based stochastic model for simulation of synthetic aquifer structures, to calculate the distribution of the absolute error in hydraulic head estimation as a function of the standardized distance from the nearest measuring locations. The resulting distributions are proved to encompass all possible small-scale structural dependencies, exhibiting characteristics (bounds, multi-modal features etc.) that can be explained using simple geometric arguments. The obtained results are promising, pointing towards the direction of establishing design criteria based on large-scale geologic maps.

  14. Absolute photoionization cross sections of furanic fuels: 2-ethylfuran, 2-acetylfuran and furfural.

    PubMed

    Smith, Audrey R; Meloni, Giovanni

    2015-11-01

    Absolute photoionization cross sections of the molecules 2-ethylfuran, 2-acetylfuran and furfural, including partial ionization cross sections for the dissociative ionized fragments, are measured for the first time. These measurements are important because they allow fuel quantification via photoionization mass spectrometry and the development of quantitative kinetic modeling for the complex combustion of potential fuels. The experiments are carried out using synchrotron photoionization mass spectrometry with an orthogonal time-of-flight spectrometer used for mass analysis at the Advanced Light Source of Lawrence Berkeley National Laboratory. The CBS-QB3 calculations of adiabatic ionization energies and appearance energies agree well with the experimental results. Several bond dissociation energies are also derived and presented. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Proteomic Identification and Quantification of S-glutathionylation in Mouse Macrophages Using Resin-Assisted Enrichment and Isobaric Labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dian; Gaffrey, Matthew J.; Guo, Jia

    2014-02-11

    Protein S-glutathionylation (SSG) is an important regulatory posttranslational modification of protein cysteine (Cys) thiol redox switches, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols and enrichment using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was validatedmore » by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys-sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG-modification compared to controls.. This approach was extended to identify potential SSG modified Cys-sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys-sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment. These proteins covered a range of molecular types and molecular functions with free radical scavenging, and cell death and survival included as the most significantly enriched functional categories. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of S-glutathionylated proteins. The analytical strategy also provides a unique approach to determining the major pathways and cell processes most susceptible to glutathionylation at a proteome-wide scale.« less

  16. Quantitative evaluation methods of skin condition based on texture feature parameters.

    PubMed

    Pang, Hui; Chen, Tianhua; Wang, Xiaoyi; Chang, Zhineng; Shao, Siqi; Zhao, Jing

    2017-03-01

    In order to quantitatively evaluate the improvement of the skin condition after using skin care products and beauty, a quantitative evaluation method for skin surface state and texture is presented, which is convenient, fast and non-destructive. Human skin images were collected by image sensors. Firstly, the median filter of the 3 × 3 window is used and then the location of the hairy pixels on the skin is accurately detected according to the gray mean value and color information. The bilinear interpolation is used to modify the gray value of the hairy pixels in order to eliminate the negative effect of noise and tiny hairs on the texture. After the above pretreatment, the gray level co-occurrence matrix (GLCM) is calculated. On the basis of this, the four characteristic parameters, including the second moment, contrast, entropy and correlation, and their mean value are calculated at 45 ° intervals. The quantitative evaluation model of skin texture based on GLCM is established, which can calculate the comprehensive parameters of skin condition. Experiments show that using this method evaluates the skin condition, both based on biochemical indicators of skin evaluation methods in line, but also fully consistent with the human visual experience. This method overcomes the shortcomings of the biochemical evaluation method of skin damage and long waiting time, also the subjectivity and fuzziness of the visual evaluation, which achieves the non-destructive, rapid and quantitative evaluation of skin condition. It can be used for health assessment or classification of the skin condition, also can quantitatively evaluate the subtle improvement of skin condition after using skin care products or stage beauty.

  17. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  18. Absolute and relative height-pixel accuracy of SRTM-GL1 over the South American Andean Plateau

    NASA Astrophysics Data System (ADS)

    Satge, Frédéric; Denezine, Matheus; Pillco, Ramiro; Timouk, Franck; Pinel, Sébastien; Molina, Jorge; Garnier, Jérémie; Seyler, Frédérique; Bonnet, Marie-Paule

