Science.gov

Sample records for absolute thermal fission

  1. FFTF (Fast Flux Test Facility) Reactor Characterization Program: Absolute Fission-rate Measurements

    SciTech Connect

    Fuller, J.L.; Gilliam, D.M.; Grundl, J.A.; Rawlins, J.A.; Daughtry, J.W.

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  2. FFTF (FAST FLUX TEST FACILITY) REACTOR CHARACTERIZATION PROGRAM ABSOLUTE FISSION RATE MEASUREMENTS

    SciTech Connect

    FULLER JL; GILLIAM DM; GRUNDL JA; RAWLINS JA; DAUGHTRY JW

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  3. Testing and evaluation of thermal cameras for absolute temperature measurement

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof; Fischer, Joachim; Matyszkiel, Robert

    2000-09-01

    The accuracy of temperature measurement is the most important criterion for the evaluation of thermal cameras used in applications requiring absolute temperature measurement. All the main international metrological organizations currently propose a parameter called uncertainty as a measure of measurement accuracy. We propose a set of parameters for the characterization of thermal measurement cameras. It is shown that if these parameters are known, then it is possible to determine the uncertainty of temperature measurement due to only the internal errors of these cameras. Values of this uncertainty can be used as an objective criterion for comparisons of different thermal measurement cameras.

  4. Electroweak absolute, meta-, and thermal stability in neutrino mass models

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Patel, Hiren H.; Radovčić, Branimir

    2016-04-01

    We analyze the stability of the electroweak vacuum in neutrino mass models containing right-handed neutrinos or fermionic isotriplets. In addition to considering absolute stability, we place limits on the Yukawa couplings of new fermions based on metastability and thermal stability in the early Universe. Our results reveal that the upper limits on the neutrino Yukawa couplings can change significantly when the top quark mass is allowed to vary within the experimental range of uncertainty in its determination.

  5. Measurement of Absolute Fission Yields in the Fast Neutron-Induced Fission of Actinides: {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 240}Pu, {sup 243}Am, and {sup 244}Cm by Track-Etch-cum-Gamma Spectrometry

    SciTech Connect

    Iyer, R.H.; Naik, H.; Pandey, A.K.; Kalsi, P.C.; Singh, R.J.; Ramaswami, A.; Nair, A.G.C.

    2000-07-15

    The absolute fission yields of 46 fission products in {sup 238}U (99.9997 at.%), 46 fission products in {sup 237}Np, 27 fission products in {sup 238}Pu (99.21 at.%), 30 fission products in {sup 240}Pu (99.48 at.%), 30 fission products in {sup 243}Am (99.998 at.%), and 32 fission products in {sup 244}Cm (99.43 at.%) induced by fast neutrons were determined using a fission track-etch-cum-gamma spectrometric technique. In the case of highly alpha-active and sparingly available actinides - e.g., {sup 238}Pu, {sup 240}Pu, {sup 243}Am, and {sup 244}Cm - a novel recoil catcher technique to collect the fission products on a Lexan polycarbonate foil followed by gamma-ray spectrometry was developed during the course of this work. This completely removed interferences from (a) gamma rays of daughter products in secular equilibrium with the target nuclide (e.g., {sup 243}Am-{sup 239}Np), (b) activation products of the catcher foil [e.g., {sup 24}Na from Al(n,{alpha})], and (c) activation products of the target [e.g., {sup 238}Np from {sup 237}Np(n,{gamma}) and {sup 239}Np from {sup 238}U(n,{gamma})] reactions, making the gamma spectrometric analysis very simple and accurate. The high-yield asymmetric fission products were analyzed by direct gamma spectrometry, whereas the low-yield symmetric products (e.g., Ag, Cd, and Sb) as well as some of the asymmetric fission products (e.g., Br) and rare earths (in the case of {sup 238}U and {sup 237}Np) were radiochemically separated and then analyzed by gamma-ray spectrometry. The neutron spectra in the irradiation positions of the reactors were measured and delineated in the thermal to 10-MeV region using threshold activation detectors. The present data were compared with the ENDF/VI and UKFY2 evaluated data files. From the measured cumulative yields, the mass-chain yields have been deduced using charge distribution systematics. The mass yields, along with similar data for other fast neutron-induced fissioning systems, show several

  6. THERMAL FISSION REACTOR COMPOSITIONS AND METHOD OF FABRICATING SAME

    DOEpatents

    Blainey, A.

    1959-10-01

    A body is presented for use in a thermal fission reactor comprising a sintered compressed mass of a substance of the group consisting of uranium, thorium, and oxides and carbides of uranium and thorium, enclosed in an envelope of a sintered, compacted, heat-conductive material of the group consisting of beryllium, zirconium, and oxides and carbides of beryllium and zirconium.

  7. Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.

    2010-12-01

    Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR

  8. Event-by-event study of neutron observables in spontaneous and thermal fission

    NASA Astrophysics Data System (ADS)

    Vogt, R.; Randrup, J.

    2011-10-01

    The event-by-event fission model freya is extended to spontaneous fission of actinides and a variety of neutron observables are studied for spontaneous fission and fission induced by thermal neutrons with a view toward possible applications for detection of special nuclear materials.

  9. Strong thermal leptogenesis and the absolute neutrino mass scale

    SciTech Connect

    Bari, Pasquale Di; King, Sophie E.; Fiorentin, Michele Re E-mail: sk1806@soton.ac.uk

    2014-03-01

    We show that successful strong thermal leptogenesis, where the final asymmetry is independent of the initial conditions and in particular a large pre-existing asymmetry is efficiently washed-out, favours values of the lightest neutrino mass m{sub 1}∼>10 meV for normal ordering (NO) and m{sub 1}∼>3 meV for inverted ordering (IO) for models with orthogonal matrix entries respecting |Ω{sub ij}{sup 2}|∼<2. We show analytically why lower values of m{sub 1} require a higher level of fine tuning in the seesaw formula and/or in the flavoured decay parameters (in the electronic for NO, in the muonic for IO). We also show how this constraint exists thanks to the measured values of the neutrino mixing angles and could be tightened by a future determination of the Dirac phase. Our analysis also allows us to place a more stringent constraint for a specific model or class of models, such as SO(10)-inspired models, and shows that some models cannot realise strong thermal leptogenesis for any value of m{sub 1}. A scatter plot analysis fully supports the analytical results. We also briefly discuss the interplay with absolute neutrino mass scale experiments concluding that they will be able in the coming years to either corner strong thermal leptogenesis or find positive signals pointing to a non-vanishing m{sub 1}. Since the constraint is much stronger for NO than for IO, it is very important that new data from planned neutrino oscillation experiments will be able to solve the ambiguity.

  10. Dating thermal events at Cerro Prieto using fission track annealing

    SciTech Connect

    Sanford, S.J.; Elders, W..

    1981-01-01

    Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures.

  11. FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS

    DOEpatents

    Flint, O.

    1961-01-10

    Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

  12. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    NASA Astrophysics Data System (ADS)

    Selby, H. D.; Mac Innes, M. R.; Barr, D. W.; Keksis, A. L.; Meade, R. A.; Burns, C. J.; Chadwick, M. B.; Wallstrom, T. C.

    2010-12-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99Mo, 95Zr, 137Cs, 140Ba, 141,143Ce, and 147Nd. Modest incident-energy dependence exists for the 147Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ˜5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except for 99Mo

  13. Analysis of prompt fission neutrons in 235U(nth,f) and fission fragment distributions for the thermal neutron induced fission of 234U

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Tarrío, D.; Hambsch, F.-J.; Göök, A.; Jansson, K.; Solders, A.; Rakopoulos, V.; Gustafsson, C.; Lantz, M.; Mattera, A.; Oberstedt, S.; Prokofiev, A. V.; Vidali, M.; Österlund, M.; Pomp, S.

    2016-06-01

    This paper presents the ongoing analysis of two fission experiments. Both projects are part of the collaboration between the nuclear reactions group at Uppsala and the JRC-IRMM. The first experiment deals with the prompt fission neutron multiplicity in the thermal neutron induced fission of 235U(n,f). The second, on the fission fragment properties in the thermal fission of 234U(n,f). The prompt fission neutron multiplicity has been measured at the JRC-IRMM using two liquid scintillators in coincidence with an ionization chamber. The first experimental campaign focused on 235U(nth,f) whereas a second experimental campaign is foreseen later for the same reaction at 5.5 MeV. The goal is to investigate how the so-called sawtooth shape changes as a function of fragment mass and excitation energy. Some harsh experimental conditions were experienced due to the large radiation background. The solution to this will be discussed along with preliminary results. In addition, the analysis of thermal neutron induced fission of 234U(n,f) will be discussed. Currently analysis of data is ongoing, originally taken at the ILL reactor. The experiment is of particular interest since no measurement exist of the mass and energy distributions for this system at thermal energies. One main problem encountered during analysis was the huge background of 235U(nth,f). Despite the negligible isotopic traces in the sample, the cross section difference is enormous. Solution to this parasitic background will be highlighted.

  14. On the thermal history, thermal state, and related tectonism of a moon of fission origin

    NASA Astrophysics Data System (ADS)

    Binder, A. B.; Lange, M. A.

    1980-06-01

    Results obtained from a series of advanced thermal models of a moon of fission origin are presented. The results are discussed in terms of the tectonics and seismic activity of the moon. It is noted that the thermal history of an initially totally molten moon of fission origin properly accounts for (1) the mare basalt epoch, in terms of its duration, the depth of a source region, and degrees of partial melting which produces the magmas, (2) the present-day heat flow of 17-18 ergs/sq cm s, and (3) the current high temperatures of the lower mantle as deduced from magnetic and seismic data.

  15. A fission fragment reactor concept for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Suo-Anttila, Ahti J.; Parma, Edward J.; Pickard, Paul S.; Wright, Steven A.; Vernon, Milton E.

    1992-01-01

    The Space Exploration Initiative requires the development of nuclear thermal and nuclear electric technologies for space propulsion for future Luna and Mars missions. Sandia National Laboratories has proposed a new nuclear thermal propulsion concept that uses fission fragments to directly heat the propellant up to 1000 K or higher above the material temperatures. The concept offers significant advantages over traditional solid-core nuclear rocket concepts because of higher propellent exit temperatures, while at the same time providing for more reliable operation due to lower structure temperatures and lower power densities. The reactor can be operated in either a steady-state or pulsed mode. The steady-state mode provides a high thrust and relatively high specific impulse, as compared to other nuclear thermal concepts. The pulsed mode requires an auxillary radiator for cooling, but has the possibility of achieving very high specific impulses and thrust scaleable to the radiator size. The propellant temperatures are limited only by thermal radiation and transient heat conduction back to the substrate walls.

  16. Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations

    NASA Astrophysics Data System (ADS)

    Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard

    2013-09-01

    Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory's BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release.

  17. Low-Cost Radiator for Fission Power Thermal Control

    NASA Technical Reports Server (NTRS)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  18. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    NASA Astrophysics Data System (ADS)

    Rajput, M. U.; Ali, N.; Hussain, S.; Mujahid, S. A.; MacMahon, D.

    2012-04-01

    The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  19. Thermal release of volatile fission products from irradiated nuclear fuel

    SciTech Connect

    Bray, L.A.; Burger, L.L.; Morgan, L.G.; Baldwin, D.L.

    1983-06-01

    An effective procedure for removing /sup 3/H, Xe and Kr from irradiated fuels was demonstrated using Shippingport UO/sub 2/ fuel. The release characteristics of /sup 3/H, Kr, Xe, and I from irradiated nuclear fuel have been determined as a function of temperature and gaseous environment. Vacuum outgassing and a flowing gas stream have been used to vary the gaseous environment. Vacuum outgassing released about 99% of the /sup 3/H and 20% of both Kr and Xe within a 3 h at 1500/sup 0/C. Similar results were obtained using a carrier gas of He containing 6% H/sub 2/. However, a carrier gas containing only He resulted in the release of approximately 80% of the /sup 3/H and 99% of both Kr and Xe. These results indicate that the release of these volatile fission products from irradiated nuclear fuel is a function of the chemical composition of the gaseous environment. The rate of tritium release increased with increasing temperature (1100 to 1500/sup 0/C) and with the addition of hydrogen to the gas stream. Using crushed UO/sub 2/ fuel without cladding and He as the carrier gas, Kr was completely released at 1500/sup 0/C in 2.5 h. Below 1350/sup 0/C, no Kr-Xe release was observed. Approximately 86% of the /sup 129/I and 95% of the cesium was released from a piece (3.9 g) of UO/sub 2/ fuel at 1500/sup 0/C in He. The zirconium cladding was observed to fracture during heat treatment. A large-scale thermal outgassing system was conceptually designed by the General Atomic Company from an engineering analysis of available experimental data. The direct cost of a 0.5 metric/ton day thermal outgassing system is estimated to be $1,926,000 (1982 dollars), including equipment, installation, instrumentation and controls, piping, and services. The thermal outgassing process was determined to be a technically feasible and cost-competitive process to remove tritium in the head-end portion of a LWR fuel reprocessing plant. Additional laboratory-scale development has been recommended.

  20. Event-by-event study of neutron observables in spontaneous and thermal fission

    SciTech Connect

    Vogt, R; Randrup, J

    2011-09-14

    The event-by-event fission model FREYA is extended to spontaneous fission of actinides and a variety of neutron observables are studied for spontaneous fission and fission induced by thermal neutrons with a view towards possible applications for SNM detection. We have shown that event-by-event models of fission, such as FREYA, provide a powerful tool for studying fission neutron correlations. Our results demonstrate that these correlations are significant and exhibit a dependence on the fissioning nucleus. Since our method is phenomenological in nature, good input data are especially important. Some of the measurements employed in FREYA are rather old and statistics limited. It would be useful to repeat some of these studies with modern detector techniques. In addition, most experiments made to date have not made simultaneous measurements of the fission products and the prompt observables, such as neutron and photons. Such data, while obviously more challenging to obtain, would be valuable for achieving a more complete understanding of the fission process.

  1. METHOD OF TESTING THERMAL NEUTRON FISSIONABLE MATERIAL FOR PURITY

    DOEpatents

    Fermi, E.; Anderson, H.L.

    1961-01-24

    A process is given for determining the neutronic purity of fissionable material by the so-called shotgun test. The effect of a standard neutron absorber of known characteristics and amounts on a neutronic field also of known characteristics is measured and compared with the effect which the impurities derived from a known quantity of fissionable material has on the same neutronic field. The two readings are then made the basis of calculation from which the amount of impurities can be computed.

  2. Determination of the 243,246,248Cm thermal neutron induced fission cross sections

    NASA Astrophysics Data System (ADS)

    Serot, O.; Wagemans, C.; Vermote, S.; Heyse, J.; Soldner, T.; Geltenbort, P.

    2005-11-01

    The minor actinide waste produced in nuclear power plants contains various Cm-isotopes, and transmutation scenarios require improved fission cross section data. The available thermal neutron induced fission cross section data for 243Cm, 246Cm and 248Cm are not very accurate, so new cross section measurements have been performed at the high flux reactor of the ILL in Grenoble (France) under better experimental conditions (highly enriched samples, very intense and clean neutron beam). The measurements were performed at a neutron energy of 5.38 meV, yielding fission cross section values of (1240±28)b for 243Cm, (25±47)mb for 246Cm and (685±84)mb for 248Cm. From these results, thermal fission cross section values of (572±14)b; (12±25)mb and (316±43)mb have been deduced for 243Cm, 246Cm and 248Cm, respectively.

  3. Thermal stability of fission gas bubble superlattice in irradiated U–10Mo fuel

    SciTech Connect

    Gan, J.; Keiser, D. D.; Miller, B. D.; Robinson, A. B.; Wachs, D. M.; Meyer, M. K.

    2015-09-01

    To investigate the thermal stability of the fission gas bubble superlattice, a key microstructural feature in both irradiated U-7Mo dispersion and U-10Mo monolithic fuel plates, a FIB-TEM sample of the irradiated U-10Mo fuel with a local fission density of 3.5×1021 fissions/cm3 was used for an in-situ heating TEM experiment. The temperature of the heating holder was raised at a ramp rate of approximately 10 ºC/min up to ~700 ºC, kept at that temperature for about 34 min, continued to 850 ºC with a reduced rate of 5 ºC/min. The result shows a high thermal stability of the fission gas bubble superlattice. The implication of this observation on the fuel microstructural evolution and performance under irradiation is discussed.

  4. Identifying and quantifying short-lived fission products from thermal fission of HEU using portable HPGe detectors

    SciTech Connect

    Pierson, Bruce D.; Finn, Erin C.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Kephart, Rosara F.; Metz, Lori A.

    2013-03-01

    Due to the emerging potential for trafficking of special nuclear material, research programs are investigating current capabilities of commercially available portable gamma ray detection systems. Presented in this paper are the results of three different portable high-purity germanium (HPGe) detectors used to identify short-lived fission products generated from thermal neutron interrogation of small samples of highly enriched uranium. Samples were irradiated at the Washington State University (WSU) Nuclear Radiation Center’s 1MW TRIGA reactor. The three portable, HPGe detectors used were the ORTEC MicroDetective, the ORTEC Detective, and the Canberra Falcon. Canberra’s GENIE-2000 software was used to analyze the spectral data collected from each detector. Ultimately, these three portable detectors were able to identify a large range of fission products showing potential for material discrimination.

  5. Thermal Performance of Deep-Burn Fusion-Fission Hybrid Waste in a Repository

    SciTech Connect

    Blink, J A; Chipman, V; Farmer, J; Shaw, H; Zhao, P

    2008-11-25

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Engine [1] combines a neutron-rich but energy-poor inertial fusion system with an energy-rich but neutron-poor subcritical fission blanket. Because approximately 80% of the LIFE Engine energy is produced from fission, the requirements for laser efficiency and fusion target performance are relaxed, compared to a pure-fusion system, and hence a LIFE Engine prototype can be based on target performance in the first few years of operation of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Similarly, because of the copious fusion neutrons, the fission blanket can be run in a subcritical, driven, mode, without the need for control rods or other sophisticated reactivity control systems. Further, because the fission blanket is inherently subcritical, fission fuels that can be used in LIFE Engine designs include thorium, depleted uranium, natural uranium, spent light water reactor fuel, highly enriched uranium, and plutonium. Neither enrichment nor reprocessing is required for the LIFE Engine fuel cycle, and burnups to 99% fraction of initial metal atoms (FIMA) being fissioned are envisioned. This paper discusses initial calculations of the thermal behavior of spent LIFE fuel following completion of operation in the LIFE Engine [2]. The three time periods of interest for thermal calculations are during interim storage (probably at the LIFE Engine site), during the preclosure operational period of a geologic repository, and after closure of the repository.

