Science.gov

Sample records for absolute transition probabilities

  1. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  2. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, P. L.; Yoshino, K.

    1984-01-01

    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

  3. Radiative lifetimes, branching rations, and absolute transition probabilities in Cr II and Zn II

    NASA Technical Reports Server (NTRS)

    Bergeson, S. D.; Lawler, J. E.

    1993-01-01

    New absolute atomic transition probability measurements are reported for 12 transitions in Cr II and two transitions in Zn II. These transition probabilities are determined by combining branching ratios measured by classical techniques and radiative lifetimes measured by time-resolved laser-induced fluorescence. The measurements are compared with branching fractions, radiative lifetimes, and transition probabilities in the literature. The 206 nm resonance multiplets in Cr II and Zn II are included in this work. These multiplets are very useful in determining the distribution of the elements in the gas versus grain phases in the interstellar medium.

  4. Laser-excitation technique for the measurement of absolute transition probabilities of weak atomic lines

    NASA Technical Reports Server (NTRS)

    Kwong, H. S.; Smith, P. L.; Parkinson, W. H.

    1982-01-01

    A new technique is presented for the measurement of transition probabilities for weak allowed, intersystem, and forbidden lines. The method exploits the fact that oscillator strength is proportional to the number of stimulated absorptions and emissions produced by a narrow-band laser pulse of known energy which is in resonance with an atomic transition. The method is tested for a particular transition of Mg I with a known oscillator strength value and of appropriate magnitude. The number densities are measured using a Mach-Zehnder interferometer and the hook method for the lower level population and by measuring an absorption-equivalent width for the other. The apparatus consisted of a high-power tunable laser and a magnesium oven to produce excited Mg vapor, and a laser-plasma background continuum. The results are in good agreement with theoretical and other experimental data.

  5. Transition probabilities of Br II

    NASA Technical Reports Server (NTRS)

    Bengtson, R. D.; Miller, M. H.

    1976-01-01

    Absolute transition probabilities of the three most prominent visible Br II lines are measured in emission. Results compare well with Coulomb approximations and with line strengths extrapolated from trends in homologous atoms.

  6. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  7. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

  8. A Posteriori Transit Probabilities

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel J.; Gaudi, B. Scott

    2013-08-01

    Given the radial velocity (RV) detection of an unseen companion, it is often of interest to estimate the probability that the companion also transits the primary star. Typically, one assumes a uniform distribution for the cosine of the inclination angle i of the companion's orbit. This yields the familiar estimate for the prior transit probability of ~Rlowast/a, given the primary radius Rlowast and orbital semimajor axis a, and assuming small companions and a circular orbit. However, the posterior transit probability depends not only on the prior probability distribution of i but also on the prior probability distribution of the companion mass Mc, given a measurement of the product of the two (the minimum mass Mc sin i) from an RV signal. In general, the posterior can be larger or smaller than the prior transit probability. We derive analytic expressions for the posterior transit probability assuming a power-law form for the distribution of true masses, dΓ/dMcvpropMcα, for integer values -3 <= α <= 3. We show that for low transit probabilities, these probabilities reduce to a constant multiplicative factor fα of the corresponding prior transit probability, where fα in general depends on α and an assumed upper limit on the true mass. The prior and posterior probabilities are equal for α = -1. The posterior transit probability is ~1.5 times larger than the prior for α = -3 and is ~4/π times larger for α = -2, but is less than the prior for α>=0, and can be arbitrarily small for α > 1. We also calculate the posterior transit probability in different mass regimes for two physically-motivated mass distributions of companions around Sun-like stars. We find that for Jupiter-mass planets, the posterior transit probability is roughly equal to the prior probability, whereas the posterior is likely higher for Super-Earths and Neptunes (10 M⊕ - 30 M⊕) and Super-Jupiters (3 MJup - 10 MJup), owing to the predicted steep rise in the mass function toward smaller

  9. ESTIMATION OF AGE TRANSITION PROBABILITIES.

    ERIC Educational Resources Information Center

    ZINTER, JUDITH R.

    THIS NOTE DESCRIBES THE PROCEDURES USED IN DETERMINING DYNAMOD II AGE TRANSITION MATRICES. A SEPARATE MATRIX FOR EACH SEX-RACE GROUP IS DEVELOPED. THESE MATRICES WILL BE USED AS AN AID IN ESTIMATING THE TRANSITION PROBABILITIES IN THE LARGER DYNAMOD II MATRIX RELATING AGE TO OCCUPATIONAL CATEGORIES. THREE STEPS WERE USED IN THE PROCEDURE--(1)…

  10. Relative transition probabilities of cobalt

    NASA Technical Reports Server (NTRS)

    Roig, R. A.; Miller, M. H.

    1974-01-01

    Results of determinations of neutral-cobalt transition probabilities measured relative to Co I 4150.43 A and Co II 4145.15 A, using a gas-driven shock tube as the spectroscopic light source. Results are presented for 139 Co I lines in the range from 3940 to 6640 A and 11 Co II lines in the range from 3840 to 4730 A, which are estimated to have reliabilities ranging from 8 to 50%.

  11. Advances in the Measurement of Atomic Transition Probabilities

    NASA Astrophysics Data System (ADS)

    O'Brian, Thomas Raymond

    The technology for measuring absolute atomic transition probabilities is extended. Radiative lifetimes are measured by time-resolved laser-induced fluorescence on a slow atomic beam generated by a versatile hollow cathode discharge source. The radiative lifetimes are free from systematic error at the five percent level. Combined with branching fractions measured with emission or absorption sources, the lifetimes result in absolute transition probabilities usually accurate to 5-10 %. Three new developments in the lifetime and branching fraction technique are reported. Radiative lifetimes for 186 levels in neutral iron are measured, with the energy of the upper levels densely spanning the entire excitation range of neutral iron. Combined with branching fractions measured in emission with Fourier transform spectrophotometry, the level lifetimes directly yield absolute transition probabilities for 1174 transitions. An additional 640 transition probabilities are determined by interpolating level populations in an emission source. The dense energy spacing of the levels with directly measured lifetimes permits accurate population interpolation despite departures from local thermodynamic equilibrium. This technique has the potential to permit accurate absolute transition probability measurements for essentially every classified line in a spectrum. Radiative lifetime measurements are extended into the vacuum ultraviolet with a continuously tunable vacuum ultraviolet laser based on stimulated anti-Stokes Raman scattering. When used with the hollow cathode atomic beam source, accurate lifetimes are measured for 47 levels in neutral silicon and 8 levels in neutral boron, primarily in the vacuum ultraviolet spectral region. Transition probabilities are reported for many lines connected to these upper levels, using previously measured or calculated branching fractions. The hollow cathode beam source is developed for use with refractory non-metals. Intense atomic beams of boron

  12. Transition probability data for seven band systems of C2

    NASA Technical Reports Server (NTRS)

    Coo, D. M.; Nicholls, R. W.

    1976-01-01

    Absolute transition-probability parameters are reported for seven band systems of the C2 molecule. These include all the known C2 band systems in the spectral region between 0.2 and 1.2 microns with the exception of the Messerle-Krauss system. To obtain the data, absolute intensities of selected spectral regions were measured behind the incident shock wave in a combustion-driven shock tube containing 85% Ar and 15% C2H2. These measurements were converted into electronic transition moments by a synthetic spectrum analysis. The electronic transition moments were then used to determine extensive tables of the transition-probability parameters for each of the band systems measured.

  13. Kr II transition probability measurements for the UV spectral region

    NASA Astrophysics Data System (ADS)

    Belmonte, M. T.; Gavanski, L.; Peláez, R. J.; Aparicio, J. A.; Djurović, S.; Mar, S.

    2016-02-01

    The determination of radiative transition probabilities or oscillator strengths is of common interest in astrophysics. The analysis of the high-resolution stellar spectra is now available in order to estimate the stellar abundances. In this paper, 93 experimentally obtained transition probability values (Aki) for singly ionized krypton spectral lines belonging to the ultraviolet (UV) wavelength region (208-360) nm are presented. These data, expressed in absolute units, were derived from the measurements of relative spectral line intensities and the values of transition probability data taken from the literature. The results obtained extend considerably the transition probability data base. As a light source, a plasma from a low-pressure pulsed arc was used. Its electron density was in the range of (1.5-3.4) × 1022 m-3, while the temperature was between 28 000 and 35 000 K. A detailed analysis of the results is also given. Only a few relative and a few absolute transition probabilities from other authors, for the mentioned spectral region, are available in the literature.

  14. Atomic Transition Probabilities for Neutral Cerium

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; den Hartog, E. A.; Wood, M. P.; Nitz, D. E.; Chisholm, J.; Sobeck, J.

    2009-10-01

    The spectra of neutral cerium (Ce I) and singly ionized cerium (Ce II) are more complex than spectra of other rare earth species. The resulting high density of lines in the visible makes Ce ideal for use in metal halide (MH) High Intensity Discharge (HID) lamps. Inclusion of cerium-iodide in a lamp dose can improve both the Color Rendering Index and luminous efficacy of a MH-HID lamp. Basic spectroscopic data including absolute atomic transition probabilities for Ce I and Ce II are needed for diagnosing and modeling these MH-HID lamps. Recent work on Ce II [1] is now being augmented with similar work on Ce I. Radiative lifetimes from laser induced fluorescence measurements [2] on neutral Ce are being combined with emission branching fractions from spectra recorded using a Fourier transform spectrometer. A total of 14 high resolution spectra are being analyzed to determine branching fractions for 2000 to 3000 lines from 153 upper levels in neutral Ce. Representative data samples and progress to date will be presented. [4pt] [1] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [0pt] [2] E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, J. Phys. B: Atomic, Molecular & Optical Physics 42, 085006 (7pp) (2009).

  15. Transition Probability and the ESR Experiment

    ERIC Educational Resources Information Center

    McBrierty, Vincent J.

    1974-01-01

    Discusses the use of a modified electron spin resonance apparatus to demonstrate some features of the expression for the transition probability per second between two energy levels. Applications to the third year laboratory program are suggested. (CC)

  16. Electric quadrupole transition probabilities for atomic lithium

    SciTech Connect

    Çelik, Gültekin; Gökçe, Yasin; Yıldız, Murat

    2014-05-15

    Electric quadrupole transition probabilities for atomic lithium have been calculated using the weakest bound electron potential model theory (WBEPMT). We have employed numerical non-relativistic Hartree–Fock wavefunctions for expectation values of radii and the necessary energy values have been taken from the compilation at NIST. The results obtained with the present method agree very well with the Coulomb approximation results given by Caves (1975). Moreover, electric quadrupole transition probability values not existing in the literature for some highly excited levels have been obtained using the WBEPMT.

  17. Continuum ionization transition probabilities of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. R.; Petrosky, V. E.

    1973-01-01

    The technique of photoelectron spectroscopy was used to obtain the relative continuum transition probabilities of atomic oxygen at 584 A for transitions from 3P ground state into the 4S, D2, and P2 states of the ion. Transition probability ratios for the D2 and P2 states relative to the S4 state of the ion are 1.57 + or - 0.14 and 0.82 + or - 0.07, respectively. In addition, transitions from excited O2(a 1 Delta g) state into the O2(+)(2 Phi u and 2 Delta g) were observed. The adiabatic ionization potential of O2(+)(2 Delta g) was measured as 18.803 + or - 0.006 eV.

  18. Calculation of radiative transition probabilities and lifetimes

    NASA Technical Reports Server (NTRS)

    Zemke, W. T.; Verma, K. K.; Stwalley, W. C.

    1982-01-01

    Procedures for calculating bound-bound and bound-continuum (free) radiative transition probabilities and radiative lifetimes are summarized. Calculations include rotational dependence and R-dependent electronic transition moments (no Franck-Condon or R-centroid approximation). Detailed comparisons of theoretical results with experimental measurements are made for bound-bound transitions in the A-X systems of LiH and Na2. New bound-free results are presented for LiH. New bound-free results and comparisons with very recent fluorescence experiments are presented for Na2.

  19. Precise measurements of the absolute γ-ray emission probabilities of (223)Ra and decay progeny in equilibrium.

    PubMed

    Collins, S M; Pearce, A K; Regan, P H; Keightley, J D

    2015-08-01

    Precise measurements of the absolute γ-ray emission probabilities have been made of radiochemically pure solutions of (223)Ra in equilibrium with its decay progeny, which had been previously standardised by 4π(liquid scintillation)-γ digital coincidence counting techniques. Two high-purity germanium γ-ray spectrometers were used which had been accurately calibrated using a suite of primary and secondary radioactive standards. Comparison of the activity concentration determined by the primary technique against γ-ray spectrometry measurements using the nuclear data evaluations of the Decay Data Evaluation Project exhibited a range of ~18% in the most intense γ-ray emissions (>1% probability) of the (223)Ra decay series. Absolute γ-ray emission probabilities and standard uncertainties have been determined for the decay of (223)Ra, (219)Rn, (215)Po, (211)Pb, (211)Bi and (207)Tl in equilibrium. The standard uncertainties of the measured γ-ray emission probabilities quoted in this work show a significant improvement over previously reported γ-ray emission probabilities. Correlation coefficients for pairs of the measured γ-ray emission probabilities from the decays of the radionuclides (223)Ra, (219)Rn and (211)Pb have been determined and are presented. The α-transition probabilities of the (223)Ra have been deduced from P(γ+ce) balance using the γ-ray emission probabilities determined in this work with some agreement observed with the published experimental values of the α-emission probabilities. PMID:25933406

  20. Estimation of transition probabilities of credit ratings

    NASA Astrophysics Data System (ADS)

    Peng, Gan Chew; Hin, Pooi Ah

    2015-12-01

    The present research is based on the quarterly credit ratings of ten companies over 15 years taken from the database of the Taiwan Economic Journal. The components in the vector mi (mi1, mi2,⋯, mi10) may first be used to denote the credit ratings of the ten companies in the i-th quarter. The vector mi+1 in the next quarter is modelled to be dependent on the vector mi via a conditional distribution which is derived from a 20-dimensional power-normal mixture distribution. The transition probability Pkl (i ,j ) for getting mi+1,j = l given that mi, j = k is then computed from the conditional distribution. It is found that the variation of the transition probability Pkl (i ,j ) as i varies is able to give indication for the possible transition of the credit rating of the j-th company in the near future.

  1. Properties of atoms in molecules: Transition probabilities

    NASA Astrophysics Data System (ADS)

    Bader, R. F. W.; Bayles, D.; Heard, G. L.

    2000-06-01

    The transition probability for electric dipole transitions is a measurable property of a system and is therefore, partitionable into atomic contributions using the physics of a proper open system. The derivation of the dressed property density, whose averaging over an atomic basin yields the atomic contribution to a given oscillator strength, is achieved through the development of perturbation theory for an open system. A dressed density describes the local contribution resulting from the interaction of a single electron at some position r, as determined by the relevant observable, averaged over the motions of all of the remaining particles in the system. In the present work, the transition probability density expressed in terms of the relevant transition density, yields a local measure of the associated oscillator strength resulting from the interaction of the entire molecule with a radiation field. The definition of the atomic contributions to the oscillator strength enables one to determine the extent to which a given electronic or vibrational transition is spatially localized to a given atom or functional group. The concepts introduced in this article are applied to the Rydberg-type transitions observed in the electronic excitation of a nonbonding electron in formaldehyde and ammonia. The atomic partitioning of the molecular density distribution and of the molecular properties by surfaces of zero flux in the gradient vector field of the electron density, the boundary condition defining the physics of a proper open system, is found to apply to the density distributions of the excited, Rydberg states.

  2. Continuum ionization transition probabilities of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Petrosky, V. E.

    1974-01-01

    The technique of photoelectron spectroscopy was employed in the investigation. Atomic oxygen was produced in a microwave discharge operating at a power of 40 W and at a pressure of approximately 20 mtorr. The photoelectron spectrum of the oxygen with and without the discharge is shown. The atomic states can be clearly seen. In connection with the measurement of the probability for transitions into the various ionic states, the analyzer collection efficiency was determined as a function of electron energy.

  3. Augmenting Transition Probabilities for Neutral Atomic Nitrogen

    NASA Technical Reports Server (NTRS)

    Terrazas-Salines, Imelda; Park, Chul; Strawa, Anthony W.; Hartman, G. Joseph (Technical Monitor)

    1996-01-01

    The transition probability values for a number of neutral atomic nitrogen (NI) lines in the visible wavelength range are determined in order to augment those given in the National Bureau of Standards Tables. These values are determined from experimentation as well as by using the published results of other investigators. The experimental determination of the lines in the 410 to 430 nm range was made from the observation of the emission from the arc column of an arc-heated wind tunnel. The transition probability values of these NI lines are determined to an accuracy of +/- 30% by comparison of their measured intensities with those of the atomic oxygen (OI) multiplet at around 615 nm. The temperature of the emitting medium is determined both using a multiple-layer model, based on a theoretical model of the flow in the arc column, and an empirical single-layer model. The results show that the two models lead to the same values of transition probabilities for the NI lines.

  4. Transition probabilities and static moments in transitional nuclei

    SciTech Connect

    Wolf, A.; Casten, R.F.

    1988-01-01

    Electromagnetic transition probabilities and static moments of excited nuclear states are known to be good probes of nuclear structure. Therefore, a systematic analysis of the large amount of existing experimental data for these observables is expected to provide valuable information about the respective isotopes. It is the purpose of this talk to show that a combined analysis of static magnetic moments of 2/sub 1//sup +/ states and B(E2) transition probabilities for even-even nuclei can be used to obtain effective numbers of valence nucleons. This kind of information is of particular interest in cases where subshell closures are found. For example, it is well known that for the transitional nuclei in the A = 150 region the Z = 64 subshell is active when the number of neutrons N < 90, but disappears for N greater than or equal to 90. A similar situation exists in the A = 100 region, where the Z = 38 subshell is active for N less than or equal to 58. In the following sections we present the method by which effective numbers of valence protons and neutrons can be deduced from B(E2) and g-factor data, and show applications of this method to the A = 150 and A = 100 transitional regions. Part of these results were recently published.

  5. The absolute frequency of the 87Sr optical clock transition

    NASA Astrophysics Data System (ADS)

    Campbell, Gretchen K.; Ludlow, Andrew D.; Blatt, Sebastian; Thomsen, Jan W.; Martin, Michael J.; de Miranda, Marcio H. G.; Zelevinsky, Tanya; Boyd, Martin M.; Ye, Jun; Diddams, Scott A.; Heavner, Thomas P.; Parker, Thomas E.; Jefferts, Steven R.

    2008-10-01

    The absolute frequency of the 1S0-3P0 clock transition of 87Sr has been measured to be 429 228 004 229 873.65 (37) Hz using lattice-confined atoms, where the fractional uncertainty of 8.6 × 10-16 represents one of the most accurate measurements of an atomic transition frequency to date. After a detailed study of systematic effects, which reduced the total systematic uncertainty of the Sr lattice clock to 1.5 × 10-16, the clock frequency is measured against a hydrogen maser which is simultaneously calibrated to the US primary frequency standard, the NIST Cs fountain clock, NIST-F1. The comparison is made possible using a femtosecond laser based optical frequency comb to phase coherently connect the optical and microwave spectral regions and by a 3.5 km fibre transfer scheme to compare the remotely located clock signals.

  6. Estimation of State Transition Probabilities: A Neural Network Model

    NASA Astrophysics Data System (ADS)

    Saito, Hiroshi; Takiyama, Ken; Okada, Masato

    2015-12-01

    Humans and animals can predict future states on the basis of acquired knowledge. This prediction of the state transition is important for choosing the best action, and the prediction is only possible if the state transition probability has already been learned. However, how our brains learn the state transition probability is unknown. Here, we propose a simple algorithm for estimating the state transition probability by utilizing the state prediction error. We analytically and numerically confirmed that our algorithm is able to learn the probability completely with an appropriate learning rate. Furthermore, our learning rule reproduced experimentally reported psychometric functions and neural activities in the lateral intraparietal area in a decision-making task. Thus, our algorithm might describe the manner in which our brains learn state transition probabilities and predict future states.

  7. Ultraviolet transition probabilities in N II

    NASA Technical Reports Server (NTRS)

    Ellis, David G.

    1993-01-01

    Oscillator strengths were calculated for the ultraviolet transition array 2p sup 2 - 2p3s in the N II spectrum. Results obtained confirm that the 748 A intercombination line is usually strong as predicted by Fawcett (1987). The results of theoretical weighted oscillator strengths are considered to be reliable.

  8. Estimating the absolute position of a mobile robot using position probability grids

    SciTech Connect

    Burgard, W.; Fox, D.; Hennig, D.; Schmidt, T.

    1996-12-31

    In order to re-use existing models of the environment mobile robots must be able to estimate their position and orientation in such models. Most of the existing methods for position estimation are based on special purpose sensors or aim at tracking the robot`s position relative to the known starting point. This paper describes the position probability grid approach to estimating the robot`s absolute position and orientation in a metric model of the environment. Our method is designed to work with standard sensors and is independent of any knowledge about the starting point. It is a Bayesian approach based on certainty grids. In each cell of such a grid we store the probability that this cell refers to the current position of the robot. These probabilities are obtained by integrating the likelihoods of sensor readings over time. Results described in this paper show that our technique is able to reliably estimate the position of a robot in complex environments. Our approach has proven to be robust with respect to inaccurate environmental models, noisy sensors, and ambiguous situations.

  9. TRANSIT PROBABILITIES FOR STARS WITH STELLAR INCLINATION CONSTRAINTS

    SciTech Connect

    Beatty, Thomas G.; Seager, Sara

    2010-04-01

    The probability that an exoplanet transits its host star is high for planets in close orbits, but drops off rapidly for increasing semimajor axes. This makes transit surveys for planets with large semimajor axes orbiting bright stars impractical, since one would need to continuously observe hundreds of stars that are spread out over the entire sky. One way to make such a survey tractable is to constrain the inclination of the stellar rotation axes in advance, and thereby enhance the transit probabilities. We derive transit probabilities for stars with stellar inclination constraints, considering a reasonable range of planetary system inclinations. We find that stellar inclination constraints can improve the transit probability by almost an order of magnitude for habitable-zone planets. When applied to an ensemble of stars, such constraints dramatically lower the number of stars that need to be observed in a targeted transit survey. We also consider multiplanet systems where only one planet has an identified transit and derive the transit probabilities for the second planet assuming a range of mutual planetary inclinations.

  10. Transition Probabilities of the Rare Earth Neutral Lanthanum

    NASA Astrophysics Data System (ADS)

    Palmer, Andria; Lawler, James E.; Den Hartog, Elizabeth

    2015-01-01

    In continuation of a long-standing project to measure transition probabilities for rare earth elements, La i is currently being studied. Transition probabilities of the rare earths and other elements are determined in order to assist astronomers in making stellar spectroscopy more quantitative. Atomic spectroscopy is a key tool for astronomers as it provides nearly all the details about the physics and chemistry of the universe outside of our solar system. Rare earth elements tend to have complex electronic structure due to their open 4f, 5d, 6s, and 6p shells. This leads to a rich spectrum throughout the ultraviolet, visible and near-infrared, making them very accessible elements for study in stellar photospheric spectra. A transition probability is the probability per unit time for a transition to occur between an upper level and a lower level. The process for measuring transition probabilities is by using the well-established technique of time-resolved laser-induced fluorescence to measure the radiative lifetimes for each upper level. This is then combined with branching fractions measured using a 1m high-resolution Fourier Transform Spectrometer. Radiative lifetimes for ~70 upper levels of neutral La along with their associated branching fractions will be reported, resulting in the determination of several hundred new transition probabilities. These transition probabilities will assist astronomers in analyzing the chemical compositions of older, cooler stars which give insight into the origins of the chemical elements.This work supported by by NSF grant AST-1211055 (JEL & EDH) and by the NSF REU program (AJP).

  11. Hydrogeologic Unit Flow Characterization Using Transition Probability Geostatistics

    SciTech Connect

    Jones, N L; Walker, J R; Carle, S F

    2003-11-21

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has several advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upwards sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow (HUF) package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids. An application of the technique involving probabilistic capture zone delineation for the Aberjona Aquifer in Woburn, Ma. is included.

  12. Transition Probabilities for Spectral Lines in Co I

    NASA Astrophysics Data System (ADS)

    Nitz, D. E.; Wilson, K. L.; Lentz, L. R.

    1996-05-01

    We are in the process of determining transition probabilities for visible and uv lines in Co I from Fourier transform spectra recorded at Kitt Peak and made available to us by Prof. W. Whaling. Normalization of relative transition probabilities obtained from these spectra is achieved using recently-measured Co I lifetimes.(D. E. Nitz, S. D. Bergeson, and J. E. Lawler, J. Opt. Soc. Am. B 12, 377 (1995).) To date we have obtained preliminary results for 240 lines having branch fractions > 1

  13. Collision strengths and transition probabilities for Co III forbidden lines

    NASA Astrophysics Data System (ADS)

    Storey, P. J.; Sochi, Taha

    2016-07-01

    In this paper we compute the collision strengths and their thermally averaged Maxwellian values for electron transitions between the 15 lowest levels of doubly ionized cobalt, Co2+, which give rise to forbidden emission lines in the visible and infrared region of spectrum. The calculations also include transition probabilities and predicted relative line emissivities. The data are particularly useful for analysing the thermodynamic conditions of supernova ejecta.