    2016-11-01

    Previously available only over the Continental United States (CONUS), the 1 arc-second mesh size (spatial resolution) SRTM-GL1 (Shuttle Radar Topographic Mission - Global 1) product has been freely available worldwide since November 2014. With a relatively small mesh size, this digital elevation model (DEM) provides valuable topographic information over remote regions. SRTM-GL1 is assessed for the first time over the South American Andean Plateau in terms of both the absolute and relative vertical point-to-point accuracies at the regional scale and for different slope classes. For comparison, SRTM-v4 and GDEM-v2 Global DEM version 2 (GDEM-v2) generated by ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) are also considered. A total of approximately 160,000 ICESat/GLAS (Ice, Cloud and Land Elevation Satellite/Geoscience Laser Altimeter System) data are used as ground reference measurements. Relative error is often neglected in DEM assessments due to the lack of reference data. A new methodology is proposed to assess the relative accuracies of SRTM-GL1, SRTM-v4 and GDEM-v2 based on a comparison with ICESat/GLAS measurements. Slope values derived from DEMs and ICESat/GLAS measurements from approximately 265,000 ICESat/GLAS point pairs are compared using quantitative and categorical statistical analysis introducing a new index: the False Slope Ratio (FSR). Additionally, a reference hydrological network is derived from Google Earth and compared with river networks derived from the DEMs to assess each DEM's potential for hydrological applications over the region. In terms of the absolute vertical accuracy on a global scale, GDEM-v2 is the most accurate DEM, while SRTM-GL1 is more accurate than SRTM-v4. However, a simple bias correction makes SRTM-GL1 the most accurate DEM over the region in terms of vertical accuracy. The relative accuracy results generally did not corroborate the absolute vertical accuracy. GDEM-v2 presents the lowest statistical

  19. Quantitative Analysis of Food and Feed Samples with Droplet Digital PCR

    PubMed Central

    Morisset, Dany; Štebih, Dejan; Milavec, Mojca; Gruden, Kristina; Žel, Jana

    2013-01-01

    In this study, the applicability of droplet digital PCR (ddPCR) for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies) of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR) approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed. PMID:23658750

  20. International Standards and Reference Materials for Quantitative Molecular Infectious Disease Testing

    PubMed Central

    Madej, Roberta M.; Davis, Jack; Holden, Marcia J.; Kwang, Stan; Labourier, Emmanuel; Schneider, George J.

    2010-01-01

    The utility of quantitative molecular diagnostics for patient management depends on the ability to relate patient results to prior results or to absolute values in clinical practice guidelines. To do this, those results need to be comparable across time and methods, either by producing the same value across methods and test versions or by using reliable and stable conversions. Universally available standards and reference materials specific to quantitative molecular technologies are critical to this process but are few in number. This review describes recent history in the establishment of international standards for nucleic acid test development, organizations involved in current efforts, and future issues and initiatives. PMID:20075208

  1. The absolute dynamic ocean topography (ADOT)

    NASA Astrophysics Data System (ADS)

    Bosch, Wolfgang; Savcenko, Roman

    The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.

  2. Proteomic comparison by iTRAQ combined with mass spectrometry of egg white proteins in laying hens (Gallus gallus) fed with soybean meal and cottonseed meal

    PubMed Central

    He, Tao; Zhang, Haijun; Wang, Jing; Wu, Shugeng; Yue, Hongyuan; Qi, Guanghai

    2017-01-01

    Cottonseed meal (CSM) is commonly used in hens’ diets to replace soybean meal (SBM). However, the molecular consequences of this substitution remains unclear. To investigate the impact of this substitution at the molecular level, iTRAQ combined with biochemical analysis was performed in Hy-Line W-36 hens supplemented with a mixed diet of CSM and SBM. Egg weight, albumen height, and Haugh unit were significantly reduced in the CSM100 group (100% crude protein of SBM replaced by CSM) compared with the SBM group (P<0.05). A total of 15 proteins, accounting for 75% of egg white proteins with various biological functions of egg whites, were found to be reduced. This finding may relate to the decrease of albumen quality in the CSM100 group. Oviduct magnum morphology and hormone analysis indicated that a reduced level of plasma progesterone caused reduced growth of the tubular gland and epithelial cells in the magnum, further decreasing egg white protein synthesis in the magnum. These findings help demonstrate the molecular mechanisms of a CSM diet that cause adverse effects on albumen quality, while also showing that SBM should not be totally replaced with CSM in a hen diet. PMID:28813468

  3. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.