  6. Delayed-Neutron Energy Spectra for Thermal Fission of URANIUM-235.

    NASA Astrophysics Data System (ADS)

    Tanczyn, Robert Steven

    An experiment to measure delayed-neutron energy spectra resulting from thermal fission of U-235 has been carried out at the University of Lowell. Delayed neutrons, emitted by the radioactive fission fragments having halflives varying from 0.2 to 56 seconds, are important in the operation and control of fission reactors. In separate experiments at the University of Lowell 1-MW Fission Reactor and 5.5-MV Van de Graaff Accelerator, thermal fission was induced in a U-235 lined hemispherical fission chamber. The resulting fission fragments were transferred by a helium-jet system to a low-background counting area where composite delayed-neutron energy spectra were measured as a function of time after fission. Neutron energies were determined by the time-of-flight technique using beta-neutron correlations for timing. Two types of scintillators were used for neutron detection: Li-6 glass sensitive to neutrons in the energy range 10 - 300 keV, and plastic Pilot U sensitive to neutrons in the range 100 keV - 2.0 MeV. Spectra over the neutron energy range 0.1 - 2.0 MeV were measured for eight different time intervals after fission, each time interval containing varying contributions from the Six-Groups of delayed neutrons. Two of the eight time intervals were chosen to contain significant contributions from the shortest lived Groups 5 and 6. This work presents a brief outline of pertinent background material followed by a detailed discussion of the experimental technique and data analysis leading to final energy spectra. Measured composite energy spectra along with average energies are presented. Comparisons to spectra constructed from the Studsvik compilation are also presented.

  7. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U

    SciTech Connect

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-12-15

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for {sup 99}Mo, {sup 95}Zr, {sup 137}Cs, {sup 140}Ba, {sup 141,143}Ce, and {sup 147}Nd. Modest incident-energy dependence exists for the {sup 147}Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by {approx}5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried

  8. Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced fission reactions on Pu239

    NASA Astrophysics Data System (ADS)

    Talou, P.; Becker, B.; Kawano, T.; Chadwick, M. B.; Danon, Y.

    2011-06-01

    Prompt fission neutrons following the thermal and 0.5 MeV neutron-induced fission reaction of Pu239 are calculated using a Monte Carlo approach to the evaporation of the excited fission fragments. Exclusive data such as the multiplicity distribution P(ν), the average multiplicity as a function of fragment mass ν¯(A), and many others are inferred in addition to the most used average prompt fission neutron spectrum χ(Ein,Eout), as well as average neutron multiplicity ν¯. Experimental information on these more exclusive data help constrain the Monte Carlo model parameters. The calculated average total neutron multiplicity is ν¯c=2.871 in very close agreement with the evaluated value ν¯e=2.8725 present in the ENDF/B-VII.0 library. The neutron multiplicity distribution P(ν) is in very good agreement with the evaluation by Holden and Zucker. The calculated average spectrum differs in shape from the ENDF/B-VII.0 spectrum, evaluated with the Madland-Nix model. In particular, we predict more neutrons in the low-energy tail of the spectrum (below about 300 keV) than the Madland-Nix calculations, casting some doubts on how much scission neutrons contribute to the shape of the low-energy tail of the spectrum. The spectrum high-energy tail is very sensitive to the total kinetic energy distribution of the fragments as well as to the total excitation energy sharing at scission. Present experimental uncertainties on measured spectra above 6 MeV are too large to distinguish between various theoretical hypotheses. Finally, comparisons of the Monte Carlo results with experimental data on ν¯(A) indicate that more neutrons are emitted from the light fragments than the heavy ones, in agreement with previous works.

  9. Safe Affordable Fission Engine-(SAFE-) 100a Heat Exchanger Thermal and Structural Analysis

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.

    2005-01-01

    A potential fission power system for in-space missions is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, a heat exchanger (HX) transfers the heat of the reactor core to the Brayton gas. The Safe Affordable Fission Engine- (SAFE-) 100a is a test program designed to thermally and hydraulically simulate a 95 Btu/s prototypic heat pipe-cooled reactor using electrical resistance heaters on the ground. This Technical Memorandum documents the thermal and structural assessment of the HX used in the SAFE-100a program.

  10. Correlation of /sup 239/Pu thermal and fast reactor fission yields with neutron energy

    SciTech Connect

    Maeck, W.J.

    1981-10-01

    The relative isotopic abundances and the fisson yields for over 40 stable and long-lived fission products from /sup 239/Pu fast fission were evaluated to determine if the data could be correlated with neutron energy. Only mass spectrometric data were used in this study. For some nuclides changes of only a few percent in the relative isotopic abundance or the fission yields over the energy range of thermal to 1 MeV are easily discernable and significant; for others the data are too sparse and scattered to obtain a good correlation. The neutron energy index usedin this study is the /sup 150/Nd//sup 143/Nd isotopic ratio. The results of this correlation study compared to the US Evaluated Nuclear Data File (ENDF) fast fission yield compilation. Several discrepancies are noted and suggestions for future work are presented.

  11. New high spin isomers obtained in thermal fission

    SciTech Connect

    Fogelberg, B.; Mach, H.; Gausemel, H.; Omtvedt, J. P.; Mezilev, K. A.

    1998-10-26

    The product nuclei following fission often are initially highly excited and have high angular momenta. As a consequence, there is a substantial probability for the population of isomeric yrast traps in the vicinity of closed shells. The excitation energies and decay properties of such isomers give important formation regarding the shell structure and interaction energies. Recent experiments at the OSIRIS mass separator have revealed a number of isomers in the {sup 132}Sn region having angular momenta exceeding 10 units. A brief presentation is given of some experimental results and their interpretation.

  12. Theoretical investigation of the impact of grain boundaries and fission gases on UO2 thermal conductivity

    SciTech Connect

    Du, Shiyu; Andersson, Anders D.; Germann, Timothy C.; Stanek, Christopher R.

    2012-05-02

    Thermal conductivity is one of the most important metrics of nuclear fuel performance. Therefore, it is crucial to understand the impact of microstructure features on thermal conductivity, especially since the microstructure evolves with burn-up or time in the reactor. For example, UO{sub 2} fuels are polycrystalline and for high-burnup fuels the outer parts of the pellet experience grain sub-division leading to a very fine grain structure. This is known to impact important physical properties such as thermal conductivity as fission gas release. In a previous study, we calculated the effect of different types of {Sigma}5 grain boundaries on UO{sub 2} thermal conductivity and predicted the corresponding Kapitza resistances, i.e. the resistance of the grain boundary in relation to the bulk thermal resistance. There have been reports of pseudoanisotropic effects for the thermal conductivity in cubic polycrystalline materials, as obtained from molecular dynamics simulations, which means that the conductivity appears to be a function of the crystallographic direction of the temperature gradient. However, materials with cubic symmetry should have isotropic thermal conductivity. For this reason it is necessary to determine the cause of this apparent anisotropy and in this report we investigate this effect in context of our earlier simulations of UO{sub 2} Kapitza resistances. Another source of thermal resistance comes from fission products and fission gases. Xe is the main fission gas and when generated in sufficient quantity it dissolves from the lattice and forms gas bubbles inside the crystalline structure. We have performed studies of how Xe atoms dissolved in the UO{sub 2} matrix or precipitated as bubbles impact thermal conductivity, both in bulk UO{sub 2} and in the presence of grain boundaries.

  13. Development of a multiscale thermal conductivity model for fission gas in UO2

    NASA Astrophysics Data System (ADS)

    Tonks, Michael R.; Liu, Xiang-Yang; Andersson, David; Perez, Danielle; Chernatynskiy, Aleksandr; Pastore, Giovanni; Stanek, Christopher R.; Williamson, Richard

    2016-02-01

    Accurately predicting changes in the thermal conductivity of light water reactor UO2 fuel throughout its lifetime in reactor is an essential part of fuel performance modeling. However, typical thermal conductivity models from the literature are empirical. In this work, we begin to develop a mechanistic thermal conductivity model by focusing on the impact of gaseous fission products, which is coupled to swelling and fission gas release. The impact of additional defects and fission products will be added in future work. The model is developed using a combination of atomistic and mesoscale simulation, as well as analytical models. The impact of dispersed fission gas atoms is quantified using molecular dynamics simulations corrected to account for phonon-spin scattering. The impact of intragranular bubbles is accounted for using an analytical model that considers phonon scattering. The impact of grain boundary bubbles is determined using a simple model with five thermal resistors that are parameterized by comparing to 3D mesoscale heat conduction results. When used in the BISON fuel performance code to model four reactor experiments, it produces reasonable predictions without having been fit to fuel thermocouple data.

  14. In situ thermal imaging and absolute temperature monitoring by luminescent diphenylalanine nanotubes.

    PubMed

    Gan, Zhixing; Wu, Xinglong; Zhang, Jinlei; Zhu, Xiaobin; Chu, Paul K

    2013-06-10

    The temperature sensing capability of diphenylalanine nanotubes is investigated. The materials can detect local rapid temperature changes and measure the absolute temperature in situ with a precision of 1 °C by monitoring the temperature-dependent photoluminescence (PL) intensity and lifetime, respectively. The PL lifetime is independent of ion concentrations in the medium as well as pH in the physiological range. This biocompatible thermal sensing platform has immense potential in the in situ mapping of microenvironmental temperature fluctuations in biological systems for disease diagnosis and therapeutics. PMID:23679829

  15. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for ^{235}U(n,fission) at Thermal and Fast Neutron Energies.

    PubMed

    Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel. PMID:27081973

  16. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for 235U (n ,fission) at Thermal and Fast Neutron Energies

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; Dimitriou, P.

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U 235 fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.

  17. Dating thermal events at Cerro Prieto using fission-track annealing

    SciTech Connect

    Sanford, S.J.; Elders, W.A.

    1981-01-01

    The duration of heating in the Cerro Prieto reservoir was estimated by relating the fading of spontaneous fission tracks in detrital apatite to observed temperatures. The rate of fading is a function of both time and temperature. The apparent fission track age of the detrital apatites then, is a function of both their source age and their time-temperature history. Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures. The temperature in well T-366, where complete annealing first occurs, was estimated to be between 160 and 180{sup 0}C. Complete annealing at these temperatures requires 10{sup 4} and 10{sup 3} years, respectively. Well M-94 has an apparently complex thermal history. Geothermometers in this well indicate temperatures some 50 to 100{sup 0}C higher than those measured directly in the borehole. Fission tracks are partially preserved in M-94 where paleotemperatures were as high as 200{sup 0}C and are erased where geothermometers indicate temperatures of 250{sup 0}C. This implies a thermal event less than 10{sup 1} years and greater than 10{sup 0} years in duration.

  18. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  20. Probing energy dissipation, γ-ray and neutron multiplicity in the thermal neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2016-04-01

    The incorporation of the four-dimensional Langevin equations led to an integrative description of fission cross-section, fragment mass distribution and the multiplicity and energy distribution of prompt neutrons and γ-rays in the thermal neutron-induced fission of 239Pu. The dynamical approach presented in this paper thoroughly reproduces several experimental observables of the fission process at low excitation energy.

  1. Determination of critical assembly absolute power using post-irradiation activation measurement of week-lived fission products.

    PubMed

    Košťál, Michal; Švadlenková, Marie; Milčák, Ján; Rypar, Vojtěch; Koleška, Michal

    2014-07-01

    The work presents a detailed comparison of calculated and experimentally determined net peak areas of longer-living fission products after 100 h irradiation on a reactor with power of ~630 W and several days cooling. Specifically the nuclides studied are (140)Ba, (103)Ru, (131)I, (141)Ce, (95)Zr. The good agreement between the calculated and measured net peak areas, which is better than in determination using short lived (92)Sr, is reported. The experiment was conducted on the VVER-1000 mock-up installed on the LR-0 reactor. The Monte Carlo approach has been used for calculations. The influence of different data libraries on results of calculation is discussed as well. PMID:24566373

  2. Measurement of delayed-neutron yield from 237Np fission induced by thermal neutrons

    NASA Astrophysics Data System (ADS)

    Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B.; Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I.

    2007-06-01

    The delayed-neutron yield from thermal-neutron-induced fission of the 237Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from 237Np fission induced by thermal neutrons is ν d = 0.0110 ± 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna).

  3. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics. [Patient application

    DOEpatents

    Barnard, R.W.; Jensen, D.H.

    1980-11-05

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or epithermal dieaway. Various calibration factors enhance the accuracy of the measurement.

  4. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics

    DOEpatents

    Barnard, Ralston W.; Jensen, Dal H.

    1982-01-01

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or eqithermal dieaway. Various calibration factors enhance the accuracy of the measurement.

  5. a Study of Prompt Neutron Emission in Thermal Neutron-Induced Fission of URANIUM-235.

    NASA Astrophysics Data System (ADS)

    Franklyn, Christopher Barry

    An original experiment was performed to measure the angular correlation of fission neutrons from thermal -neutron-induced fission of ('235)U, with respect to the light fission fragment direction, as a function of fragment mass division and neutron energy. A Monte Carlo model, with a realistic description of the fission fragment de -excitation process, was developed to simulate the observed neutron-fragment angular correlation data. The model was capable of investigating various possible forms of neutron emission which were classified into emission before, during and after full fragment acceleration, and correspondingly named scission acceleration and prompt neutron emission. Simulated neutron-fragment angular correlations displaying similar distributions with respect to the light fragment direction for different forms of neutron emission are shown to exhibit differing distributions when examined as a function of fragment mass division or neutron energy, thus illustrating the sensitivity of the experiment to the forms of neutron emission occurring in fission. A primary conclusion of the investigation was that neutron emission solely from fully accelerated fragments, whether isotropically or anisotropically emitted in the fragment centre of mass system, was unable to adequately describe the observed neutron-fragment angular correlations. Simulation of the fission process with some neutron emission before or during fragment acceleration exhibited a closer correspondence with observed phenomena. Within the scope of this work the form of neutron emission that produced the closest overall correspondence with experimental data was a simulation in which 20% of the emitted neutrons were isotropically emitted scission neutrons with a Maxwellian energy distribution of temperature 1.0 MeV. The remaining neutrons were emitted from fully accelerated fragments, being isotropic in the fragment centre of mass frame, except for the n-th(n > 1) neutrons from the light fragment, which

  6. Combining apatite fission track and He thermochronology to constrain thermal histories

    NASA Astrophysics Data System (ADS)

    Persano, C.; Stuart, F.; Bishop, P.

    2003-04-01

    Apatite fission track thermochronometry (AFTT) has proved an invaluable tool for determining the cooling histories of rocks in the shallow crust. Quantitative models for the time and temperature dependence of the fission track annealing process in apatite demostrate that the combination of fission track apparent age and track length distribution provides a continuous record of the thermal history of the samples from 120 to 60^oC, and possibly, to lower temperatures. However the sensitivity of the technique is poorly constrained below 70-80^oC because annealing rates are slow. The apatite (U-Th)/He system is sensitive to temperatures between 80 and 40^oC irrespective of apatite chemistry, and presents a way to test the ability of AFTT to determine thermal histories below 80^oC. Here we present a novel way of combining apatite fission track and (U-Th)/He data that narrows the number of possible thermal histories and provides better constraints on the landscape evolution of a particular region. We use as an example the southeastern Australia passive margin in NSW, an area where post break-up landscape evolution is poorly resolved despite an extensive fission track database. Fission track and (U-Th)/He ages have been measured on 16 apatite samples from two coast perpendicular traverses across the coastal plain, up the escarpment onto the plateau. The fission track data are modelled using AFTSolve and the individual thermal histories which fit the data are used as parameters for forward modelling the apatite He ages. Only the thermal histories that produce the measured He age, within uncertainty, are considered. For each sample, the choosen time-temperature paths show the same peculiar characteristics, narrowing considerably the number of possible cooling scenarios. This combination shows that the AFT/derived thermal histories for temperatures between 60 to 40^oC may be inconsistent with the (U-Th)/He ages, suggesting that the annealing process at this temperatures

  7. Thermal history of rocks in southern San Joaquin Valley, California: evidence from fission-track analysis

    USGS Publications Warehouse

    Naeser, N.D.; Naeser, C.W.; McCulloh, T.H.

    1990-01-01

    Fission-track analysis has been used to study the thermal and depositional history of the subsurface Tertiary sedimentary rocks on both sides of the active White Wolf reverse fault in the southern San Joaquin Valley. The distinctly different thermal histories of the rocks in the two structural blocks are clearly reflected in the apatite fission-track data, which suggest that rocks in the rapidly subsiding basin northwest of the fault have been near their present temperature for only about 1 m.y. compared with about 10 m.y. for rocks southeast of the fault. These estimates of heating time agree with previous estimates for these rocks. Zircon fission-track data indicate that the Tertiary sediments were derived from parent rocks of more than one age. However, from at least the Eocene to late Miocene or Pliocene, the major sediment source was rocks related to the youngest Sierra Nevada Mesozoic intrusive complexes, which are presently exposed east and south of the southern San Joaquin Valley. -from Authors

  8. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers.

    PubMed

    Žerovnik, Gašper; Kaiba, Tanja; Radulović, Vladimir; Jazbec, Anže; Rupnik, Sebastjan; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-02-01

    CEA developed fission chambers and ionization chambers were utilized at the JSI TRIGA reactor to measure neutron and gamma fields. The measured axial fission rate distributions in the reactor core are generally in good agreement with the calculated values using the Monte Carlo model of the reactor thus verifying both the computational model and the fission chambers. In future, multiple absolutely calibrated fission chambers could be used for more accurate online reactor thermal power monitoring. PMID:25479432

  9. The Radiological and Thermal Characteristics of Fission Waste from a Deep-Burn Fusion-Fission Hybrid (LIFE) and Implications for Repository Performance

    SciTech Connect

    Shaw, H F; Blink, J; Farmer, J; Latkowski, J; Kramer, K

    2009-09-08

    We are studying the use of a Laser Inertial-confinement Fusion Engine (LIFE) to drive a hybrid fusion-fission system that can generate electrical power and/or burn nuclear waste. The system uses the neutrons from laser driven ICF to produce tritium and to drive nuclear reactions in a subcritical fission blanket. The fusion neutron source obviates the need for a self-sustaining chain reaction in the fission blanket. Either fissile or fertile could be used as fission fuel, thus eliminating the need for isotopic enrichment. The 'driven' system potentially allows very high levels of burnup to be reached, extracting a large fraction of the available energy in the fission fuel without the need for reprocessing. In this note, we discuss the radionuclide inventory of a depleted uranium (DU) fuel burned to greater than 95% FIMA (Fissions per Initial heavy Metal Atom), the implications for thermal management of the resulting waste, and the implications of this waste for meeting the dose standards for releases from a geological repository for high-level waste. The fission waste discussed here would be that produced by a LIFE hybrid with a 500-MW fusion source. The fusion neutrons are multiplied and moderated by a sequence of concentric shells of materials before encountering the fission fuel, and fission in this region is largely due to thermal neutrons. The fission blanket consists of 40 metric tons (MT) of DU, assumed to be in the form of TRISO-like UOC fuel particles embedded in 2-cm-diameter graphite pebbles. (It is recognized that TRISO-based fuel may not reach the high burnup of the fertile fuel considered here, and other fuel options are being investigated. We postulate the existence of a fuel that can reach >95% FIMA so that the waste disposal implications of high burnup can be assessed.) The engine and plant design considered here would receive one load of fission fuel and produce {approx}2 GWt of power (fusion + fission) over its 50- to 70-year lifetime. Neutron and

  10. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  11. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking.