  14. Transitional Probability Analysis of Two Child Behavior Analytic Therapy Cases

    ERIC Educational Resources Information Center

    Xavier, Rodrigo Nunes; Kanter, Jonathan William; Meyer, Sonia Beatriz

    2012-01-01

    This paper aimed to highlight the process of therapist direct contingent responding to shape client behavior in two Child Behavior Analytic Therapy (CBAT) cases using transitional probabilities. The Functional Analytic Psychotherapy Rating Scale (FAPRS) was used to code client behaviors and the Multidimensional System for Coding Behaviors in…

  15. Determination of transition probabilities for the 3p → 3s transition array in neon using laser induced breakdown spectroscopy

    SciTech Connect

    Asghar, Haroon; Ali, Raheel; Baig, M. Aslam

    2013-12-15

    We present here a study of the optical emission spectra of the laser produced neon plasma generated by a Nd:YAG laser at 1064 nm. The spectra were recorded using the laser induced breakdown spectroscopy 2000 detection system comprising of five spectrometers covering the entire visible region. The observed spectra yield all the optically allowed transitions between the 2p{sup 5}3p upper and 2p{sup 5}3s lower configurations based levels. The relative line strengths of all the dipole allowed transitions have been determined using the intensity ratios and compared with the J-file sum rule. The absolute transition probabilities have been calculated by using the lifetimes of the upper levels and the intensities of the observed spectral lines and show good agreement with the literature values.

  16. Experimental transition probabilities and Stark-broadening parameters of neutral and single ionized tin

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1979-01-01

    Strengths and Stark-effect widths of the Sn I and Sn II lines prominent between 3200 and 7900 A are measured with a spectroscopic shock tube. Absolute strengths of 17 ionic lines are obtained with estimated (22-50)% accuracy and conform to appropriate quantum-mechanical sum rules. Relative transition probabilities for nine prominent neutral tin lines, normalized to radiative-lifetime data, are compared with other experiments and theoretical predictions. Parameters for Stark-effect broadening are measured over a range of plasma electron densities. Broadening data (with accuracies of 15-35%) for one neutral and ten ionic lines of tin are compared to theoretical predictions.

  17. Executable Code Recognition in Network Flows Using Instruction Transition Probabilities

    NASA Astrophysics Data System (ADS)

    Kim, Ikkyun; Kang, Koohong; Choi, Yangseo; Kim, Daewon; Oh, Jintae; Jang, Jongsoo; Han, Kijun

    The ability to recognize quickly inside network flows to be executable is prerequisite for malware detection. For this purpose, we introduce an instruction transition probability matrix (ITPX) which is comprised of the IA-32 instruction sets and reveals the characteristics of executable code's instruction transition patterns. And then, we propose a simple algorithm to detect executable code inside network flows using a reference ITPX which is learned from the known Windows Portable Executable files. We have tested the algorithm with more than thousands of executable and non-executable codes. The results show that it is very promising enough to use in real world.

  18. Camera-Model Identification Using Markovian Transition Probability Matrix

    NASA Astrophysics Data System (ADS)

    Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei

    Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.

  19. Estimating transition probabilities in unmarked populations --entropy revisited

    USGS Publications Warehouse

    Cooch, E.G.; Link, W.A.

    1999-01-01

    The probability of surviving and moving between 'states' is of great interest to biologists. Robust estimation of these transitions using multiple observations of individually identifiable marked individuals has received considerable attention in recent years. However, in some situations, individuals are not identifiable (or have a very low recapture rate), although all individuals in a sample can be assigned to a particular state (e.g. breeding or non-breeding) without error. In such cases, only aggregate data (number of individuals in a given state at each occasion) are available. If the underlying matrix of transition probabilities does not vary through time and aggregate data are available for several time periods, then it is possible to estimate these parameters using least-squares methods. Even when such data are available, this assumption of stationarity will usually be deemed overly restrictive and, frequently, data will only be available for two time periods. In these cases, the problem reduces to estimating the most likely matrix (or matrices) leading to the observed frequency distribution of individuals in each state. An entropy maximization approach has been previously suggested. In this paper, we show that the entropy approach rests on a particular limiting assumption, and does not provide estimates of latent population parameters (the transition probabilities), but rather predictions of realized rates.

  20. Transition probabilities and radiative lifetimes of Mg III

    NASA Astrophysics Data System (ADS)

    Alonso-Medina, A.; Colón, C.; Moreno-Díaz, C.

    2015-03-01

    There have been calculated transition probabilities for 365 lines arising from 2p5 n s(n = 3 , 4 , 5) , 2p5 n p(n = 3 , 4) , 2p5 n d(n = 3 , 4) , 2p5 n f(n = 4 , 5) and 2p5 5g configurations of Mg III and radiative lifetimes corresponding to 89 levels. These values were obtained in intermediate coupling (IC) by using ab initio relativistic Hartree-Fock (HFR) calculations. Later, we use the standard method of least square fitting of experimental energy levels for the IC calculations by means of Cowan's computer codes. The vast majority of the calculated transition probabilities correspond to lines lying in the ultraviolet range (UV) which are of high interest in astrophysics. Our results are compared to those previously reported in the literature. Furthermore, the values of transition probabilities of configuration levels 2p5 4d, 2p5 n f(n = 4 , 5) and 2p5 5g are presented for the first time. In light of these findings, it is possible to extend the range of wavelengths which allows us to estimate the temperature in plasma diagnostic. In addition, our results for radiative lifetimes have been compared to the available experimental values.

  1. Numerical aspects of searching convective/absolute instability transition

    NASA Astrophysics Data System (ADS)

    Suslov, Sergey A.

    2006-02-01

    An overview of various numerical techniques used to determine the spatio-temporal character of instabilities in fluid flows is given. The advantageous features of various previously known individual techniques are discussed and a practical procedure combining them is suggested for a specific task of determining the complete boundary between linearly convectively and absolutely unstable regimes in a multi-parameter space in problems with a fully numerical dispersion relation. Special attention is paid to aspects of automatization of computations as this is a crucial condition for their efficiency. The suggested procedure is successfully used and is shown to provide a high degree of automatism in the physical example of non-Boussinesq mixed convection in a vertical channel. This example comprises most of the major numerical difficulties found in various spatio-temporal instability studies of two-dimensional fluid flows which previously could not be handled without frequent human intervention and visual inspection of intermediate results. This paper focuses on the general numerical aspects of the computations leaving the detailed discussion of the obtained physical results for a separate publication.

  2. Estimating transition probabilities among everglades wetland communities using multistate models

    USGS Publications Warehouse

    Hotaling, A.S.; Martin, J.; Kitchens, W.M.

    2009-01-01

    In this study we were able to provide the first estimates of transition probabilities of wet prairie and slough vegetative communities in Water Conservation Area 3A (WCA3A) of the Florida Everglades and to identify the hydrologic variables that determine these transitions. These estimates can be used in management models aimed at restoring proportions of wet prairie and slough habitats to historical levels in the Everglades. To determine what was driving the transitions between wet prairie and slough communities we evaluated three hypotheses: seasonality, impoundment, and wet and dry year cycles using likelihood-based multistate models to determine the main driver of wet prairie conversion in WCA3A. The most parsimonious model included the effect of wet and dry year cycles on vegetative community conversions. Several ecologists have noted wet prairie conversion in southern WCA3A but these are the first estimates of transition probabilities among these community types. In addition, to being useful for management of the Everglades we believe that our framework can be used to address management questions in other ecosystems. ?? 2009 The Society of Wetland Scientists.

  3. Recursive recovery of Markov transition probabilities from boundary value data

    SciTech Connect

    Patch, S.K.

    1994-04-01

    In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requires finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 {times} 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 {times} 2 {times} 2 problem, is solved.

  4. Transition of absolute instability from global to local modes in a gyrotron traveling-wave amplifier.

    PubMed

    Chang, T H; Chen, N C

    2006-07-01

    The gyrotron traveling-wave amplifier employing the distributed-loss scheme is capable of very high gain and effective in suppressing the global absolute instabilities. This study systematically characterizes the local absolute instabilities and their transitional behavior. The local absolute instabilities are analyzed using a model that incorporates the penetration of the field from the copper section into the lossy section. The axial modes were characterized from the perspective of beam-wave interaction and were found to share many characteristics with the global modes. The transition from global modes to local modes as the distributed loss increases was demonstrated. The electron transit angle in the copper section, which determines the feedback criterion, governs the survivability of an oscillation. In addition, the oscillation thresholds predicted using this model are more accurate than those obtained using a simplified model. PMID:16907193

  5. Absolute frequency measurements and hyperfine structures of the molecular iodine transitions at 578 nm

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takumi; Akamatsu, Daisuke; Hosaka, Kazumoto; Inaba, Hajime; Okubo, Sho; Tanabe, Takehiko; Yasuda, Masami; Onae, Atsushi; Hong, Feng-Lei

    2016-04-01

    We report absolute frequency measurements of 81 hyperfine components of the rovibrational transitions of molecular iodine at 578 nm using the second harmonic generation of an 1156-nm external-cavity diode laser and a fiber-based optical frequency comb. The relative uncertainties of the measured absolute frequencies are typically $1.4\\times10^{-11}$. Accurate hyperfine constants of four rovibrational transitions are obtained by fitting the measured hyperfine splittings to a four-term effective Hamiltonian including the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions. The observed transitions can be good frequency references at 578 nm, and are especially useful for research using atomic ytterbium since the transitions are close to the $^{1}S_{0}-^{3}P_{0}$ clock transition of ytterbium.

  6. The FERRUM Project: Experimental Transition Probabilities of [Fe II] and Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Hartman, H.; Derkatch, A.; Donnelly, M. P.; Gull, T.; Hibbert, A.; Johannsson, S.; Lundberg, H.; Mannervik, S.; Norlin, L. -O.; Rostohar, D.

    2002-01-01

    We report on experimental transition probabilities for thirteen forbidden [Fe II] lines originating from three different metastable Fe II levels. Radiative lifetimes have been measured of two metastable states by applying a laser probing technique on a stored ion beam. Branching ratios for the radiative decay channels, i.e. M1 and E2 transitions, are derived from observed intensity ratios of forbidden lines in astrophysical spectra and compared with theoretical data. The lifetimes and branching ratios are combined to derive absolute transition probabilities, A-values. We present the first experimental lifetime values for the two Fe II levels a(sup 4)G(sub 9/2) and b(sup 2)H(sub 11/2) and A-values for 13 forbidden transitions from a(sup 6)S(sub 5/2), a(sup 4)G(sub 9/2) and b(sup 4)D(sub 7/2) in the optical region. A discrepancy between the measured and calculated values of the lifetime for the b(sup 2)H(sub 11/2) level is discussed in terms of level mixing. We have used the code CIV3 to calculate transition probabilities of the a(sup 6)D-a(sup 6)S transitions. We have also studied observational branching ratios for lines from 5 other metastable Fe II levels and compared them to calculated values. A consistency in the deviation between calibrated observational intensity ratios and theoretical branching ratios for lines in a wider wavelength region supports the use of [Fe II] lines for determination of reddening.

  7. Determination of transition probability for the 655-nm Tl line.

    NASA Astrophysics Data System (ADS)

    Karabourniotis, D.; Couris, S.; Damelincourt, J. J.

    Studies of high-pressure Hg-Tl I a.c. (50 Hz) arc plasmas have been used to verify the validity of Boltzmann statistics at the moment of maximum electron density (5 ms) by applying LTE criteria. For a known plasma temperature, the transition probability of the optically-thin 655-nm line of Tl was derived from emission measurements by using the self-reversed 535-nm line of Tl as reference [A655 = (3.74±0.37)×106s-1].

  8. Transition probability of the Al II 2669 intersystem line

    NASA Technical Reports Server (NTRS)

    Johnson, B. C.; Smith, P. L.; Parkinson, W. H.

    1986-01-01

    Time-resolved observations of the spin-changing, or 'intersystem' emission at 2669.157 A obtained by the ion storage technique are used to measure the transition probability of the 3s2 1S0 - 3s3p 3P1 exp 0 line in Al II. A laser-generated plasma was used as the source of the metastable Al(+) ions. The A-value result obtained for the intersystem transition is 3.33 + or - 0.23 x 10 to the 3rd/sec at the 90-percent confidence level; this value is used to derive two line-intensity ratios which involve the intersystem line as a function of electron density and temperature.

  9. Oscillator strengths and transition probabilities for the W xlv ion

    NASA Astrophysics Data System (ADS)

    Spencer, S.; Hibbert, A.; Ramsbottom, C. A.

    2014-12-01

    In this paper we present oscillator strengths and transition probabilities for W xlv transitions between levels arising from configurations 3d104s2,4p2,4d2, 3d104k4l (k = s,p,d,f and l = p,d,f), 3d94s24l (l = p,d,f) and 3d94s4p2. The model used to calculate these contained all configurations which can be constructed from the available orbitals (up to n = 4), with either a 3d10 or 3d9 core. The calculations were performed with the configuration interaction CIV3 program with the inclusion of relativistic effects achieved through the use of the Breit-Pauli approximation. We compare our ab initio energy levels, oscillator strengths and transition rates with other experimental and theoretical values available in the literature. There is generally good agreement when only levels with 3d10 cores are considered. The literature is sparse for levels in which the 3d-subshell is opened: for the majority of the fine-structure lines considered, there is either no comparison data available or substantial differences are found. This paper also investigates how the inclusion of relativistic effects can result in a significant redistribution of the oscillator strength from the LS calculations.

  10. Theoretical electric quadrupole transition probabilities for Ca, Sr and Ba

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Jaffe, R. L.; Partridge, H.

    1984-01-01

    The 1D-1S quadrupole transition probabilities for Ca, Sr and Ba have been computed using extended GTO and STO valence basis sets and configuration-interaction wavefunctions that include the important core-valence correlation effects. For Ba and Sr, the relativistic contraction of the core orbitals was accounted for in the GTO calculations by a relativistic effective-core potential. The computed Einstein coefficient for Ca of 39.6/s is in excellent agreement with the recent experimental value of 40 + or - 8/s. The best Einstein coefficients for Sr (44.7/s) and Ba (2.98/s) imply increasing quadrupole line strengths down the column. Relativistic effects substantially increase the quadrupole Einstein coefficient for Ba.

  11. E2 Transition Probabilities in 114Te: a Conundrum

    SciTech Connect

    Moller, O; Warr, N; Jolie, J; Dewald, A; Fitzler, A; Linnemann, A; Zell, K O; Garrett, P E; Yates, S W

    2005-05-13

    Lifetimes in {sup 114}Te were determined using the recoil distance Doppler-shift technique with a plunger device coupled to five HP Ge detectors enhanced by one Euroball Cluster detector. The experiment was carried out at the Cologne FN Tandem facility using the {sup 93}Nb({sup 24}Mg,p2n) reaction at 90 MeV. The differential decay curve method in coincidence mode was employed to derive lifetimes for seven excited states, while the lifetime of an isomeric state was obtained in singles mode. The resulting E2 transition probabilities are shown to be very anomalous in comparison with the vibrational energy spacings of the ground state band.

  12. E2 transition probabilities in {sup 114}Te: A conundrum

    SciTech Connect

    Moeller, O.; Warr, N.; Jolie, J.; Dewald, A.; Fitzler, A.; Linnemann, A.; Zell, K.O.; Garrett, P.E.; Yates, S.W.

    2005-06-01

    Lifetimes in {sup 114}Te were determined using the recoil distance Doppler-shift technique with a plunger device coupled to five HP Ge detectors enhanced by one Euroball cluster detector. The experiment was carried out at the Cologne FN Tandem facility using the {sup 93}Nb({sup 24}Mg,p2n) reaction at 90 MeV. The differential decay curve method in coincidence mode was employed to derive lifetimes for seven excited states, whereas the lifetime of an isomeric state was obtained in singles mode. The resulting E2 transition probabilities are shown to be very anomalous in comparison with the vibrational energy spacings of the ground-state band.

  13. Radiative lifetimes and transition probabilities of neutral lanthanum

    NASA Astrophysics Data System (ADS)

    Den Hartog, E. A.; Palmer, A. J.; Lawler, J. E.

    2015-08-01

    The radiative lifetimes of 72 odd-parity levels of neutral lanthanum are measured to ±5% accuracy using time-resolved laser-induced fluorescence on a slow atomic beam. The levels range in energy from 15031 to 32140 cm-1. Branching fraction measurements using Fourier-transform spectroscopy are attempted and completed for all of the 72 levels. The branching fractions, when combined with the radiative lifetimes, yield new transition probabilities for 315 lines of the first spectrum of lanthanum (La i ). This study is part of a larger body of work on the radiative properties of rare earth neutral atoms, and is motivated by research needs in lighting science and astrophysics.

  14. Transition probabilities in neutron-rich Se,8684

    NASA Astrophysics Data System (ADS)

    Litzinger, J.; Blazhev, A.; Dewald, A.; Didierjean, F.; Duchêne, G.; Fransen, C.; Lozeva, R.; Sieja, K.; Verney, D.; de Angelis, G.; Bazzacco, D.; Birkenbach, B.; Bottoni, S.; Bracco, A.; Braunroth, T.; Cederwall, B.; Corradi, L.; Crespi, F. C. L.; Désesquelles, P.; Eberth, J.; Ellinger, E.; Farnea, E.; Fioretto, E.; Gernhäuser, R.; Goasduff, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hackstein, M.; Hess, H.; Ibrahim, F.; Jolie, J.; Jungclaus, A.; Kolos, K.; Korten, W.; Leoni, S.; Lunardi, S.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatovic, T.; Million, B.; Möller, O.; Modamio, V.; Montagnoli, G.; Montanari, D.; Morales, A. I.; Napoli, D. R.; Niikura, M.; Pollarolo, G.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Scarlassara, F.; Söderström, P.-A.; Stefanini, A. M.; Stezowski, O.; Szilner, S.; Theisen, Ch.; Valiente Dobón, J. J.; Vandone, V.; Vogt, A.

    2015-12-01

    Reduced quadrupole transition probabilities for low-lying transitions in neutron-rich Se,8684 are investigated with a recoil distance Doppler shift (RDDS) experiment. The experiment was performed at the Istituto Nazionale di Fisica Nucleare (INFN) Laboratori Nazionali di Legnaro using the Cologne Plunger device for the RDDS technique and the AGATA Demonstrator array for the γ -ray detection coupled to the PRISMA magnetic spectrometer for an event-by-event particle identification. In 86Se the level lifetime of the yrast 21+ state and an upper limit for the lifetime of the 41+ state are determined for the first time. The results of 86Se are in agreement with previously reported predictions of large-scale shell-model calculations using Ni78-I and Ni78-II effective interactions. In addition, intrinsic shape parameters of lowest yrast states in 86Se are calculated. In semimagic 84Se level lifetimes of the yrast 41+ and 61+ states are determined for the first time. Large-scale shell-model calculations using effective interactions Ni78-II, JUN45, jj4b, and jj4pna are performed. The calculations describe B (E 2 ;21+→01+) and B (E 2 ;61+→41+) fairly well and point out problems in reproducing the experimental B (E 2 ;41+→21+) .

  15. Matter-enhanced transition probabilities in quantum field theory

    SciTech Connect

    Ishikawa, Kenzo Tobita, Yutaka

    2014-05-15

    The relativistic quantum field theory is the unique theory that combines the relativity and quantum theory and is invariant under the Poincaré transformation. The ground state, vacuum, is singlet and one particle states are transformed as elements of irreducible representation of the group. The covariant one particles are momentum eigenstates expressed by plane waves and extended in space. Although the S-matrix defined with initial and final states of these states hold the symmetries and are applied to isolated states, out-going states for the amplitude of the event that they are detected at a finite-time interval T in experiments are expressed by microscopic states that they interact with, and are surrounded by matters in detectors and are not plane waves. These matter-induced effects modify the probabilities observed in realistic situations. The transition amplitudes and probabilities of the events are studied with the S-matrix, S[T], that satisfies the boundary condition at T. Using S[T], the finite-size corrections of the form of 1/T are found. The corrections to Fermi’s golden rule become larger than the original values in some situations for light particles. They break Lorentz invariance even in high energy region of short de Broglie wave lengths. -- Highlights: •S-matrix S[T] for the finite-time interval in relativistic field theory. •S[T] satisfies the boundary condition and gives correction of 1/T . •The large corrections for light particles breaks Lorentz invariance. •The corrections have implications to neutrino experiments.

  16. Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant

    NASA Astrophysics Data System (ADS)

    Sargsyan, Armen; Tonoyan, Ara; Hakhumyan, Grant; Papoyan, Aram; Mariotti, Emilio; Sarkisyan, David

    2014-05-01

    The magnetic field-induced giant modification of probabilities for seven components of 6S1/2, Fg = 3 → 6P3/2, Fe = 5 transition of the Cs D2 line, forbidden by selection rules, is observed experimentally for the first time. For the case of excitation with circularly polarized laser radiation, the probability of a Fg = 3, mF = -3 → Fe = 5, mF = -2 transition becomes the largest of 25 transitions of the Fg = 3 → Fe = 2,3,4,5 group in a wide-range magnetic field of 200-3200 G. Moreover, the modification is the largest among D2 lines of alkali metals. A half-wave-thick cell (the length along the beam propagation axis L = 426 nm) filled with Cs has been used in order to achieve sub-Doppler resolution, which allows the large number of atomic transitions that appear in the absorption spectrum to be separated when an external magnetic field is applied. For B > 3000 G the group of seven transitions Fg = 3 → Fe = 5 is completely resolved and is located at the high frequency level of Fg= 3 → Fe = 2,3,4 transitions. The applied theoretical model describes very well the experimental curves.

  17. Broken scaling laws of the transition probabilities from jj to LS coupling transitions

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Han, Xiao-Ying; Zeng, De-Ling; Jin, Rui; Li, Jia-Ming

    2014-04-01

    Accurate electromagnetic transition rates between the ground electronic configurations are important in diagnostic studies of planetary nebulae. Based on a "quasi-complete basis" set, we present large-scale multi-configuration Dirac-Fock calculations of the forbidden transition rates within the ground electronic configuration along the nitrogen-like isoelectronic sequence. The broken scaling laws of the transition probabilities from jj to LS coupling transitions are elucidated and found to be extensions of the well-known scaling laws discussed in the single electron case. The equivalent oscillator strength is very large for ions in high-Z regions and should play a crucial role in the cooling mechanism in astrophysics.

  18. TRANSITION PROBABILITIES FOR STUDENT-TEACHER POPULATION GROWTH MODEL (DYNAMOD II).

    ERIC Educational Resources Information Center

    ZINTER, JUDITH R.

    THIS NOTE PRESENTS THE TRANSITION PROBABILITIES CURRENTLY IN USE IN DYNAMOD II. THE ESTIMATING PROCEDURES USED TO DERIVE THESE PROBABILITIES WERE DISCUSSED IN THESE RELATED DOCUMENTS--EA 001 016, EA 001 017, EA 001 018, AND EA 001 063. THE TRANSIT ON PROBABILITIES FOR FOUR SEX-RACE GROUPS ARE SHOWN ALONG WITH THE DONOR-RECEIVER CODES TO WHICH THEY…

  19. CYCLIC TRANSIT PROBABILITIES OF LONG-PERIOD ECCENTRIC PLANETS DUE TO PERIASTRON PRECESSION

    SciTech Connect

    Kane, Stephen R.; Von Braun, Kaspar; Horner, Jonathan

    2012-09-20

    The observed properties of transiting exoplanets are an exceptionally rich source of information that allows us to understand and characterize their physical properties. Unfortunately, only a relatively small fraction of the known exoplanets discovered using the radial velocity technique are known to transit their host due to the stringent orbital geometry requirements. For each target, the transit probability and predicted transit time can be calculated to great accuracy with refinement of the orbital parameters. However, the transit probability of short period and eccentric orbits can have a reasonable time dependence due to the effects of apsidal and nodal precession, thus altering their transit potential and predicted transit time. Here we investigate the magnitude of these precession effects on transit probabilities and apply this to the known radial velocity exoplanets. We assess the refinement of orbital parameters as a path to measuring these precessions and cyclic transit probabilities.

  20. Absolute X-ray emission cross section measurements of Fe K transitions

    NASA Astrophysics Data System (ADS)

    Hell, Natalie; Brown, Gregory V.; Beiersdorfer, Peter; Boyce, Kevin R.; Grinberg, Victoria; Kelley, Richard L.; Kilbourne, Caroline; Leutenegger, Maurice A.; Porter, Frederick Scott; Wilms, Jörn

    2016-06-01

    We have measured the absolute X-ray emission cross sections of K-shell transitions in highly charged L- and K-shell Fe ions using the LLNL EBIT-I electron beam ion trap and the NASA GSFC EBIT Calorimeter Spectrometer (ECS). The cross sections are determined by using the ECS to simultaneously record the spectrum of the bound-bound K-shell transitions and the emission from radiative recombination from trapped Fe ions. The measured spectrum is then brought to an absolute scale by normalizing the measured flux in the radiative recombination features to their theoretical cross sections, which are well known. Once the spectrum is brought to an absolute scale, the cross sections of the K-shell transitions are determined. These measurements are made possible by the ECS, which consists of a 32 channel array, with 14 channels optimized for detecting high energy photons (hν > 10 keV) and 18 channels optimized for detecting low energy photons (hν < 10 keV). The ECS has a large collection area, relatively high energy resolution, and a large bandpass; all properties necessary for this measurement technique to be successful. These data will be used to benchmark cross sections in the atomic reference data bases underlying the plasma modeling codes used to analyze astrophysical spectra, especially those measured by the Soft X-ray Spectrometer calorimeter instrument recently launched on the Hitomi X-ray Observatory.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by NASA grants to LLNL and NASA/GSFC and by ESA under contract No. 4000114313/15/NL/CB.

  1. Absolute Frequency Measurements of the D1 and D2 Transitions in Aatomic Li

    NASA Astrophysics Data System (ADS)

    Sheets, Donal; Almaguer, Jose; Baron, Jacob; Elgee, Peter; Rowan, Michael; Stalnaker, Jason

    2014-05-01

    We present preliminary results from our measurements of the D1 and D2 transitions in Li. The data were obtained from a collimated atomic beam excited by light from an extended cavity diode laser. The frequency of the diode laser was stabilized to an optical frequency comb, providing absolute frequency measurement and control of the excitation laser frequency. These measurements will provide a stringent test of atomic structure calculations and yield information about the nuclear structure. We also discuss plans to extend the technique to other high-lying states in lithium. Funded by the NIST Precision Measurements Grant and NSF Award #1305591.