    PubMed

    Fu, Ying; Zhang, Hong; Mandal, Siddikun Nabi; Wang, Changyou; Chen, Chunhuan; Ji, Wanquan

    2016-01-01

    Powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important crop diseases, causing severe economic losses to wheat production worldwide. However, there are few reports about the proteomic response to Bgt infection in resistant wheat. Hence, quantitative proteomic analysis of N9134, a resistant wheat line, was performed to explore the molecular mechanism of wheat in defense against Bgt. Comparing the leaf proteins of Bgt-inoculated N9134 with that of mock-inoculated controls, a total of 2182 protein-species were quantified by iTRAQ at 24, 48 and 72h postinoculation (hpi) with Bgt, of which 394 showed differential accumulation. These differentially accumulated protein-species (DAPs) mainly included pathogenesis-related (PR) polypeptides, oxidative stress responsive proteins and components involved in primary metabolic pathways. KEGG enrichment analysis showed that phenylpropanoid biosynthesis, phenylalanine metabolism and photosynthesis-antenna proteins were the key pathways in response to Bgt infection. InterProScan 5 and the Gibbs Motif Sampler cluster 394 DAPs into eight conserved motifs, which shared leucine repeats and histidine sites in the sequence motifs. Moreover, eight separate protein-protein interaction (PPI) networks were predicted from STRING database. This study provides a powerful platform for further exploration of the molecular mechanism underlying resistant wheat responding to Bgt. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive pathogenic disease in wheat-producing regions worldwide, resulting in severe yield reductions. Although many resistant wheat varieties have been cultivated, there are few reports about the proteomic response to Bgt infection in resistant wheat. Therefore, an iTRAQ-based quantitative proteomic analysis of a resistant wheat line (N9134) in response to Bgt infection has been performed. This paper provides new insights into the underlying molecular

  4. Absolute configuration of a chiral CHD group via neutron diffraction: confirmation of the absolute stereochemistry of the enzymatic formation of malic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bau, R.; Brewer, I.; Chiang, M.Y.

    Neutron diffraction has been used to monitor the absolute stereochemistry of an enzymatic reaction. (-)(2S)malic-3-d acid was prepared by the action of fumarase on fumaric acid in D/sub 2/O. After a large number of cations were screened, it was found that (+)(R)..cap alpha..-phenylethylamine forms the large crystals necessary for a neutron diffraction analysis. The subsequent structure determination showed that (+)(R)..cap alpha..-phenylethylammonium (-)(2S)malate-3-d has an absolute configuration of R at the CHD site. This result confirms the absolute stereochemistry of fumarate-to-malate transformation as catalyzed by the enzyme fumarase.

  5. Characterization of human oral tissues based on quantitative analysis of optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Salehi, Hassan S.; Kosa, Ali; Mahdian, Mina; Moslehpour, Saeid; Alnajjar, Hisham; Tadinada, Aditya

    2017-02-01

    In this paper, five types of tissues, human enamel, human cortical bone, human trabecular bone, muscular tissue, and fatty tissue were imaged ex vivo using optical coherence tomography (OCT). The specimens were prepared in blocks of 5 x 5 x 3 mm (width x length x height). The OCT imaging system was a swept source OCT system operating at wavelengths ranging between 1250 nm and 1360 nm with an average power of 18 mW and a scan rate of 50 to 100 kHz. The imaging probe was placed on top of a 2 x 2 cm stabilizing device to maintain a standard distance from the samples. Ten image samples from each type of tissue were obtained. To acquire images with minimum inhomogeneity, imaging was performed multiple times at different points. Based on the observed texture differences between OCT images of soft and hard tissues, spatial and spectral features were quantitatively extracted from the OCT images. The Radon transform from angles of 0 deg to 90 deg was computed, averaged over all the angles, normalized to peak at unity, and then fitted with Gaussian function. The mean absolute values of the spatial frequency components of the OCT image were considered as a feature, where 2-D fast Fourier transform (FFT) was done to OCT images. These OCT features can reliably differentiate between a range of hard and soft tissues, and could be extremely valuable in assisting dentists for in vivo evaluation of oral tissues and early detection of pathologic changes in tissues.

  6. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  7. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.

  8. Preparation of an oakmoss absolute with reduced allergenic potential.

    PubMed

    Ehret, C; Maupetit, P; Petrzilka, M; Klecak, G

    1992-06-01

    Synopsis Oakmoss absolute, an extract of the lichen Evernia prunastri, is known to cause allergenic skin reactions due to the presence of certain aromatic aldehydes such as atranorin, chloratranorin, ethyl hematommate and ethyl chlorohematommate. In this paper it is shown that treatment of Oakmoss absolute with amino acids such as lysine and/or leucine, lowers considerably the content of these allergenic constituents including atranol and chloratranol. The resulting Oakmoss absolute, which exhibits an excellent olfactive quality, was tested extensively in comparative studies on guinea pigs and on man. The results of the Guinea Pig Maximization Test (GPMT) and Human Repeated Insult Patch Test (HRIPT) indicate that, in comparison with the commercial test sample, the allergenicity of this new quality of Oakmoss absolute was considerably reduced, and consequently better skin tolerance of this fragrance for man was achieved.