    PubMed

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π-stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C(2h) symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π-stacking symmetry and phonon-induced coherent or thermally activated mechanisms. PMID:26382701

  12. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  13. Kelvin Absolute Temperature Scale Identified as Length Scale and Related to de Broglie Thermal Wavelength

    NASA Astrophysics Data System (ADS)

    Sohrab, Siavash

    Thermodynamic equilibrium between matter and radiation leads to de Broglie wavelength λdβ = h /mβvrβ and frequency νdβ = k /mβvrβ of matter waves and stochastic definitions of Planck h =hk =mk <λrk > c and Boltzmann k =kk =mk <νrk > c constants, λrkνrk = c , that respectively relate to spatial (λ) and temporal (ν) aspects of vacuum fluctuations. Photon massmk =√{ hk /c3 } , amu =√{ hkc } = 1 /No , and universal gas constant Ro =No k =√{ k / hc } result in internal Uk = Nhνrk = Nmkc2 = 3 Nmkvmpk2 = 3 NkT and potential pV = uN\\vcirc / 3 = N\\ucirc / 3 = NkT energy of photon gas in Casimir vacuum such that H = TS = 4 NkT . Therefore, Kelvin absolute thermodynamic temperature scale [degree K] is identified as length scale [meter] and related to most probable wavelength and de Broglie thermal wavelength as Tβ =λmpβ =λdβ / 3 . Parallel to Wien displacement law obtained from Planck distribution, the displacement law λwS T =c2 /√{ 3} is obtained from Maxwell -Boltzmann distribution of speed of ``photon clusters''. The propagation speeds of sound waves in ideal gas versus light waves in photon gas are described in terms of vrβ in harmony with perceptions of Huygens. Newton formula for speed of long waves in canals √{ p / ρ } is modified to √{ gh } =√{ γp / ρ } in accordance with adiabatic theory of Laplace.

  14. Thermal Characterization of a Simulated Fission Engine via Distributed Fiber Bragg Gratings

    SciTech Connect

    Duncan, Roger G.; Fielder, Robert S.; Seeley, Ryan J.; Kozikowski, Carrie L.; Raum, Matthew T.

    2005-02-06

    We report the use of distributed fiber Bragg gratings to monitor thermal conditions within a simulated nuclear reactor core located at the Early Flight Fission Test Facility of the NASA Marshall Space Flight Center. Distributed fiber-optic temperature measurements promise to add significant capability and advance the state-of-the-art in high-temperature sensing. For the work reported herein, seven probes were constructed with ten sensors each for a total of 70 sensor locations throughout the core. These discrete temperature sensors were monitored over a nine hour period while the test article was heated to over 700 deg. C and cooled to ambient through two operational cycles. The sensor density available permits a significantly elevated understanding of thermal effects within the simulated reactor. Fiber-optic sensor performance is shown to compare very favorably with co-located thermocouples where such co-location was feasible.

  15. Absolute measurements of total peroxy nitrate mixing ratios by thermal dissociation blue diode laser cavity ring-down spectroscopy.

    PubMed

    Paul, Dipayan; Osthoff, Hans D

    2010-08-01

    Peroxycarboxylic nitric anhydrides (PANs) have long been recognized as important trace gas constituents of the troposphere. Here, we describe a blue diode laser thermal dissociation cavity ring-down spectrometer for rapid and absolute measurements of total peroxyacyl nitrate (SigmaPAN) abundances at ambient concentration levels. The PANs are thermally dissociated and detected as NO2, whose mixing ratios are quantified by optical absorption at 405 nm relative to a reference channel kept at ambient temperature. The effective NO2 absorption cross-section at the diode laser emission wavelength was measured to be 6.1 x 10(-19) cm2 molecule(-1), in excellent agreement with a prediction based on a projection of a high-resolution literature absorption spectrum onto the laser line width. The performance, i.e., accuracy and precision of measurement and matrix effects, of the new 405 nm thermal dissociation cavity ring-down spectrometer was evaluated and compared to that of a 532 nm thermal dissociation cavity ring-down spectrometer using laboratory-generated air samples. The new 405 nm spectrometer was considerably more sensitive and compact than the previously constructed version. The key advantage of laser thermal dissociation cavity ring-down spectroscopy is that the measurement can be considered absolute and does not need to rely on external calibration. PMID:20698583

  16. Experimental study of some important characteristics of the thermal neutron induced fission of 237Np

    NASA Astrophysics Data System (ADS)

    Wagemans, C.; Allaert, E.; Caïtucoli, F.; D'hondt, P.; Barreau, G.; Perrin, P.

    1981-10-01

    Fission fragment mass and kinetic energy distributions and their correlations have been studied for the thermal neutron induced fission of 237Np. The global mass distribution is rather smooth, apart from a weak shoulder at μH = 140-141. When low excitation events are selected, fine structures associated with the charge of the fragments are observed. Furthermore, there is a sudden increase in Ek for μH > 155, which is probably due to a spherical shell N = 50 in the light fragment and the corresponding deformed (but stable) heavy fragments with masses in the rare earth region. For the average (pre-neutron emission) total fragment kinetic energy, a value of 176.4 ± 0.6 MeV has been obtained, in agreement with the systematics. Also the prompt neutron emission curve v(m ∗) has been calculated, which shows the well-known saw-tooth shape. Finally, the energy distribution and the emission probability of the ternary α-particles have been determined.

  17. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment

    NASA Astrophysics Data System (ADS)

    Shcherbina, Natalia; Kivel, Niko; Günther-Leopold, Ines

    2013-06-01

    The release of fission products (FPs) from spent nuclear fuel (SNF) has been studied as a function of the temperature and redox conditions. The present paper concerns essentially the high temperature separation of Cs and Sr from irradiated pressurized (PWR) and boiling water reactor (BWR) fuel of different burn-up levels with use of an in-house designed system for inductive vaporization (InVap). Using thermodynamic calculations with the Module of Fission Product Release (MFPR) code along with annealing experiments on SNF in the InVap it was shown that the speciation of Cs and Sr, hence their release behavior at high temperature, is sensitive to the redox conditions during thermal treatment. It was demonstrated that annealing conditions in the InVap can be adjusted in the way to promote the release of selected FPs without significant loss of the fuel matrix or actinides: complete release of Cs and I was achieved during treatment of irradiated fuel at 1800 °C under reducing atmosphere (0.7% H2/Ar mixture). The developed partitioning procedure can be used for the SNF pretreatment as an advanced head-end step in the hydrometallurgical or pyrochemical reprocessing technology.

  18. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Astrophysics Data System (ADS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  19. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  20. Thermal history of Michigan Basin and southern Canadian Shield from apatite fission track analysis

    SciTech Connect

    Crowley, K.D. )

    1991-01-10

    Apatite fission track ages and confined-length distributions were collected from 38 basement outcrop and 5 basement drillcore samples in order to reconstruct the Phanerozoic thermal history of the Michigan Basin and southern Canadian Shield. The apatite data indicate two periods of thermal activity in the region: Triassic heating/cooling that affected the basin and adjacent shield and Cretaceous or post-Cretaceous heating/cooling that primarily affected the basin. The magnitude, timing, and cause of Cretaceous thermal activity cannot be identified with the present data. Model calculations suggest that some of the shield samples and probably all of the basin samples were heated to temperatures of at least 90C just prior to relatively rapid cooling in the Triassic. Available stratigraphic and geochemical constraints suggest that these elevated temperatures were the result of burial by an additional 2-5 km of late Paleozoic (probably Pennsylvanian and Permian) sediments. It is likely that the basin was buried during the Alleghenian Orogeny as observed for the adjacent Appalachian Basin.

  1. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    SciTech Connect

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-30

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  2. A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

    NASA Astrophysics Data System (ADS)

    Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao

    2015-11-01

    A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.

  3. The absolute chronology and thermal processing of solids in the solar protoplanetary disk.

    PubMed

    Connelly, James N; Bizzarro, Martin; Krot, Alexander N; Nordlund, Åke; Wielandt, Daniel; Ivanova, Marina A

    2012-11-01

    Transient heating events that formed calcium-aluminum-rich inclusions (CAIs) and chondrules are fundamental processes in the evolution of the solar protoplanetary disk, but their chronology is not understood. Using U-corrected Pb-Pb dating, we determined absolute ages of individual CAIs and chondrules from primitive meteorites. CAIs define a brief formation interval corresponding to an age of 4567.30 ± 0.16 million years (My), whereas chondrule ages range from 4567.32 ± 0.42 to 4564.71 ± 0.30 My. These data refute the long-held view of an age gap between CAIs and chondrules and, instead, indicate that chondrule formation started contemporaneously with CAIs and lasted ~3 My. This time scale is similar to disk lifetimes inferred from astronomical observations, suggesting that the formation of CAIs and chondrules reflects a process intrinsically linked to the secular evolution of accretionary disks. PMID:23118187

  4. Phase-field simulations of intragranular fission gas bubble evolution in UO2 under post-irradiation thermal annealing

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2013-05-15

    Fission gas bubble is one of evolving microstructures, which affect thermal mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking, in operating nuclear fuels. Therefore, fundamental understanding of gas bubble evolution kinetics is essential to predict the thermodynamic property and performance changes of fuels. In this work, a generic phasefield model was developed to describe the evolution kinetics of intra-granular fission gas bubbles in UO2 fuels under post-irradiation thermal annealing conditions. Free energy functional and model parameters are evaluated from atomistic simulations and experiments. Critical nuclei size of the gas bubble and gas bubble evolution were simulated. A linear relationship between logarithmic bubble number density and logarithmic mean bubble diameter is predicted which is in a good agreement with experimental data.

  5. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  6. Absolute measurement of thermal noise in a resonant short-range force experiment

    NASA Astrophysics Data System (ADS)

    Yan, H.; Housworth, E. A.; Meyer, H. O.; Visser, G.; Weisman, E.; Long, J. C.

    2014-10-01

    Planar, double-torsional oscillators are especially suitable for short-range macroscopic force search experiments, since they can be operated at the limit of instrumental thermal noise. As a study of this limit, we report a measurement of the noise kinetic energy of a polycrystalline tungsten oscillator in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonance frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The electronic processing is calibrated by means of a known electrostatic force and input from a finite-element model. The measured average kinetic energy, Eexp = (2.0 ± 0.3) × 10-21 J, is in agreement with the expected value of 1/2{{k}B}T.

  7. On the use of the thermal lens effect for measuring absolute luminescence quantum yields of transition metal complexes

    NASA Astrophysics Data System (ADS)

    Degen, Joachim; Reinecke, Klaus; Schmidtke, Hans-Herbert

    1992-05-01

    The thermal lens effect or thermal blooming of a laser beam passing through an absorbing medium is used to determine the fraction of absorbed laser power which is converted into heat. By this photocaloric method absolute luminescence quantum yields Φ can be evaluated covering the full range of possible Φ values. A check with organic standards for which quantum yields of 1, 0.52 and 0 are reported, supplies values of 0.99, 0.52 and 0.04, respectively. The sample of compounds [Ru(bipy) 3]X 2, X  Cl, ClO 4, and bipy  bipyridine, were studied using different concentrations in water and methanol solution at room temperature. The results strongly depend on the counter ion: for the Cl -- and (ClO 4) --salts quantum yields of Φ = 0.31 and 0.79, respectively, are obtained, which may be explained by different polarization conditions. The yields are, on the other hand, independent from the solvent and from the concentration, which was considered ranging from 10 -4 to 2.5 × 10 -5 M. Thermal blooming was also observed from [Ru(bipy) 3]Cl 2 contained in KBr pellets, measuring at various temperatures.

  8. Thermal effects on the Fission Barrier of neutron-rich nuclei

    SciTech Connect

    Minato, Futoshi; Hagino, Kouichi

    2008-11-11

    We discuss the fission barrier height of neutron-rich nuclei in a r-process site at highly excited state, which is resulted from the beta-decay or the neutron-capture processes. We particularly investigate the sensitivity of the fission barrier height to the temperature, including the effect of pairing phase transition from superfluid to normal fluid phases. To this end, we use the finite-temperature Skyrme-Hartree-Fock-Bogolubov method with a zero-range pairing interaction. We also discuss the temperature dependence of the fission decay rate.

  9. Thermal transport in UO2 with defects and fission products by molecular dynamics simulations

    SciTech Connect

    Liu, Xiang-Yang; Cooper, Michael William Donald; Mcclellan, Kenneth James; Lashley, Jason Charles; Byler, Darrin David; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-10-14

    The importance of the thermal transport in nuclear fuel has motivated a wide range of experimental and modelling studies. In this report, the reduction of thermal transport in UO2 due to defects and fission products has been investigated using non-equilibrium MD simulations, with two sets of empirical potentials for studying the degregation of UO2 thermal conductivity including a Buckingham type interatomic potential and a recently developed EAM type interatomic potential. Additional parameters for U5+ and Zr4+ in UO2 have been developed for the EAM potential. The thermal conductivity results from MD simulations are then corrected for the spin-phonon scattering through Callaway model formulations. To validate the modelling results, comparison was made with experimental measurements on single crystal hyper-stoichiometric UO2+x samples.

  10. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    SciTech Connect

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations.

  11. Isotopic yield measurement in the heavy mass region for 239Pu thermal neutron induced fission

    NASA Astrophysics Data System (ADS)

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Köster, U.; Faust, H.; Letourneau, A.; Panebianco, S.

    2011-09-01

    Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the 239Pu(nth,f) reaction. In order to do this, a new experimental method based on γ-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.

  12. Current Issues in Nuclear Data Evaluation Methodology: {sup 235}U Prompt Fission Neutron Spectra and Multiplicity for Thermal Neutrons

    SciTech Connect

    Trkov, A.; Capote, R.; Pronyaev, V.G.

    2015-01-15

    Issues in evaluation methodology of the prompt fission neutron spectra (PFNS) and neutron multiplicity for the thermal-neutron-induced fission of the {sup 235}U are discussed. The inconsistency between the experimental differential and integral data is addressed. By using differential data as ”shape data” good consistency was achieved between available sets of differential data. Integral dosimetry data have been used to define the PFNS slope at high outgoing neutron energies, where the quality of the differential data is poor. The inclusion into the fit of measured integral (spectrum-averaged) cross sections had a very small impact in the region where differential PFNS data are abundant and accurate, but removed the discrepancy with integral data at higher neutron emission energies. All experimental data are consistently fitted giving a PFNS average energy of 2.008 MeV. The impact on criticality prediction of the newly evaluated PFNS was tested. The highly enriched {sup 235}U solution assemblies with high leakage HEU-SOL-THERM-001 and HEU-SOL-THERM-009 benchmarks are the most sensitive to the PFNS. Criticality calculations for those solutions show a significant increase in reactivity if the average neutron energy of the fission neutrons is reduced from the ENDF/B-VI.5 value of 2.03 MeV. The proposed reduction of the PFNS average energy by 1.1% can be compensated by reducing the average number of neutrons per fission ν{sup ¯} at the thermal energy to the Gwin et al. measured value. The simple least-squares PFNS fit was confirmed by a more sophisticated combined fit of differential PFNS data for {sup 233,235}U, {sup 239}Pu and {sup 252}Cf nuclides with the generalised least-squares method using the GMA and GANDR codes.

  13. Current Issues in Nuclear Data Evaluation Methodology: 235U Prompt Fission Neutron Spectra and Multiplicity for Thermal Neutrons

    NASA Astrophysics Data System (ADS)

    Trkov, A.; Capote, R.; Pronyaev, V. G.

    2015-01-01

    Issues in evaluation methodology of the prompt fission neutron spectra (PFNS) and neutron multiplicity for the thermal-neutron-induced fission of the 235U are discussed. The inconsistency between the experimental differential and integral data is addressed. By using differential data as "shape data" good consistency was achieved between available sets of differential data. Integral dosimetry data have been used to define the PFNS slope at high outgoing neutron energies, where the quality of the differential data is poor. The inclusion into the fit of measured integral (spectrum-averaged) cross sections had a very small impact in the region where differential PFNS data are abundant and accurate, but removed the discrepancy with integral data at higher neutron emission energies. All experimental data are consistently fitted giving a PFNS average energy of 2.008 MeV. The impact on criticality prediction of the newly evaluated PFNS was tested. The highly enriched 235U solution assemblies with high leakage HEU-SOL-THERM-001 and HEU-SOL-THERM-009 benchmarks are the most sensitive to the PFNS. Criticality calculations for those solutions show a significant increase in reactivity if the average neutron energy of the fission neutrons is reduced from the ENDF/B-VI.5 value of 2.03 MeV. The proposed reduction of the PFNS average energy by 1.1% can be compensated by reducing the average number of neutrons per fission νbar at the thermal energy to the Gwin et al. measured value. The simple least-squares PFNS fit was confirmed by a more sophisticated combined fit of differential PFNS data for 233,235U, 239Pu and 252Cf nuclides with the generalised least-squares method using the GMA and GANDR codes.

  14. Thermal Simulator Development: Non-Nuclear Testing of Space Fission Systems

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky E.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system. At the NASA MSFC Early Flight Fission Test Facility (EFF-TF), highly designed electric heaters are used to simulate the heat from nuclear fuel to test space fission power and propulsion systems. To allow early utilization, nuclear system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. In this test strategy, highly designed electric heaters are used to simulate the heat from nuclear fuel, allowing one to develop a significant understanding of individual components and integrated system operation without the cost, time and safety concerns associated with nuclear testing.