  2. Absolute wavelength measurement of the Lyman-{alpha} transitions of hydrogenic Mg{sup 11+}

    SciTech Connect

    Hoelzer, G.; Foerster, E.; Kloepfel, D.; Beiersdorfer, P.; Brown, G.V.; Crespo Lopez-Urrutia, J.R.; Widmann, K.

    1998-02-01

    The wavelengths of the 1s{sub 1/2}-2p{sub 1/2} and 1s{sub 1/2}-2p{sub 3/2} Lyman-{alpha} transitions have been measured in hydrogenic Mg{sup 11+} with an accuracy as high as 24 ppm. The measurement was carried out on an electron-beam ion trap and utilized a quasimonolithic crystal setup absolutely calibrated relative to optical standards. The resulting values for the two transitions were 0.84250{plus_minus}0.00004 and 0.84190{plus_minus}0.00002nm, respectively. The measurement confirms calculations of the 1s-2p wavelengths and tests the size of the 1s Lamb shift to within 13{percent}. {copyright} {ital 1998} {ital The American Physical Society}

  3. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    NASA Astrophysics Data System (ADS)

    Rajput, M. U.; Ali, N.; Hussain, S.; Mujahid, S. A.; MacMahon, D.

    2012-04-01

    The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  4. Convective-to-absolute instability transition in a viscoelastic capillary jet subject to unrelaxed axial elastic tension.

    PubMed

    Mohamed, A Said; Herrada, M A; Gañán-Calvo, A M; Montanero, J M

    2015-08-01

    The convective-to-absolute instability transition in an Oldroyd-B capillary jet subject to unrelaxed axial stress is examined theoretically. There is a critical Weber number below which the jet is absolutely unstable under axisymmetric perturbations. We analyze the dependence of this critical parameter with respect to the Reynolds and Deborah numbers, as well as the unrelaxed axial stress. For small Deborah numbers, the unrelaxed stress destabilizes the viscoelastic jet, increasing the critical Weber number for which the convective-to-absolute instability transition takes place. If the Deborah number takes higher values, then the transitional Weber number decreases as the unrelaxed stress increases until two solution branches cross each other. The dominant branch for large axial stress leads to a threshold of this quantity above which the viscoelastic jet becomes absolutely unstable independently of the Weber number. The threshold depends on neither the Reynolds nor the Deborah number for sufficiently large values of these parameters. PMID:26382502

  5. Convective-to-absolute instability transition in a viscoelastic capillary jet subject to unrelaxed axial elastic tension

    NASA Astrophysics Data System (ADS)

    Mohamed, A. Said; Herrada, M. A.; Gañán-Calvo, A. M.; Montanero, J. M.

    2015-08-01

    The convective-to-absolute instability transition in an Oldroyd-B capillary jet subject to unrelaxed axial stress is examined theoretically. There is a critical Weber number below which the jet is absolutely unstable under axisymmetric perturbations. We analyze the dependence of this critical parameter with respect to the Reynolds and Deborah numbers, as well as the unrelaxed axial stress. For small Deborah numbers, the unrelaxed stress destabilizes the viscoelastic jet, increasing the critical Weber number for which the convective-to-absolute instability transition takes place. If the Deborah number takes higher values, then the transitional Weber number decreases as the unrelaxed stress increases until two solution branches cross each other. The dominant branch for large axial stress leads to a threshold of this quantity above which the viscoelastic jet becomes absolutely unstable independently of the Weber number. The threshold depends on neither the Reynolds nor the Deborah number for sufficiently large values of these parameters.

  6. Radiative transition probabilities in the O-like sequence

    NASA Astrophysics Data System (ADS)

    Landi, E.

    2005-04-01

    In the present work a complete set of radiative transition rates is calculated for all for the O-like ions with Z=11{-}30. Energy levels, oscillator strengths and A values are computed for all transitions within the n=2 complex and are compared with previous calculations, where available. Calculations are carried out using the Superstructure code. The present work provides for the first time a self-consistent, complete set of A values necessary for the calculation of line emissivities and synthetic spectra for all the ions considered, filling several gaps in the existing literature. The present data are especially suited for the analysis of spectral lines emitted by the less-abundant elements in the universe, for which few if any data were available in the literature.

  7. Transition Probabilities And Chiral Symmetry In 134Pr

    SciTech Connect

    Tonev, D.; De Angelis, G.; Gadea, A.; Axiotis, M.; Marginean, N.; Martines, T.; Napoli, D.R.; Prete, G.; Behera, B.R.; Rusu, C.; Petkov, P.; Dewald, A.; Pejovic, P.; Fitzler, A.; Moeller, O.; Zell, K.O.; Balabanski, D.; Bednarczyk, P.; Camera, F.; Paleni, A.

    2005-04-05

    Lifetime measurements in 134Pr were performed by means of the Recoil distance Doppler-shift and Doppler-shift attenuation methods using the multidetector array EUROBALL, in conjunction with the inner BGO ball. The derived B(E2) transition strengths within the two bands candidates for chiral partners behave differently with increasing spin while the corresponding B(M1) values have a similar behaviour within the experimental uncertainties.

  8. Transition probability functions for applications of inelastic electron scattering.

    PubMed

    Löffler, Stefan; Schattschneider, Peter

    2012-09-01

    In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709

  9. Oscillator strengths and transition probabilities for allowed and forbidden transitions in Fe XIX

    SciTech Connect

    Nahar, Sultana N.

    2011-07-15

    An extensive set of oscillator strengths, line strengths, and radiative decay rates for the allowed and forbidden transitions in Fe XIX is presented. They correspond to 1626 fine structure levels of total angular momenta 0{<=}J{<=}8 of even and odd parities with 2{<=}n{<=}10, 0{<=}l{<=}9, 0{<=}L{<=}10, and (2S+1)=1, 3, 5. In contrast, the compiled table of the National Institute for Standards and Technology (NIST) lists only 63 observed levels. A total of 289,291 electric dipole allowed transitions are presented. They were obtained in the close coupling approximation using the relativistic Breit-Pauli R-matrix method. The wavefunction expansion included 15 levels of the configurations 2s{sup 2}2p{sup 3}, 2s2p{sup 4}, and 2p{sup 5} of the Fe XX core. The calculated fine structure levels are assigned with spectroscopic identifications using quantum defect analysis. Comparison with the observed energies shows very good agreement, the largest difference being less than 4%. The transitions also compare well with the compiled data by NIST and recent calculations. The forbidden transitions of the electric quadrupole and octupole, and magnetic dipole and quadrupole, type are presented for the 379 levels of the configurations 2s{sup 2}2p{sup 4}, 2s2p{sup 5}, 2p{sup 6}, 2s{sup 2}2p{sup 3}3s, 2s{sup 2}2p{sup 3}3p, 2s{sup 2}2p{sup 3}3d, 2s{sup 2}2p{sup 3}4s, 2s{sup 2}2p{sup 3}4p, 2s{sup 2}2p{sup 3}4d, 2s{sup 2}2p{sup 3}4f, 2s2p{sup 4}3s, 2s2p{sup 4}3p, 2s2p{sup 4}3d, 2s2p{sup 4}4s, 2s2p{sup 4}4p, and 2s{sup 2}2p{sup 2}3s{sup 2} of Fe XIX. They correspond to a total of 66,619 transitions. These results have been obtained from relativistic Breit-Pauli atomic structure calculations using the program SUPERSTRUCTURE. The forbidden transition probabilities show very good agreement with those compiled by NIST. - Highlights: {yields} Presents the most complete (n up to 10) set of transitions for Fe XIX. {yields} Considers both allowed and forbidden transitions. {yields} Large number

  10. Exact transition probabilities in a 6-state Landau-Zener system with path interference

    NASA Astrophysics Data System (ADS)

    Sinitsyn, N. A.

    2015-05-01

    We identify a nontrivial multistate Landau-Zener (LZ) model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. In the semiclassical picture, this model features the possibility of interference of different trajectories that connect the same initial and final states. Hence, transition probabilities are generally not described by the incoherent successive application of the LZ formula. We discuss reasons for integrability of this system and provide numerical tests of the suggested expression for the transition probability matrix.

  11. Are Einstein's transition probabilities for spontaneous emission constant in plasmas?

    NASA Technical Reports Server (NTRS)

    Griem, H. R.; Huang, Y. W.; Wang, J.-S.; Moreno, J. C.

    1991-01-01

    An investigation is conducted with a ruby laser to experimentally confirm the quenching of spontaneous emission coefficients and propose a mechanism for the phenomenon. Results of previous experiments are examined to determine the consistency and validity of interpretations of the spontaneous emissions. For the C IV 3s-3p and 2s-3p transitions, the line-intensity ratios are found to be dependent on the separation of the laser from the target. Density gradients and Stark broadening are proposed to interpret the results in a way that does not invalidate the Einstein A values. The interpretation is extended to C III and N V, both of which demonstrate similar changes in A values in previous experiments. The apparent quenching of Ar II by photon collisions is explained by Rabi oscillations and power broadening in the argon-ion laser cavity. It is concluded that the changes in A values cannot result from dense plasma effects.

  12. Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques.

    PubMed

    Cygan, A; Wójtewicz, S; Kowzan, G; Zaborowski, M; Wcisło, P; Nawrocki, J; Krehlik, P; Śliwczyński, Ł; Lipiński, M; Masłowski, P; Ciuryło, R; Lisak, D

    2016-06-01

    Absolute frequencies of unperturbed (12)C(16)O transitions from the near-infrared (3-0) band were measured with uncertainties five-fold lower than previously available data. The frequency axis of spectra was linked to the primary frequency standard. Three different cavity enhanced absorption and dispersion spectroscopic methods and various approaches to data analysis were used to estimate potential systematic instrumental errors. Except for a well established frequency-stabilized cavity ring-down spectroscopy, we applied the cavity mode-width spectroscopy and the one-dimensional cavity mode-dispersion spectroscopy for measurement of absorption and dispersion spectra, respectively. We demonstrated the highest quality of the dispersion line shape measured in optical spectroscopy so far. We obtained line positions of the Doppler-broadened R24 and R28 transitions with relative uncertainties at the level of 10(-10). The pressure shifting coefficients were measured and the influence of the line asymmetry on unperturbed line positions was analyzed. Our dispersion spectra are the first demonstration of molecular spectroscopy with both axes of the spectra directly linked to the primary frequency standard, which is particularly desirable for the future reference-grade measurements of molecular spectra. PMID:27276950

  13. Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Cygan, A.; Wójtewicz, S.; Kowzan, G.; Zaborowski, M.; Wcisło, P.; Nawrocki, J.; Krehlik, P.; Śliwczyński, Ł.; Lipiński, M.; Masłowski, P.; Ciuryło, R.; Lisak, D.

    2016-06-01

    Absolute frequencies of unperturbed 12C16O transitions from the near-infrared (3-0) band were measured with uncertainties five-fold lower than previously available data. The frequency axis of spectra was linked to the primary frequency standard. Three different cavity enhanced absorption and dispersion spectroscopic methods and various approaches to data analysis were used to estimate potential systematic instrumental errors. Except for a well established frequency-stabilized cavity ring-down spectroscopy, we applied the cavity mode-width spectroscopy and the one-dimensional cavity mode-dispersion spectroscopy for measurement of absorption and dispersion spectra, respectively. We demonstrated the highest quality of the dispersion line shape measured in optical spectroscopy so far. We obtained line positions of the Doppler-broadened R24 and R28 transitions with relative uncertainties at the level of 10-10. The pressure shifting coefficients were measured and the influence of the line asymmetry on unperturbed line positions was analyzed. Our dispersion spectra are the first demonstration of molecular spectroscopy with both axes of the spectra directly linked to the primary frequency standard, which is particularly desirable for the future reference-grade measurements of molecular spectra.

  14. ANALYSIS OF BREIT-PAULI TRANSITION PROBABILITIES FOR LINES IN O III

    SciTech Connect

    Fischer, C. Froese; Tachiev, G.; Rubin, R. H.; Rodriguez, M.

    2009-09-20

    Accurate atomic data are essential for understanding the properties of both O III lines produced by the Bowen fluorescence mechanism and [O III] forbidden lines observed in numerous gaseous nebulae. Improved Breit-Pauli transition probabilities have been published for the carbon sequence. Included were revised data for O III. The present paper analyzes the accuracy of the data specifically for O III by comparison with other theory as well as some recent experiments and observations. For the electric dipole transition probabilities, good agreement is found for allowed Bowen fluorescence lines between predictions of intensity ratios with observed data. For forbidden transitions, the Breit-Pauli magnetic dipole transition operator requires corrections that often are neglected. Good agreement is found when these transition probabilities are computed with multiconfiguration Dirac-Hartree-Fock methods.

  15. The Effects of a High-Probability Request Sequencing Technique in Enhancing Transition Behaviors

    ERIC Educational Resources Information Center

    Banda, Devender R.; Kubina, Richard M., Jr.

    2006-01-01

    In this study, an autism support teacher used a high-probability request sequencing technique to help a middle-school student with autism engage in three transition behaviors. High probability request sequencing refers to a procedure in which 2 to 3 preferred questions, highly associated with compliance, are rapidly given before presenting a low…

  16. Radiative transition probabilities and recombination coefficients of the ion C IV.

    NASA Technical Reports Server (NTRS)

    Leibowitz, E. M.

    1972-01-01

    Bound-bound and bound-free radiative transition probabilities, as well as radiative recombination coefficients of the ion C IV, are computed with a semi-empirical polarization potential method. The nonhydrogenic probabilities and coefficients are given for all bound states of the ion up to the principal quantum number n = 7.

  17. VizieR Online Data Catalog: KOI transit probabilities of multi-planet syst. (Brakensiek+, 2016)

    NASA Astrophysics Data System (ADS)

    Brakensiek, J.; Ragozzine, D.

    2016-06-01

    Using CORBITS, we computed the transit probabilities of all the KOIs with at least three candidate or confirmed transiting planets and report the results in Table 2 for a variety of inclination distributions. See section 4.6. (1 data file).

  18. Tracking move-stop-move targets with state-dependent mode transition probabilities

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Bar-Shalom, Yaakov

    2009-08-01

    This paper presents a novel method for tracking ground moving targets with a GMTI radar. To avoid detection by the GMTI radar, targets can deliberately stop for some time before moving again. The GMTI radar does not detect a target when the radial velocity (along the line-of-sight from the sensor) falls below a certain minimum detectable velocity (MDV). We develop a new approach by using state-dependent mode transition probabilities to track move-stop-move targets. Since in a real scenario, the maximum deceleration is always limited, a target can not switch to the stopped-target model from a high speed. Therefore, with the use of the stopped-target model, the Markov chain of the mode switching has jump probabilities that depend on the target's kinematic state. A mode transition matrix with zero jump probabilities to the stopped-target mode is used when the speed is above a certain "stopping" limit (above which the target cannot stop in one sampling interval, designated as "fast stage") and another transition matrix with non-zero jump probabilities to the stopped-target mode is used when the speed is below this limit (designated as "slow stage"). The stage probabilities are calculated using the kinematic state statistics from the IMM estimator and then used to combine the state-dependent mode transition probabilities (SDP) in the two different transition matrices. The experimental results show that the proposed algorithm outperforms previous methods.

  19. Calculation of rotational transition probabilities in molecular collisions - Application to N2 + N2

    NASA Technical Reports Server (NTRS)

    Itikawa, Y.

    1975-01-01

    A computational method is proposed to obtain rotational transition probabilities in collisions between two diatomic molecules. The potential method of Rabitz and an exponential approximation are used to solve the semiclassical coupled equations without invoking any perturbational technique. The collision trajectory is determined in the classical modified-wave-number approximation. The method can treat systems involving strong interactions and provide probabilities for transitions even with a multiquantum jump. A simultaneous transition in the rotational states of both molecules, i.e., the rotational-rotational energy transfer, is taken into account. An application to the system N2 + N2 is presented.

  20. Semiclassical vibration-rotation transition probabilities for motion in molecular state averaged potentials.

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1971-01-01

    Collision-induced vibration-rotation transition probabilities are calculated from a semiclassical three-dimensional model, in which the collision trajectory is determined by the classical motion in the interaction potential that is averaged over the molecular rotational state, and compared with those for which the motion is governed by a spherically averaged potential. For molecules that are in highly excited rotational states, thus dominating the vibrational relaxation rate at high temperature, it is found that the transition probability for rotational state averaging is smaller than that for spherical averaging. For typical collisions, the transition cross section is decreased by a factor of about 1.5 to 2.

  1. Electric quadrupole transition probabilities and line strengths of Ti{sup 11+}

    SciTech Connect

    Gökçe, Yasin; Çelik, Gültekin; Yıldız, Murat

    2014-07-15

    Electric quadrupole transition probabilities and line strengths have been calculated using the weakest bound electron potential model for sodium-like titanium, considering many transition arrays. We employed numerical Coulomb approximation and non-relativistic Hartree–Fock wavefunctions for the expectation values of radii in determination of parameters of the model. The necessary energy values have been taken from experimental data in the literature. The calculated electric quadrupole line strengths have been compared with available data in the literature and good agreement has been obtained. Moreover, some electric quadrupole transition probability and line strength values not existing in the literature for some highly excited levels have been obtained using this method.

  2. Efficient Geometric Probabilities of Multi-Transiting Exoplanetary Systems from CORBITS

    NASA Astrophysics Data System (ADS)

    Brakensiek, Joshua; Ragozzine, Darin

    2016-04-01

    NASA’s Kepler Space Telescope has successfully discovered thousands of exoplanet candidates using the transit method, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, it is essential to account for the unique geometric probabilities of detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods, we have constructed an efficient, semi-analytical algorithm called the Computed Occurrence of Revolving Bodies for the Investigation of Transiting Systems (CORBITS), which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets can be observed to transit. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere. The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparisons with Monte Carlo simulations. We use CORBITS to show that the present solar system would only show a maximum of three transiting planets, but that this varies over time due to dynamical evolution. We also used CORBITS to geometrically debias the period ratio and mutual Hill sphere distributions of Kepler's multi-transiting planet candidates, which results in shifting these distributions toward slightly larger values. In an Appendix, we present additional semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability that two planets will transit each other (planet–planet occultation, relevant to transiting circumbinary planets) and the probability that this transit occurs simultaneously as they transit their star. The CORBITS algorithms and several worked examples are publicly available.

  3. Reliability analysis of redundant systems. [a method to compute transition probabilities

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y.

    1974-01-01

    A method is proposed to compute the transition probability (the probability of partial or total failure) of parallel redundant system. The effect of geometry of the system, the direction of load, and the degree of redundancy on the probability of complete survival of parachute-like system are also studied. The results show that the probability of complete survival of three-member parachute-like system is very sensitive to the variation of horizontal angle of the load. However, it becomes very insignificant as the degree of redundancy increases.

  4. Transition probability, dynamic regimes, and the critical point of financial crisis

    NASA Astrophysics Data System (ADS)

    Tang, Yinan; Chen, Ping

    2015-07-01

    An empirical and theoretical analysis of financial crises is conducted based on statistical mechanics in non-equilibrium physics. The transition probability provides a new tool for diagnosing a changing market. Both calm and turbulent markets can be described by the birth-death process for price movements driven by identical agents. The transition probability in a time window can be estimated from stock market indexes. Positive and negative feedback trading behaviors can be revealed by the upper and lower curves in transition probability. Three dynamic regimes are discovered from two time periods including linear, quasi-linear, and nonlinear patterns. There is a clear link between liberalization policy and market nonlinearity. Numerical estimation of a market turning point is close to the historical event of the US 2008 financial crisis.

  5. Tables of stark level transition probabilities and branching ratios in hydrogen-like atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The transition probabilities which are given in terms of n prime k prime and n k are tabulated. No additional summing or averaging is necessary. The electric quantum number k plays the role of the angular momentum quantum number l in the presence of an electric field. The branching ratios between stark levels are also tabulated. Necessary formulas for the transition probabilities and branching ratios are given. Symmetries are discussed and selection rules are given. Some disagreements for some branching ratios are found between the present calculation and the measurement of Mark and Wierl. The transition probability multiplied by the statistical weight of the initial state is called the static intensity J sub S, while the branching ratios are called the dynamic intensity J sub D.

  6. Analysis of a semiclassical model for rotational transition probabilities. [in highly nonequilibrium flow of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.; Yoshikawa, K. K.

    1975-01-01

    A semiclassical model proposed by Pearson and Hansen (1974) for computing collision-induced transition probabilities in diatomic molecules is tested by the direct-simulation Monte Carlo method. Specifically, this model is described by point centers of repulsion for collision dynamics, and the resulting classical trajectories are used in conjunction with the Schroedinger equation for a rigid-rotator harmonic oscillator to compute the rotational energy transition probabilities necessary to evaluate the rotation-translation exchange phenomena. It is assumed that a single, average energy spacing exists between the initial state and possible final states for a given collision.

  7. H∞ filtering of Markov jump linear systems with general transition probabilities and output quantization.

    PubMed

    Shen, Mouquan; Park, Ju H

    2016-07-01

    This paper addresses the H∞ filtering of continuous Markov jump linear systems with general transition probabilities and output quantization. S-procedure is employed to handle the adverse influence of the quantization and a new approach is developed to conquer the nonlinearity induced by uncertain and unknown transition probabilities. Then, sufficient conditions are presented to ensure the filtering error system to be stochastically stable with the prescribed performance requirement. Without specified structure imposed on introduced slack variables, a flexible filter design method is established in terms of linear matrix inequalities. The effectiveness of the proposed method is validated by a numerical example. PMID:27129765

  8. Learning in reverse: 8-month-old infants track backward transitional probabilities

    PubMed Central

    Pelucchi, Bruna; Hay, Jessica F.; Saffran, Jenny R.

    2009-01-01

    Numerous recent studies suggest that human learners, including both infants and adults, readily track sequential statistics computed between adjacent elements. One such statistic, transitional probability, is typically calculated as the likelihood that one element predicts another. However, little is known about whether listeners are sensitive to the directionality of this computation. To address this issue, we tested 8-month-old infants in a word segmentation task, using fluent speech drawn from an unfamiliar natural language. Critically, test items were distinguished solely by their backward transitional probabilities. The results provide the first evidence that infants track backward statistics in fluent speech. PMID:19717144

  9. Relativistic M-subshell radiationless transition probabilities and energies for Zn, Cd and Hg

    SciTech Connect

    Sampaio, J.M.; Parente, F.; Indelicato, P.; Marques, J.P.

    2014-09-15

    Theoretical calculations of radiationless transition probabilities and energies for M-subshell vacancies in Zn, Cd, and Hg are tabulated using the Dirac–Fock method. Transition probabilities between an initial vacancy state and a final two-vacancies state are presented for each initial and final atomic angular momentum quantum number. Calculations were performed in the single configuration approach with the Breit interaction, self-energy and (Uehling) vacuum polarization corrections included in the self-consistent method. Higher-order retardation corrections and QED effects were also included as perturbations.

  10. Corrections to vibrational transition probabilities calculated from a three-dimensional model.

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1972-01-01

    Corrections to the collision-induced vibration transition probability calculated by Hansen and Pearson from a three-dimensional semiclassical model are examined. These corrections come from the retention of higher order terms in the expansion of the interaction potential and the use of the actual value of the deflection angle in the calculation of the transition probability. It is found that the contribution to the transition cross section from previously neglected potential terms can be significant for short range potentials and for the large relative collision velocities encountered at high temperatures. The correction to the transition cross section obtained from the use of actual deflection angles will not be appreciable unless the change in the rotational quantum number is large.

  11. Transition probabilities and Franck-Condon factors for the second negative band system of O2(+)

    NASA Technical Reports Server (NTRS)

    Fox, J. L.; Dalgarno, A.

    1990-01-01

    Transition probabilities for the second negative band system of O2(+) are computed using the dipole transition moment presented by Wetmore et al. (1984). Vibrational levels v double prime = 0 - 54 of the X2Pi(g) ground state and v prime = - 33 of the excited A2Pi(u) state are included. Franck-Condon factors for ionization-excitation of O2 to O2(+) are also presented.

  12. Transition probability of the 5971-A line in neutral uranium from collision-induced fluorescence spectroscopy

    SciTech Connect

    Gagne, J.M.; Mongeau, B.; Demers, Y.; Pianarosa, P.

    1981-09-01

    From collision-induced fluorescence spectroscopy measurements, we have determined the transition probability Aof the 5971-A transition in neutral uranium. Our value, A/sub 5971/ = (5.9 +- 1.8) x 10/sup 5/ sec/sup -1/, is, within experimental error, in good agreement with the previous determination of Corliss, A/sub 5971/ = (7.3 +- 3.0) x 10/sup 5/ sec/sup -1/ (J. Res. Nat. Bur. Stand. Sect. A 80,1 (1976)).

  13. Orientational invariance of the rotational transition probability in the sudden approximation. [atom-molecule collisions

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    Semiclassical collisions of an atom with a rigid-rotor molecule are examined in the sudden approximation. The rotational transition probability is shown to be invariant with respect to the choice of orientation for the molecular coordinate system; this fact contradicts recently reported results of a computer analysis. The present analysis may lead to an improved interpretation of recent molecular beam measurements.