  9. Quantitative Targeted Absolute Proteomics (QTAP)-based Pharmacoproteomics: The Importance of International Collaboration.

    PubMed

    Terasaki, Tetsuya

    2017-01-01

    Proteins such as membrane transporters, enzymes, receptors and channels play key roles in drug absorption, distribution, metabolism, and elimination, and also influence efficacy and the likelihood of adverse reactions. Therefore, if we can quantify the activities of these molecules, it may be possible to predict the behavior of candidate drugs in humans in disease states; such methodology would be extremely helpful for efficient drug development. We have developed an in silico method to select appropriate peptides within amino acid sequences in order to quantify targeted proteins by LC-MS/MS in selected reaction monitoring (SRM) mode. We have applied this method for the quantification of functional proteins in order to validate various in vitro and in vivo models. We found fairly good correlation between protein amounts and the enzymatic activities of microsomal cytochrome P450 (CYP) isoforms and uridine 5'-diphospho-glucuronosyltransferase (UGT) in human liver, as well as between protein amounts and the transport activities of multiple transporters in human lung cells. These results suggest that protein quantification can be useful in predicting activity. We have applied this approach to evaluate the usefulness and limitations of an immortalized human brain capillary endothelial cell line (D3 cells) and a P-glycoprotein humanized (hMDR1) mouse model by comparing the amounts of functional proteins in the models with those in isolated capillaries from human brain. In order to obtain sufficient human tissue specimens for further studies leading to clinical applications, we believe that international collaboration will be crucial.

  10. A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice

    PubMed Central

    2013-01-01

    Proteomics has opened a new horizon in biological sciences. Global proteomic analysis is a promising technology for the discovery of thousands of proteins, post-translational modifications, polymorphisms, and molecular interactions in a variety of biological systems. The activities and roles of the identified proteins must also be elucidated, but this is complicated by the inability of conventional proteomic methods to yield quantitative information for protein expression. Thus, a variety of biological systems remain “black boxes”. Quantitative targeted absolute proteomics (QTAP) enables the determination of absolute expression levels (mol) of any target protein, including low-abundance functional proteins, such as transporters and receptors. Therefore, QTAP will be useful for understanding the activities and roles of individual proteins and their differences, including normal/disease, human/animal, or in vitro/in vivo. Here, we describe the study protocols and precautions for QTAP experiments including in silico target peptide selection, determination of peptide concentration by amino acid analysis, setup of selected/multiple reaction monitoring (SRM/MRM) analysis in liquid chromatography–tandem mass spectrometry, preparation of protein samples (brain capillaries and plasma membrane fractions) followed by the preparation of peptide samples, simultaneous absolute quantification of target proteins by SRM/MRM analysis, data analysis, and troubleshooting. An application of QTAP in biological sciences was introduced that utilizes data from inter-strain differences in the protein expression levels of transporters, receptors, tight junction proteins and marker proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice. Among 18 molecules, 13 (abcb1a/mdr1a/P-gp, abcc4/mrp4, abcg2/bcrp, slc2a1/glut1, slc7a5/lat1, slc16a1/mct1, slc22a8/oat3, insr, lrp1, tfr1, claudin-5, Na+/K+-ATPase, and γ-gtp) were detected in the isolated brain capillaries, and their

  11. Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance based biosensor

    NASA Astrophysics Data System (ADS)

    Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul

    2015-05-01

    Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.

  12. Absolute calibration of optical streak cameras on picosecond time scales using supercontinuum generation

    DOE PAGES

    Patankar, S.; Gumbrell, E. T.; Robinson, T. S.; ...

    2017-08-17

    Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less

  13. Quantitative proteomics investigation of leaves from two Sedum alfredii (Crassulaceae) populations that differ in cadmium accumulation.

    PubMed

    Zhang, Zhongchun; Zhou, Huina; Yu, Qi; Li, Yunxia; Mendoza-Cózatl, David G; Qiu, Baosheng; Liu, Pingping; Chen, Qiansi