  15. Thermal history determined by fission-track dating for three sedimentary basins in California and Wyoming

    USGS Publications Warehouse

    Naeser, Nancy D.

    1984-01-01

    The use of fission-tracks is demonstrated in studies of time-temperature relationships in three sedimentary basins in the western United States; in the Tejon Oil Field area of the southern San Joaquin Valley, California; in the northeastern Green River basin, Wyoming, and in drill holes in the southern Powder River Basin, Wyoming.

  16. Zircon and apatite fission-track evidence for an Early Permian thermal peak and relatively rapid Late Permian cooling in the Appalachian Basin

    SciTech Connect

    Roden, M.K. . Dept. of Earth and Environmental Science); Wintsch, R.P. . Dept. of Geological Sciences)

    1992-01-01

    New zircon fission-track ages compliment published apatite fission-track ages in the Appalachian Basin to narrowly constrain its thermal history. Geologic evidence can only constrain timing of the thermal peak to be younger than late Pennsylvanian sediments ([approximately] 300 Ma) and older than Mesozoic sediments in the Newark and Gettysburg Basins ([approximately] 210 Ma). Apatite fission-track ages as old as 246 Ma require the Alleghanian thermal peak to have been pre-Triassic. Preliminary data on reset zircon fission-track ages from middle Paleozoic sediments range from 255 to 290 Ma. Zircon fission-track apparent ages from samples younger and structurally higher than these are not reset. Thus, the oldest reset zircon fission-track age constraints the time of the Alleghanian thermal peak to be earliest Permian. Rates of post-Alleghanian cooling have not been well-constrained by geologic data and could be very slow. The difference between apatite and zircon fission-track ages for most of the samples range from 100--120 m.y. reflecting Permo-Triassic cooling of only 1 C/m.y. However, one sample with one of the oldest apatite ages, 245 Ma, yields one of the younger zircon ages of 255 Ma. This requires cooling rates of 10 C/m.y. and uplift rates of [approximately] 0.5 mm/yr. Collectively, these data support an early Permian thermal peak and a two-stage cooling history, consisting of > 100 C cooling (> 8 km denundation) in the Permian followed by relatively slow cooling and exhumation throughout the Mesozoic.

  17. Thermal history of the Maramureş area (Northern Romania) constrained by zircon fission track analysis: Cretaceous metamorphism and Late Cretaceous to Paleocene exhumation

    NASA Astrophysics Data System (ADS)

    Gröger, Heike R.; Tischler, Matthias; Fügenschuh, Bernhard; Schmid, Stefan M.

    2013-10-01

    This study presents zircon fission track data from the Bucovinian nappe stack (northern part of the Inner Eastern Carpathians, Rodna Mountains) and a neighbouring part of the Biharia nappe system (Preluca massif) in order to unravel the thermal history of the area and its structural evolution by integrating the fission track data with published data on the tectonic and sedimentary evolution of the area. The increase of metamorphic temperatures towards the SW detected by the zircon fission track data suggests SW-wards increasing tectonic overburden (up to at least 15 km) and hence top NE thrusting. Sub-greenschist facies conditions during the Alpine metamorphic overprint only caused partial annealing of fission tracks in zircon in the external main chain of the Central Eastern Carpathians. Full annealing of zircon points to at least 300 °C in the more internal elements (Rodna Mountains and Preluca massif). The zircon fission track central and single grain ages largely reflect Late Cretaceous cooling and exhumation. A combination of fission track data and stratigraphic constraints points to predominantly tectonic differential exhumation by some 7-11 km, connected to massive Late Cretaceous extension not yet detected in the area. Later events such as the latest Cretaceous ("Laramian") juxtaposition of the nappe pile with the internal Moldavides, causing exhumation by erosion, re-burial by sedimentation and tectonic loading during the Cenozoic had no impact on the zircon fission track data; unfortunately it prevented a study of the low temperature part of the Late Cretaceous exhumation history.

  18. A thermal history of the Proterozoic East Alligator River Terrain, N.T., Australia: a fission track study

    NASA Astrophysics Data System (ADS)

    Koul, Sohan L.; Wilde, A. R.; Tickoo, Awtar K.

    1988-01-01

    Radiometric data indicate a major thermal event in Proterozoic rocks of the East Alligator River Terrain, at 1870 Ma. These data, together with metamorphic mineral assemblages, demonstrate peak temperatures in excess of 600 ° C, close to the melting temperature of more deeply buried rocks. A cooling rate following peak metamorphism of 3°C/Ma is suggested. Fission-track dates of peak metamorphic phases, however, reveal a thermal event (or events), after 1650 Ma, rather than the peak metamorphic event. This rise in temperature was the result of thermal blanketing of the metamorphic basement by Carpentarian sediments and anomalous radiogenic heat flow from underlying granitoid gneiss. The temperatures so generated (≥ 175 ° C) were insufficient to reset Rb-Sr and K-Ar systems, but are clearly in excess of F.T. annealing temperatures for all the phases investigated. A cooling history, extending over 1000 m.y. and reflecting gradual erosion of the sedimentary cover, is revealed. This history is consistent with the extraordinary tectonic stability of the region. The importance of F.T. studies in establishing a thermal history is underscored, particularly when maximum temperatures experienced were less than those required to reset Rb-Sr and K-Ar systems.

  19. Identifying uranium particles using fission tracks and microsampling individual particles for analysis using thermal ionization mass spectrometry.

    PubMed

    Esaka, Fumitaka; Suzuki, Daisuke; Magara, Masaaki

    2015-03-01

    The analysis of isotope ratios in individual particles found in the environment is important to clarify the origins of the particles. In particular, the analysis of uranium particles in environmental samples from nuclear facilities is useful for detecting undeclared nuclear activities related to the production of nuclear weapons. Thermal ionization mass spectrometry (TIMS) combined with a fission track technique is an efficient method for determining the isotope ratios of individual uranium particles, but has a drawback called "particle-mixing". When some uranium particles are measured as a single particle and an average isotope ratio for the particles is obtained, it is called "particle mixing". This may lead to erroneous conclusions in terms of the particle sources that are identified. In the present study, microsampling using a scanning electron microscope was added to the fission track-TIMS procedure. The analysis of a mixture of SRM 950a and CRM U100 reference materials containing uranium particles indicated that particle mixing was almost completely avoided using the proposed technique. The performance of the proposed method was sufficient for obtaining reliable data for the sources of individual particles to be identified reliably. PMID:25680068

  20. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Neudecker, D.; Talou, P.; Kawano, T.; Kahler, A. C.; Rising, M. E.; White, M. C.

    2016-03-01

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  1. Fission Spectrum Related Uncertainties

    SciTech Connect

    G. Aliberti; I. Kodeli; G. Palmiotti; M. Salvatores

    2007-10-01

    The paper presents a preliminary uncertainty analysis related to potential uncertainties on the fission spectrum data. Consistent results are shown for a reference fast reactor design configuration and for experimental thermal configurations. However the results obtained indicate the need for further analysis, in particular in terms of fission spectrum uncertainty data assessment.

  2. The thermal history of the Miocene Ibar Basin (Southern Serbia): new constraints from apatite and zircon fission track and vitrinite reflectance data

    NASA Astrophysics Data System (ADS)

    Andrić, Nevena; Fügenschuh, Bernhard; Životić, Dragana; Cvetković, Vladica

    2015-02-01

    The Ibar Basin was formed during Miocene large scale extension in the NE Dinaride segment of the Alpine- Carpathian-Dinaride system. The Miocene extension led to exhumation of deep seated core-complexes (e.g. Studenica and Kopaonik core-complex) as well as to the formation of extensional basins in the hanging wall (Ibar Basin). Sediments of the Ibar Basin were studied by apatite and zircon fission track and vitrinite reflectance in order to define thermal events during basin evolution. Vitrinite reflectance (VR) data (0.63-0.90 %Rr) indicate a bituminous stage for the organic matter that experienced maximal temperatures of around 120-130 °C. Zircon fission track (ZFT) ages indicate provenance ages. The apatite fission track (AFT) single grain ages (45-6.7 Ma) and bimodal track lengths distribution indicate partial annealing of the detrital apatites. Both vitrinite reflectance and apatite fission track data of the studied sediments imply post-depositional thermal overprint in the Ibar Basin. Thermal history models of the detritial apatites reveal a heating episode prior to cooling that began at around 10 Ma. The heating episode started around 17 Ma and lasted 10-8 Ma reaching the maximum temperatures between 100-130 °C. We correlate this event with the domal uplift of the Studenica and Kopaonik cores where heat was transferred from the rising warm footwall to the adjacent colder hanging wall. The cooling episode is related to basin inversion and erosion. The apatite fission track data indicate local thermal perturbations, detected in the SE part of the Ibar basin (Piskanja deposit) with the time frame ~7.1 Ma, which may correspond to the youngest volcanic phase in the region.

  3. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons

    SciTech Connect

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-04

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  4. Thermal and tectonic history of selected Taranaki basin (New Zealand) wells assessed by apatite fission track analysis

    SciTech Connect

    Kamp, P.J.J. ); Green, P.F. )

    1990-09-01

    Apatite fission track analysis (AFTA) has been applied to samples from four hydrocarbon well sections to study the thermal and tectonic history and the hydrocarbon prospectivity of the southern part of the Taranaki basin (New Zealand). Data from three of the wells (1 Fresne, 1 North Tasman, 1 Surville) show that the successions were exposed to higher temperatures in the past through deeper burial. Cooling from elevated paleotemperatures was effected by late Miocene uplift and erosion of 3.0 {plus minus} 0.3 km of section in 1 Fresne, {le} 2.0 {plus minus} 0.5 km in 1 Surville, and 1.0 {plus minus} 0.3 km in 1 North Tasman. In the fourth well, 1 Kupe, formations are currently at their maximum temperatures since deposition. AFTA provides unique constraints on the timing of hydrocarbon generation in relation to trap formation. The proposed source rocks in 1 Fresne passed through the oil formation window (100-150{degree}C) and into the zone of gas production (150-220{degree}C) during the middle Miocene, prior to the formation of potential trapping structures. Those in 1 North Tasman passed into the oil formation zone about the same time, and source rocks in 1 Surville have probably never been heated enough to produce oil. AFTA indicates considerable prospectivity remains in the region of 1 Kupe, where generation would have occurred after trap formation. 11 figs., 3 tabs.

  5. Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bürger, S.; Riciputi, L. R.; Bostick, D. A.; Turgeon, S.; McBay, E. H.; Lavelle, M.

    2009-09-01

    A ThermoFisher "Triton" multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotope ratio analysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of <0.1 fg (104 atoms to 105 atoms) for 239-242+244Pu, 233+236U, 241-243Am, 89,90Sr, and 134,135,137Cs, and <=1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 × 106 or better using a SEM are reported here. Precisions of RSD [approximate]0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.

  6. Realistic Testing of the Safe Affordable Fission Engine (SAFE-100) Thermal Simulator Using Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Stinson-Bagby, Kelly L.; Fielder, Robert S.; van Dyke, Melissa K.; Wong, Wayne A.

    2004-02-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements were made with 20 FBG temperature sensors installed in the SAFE-100 thermal simulator at the NASA Marshal Space Flight Center. Experiments were performed at temperatures approaching 800°C and 1150°C for characterization studies of the SAFE-100 core. Temperature profiles were successfully generated for the core during temperature increases and decreases. Related tests in the SAFE-100 successfully provided strain measurement data.

  7. Realistic Testing of the Safe Affordable Fission Engine (SAFE-100) Thermal Simulator Using Fiber Bragg Gratings

    SciTech Connect

    Stinson-Bagby, Kelly L.; Fielder, Robert S.; Van Dyke, Melissa K.; Wong, Wayne A.

    2004-02-04

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements were made with 20 FBG temperature sensors installed in the SAFE-100 thermal simulator at the NASA Marshal Space Flight Center. Experiments were performed at temperatures approaching 800 deg. C and 1150 deg. C for characterization studies of the SAFE-100 core. Temperature profiles were successfully generated for the core during temperature increases and decreases. Related tests in the SAFE-100 successfully provided strain measurement data.

  8. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  9. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Safe Affordable Fission Engine (SAFE 30) Module Conductivity Test Thermal Model Correlation

    NASA Technical Reports Server (NTRS)

    Roman, Jose; Phelps, Lisa H. (Technical Monitor)

    2001-01-01

    Two SAFE 30 modules were tested to determinate the thermal conductivity efficiency of the tri-cusps filled between the heat pipe and the heater cores. The modules consisted of four one-inch diameter tubes with heaters joined to an empty 1 inch diam. tube. The test was conducted on a vacuum chamber with 4 configurations: tri-cusps filled with and without radiation shielding and non-filled tri-cusps with and without radiation shielding. The tri-cusps material helps the bonding of the heat pipe to the four electric heater cores, filling the gap between the pipes. The baseline configuration is a brazed joint between the pipe. The test consisted of controlling the power applied to the heaters until a set surface temperature is reach. The temperatures varied between a max. of 800 C to 500 C. Test data, input energy and chamber surface temperature from each individual test, was used as boundary conditions for the model. Nodes located on the same location as the test thermocouples were plotted again test data to determinate the accuracy of the analysis. The unknown n variables on the analysis are the radiation emissivity of the pipe and chamber and the radiation view factor between the module and the chamber. A correlation was determined using a parametric analysis varying the surface emissivity and view factor until a good match was reach.

  11. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  12. PRODUCING ENERGY AND RADIOACTIVE FISSION PRODUCTS

    DOEpatents

    Segre, E.; Kennedy, J.W.; Seaborg, G.T.

    1959-10-13

    This patent broadly discloses the production of plutonium by the neutron bombardment of uranium to produce neptunium which decays to plutonium, and the fissionability of plutonium by neutrons, both fast and thermal, to produce energy and fission products.

  13. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  14. Thermal and tectonic history of the Ordos Basin, China: Evidence from apatite fission track analysis, vitrinite reflectance, and K-Ar dating

    SciTech Connect

    Zhao, Meng-Wei; Behr, H.J.; Ahrendt, H.; Wemmer, K.; Zhan-Li Ren; Zhong-Yuan Zhao

    1996-07-01

    Apatite fission track analysis, vitrinite reflectance data, and K-Ar dating of Permian-Carboniferous and Mesozoic core samples have been successfully integrated to reconstruct the thermal and tectonic history of the Ordos basin, China. Apatite fission track ages of Carboniferous-Jurassic sedimentary rocks range between 3 and 137 Ma, and are significantly younger than the stratigraphic ages. Confined fission track lengths demonstrate exclusively mixed length distribution, indicating complex thermal history. The data suggest that the samples must have all experienced higher paleotemperatures in the past. Mean virtinite reflectance values (R{sub o}) of the Triassic rocks range from 0.61 to 1.06%, giving a high coalification gradient of 0.36%/km and suggesting a high paleothermal gradient of 57{degrees}C/km. Permian-Carboniferous rocks have R{sub o} values on the order of 1.0-3.0%, and locally up to 4.0-6.0%. Some high R{sub o} values coincide with positive gravity and magnetic anomalies. K-Ar dating on Permian-Triassic samples reveals distinct illitization at 170-160 Ma, during which a thermal event occurred due to subsurface magmatic intrusion related to the early Yanshanian movement. The petroleum source rocks of the Upper Triassic experienced peak temperatures ranging form 90 to 160{degrees}C, corresponding to the oil window, and Permian-Carboniferous source rocks were heated to more than 150{degrees}C, passing through and out of the gas window. Due to rapid uplift and erosion in response to the rise of the Qinghai-Tibet plateau associated with the Asia-India collision and the Himalyan orogeny, cooling has taken place at least since approximately 23 Ma. The difference in the rate and amount of uplift between the eastern and western parts of the basin resulted in differential uplift and the present-day structural pattern of the basin.

  15. Fission track thermochronology: Methods and applications in tectonics

    SciTech Connect

    Jones, S.M.

    1990-01-01

    Time, temperature and the kinetics of reactions are the basic ingredients in this study of thermal history analysis. Unraveling the timing of geological events using absolute dating systems based on radioactive decay is not a trivial task, ages given by most radiometric dating techniques (e.g. fission track analysis) are apparent ages, related to cooling through some characteristic temperature range. Regional thermal history is fundamentally linked with tectonic history. The Dora Maira massif in the Western Alps provides an example of a pressure-temperature-time history well constrained by metamorphic petrology and radiometric dating. Simple models of conductive cooling and erosion are used to successfully model the thermal history of these ultra-high pressure rocks and shed light on possible tectonic scenarios for their origin. Numerical modeling suggests that continued refrigeration of the Dora Maira rocks by subducting lithosphere is not required to produce the observed metamorphic mineral assemblages. Fission track analysis, synthesis of results from other dating techniques, thermal modeling and metamorphic petrology are used to constrain the magnitude of cooling during extension in the Mojave Desert, California. Cooling paths constructed using fission track ages on apatite, zircon and sphene and {sup 40}Ar/{sup 39}Ar ages on biotite, hornblende and phlogopite reveal the contrast in modes of cooling between upper and lower plate rocks. Upper plate rocks show no evidence for the rapid cooling that affected lower plate rocks during the Miocene extension in the region.

  16. Fission fragment driven neutron source

    DOEpatents

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  17. Constraints on the thermal history of Taylorsville Basin, Virginia, U.S.A., from fluid-inclusion and fission-track analyses: Implications for subsurface geomicrobiology experiments

    USGS Publications Warehouse

    Tseng, H.-Y.; Onstott, T.C.; Burruss, R.C.; Miller, D.S.

    1996-01-01

    Microbial populations have been found at the depth of 2621-2804 m in a borehole near the center of Triassic Taylorsville Basin, Virginia. To constrain possible scenarios for long-term survival in or introduction of these microbial populations to the deep subsurface, we attempted to refine models of thermal and burial history of the basin by analyzing aqueous and gaseous fluid inclusions in calcite/quartz veins or cements in cuttings from the same borehole. These results are complemented by fission-track data from the adjacent boreholes. Homogenization temperatures of secondary aqueous fluid inclusions range from 120?? to 210??C between 2027- and 3069-m depth, with highest temperatures in the deepest samples. The salinities of these aqueous inclusions range from 0 to ??? 4.3 eq wt% NaCl. Four samples from the depth between 2413 and 2931 m contain both two-phase aqueous and one-phase methane-rich inclusions in healed microcracks. The relative CH4 and CO2 contents of these gaseous inclusions was estimated by microthermometry and laser Raman spectroscopy. If both types of inclusions in sample 2931 m were trapped simultaneously, the density of the methane-rich inclusions calculated from the Peng - Robinson equation of state implies an entrapment pressure of 360 ?? 20 bar at the homogenization temperature (162.5 ?? 12.5??C) of the aqueous inclusions. This pressure falls between the hydrostatic and lithostatic pressures at the present depth 2931 m of burial. If we assume that the pressure regime was hydrostatic at the time of trapping, then the inclusions were trapped at 3.6 km in a thermal gradient of ??? 40??C/km. The high temperatures recorded by the secondary aqueous inclusions are consistent with the pervasive resetting of zircon and apatite fission-track dates. In order to fit the fission-track length distributions of the apatite data, however, a cooling rate of 1-2??C/Ma following the thermal maximum is required. To match the integrated dates, the thermal maximum

  18. Method for correcting for isotope burn-in effects in fission neutron dosimeters

    DOEpatents

    Gold, Raymond; McElroy, William N.