  14. A Computational Model of Word Segmentation from Continuous Speech Using Transitional Probabilities of Atomic Acoustic Events

    ERIC Educational Resources Information Center

    Rasanen, Okko

    2011-01-01

    Word segmentation from continuous speech is a difficult task that is faced by human infants when they start to learn their native language. Several studies indicate that infants might use several different cues to solve this problem, including intonation, linguistic stress, and transitional probabilities between subsequent speech sounds. In this…

  15. Effects of Contextual Predictability and Transitional Probability on Eye Movements During Reading

    ERIC Educational Resources Information Center

    Frisson, Steven; Rayner, Keith; Pickering, Martin J.

    2005-01-01

    In 2 eye-movement experiments, the authors tested whether transitional probability (the statistical likelihood that a word precedes or follows another word) affects reading times and whether this occurs independently from contextual predictability effects. Experiment 1 showed early effects of predictability, replicating S. A. McDonald and R. C.…

  16. Implicit Segmentation of a Stream of Syllables Based on Transitional Probabilities: An MEG Study

    ERIC Educational Resources Information Center

    Teinonen, Tuomas; Huotilainen, Minna

    2012-01-01

    Statistical segmentation of continuous speech, i.e., the ability to utilise transitional probabilities between syllables in order to detect word boundaries, is reflected in the brain's auditory event-related potentials (ERPs). The N1 and N400 ERP components are typically enhanced for word onsets compared to random syllables during active…

  17. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess

  18. Calculation of transition probabilities and ac Stark shifts in two-photon laser transitions of antiprotonic helium

    SciTech Connect

    Hori, Masaki; Korobov, Vladimir I.

    2010-06-15

    Numerical ab initio variational calculations of the transition probabilities and ac Stark shifts in two-photon transitions of antiprotonic helium atoms driven by two counter-propagating laser beams are presented. We found that sub-Doppler spectroscopy is, in principle, possible by exciting transitions of the type (n,L){yields}(n-2,L-2) between antiprotonic states of principal and angular momentum quantum numbers n{approx}L-1{approx}35, first by using highly monochromatic, nanosecond laser beams of intensities 10{sup 4}-10{sup 5} W/cm{sup 2}, and then by tuning the virtual intermediate state close (e.g., within 10-20 GHz) to the real state (n-1,L-1) to enhance the nonlinear transition probability. We expect that ac Stark shifts of a few MHz or more will become an important source of systematic error at fractional precisions of better than a few parts in 10{sup 9}. These shifts can, in principle, be minimized and even canceled by selecting an optimum combination of laser intensities and frequencies. We simulated the resonance profiles of some two-photon transitions in the regions n=30-40 of the p{sup 4}He{sup +} and p{sup 3}He{sup +} isotopes to find the best conditions that would allow this.

  19. Estimating transition probabilities for stage-based population projection matrices using capture-recapture data

    USGS Publications Warehouse

    Nichols, J.D.; Sauer, J.R.; Pollock, K.H.; Hestbeck, J.B.

    1992-01-01

    In stage-based demography, animals are often categorized into size (or mass) classes, and size-based probabilities of surviving and changing mass classes must be estimated before demographic analyses can be conducted. In this paper, we develop two procedures for the estimation of mass transition probabilities from capture-recapture data. The first approach uses a multistate capture-recapture model that is parameterized directly with the transition probabilities of interest. Maximum likelihood estimates are then obtained numerically using program SURVIV. The second approach involves a modification of Pollock's robust design. Estimation proceeds by conditioning on animals caught in a particualr class at time i, and then using closed models to estimate the number of these that are alive in other classes at i + 1. Both methods are illustrated by application to meadow vole, Microtus pennsylvanicus, capture-recapture data. The two methods produced reasonable estimates that were similar. Advantages of these two approaches include the directness of estimation, the absence of need for restrictive assumptions about the independence of survival and growth, the testability of assumptions, and the testability of related hypotheses of ecological interest (e.g., the hypothesis of temporal variation in transition probabilities).

  20. Critical inclination for absolute/convective instability transition in inverted falling films

    NASA Astrophysics Data System (ADS)

    Scheid, Benoit; Kofman, Nicolas; Rohlfs, Wilko

    2016-04-01

    Liquid films flowing down the underside of inclined plates are subject to the interaction between the hydrodynamic and the Rayleigh-Taylor (R-T) instabilities causing a patterned and wavy topology at the free surface. The R-T instability results from the denser liquid film being located above a less dense ambient gas, and deforming into an array of droplets, which eventually drip if no saturation mechanism arises. Such saturation mechanism can actually be provided by a fluid motion along the inclined plate. Using a weighted integral boundary layer model, this study examines the critical inclination angle, measured from the vertical, that separates regimes of absolute and convective instability. If the instability is of absolute type, growing perturbations stay localized in space potentially leading to dripping. If the instability is of convective type, growing perturbations move downwards the inclined plate, forming waves and eventually, but not necessarily, droplets. Remarkably, there is a minimum value of the critical angle below which a regime of absolute instability cannot exist. This minimum angle decreases with viscosity: it is about 85° for water, about 70° for silicon oil 20 times more viscous than water, and reaches a limiting value for liquid with a viscosity larger than about 1000 times the one of water. It results that for any fluid, absolute dripping can only exist for inclination angle (taken from the vertical) larger than 57.4°.

  1. Theoretical Study of Energy Levels and Transition Probabilities of Boron Atom

    NASA Astrophysics Data System (ADS)

    Tian Yi, Zhang; Neng Wu, Zheng

    2009-08-01

    Full Text PDF Though the electrons configuration for boron atom is simple and boron atom has long been of interest for many researchers, the theoretical studies for properties of BI are not systematic, there are only few results reported on energy levels of high excited states of boron, and transition measurements are generally restricted to transitions involving ground states and low excited states without considering fine structure effects, provided only multiplet results, values for transitions between high excited states are seldom performed. In this article, by using the scheme of the weakest bound electron potential model theory calculations for energy levels of five series are performed and with the same method we give the transition probabilities between excited states with considering fine structure effects. The comprehensive set of calculations attempted in this paper could be of some value to workers in the field because of the lack of published calculations for the BI systems. The perturbations coming from foreign perturbers are taken into account in studying the energy levels. Good agreement between our results and the accepted values taken from NIST has been obtained. We also reported some values of energy levels and transition probabilities not existing on the NIST data bases.

  2. Restoring detailed balance in the Landau-Teller probabilities for collision-induced vibrational transitions.

    PubMed

    Nikitin, E E; Troe, J

    2006-05-01

    The general quasi-classical treatment for collision-induced vibrational transitions in diatomic molecules, under near-adiabatic conditions, is used to derive quantum corrections for probabilities, calculated in the external field approximation originally used by Landau and Teller. The quantum corrections are expressed through the Landau-Teller classical collision time. The first-order correction to the classical exponent restores detailed balance for up- and down-transitions and does not depend on the properties of the bath except for its temperature. The limits of applicability of the first-order correction are discussed. PMID:16633688

  3. Effective transition probability for the Faraday effect of lanthanide(III) ion solutions.

    PubMed

    Miyamoto, Kayoko; Isai, Kento; Suwa, Masayori; Watarai, Hitoshi

    2009-05-13

    The Faraday effects of 14 lanthanide(III) ion solutions were systematically analyzed on the basis of the Faraday C term. The effective transition probability, K, which measures the magneto-optical contribution of the 4f(n) --> 4f(n-1)5d transition to the molar Verdet constant, was determined. Linear correlations between K and the square root of the molar magnetic susceptibility of the lanthanide(III) ions, chi(m)(1/2), were obtained. From the observed new regularity, K for promethium(III) was estimated. PMID:19378955

  4. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset

    PubMed Central

    Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502

  5. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset.

    PubMed

    Zhang, Haitao; Chen, Zewei; Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users' privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502

  6. Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities.

    PubMed

    Bogaerts, Louisa; Siegelman, Noam; Frost, Ram

    2016-08-01

    What determines individuals' efficacy in detecting regularities in visual statistical learning? Our theoretical starting point assumes that the variance in performance of statistical learning (SL) can be split into the variance related to efficiency in encoding representations within a modality and the variance related to the relative computational efficiency of detecting the distributional properties of the encoded representations. Using a novel methodology, we dissociated encoding from higher-order learning factors, by independently manipulating exposure duration and transitional probabilities in a stream of visual shapes. Our results show that the encoding of shapes and the retrieving of their transitional probabilities are not independent and additive processes, but interact to jointly determine SL performance. The theoretical implications of these findings for a mechanistic explanation of SL are discussed. PMID:26743060

  7. Some results on the dynamics and transition probabilities for non self-adjoint hamiltonians

    SciTech Connect

    Bagarello, F.

    2015-05-15

    We discuss systematically several possible inequivalent ways to describe the dynamics and the transition probabilities of a quantum system when its hamiltonian is not self-adjoint. In order to simplify the treatment, we mainly restrict our analysis to finite dimensional Hilbert spaces. In particular, we propose some experiments which could discriminate between the various possibilities considered in the paper. An example taken from the literature is discussed in detail.

  8. Some Results on the Analysis of Stochastic Processes with Uncertain Transition Probabilities and Robust Optimal Control

    SciTech Connect

    Keyong Li; Seong-Cheol Kang; I. Ch. Paschalidis

    2007-09-01

    This paper investigates stochastic processes that are modeled by a finite number of states but whose transition probabilities are uncertain and possibly time-varying. The treatment of uncertain transition probabilities is important because there appears to be a disconnection between the practice and theory of stochastic processes due to the difficulty of assigning exact probabilities to real-world events. Also, when the finite-state process comes as a reduced model of one that is more complicated in nature (possibly in a continuous state space), existing results do not facilitate rigorous analysis. Two approaches are introduced here. The first focuses on processes with one terminal state and the properties that affect their convergence rates. When a process is on a complicated graph, the bound of the convergence rate is not trivially related to that of the probabilities of individual transitions. Discovering the connection between the two led us to define two concepts which we call 'progressivity' and 'sortedness', and to a new comparison theorem for stochastic processes. An optimality criterion for robust optimal control also derives from this comparison theorem. In addition, this result is applied to the case of mission-oriented autonomous robot control to produce performance estimate within a control framework that we propose. The second approach is in the MDP frame work. We will introduce our preliminary work on optimistic robust optimization, which aims at finding solutions that guarantee the upper bounds of the accumulative discounted cost with prescribed probabilities. The motivation here is to address the issue that the standard robust optimal solution tends to be overly conservative.

  9. Analytic solution of relaxation in a system with exponential transition probabilities. III. Macroscopic disequilibrium

    NASA Astrophysics Data System (ADS)

    Forst, Wendell

    1984-03-01

    The exponential transition probability, in the version that permits an analytical solution of the relaxation problem, is used to compute a number of macroscopic (bulk) observables for a model system based on multiphoton excitation of SF6 coupled to a rare-gas heat bath. Two extreme cases are considered: Initial excitation as a delta function, or as a Poisson distribution. It turns out that regardless of initial conditions, all macroscopic observables are functions of time, including the relaxation time, so that the system does not undergo simple exponential decay. This is because the first moment of the exponential transition probability does not satisfy the linear ``sum rule.'' The exponential transition probability causes the overall (or bulk) average of energy transferred (<<ΔE>>) to be constrained to a maximum which is independent of the nature and level of initial excitation, thus producing a bottleneck in the macroscopic relaxation process when excitation is sufficiently high. The consequence is that the initially more highly excited system takes longer to reach steady state, with a relaxation time that is initially nearly proportional to initial excitation and which decreases as the system approaches steady state. It is only in the immediate vicinity of steady state that simple exponential relaxation takes place, with the shortest relaxation time. Several consequences of this, particularly the population distribution as a function of time, are illustrated and discussed.

  10. Tables of Transition Probabilities and Branching Ratios for Electric Dipole Transitions Between Arbitrary Levels of Hydrogen-Like Atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    Branching ratios in hydrogen-like atoms due to electric-dipole transitions are tabulated for the initial principal and angular momentum quantum number n, lambda, and final principal and angular momentum quantum numbers n, lambda. In table 1, transition probabilities are given for transitions n, lambda, yields n, where sums have been made with respect to lambda. In this table, 2 or = n' or = 10, o or = lambda' or = n'-1, and 1 or = n or = n'-1. In addition, averages with respect to lambda' and sums with respect to n, and lifetimes are given. In table 2, branching ratios are given for transitions n' lambda' yields ni, where sums have been made with respect to lambda. In these tables, 2 or = n' or = 10, 0 or = lambda', n'-1, and 1 or = n or = n'-1. Averages with respect to lambda' are also given. In table 3, branching ratios are given for transitions n' lambda' yields in lambda, where 1 or = n or = 5, 0 or = lambda or = n-1, n n' or = 15, and 0 or = lambda' or = n(s), where n(s), is the smaller of the two numbers n'-1 and 6. Averages with respect to lambda' are given.

  11. New Critical Compilations of Atomic Transition Probabilities for Neutral and Singly Ionized Carbon, Nitrogen, and Iron

    NASA Technical Reports Server (NTRS)

    Wiese, Wolfgang L.; Fuhr, J. R.

    2006-01-01

    We have undertaken new critical assessments and tabulations of the transition probabilities of important lines of these spectra. For Fe I and Fe II, we have carried out a complete re-assessment and update, and we have relied almost exclusively on the literature of the last 15 years. Our updates for C I, C II and N I, N II primarily address the persistent lower transitions as well as a greatly expanded number of forbidden lines (M1, M2, and E2). For these transitions, sophisticated multiconfiguration Hartree-Fock (MCHF) calculations have been recently carried out, which have yielded data considerably improved and often appreciably different from our 1996 NIST compilation.

  12. Forbidden transition probabilities for ground terms of ions with p or p5 configurations. [for solar atmosphere

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.

    1976-01-01

    Forbidden transition probabilities are given for ground term transitions of ions in the isoelectronic sequences with outer configurations 2s2 2p (B I), 2p5 (F I), 3s2 3p (Al I), and 3p5 (Cl I). Tables give, for each ion, the ground term interval, the associated wavelength, the quadrupole radial integral, the electric quadrupole transition probability, and the magnetic dipole transition probability. Coronal lines due to some of these ions have been observed, while others are yet to be observed. The tales for the Al I and Cl I sequences include elements up to germanium.

  13. Estimating state-transition probabilities for unobservable states using capture-recapture/resighting data

    USGS Publications Warehouse

    Kendall, W.L.; Nichols, J.D.

    2002-01-01

    Temporary emigration was identified some time ago as causing potential problems in capture-recapture studies, and in the last five years approaches have been developed for dealing with special cases of this general problem. Temporary emigration can be viewed more generally as involving transitions to and from an unobservable state, and frequently the state itself is one of biological interest (e.g., 'nonbreeder'). Development of models that permit estimation of relevant parameters in the presence of an unobservable state requires either extra information (e.g., as supplied by Pollock's robust design) or the following classes of model constraints: reducing the order of Markovian transition probabilities, imposing a degree of determinism on transition probabilities, removing state specificity of survival probabilities, and imposing temporal constancy of parameters. The objective of the work described in this paper is to investigate estimability of model parameters under a variety of models that include an unobservable state. Beginning with a very general model and no extra information, we used numerical methods to systematically investigate the use of ancillary information and constraints to yield models that are useful for estimation. The result is a catalog of models for which estimation is possible. An example analysis of sea turtle capture-recapture data under two different models showed similar point estimates but increased precision for the model that incorporated ancillary data (the robust design) when compared to the model with deterministic transitions only. This comparison and the results of our numerical investigation of model structures lead to design suggestions for capture-recapture studies in the presence of an unobservable state.

  14. Estimation of drought transition probabilities in Sicily making use of exogenous variables

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Brunella; di Mauro, Giuseppe; Cancelliere, Antonino; Rossi, Giuseppe

    2010-05-01

    Drought monitoring and forecasting play a very important role for an effective drought management. A timely monitoring of drought features and/or forecasting of an incoming drought do make possible an effective mitigation of its impacts, more than in the case of other natural disasters (e.g. floods, earthquakes, hurricanes, etc.). An accurate selection of indices, able to monitor the main characteristics of droughts, is essential to help decision makers to implement appropriate preparedness and mitigation measures. Among the several proposed indices for drought monitoring, the Standardized Precipitation Index (SPI) has found widespread use to monitor dry and wet periods of precipitation aggregated at different time scales. Recently, some efforts have been made to analyze the role of SPI for drought forecasting, as well as to estimate transition probabilities between drought classes. In the present work, a model able to estimate transition probabilities from a current SPI drought class or from a current SPI value to future classes, corresponding to droughts of different severities, is presented and extended in order to include information provided by an exogenous variable, such as a large scale climatic index as the North Atlantic Oscillation Index (NAO). The model has been preliminarily applied and tested with reference to SPI series computed on average areal precipitation in Sicily island, Italy, making use of NAO as exogenous variable. Results seem to indicate that winter drought transition probabilities in Sicily are generally affected by NAO index. Furthermore, the statistical significance of such influence has been tested by means of a Montecarlo analysis, which indicates that the effect of NAO on drought transition in Sicily should be considered significant.

  15. Reconstructing the Most Probable Folding Transition Path from Replica Exchange Molecular Dynamics Simulations.

    PubMed

    Jimenez-Cruz, Camilo Andres; Garcia, Angel E

    2013-08-13

    The characterization of transition pathways between long-lived states, and the identification of the corresponding transition state ensembles are useful tools in the study of rare events such as protein folding. In this work we demonstrate how the most probable transition path between metastable states can be recovered from replica exchange molecular dynamic simulation data by using the dynamic string method. The local drift vector in collective variables is determined via short continuous trajectories between replica exchanges at a given temperature, and points along the string are updated based on this drift vector to produce reaction pathways between the folded and unfolded state. The method is applied to a designed beta hairpin-forming peptide to obtain information on the folding mechanism and transition state using different sets of collective variables at various temperatures. Two main folding pathways differing in the order of events are found and discussed, and the relative free energy differences for each path estimated. Finally, the structures near the transition state are found and described. PMID:26584126

  16. Assessing Uncertainties of Theoretical Atomic Transition Probabilities with Monte Carlo Random Trials

    PubMed Central

    Kramida, Alexander

    2016-01-01

    This paper suggests a method of evaluation of uncertainties in calculated transition probabilities by randomly varying parameters of an atomic code and comparing the results. A control code has been written to randomly vary the input parameters with a normal statistical distribution around initial values with a certain standard deviation. For this particular implementation, Cowan’s suite of atomic codes (R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley, CA: University of California Press, 1981) was used to calculate radiative rates of magnetic-dipole and electric-quadrupole transitions within the ground configuration of titanium-like iron, Fe V. The Slater parameters used in the calculations were adjusted to fit experimental energy levels with Cowan’s least-squares fitting program, RCE. The standard deviations of the fitted parameters were used as input of the control code providing the distribution widths of random trials for these parameters. Propagation of errors through the matrix diagonalization and summation of basis state expansions leads to significant variations in the resulting transition rates. These variations vastly differ in their magnitude for different transitions, depending on their sensitivity to errors in parameters. With this method, the rate uncertainty can be individually assessed for each calculated transition. PMID:27274981

  17. K-LL Auger transition probabilities for elements with low and intermediate atomic numbers

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.

    1973-01-01

    Radiationless K-LL transition probabilities have been calculated nonrelativistically in j-j coupling and in intermediate coupling, without and with configuration interaction, for elements with atomic numbers from 13 to 47. The system is treated as a coupled two-hole configuration. The single-particle radial wave functions required in the calculation of radial matrix elements, and in the calculation of mixing coefficients in the intermediate-coupling scheme, were obtained from Green's atomic independent-particle model. Comparison with previous theoretical work and with experimental data is made. The effects of intermediate coupling, configuration interaction, and relativity are noted.

  18. Radiative transition probabilities for all vibrational levels in the X 1Sigma(+) state of HF

    NASA Technical Reports Server (NTRS)

    Zemke, Warren T.; Stwalley, William C.; Langhoff, Stephen R.; Valderrama, Giuseppe L.; Berry, Michael J.

    1991-01-01

    Recent analyses have led to an experimentally-based potential energy curve for the ground state of HF which includes nonadiabatic corrections and which joins smoothly to the long-range potential at an accurately determined dissociation limit. Using this potential curve and a new ab initio dipole moment function, accurate radiative transition probabilities among all vibrational levels of the ground state of HF have been calculated for selected rotational quantum numbers. Comparisons of Einstein A spontaneous emission coefficients, dipole moment absorption matrix elements, and Herman-Wallis factors for absorption bands are presented.

  19. Measurement of absolute E2 transition strengths in {sup 176}W: Signatures for a rapid shape change

    SciTech Connect

    Fransen, Ch.; Dewald, A.; Friessner, G.; Hackstein, M.; Jolie, J.; Pissulla, T.; Rother, W.; Zell, K.-O.; Moeller, O.

    2011-10-28

    The X(5) symmetry describes nuclei at the critical point of the shape phase transition from axially deformed rotor nuclei to spherical vibrators. {sup 150}Nd, {sup 152}Sm, and {sup 154}Gd were the first nuclei where the predicted characteristics of the X(5) symmetry were observed. Later it was shown that also {sup 176,178,180}Os can be successfully described with the X(5) symmetry.In the close vicinity of shape phase transitions one expects strongly changing nuclear shapes. In the X(5) region around A = 150 this was observed for nuclei with different neutron numbers, whereas in the X(5) region around A = 180 this is to be expected for different proton numbers. The aim of the work presented here is the confirmation of a rapid shape change for nuclei close to {sup 178}Os. Besides the knowledge on the level scheme of the nuclei of interest, especially absolute E2 transition strengths are crucial for the interpretation of nuclear structure. Prolate deformation is expected for {sup 176}W. Thus we performed a recoil distance Doppler shift (RDDS) measurement on {sup 176}W to measure E2 transition strengths from level lifetimes. The experiment was performed at the Cologne FN TANDEM accelerator with the Cologne coincidence plunger with the reaction {sup 169}Dy({sup 16}O,4n){sup 176}W and a beam energy of 80 MeV. We will present our experimental results and relate them to data on the neighboring nuclei {sup 178}Os and {sup 182}Pt. The results will be discussed in the framework of nuclear shape transitions in this mass region and compared to calculations with both the Interacting Boson Model (IBM) and the GCM.

  20. Theoretical transition probabilities, oscillator strengths, and radiative lifetimes of levels in Pb IV

    SciTech Connect

    Alonso-Medina, A.; Colon, C.; Porcher, P.

    2011-01-15

    Transition probabilities and oscillator strengths of 176 spectral lines with astrophysical interest arising from 5d{sup 10}ns (n = 7,8), 5d{sup 10}np (n = 6,7), 5d{sup 10}nd (n = 6,7), 5d{sup 10}5f, 5d{sup 10}5g, 5d{sup 10}nh (n = 6,7,8), 5d{sup 9}6s{sup 2}, and 5d{sup 9}6s6p configurations, and radiative lifetimes for 43 levels of Pb IV, have been calculated. These values were obtained in intermediate coupling (IC) and using relativistic Hartree-Fock calculations including core-polarization effects. For the IC calculations, we use the standard method of least-square fitting from experimental energy levels by means of the Cowan computer code. The inclusion in these calculations of the 5d{sup 10}7p and 5d{sup 10}5f configurations has facilitated a complete assignment of the energy levels in the Pb IV. Transition probabilities, oscillator strengths, and radiative lifetimes obtained are generally in good agreement with the experimental data.

  1. OSSOS. II. A Sharp Transition in the Absolute Magnitude Distribution of the Kuiper Belt’s Scattering Population

    NASA Astrophysics Data System (ADS)

    Shankman, C.; Kavelaars, JJ.; Gladman, B. J.; Alexandersen, M.; Kaib, N.; Petit, J.-M.; Bannister, M. T.; Chen, Y.-T.; Gwyn, S.; Jakubik, M.; Volk, K.

    2016-02-01

    We measure the absolute magnitude, H, distribution, dN(H) ∝ 10αH, of the scattering Trans-Neptunian Objects (TNOs) as a proxy for their size-frequency distribution. We show that the H-distribution of the scattering TNOs is not consistent with a single-slope distribution, but must transition around Hg ˜ 9 to either a knee with a shallow slope or to a divot, which is a differential drop followed by second exponential distribution. Our analysis is based on a sample of 22 scattering TNOs drawn from three different TNO surveys—the Canada-France Ecliptic Plane Survey, Alexandersen et al., and the Outer Solar System Origins Survey, all of which provide well-characterized detection thresholds—combined with a cosmogonic model for the formation of the scattering TNO population. Our measured absolute magnitude distribution result is independent of the choice of cosmogonic model. Based on our analysis, we estimate that the number of scattering TNOs is (2.4-8.3) × 105 for Hr < 12. A divot H-distribution is seen in a variety of formation scenarios and may explain several puzzles in Kuiper Belt science. We find that a divot H-distribution simultaneously explains the observed scattering TNO, Neptune Trojan, Plutino, and Centaur H-distributions while simultaneously predicting a large enough scattering TNO population to act as the sole supply of the Jupiter-Family Comets.

  2. Solution to a gene divergence problem under arbitrary stable nucleotide transition probabilities

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1976-01-01

    A nucleic acid chain, L nucleotides in length, with the specific base sequence B(1)B(2) ... B(L) is defined by the L-dimensional vector B = (B(1), B(2), ..., B(L)). For twelve given constant non-negative transition probabilities that, in a specified position, the base B is replaced by the base B' in a single step, an exact analytical expression is derived for the probability that the position goes from base B to B' in X steps. Assuming that each base mutates independently of the others, an exact expression is derived for the probability that the initial gene sequence B goes to a sequence B' = (B'(1), B'(2), ..., B'(L)) after X = (X(1), X(2), ..., X(L)) base replacements. The resulting equations allow a more precise accounting for the effects of Darwinian natural selection in molecular evolution than does the idealized (biologically less accurate) assumption that each of the four nucleotides is equally likely to mutate to and be fixed as one of the other three. Illustrative applications of the theory to some problems of biological evolution are given.