    2017-04-08

    Due to extraordinary their capacity to hypertolerate and hyperaccumulate heavy metals in above-ground tissues, hyperaccumulator species have gained wide attention from researchers seeking biotechnologies to manage environmental heavy metal pollution. However, the molecular basis of hyperaccumulation is still far from being fully understood. Here, we used iTRAQ to perform a quantitative proteomics study of the leaves of Sedum alfredii (Crassulaceae) from hyperaccumulating (HP) and non-hyperaccumulating (NHP) populations. A total of 248 proteins had constitutively higher levels in HP leaves than in NHP leaves. Cadmium (Cd) treatment led to the induction of 13 proteins in HP leaves and 33 proteins in NHP leaves. Two proteins were induced by Cd in both HP leaves and NHP leaves. The annotations for many of the proteins that were higher in HP leaves and proteins that were induced by Cd treatments were associated with vacuolar sequestration, cell wall/membrane modification, and plant defense. In addition to establishing a global empirical foundation for the study of proteins in S. alfredii, our findings relating to the differential constitutive and inducible expression of proteins open potential new research avenues and bolster previously-reported suppositions about Cd hyperaccumulation in hyperaccumulator plants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Absolute plate motions relative to deep mantle plumes

    NASA Astrophysics Data System (ADS)

    Wang, Shimin; Yu, Hongzheng; Zhang, Qiong; Zhao, Yonghong

    2018-05-01

    Advances in whole waveform seismic tomography have revealed the presence of broad mantle plumes rooted at the base of the Earth's mantle beneath major hotspots. Hotspot tracks associated with these deep mantle plumes provide ideal constraints for inverting absolute plate motions as well as testing the fixed hotspot hypothesis. In this paper, 27 observed hotspot trends associated with 24 deep mantle plumes are used together with the MORVEL model for relative plate motions to determine an absolute plate motion model, in terms of a maximum likelihood optimization for angular data fitting, combined with an outlier data detection procedure based on statistical tests. The obtained T25M model fits 25 observed trends of globally distributed hotspot tracks to the statistically required level, while the other two hotspot trend data (Comores on Somalia and Iceland on Eurasia) are identified as outliers, which are significantly incompatible with other data. For most hotspots with rate data available, T25M predicts plate velocities significantly lower than the observed rates of hotspot volcanic migration, which cannot be fully explained by biased errors in observed rate data. Instead, the apparent hotspot motions derived by subtracting the observed hotspot migration velocities from the T25M plate velocities exhibit a combined pattern of being opposite to plate velocities and moving towards mid-ocean ridges. The newly estimated net rotation of the lithosphere is statistically compatible with three recent estimates, but differs significantly from 30 of 33 prior estimates.

  15. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    USGS Publications Warehouse

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  16. Absolute gravimetry for monitoring geodynamics in Greenland.

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Strykowski, G.; Forsberg, R.

    2015-12-01

    Here are presented the preliminary results of the absolute gravity measurements done in Greenland by DTU Space with their A10 absolute gravimeter (the A10-019). The purpose, besides establishing and maintaining a national gravity network, is to study geodynamics.The absolute gravity measurements are juxtaposed with the permanent GNET GNSS stations. The first measurements were conducted in 2009 and a few sites have been re-visited. As of present is there a gravity value at 18 GNET sites.There are challenges in interpreting the measurements from Greenland and several signals has to be taken into account, besides the geodynamical signals originating from the changing load of the ice, there is also a clear signal of direct attraction from different masses. Here are presented the preliminary results of our measurements in Greenland and attempts explain them through modelling of the geodynamical signals and the direct attraction from the ocean and ice.

  17. Quantitative photoacoustic elastography of Young's modulus in humans

    NASA Astrophysics Data System (ADS)

    Hai, Pengfei; Zhou, Yong; Gong, Lei; Wang, Lihong V.

    2017-03-01

    Elastography can noninvasively map the elasticity distribution of biological tissue, which is often altered in pathological states. In this work, we report quantitative photoacoustic elastography (QPAE), capable of measuring Young's modulus of human tissue in vivo. By combining photoacoustic elastography with a stress sensor having known stress-strain behavior, QPAE can simultaneously measure strain and stress, from which Young's modulus is calculated. We first applied QPAE to quantify the Young's modulus of tissue-mimicking agar phantoms with different concentrations. The measured values fitted well with both the empirical expectations based on the agar concentrations and those measured in independent standard compression tests. We then demonstrated the feasibility of QPAE by measuring the Young's modulus of human skeletal muscle in vivo. The data showed a linear relationship between muscle stiffness and loading. The results proved that QPAE can noninvasively quantify the absolute elasticity of biological tissue, thus enabling longitudinal imaging of tissue elasticity. QPAE can be exploited for both preclinical biomechanics studies and clinical applications.

  18. Strongly nonlinear theory of rapid solidification near absolute stability

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the

  19. Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics

    PubMed Central

    Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.

    2009-01-01

    The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504

  20. Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage.

    PubMed

    Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S

    2008-09-01

    The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.