    1988-01-01

    A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.

  19. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  20. The thermal history of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique: An integrated vitrinite reflectance and apatite fission track thermochronology study

    NASA Astrophysics Data System (ADS)

    Fernandes, Paulo; Cogné, Nathan; Chew, David M.; Rodrigues, Bruno; Jorge, Raul C. G. S.; Marques, João; Jamal, Daud; Vasconcelos, Lopo

    2015-12-01

    The Moatize-Minjova Basin is a Karoo-aged rift basin located in the Tete Province of central Mozambique along the present-day Zambezi River valley. In this basin the Permian Moatize and Matinde formations consist of interbedded carbonaceous mudstones and sandstones with coal seams. The thermal history has been determined using rock samples from two coal exploration boreholes (ca. 500 m depth) to constrain the burial and exhumation history of the basin. Organic maturation levels were determined using vitrinite reflectance and spore fluorescence/colour. Ages and rates of tectonic uplift and denudation have been assessed by apatite fission track analysis. The thermal history was modelled by inverse modelling of the fission track and vitrinite reflectance data. The Moatize Formation attained a coal rank of bituminous coals with low to medium volatiles (1.3-1.7%Rr). Organic maturation levels increase in a linear fashion downhole in the two boreholes, indicating that burial was the main process controlling peak temperature maturation. Calculated palaeogeothermal gradients range from 59 °C/km to 40 °C/km. According to the models, peak burial temperatures were attained shortly (3-10 Ma) after deposition. Apatite fission track ages [146 to 84 Ma (Cretaceous)] are younger than the stratigraphic age. Thermal modelling indicates two episodes of cooling and exhumation: a first period of rapid cooling between 240 and 230 Ma (Middle - Upper Triassic boundary) implying 2500-3000 m of denudation; and a second period, also of rapid cooling, from 6 Ma (late Miocene) onwards implying 1000-1500 m of denudation. The first episode is related to the main compressional deformation event within the Cape Fold Belt in South Africa, which transferred stress northwards on pre-existing transtensional fault systems within the Karoo rift basins, causing tectonic inversion and uplift. During the Mesozoic and most of the Cenozoic the basin is characterized by very slow cooling. The second period

  1. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of {sup 235}U

    SciTech Connect

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-10-26

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of {sup 235}U(n{sub th},f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions.

  2. Potentials of fissioning plasmas

    NASA Technical Reports Server (NTRS)

    Thom, K.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in a gaseous medium the kinetic energy of fission fragments can be converted directly into nonequilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in near thermal equilibrium varying up to a state of extreme nonequilibrium. During 20 years of research under NASA support major elements of the fissioning plasma reactor were demonstrated in theory and experiment, culminating in a proof-of-principle reactor test conducted at the Los Alamos Scientific Laboratory. It is concluded that the construction of a gaseous fuel reactor power plant is within the reach of present technology.

  3. Relative fission product yield determination in the USGS TRIGA Mark I reactor

    NASA Astrophysics Data System (ADS)

    Koehl, Michael A.

    Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular

  4. Vgl1, a multi-KH domain protein, is a novel component of the fission yeast stress granules required for cell survival under thermal stress

    PubMed Central

    Wen, Wei-Ling; Stevenson, Abigail L.; Wang, Chun-Yu; Chen, Hsiang-Ju; Kearsey, Stephen E.; Norbury, Chris J.; Watt, Stephen; Bähler, Jürg; Wang, Shao-Win

    2010-01-01

    Multiple KH-domain proteins, collectively known as vigilins, are evolutionarily highly conserved proteins that are present in eukaryotic organisms from yeast to metazoa. Proposed roles for vigilins include chromosome segregation, messenger RNA (mRNA) metabolism, translation and tRNA transport. As a step toward understanding its biological function, we have identified the fission yeast vigilin, designated Vgl1, and have investigated its role in cellular response to environmental stress. Unlike its counterpart in Saccharomyces cerevisiae, we found no indication that Vgl1 is required for the maintenance of cell ploidy in Schizosaccharomyces pombe. Instead, Vgl1 is required for cell survival under thermal stress, and vgl1Δ mutants lose their viability more rapidly than wild-type cells when incubated at high temperature. As for Scp160 in S. cerevisiae, Vgl1 bound polysomes accumulated at endoplasmic reticulum (ER) but in a microtubule-independent manner. Under thermal stress, Vgl1 is rapidly relocalized from the ER to cytoplasmic foci that are distinct from P-bodies but contain stress granule markers such as poly(A)-binding protein and components of the translation initiation factor eIF3. Together, these observations demonstrated in S. pombe the presence of RNA granules with similar composition as mammalian stress granules and identified Vgl1 as a novel component that required for cell survival under thermal stress. PMID:20547592

  5. SOURCE OF PRODUCTS OF NUCLEAR FISSION

    DOEpatents

    Harteck, P.; Dondes, S.

    1960-03-15

    A source of fission product recoil energy suitable for use in radiation chemistry is reported. The source consists of thermal neutron irradiated glass wool having a diameter of 1 to 5 microns and containing an isotope fissionable by thermal neutrons, such as U/sup 235/.

  6. Thermal and tectonic history in the steamboat hills geothermal field: Determination of the age of active hydrothermal activity by application of AFTA{sup {trademark}} (apatite fission track analysis)

    SciTech Connect

    Duddy, I.R.; Green, P.F.; Kamp, P.C. van de

    1995-12-31

    This study, in the Steamboat Hills area of the Carson segment of the northern Walker Lane Belt, was initiated to provide a regional thermal history framework and to investigate the age of the active local hydrothermal system. Seven outcrop samples, representing ?Cretaceous granodiorite and ?Triassic Peavine sequence metamorphosed volcanic flow and volcaniclastic rocks plus six samples of Peavine rocks in vertical sequence from an 0.8 km deep geothermal corehole have been analyzed using AFTA (apatite fission track analysis) and zircon fission track analysis.

  7. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  8. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

    2012-04-11

    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling

  9. General Point-Depletion and Fission Product Code System and Four-Group Fission Product Neutron Absorption Chain Data Library Generated from ENDF/B-IV for Thermal Reactors

    Energy Science and Technology Software Center (ESTSC)

    1981-12-01

    EPRI-CINDER calculates, for any specified initial fuel (actinide) description and flux or power history, the fuel and fission-product nuclide concentrations and associated properties. Other nuclide chains can also be computed with user-supplied libraries. The EPRI-CINDER Data Library (incorporating ENDF/B-IV fission-product processed 4-group cross sections, decay constants, absorption and decay branching fractions, and effective fission yields) is used in each constant-flux time step calculation and in time step summaries of nuclide decay rates and macroscopic absorptionmore » and barns-per-fission (b/f) absorption cross sections (by neutron group). User-supplied nuclide decay energy and multigroup-spectra data libraries may be attached to permit decay heating and decay-spectra calculations. An additional 12-chain library, explicitly including 27 major fission-product neutron absorbers and 4 fictitious nuclides, may be used to accurately calculate the aggregate macroscopic absorption buildup in fission products.« less

  10. Benchmarking nuclear fission theory

    SciTech Connect

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  11. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  12. Detection of thermal-induced prompt fission neutrons of highly-enriched uranium: A position sensitive technique

    NASA Astrophysics Data System (ADS)

    Tartaglione, A.; Di Lorenzo, F.; Mayer, R. E.

    2009-07-01

    Cargo interrogation in search for special nuclear materials like highly-enriched uranium or 239Pu is a first priority issue of international borders security. In this work we present a thermal-pulsed neutron-based approach to a technique which combines the time-of-flight method and demonstrates a capability to detect small quantities of highly-enriched uranium shielded with high or low Z materials providing, in addition, a manner to know the approximate position of the searched material.

  13. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  14. Absolute negative mobility of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

    2015-12-01

    Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

  15. Thorium-uranium fission radiography

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  16. Low scatter lightweight fission spectrometer constructed for biological research

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.

    1968-01-01

    Low scatter, lightweight fission spectrometer provides a simple, reliable method for determining absolute neutron fluxes in a fixed neutron. It minimizes neutron scatter and energy degradation effects, and has a counting volume large enough to intercept the most energetic fission fragments, yet small enough to be discriminating.

  17. Fission meter

    DOEpatents

    Rowland, Mark S.; Snyderman, Neal J.

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  18. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  19. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability

  20. Distributed strain and temperature mapping in the Safe Affordable Fission Engine (SAFE-100) thermal simulator using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Stinson-Bagby, Kelly L.; Fielder, Robert S.

    2004-07-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber Bragg grating (FBG) sensors for the SAFE-100 non-nuclear core simulator. The purpose of the combined temperature and strain mapping was to obtain a correlation between power distribution and core shape within the simulator. In a nuclear reactor, core dimension affects local reactivity and therefore power distribution. 20 FBG temperature sensors were installed in the SAFE-100 thermal simulator at the NASA Marshal Space Flight Center in an interstitial location approximately 2.3mm in diameter. The simulator was heated during two separate experiments using graphite resistive heating elements. The first experiment reached a maximum temperature of approximately 800°C, while the second experiment reached 1150°C. A detailed profile of temperature vs. time and location within the simulator was generated. During a second test, highly distributed fiber Bragg grating strain sensors were arrayed about the circumference and along the length of the heated core region. The maximum temperature during this test was approximately 300°C. A radial and longitudinal strain distribution was obtained that correlated well with known power distribution. Work continues to increase the strain sensor operating temperature and sensor multiplexing to allow high-resolution mapping.

  1. Options For Development of Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houta, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission system have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed.

  2. Transport properties of fission product vapors

    SciTech Connect

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors.

  3. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    NASA Astrophysics Data System (ADS)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  4. Thermal history of the Sabero Coalfield (Southern Cantabrian Zone, NW Spain) as revealed by apatite fission track analyses from tonstein horizons: implications for timing of coalification

    NASA Astrophysics Data System (ADS)

    Botor, Dariusz; Anczkiewicz, Aneta A.

    2015-10-01

    Apatite fission track (AFT) central ages from Carboniferous (Stephanian) tonsteins of the Sabero Coalfield, NW Spain, range from 140.8 ± 7.5 to 65.8 ± 8.1 Ma (Cretaceous), with mean c-axis projected track length values ranging from 12.5 to 13.4 μm. Mean random vitrinite reflectance ( R r) of these samples ranges from 0.91 to 1.20 %, which can be translated into maximum palaeotemperatures of ca. 130 to 180 °C. All analysed samples experienced substantial post-depositional annealing. The considerably younger AFT ages compared to the depositional ages of the samples and R r data indicate the certainty of the occurrence of at least one heating event after the deposition of strata. The unimodal track length distributions, the relatively short mean track length, and the rather low standard deviation (SD) (1.0-1.6 μm) indicate a relatively simple thermal history that could be related to the post-Late Variscan heating event followed by prolonged residence in the apatite partial annealing zone (APAZ). Geological data combined with thermal models of AFT data indicate that Stephanian strata reached the maximum palaeotemperatures in the Permian period, which was therefore the major time of the coalification processes. The Permian magmatic activity was responsible for a high heat flow, which, with the added effect of sedimentary burial, could account for the resetting of the AFT system. It appears that the fault-related hydrothermal activity could have redistributed heat in areas of significant subsidence. Cooling occurred in the Triassic-Cretaceous times after a high heat flow Permian regime. A post-Permian maturation of the Stephanian organic matter is not very likely, since there is no evidence of a high Mesozoic burial that was sufficient to cause a significant increase in the palaeotemperatures. Finally, exhumation and associated erosion rates may possibly have been faster in the Tertiary, causing the present exposure of the studied rocks.

  5. Porous fission fragment tracks in fluorapatite

    SciTech Connect

    Li Weixing; Ewing, Rodney C.; Wang Lumin; Sun Kai; Lang, Maik; Trautmann, Christina

    2010-10-01

    Fission tracks caused by the spontaneous fission of {sup 238}U in minerals, as revealed by chemical etching, are extensively used to determine the age and thermal history of Earth's crust. Details of the structure and annealing of tracks at the atomic scale have remained elusive, as the original track is destroyed during chemical etching. By combining transmission electron microscopy with in situ heating, we demonstrate that fission tracks in fluorapatite are actually porous tubes, instead of having an amorphous core, as generally assumed. Direct observation shows thermally induced track fragmentation in fluoapatite, in clear contrast to the amorphous tracks in zircon, which gradually ''fade'' without fragmentation. Rayleigh instability and the thermal emission of vacancies control the annealing of porous fission tracks in fluorapatite.

  6. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  7. Investigations of fission characteristics and correlation effects

    NASA Astrophysics Data System (ADS)

    Gundorin, N. A.; Zeinalov, Sh. S.; Kopach, Yu. N.; Popov, A. B.; Furman, V. I.

    2016-07-01

    We review the experimental results on the P-even and P-odd angular correlations of fission fragments in the fission of the 235U and 239Pu nuclei induced by unpolarized and polarized resonance neutrons, and on the TRI and ROT effects in the ternary and binary fission of actinides induced by polarized thermal neutrons. Also reported are the measured yields of prompt and delayed neutrons per fission event. The experimental data are analyzed within a novel theoretical framework developed by the JINR—RNC KI Collaboration, whereby the reduction of the multidimensional phase space of fission fragments to the JπK-channel space is consistently validated and the role of resonance interference in the observed correlation effects is revealed.

  8. Fission Yield Measurements by Inductively Coupled Plasma Mass-Spectrometry

    SciTech Connect

    Irina Glagolenko; Bruce Hilton; Jeffrey Giglio; Daniel Cummings; Karl Grimm; Richard McKnight

    2009-11-01

    Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. Unfortunately, the accuracy of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.

  9. Fission Technology for Exploring and Utilizing the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,

  10. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  11. MCNP6 Fission Multiplicity with FMULT Card

    SciTech Connect

    Wilcox, Trevor; Fensin, Michael Lorne; Hendricks, John S.; James, Michael R.; McKinney, Gregg W.

    2012-06-18

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  12. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  13. The absolute path command

    Energy Science and Technology Software Center (ESTSC)

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  14. Accurate Fission Data for Nuclear Safety

    NASA Astrophysics Data System (ADS)

    Solders, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Lantz, M.; Mattera, A.; Penttilä, H.; Pomp, S.; Rakopoulos, V.; Rinta-Antila, S.

    2014-05-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyväskylä. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (1012 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.

  15. Absolute measurement of the 242Pu neutron-capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Dance Collaboration

    2016-04-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n ,γ ) cross section was made over the incident neutron energy range from thermal to ≈6 keV, and the absolute scale of the (n ,γ ) cross section was set according to the known 239Pu(n ,f ) resonance at En ,R=7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n ,γ ) cross section at the En ,R=2.68 eV resonance is within 2.4 % of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30 % lower than the evaluated data at En≈1 keV and are approximately 2 σ away from the previous measurement at En≈20 keV.

  16. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGESBeta

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; et al

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the crossmore » section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the En,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at En ≈ 1 keV and are approximately 2σ away from the previous measurement at En ≈ 20 keV.« less

  17. Prompt Fission Gamma-ray Spectra and Multiplicities for Various Fissioning Systems

    NASA Astrophysics Data System (ADS)

    Litaize, Olivier; Regnier, David; Serot, Olivier

    The prompt fission gamma spectra (PFGS) and multiplicities (PFGM) are investigated from a Monte Carlo simulation of the fission fragment deexcitation. The fission fragment characteristics are sampled from mass, charge, kinetic energy, spin and parity distributions from experimental data or theoretical models. Initial excitation energy is shared between the two complementary fragments using a mass dependent temperature ratio law and a level density parameter law based on Ignatyuk's prescription. Details can be found elsewhere in the literature. The deexcitation process can be performed with different calculation schemes. The first one is based on a Weisskopf model for neutron evaporation and nuclear transition sampling (from level density and strength function models) for gamma evaporation. In this case, the competition between neutrons and gammas is taken into account by using a spin dependent excitation energy limit under which gamma emission takes place. The second one is based on an Hauser-Feshbach model for neutron/gamma evaporation based on neutron transmission coefficients (from optical model calculations) and the same model as above for gammas. The n/γ competition is then automatically taken into account at the very beginning of the primary fission fragments evaporation process. Fission observables, especially related to prompt fission gammas are presented and discussed for spontaneous fission (252Cf, 240Pu), thermal fission (235U+nth) and fast fission (238U+n1.8MeV). Comparisons with experimental data are shown when available.

  18. 242Amm fission cross section

    NASA Astrophysics Data System (ADS)

    Browne, J. C.; White, R. M.; Howe, R. E.; Landrum, J. H.; Dougan, R. J.; Dupzyk, R. J.

    1984-06-01

    The neutron-induced fission cross section of 242Amm has been measured over the energy region from 10-3 eV to ~20 MeV in a series of experiments utilizing a linac-produced "white" neutron source and a monoenergetic source of 14.1 MeV neutrons. The cross section was measured relative to that of 235U in the thermal (0.001 to ~3 eV) and high energy (1 keV to ~20 MeV) regions and normalized to the ENDF/B-V 235U(n,f) evaluated cross section. In the resonance energy region (0.5 eV to 10 keV) the neutron flux was measured using thin lithium glass scintillators and the relative cross section thus obtained was normalized to the thermal energy measurement. This procedure allowed a consistency check between the thermal and high energy data. The cross section data have a statistical accuracy of ~0.5% at thermal energies and in the 1-MeV energy region, and a systematic uncertainty of ~5%. We confirmed that 242Amm has the largest thermal fission cross section known with a 2200 m/sec value of 6328 b. Results of a Breit-Wigner sum-of-single-levels analysis of 48 fission resonances up to 20 eV are presented and the connection of these resonance properties to the large thermal cross section is discussed. Our measurements are compared with previously reported results.