  3. Absolute Cross sections of Fe XVII x-ray transitions measured with the spare Astro-E microcalorimeter Array

    NASA Astrophysics Data System (ADS)

    Brown, G.; Boyce, K. R.; Kelley, R. L.; Porter, F. S.; Stahle, C. K.; Beiersdorfer, P.; Chen, H.; May, M.; Scofield, J.; Kahn, S. M.

    2002-04-01

    We have used the NASA/GSFC engineering model Astro-E microcalorimeter 6x6 array with the LLNL electron beam ion trap uc(ebit-i) to measure absolute excitation cross sections of Fe uc(xvii) L-shell x-ray transitions by normalizing to radiative recombination (RR). In the past, normalizing Fe uc(xvii) L-shell transitions to RR has not been possible because it is approximately 1000 times weaker than direct excitation, its emission often blends with emission from other charge states, and it is separated from direct excitation by greater than 500 eV. However, because of its large effective area, high resolution, large bandwidth, and long-time gain stability, the spare Astro-E microcalorimeter coupled with uc(ebit-i) has made measurement of absolute cross sections of Fe uc(xvii) L-shell transitons possible. We present the measured cross sections of two of the strongest lines observed in a plethora of astrophysical sources, the Fe uc(xvii) resonance and intercombination lines, located at 15.01 Å and 15.26 Årespectively. Our results provide stringent tests for atomic data present in spectral modeling packages and can be used to interpret high-resolution spectra provided by the Chandra X-Ray Observatory, XMM-Newton, and, in the near future, Astro-E2. Work by the UC-LLNL was performed under auspices of DOE under contract No. W-7405-Eng-48 and supported by NASA SARA grants to LLNL, GSFC, and Columbia University.

  4. Absolute redshifts in the CIV 1548 A line in the transition region of the quiet sun

    NASA Technical Reports Server (NTRS)

    Henze, William; Engvold, Oddbjorn

    1992-01-01

    Observations with the Ultraviolet Spectrometer and Polarimeter instrument on the SMM spacecraft were made at the polar limb and disk center for the accurate determination of Doppler shifts of the CIV 1548 A emission line formed at 10 exp -5 K in the transition region of the quiet sun. Individual data points representing 3 arcsec square pixels yield both redshifts and blueshifts, but the mean values from four different days of observations are toward the red. The mean redshifts are in the range 4-8 km/s and are produced by nearly vertically directed flows; the uncertainty associated with the mean values corresponds to +/- 0.5 km/s. The redshift increases with brightness of the CIV line.

  5. The transition probability and the probability for the left-most particle's position of the q-totally asymmetric zero range process

    SciTech Connect

    Korhonen, Marko; Lee, Eunghyun

    2014-01-15

    We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle's position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.

  6. Effect of external electric field on the probability of optical transitions in InGaAs/GaAs quantum wells

    SciTech Connect

    Pikhtin, A. N. Komkov, O. S.; Bazarov, K. V.

    2006-05-15

    The effect of external electric field on interband optical transitions in single In{sub x}Ga{sub 1-x}As/GaAs quantum wells is studied by electroreflectance spectroscopy. A procedure is suggested for separating the contribution of particular exciton transitions to the complicated modulation spectrum. Nontrivial field dependences of the probability of optical transitions forbidden by the symmetry are observed experimentally. The data are compared with the corresponding theoretical dependences. The strength of the internal electric field in the region of the quantum well is determined from Frantz-Keldysh's oscillations. Under certain electric fields, the probability of transitions forbidden with no field is higher than the probability of transitions allowed by the symmetry.

  7. Absorption coefficient, transition probability, and collision-broadening frequency of dimethylether at He-Xe laser 3.51-micron wavelength

    NASA Technical Reports Server (NTRS)

    Siegman, A. E.; Wang, S. C.

    1970-01-01

    Absorptivity, transition probability and collision broadening frequency of dimethylether at 3.51 micron He-Xe laser wavelength, noting pressure dependence, transition lifetime and saturation intensity

  8. Peculiarities of high-overtone transition probabilities in carbon monoxide revealed by high-precision calculation

    SciTech Connect

    Medvedev, Emile S.; Meshkov, Vladimir V.; Stolyarov, Andrey V.

    2015-10-21

    In the recent work devoted to the calculation of the rovibrational line list of the CO molecule [G. Li et al., Astrophys. J., Suppl. Ser. 216, 15 (2015)], rigorous validation of the calculated parameters including intensities was carried out. In particular, the Normal Intensity Distribution Law (NIDL) [E. S. Medvedev, J. Chem. Phys. 137, 174307 (2012)] was employed for the validation purposes, and it was found that, in the original CO line list calculated for large changes of the vibrational quantum number up to Δn = 41, intensities with Δn > 11 were unphysical. Therefore, very high overtone transitions were removed from the published list in Li et al. Here, we show how this type of validation is carried out and prove that the quadruple precision is indispensably required to predict the reliable intensities using the conventional 32-bit computers. Based on these calculations, the NIDL is shown to hold up for the 0 → n transitions till the dissociation limit around n = 83, covering 45 orders of magnitude in the intensity. The low-intensity 0 → n transition predicted in the work of Medvedev [Determination of a new molecular constant for diatomic systems. Normal intensity distribution law for overtone spectra of diatomic and polyatomic molecules and anomalies in overtone absorption spectra of diatomic molecules, Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 1984] at n = 5 is confirmed, and two additional “abnormal” intensities are found at n = 14 and 23. Criteria for the appearance of such “anomalies” are formulated. The results could be useful to revise the high-overtone molecular transition probabilities provided in spectroscopic databases.

  9. Peculiarities of high-overtone transition probabilities in carbon monoxide revealed by high-precision calculation

    NASA Astrophysics Data System (ADS)

    Medvedev, Emile S.; Meshkov, Vladimir V.; Stolyarov, Andrey V.; Gordon, Iouli E.

    2015-10-01

    In the recent work devoted to the calculation of the rovibrational line list of the CO molecule [G. Li et al., Astrophys. J., Suppl. Ser. 216, 15 (2015)], rigorous validation of the calculated parameters including intensities was carried out. In particular, the Normal Intensity Distribution Law (NIDL) [E. S. Medvedev, J. Chem. Phys. 137, 174307 (2012)] was employed for the validation purposes, and it was found that, in the original CO line list calculated for large changes of the vibrational quantum number up to Δn = 41, intensities with Δn > 11 were unphysical. Therefore, very high overtone transitions were removed from the published list in Li et al. Here, we show how this type of validation is carried out and prove that the quadruple precision is indispensably required to predict the reliable intensities using the conventional 32-bit computers. Based on these calculations, the NIDL is shown to hold up for the 0 → n transitions till the dissociation limit around n = 83, covering 45 orders of magnitude in the intensity. The low-intensity 0 → n transition predicted in the work of Medvedev [Determination of a new molecular constant for diatomic systems. Normal intensity distribution law for overtone spectra of diatomic and polyatomic molecules and anomalies in overtone absorption spectra of diatomic molecules, Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 1984] at n = 5 is confirmed, and two additional "abnormal" intensities are found at n = 14 and 23. Criteria for the appearance of such "anomalies" are formulated. The results could be useful to revise the high-overtone molecular transition probabilities provided in spectroscopic databases.

  10. DROPOUT AND RETENTION RATE METHODOLOGY USED TO ESTIMATE FIRST-STAGE ELEMENTS OF THE TRANSITION PROBABILITY MATRICES FOR DYNAMOD II.

    ERIC Educational Resources Information Center

    HUDMAN, JOHN T.; ZABROWSKI, EDWARD K.

    EQUATIONS FOR SYSTEM INTAKE, DROPOUT, AND RETENTION RATE CALCULATIONS ARE DERIVED FOR ELEMENTARY SCHOOLS, SECONDARY SCHOOLS, AND COLLEGES. THE PROCEDURES DESCRIBED WERE FOLLOWED IN DEVELOPING ESTIMATES OF SELECTED ELEMENTS OF THE TRANSITION PROBABILITY MATRICES USED IN DYNAMOD II. THE PROBABILITY MATRIX CELLS ESTIMATED BY THE PROCEDURES DESCRIBED…

  11. Charge exchange transition probability for collisions between unlike ions and atoms within the adiabatic approximation

    NASA Technical Reports Server (NTRS)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, John W.

    1989-01-01

    A simple formula for the transition probability for electron exchange between unlike ions and atoms is established within the adiabatic approximation by employing the Linear Combination of Atomic Orbitals (LCAO) method. The formula also involves an adiabatic parameter, introduced by Massey, and thus the difficulties arising from the internal energy defect and the adiabatic approximation are avoided. Specific reactions Li(+++) + H to Li(++) + H(+) and Be(4+) + H to Be(3+) + H(+) are considered as examples. The calculated capture cross section results of the present work are compared with the experimental data and with the calculation of other authors over the velocity range of 10(7) cm/sec to 10(8) cm/sec.

  12. Statistical simulation of internal energy exchange in shock waves using explicit transition probabilities

    NASA Astrophysics Data System (ADS)

    Torres, Erik; Magin, Thierry

    2012-11-01

    A statistical model originally developed for electronic-translational energy transfer in atoms having multiple electronic states (Anderson et al, RGD15, 1986) is applied to the study of internal energy exchange in a polyatomic gas. The model is well-suited for gas kinetic simulations, because it provides an explicit expression for the transition probabilities between internal energy levels. All molecules possessing a given internal energy level are treated as a separate chemical species and all collisions involving exchange of internal energy thus become pseudo-chemical reactions. Post-collision energy levels of the two partners are determined by conserving the total energy of the collision pair and taking into account detailed balance. In the present work, DSMC simulations of relaxation in a stationary gas are performed and compared to those obtained by Anderson et al. Additionally, we apply the model to the simulation of rotational relaxation behind a normal shock wave.

  13. Measurement of the transition probability of the C III 190.9 nanometer intersystem line

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.; Fang, Z.; Gibbons, T. T.; Parkinson, W. H.; Smith, Peter L.

    1993-01-01

    A radio-frequency ion trap has been used to store C(2+) ions created by electron bombardment of CO. The transition probability for the 2s2p 3Po1-2s2 1S0 intersystem line of C m has been measured by recording the radiative decay at 190.9 nm. The measured A-value is 121 +/- 7/s and agrees, within mutual uncertainty limits, with that of Laughlin et al. (1978), but is 20 percent larger than that of Nussbaumer and Storey (1978). The effective collision mixing rate coefficient among the fine structure levels of 3Po and the combined quenching and charge transfer rate coefficients out of the 3Po1 level with the CO source gas have also been measured.

  14. Reliable Sampled-Data Control of Fuzzy Markovian Systems with Partly Known Transition Probabilities

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Kaviarasan, B.; Kwon, O. M.; Rathika, M.

    2016-08-01

    This article presents a fuzzy dynamic reliable sampled-data control design for nonlinear Markovian jump systems, where the nonlinear plant is represented by a Takagi-Sugeno fuzzy model and the transition probability matrix for Markov process is permitted to be partially known. In addition, a generalised as well as more practical consideration of the real-world actuator fault model which consists of both linear and nonlinear fault terms is proposed to the above-addressed system. Then, based on the construction of an appropriate Lyapunov-Krasovskii functional and the employment of convex combination technique together with free-weighting matrices method, some sufficient conditions that promising the robust stochastic stability of system under consideration and the existence of the proposed controller are derived in terms of linear matrix inequalities, which can be easily solved by any of the available standard numerical softwares. Finally, a numerical example is provided to illustrate the validity of the proposed methodology.

  15. Transition probabilities of PrII-lines emitted from a ferroelectric plasma source

    NASA Astrophysics Data System (ADS)

    Goly, A.; Kusz, J.; Quang, B. Nguyen; Weniger, S.

    1991-03-01

    An argon-praseodymium plasma was generated under atmospheric pressure between a ceramic ferroelectric plate and a praseodymium plate. The system of plates was connected to an acoustic frequency supply. The plasma radiation was analyzed in the spectral range from 2000 to 7000 A by using a grating spectrograph with a linear dispersion near 1 mm/A, adopted to photoelectric measurements. The emission spectrum of praseodymium was recorded, and the intensities of a few hundred lines were measured. Transition probabilities were determined for 62 PrII-lines, using available lifetime data for excited levels and measured branching ratios of the corresponding lines. Reasonable agreement has been found between the experimental data of Lage and Whaling (1976) and some of the present results.

  16. Absolute measurements of the electronic transition moments of seven band systems of the C2 molecule. Ph.D. Thesis - York Univ., Toronto

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.

    1979-01-01

    Electronic transition moments of seven C2 singlet and triplet band systems in the 0.2-1.2 micron spectral region were measured. The measurements were made in emission behind incident shock waves in C2H2-argon mixtures. Narrow bandpass radiometers were used to obtain absolute measurements of shock-excited C2 radiation from which absolute electronic transition moments are derived by a synthetic spectrum analysis. New results are reported for the Ballik-Ramsay, Phillips, Swan, Deslandres-d'Azambuja, Fox-Herzberg, Mulliken, and Freymark systems.

  17. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  18. The k-sample problem in a multi-state model and testing transition probability matrices.

    PubMed

    Tattar, Prabhanjan N; Vaman, H J

    2014-07-01

    The choice of multi-state models is natural in analysis of survival data, e.g., when the subjects in a study pass through different states like 'healthy', 'in a state of remission', 'relapse' or 'dead' in a health related quality of life study. Competing risks is another common instance of the use of multi-state models. Statistical inference for such event history data can be carried out by assuming a stochastic process model. Under such a setting, comparison of the event history data generated by two different treatments calls for testing equality of the corresponding transition probability matrices. The present paper proposes solution to this class of problems by assuming a non-homogeneous Markov process to describe the transitions among the health states. A class of test statistics are derived for comparison of [Formula: see text] treatments by using a 'weight process'. This class, in particular, yields generalisations of the log-rank, Gehan, Peto-Peto and Harrington-Fleming tests. For an intrinsic comparison of the treatments, the 'leave-one-out' jackknife method is employed for identifying influential observations. The proposed methods are then used to develop the Kolmogorov-Smirnov type supremum tests corresponding to the various extended tests. To demonstrate the usefulness of the test procedures developed, a simulation study was carried out and an application to the Trial V data provided by International Breast Cancer Study Group is discussed. PMID:23722306

  19. Transition probability of the Si III 189.2-nm intersystem line

    NASA Technical Reports Server (NTRS)

    Kwong, H. S.; Johnson, B. C.; Smith, P. L.; Parkinson, W. H.

    1983-01-01

    Measurement of the lifetime of the metastable 3s3p(3)P(0)1 level of Si(2+) (Si III), which decays by photon emission at 189.2 nm to the 3s2(1)S0 state, is reported. The data were taken from spontaneous emission from metastable Si III stored in an RF ion trap. The Si III ions were produced through electron bombardment of SiH4 and SiF4 at pressures of 1/100,000,000-1/10,000,000 Torr. A photomultiplier was employed to count the photon emissions from the transitions. A total of 11 decay curves were generated for analysis, with Poisson statistics used to set the uncertainties at within 8 pct. Significant systematic effects were controlled, and the lifetime was found to be within 3.6 microsec of 59.9 microsec. The method used is concluded valid for determining the lifetimes of metastable levels of low-Z ions with low charge, and thereby the transition probabilities.

  20. Einstein A coefficients and absolute line intensities for the E2Π-X2Σ+ transition of CaH

    NASA Astrophysics Data System (ADS)

    Li, Gang; Harrison, Jeremy J.; Ram, Ram S.; Western, Colin M.; Bernath, Peter F.

    2012-01-01

    Einstein A coefficients and absolute line intensities have been calculated for the E2Π-X2Σ+ transition of CaH. Using wavefunctions derived from the Rydberg-Klein-Rees (RKR) method and electronic transition dipole moment functions obtained from high-level ab initio calculations, rotationless transition dipole moment matrix elements have been calculated for all 10 bands involving v‧=0,1 of the E2Π state and v″=0,1,2,3,4 of the X2Σ state. The rotational line strength factors (Hönl-London factors) are derived for the intermediate coupling case between Hund's case (a) and (b) for the E2Π-X2Σ+ transition. The computed transition dipole moments and the spectroscopic constants from a recent study [Ram et al., Journal of Molecular Spectroscopy 2011;266:86-91] have been combined to generate line lists containing Einstein A coefficients and absolute line intensities for 10 bands of the E2Π-X2Σ+ transition of CaH for J-values up to 50.5. The absolute line intensities have been used to determine a rotational temperature of 778±3 °C for the CaH sample in the recent study.

  1. Delineation of an Optimal Location for Oil Sand Exploration through Transition Probabilities of Composing Lithology

    NASA Astrophysics Data System (ADS)

    Kwon, M.; Jeong, J.; Park, E.; Han, W. S.; Kim, K. Y.

    2014-12-01

    Three-dimensional geostatistical studies of delineating an optimal exploitation location for oil sand in McMurray Formation, Athabasca, Canada were carried out. The area is mainly composed of unconsolidated to semi-consolidated sand where breccia, mud, clay, etc. are associated as alternating layers. For the prediction of the optimal location of steam assisted gravity drainage (SAGD) technique, the conventional approach of cumulating the predicted thickness of the media with higher bitumen bearing possibility (i.e. Breccia and Sand) was pursued. As an alternative measure, mean vertical extension of the permeable media was also assessed based on vertical transition rate of each media and the corresponding optimal location was decided. For the both predictions, 110 borehole data acquired from the study area were analyzed under Markovian transition probability (TP) framework and three-dimensional distributions of the composing media were predicted stochastically through an existing TP based geostatistical model. The effectiveness of the two competing measures (cumulative thickness and mean vertical extension) for SAGD applications was verified through two-dimensional dual-phase flow simulations where high temperature steam was injected in the delineated reservoirs, and the size of steam chamber was compared. The results of the two-dimensional SAGD simulation has shown that the geologic formation containing the highest mean vertical extension of permeable media is more suitable for the development of the oil sand by developing larger size of steam chamber compared to that from the highest cumulative thickness. Given those two-dimensional results, the cumulative thickness alone may not be a sufficient criterion for an optimal SAGD site and the mean vertical extension of the permeable media needs to be jointly considered for the sound selections.

  2. Calculations of hydrogen atom multiphoton energy level shifts, transition amplitudes and ionization probabilities

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Chang, C. S.

    2008-07-01

    Analyses of the resonant multiphoton ionization of atoms require knowledge of ac Stark energy shifts and of multiphoton, bound-to-bound state, transition amplitudes. In this paper, we consider the three-photon photoionization of hydrogen atoms at frequencies that are at and surrounding the two-photon 1s to 2s resonance. AC energy shift sums of both the 1s and 2s states are calculated as a function of the laser frequency along with two-photon 1s → 2s resonant transition amplitude sums. These quantities are calculated using an extended version of a method, which has often been employed in a variety of ways, of calculating these sums by expressing them in terms of solutions to a variety of differential equations that are derived from the different sums being evaluated. We demonstrate how exact solutions are obtained to these differential equations, which lead to exact evaluations of the corresponding sums. A variety of different cases are analysed, some involving analytic continuation, some involving real number analysis and some involving complex number analysis. A dc Stark sum calculation of the 2s state is carried out to illustrate the case where analytic continuation, pole isolation and pole subtraction are required and where the calculation can be carried out analytically; the 2s state, ac Stark shift sum calculations involve a case where no analytic continuation is required, but where the solution to the differential equation produces complex numbers owing to the finite photoionization lifetime of the 2s state. Results from these calculations are then used to calculate three-photon ionization probabilities of relevance to an analysis of the multiphoton ionization data published by Kyrala and Nichols (1991 Phys. Rev. A 44, R1450).

  3. Under the hood of statistical learning: A statistical MMN reflects the magnitude of transitional probabilities in auditory sequences

    PubMed Central

    Koelsch, Stefan; Busch, Tobias; Jentschke, Sebastian; Rohrmeier, Martin

    2016-01-01

    Within the framework of statistical learning, many behavioural studies investigated the processing of unpredicted events. However, surprisingly few neurophysiological studies are available on this topic, and no statistical learning experiment has investigated electroencephalographic (EEG) correlates of processing events with different transition probabilities. We carried out an EEG study with a novel variant of the established statistical learning paradigm. Timbres were presented in isochronous sequences of triplets. The first two sounds of all triplets were equiprobable, while the third sound occurred with either low (10%), intermediate (30%), or high (60%) probability. Thus, the occurrence probability of the third item of each triplet (given the first two items) was varied. Compared to high-probability triplet endings, endings with low and intermediate probability elicited an early anterior negativity that had an onset around 100 ms and was maximal at around 180 ms. This effect was larger for events with low than for events with intermediate probability. Our results reveal that, when predictions are based on statistical learning, events that do not match a prediction evoke an early anterior negativity, with the amplitude of this mismatch response being inversely related to the probability of such events. Thus, we report a statistical mismatch negativity (sMMN) that reflects statistical learning of transitional probability distributions that go beyond auditory sensory memory capabilities. PMID:26830652

  4. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    DOE PAGESBeta

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; Wrzesiński, J.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; et al

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudesmore » for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.« less

  5. An exacting transition probability measurement - a direct test of atomic many-body theories

    PubMed Central

    Dutta, Tarun; De Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas

    2016-01-01

    A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties. PMID:27432734

  6. Inverse modeling of hydraulic tests in fractured crystalline rock based on a transition probability geostatistical approach

    NASA Astrophysics Data System (ADS)

    Blessent, Daniela; Therrien, René; Lemieux, Jean-Michel

    2011-12-01

    This paper presents numerical simulations of a series of hydraulic interference tests conducted in crystalline bedrock at Olkiluoto (Finland), a potential site for the disposal of the Finnish high-level nuclear waste. The tests are in a block of crystalline bedrock of about 0.03 km3 that contains low-transmissivity fractures. Fracture density, orientation, and fracture transmissivity are estimated from Posiva Flow Log (PFL) measurements in boreholes drilled in the rock block. On the basis of those data, a geostatistical approach relying on a transitional probability and Markov chain models is used to define a conceptual model based on stochastic fractured rock facies. Four facies are defined, from sparsely fractured bedrock to highly fractured bedrock. Using this conceptual model, three-dimensional groundwater flow is then simulated to reproduce interference pumping tests in either open or packed-off boreholes. Hydraulic conductivities of the fracture facies are estimated through automatic calibration using either hydraulic heads or both hydraulic heads and PFL flow rates as targets for calibration. The latter option produces a narrower confidence interval for the calibrated hydraulic conductivities, therefore reducing the associated uncertainty and demonstrating the usefulness of the measured PFL flow rates. Furthermore, the stochastic facies conceptual model is a suitable alternative to discrete fracture network models to simulate fluid flow in fractured geological media.

  7. Transition probabilities for the UV0.01 multiplet in N III

    NASA Technical Reports Server (NTRS)

    Brage, Tomas; Fischer, Charlotte Froese; Judge, Philip G.

    1995-01-01

    We report on large-scale ab initio multiconfiguration Hartree-Fock calculations for the UV0.01 multiplet, 2s(sup 2)2p(sup 2)P(sub J) - 2s2p(sup 2 4)P(sub J prime), in N III. The resulting transition probabilities agree very well with recent semiempirical calculations, and the lifetimes for two of the three upper levels agree with experiments. The deviation for the third level is discussed. Comparisons made with the highest quality IUE echelle spectra available -- those of RR Tel and V1016 Cyg (both photoionized sources with electron densities below 10(exp 8)/cu cm) -- show that computed branching ratios of lines sharing a common upper level are in agreement with observations to within uncertainties of +/- 10%. High-quality solar limb data or stellar data from the Hubble Space Telescope (HST) could, in principle, be used to determine whether the theoretical or measured lifetimes for the discrepant level are in error. Unfortunately, stellar data for high-density plasmas (N(sub e) greater than 10(exp 11)/cu cm are needed) do not yet exist, and existing solar data lack the photometric precision to address this problem.

  8. Evaluation of aquifer heterogeneity effects on river flow loss using a transition probability framework

    USGS Publications Warehouse

    Engdahl, N.B.; Vogler, E.T.; Weissmann, G.S.

    2010-01-01

    River-aquifer exchange is considered within a transition probability framework along the Rio Grande in Albuquerque, New Mexico, to provide a stochastic estimate of aquifer heterogeneity and river loss. Six plausible hydrofacies configurations were determined using categorized drill core and wetland survey data processed through the TPROGS geostatistical package. A base case homogeneous model was also constructed for comparison. River loss was simulated for low, moderate, and high Rio Grande stages and several different riverside drain stage configurations. Heterogeneity effects were quantified by determining the mean and variance of the K field for each realization compared to the root-mean-square (RMS) error of the observed groundwater head data. Simulation results showed that the heterogeneous models produced smaller estimates of loss than the homogeneous approximation. Differences between heterogeneous and homogeneous model results indicate that the use of a homogeneous K in a regional-scale model may result in an overestimation of loss but comparable RMS error. We find that the simulated river loss is dependent on the aquifer structure and is most sensitive to the volumetric proportion of fines within the river channel. Copyright 2010 by the American Geophysical Union.

  9. An exacting transition probability measurement - a direct test of atomic many-body theories

    NASA Astrophysics Data System (ADS)

    Dutta, Tarun; de Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas

    2016-07-01

    A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties.

  10. An exacting transition probability measurement - a direct test of atomic many-body theories.

    PubMed

    Dutta, Tarun; De Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas

    2016-01-01

    A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties. PMID:27432734

  11. Magnetic-dipole transition probabilities in B-like and Be-like ions

    SciTech Connect

    Tupitsyn, I. I.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.; Crespo Lopez-Urrutia, J. R.; Lapierre, A.; Ullrich, J.