  19. SOFIA, a Next-Generation Facility for Fission Yields Measurements and Fission Study. First Results and Perspectives

    NASA Astrophysics Data System (ADS)

    Audouin, L.; Pellereau, E.; Taieb, J.; Boutoux, G.; Béliera, G.; Chatillon, A.; Ebran, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Tassan-Got, L.; Jurado, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Fernandez-Dominguez, B.; Paradela, C.; Rodriguez-Sanchez, J.-L.; Vargas, J.; Casarejos, E.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Nociforo, C.; Pietri, S.; Prochazka, A.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Voss, B.; Weick, H.; Winfield, J. S.

    2015-10-01

    Fission fragments play an important role in nuclear reactors evolution and safety. However, fragments yields are poorly known : data are essentially limited to mass yields from thermal neutron-induced fissions on a very few nuclei. SOFIA (Study On FIssion with Aladin) is an innovative experimental program on nuclear fission carried out at the GSI facility, which aims at providing isotopic yields on a broad range of fissioning systems. Relativistic secondary beams of actinides and pre-actinides are selected by the Fragment Separator (FRS) and their fission is triggered by electromagnetic interaction. The resulting excitation energy is comparable to the result of an interaction with a low-energy neutron, thus leading to useful data for reactor simulations. For the first time ever, both fission fragments are completely identified in charge and mass in a new recoil spectrometer, allowing for precise yields measurements. The yield of prompt neutrons can then be deduced, and the fission mechanism can be ascribed, providing new constraints for fission models. During the first experiment, all the technical challenges were matched : we have thus set new experimental standards in the measurements of relativistic heavy ions (time of flight, position, energy loss).This communication presents a first series of results obtained on the fission of 238U; many other fissioning systems have also been measured and are being analyzed presently. A second SOFIA experiment is planned in September 2014, and will be focused on the measurement of the fission of 236U, the analog of 235U+n.

  20. Conservation of Isospin in Neutron-rich Fission Fragments

    SciTech Connect

    Jain, A.K.; Choudhury, D.; Maheshwari, B.

    2014-06-15

    On the occasion of the 75{sup th} anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions {sup 238}U({sup 18}O,f) and {sup 208}Pb({sup 18}O,f) as well as a thermal neutron fission reaction {sup 245}Cm(n{sup th},f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  1. Conservation of Isospin in Neutron-rich Fission Fragments

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Choudhury, D.; Maheshwari, B.

    2014-06-01

    On the occasion of the 75th anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions 238U(18O,f) and 208Pb(18O,f) as well as a thermal neutron fission reaction 245Cm(nth,f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  2. Tectonic and thermal history of the western Serrania del Interior foreland fold and thrust belt and Guarico Basin, north central Venezuela: Implications of new apatite fission track analysis and seismic interpretation

    NASA Astrophysics Data System (ADS)

    Perez de Armas, Jaime Gonzalo

    Structural analysis, interpretation of seismic reflection lines, and apatite fission-track analysis in the Western Serrania del Interior fold and thrust belt and in the Guarico basin of north-central Venezuela indicate that the area underwent Mesozoic and Tertiary-to-Recent deformation. Mesozoic deformation, related to the breakup of Pangea, resulted in the formation of the Espino graben in the southernmost portion of the Guarico basin and in the formation of the Proto-Caribbean lithosphere between the diverging North and South American plates. The northern margin of Venezuela became a northward facing passive margin. Minor normal faults formed in the Guarico basin. The most intense deformation took place in the Neogene when the Leeward Antilles volcanic island arc collided obliquely with South America. The inception of the basal foredeep unconformity in the Late Eocene-Early Oligocene marks the formation of a perisutural basin on top of a buried graben system. It is coeval with minor extension and possible reactivation of Cretaceous normal faults in the Guarico basin. It marks the deepening of the foredeep. Cooling ages derived from apatite fission-tracks suggest that the obduction of the fold and thrust belt in the study area occurred in the Late Oligocene through the Middle Miocene. Field data and seismic interpretations suggest also that contractional deformation began during the Neogene, and specifically during the Miocene. The most surprising results of the detrital apatite fission-track study are the ages acquired in the sedimentary rocks of the easternmost part of the study area in the foreland fold and thrust belt. They indicate an Eocene thermal event. This event may be related to the Eocene NW-SE convergence of the North and South American plates that must have caused the Proto-Caribbean lithosphere to be shortened. This event is not related to the collision of the arc with South America, as the arc was far to the west during the Eocene.

  3. Fission Barriers and Neutron Gas in Compound Superheavy Nuclei

    SciTech Connect

    Pei, Junchen; Nazarewicz, W.; Sheikh, J. A.; Kerman, A. K.

    2010-01-01

    Fission and neutron emission are the principal cooling mechanisms of the compound superheavy nuclei. In the framework of the Finite-Temperature Hartree-Fock-Bogoliubov method, the fission barriers and neutron gas have been studied in the excited superheavy systems. Very different energy dependence of fission barriers has been found for ^{278}112 and ^{292}114. On the other hand, the energy dependence of thermal neutron gas has been found to be almost identical for both systems.

  4. Hollow fission fragment tracks in fluorapatite

    NASA Astrophysics Data System (ADS)

    Li, Weixing

    Spontaneous fission of uranium in minerals creates a damaged "track" along the trajectory of the fission fragments. Fission tracks in fluorapatite, enlarged by chemical etching, are widely used in geologic age-dating and the reconstruction of the thermal history of Earth's crust. However, despite this wide spread application, there have been no systematic studies of the internal structure of unetched fission tracks or the atomic-scale process of track annealing. In this research, fission tracks in fluorapatite are demonstrated to be nano-channels instead of amorphous cores as had been assumed. The formation of hollow tracks is ascribed to the highly ionizing energy deposition of fission fragments inducing radiolytic decomposition of fluorapatite accompanied by the loss of volatile elements. The mechanism for thermal annealing of hollow tracks in fluorapatite is shown to be entirely different from that of amorphous tracks in zircon. The discontinuity of fission tracks, in addition to the shrinkage, prevents chemicals from entering into the hollow tracks for further etching, and then significantly reduces the etched length. The shrinkage of hollow fission tracks results from thermo-emission of vacancies or gaseous species from the cavities to surrounding solids instead of atomic-scale recovery of the amorphous core. The high diffusivity of atoms on the surface of hollow tracks causes the discontinuity of tracks either by Rayleigh instability, by Brownian motion, or by preferential motion of track segments. The preferential motion of atoms along c-axis causes more rapid annealing of fission tracks perpendicular to the c-axis. Under the electron beam, the hollow tracks segment into droplets and the track segments randomly move at room temperature or preferentially move along c-axis at high temperatures. The radiolytic annealing results from beam-enhanced diffusion, which is similar to thermally enhanced diffusion. The similarity in the morphology of fission tracks and

  5. Experimental Determination of the Antineutrino Spectrum of the Fission Products of U238

    NASA Astrophysics Data System (ADS)

    Haag, N.; Gütlein, A.; Hofmann, M.; Oberauer, L.; Potzel, W.; Schreckenbach, K.; Wagner, F. M.

    2014-03-01

    An experiment was performed at the scientific neutron source FRM II in Garching to determine the cumulative antineutrino spectrum of the fission products of U238. Target foils of natural uranium were irradiated with a thermal and a fast neutron beam and the emitted β spectra were recorded with a γ-suppressing electron telescope. The obtained β spectrum of the fission products of U235 was normalized to the data of the magnetic spectrometer BILL. This method strongly reduces systematic errors in the U238 measurement. The β spectrum of U238 was converted into the corresponding ν¯e spectrum. The final ν¯e spectrum is given in 250 keV bins in the range from 2.875 to 7.625 MeV with an energy-dependent error of 3.5% at 3 MeV, 7.6% at 6 MeV, and ≳14% at energies ≳7 MeV (68% confidence level). Furthermore, an energy-independent uncertainty of ˜3.3% due to the absolute normalization is added. Compared to the generally used summation calculations, the obtained spectrum reveals a spectral distortion of ˜10% but returns the same value for the mean cross section per fission for the inverse beta decay.

  6. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  7. Whole-rock uranium analysis by fission track activation

    NASA Technical Reports Server (NTRS)

    Weiss, J. R.; Haines, E. L.

    1974-01-01

    We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.

  8. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  9. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  10. Nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    This document is presented in viewgraph form, and the topics covered include the following: (1) the direct fission-thermal propulsion process; (2) mission applications of direct fission-thermal propulsion; (3) nuclear engines for rocket vehicles; (4) manned mars landers; and (5) particle bed reactor design.

  11. Fission xenon from extinct Pu-244 in 14,301.

    NASA Technical Reports Server (NTRS)

    Drozd, R.; Hohenberg, C. M.; Ragan, D.

    1972-01-01

    Xenon extracted in step-wise heating of lunar breccia 14,301 contains a fission-like component in excess of that attributable to uranium decay during the age of the solar system. There seems to be no adequate source for this component other than Pu-244. Verification that this component is in fact due to the spontaneous fission of extinct Pu-244 comes from the derived spectrum which is similar to that observed from artificially produced Pu-244. It thus appears that Pu-244 was extant at the time lunar crustal material cooled sufficiently to arrest the thermal diffusion of xenon. Subsequent history has apparently maintained the isotopic integrity of plutonium fission xenon. Of major importance are details of the storage itself. Either the fission component is the result of in situ fission of Pu-244 and subsequent storage in 14,301 material, or the fission xenon was stored in an intermediate reservoir before incorporation into 14,301.

  12. TRAMP. Transport of Metallic Fission Products Along Multiple Parallel Paths

    SciTech Connect

    Hudritsch, W.; Richards, M.

    1991-11-01

    TRAMP is used to calculate the transport of metallic fission products along multiple parallel paths; the primary application is transport in and release from nuclear-grade graphite. The transport mechanisms are concentration-driven diffusion, thermal diffusion, and convection.

  13. The Munich Accelerator for Fission Fragments MAFF

    SciTech Connect

    Habs, D.; Gross, M.; Assmann, W.; Beck, L.; Grossmann, R.; Maier, H.-J.; Schumann, M.; Sewtz, M.; Szerypo, J.; Thirolf, P.G.; Kruecken, R.; Faestermann, T.; Maier-Komor, P.; Nebel, F.; Zech, E.; Hartung, P.; Stoepler, R.; Juettner, Ph.; Tralmer, F.L.

    2005-11-21

    The layout and status of MAFF at the Munich high flux reactor FRM-II is described. At MAFF 1014 fissions/s will be induced by thermal neutrons in a target with approx. 1 g of 235U. The situation is compared to the SPIRAL2 facility where 1014 fissions/s are expected by fast neutron fission in a target containing 5100 g of 238U. A comparison of the yields of SPIRAL2 and MAFF is performed to show the complementarity of the two ISOL-facilities for fission fragments. MAFF has approximately five times the beam intensities of SPIRAL2 for short-lived fission isotopes with lifetimes shorter than 5 s and thus will focus on the most neutron-rich nuclei, while SPIRAL2 has better perspectives for the more intense, less neutron-rich post-accelerated beams.A problem that also deserves attention is the production of {alpha} emitters, in particular plutonium. Here MAFF has the advantage to contain the Pu-producing 238U only as impurity not as the main fissile system. If SPIRAL2 would use 235U instead of 238U this problematic issue could be avoided at the cost of a further reduction in intensity of very neutron-rich fission fragments by a factor of 10. Finally new physics close to the classically doubly-magic nuclei 78Ni and 132Sn is described.

  14. Spontaneous fission of the heaviest elements

    SciTech Connect

    Hoffman, D.C.

    1989-04-01

    Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.

  15. Technical Application of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  16. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  17. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  18. Combined apatite fission-track and single grain apatite (U Th)/He ages from basement rocks of central Dronning Maud Land (East Antarctica) — Possible identification of thermally overprinted crustal segments?

    NASA Astrophysics Data System (ADS)

    Emmel, B.; Jacobs, J.; Crowhurst, P.; Daszinnies, M. C.

    2007-12-01

    Apatite fission-track (FT) and single grain (U-Th)/He ages from four vertical profiles in central Dronning Maud Land (East Antarctica) range from 312 ± 20 Ma to 135 ± 11 Ma and 304 ± 28 Ma to 104 ± 8 Ma, respectively. The combined age data allows to discriminate between undisturbed cooled (due to exhumation) and thermally overprinted crustal blocks. Profiles at the Zwieselhöhe and the Conradgebirge revealed unusual apatite FT vs. elevation relationships and (U-Th)/He ages older than the corresponding central apatite FT ages, possibly providing evidence for a Jurassic thermal overprint. Most probably Jurassic magmatism and associated advective heating led to total annealing of the apatite fission-tracks but helium only partially diffused. The model developed in this paper suggests that the (U-Th)/He ages from the Zwieselhöhe and Conradgebirge profiles are in part relicts of the pre-Jurassic cooling history. Two thermally undisturbed vertical profiles are used to record the long-term cooling history of central Dronning Maud Land. Time-temperature paths derived from modelled apatite FT data of these profiles revealed two phases of accelerated cooling during the Late Carboniferous and the Early Jurassic. Both phases are followed by slow cooling which is also documented by the spread in apatite (U-Th)/He single grain ages. The cooling at the end of the Carboniferous is most probably related to far field effects associated to the prevailing convergent tectonics. During the initial separation between East Antarctica and Mozambique erosion along an evolving rift shoulder caused the Jurassic cooling. Denudation of the basement was simultaneous with volcanism with both pre-dating (c. 20-10 Ma) sea-floor spreading in the Riser Larsen Sea (c. 155 Ma). Post Jurassic cooling was restricted to the lowest temperature sensitivity of both methods. Combined inverse modelled apatite FT data and forward modelled (U-Th)/He data suggest an Eocene/Oligocene cooling step, possibly

  19. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  20. First fission mass yield measurements using SPIDER at LANSCE

    NASA Astrophysics Data System (ADS)

    Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Devlin, Matt; Bredeweg, Todd; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Shields, Dan; Blakeley, Rick; Hecht, Adam

    2014-09-01

    Robust measurements of fission product properties, including mass yields, are important for advancing our understanding of the complex fission process and as improved inputs to calculation and simulation efforts in nuclear applications. The SPIDER detector, located at the Los Alamos Neutron Science Center (LANSCE), is a recently developed mass spectrometer aimed at measuring fission product mass yields with high resolution as a function of incident neutron energy and product mass, charge, and kinetic energy. The prototype SPIDER detector has been assembled, tested, installed at the Lujan Center at LANSCE, and taken initial thermal neutron induced measurements. The first results of mass yields for spontaneous fission of 252Cf and thermal neutron-induced fission of 235U measured with SPIDER will be presented. Ongoing upgrades and future plans for SPIDER will also be discussed. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR. LA-UR-14-24830.

  1. Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data

    SciTech Connect

    Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.; Ellis, Tere A.

    2011-09-29

    A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.

  2. The Fission Barrier Landscape

    SciTech Connect

    Phair, L.; Moretto, L. G.

    2008-04-17

    Fission excitation functions have been measured for a chain of neighboring compound nuclei from {sup 207}Po to {sup 212}Po. We present a new analysis which provides a determination of the fission barriers and ground state shell effects with nearly spectroscopic accuracy. The accuracy achieved in this analysis may lead to a future detailed exploration of the saddle mass surface and its spectroscopy.

  3. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  4. Fission Xenon on Mars

    NASA Technical Reports Server (NTRS)

    Mathew, K. J.; Marti, K.; Marty, B.

    2002-01-01

    Fission Xe components due to Pu-244 decay in the early history of Mars have been identified in nakhlites; as in the case of ALH84001 and Chassigny the fission gas was assimilated into indigenous solar-type Xe. Additional information is contained in the original extended abstract.

  5. Biomodal spontaneous fission

    SciTech Connect

    Hulet, E.K. )

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  6. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  7. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  8. Lunar surface fission power supplies: Radiation issues

    SciTech Connect

    Houts, M.G.; Lee, S.K.

    1994-07-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield.

  9. Fission induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The possibility of creating a plasma from fission fragments was investigated, as well as the probability of utilizing the energy of these particles to create population inversion leading to laser action. Eventually, it is hoped that the same medium could be used for both fissioning and lasing, thus avoiding inefficiences in converting one form of energy to the other. A central problem in understanding a fission induced plasma is to obtain an accurate model of the electron behavior; some calculations are presented to this end. The calculations are simple, providing a compendium of processes for reference.

  10. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  11. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  12. Aggregate Fission-Product Decay Data Based on ENDF/B-IV and -V.

    Energy Science and Technology Software Center (ESTSC)

    1982-10-12

    Version 02 The ENDF/B-IV fission-product files contain neutron cross sections, decay constants, decay energies, and other decay data for 824 important fission products. They also contain fission yields for these fission products produced by one or more fission-neutron energies (14 MeV, fast, and thermal fission). Also, spectral data exist for the most important decay-heat contributors among the 824 nuclides. Because the spectra are based on fission pulses, the libraries have a general utility. The exponentialmore » fits, for example, can be folded into any power (fission) history that can be described analytically or by a histogram representation. The effects of neutron absorption are also treated and approximately accounted for in the methodology.« less

  13. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  14. Absolute cavity pyrgeometer

    DOEpatents

    Reda, Ibrahim

    2013-10-29

    Implementations of the present disclosure involve an apparatus and method to measure the long-wave irradiance of the atmosphere or long-wave source. The apparatus may involve a thermopile, a concentrator and temperature controller. The incoming long-wave irradiance may be reflected from the concentrator to a thermopile receiver located at the bottom of the concentrator to receive the reflected long-wave irradiance. In addition, the thermopile may be thermally connected to a temperature controller to control the device temperature. Through use of the apparatus, the long-wave irradiance of the atmosphere may be calculated from several measurements provided by the apparatus. In addition, the apparatus may provide an international standard of pyrgeometers' calibration that is traceable back to the International System of Units (SI) rather than to a blackbody atmospheric simulator.

  15. Neutron capture and fission in /sup 254g/ Es

    SciTech Connect

    Halperin, J.; Bigelow, J.E.; O'Kelley, G.D.; Oliver, J.H.; Wiggins, J.T.

    1985-07-01

    Integral neutron capture and neutron fission cross sections have been measured for the 276-day /sup 254g/ Es. Thermal cross sections and resonance integrals were evaluated using a cadmium filter technique. Capture cross sections were determined from alpha-particle spectrum measurements following neutron irradiations with cobalt flux monitors. Fission cross sections were measured using fission track detection techniques with STTU monitors. The fission cross-section values compared favorably with an absorption cross-section determination from a burnout experiment of SVTEs-SVUEs. The integral neutron capture and fission cross sections determined for /sup 254g/ Es are: sigma /sub c/ /sup th/ = 28.3 + or - 2.5 and I /sub c/ = 18.2 + or - 1.5 b, and sigma /sub F/ /sup th/ = 1970 + or - 200 and I /sub F/ = 1200 + or - 250 b.

  16. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  17. Fission product studies in the symmetric mass region

    SciTech Connect

    De Laeter, J.R.; Rosman, K.J.R.; Loss, R.D.

    1993-05-01

    Fission yields can be determined by radiochemical or mass spectrometric techniques. Mass spectrometry can provide more accurate data, particularly in the symmetric mass region where the probability of fission is low and uncertainties in isometric ratios occur. Fine structure in the mass distribution can usually only be determined by mass spectrometry. Many of the elements in the valley of symmetry have high ionization potentials and are therefore difficult to measure by solid source mass spectrometry. Analytical techniques have been developed to provide the sensitivity required to measure the small sample sizes available in fission product studies. Cumulative fission yields for ruthenium, palladium, cadmium, tin, and tellurium have been measured by mass spectrometry for the thermal and epicadmium fission of {sup 233}U and for thermal and epicadmium fission of {sup 239}Pu. These fission yields, which span the mass range 101 {le} A {le} 130, can be combined to give a mass yield curve for {sup 235}U in the valley region, which is symmetrical about A = 116.8 and exhibits fine structure in the mass 113 to 114 region. Fine structure in {sup 233}U is also present at mass 111. Mass spectrometric determinations of the fission yields of uranium ore at the Oklo mine site in Gabon enable the nuclear parameters of this natural reactor to be evaluated. This in turn enables the amounts of fission products produced in the reactor zone and the surrounding rocks enables an assessment to be made of the efficiency of this geological repository for containing radioactive waste. The elemental abundances can be determined by isotope dilution mass spectrometry. Unfortunately, the paucity of good fission yield data available for {sup 238}U by fast neutrons is a severe constraint in this evaluation.

  18. Dynamical simulation of neutron-induced fission of uranium isotopes using four-dimensional Langevin equations

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2016-04-01

    Four-dimensional Langevin equations have been suggested for the dynamical simulation of neutron-induced fission at low and medium excitation energies. The mass distribution of the fission fragments, the neutron multiplicity, and the fission cross section for the thermal and fast neutron-induced fission of 233U, 235U, and 238U is studied by considering energy dissipation of the compound nucleus through the fission using four-dimensional Langevin equations combined with a Monte Carlo simulation approach. The calculated results using this approach indicate reasonable agreement with available experimental data.

  19. Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.; Martin, J.; Chakrabarti, S.

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.

  20. Singlet fission in pentacene through multiple exciton quantum states

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Zimmerman, Paul; Musgrave, Charles

    2010-03-01

    Multi-exciton generation (MEG) has been reported for several materials and may dramatically increase solar cell efficiency. Singlet fission is the molecular analogue of MEG and has been observed in various systems, including tetracene and pentacene, however, no fundamental mechanism for singlet fission has yet been described, although it may govern MEG processes in a variety of materials. Because photoexcited states have single-exciton character, singlet fission to produce a pair of triplet excitons must involve an intermediate state that: (1) exhibits multi-exciton (ME) character, (2) is accessible from S1 and satisfies the fission energy requirement, and (3) efficiently dissociates into multiple electron-hole pairs. Here, we use sophisticated ab initio calculations to show that singlet fission in pentacene proceeds through a dark state (D) of ME character that lies just below S1, satisfies the fission energy requirement (ED>2ET0), and splits into two triplets (2xT0). In tetracene, D lies just above S1, consistent with the observation that singlet fission is thermally activated in tetracene. Rational design of photovoltaic systems that exploit singlet fission will require ab initio analysis of ME states such as D.

  1. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  2. Dependence of Delayed-Neutron Energy Spectra on the Energy of Neutrons which Induce Fission of Uranium -235

    NASA Astrophysics Data System (ADS)

    Sharfuddin, Quazi

    Delayed neutron energy spectra following both fast and thermal neutron induced fission of U-235 are measured by the time-of-flight technique using beta-neutron correlations. Fast neutrons are produced via the (p,n) reaction in Li-7 using the University of Lowell 5.5 MV Van de Graaff Accelerator, whereas thermal neutrons are produced by surrounding the fission chamber and target assembly with paraffin. Fission fragments stopped in the helium atmosphere of the fission chamber are transferred by a helium jet system to a low background counting room where the composite delayed neutron energy spectra are measured as a function of time after fission. The delayed neutron energy spectra following fast fission of U-235 are compared to those resulting from thermal fission of U-235. Two mathematical methods are developed to deduce the equilibrium delayed neutron spectrum from the composite delayed neutron spectra measured as a function of delay time after fission. These methods are then applied to obtain the equilibrium delayed neutron spectrum from thermal fission of U-235. Finally, the six-group delayed neutron spectra resulting from thermal fission of U-235 are deduced from the measured composite delayed neutron spectra as a function of delay time after fission using a matrix inversion method.

  3. Results of a first generation least expensive approach to fission module tests: Non-nuclear testing of a fission system

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Godfroy, Tom; Houts, Mike; Dickens, Ricky; Dobson, Chris; Pederson, Kevin; Reid, Bob; Sena, J. Tom

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal-hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made. .

  4. Experimental Progress Report--Modernizing the Fission Basis

    SciTech Connect

    Macri, R A

    2012-02-17

    In 2010 a proposal (Modernizing the Fission Basis) was prepared to 'resolve long standing differences between LANL and LLNL associated with the correct fission basis for analysis of nuclear test data'. Collaboration between LANL/LLNL/TUNL has been formed to implement this program by performing high precision measurements of neutron induced fission product yields as a function of incident neutron energy. This new program benefits from successful previous efforts utilizing mono-energetic neutrons undertaken by this collaboration. The first preliminary experiment in this new program was performed between July 24-31, 2011 at TUNL and had 2 main objectives: (1) demonstrating the capability to measure characteristic {gamma}-rays from specific fission products; (2) studying background effects from room scattered neutrons. In addition, a new dual fission ionization chamber has been designed and manufactured. The production design of the chamber is shown in the picture below. The first feasibility experiment to test this chamber is scheduled at the TUNL Tandem Laboratory from September 19-25, 2011. The dual fission chamber design will allow simultaneous exposure of absolute fission fragment emission rate detectors and the thick fission activation foils, positioned between the two chambers. This document formalizes the earlier experimental report demonstrating the experimental capability to make accurate (< 2 %) precision gamma-ray spectroscopic measurements of the excitation function of high fission product yields of the 239Pu(n,f) reaction (induced by quasimonoenergetic neutrons). A second experiment (9/2011) introduced an compact double-sided fission chamber into the experimental arrangement, and so the relative number of incident neutrons striking the sample foil at each bombarding energy is limited only by statistics. (The number of incident neutrons often limits the experimental accuracy.) Fission chamber operation was so exceptional that 2 more chambers have been

  5. Fission modelling with FIFRELIN

    NASA Astrophysics Data System (ADS)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  6. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  7. Neutron Capture and Fission Measurement on ^238Pu at DANCE

    NASA Astrophysics Data System (ADS)

    Chyzh, Andrii; Wu, Ching-Yen; Kwan, Elaine; Henderson, Roger; Gostic, Jolie; Couture, Aaron; Young, Hye; Ullmann, John; O'Donnell, John; Jandel, Marian; Haight, Robert; Bredeweg, Todd

    2012-10-01

    Neutron capture and fission reactions on actinides are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement, LANL) combined with PPAC (avalanche technique based fission tagging detector, LLNL) were used to study the neutron capture reactions in ^238Pu. Because of extreme spontaneous α-radioactivity in ^238Pu and associated safety issues, 3 separate experiments were performed in 2010-2012. The 1st measurement was done without fission tagging on a 396-μg thick target. The 2nd one was with PPAC on the same target. The 3rd final measurement was done on a thin target with a mass of 40 μg in order to reduce α-background load on PPAC. This was the first such measurement in a laboratory environment. The absolute ^238Pu(n,γ) cross section is presented together with the prompt γ-ray multiplicity in the ^238Pu(n,f) reaction.

  8. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, Vladimir

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  9. Student Experiments in Spontaneous Fission.

    ERIC Educational Resources Information Center

    Becchetti, F. D.; Ying, J. S.

    1981-01-01

    Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…

  10. Radiation Detection from Fission

    SciTech Connect

    Mihalczo, J.

    2004-11-17

    This report briefly describes the neutrons and gamma rays emitted in fission, briefly discusses measurement methods, briefly discusses sources and detectors relevant to detection of shielded HEU in sealand containers, and lists the measurement possibilities for the various sources. The brief descriptions are supplemented by reference.

  11. Elastocapillary Instability in Mitochondrial Fission

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  12. Fission-Fusion Neutron Source Progress Report July 31, 2009

    SciTech Connect

    Chapline, G; Daffin, F; Clarke, R

    2010-02-19

    In this report the authors describe progress in evaluating the feasibility of a novel concept for producing intense pulses of 14 MeV neutrons using the DT fusion reaction. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet fusion schemes or lasers in ICF schemes. This has the great advantage that there is no need for any large auxiliary power source. The scheme does require large magnetic fields, but generating these fields, e.g. with superconducting magnets, requires only a modest power source. As a source of fission fragments they propose using a dusty reactor concept introduced some time ago by one of us (RC). The version of the dusty reactor that they propose using for our neutron source would operate as a thermal neutron reactor and use highly enriched uranium in the form of micron sized pellets of UC. Our scheme for using the fission fragments to produce intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core would then be guided out of the reactor by large magnetic fields. A simple version of this idea would be to use the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  13. Compilation of fission product yields Vallecitos Nuclear Center

    SciTech Connect

    Rider, B.F.

    1980-01-01

    This document is the ninth in a series of compilations of fission yield data made at Vallecitos Nuclear Center in which fission yield measurements reported in the open literature and calculated charge distributions have been utilized to produce a recommended set of yields for the known fission products. The original data with reference sources, as well as the recommended yields are presented in tabular form for the fissionable nuclides U-235, Pu-239, Pu-241, and U-233 at thermal neutron energies; for U-235, U-238, Pu-239, and Th-232 at fission spectrum energies; and U-235 and U-238 at 14 MeV. In addition, U-233, U-236, Pu-240, Pu-241, Pu-242, Np-237 at fission spectrum energies; U-233, Pu-239, Th-232 at 14 MeV and Cf-252 spontaneous fission are similarly treated. For 1979 U234F, U237F, Pu249H, U234He, U236He, Pu238F, Am241F, Am243F, Np238F, and Cm242F yields were evaluated. In 1980, Th227T, Th229T, Pa231F, Am241T, Am241H, Am242Mt, Cm245T, Cf249T, Cf251T, and Es254T are also evaluated.

  14. Fission-product SiC reaction in HTGR fuel

    SciTech Connect

    Montgomery, F.

    1981-07-13

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels.

  15. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  16. Lanl Neutron-Induced Fission Cross Section Measurement Program

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2014-09-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). Combining measurements at two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR), cover neutron energies over 10 orders of magnitude: from sub-thermal up to 200 MeV. A parallel-plate fission ionization chamber was used as a fission fragment detector. The 235U(n,f) standard was used as the reference. Fission cross sections have been measured for multiple actinides. The new data presented here completes the suite of long-lived Uranium isotopes that were investigated with this experimental approach. The cross section data are presented in comparison with existing evaluations and previous measurements.

  17. Rapid separation of fresh fission products (draft)

    SciTech Connect

    Dry, D. E.; Bauer, E.; Petersen, L. A.

    2003-01-01

    The fission of highly eruiched uranium by thermal neutrons creates dozens of isotopic products. The Isotope and Nuclear Chemistry Group participates in programs that involve analysis of 'fiesh' fission products by beta counting following radiochemical separations. This is a laborious and time-consuming process that can take several days to generate results. Gamma spectroscopy can provide a more immediate path to isolopic activities, however short-lived, high-yield isotopes can swamp a gamma spectrum, making difficult the identification and quantification of isotopes on the wings and valley of the fission yield curve. The gamma spectrum of a sample of newly produced fission products is dominated by the many emissions of a very few high-yield isotopes. Specilkally, {sup 132}Te (3.2 d), its daughter, {sup 132}I(2 .28 h), {sup 140}Ba (12.75 d), and its daughter {sup 140}La (1.68 d) emit at least 18 gamma rays above 100 keV that are greater than 5% abundance. Additionally, the 1596 keV emission fiom I4'La imposes a Compton background that hinders the detection of isotopes that are neither subject to matrix dependent fractionation nor gaseous or volatile recursors. Some of these isotopes of interest are {sup 111}Ag, {sup 115}Cd, and the rare earths, {sup 153}Sm, {sup 154}Eu, {sup 156}Eu, and {sup 160}Tb. C-INC has performed an HEU irradiation and also 'cold' carrier analyses by ICP-AES to determine methods for rapid and reliable separations that may be used to detect and quantify low-yield fission products by gamma spectroscopy. Results and progress will be presented.

  18. Fission track dating of kimberlitic zircons

    USGS Publications Warehouse

    Haggerty, S.E.; Raber, E.; Naeser, C.W.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ?? 6.5 m.y.), Orapa (87.4 ?? 5.7 and 92.4 ?? 6.1 m.y.), Nzega (51.1 ?? 3.8 m.y.), Koffiefontein (90.0 ?? 8.2 m.y.), and Val do Queve (133.4 ?? 11.5 m.y.). In addition we report the first radiometric ages (707.9 ?? 59.6 and 705.5 ?? 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. ?? 1983.

  19. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  20. Clusterization in Ternary Fission

    NASA Astrophysics Data System (ADS)

    Kamanin, D. V.; Pyatkov, Y. V.

    This lecture notes are devoted to the new kind of ternary decay of low excited heavy nuclei called by us "collinear cluster tri-partition" (CCT) due to the features of the effect observed, namely, decay partners fly away almost collinearly and at least one of them has magic nucleon composition. At the early stage of our work the process of "true ternary fission" (fission of the nucleus into three fragments of comparable masses) was considered to be undiscovered for low excited heavy nuclei. Another possible prototype—three body cluster radioactivity—was also unknown. The most close to the CCT phenomenon, at least cinematically, stands so called "polar emission", but only very light ions (up to isotopes of Be) were observed so far.

  1. SHAPED FISSIONABLE METAL BODIES

    DOEpatents

    Wigner, E.P.; Williamson, R.R.; Young, G.J.

    1958-10-14

    A technique is presented for grooving the surface of fissionable fuel elements so that expansion can take place without damage to the interior structure of the fuel element. The fissionable body tends to develop internal stressing when it is heated internally by the operation of the nuclear reactor and at the same time is subjected to surface cooling by the circulating coolant. By producing a grooved or waffle-like surface texture, the annular lines of tension stress are disrupted at equally spaced intervals by the grooves, thereby relieving the tension stresses in the outer portions of the body while also facilitating the removal of accumulated heat from the interior portion of the fuel element.

  2. Fission product source term research at Oak Ridge National Laboratory. [PWR; BWR

    SciTech Connect

    Malinauskas, A.P.

    1985-01-01

    The purpose of this work is to describe some of the research being performed at ORNL in support of the effort to describe, as realistically as possible, fission product source terms for nuclear reactor accidents. In order to make this presentation manageable, only those studies directly concerned with fission product behavior, as opposed to thermal hydraulics, accident sequence progression, etc., will be discussed.

  3. Dispersion of the Neutron Emission in U{sup 235} Fission

    DOE R&D Accomplishments Database

    Feynman, R. P.; de Hoffmann, F.; Serber, R.

    1955-01-01

    Equations are developed which allow the calculation of the average number of neutrons per U{sup235} fission from experimental measurements. Experimental methods are described, the results of which give a value of (7.8 + 0.6){sup ½} neutrons per U{sup 235} thermal fission.

  4. Fission-track dating applied to mineral exploration

    USGS Publications Warehouse

    Naeser, C.W.

    1984-01-01

    The partial to total resetting of fission-track ages of minerals in country rock near a mineralized area can be used to (1) locate a thermal anomaly, and (2) date the mineralizing event. Two mining districts in Colorado have been studied - Rico and Gilman. Rico is a precious- and base-metal mining district. Initial fission-track dating of a sill located about 6 km from the center of the district gave ages of 20 Myr and 65 Myr for apatite and zircon, respectively. The Eagle Mine in the Gilman District is the largest producer of zinc in the state of Colorado. Fission-track dating of zircon from a 70 Myr-old sill shows partial resetting of the zircon (45 Myr). The thermal anomaly identified by fission-track dating is seen in both districts far outside the area affected by obvious alteration. Based on the results of these two pilot studies, fission-track dating can be a useful exploration method for thermal anomalies associated with buried or otherwise poorly expressed mineral deposits.

  5. Extended optical model for fission

    DOE PAGESBeta

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  6. Extended optical model for fission

    NASA Astrophysics Data System (ADS)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-01

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for U,235234(n ,f ) , while a double-humped fission barrier is used for 238U(n ,f ) and 239Pu(n ,f ) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n ,f ) reactions. The 239Pu(n ,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for U,238235(n ,f ) and 239Pu(n ,f ) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  7. Fission-induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Shiu, Y. J.

    1979-01-01

    The possibility of creating a plasma from fission fragments, and to utilize the energy of the particles to create population inversion that would lead to laser action is investigated. An investigation was made of various laser materials which could be used for nuclear-pumped lasing. The most likely candidate for a fissioning material in the gaseous form is uranium hexafluoride - UF6, and experiments were performed to investigate materials that would be compatible with it. One of the central problems in understanding a fission-induced plasma is to obtain a model of the electron behavior, and some preliminary calculations are presented. In particular, the rates of various processes are discussed. A simple intuitive model of the electron energy distribution function is also shown. The results were useful for considering a mathematical model of a nuclear-pumped laser. Next a theoretical model of a (3)He-Ar nuclear-pumped laser is presented. The theory showed good qualitative agreement with the experimental results.

  8. Measurements of the reactor neutron power in absolute units

    NASA Astrophysics Data System (ADS)

    Lebedev, G. V.

    2015-12-01

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  9. Measurements of the reactor neutron power in absolute units

    SciTech Connect

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  10. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  11. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  12. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  13. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    SciTech Connect

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fission yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.

  14. ''Subthreshold'' reactions involving nuclear fission

    SciTech Connect

    Goldhaber, M.; Shrock, R.