    2005-12-15

    The magnetic-dipole transition probabilities between the fine-structure levels (1s{sup 2}2s{sup 2}2p) {sup 2}P{sub 1/2}-{sup 2}P{sub 3/2} for B-like ions and (1s{sup 2}2s2p) {sup 3}P{sub 1}-{sup 3}P{sub 2} for Be-like ions are calculated. The configuration-interaction method in the Dirac-Fock-Sturm basis is employed for the evaluation of the interelectronic-interaction correction with negative-continuum spectrum being taken into account. The 1/Z interelectronic-interaction contribution is derived within a rigorous QED approach employing the two-time Green function method. The one-electron QED correction is evaluated within framework of the anomalous magnetic-moment approximation. A comparison with the theoretical results of other authors and with available experimental data is presented.

  12. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    SciTech Connect

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; Wrzesiński, J.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; Lauritsen, T.; Pawłat, T.; Seweryniak, D.; Stefanescu, I.; Walters, W. B.; Zhu, S.

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudes for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.

  13. Analytical results for state-to-state transition probabilities in the multistate Landau-Zener model by nonstationary perturbation theory

    SciTech Connect

    Volkov, M. V.; Ostrovsky, V. N.

    2007-02-15

    Multistate generalizations of Landau-Zener model are studied by summing entire series of perturbation theory. A technique for analysis of the series is developed. Analytical expressions for probabilities of survival at the diabatic potential curves with extreme slope are proved. Degenerate situations are considered when there are several potential curves with extreme slope. Expressions for some state-to-state transition probabilities are derived in degenerate cases.

  14. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    SciTech Connect

    Ghumman, S. S.

    2015-08-28

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.

  15. Absolute frequency measurement of the 7s2 1S0-7s7p 1P1 transition in Ra225

    NASA Astrophysics Data System (ADS)

    Santra, B.; Dammalapati, U.; Groot, A.; Jungmann, K.; Willmann, L.

    2014-10-01

    Transition frequencies were determined for transitions in Ra in an atomic beam and for reference lines in Te2 molecules in a vapor cell. The absolute frequencies were calibrated against a GPS stabilized Rb clock by means of an optical frequency comb. The 7s21S0(F=1/2)-7s7p1P1(F =3/2) transition in Ra225 was determined to be 621042124(2)MHz. The measurements provide input for designing efficient and robust laser cooling of Ra atoms in preparation of a search for a permanent electric dipole moment in Ra isotopes.

  16. Radiative lifetimes and transition probabilities for electric-dipole delta n equals zero transitions in highly stripped sulfur ions

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Elston, S. B.; Griffin, P. M.; Forester, J. P.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.; Hayden, H. C.

    1976-01-01

    The beam-foil time-of-flight method has been used to investigate radiative lifetimes and transition rates involving allowed intrashell transitions within the L shell of highly ionized sulfur. The results for these transitions, which can be particularly correlation-sensitive, are compared with current calculations based upon multiconfigurational models.

  17. Probability distributions of linear statistics in chaotic cavities and associated phase transitions

    SciTech Connect

    Vivo, Pierpaolo; Majumdar, Satya N.; Bohigas, Oriol

    2010-03-01

    We establish large deviation formulas for linear statistics on the N transmission eigenvalues (T{sub i}) of a chaotic cavity, in the framework of random matrix theory. Given any linear statistics of interest A=SIGMA{sub i=1}{sup N}a(T{sub i}), the probability distribution P{sub A}(A,N) of A generically satisfies the large deviation formula lim{sub N-}>{sub i}nfinity[-2 log P{sub A}(Nx,N)/betaN{sup 2}]=PSI{sub A}(x), where PSI{sub A}(x) is a rate function that we compute explicitly in many cases (conductance, shot noise, and moments) and beta corresponds to different symmetry classes. Using these large deviation expressions, it is possible to recover easily known results and to produce new formulas, such as a closed form expression for v(n)=lim{sub N-}>{sub i}nfinity var(T{sub n}) (where T{sub n}=SIGMA{sub i}T{sub i}{sup n}) for arbitrary integer n. The universal limit v*=lim{sub n-}>{sub i}nfinity v(n)=1/2pibeta is also computed exactly. The distributions display a central Gaussian region flanked on both sides by non-Gaussian tails. At the junction of the two regimes, weakly nonanalytical points appear, a direct consequence of phase transitions in an associated Coulomb gas problem. Numerical checks are also provided, which are in full agreement with our asymptotic results in both real and Laplace space even for moderately small N. Part of the results have been announced by Vivo et al. [Phys. Rev. Lett. 101, 216809 (2008)].

  18. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    PubMed

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. PMID:26210982

  19. Performance Demonstration of Miniature Phase Transition Cells in Microgravity as a Validation for their use in the Absolute Calibration of Temperature Sensors On-Orbit

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Adler, D. P.; Best, F. A.; Aguilar, D. M.; Perepezko, J. H.

    2011-12-01

    The next generation of infrared remote sensing missions, including the climate benchmark missions, will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies requiring absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and are undergoing further refinement under the NASA Instrument Incubator Program (IIP). In particular, the OARS has embedded thermistors that can be periodically calibrated on-orbit using the melt signatures of small quantities (<0.5g) of three reference materials - mercury, water, and gallium (providing calibration from 233K to 303K). One of the many tests to determine the readiness of this technology for on-orbit application is a demonstration of performance in microgravity. We present the details of a demonstration experiment to be conducted on the International Space Station later this year. The demonstration will use the configuration of the phase transition cells developed under our NASA IIP that has been tested extensively in the laboratory under simulated mission life cycle scenarios - these included vibration, thermal soaks, and deep cycling. The planned microgravity demonstration will compare melt signatures obtained pre-flight on the ground with those obtained on the ISS for three phase change materials (water, gallium-tin, and gallium). With a successful demonstration experiment the phase transition cells in a microgravity environment will have cleared the last hurdle before being ready for

  20. QED calculations of three-photon transition probabilities in H-like ions with arbitrary nuclear charge

    NASA Astrophysics Data System (ADS)

    Zalialiutdinov, T.; Solovyev, D.; Labzowsky, L.

    2016-03-01

    The quantum electrodynamical theory of three-photon transitions in hydrogen-like ions is presented. Emission probabilities of various three-photon decay channels for 2{p}3/2, 2{p}1/2 and 2{s}1/2 states are calculated for Z, the nuclear charge value, 1≤slant Z≤slant 95. The results are given in two different gauges. The fully relativistic three-photon decay rates of hydrogen-like ions with half-integer nuclear spin are given for transitions between fine structure components. The results can be applied to the Bose-Einstein statistics tests for multiphoton systems.

  1. Probabilities for nonradiative intermultiplet transitions in the holmium ion in lithium-yttrium double fluoride crystals and stimulated emission

    SciTech Connect

    Tkachuk, A.M.; Khilko, A.V.; Petrov, M.V.

    1985-02-01

    Nonradiative transition probabilities have been studied as functions of the energy difference between the closest-lying multiplets of the Ho/sup 3 +/ ion in the LiYF/sub 4/ crystal. The efficiencies of emission from terms of the holmium ion have been determined. The cross sections for stimulated emission for emission lines corresponding to the transition /sup 5/S/sub 2/ ..-->.. /sup 5/I/sub 7/ have also been determined. Some characteristics of the stimulated emission of LiYF/sub 4/:Ho/sup 3 +/ crystals are reported for several wavelengths in the 0.75--3.9-..mu..m spectral interval.

  2. Transition probabilities and Stark-broadening parameters of neutral and singly ionized lead

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Bengston, R. D.; Lindsay, J. M.

    1979-01-01

    Strengths and Stark widths of the prominent visible PbI and PbII lines are measured in emission by means of a gas-driven shock tube. Absolute ionic line strengths for 7s-7p and 7p-7d arrays conform well to quantum-mechanical sum rules and agree with theoretical predictions, but 6d-5f results differ markedly from central-field approximations. Neutral-line strengths agree satisfactorily with available comparison data. Semiempirical theory predicts the widths of PbII lines with characteristic reliability of better than 25%.

  3. Dipole and quadrupole integrals for the C I, N I, and O I sequences. [electron transition probabilities computation

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Wade, C.

    1974-01-01

    The Coulomb approximation tables of Oertel and Shomo, together with binding-energy values obtained by a screening approximation, have been used to produce values of the dipole and quadrupole radial integrals needed in obtaining transition probabilities for ions of six, seven, and eight electrons. Some comparisons with more rigorously calculated values show that the present values are quite accurate, especially for ions of higher atomic number.

  4. Wavelengths and transition probabilities for n = 4 {sup {yields}} n' = 4 transitions in heavy Cu-like ions (70 {<=} Z {<=} 92)

    SciTech Connect

    Palmeri, P. . E-mail: palmeri@umh.ac.be; Quinet, P.; Biemont, E.; Traebert, E.

    2007-05-15

    Wavelengths and transition probabilities have been calculated for the n = 4 {sup {yields}} n' = 4 allowed transitions in the heavy Cu-like ions with Z = 70-92. Fully relativistic multiconfiguration Dirac-Fock (MCDF) calculations were carried out. They take into account the correlations within the n = 4 complex, the core-valence n = 3 {sup {yields}} n' = 4 virtual excitations, and quantum electrodynamics effects. The present results are compared to and agree well with recent electron-beam ion-trap (EBIT) measurements in ytterbium, tungsten, osmium, gold, lead, bismuth, thorium, and uranium.

  5. Wavelengths, transition probabilities, and oscillator strengths for M-shell transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions

    SciTech Connect

    Xu, Min; Jiang, Gang; Deng, Banglin; Bian, Guojie

    2014-11-15

    Wavelengths, transition probabilities, and oscillator strengths have been calculated for M-shell electric dipole transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions. The fully relativistic multiconfiguration Dirac–Fock method, taking quantum electrodynamical effects and the Breit correction into account, was used in the calculations. Calculated energy levels of M-shell excited states for Cu-, Zn-, Ga-, Ge-, and Se-like Au ions from the method were compared with available theoretical and experimental results, and good agreement with them was achieved.

  6. Theoretical transition probabilities between the lowest 2S, 2P and 2D states of Na, K, Rb and Cs

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1985-01-01

    Theoretical transition probabilities between the lowest 2S, 2P and 2D states of the alkali atoms Na through Cs have been computed using near Hartree-Fock quality Slater basis sets. The important core-valence correlation effects are incorporated explicitly by a configuration-interaction procedure. For Cs, the calculations were repeated using a Gaussian basis set so that relativistic effects could be incorporated through an effective core potential procedure. The best calculated electric quadrupole Einstein coefficients are Na(196.3/s), K(103.6/s), Rb(72.4/s) and Cs(19.7/s). Core-valence effects become increasingly important down the column, and reduce the quadrupole transition strengths to about the same degree as for the 2P-2S and 2D-2P dipole-allowed transitions. Relativistic effects increase the quadrupole moment of Cs, but less so than in Ba, presumably because the alkali 2D states are more diffuse.

  7. Extensive computation of allowed and forbidden transition probabilities in the potassium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Dixit, Gopal; Deshmukh, Pranawa C.; Manson, Steven T.; Majumder, Sonjoy

    2007-06-01

    Our primary aim in this work is to present both allowed and forbidden transition amplitudes and corresponding wavelengths and oscillator strengths for a few ions in the 19-electron potassium isoelectronic sequence. All of these ions have the configuration [Ar] 3^2D3/2 as their ground state, except in the case of K and Ca^+, where it is [Ar] 4^2S1/2.This difference in ground state configuration arises due to strong contributions of correlation effects in the energy levels of these systems [1]. Allowed and forbidden transitions in these systems are of great importance in astrophysics [2] and in laboratory plasma research [3]. We apply in the present work the relativistic coupled-cluster (RCC) theory [4] to evaluate the energy levels and wave functions of these systems and study amplitudes for electric and magnetic dipole transition amplitudes and also the electric quadrupole transition amplitudes. The contributions of various electron correlation effects to the transition amplitudes are estimated in some detail using the RCC theory. [1] Gopal Dixit et al., Astrophys. J (submitted); arXiv.org: physics/0702066. [2] C. R. Cowley and G. M. Wahlgern, Astronomy & Astrophysics, 447, 681 (2002). [3] J. E. Vernazza, E. M. Reeves, Astrophys. J. Suppl. 37, 485 (1978) [4] I. Lindgren, Physics Scripta, 36, 591 (1987).

  8. Absolute frequency measurement of the ^1S0<->^3P0 clock transition at 578.4 nm in ytterbium

    NASA Astrophysics Data System (ADS)

    Hoyt, Chad; Barber, Zeb; Oates, Chris; Fortier, Tara; Diddams, Scott

    2005-05-01

    We report the first precision absolute frequency measurements of the highly forbidden (6s^2)^1S0<->(6s6p)^3P0 optical clock transition at 578.4 nm in two odd isotopes of ytterbium. Atoms are cooled to tens of microkelvins in two successive stages of laser cooling and magneto-optical trapping that use transitions at 398.9 nm and 555.8 nm, respectively. The resulting trapped atomic cloud is irradiated with excitation light at 578.4 nm and absorption is detected by monitoring trapped atom depletion. With the laser on resonance, we demonstrate trap depletions of more than 80 % relative to the off-resonance case. Absolute frequency measurements are made for ^171Yb (I=1/2) and ^173Yb (I=5/2) with an uncertainty of 4.4 kHz using a femtosecond-laser frequency comb calibrated by the NIST cesium fountain clock. The natural linewidth of these J=0 to J=0 transitions is ˜10 mHz, making them well-suited to support a new generation of optical atomic clocks based on confinement in an optical lattice. Lattice-based optical clocks have the potential to surpass the performance of the best current atomic clocks by orders of magnitude. The accurate ytterbium frequency knowledge presented here (nearly a million-fold reduction in uncertainty) will greatly expedite Doppler- and recoil-free lattice spectroscopy.

  9. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  10. Simultaneous analysis of matter radii, transition probabilities, and excitation energies of Mg isotopes by angular-momentum-projected configuration-mixing calculations

    NASA Astrophysics Data System (ADS)

    Shimada, Mitsuhiro; Watanabe, Shin; Tagami, Shingo; Matsumoto, Takuma; Shimizu, Yoshifumi R.; Yahiro, Masanobu

    2016-06-01

    We perform simultaneous analysis of (1) matter radii, (2) B (E 2 ;0+→2+) transition probabilities, and (3) excitation energies, E (2+) and E (4+) , for Mg-4024 by using the beyond-mean-field (BMF) framework with angular-momentum-projected configuration mixing with respect to the axially symmetric β2 deformation with infinitesimal cranking. The BMF calculations successfully reproduce all of the data for rm,B (E 2 ) , and E (2+) and E (4+) , indicating that it is quite useful for data analysis; particularly for low-lying states. We also discuss the absolute value of the deformation parameter β2 deduced from measured values of B (E 2 ) and rm. This framework makes it possible to investigate the effects of β2 deformation, the change in β2 due to restoration of rotational symmetry, β2 configuration mixing, and the inclusion of time-odd components by infinitesimal cranking. Under the assumption of axial deformation and parity conservation, we clarify which effect is important for each of the three measurements and propose the kinds of BMF calculations that are practical for each of the three kinds of observables.

  11. Electron-impact dissociative double ionization of N2 and CO: Dependence of transition probability on impact energy

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Kumar, P.; Banerjee, S. B.; Subramanian, K. P.; Bapat, B.

    2016-04-01

    We present an experimental and computational analysis of dissociative double ionization of N2 and CO molecules under electron impact. Experiments are performed at three energies, viz. 1, 3, and 5 keV, in order to observe the effect of impact energy on the dissociative ionization kinematics. We compare the kinetic energy release (KER) distributions of the charge symmetric dissociation channels of N22 + and CO2 + at these impact energies. An approximately linear trend between the transition energy and the expected KER values is inferred on the basis of the calculated potential energy curves of the dications. Experimentally, the normalized differential KER cross sections for these channels show an increasing trend in the low KER range and a decreasing trend in the high KER range as the electron-impact energy is increased. This observation indicates that the transition probability for excitation to different molecular ion states is not only a function of energy difference between the ground and excited states, but also a complicated function of the impact energy. In addition, nature of the observed trend in the differential KER cross sections differs significantly from their differential transition probability, which are calculated using inelastic collision model for fast-electron-impact case.

  12. Improvement of HMM-based action classification by using state transition probability

    NASA Astrophysics Data System (ADS)

    Kitamura, Yuka; Aruga, Haruki; Hashimoto, Manabu

    2015-04-01

    We propose a method to classify multiple similar actions which are contained in human behaviors by considering a weak-constrained order of "actions". The proposed method regards the human behavior as a combination of "action" patterns which have order constrained weakly. In this method, actions are classified by using not only image features but also consistency of transitions between an action and next action. By considering such an action transition, our method can recognize human behavior even if image features of different action are similar to each other. Based on this idea, we have improved the previous HMM-based algorithm effectively. Through some experiments using test image sequences of human behavior appeared in a bathroom, we have confirmed that the average classification success rate is 97 %, which is about 53 % higher than the previous method.

  13. Patient Education and Support During CKD Transitions: When the Possible Becomes Probable.

    PubMed

    Green, Jamie A; Boulware, L Ebony

    2016-07-01

    Patients transitioning from kidney disease to kidney failure require comprehensive patient-centered education and support. Efforts to prepare patients for this transition often fail to meet patients' needs due to uncertainty about which patients will progress to kidney failure, nonindividualized patient education programs, inadequate psychosocial support, or lack of assistance to guide patients through complex treatment plans. Resources are available to help overcome barriers to providing optimal care during this time, including prognostic tools, educational lesson plans, decision aids, communication skills training, peer support, and patient navigation programs. New models are being studied to comprehensively address patients' needs and improve the lives of kidney patients during this high-risk time. PMID:27324676

  14. Local neighborhood transition probability estimation and its use in contextual classification

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    The problem of incorporating spatial or contextual information into classifications is considered. A simple model that describes the spatial dependencies between the neighboring pixels with a single parameter, Theta, is presented. Expressions are derived for updating the posteriori probabilities of the states of nature of the pattern under consideration using information from the neighboring patterns, both for spatially uniform context and for Markov dependencies in terms of Theta. Techniques for obtaining the optimal value of the parameter Theta as a maximum likelihood estimate from the local neighborhood of the pattern under consideration are developed.

  15. Performance Demonstration of Miniature Phase Transition Cells in Microgravity as a Validation for their use in the Absolute Calibration of Temperature Sensors On-Orbit

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Best, F. A.; Adler, D. P.; Aguilar, D. M.; Perepezko, J. H.

    2012-12-01

    The next generation of infrared remote sensing missions, including the climate benchmark missions, will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies requiring absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and were further refined under the NASA Instrument Incubator Program (IIP). In particular, the OARS has imbedded thermistors that can be periodically calibrated on-orbit using the melt signatures of small quantities (<0.5g) of three reference materials - mercury, water, and gallium, providing calibration from 233K to 303K. One of the many tests to determine the readiness of this technology for on-orbit application is a demonstration of performance in microgravity to be conducted on the International Space Station (ISS). This demonstration will make use of an Experiment Support Package developed by Utah State Space Dynamics Laboratory to continuously run melt cycles on miniature phase change cells containing gallium, a gallium-tin eutectic, and water. The phase change cells will be mounted in a small aluminum block along with a thermistor temperature sensor. A thermoelectric cooler will be used to change the temperature of the block. The demonstration will use the configuration of the phase transition cells developed under our NASA IIP that has been tested extensively in the laboratory under simulated mission life cycle scenarios - these included vibration, thermal soaks, and deep cycling. Melt signatures

  16. Evaluation of the Time-Derivative Coupling for Accurate Electronic State Transition Probabilities from Numerical Simulations.

    PubMed

    Meek, Garrett A; Levine, Benjamin G

    2014-07-01

    Spikes in the time-derivative coupling (TDC) near surface crossings make the accurate integration of the time-dependent Schrödinger equation in nonadiabatic molecular dynamics simulations a challenge. To address this issue, we present an approximation to the TDC based on a norm-preserving interpolation (NPI) of the adiabatic electronic wave functions within each time step. We apply NPI and two other schemes for computing the TDC in numerical simulations of the Landau-Zener model, comparing the simulated transfer probabilities to the exact solution. Though NPI does not require the analytical calculation of nonadiabatic coupling matrix elements, it consistently yields unsigned population transfer probability errors of ∼0.001, whereas analytical calculation of the TDC yields errors of 0.0-1.0 depending on the time step, the offset of the maximum in the TDC from the beginning of the time step, and the coupling strength. The approximation of Hammes-Schiffer and Tully yields errors intermediate between NPI and the analytical scheme. PMID:26279558

  17. Energy levels and transition probabilities in the neutron-rich lanthanide nucleus sup 156 Sm

    SciTech Connect

    Hellstroem, M.; Fogelberg, B.; Spanier, L.; Mach, H. )

    1990-05-01

    The decay of {sup 156}Pm has been studied resulting in the first detailed information on the excited states of {sup 156}Sm. About 25 levels were found, of which two were {gamma}-decaying isomers. The expected low-lying quadrupole vibrational levels could not be identified. The observed decay rates for {beta} and {gamma} transitions have enabled the classification of some levels, including the {beta}-decaying ground state of {sup 156}Pm, in terms of specific two-quasiparticle states. The total beta-decay energy of {sup 156}Pm was obtained as 5.155(35) MeV.

  18. The Neural Representation of Sequences: From Transition Probabilities to Algebraic Patterns and Linguistic Trees.

    PubMed

    Dehaene, Stanislas; Meyniel, Florent; Wacongne, Catherine; Wang, Liping; Pallier, Christophe

    2015-10-01

    A sequence of images, sounds, or words can be stored at several levels of detail, from specific items and their timing to abstract structure. We propose a taxonomy of five distinct cerebral mechanisms for sequence coding: transitions and timing knowledge, chunking, ordinal knowledge, algebraic patterns, and nested tree structures. In each case, we review the available experimental paradigms and list the behavioral and neural signatures of the systems involved. Tree structures require a specific recursive neural code, as yet unidentified by electrophysiology, possibly unique to humans, and which may explain the singularity of human language and cognition. PMID:26447569

  19. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II

    PubMed Central

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag+ ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm−1, equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given. PMID:26401429

  20. A simple protocol for the probability weights of the simulated tempering algorithm: Applications to first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Fiore, Carlos E.; da Luz, M. G. E.

    2010-12-01

    The simulated tempering (ST) is an important method to deal with systems whose phase spaces are hard to sample ergodically. However, it uses accepting probabilities weights, which often demand involving and time consuming calculations. Here it is shown that such weights are quite accurately obtained from the largest eigenvalue of the transfer matrix—a quantity straightforward to compute from direct Monte Carlo simulations—thus simplifying the algorithm implementation. As tests, different systems are considered, namely, Ising, Blume-Capel, Blume-Emery-Griffiths, and Bell-Lavis liquid water models. In particular, we address first-order phase transition at low temperatures, a regime notoriously difficulty to simulate because the large free-energy barriers. The good results found (when compared with other well established approaches) suggest that the ST can be a valuable tool to address strong first-order phase transitions, a possibility still not well explored in the literature.

  1. Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study.

    PubMed

    de Uña-Álvarez, Jacobo; Meira-Machado, Luís

    2015-06-01

    Multi-state models are often used for modeling complex event history data. In these models the estimation of the transition probabilities is of particular interest, since they allow for long-term predictions of the process. These quantities have been traditionally estimated by the Aalen-Johansen estimator, which is consistent if the process is Markov. Several non-Markov estimators have been proposed in the recent literature, and their superiority with respect to the Aalen-Johansen estimator has been proved in situations in which the Markov condition is strongly violated. However, the existing estimators have the drawback of requiring that the support of the censoring distribution contains the support of the lifetime distribution, which is not often the case. In this article, we propose two new methods for estimating the transition probabilities in the progressive illness-death model. Some asymptotic results are derived. The proposed estimators are consistent regardless the Markov condition and the referred assumption about the censoring support. We explore the finite sample behavior of the estimators through simulations. The main conclusion of this piece of research is that the proposed estimators are much more efficient than the existing non-Markov estimators in most cases. An application to a clinical trial on colon cancer is included. Extensions to progressive processes beyond the three-state illness-death model are discussed. PMID:25735883

  2. Measurements of transition probabilities for spin-changing lines of atomic ions used in diagnostics of astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Johnson, B. C.; Kwong, H. S.; Parkinson, W. H.; Knight, R. D.

    1984-01-01

    The intensities of ultraviolet, spin-changing, 'intersystem' lines of low-Z atomic ions are frequently used in determinations of electron densities and temperatures in astrophysical plasmas as well as in measurements of element abundances in the interstellar gas. The transition probabilities (A-values) of these lines, which are about five orders of magnitude weaker than allowed lines, have not been measured heretofore and various calculations produce A-values for these lines that differ by as much as 50 percent A radio-frequency ion trap has been used for the first measurements of transition probabilities for intersystem lines seen in astronomical spectra. The measurement procedure is discussed and results for Si III, O III, N II, and C III are reviewed and compared to calculated values. Discrepancies exist; these indicate that some of the calculated A-values may be less reliable than has been beleived and that revisions to the electron densities determined for some astrophysical plasmas may be required.

  3. Effect of magnetic field on electron spectrum and probabilities of intraband quantum transitions in spherical quantum-dot-quantum-well

    NASA Astrophysics Data System (ADS)

    Holovatsky, V.; Bernik, I.; Yakhnevych, M.

    2016-09-01

    The effect of magnetic field on electron energy spectrum, wave functions and probabilities of intraband quantum transitions in multilayered spherical quantum-dot-quantum-well (QDQW) CdSe/ZnS/CdSe/ZnS is studied. Computations are performed in the framework of the effective mass approximation and rectangular potential barriers model. The wave functions are expanded over the complete basis of functions obtained as exact solutions of the Schrodinger equation for the electron in QDQW without the magnetic field. It is shown that magnetic field takes off the spectrum degeneration with respect to the magnetic quantum number and changes the localization of electron in the nanostructure. The field stronger effects on the spherically-symmetric states, especially in the case of electron location in the outer potential well. The magnetic field changes more the radial distribution of probability of electron location in QDQW than the angular one. The oscillator strengths of intraband quantum transitions are calculated as functions of the magnetic field induction and their selection rules are established.

  4. The electron excited ultraviolet spectrum of HD : cross sections and transition probabilities

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph; Palle, Prahlad Vatti; Abgrall, Herve'; Roueff, Evelyne; Bhardwaj, Anil; Gustin, Jacques

    2005-01-01

    We have analyzed the high-resolution ultraviolet (UV) emission spectrum of molecular deuterium hydride (HD) excited by electron impact at 100 eV under optically thin, single-scattering experimental conditions. The high-resolution spectrum (FWHM=160 mA) spans the wavelength range from 900 to 1650 A and contains the two Rydberg series of HD: (sup 1)Sigma(sub u)(sup +)1s(sigma), np(si n=2, 3, 4) --> X(sup 1)Sigma(sub g)(sup +) and (sup 1)Pi(sub u)(sup +)1s(sigma), np(pi)(C,D,D',D'', n=2, 3, 4, 5) -->X(sup 1)Sigma(sub g)(sup +). A model spectrum of HD, based on newly calculated tra rovibrational coupling for the strongest band systems, B (sup 1)Sigma(sub u)(sup +)-X(sup 1)Sigma(sub g)(sup +),B'(sup 1)Sigma(sub g)(sup +)-X(sup 1)Sigma(sub g)(sup +),C(sup 1)Pi(sub u)-X(sup 1)Sigm sections for direct excitation at 100 eV of the B (sup 1)Sigma(sub u)(sup +), B' (sup 1)Sigma(sub u)(sup +), C(sup 1)Pi(sub u), and D(sup 1)Pi(sub u) states were derived from a model analysis of the state. The absolute cross section values for excitation to the B (sup 1)Sigma(sub u)(sup +), B' (sup 1)Sigma(sub u)(sup +), C(sup 1)Pi(sub u), and D(sup 1)Pi(sub u) states were found to be (2.57+/-0. and (0.17+/-0.04)x10(exp -17) sq cm, respectively. We have also determined the dissociative excitation cross sections at 100 eV for the emission of Ly(alpha) at 1216 A and Ly(Beta) at 1025 A lines, which are (7.98+/-1.12)x10(exp -18) and (0.40+/-0.10)x10(exp -18) sq cm, respectively. The summed excitation function of the closely spaced pair of lines, H Ly(alpha) and D Ly(Beta), resulting from excitation of HD, has been measured from the threshold to 800 eV and is analytically modeled with a semiempirical relation. The model cross sections are in good agreement with the corrected Ly(alpha) cross sections of Mohlmann et al. up to 2 keV. Based on measurements of H, D (2s) production cross section values by Mohlmann et al., the H, D (n=2) cross section is estimated to be 1.6 x 10(exp -17) sq cm at 100 eV.

  5. Bayesian Estimates of Transition Probabilities in Seven Small Lithophytic Orchid Populations: Maximizing Data Availability from Many Small Samples

    PubMed Central

    Tremblay, Raymond L.; McCarthy, Michael A.

    2014-01-01

    Predicting population dynamics for rare species is of paramount importance in order to evaluate the likelihood of extinction and planning conservation strategies. However, evaluating and predicting population viability can be hindered from a lack of data. Rare species frequently have small populations, so estimates of vital rates are often very uncertain due to lack of data. We evaluated the vital rates of seven small populations from two watersheds with varying light environment of a common epiphytic orchid using Bayesian methods of parameter estimation. From the Lefkovitch matrices we predicted the deterministic population growth rates, elasticities, stable stage distributions and the credible intervals of the statistics. Populations were surveyed on a monthly basis between 18–34 months. In some of the populations few or no transitions in some of the vital rates were observed throughout the sampling period, however, we were able to predict the most likely vital rates using a Bayesian model that incorporated the transitions rates from the other populations. Asymptotic population growth rate varied among the seven orchid populations. There was little difference in population growth rate among watersheds even though it was expected because of physical differences as a result of differing canopy cover and watershed width. Elasticity analyses of Lepanthes rupestris suggest that growth rate is more sensitive to survival followed by growth, shrinking and the reproductive rates. The Bayesian approach helped to estimate transition probabilities that were uncommon or variable in some populations. Moreover, it increased the precision of the parameter estimates as compared to traditional approaches. PMID:25068598

  6. Low-lying electronic states of the OH radical: Potential energy curves, dipole moment functions, and transition probabilities

    NASA Astrophysics Data System (ADS)

    Qin, X.; Zhang, S. D.

    2014-12-01

    The six doublet and the two quartet electronic states (2Σ+(2), 2Σ-, 2Π(2), 2Δ, 4Σ-, and 4Π) of the OH radical have been studied using the multi-reference configuration interaction (MRCI) method where the Davidson correction, core-valence interaction and relativistic effect are considered with large basis sets of aug-cc-pv5z, aug-cc-pcv5z, and cc-pv5z-DK, respectively. Potential energy curves (PECs) and dipole moment functions are also calculated for these states for internuclear distances ranging from 0.05 nm to 0.80 nm. All possible vibrational levels and rotational constants for the bound state X2Π and A2Σ+ of OH are predicted by numerical solving the radial Schrödinger equation through the Level program, and spectroscopic parameters, which are in good agreements with experimental results, are obtained. Transition dipole moments between the ground state X2Π and other excited states are also computed using MRCI, and the transition probability, lifetime, and Franck-Condon factors for the A2Σ+-X2Π transition are discussed and compared with existing experimental values.

  7. On the use of the thermal lens effect for measuring absolute luminescence quantum yields of transition metal complexes

    NASA Astrophysics Data System (ADS)

    Degen, Joachim; Reinecke, Klaus; Schmidtke, Hans-Herbert

    1992-05-01

    The thermal lens effect or thermal blooming of a laser beam passing through an absorbing medium is used to determine the fraction of absorbed laser power which is converted into heat. By this photocaloric method absolute luminescence quantum yields Φ can be evaluated covering the full range of possible Φ values. A check with organic standards for which quantum yields of 1, 0.52 and 0 are reported, supplies values of 0.99, 0.52 and 0.04, respectively. The sample of compounds [Ru(bipy) 3]X 2, X  Cl, ClO 4, and bipy  bipyridine, were studied using different concentrations in water and methanol solution at room temperature. The results strongly depend on the counter ion: for the Cl -- and (ClO 4) --salts quantum yields of Φ = 0.31 and 0.79, respectively, are obtained, which may be explained by different polarization conditions. The yields are, on the other hand, independent from the solvent and from the concentration, which was considered ranging from 10 -4 to 2.5 × 10 -5 M. Thermal blooming was also observed from [Ru(bipy) 3]Cl 2 contained in KBr pellets, measuring at various temperatures.

  8. Measurement of absolute transition frequencies of {sup 87}Rb to nS and nD Rydberg states by means of electromagnetically induced transparency

    SciTech Connect

    Mack, Markus; Karlewski, Florian; Hattermann, Helge; Hoeckh, Simone; Jessen, Florian; Cano, Daniel; Fortagh, Jozsef

    2011-05-15

    We report the measurement of absolute excitation frequencies of {sup 87}Rb to nS and nD Rydberg states. The Rydberg transition frequencies are obtained by observing electromagnetically induced transparency on a rubidium vapor cell. The accuracy of the measurement of each state is < or approx. 1 MHz, which is achieved by frequency stabilizing the two diode lasers employed for the spectroscopy to a frequency comb and a frequency comb calibrated wavelength meter, respectively. Based on the spectroscopic data we determine the quantum defects of {sup 87}Rb, and compare it with previous measurements on {sup 85}Rb. We determine the ionization frequency from the 5S{sub 1/2}(F=1) ground state of {sup 87}Rb to 1010.029 164 6(3)THz, providing the binding energy of the ground state with an accuracy improved by two orders of magnitude.

  9. Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium.

    PubMed

    Hoyt, C W; Barber, Z W; Oates, C W; Fortier, T M; Diddams, S A; Hollberg, L

    2005-08-19

    We report the direct excitation of the highly forbidden (6s2) 1S0 <--> (6s6p) 3P0 optical transition in two odd isotopes of neutral ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at approximately 70 microK in a magneto-optical trap. The measured frequency in 171Yb (F=1/2) is 518,295,836,591.6 +/- 4.4 kHz. The measured frequency in 173Yb (F=5/2) is 518,294,576,847.6 +/- 4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the National Institute of Standards and Technology cesium fountain clock and represent nearly a 10(6)-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be approximately 10 mHz, making them well suited to support a new generation of optical atomic clocks based on confinement in an optical lattice. PMID:16196856

  10. Time varying moments, regime switch, and crisis warning: The birth-death process with changing transition probability

    NASA Astrophysics Data System (ADS)

    Tang, Yinan; Chen, Ping

    2014-06-01

    The sub-prime crisis in the U.S. reveals the limitation of diversification strategy based on mean-variance analysis. A regime switch and a turning point can be observed using a high moment representation and time-dependent transition probability. Up-down price movements are induced by interactions among agents, which can be described by the birth-death (BD) process. Financial instability is visible by dramatically increasing 3rd to 5th moments one-quarter before and during the crisis. The sudden rising high moments provide effective warning signals of a regime-switch or a coming crisis. The critical condition of a market breakdown can be identified from nonlinear stochastic dynamics. The master equation approach of population dynamics provides a unified theory of a calm and turbulent market.

  11. Absolute optical frequency measurements of the cesium D1 transitions and their effect on alpha, the fine-structured constant

    NASA Astrophysics Data System (ADS)

    Calkins, Keith Gordon

    The fine-structure constant or electromagnetic coupling constant, alpha e, is a dimensionless ratio which unites many physics subfields. Although known precisely via experiments in each subfield, there is disagreement within and between subfields. In particular, precise values obtained via electron ge - 2 experiments which depend heavily on QED calculations have not always been in agreement with those obtained via muon g mu - 2 experiments. Also, solid state measurements (quantum hall effect and AC Josephson effect) often disagree with neutronic hmn measurements. alphae is often said to vary with energy but the question remains as to whether or not its low energy value is stable now or has been stable over the history of the universe. Improved precision helps resolve these issues as they relate to physics, possibly beyond the standard model. The Optical Frequency Measurements group in the Time and Frequency Division at the National Institute of Science and Technology (NIST, Boulder, CO) developed and maintains a femtosecond laser frequency comb which is calibrated with respect to the cesium fountain clock implementation of the second. A single frequency component of the femtosecond laser comb is used together with a solid state diode laser and cesium thermal beam to precisely measure the cesium D1 F ∈ {3,4} transition frequencies. The value of fD1centroid = 335 116 048 748.1(2.4) kHz obtained for the transition centroid is over fifteen times more precise than the most recent previous measurement. A precise value for the cesium D1 hyperfine splitting fHFe = 1 167 723.6(4.7) kHz is reported as well. This value is also over fifteen times more precise than the most recent previous measurement. These new neutral 133Cs 6s 2 S½ → 6p 2 P½ transition (D1) frequencies, when combined with the 2002 CODATA values of the Rydberg, proton/electron mass ratio, cesium atomic mass, and cesium recoil frequency, provide an almost QED-free value of alpha: alphae = 1/137.036 0000

  12. Relativistic Many-body Moller-Plesset Perturbation Theory Calculations of the Energy Levels and Transition Probabilities in Na- to P-like Xe Ions

    SciTech Connect

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2007-03-27

    Relativistic multireference many-body perturbation theory calculations have been performed on Xe{sup 43+}-Xe{sup 39+} ions, resulting in energy levels, electric dipole transition probabilities, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, frequency-dependent Breit correction and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.

  13. Energy levels, wavelengths, and radiative transition probabilities for the Na-like ions with 38 [le] Z [le] 45

    SciTech Connect

    Ying Zhang; Qiren Zhu; Shoufu Pan )

    1992-11-01

    The investigation by Z.-Q Zhang et al. (Acta Optica Sinica 11, 193, 1991) shows that it is possible to realize soft X-ray lasing in the water window 23.3-43.8 [Angstrom] with the Na-like recombination scheme, which requires a lower pumping power at a high-power laser facility than that with other schemes. The fine-structure levels with n [le] 15 and l [le] 6 in Na-like ions with 38 [le] Z [le] 45 and the probabilities for radiative transitions between these levels are calculated using the multiconfiguration Dirac-Fock approach. The calculations show that the wavelengths of the anticipated laser transitions 6 f-4d and 6g-4f in the Na-like ions with 38 [le] Z [le] 43 and 5f-4d and 5g-4f in the Na-like ions with 40 [le] Z [le] 45 lie in the region of the water window.

  14. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    NASA Astrophysics Data System (ADS)

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S. H.

    2014-05-01

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s23p4, 3s3p5, 3s23p33d, 3s23p34s, 3s23p34p, and 3s23p34d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit-Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spin-orbit, spin-other-orbit, and spin-spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications.

  15. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  16. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    SciTech Connect

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S.H.

    2014-05-15

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, 3s{sup 2}3p{sup 3}4s, 3s{sup 2}3p{sup 3}4p, and 3s{sup 2}3p{sup 3}4d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit–Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spin–orbit, spin–other-orbit, and spin–spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications. -- Highlights: •Accurate atomic data of iron ions are needed for identification of solar corona. •Extensive configuration interaction wavefunctions including 123 fine-structure levels have been calculated. •The relativistic effects by means of the Breit–Pauli Hamiltonian terms are incorporated. •This incorporation adjusts the energy levels, therefore the calculated values are close to experimental values.

  17. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  18. The FERRUM project: Experimental lifetimes and transition probabilities from highly excited even 4d levels in Fe ii

    NASA Astrophysics Data System (ADS)

    Hartman, H.; Nilsson, H.; Engström, L.; Lundberg, H.

    2015-12-01

    We report lifetime measurements of the 6 levels in the 3d6(5D)4d e6G term in Fe ii at an energy of 10.4 eV, and f-values for 14 transitions from the investigated levels. The lifetimes were measured using time-resolved laser-induced fluorescence on ions in a laser-produced plasma. The high excitation energy, and the fact that the levels have the same parity as the the low-lying states directly populated in the plasma, necessitated the use of a two-photon excitation scheme. The probability for this process is greatly enhanced by the presence of the 3d6(5D)4p z6F levels at roughly half the energy difference. The f-values are obtained by combining the experimental lifetimes with branching fractions derived using relative intensities from a hollow cathode discharge lamp recorded with a Fourier transform spectrometer. The data is important for benchmarking atomic calculations of astrophysically important quantities and useful for spectroscopy of hot stars.

  19. Deterministic inference for stochastic systems using multiple shooting and a linear noise approximation for the transition probabilities.

    PubMed

    Zimmer, Christoph; Sahle, Sven

    2015-10-01

    Estimating model parameters from experimental data is a crucial technique for working with computational models in systems biology. Since stochastic models are increasingly important, parameter estimation methods for stochastic modelling are also of increasing interest. This study presents an extension to the 'multiple shooting for stochastic systems (MSS)' method for parameter estimation. The transition probabilities of the likelihood function are approximated with normal distributions. Means and variances are calculated with a linear noise approximation on the interval between succeeding measurements. The fact that the system is only approximated on intervals which are short in comparison with the total observation horizon allows to deal with effects of the intrinsic stochasticity. The study presents scenarios in which the extension is essential for successfully estimating the parameters and scenarios in which the extension is of modest benefit. Furthermore, it compares the estimation results with reversible jump techniques showing that the approximation does not lead to a loss of accuracy. Since the method is not based on stochastic simulations or approximative sampling of distributions, its computational speed is comparable with conventional least-squares parameter estimation methods. PMID:26405142

  20. Configuration-interaction plus many-body-perturbation-theory calculations of Si i transition probabilities, oscillator strengths, and lifetimes

    NASA Astrophysics Data System (ADS)

    Savukov, I. M.

    2016-02-01

    The precision of the mixed configuration-interaction plus many-body-perturbation-theory (CI+MBPT) method is limited in multivalence atoms by the large size of valence CI space. Previously, to study this problem, the CI+MBPT method was applied to calculations of energies in a four-valence electron atom, Si i. It was found that by using a relatively small cavity of 30 a.u. and by choosing carefully the configuration space, quite accurate agreement between theory and experiment at the level of 100 cm-1 can be obtained, especially after subtraction of systematic shifts for groups of states of the same J and parity. However, other properties are also important to investigate. In this work, the CI+MBPT method is applied to studies of transition probabilities, oscillator strengths, and lifetimes. A close agreement with accurate experimental measurements and other elaborate theories is obtained. The long-term goal is to extend the CI+MBPT approach to applications in more complex atoms, such as lantanides and actinides.

  1. High resolution absolute absorption cross sections of the B ̃(1)A'-X ̃(1)A' transition of the CH2OO biradical.

    PubMed

    Foreman, Elizabeth S; Kapnas, Kara M; Jou, YiTien; Kalinowski, Jarosław; Feng, David; Gerber, R Benny; Murray, Craig

    2015-12-28

    Carbonyl oxides, or Criegee intermediates, are formed from the gas phase ozonolysis of alkenes and play a pivotal role in night-time and urban area atmospheric chemistry. Significant discrepancies exist among measurements of the strong B ̃(1)A'-X ̃(1)A' electronic transition of the simplest Criegee intermediate, CH2OO in the visible/near-UV. We report room temperature spectra of the B ̃(1)A'-X ̃(1)A' electronic absorption band of CH2OO acquired at higher resolution using both single-pass broadband absorption and cavity ring-down spectroscopy. The new absorption spectra confirm the vibrational structure on the red edge of the band that is absent from ionization depletion measurements. The absolute absorption cross sections over the 362-470 nm range are in good agreement with those reported by Ting et al. Broadband absorption spectra recorded over the temperature range of 276-357 K were identical within their mutual uncertainties, confirming that the vibrational structure is not due to hot bands. PMID:26595457

  2. Inversion of the relative probabilities of the f- f and f- d transitions in the Ln3+ lanthanide ions at their radio- and sonoexcitation as compared to photoexcitation

    NASA Astrophysics Data System (ADS)

    Sharipov, G. L.

    2007-07-01

    The results of measuring the efficiencies of the formation of electronically excited states of the Ln3+ lanthanide ions in aqueous solutions in the processes of radioluminescence and multibubble sonoluminescence are analyzed. In both cases, electronic excitation occurs due to inelastic collisions of Ln3+ ions with (for radioluminescence) charged ionizing particles in liquid and (for multibubble sonoluminescence) high-energy particles, primarily electrons, in the gas phase of cavitation bubbles. In both processes, the efficiencies of exciting ions whose luminescence states appear in the 4 f-5 d transitions (Ce3+ and Pr3+) are significantly lower (by an order of magnitude or larger) than the efficiencies of exciting ions whose luminescence states appear in the 4 f-4 f transitions (Gd3+ and Tb3+). Therefore, the probability of the f- d transitions is lower than the probability of the f- f transitions in lanthanide ions excited by collisions with the charged particles and the relative probabilities of these transitions are inverted in these processes as compared to photoexcitation.

  3. Dipole moments and transition probabilities of the a 3Sigma(+)g - b 3Sigma(+)u system of molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Guberman, S.; Dalgarno, A.; Posen, A.; Kwok, T. L.

    1986-01-01

    Multiconfiguration variational calculations of the electronic wave functions of the a 3Sigma(+)g and b 3Sigma(+)u states of molecular hydrogen are presented, and the electric dipole transition moment between them (of interest in connection with stellar atmospheres and the UV spectrum of the Jovian planets) is obtained. The dipole moment is used to calculate the probabilities of radiative transitions from the discrete vibrational levels of the a 3Sigma(+)g state to the vibrational continuum of the repulsive b 3Sigma(+)u state as functions of the wavelength of the emitted photons. The total transition probabilities and radiative lifetimes of the levels v prime = 0-20 are presented.

  4. Transition probabilities for the Au ((2)S, (2)D, and (2)P) with SiH(4) reaction.

    PubMed

    Pacheco-Sánchez, J H; Luna-García, H M; García-Cruz, L M; Novaro, O

    2010-01-28

    Transition probabilities on the interaction of the ground and the lowest excited states of gold Au ((2)S:5d(10)6s(1), (2)D:5d(9)6s(2), and (2)P:5d(10)6p(1)) with silane (SiH(4)) are studied through ab initio Hartree-Fock self-consistent field calculations, where the atom's core is represented by relativistic effective core potentials. These calculations are followed by a multiconfigurational self-consistent field study. The correlation energy is accounted for through extensive variational and perturbative second order multireference Moller-Plesset configuration interaction analysis of selected perturbations obtained by iterative process calculations using the CIPSI program package. It is found that the Au atom in the ((2)P:5d(10)6p(1)) state inserts in the Si-H bond. In this interaction its corresponding D (2)A(') potential energy surface is initially attractive and only becomes repulsive after encountering an avoided crossing with the initially repulsive C (2)A(') surface linked to the Au((2)D:5d(9)6s(2))-SiH(4) fragments. The A, B, and C (2)A(') curves derived from the Au((2)D:5d(9)6s(2)) atom interaction with silane are initially repulsive, each one of them showing two avoided crossings, while the A (2)A(') curve goes sharply downwards until it meets the X (2)A(') curve interacting adiabatically, which is linked with the Au((2)S:5d(10)6s(1))-SiH(4) moieties. The A (2)A(') curve becomes repulsive after the avoided crossing with the X (2)A('), curve. The lowest-lying X (2)A(') potential leads to the HAuSiH(3) X (2)A(') intermediate molecule. This intermediate molecule, diabatically correlated with the Au((2)P:5d(10)6p(1))+SiH(4) system which lies 3.34 kcal/mol above the ground state reactants, has been carefully characterized as have the dissociation channels leading to the AuH+SiH(3) and H+AuSiH(3) products. These products are reached from the HAuSiH(3) intermediate without any activation barrier. The Au-SiH(4) calculation results are successfully compared to

  5. Transition probabilities of the B-prime 1Sigma(u)(+) to X 1Sigma(g)(+) system of molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Kwok, T. L.; Dalgarno, A.; Posen, A.

    1985-01-01

    From published potential energy curves and transition dipole moments, there are obtained by numerical integration of the equations of nuclear motion the vibrational eigenfunctions of the X 1Sigma(g)(+) and B-prime 1Sigma(u)(+) states of H2. The probabilities of radiative transitions from the discrete vibrational levels of the excited B-prime 1Sigma(u)(+) electronic state of H2 to the discrete and continuum vibrational levels of the ground X 1Sigma(g)(+) electronic state are calculated. The Franck-Condon factors are also presented.

  6. New experimental limits on the probabilities of pauli-forbidden transitions in the {sup 12}C nucleus from data obtained with the borexino detector

    SciTech Connect

    Derbin, A. V.; Fomenko, K. A.

    2010-12-15

    The Pauli exclusion principle was tested for nucleons in the {sup 12}C nucleus by using data from the Borexino detector. The approach used consisted in seeking photons, neutrons, and protons, as well as electrons and positrons, emitted in the Pauli-forbidden transitions of nucleons from the 1P{sub 3/2} shell to the filled 1S{sub 1/2} shell. Owing to a uniquely low background level in the Borexino detector and its large mass, the currently most stringent experimental limits were obtained for the probabilities and relative intensities of Pauli-forbidden transitions for the electromagnetic, strong, and weak channels.

  7. Absolute frequency and isotope shift of the magnesium (3 s2) 1S0→(3 s 3 d ) 1D2 two-photon transition by direct frequency-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Peters, E.; Reinhardt, S.; Hänsch, Th. W.; Udem, Th.

    2015-12-01

    We use a picosecond frequency-doubled mode-locked titanium sapphire laser to generate a frequency comb at 431 nm in order to probe the (3 s2) 1S0 →(3 s 3 d ) 1D2 transition in atomic magnesium. Using a second, self-referenced femtosecond frequency comb, the absolute transition frequency and the 24Mg and 26Mg isotope shift is determined relative to a global-positioning-system-referenced hydrogen maser. Our result for the transition frequency of the main isotope 24Mg of 1 391 128 606.14 (12 ) MHz agrees with previous measurements and reduces its uncertainty by four orders of magnitude. For the isotope shift we find δ ν26 ,24=3915.13 (39 ) MHz. Accurate values for transition frequencies in Mg are relevant in astrophysics and to test atomic structure calculations.

  8. Oscillator strengths and transition probabilities from the Breit–Pauli R-matrix method: Ne IV

    SciTech Connect

    Nahar, Sultana N.

    2014-09-15

    The atomic parameters–oscillator strengths, line strengths, radiative decay rates (A), and lifetimes–for fine structure transitions of electric dipole (E1) type for the astrophysically abundant ion Ne IV are presented. The results include 868 fine structure levels with n≤ 10, l≤ 9, and 1/2≤J≤ 19/2 of even and odd parities, and the corresponding 83,767 E1 transitions. The calculations were carried out using the relativistic Breit–Pauli R-matrix method in the close coupling approximation. The transitions have been identified spectroscopically using an algorithm based on quantum defect analysis and other criteria. The calculated energies agree with the 103 observed and identified energies to within 3% or better for most of the levels. Some larger differences are also noted. The A-values show good to fair agreement with the very limited number of available transitions in the table compiled by NIST, but show very good agreement with the latest published multi-configuration Hartree–Fock calculations. The present transitions should be useful for diagnostics as well as for precise and complete spectral modeling in the soft X-ray to infra-red regions of astrophysical and laboratory plasmas. -- Highlights: •The first application of BPRM method for accurate E1 transitions in Ne IV is reported. •Amount of atomic data (n going up to 10) is complete for most practical applications. •The calculated energies are in very good agreement with most observed levels. •Very good agreement of A-values and lifetimes with other relativistic calculations. •The results should provide precise nebular abundances, chemical evolution etc.