    2001-02-01

    We analyze reactions of several types that are naively below threshold but can proceed because of the release of binding energy from nuclear fission and occasionally the formation of Coulombic bound states. These reactions include (i) photofission with pion production and (ii) charged current neutrino-nucleus reactions that lead to fission and/or formation of a Coulomb bound state of a {mu}{sup -} with the nucleus of a fission fragment. We comment on the possible experimental observation of these reactions.

  15. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  16. Systematic Study of Fission Barriers of Excited Superheavy Nuclei

    SciTech Connect

    Sheikh, J. A.; Nazarewicz, Witold; Pei, J. C.

    2009-01-01

    A systematic study of fission-barrier dependence on excitation energy has been performed using the self-consistent finite-temperature Hartree-Fock+BCS (FT-HF+BCS) formalism with the SkM* Skyrme energy density functional. The calculations have been carried out for even-even superheavy nuclei with Z ranging between 110 and 124. For an accurate description of fission pathways, the effects of triaxial and reflection asymmetric degrees of freedom have been fully incorporated. Our survey demonstrates that the dependence of isentropic fission barriers on excitation energy changes rapidly with particle number, pointing to the importance of shell effects even at large excitation energies characteristic of compound nuclei. The fastest decrease of fission barriers with excitation energy is predicted for deformed nuclei around N = 164 and spherical nuclei around N = 184 that are strongly stabilized by ground-state shell effects. For nuclei ^{240}Pu and ^{256}Fm, which exhibit asymmetric spontaneous fission, our calculations predict a transition to symmetric fission at high excitation energies due to the thermal quenching of static reflection asymmetric deformations.

  17. Fast fission phenomenon

    NASA Astrophysics Data System (ADS)

    In these lectures we have described two different phenomena occuring in dissipative heavy ion collisions : neutron-proton asymmetry and fast fission. Neutron-proton asymmetry has provided us with an example of a fast collective motion. As a consequence quantum fluctuations can be observed. The observation of quantum or statistical fluctuations is directly connected to the comparison between the phonon energy and the temperature of the intrinsic system. This means that this mode might also provide a good example for the investigation of the transition between quantum and statistical fluctuations which might occur when the bombarding energy is raised above 10 MeV/A. However it is by no means sure that in this energy domain enough excitation energy can be put into the system in order to reach such high temperatures over the all system. The other interest in investigating neutron-proton asymmetry above 10 MeV/A is that the interaction time between the two incident nuclei will decrease. Consequently, if some collective motion should still be observed, it will be one of the last which can be seen. Fast fission corresponds on the contrary to long interaction times. The experimental indications are still rather weak and mainly consist of experimental data which cannot be understood in the framework of standard dissipative models. We have seen that a model which can describe both the entrance and the exit configuration gives this mechanism in a natural way and that the experimental data can, to a good extend, be explained. The nicest thing is probably that our old understanding of dissipative heavy ion collisions is not changed at all except for the problems that can now be understood in terms of fast fission. Nevertheless this area desserve further studies, especially on the experimental side to be sure that the consistent picture which we have on dissipative heavy ion collisions still remain coherent in the future.

  18. The SPIDER fission fragment spectrometer for fission product yield measurements

    NASA Astrophysics Data System (ADS)

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; Laptev, A.; Mader, D.; O`Donnell, J. M.; Sierk, A.; White, M.

    2015-07-01

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E-2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from 252Cf spontaneous fission products are reported from an E-v measurement.

  19. The SPIDER fission fragment spectrometer for fission product yield measurements

    SciTech Connect

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; Laptev, A.; Mader, D.; O׳Donnell, J. M.; Sierk, A.; White, M.

    2015-04-01

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Finally, individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). These mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.

  20. The SPIDER fission fragment spectrometer for fission product yield measurements

    DOE PAGESBeta

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; et al

    2015-04-01

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Finally,more » individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). These mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less

  1. Evaluation and compilation of fission product yields 1993

    SciTech Connect

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  2. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  3. Fission Mode Influence on Prompt Neutrons and γ-rays Emitted in the Reaction 239Pu(nth,f)

    NASA Astrophysics Data System (ADS)

    Serot, O.; Litaize, O.; Regnier, D.

    Recently, a Monte-Carlo code, which simulates the fission fragment de-excitation process, has been developed at CEA- Cadarache. Our aim is to get a tool capable to predict spectra and multiplicities of prompt particles (neutron and gamma) and to investigate possible correlations between fission observables. One of the main challenges is to define properly the share of the available excitation energy at scission between the two nascent fission fragments. Initially, after the full acceleration of the fission fragments, these excitation energies were treated within a Fermi-gas approximation in aT2 (where a and T stand for the level density parameter and the nuclear temperature) and a mass dependent law of the temperature ratio (RT=TL/TH, with TL and TH the temperature of the light and heavy fragment) has been proposed. With this RT-law, the main fission observables of the 252Cf(sf) could be reproduced. Here, in order to take into account the fission modes by which the fissioning nucleus undergoes to fission, we have adopted a specific RT-law for each fission mode. For actinides, the main fission modes are called Standard I, Standard II and Super Long (following Brosa's terminology). This new procedure has been applied in the case of the thermal neutron induced fission of 239Pu, reaction for which fission modes are rather well known.

  4. Absolute Radiometer for Reproducing the Solar Irradiance Unit

    NASA Astrophysics Data System (ADS)

    Sapritskii, V. I.; Pavlovich, M. N.

    1989-01-01

    A high-precision absolute radiometer with a thermally stabilized cavity as receiving element has been designed for use in solar irradiance measurements. The State Special Standard of the Solar Irradiance Unit has been built on the basis of the developed absolute radiometer. The Standard also includes the sun tracking system and the system for automatic thermal stabilization and information processing, comprising a built-in microcalculator which calculates the irradiance according to the input program. During metrological certification of the Standard, main error sources have been analysed and the non-excluded systematic and accidental errors of the irradiance-unit realization have been determined. The total error of the Standard does not exceed 0.3%. Beginning in 1984 the Standard has been taking part in a comparison with the Å 212 pyrheliometer and other Soviet and foreign standards. In 1986 it took part in the international comparison of absolute radiometers and standard pyrheliometers of socialist countries. The results of the comparisons proved the high metrological quality of this Standard based on an absolute radiometer.

  5. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    DOE PAGESBeta

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fissionmore » yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.« less

  6. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  7. Fission Particle Emission Multiplicity Simulation

    Energy Science and Technology Software Center (ESTSC)

    2006-09-27

    Simulates discrete neutron and gamma-ray emission from the fission of heavy nuclei that is either spontaneous or neutron induced. This is a function library that encapsulates the fission physics and is intended to be called Monte Carlo transport code.

  8. Ternary fission of nuclei into comparable fragments

    SciTech Connect

    Karpeshin, F. F.

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  9. Nuclear Fission Research at IRMM

    SciTech Connect

    Hambsch, Franz-Josef

    2005-05-24

    The Institute for Reference Materials and Measurements (IRMM) will celebrate its 45th anniversary in 2005. With its 150-MeV Geel Electron Linear Accelerator (GELINA) and 7-MV Van de Graaff accelerator as multi-purpose neutron sources, it served the nuclear physics community for this period.The research in the field of nuclear fission was focused in recent years on both the measurement and calculation of fission cross sections, and the measurement of fission fragment properties.Fission cross sections were determined for 233Pa and 234U; the fission process was studied in the resolved resonance region of 239Pu(n,f) and for 251Cf(nth,f). These measurements derive their interest from accelerator driven systems, the thorium fuel cycle, high temperature reactors, safety issues of current reactors, and basic physics. The measurements are supported by several modeling efforts that aim at improving model codes and nuclear data evaluation.

  10. A threshold for dissipative fission

    SciTech Connect

    Thoennessen, M.; Bertsch, G.F.

    1993-09-21

    The empirical domain of validity of statistical theory is examined as applied to fission data on pre-fission data on pre-fission neutron, charged particle, and {gamma}-ray multiplicities. Systematics are found of the threshold excitation energy for the appearance of nonstatistical fission. From the data on systems with not too high fissility, the relevant phenomenological parameter is the ratio of the threshold temperature T{sub thresh} to the (temperature-dependent) fission barrier height E{sub Bar}(T). The statistical model reproduces the data for T{sub thresh}/E{sub Bar}(T) < 0.26 {plus_minus} 0.05, but underpredicts the multiplicities at higher T{sub thresh}/E{sub Bar}(T) independent of mass and fissility of the systems.

  11. Fifty years with nuclear fission

    SciTech Connect

    Behrens, J.W.; Carlson, A.D. )

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately.

  12. Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.

    2016-06-01

    We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).

  13. Prompt Fission Neutron Emission in Resonance Fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Hambsch, Franz-Josef; Varapai, Natallia; Zeinalov, Shakir; Oberstedt, Stephan; Serot, Olivier

    2005-05-01

    The prompt neutron emission probability from neutron-induced fission in the resonance region is being investigated at the time-of-flight facility GELINA of the IRMM. A double Frisch-gridded ionization chamber is used as a fission-fragment detector. For the data acquisition of both the fission-fragment signals as well as the neutron detector signals the fast digitization technique has been applied. For the neutron detection, large-volume liquid scintillation detectors from the DEMON collaboration are used. A specialized data analysis program taking advantage of the digital filtering technique has been developed to treat the acquired data. Neutron multiplicity investigations for actinides, especially in resonance neutron-induced fission, are rather scarce. They are, however, important for reactor control and safety issues as well as for understanding the basic physics of the fission process. Fission yield measurements on both 235U and 239Pu without prompt neutron emission coincidence have shown that fluctuation of the fission-fragment mass distribution exists from resonance to resonance, larger in the case of 235U. To possibly explain these observations, the question now is whether the prompt neutron multiplicity shows similar fluctuations with resonance energy.

  14. Electron distribution function in a plasma generated by fission fragments

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.; Deese, J. E.

    1976-01-01

    A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material shows that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux.

  15. Entropy driven excitation energy sorting in superfluid fission dynamics.

    PubMed

    Schmidt, Karl-Heinz; Jurado, Beatriz

    2010-05-28

    It is shown that the constant-temperature behavior of nuclei in the superfluid regime leads to an energy-sorting process if two nuclei are in thermal contact, as is the case in the fission process. This effect explains why an increase of the initial excitation energy leads an increase of the number of emitted neutrons from the heavy fission fragment, only. The observed essentially complete energy sorting may be seen as a new counterintuitive manifestation of quantum-mechanical properties of microscopic systems. PMID:20867088

  16. Method of fission heat flux determination from experimental data

    SciTech Connect

    Paxton, F.A.

    1999-09-28

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  17. Method of fission heat flux determination from experimental data

    DOEpatents

    Paxton, Frank A.

    1999-01-01

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  18. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    SciTech Connect

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  19. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  20. Fission yeast septation

    PubMed Central

    Cortés, Juan C. G.; Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-01-01

    ABSTRACT In animal cells cytokinesis relies on the contraction of an actomyosin ring that pulls the plasma membrane to create a cleavage furrow, whose ingression finally divides the mother cell into two daughter cells. Fungal cells are surrounded by a tough and flexible structure called cell wall, which is considered to be the functional equivalent of the extracellular matrix in animal cells. Therefore, in addition to cleavage furrow ingression, fungal cytokinesis also requires the centripetal formation of a septum wall structure that develops between the dividing cells, whose genesis must be strictly coordinated with both the actomyosin ring closure and plasma membrane ingression. Here we briefly review what is known about the septum structure and composition in the fission yeast Schizosaccharomyces pombe, the recent progress about the relationship between septum biosynthesis and actomyosin ring constriction, and the importance of the septum and ring in the steady progression of the cleavage furrow. PMID:27574536

  1. Fission yeast septation.

    PubMed

    Cortés, Juan C G; Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-01-01

    In animal cells cytokinesis relies on the contraction of an actomyosin ring that pulls the plasma membrane to create a cleavage furrow, whose ingression finally divides the mother cell into two daughter cells. Fungal cells are surrounded by a tough and flexible structure called cell wall, which is considered to be the functional equivalent of the extracellular matrix in animal cells. Therefore, in addition to cleavage furrow ingression, fungal cytokinesis also requires the centripetal formation of a septum wall structure that develops between the dividing cells, whose genesis must be strictly coordinated with both the actomyosin ring closure and plasma membrane ingression. Here we briefly review what is known about the septum structure and composition in the fission yeast Schizosaccharomyces pombe, the recent progress about the relationship between septum biosynthesis and actomyosin ring constriction, and the importance of the septum and ring in the steady progression of the cleavage furrow. PMID:27574536

  2. Effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, Masao; Naeser, Charles W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e., different amounts of ??-damage) has been studied by one-hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon.

  3. The effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, M.; Naeser, C.W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e. different amounts of ??-damage) has been studied by one hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon. ?? 1988.

  4. Dynamical Aspects of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Kliman, J.; Itkis, M. G.; Gmuca, Š.

    2008-11-01

    Fission dynamics. Dependence of scission-neutron yield on light-fragment mass for [symbol]=1/2 [et al.]. Dynamics of capture quasifission and fusion-fission competition / L. Stuttgé ... [et al.] -- Fission-fission. The processes of fusion-fission and quasi-fission of superheavy nuclei / M. G. Itkis ... [et al.]. Fission and quasifission in the reactions [symbol]Ca+[symbol]Pb and [symbol]Ni+[symbol]W / G. N. Knyazheva ... [et al.]. Mass-energy characteristics of reactions [symbol]Fe+[symbol][symbol][symbol]266Hs and [symbol]Mg+[symbol]Cm[symbol][symbol]Hs at Coulomb barrier / L. Krupa ... [et al.]. Fusion of heavy ions at extreme sub-barrier energies / Ş. Mişicu and H. Esbensen. Fusion and fission dynamics of heavy nuclear system / V. Zagrebaev and W. Greiner. Time-dependent potential energy for fusion and fission processes / A. V. Karpov ... [et al.] -- Superheavy elements. Advances in the understanding of structure and production mechanisms for superheavy elements / W. Greiner and V. Zagrebaev. Fission barriers of heaviest nuclei / A. Sobiczewski ... [et al.]. Possibility of synthesizing doubly magic superheavy nuclei / Y Aritomo ... [et al.]. Synthesis of superheavy nuclei in [symbol]Ca-induced reactions / V. K. Utyonkov ... [et al.] -- Fragmentation. Production of neutron-rich nuclei in the nucleus-nucleus collisions around the Fermi energy / M. Veselský. Signals of enlarged core in [symbol]Al / Y. G. Ma ... [et al.] -- Exotic modes. New insight into the fission process from experiments with relativistic heavy-ion beams / K.-H. Schmidt ... [et al.]. New results for the intensity of bimodal fission in binary and ternary spontaneous fission of [symbol]Cf / C. Goodin ... [et al.]. Rare fission modes: study of multi-cluster decays of actinide nuclei / D. V. Kamanin ... [et al.]. Energy distribution of ternary [symbol]-particles in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Preliminary results of experiment aimed at searching for collinear cluster tripartition of

  5. Fifty years with nuclear fission

    SciTech Connect

    Behrens, J.W.; Carlson, A.D. )

    1989-01-01

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately.

  6. Absolute magnitudes and phase coefficients of trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Alvarez-Candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Duffard, R.; Morales, N.; Santos-Sanz, P.; Thirouin, A.; Silva, J. S.

    2016-02-01

    Context. Accurate measurements of diameters of trans-Neptunian objects (TNOs) are extremely difficult to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, HV, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, but only few are known. Aims: Our objective is to measure accurate V-band absolute magnitudes and phase coefficients for a sample of TNOs, many of which have been observed and modeled within the program "TNOs are cool", which is one of the Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V-band absolute magnitudes and phase coefficients by assuming a linear trend of the phase curves and considering a magnitude variability that is due to the rotational light-curve. Results: We obtained 237 new magnitudes for the 56 objects, six of which were without previously reported measurements. Including the data from the literature, we report a total of 110 absolute magnitudes with their respective phase coefficients. The average value of HV is 6.39, bracketed by a minimum of 14.60 and a maximum of -1.12. For the phase coefficients we report a median value of 0.10 mag per degree and a very large dispersion, ranging from -0.88 up to 1.35 mag per degree.

  7. Fission cross section measurements of actinides at LANSCE

    SciTech Connect

    Tovesson, Fredrik; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  8. A thrust-sheet propulsion concept using fissionable elements

    NASA Technical Reports Server (NTRS)

    Moeckel, W. E.

    1976-01-01

    A space propulsion concept is proposed and analyzed which consists of a thin sheet coated on one side with fissionable material, so that nuclear power is converted directly into propulsive power. Thrust is available both from ejected fission fragments and from thermal radiation. Optimum thicknesses are determined for the active and substrate layers. This concept is shown to have potential mission capability (in terms of velocity increments) superior to that of all other advanced propulsion concepts for which performance estimates are available. A suitable spontaneously fissioning material such as Cf254 could provide an extremely high-performance first stage beyond earth orbit. In contrast with some other advanced nuclear propulsion concepts, there is no minimum size below which this concept is infeasible.

  9. A thrust-sheet propulsion concept using fissionable elements

    NASA Technical Reports Server (NTRS)

    Moeckel, W. E.

    1976-01-01

    A space propulsion concept is proposed and analyzed which consists of a thin sheet coated on one side with fissionable material, so that nuclear power is converted directly into propulsive power. Thrust is available both from ejected fission fragments and from thermal radiation. Optimum thicknesses are determined for the active and substrate layers. This concept is shown to have potential mission capability (in terms of velocity increments) superior to that of all other advanced propulsion concepts for which performance estimates are available. A suitable spontaneously fissioning material such as Cf-254 could provide an extremely high-performance first stage beyond earth orbit. In contrast with some other advanced nuclear propulsion concepts, there is no minimum size below which this concept is infeasible.

  10. Prompt Fission γ-ray Spectra Characteristics - A First Summary

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Gatera, A.; Geerts, W.; Halipré, P.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Marini, P.; Vidali, M.; Wilson, J. N.

    In this work we give an overview of our investigations of prompt γ-ray emission in nuclear fission. This work was conducted during the last five years in response to a high priority nuclear data request formulated by the OECD/NEA. The aim was to reveal data deficiencies responsible for a severe under-prediction of the prompt γ heating in nuclear reactor cores. We obtained new prompt fission γ-ray spectral (PFGS) data for 252Cf(SF) as well as for thermal-neutron induced fission on 235U(nth,f) and 241Pu(nth,f). In addition, first PFGS measurements with a fast-neutron beam were accomplished, too. The impact of the new data and future data needs are discussed.