  9. On Probability Domains III

    NASA Astrophysics Data System (ADS)

    Frič, Roman; Papčo, Martin

    2015-12-01

    Domains of generalized probability have been introduced in order to provide a general construction of random events, observables and states. It is based on the notion of a cogenerator and the properties of product. We continue our previous study and show how some other quantum structures fit our categorical approach. We discuss how various epireflections implicitly used in the classical probability theory are related to the transition to fuzzy probability theory and describe the latter probability theory as a genuine categorical extension of the former. We show that the IF-probability can be studied via the fuzzy probability theory. We outline a "tensor modification" of the fuzzy probability theory.

  10. Improved techniques for outgoing wave variational principle calculations of converged state-to-state transition probabilities for chemical reactions

    NASA Technical Reports Server (NTRS)

    Mielke, Steven L.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    Improved techniques and well-optimized basis sets are presented for application of the outgoing wave variational principle to calculate converged quantum mechanical reaction probabilities. They are illustrated with calculations for the reactions D + H2 yields HD + H with total angular momentum J = 3 and F + H2 yields HF + H with J = 0 and 3. The optimization involves the choice of distortion potential, the grid for calculating half-integrated Green's functions, the placement, width, and number of primitive distributed Gaussians, and the computationally most efficient partition between dynamically adapted and primitive basis functions. Benchmark calculations with 224-1064 channels are presented.

  11. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  12. Estimating the Transitional Probabilities of Smoking Stages with Cross-sectional Data and 10-Year Projection for Smoking Behavior in Iranian Adolescents

    PubMed Central

    Khosravi, Ahmad; Mansournia, Mohammad Ali; Mahmoodi, Mahmood; Pouyan, Ali Akbar; Holakouie-Naieni, Kourosh

    2016-01-01

    Background: Cigarette smoking is one of the most important health-related risk factors in terms of morbidity and mortality. In this study, we introduced a new method for deriving the transitional probabilities of smoking stages from a cross-sectional study and simulated a long-term smoking behavior for adolescents. Methods: In this study in 2010, a total of 4853 high school students were randomly selected and were completed a self-administered questionnaire about cigarette smoking. We used smoothed age- and sex-specific prevalence of smoking stages in a probabilistic discrete event system for estimating of transitional probabilities. A nonhomogenous discrete time Markov chain analysis was used to model the progression of the smoking in 10 years ahead in the same population. The mean age of the students was 15.69 ± 0.73 years (range: 14–19). Results: The smoothed prevalence proportion of current smoking varies between 3.58 and 26.14%. The age-adjusted odds of initiation in boys is 8.9 (95% confidence interval [CI]: 7.9–10.0) times of the odds of initiation of smoking in girls. Our study predicted that the prevalence proportion of current smokers increased from 7.55% in 2010 to 20.31% (95% CI: 19.44–21.37) for 2019. Conclusions: The present study showed a moderately but concerning prevalence of current smoking in Iranian adolescents and introduced a novel method for estimation of transitional probabilities from a cross-sectional study. The increasing trend of cigarette use among adolescents indicated the necessity of paying more attention to this group. PMID:27625766

  13. TURBULENCE IN A THREE-DIMENSIONAL DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE. II. INTERMITTENCY AND THE DEFLAGRATION-TO-DETONATION TRANSITION PROBABILITY

    SciTech Connect

    Schmidt, W.; Niemeyer, J. C.; Ciaraldi-Schoolmann, F.; Roepke, F. K.; Hillebrandt, W.

    2010-02-20

    The delayed detonation model describes the observational properties of the majority of Type Ia supernovae very well. Using numerical data from a three-dimensional deflagration model for Type Ia supernovae, the intermittency of the turbulent velocity field and its implications on the probability of a deflagration-to-detonation (DDT) transition are investigated. From structure functions of the turbulent velocity fluctuations, we determine intermittency parameters based on the log-normal and the log-Poisson models. The bulk of turbulence in the ash regions appears to be less intermittent than predicted by the standard log-normal model and the She-Leveque model. On the other hand, the analysis of the turbulent velocity fluctuations in the vicinity of the flame front by Roepke suggests a much higher probability of large velocity fluctuations on the grid scale in comparison to the log-normal intermittency model. Following Pan et al., we computed probability density functions for a DDT for the different distributions. The determination of the total number of regions at the flame surface, in which DDTs can be triggered, enables us to estimate the total number of events. Assuming that a DDT can occur in the stirred flame regime, as proposed by Woosley et al., the log-normal model would imply a delayed detonation between 0.7 and 0.8 s after the beginning of the deflagration phase for the multi-spot ignition scenario used in the simulation. However, the probability drops to virtually zero if a DDT is further constrained by the requirement that the turbulent velocity fluctuations reach about 500 km s{sup -1}. Under this condition, delayed detonations are only possible if the distribution of the velocity fluctuations is not log-normal. From our calculations follows that the distribution obtained by Roepke allow for multiple DDTs around 0.8 s after ignition at a transition density close to 1 x 10{sup 7} g cm{sup -3}.

  14. Transition probabilities of HER2-positive and HER2-negative breast cancer patients treated with Trastuzumab obtained from a clinical cancer registry dataset

    PubMed Central

    Pobiruchin, Monika; Bochum, Sylvia; Martens, Uwe M.; Kieser, Meinhard; Schramm, Wendelin

    2016-01-01

    Records of female breast cancer patients were selected from a clinical cancer registry and separated into three cohorts according to HER2-status (human epidermal growth factor receptor 2) and treatment with or without Trastuzumab (a humanized monoclonal antibody). Propensity score matching was used to balance the cohorts. Afterwards, documented information about disease events (recurrence of cancer, metastases, remission of local/regional recurrences, remission of metastases and death) found in the dataset was leveraged to calculate the annual transition probabilities for every cohort. PMID:27054173

  15. Transition probabilities of HER2-positive and HER2-negative breast cancer patients treated with Trastuzumab obtained from a clinical cancer registry dataset.

    PubMed

    Pobiruchin, Monika; Bochum, Sylvia; Martens, Uwe M; Kieser, Meinhard; Schramm, Wendelin

    2016-06-01

    Records of female breast cancer patients were selected from a clinical cancer registry and separated into three cohorts according to HER2-status (human epidermal growth factor receptor 2) and treatment with or without Trastuzumab (a humanized monoclonal antibody). Propensity score matching was used to balance the cohorts. Afterwards, documented information about disease events (recurrence of cancer, metastases, remission of local/regional recurrences, remission of metastases and death) found in the dataset was leveraged to calculate the annual transition probabilities for every cohort. PMID:27054173

  16. Transition probabilities in OH A 2 sigma + - X 2 pi i: Bands with v prime = 0 and 1, v double prime = 0 to 4

    NASA Technical Reports Server (NTRS)

    Copeland, Richard A.; Jeffries, Jay B.; Crosley, David R.

    1986-01-01

    Experimental results for relative vibrational band transition probabilities for v prime = 0 and 1, and v double prime = 0 to 4 in the A-X electronic system of OH are presented. The measurements, part of a larger set involving v prime = 0 to 4 and v double prime = 0 to 6, were made using spectrally dispersed laser-induced fluorescence (LIF) in the burnt gases of a flame. These Einstein coefficients will be useful in dynamics experiments for quantitative LIF determinations of OH radical concentrations in high v double prime.

  17. Dynamic phase transitions of the Blume-Emery-Griffiths model under an oscillating external magnetic field by the path probability method

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume-Emery-Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.

  18. Absolute measurement of the 1S0 − 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link

    PubMed Central

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-01-01

    We report a stability below 7 × 10−17 of two independent optical lattice clocks operating with bosonic 88Sr isotope. The value (429 228 066 418 008.3(1.9)syst (0.9)stat Hz) of the absolute frequency of the 1S0 – 3P0 transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures. PMID:26639347

  19. Effect of H2 binding on the nonadiabatic transition probability between singlet and triplet states of the [NiFe]-hydrogenase active site.

    PubMed

    Kaliakin, Danil S; Zaari, Ryan R; Varganov, Sergey A

    2015-02-12

    We investigate the effect of H2 binding on the spin-forbidden nonadiabatic transition probability between the lowest energy singlet and triplet electronic states of [NiFe]-hydrogenase active site model, using a velocity averaged Landau-Zener theory. Density functional and multireference perturbation theories were used to provide parameters for the Landau-Zener calculations. It was found that variation of the torsion angle between the terminal thiolate ligands around the Ni center induces an intersystem crossing between the lowest energy singlet and triplet electronic states in the bare active site and in the active site with bound H2. Potential energy curves between the singlet and triplet minima along the torsion angle and H2 binding energies to the two spin states were calculated. Upon H2 binding to the active site, there is a decrease in the torsion angle at the minimum energy crossing point between the singlet and triplet states. The probability of nonadiabatic transitions at temperatures between 270 and 370 K ranges from 35% to 32% for the active site with bound H2 and from 42% to 38% for the bare active site, thus indicating the importance of spin-forbidden nonadiabatic pathways for H2 binding on the [NiFe]-hydrogenase active site. PMID:25603170

  20. Microstructure-sensitive weighted probability approach for modeling surface to bulk transition of high cycle fatigue failures dominated by primary inclusions

    NASA Astrophysics Data System (ADS)

    Salajegheh, Nima

    The mechanical alloying and casting processes used to make polycrystalline metallic materials often introduce undesirable non-metallic inclusions and pores. These are often the dominant sites of fatigue failure origination at the low stress amplitudes that correspond to the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regimes, in which the number of cycles to crack initiation is more than 106. HCF and VHCF experiments on some advanced metallic alloys, such as powder metallurgy Ni-base superalloys, titanium alloys, and high-strength steels have shown that the critical inclusions and pores can appear on the surface as well as in the bulk of the specimen. Fatigue lives have been much higher for specimens that fail from a bulk site. The relative number of bulk initiations increases as the stress amplitude decreases such that just below the traditional HCF limit, fatigue life data appears to be evenly scattered between two datasets corresponding to surface and bulk initiations. This is often referred to as surface to bulk transition in the VHCF regime. Below this transition stress, the likelihood of surface versus bulk initiation significantly impacts the low failure probability estimate of fatigue life. Under these circumstances, a large number of very costly experiments need to be conducted to obtain a statistically representative distribution of fatigue life and to predict the surface versus bulk initiation probability. In this thesis, we pursue a simulation-based approach whereby microstructure-sensitive finite element simulations are performed within a statistical construct to examine the VHCF life variability and assess the surface initiation probability. The methodology introduced in this thesis lends itself as a cost-effective platform for development of microstructure-property relations to support design of new or modified alloys, or to more efficiently predict the properties of existing alloys.

  1. Regulation of human fibroblast growth rate by both noncycling cell fraction transition probability is shown by growth in 5-bromodeoxyuridine followed by Hoechst 33258 flow cytometry.

    PubMed Central

    Rabinovitch, P S

    1983-01-01

    Growth of human diploid fibroblasts in the presence of 5-bromodeoxyuridine, followed by flow cytometric analysis of DNA-specific fluorescence with Hoechst 33258 dye, allows quantitation of the proportion of cells that have not cycled, as well as those in G1 and G2 of two subsequent cell cycles. This technique allows rapid and accurate quantitation of the growth fraction and G1/S transition rate of these cells. The cell cycle kinetics of human diploid fibroblasts at all population doubling levels reveal two components: cycling cells showing a probabilistic rate of G1/S transition, and a variable proportion of noncycling cells. Both the transition probability (rate of exit from G1) and the noncycling proportion of cells change systematically as a function of serum concentration and as a function of population doubling level. The data suggest the existence of an underlying heterogeneity in the population of human diploid fibroblasts with respect to the capacity to divide in the presence of a given concentration of mitogen. Models of cell cycle kinetics must be modified to include regulation of growth by changes in the fraction of cycling cells, as well as by changes in the rate of exit from G1. PMID:6190165

  2. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  3. Measurement of absolute cross sections for excitation of the 2s(2) S-1 -> 2s2p P-1 degrees transition in O+4

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Djuric, N.; Lozano, J. A.; Berrington, K. A.; Chutjian, A.

    2005-01-01

    Experimental cross sections are reported for the 1s(2)2s(2) S-1 -> 1s(2)2s2p P-1(o) transition in O+4 located at 19.689 eV. Use is made of the electron energy-loss method, using a merged electron-ion beam geometry. The center-of-mass interaction energies for the measurements in the S-1 -> P-1(o) transition are in the range 18 eV ( below the threshold) to 30 eV. Data are compared with other previous electron energy-loss measurements and with results of a 26 term R-matrix calculation that includes fine structure explicitly via the Breit-Pauli Hamiltonian. Clear resonance enhancement is observed in all experimental and theoretical results near the threshold for this S-1 -> P-1(o) transition.

  4. The cumulative reaction probability as eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Manthe, Uwe; Miller, William H.

    1993-09-01

    It is shown that the cumulative reaction probability for a chemical reaction can be expressed (absolutely rigorously) as N(E)=∑kpk(E), where {pk} are the eigenvalues of a certain Hermitian matrix (or operator). The eigenvalues {pk} all lie between 0 and 1 and thus have the interpretation as probabilities, eigenreaction probabilities which may be thought of as the rigorous generalization of the transmission coefficients for the various states of the activated complex in transition state theory. The eigenreaction probabilities {pk} can be determined by diagonalizing a matrix that is directly available from the Hamiltonian matrix itself. It is also shown how a very efficient iterative method can be used to determine the eigenreaction probabilities for problems that are too large for a direct diagonalization to be possible. The number of iterations required is much smaller than that of previous methods, approximately the number of eigenreaction probabilities that are significantly different from zero. All of these new ideas are illustrated by application to three model problems—transmission through a one-dimensional (Eckart potential) barrier, the collinear H+H2→H2+H reaction, and the three-dimensional version of this reaction for total angular momentum J=0.

  5. Electron impact excitation of Mg VIII . Collision strengths, transition probabilities and theoretical EUV and soft X-ray line intensities for Mg VIII

    NASA Astrophysics Data System (ADS)

    Grieve, M. F. R.; Ramsbottom, C. A.; Keenan, F. P.

    2013-08-01

    Context. Mg viii emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg viii emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics. Aims: Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg viii ion. The 125 levels arise from the 2s22p, 2s2p2, 2p3, 2s23s, 2s23p, 2s23d, 2s2p3s, 2s2p3p, 2s2p3d, 2p23s, 2p23p and 2p23d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg viii models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 Å, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 Å) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data. Methods: The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg viii models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas. Results: The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the

  6. Radiative transition probabilities, lifetimes and dipole moments for the vibrational levels of the X1Sigma+ ground state of 39K85Rb.

    PubMed

    Zemke, Warren T; Stwalley, William C

    2004-01-01

    Using a potential energy curve (based primarily on the RKR potential of Amiot and Verges [J. Chem. Phys. 112, 7068 (2000)]) and a dipole moment function (based primarily on ab initio calculations of Park et al. [Chem. Phys. 257, 135 (2000)]), we have calculated radiative transition probabilities (Einstein A coefficients), radiative lifetimes, and dipole moment expectation values involving all vibrational levels (for several rotational quantum numbers) of the X1Sigma+ ground state of 39K85Rb. We observe that the radiative lifetimes of vibrationally excited levels, in particular, are approximately 10(3)-10(6) seconds, far too long to be significant in most ultracold experiments involving 39K85Rb or its isotopomers. Comparison with other molecules (LiH and HF) suggests that simple scaling (A approximately mu2nu3 approximately tau(-1)) will predict similarly long lifetimes for many other heteronuclear molecules, e.g., RbCs. PMID:15267264

  7. Radiative transition probabilities, lifetimes and dipole moments for the vibrational levels of the X 1Σ+ ground state of 39K85Rb

    NASA Astrophysics Data System (ADS)

    Zemke, Warren T.; Stwalley, William C.

    2004-01-01

    Using a potential energy curve (based primarily on the RKR potential of Amiot and Vergès [J. Chem. Phys. 112, 7068 (2000)]) and a dipole moment function (based primarily on ab initio calculations of Park et al. [Chem. Phys. 257, 135 (2000)]), we have calculated radiative transition probabilities (Einstein A coefficients), radiative lifetimes, and dipole moment expectation values involving all vibrational levels (for several rotational quantum numbers) of the X 1Σ+ ground state of 39K85Rb. We observe that the radiative lifetimes of vibrationally excited levels, in particular, are ˜103-106 seconds, far too long to be significant in most ultracold experiments involving 39K85Rb or its isotopomers. Comparison with other molecules (LiH and HF) suggests that simple scaling (A˜μ2ν3˜τ-1) will predict similarly long lifetimes for many other heteronuclear molecules, e.g., RbCs.

  8. The Neolithic Demographic Transition in Europe: Correlation with Juvenility Index Supports Interpretation of the Summed Calibrated Radiocarbon Date Probability Distribution (SCDPD) as a Valid Demographic Proxy

    PubMed Central

    Downey, Sean S.; Bocaege, Emmy; Kerig, Tim; Edinborough, Kevan; Shennan, Stephen

    2014-01-01

    Analysis of the proportion of immature skeletons recovered from European prehistoric cemeteries has shown that the transition to agriculture after 9000 BP triggered a long-term increase in human fertility. Here we compare the largest analysis of European cemeteries to date with an independent line of evidence, the summed calibrated date probability distribution of radiocarbon dates (SCDPD) from archaeological sites. Our cemetery reanalysis confirms increased growth rates after the introduction of agriculture; the radiocarbon analysis also shows this pattern, and a significant correlation between both lines of evidence confirms the demographic validity of SCDPDs. We analyze the areal extent of Neolithic enclosures and demographic data from ethnographically known farming and foraging societies and we estimate differences in population levels at individual sites. We find little effect on the overall shape and precision of the SCDPD and we observe a small increase in the correlation with the cemetery trends. The SCDPD analysis supports the hypothesis that the transition to agriculture dramatically increased demographic growth, but it was followed within centuries by a general pattern of collapse even after accounting for higher settlement densities during the Neolithic. The study supports the unique contribution of SCDPDs as a valid demographic proxy for the demographic patterns associated with early agriculture. PMID:25153481

  9. Energy levels, oscillator strengths and transition probabilities for Si-like P II, S III, Cl IV, Ar V and K VI

    SciTech Connect

    Abou El-Maaref, A.; Uosif, M.A.M.; Allam, S.H.; El-Sherbini, Th.M.

    2012-07-15

    Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for transitions among the terms belonging to 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p, 3s{sup 2}3p4d, 3s{sup 2}3p5s and 3s{sup 2}3p5p configurations of silicon-like ions P II, S III, Cl IV, Ar V and K VI have been calculated using configuration-interaction version 3 (CIV3). We compared our data with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels are also given.

  10. Relative transition probabilities for krypton.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1972-01-01

    First experimental line strength data for the visible Kr II lines and for several of the more prominent Kr I lines are given. The spectroscopic light source used is the thermal plasma behind the reflected shock wave in a gas-driven shock tube. A 3/4-m spectrograph and a 1-m spectrograph were employed simultaneously to provide redundant photometry. The data are compared with other measurements and with theoretical calculations.

  11. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  12. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  13. Absolute cross sections for near-threshold electron-impact excitation of the 2s{sup 2}S{r_arrow}2p{sup 2}P transition in C{sup 3+}

    SciTech Connect

    Bannister, M.E.; Chung, Y.; Djuric, N.; Wallbank, B.; Woitke, O.; Zhou, S.; Dunn, G.H.; Smith, A.C.

    1998-01-01

    Absolute total cross sections for electron-impact excitation of the 2s{sup 2}S{r_arrow}2p{sup 2}P transition in C{sup 3+} were measured from 7.35 eV to 8.45 eV using the merged electron-ion-beams energy-loss technique. The results settle the discrepancy between two previous experiments using the crossed-beams fluorescence method, being in very good agreement with the older results [P. O. Taylor, D. Gregory, G. H. Dunn, R. A. Phaneuf, and D. H. Crandall, Phys. Rev. Lett. {bold 39}, 1256 (1977)] but less so with the more recent ones [D. W. Savin, L. D. Gardner, D. B. Reisenfeld, A. R. Young, and J. L. Kohl, Phys. Rev. A {bold 51}, 2162 (1995)]. The present measurements are also in good agreement with unitarized Coulomb-Born and close-coupling calculations. {copyright} {ital 1998} {ital The American Physical Society}

  14. Absolute frequency measurement of 1S0(F = 1/2)-3P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS

    NASA Astrophysics Data System (ADS)

    Park, Chang Yong; Yu, Dai-Hyuk; Lee, Won-Kyu; Eon Park, Sang; Kim, Eok Bong; Lee, Sun Kyung; Cho, Jun Woo; Yoon, Tai Hyun; Mun, Jongchul; Jong Park, Sung; Kwon, Taeg Yong; Lee, Sang-Bum

    2013-04-01

    We measured the absolute frequency of the optical clock transition 1S0(F = 1/2)-3P0(F = 1/2) of 171Yb atoms confined in a one-dimensional optical lattice and it was determined to be 518 295 836 590 863.5(8.1) Hz. The frequency was measured against Terrestrial Time (TT; the SI second on the geoid) using an optical frequency comb of which the frequency was phase-locked to an H-maser as a flywheel oscillator traceable to TT. The magic wavelength was also measured as 394 798.48(79) GHz. The results are in good agreement with two previous measurements of other institutes within the specified uncertainty of this work.

  15. Observation and Absolute Frequency Measurements of the {sup 1}S{sub 0}-{sup 3}P{sub 0} Optical Clock Transition in Neutral Ytterbium

    SciTech Connect

    Hoyt, C.W.; Barber, Z.W.; Oates, C.W.; Fortier, T.M.; Diddams, S.A.; Hollberg, L.

    2005-08-19

    We report the direct excitation of the highly forbidden (6s{sup 2}){sup 1}S{sub 0}{r_reversible}(6s6p){sup 3}P{sub 0} optical transition in two odd isotopes of neutral ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at {approx}70 {mu}K in a magneto-optical trap. The measured frequency in {sup 171}Yb (F=1/2) is 518 295 836 591.6{+-}4.4 kHz. The measured frequency in {sup 173}Yb (F=5/2) is 518 294 576 847.6{+-}4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the National Institute of Standards and Technology cesium fountain clock and represent nearly a 10{sup 6}-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be {approx}10 mHz, making them well suited to support a new generation of optical atomic clocks based on confinement in an optical lattice.

  16. Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ringdown spectroscopy of the A transition

    SciTech Connect

    John W. Thomas, Jr; Andrew McIlroy

    1999-11-22

    We measure cavity ringdown spectra of the A{sup 2}{Delta}-X{sup 2}II transition of the methylidyne (CH) radical in a series of rich low-pressure methane-oxygen-argon flames and demonstrate that the technique is sensitive, quantitative, and straightforward in its implementation and interpretation. As a line-of-sight technique, it complements imaging techniques, such as planar laser-induced fluorescence. Our results generally agree with chemical kinetic models for methane oxidation that have appeared in the literature, but suggest some refinements are necessary. Additional examination of the CH + O{sub 2} reaction rate as a function of temperature is advised. Our results are consistent with those of Derzy et al. using the C{sup 2}{Sigma}{sup +}-X{sup 2}II transition for stoichiometric, low-pressure flames which include nitrogen. Our results for rich flames, as with earlier experiments for singlet methylene, suggest that flame chemical kinetic models need to be adjusted to account for flame chemistry for stoichiometries richer than {phi} = 1.5.

  17. Single-case probabilities

    NASA Astrophysics Data System (ADS)

    Miller, David

    1991-12-01

    The propensity interpretation of probability, bred by Popper in 1957 (K. R. Popper, in Observation and Interpretation in the Philosophy of Physics, S. Körner, ed. (Butterworth, London, 1957, and Dover, New York, 1962), p. 65; reprinted in Popper Selections, D. W. Miller, ed. (Princeton University Press, Princeton, 1985), p. 199) from pure frequency stock, is the only extant objectivist account that provides any proper understanding of single-case probabilities as well as of probabilities in ensembles and in the long run. In Sec. 1 of this paper I recall salient points of the frequency interpretations of von Mises and of Popper himself, and in Sec. 2 I filter out from Popper's numerous expositions of the propensity interpretation its most interesting and fertile strain. I then go on to assess it. First I defend it, in Sec. 3, against recent criticisms (P. Humphreys, Philos. Rev. 94, 557 (1985); P. Milne, Erkenntnis 25, 129 (1986)) to the effect that conditional [or relative] probabilities, unlike absolute probabilities, can only rarely be made sense of as propensities. I then challenge its predominance, in Sec. 4, by outlining a rival theory: an irreproachably objectivist theory of probability, fully applicable to the single case, that interprets physical probabilities as instantaneous frequencies.

  18. A differential equation for the transition probability B(E2)↑ and the resulting recursion relations connecting even-even nuclei

    NASA Astrophysics Data System (ADS)

    Pattnaik, S.; Nayak, R. C.

    2014-04-01

    We obtain here a new relation for the reduced electric quadrupole transition probability B(E2)↑ of a given nucleus in terms of its derivatives with respect to neutron and proton numbers based on a similar local energy relation in the Infinite Nuclear Matter (INM) model of atomic nuclei, which is essentially built on the foundation of the Hugenholtz-Van Hove (HVH) theorem of many-body theory. Obviously, such a relation in the form of a differential equation is expected to be more powerful than the usual algebraic difference equations. Although the relation for B(E2)↑ has been perceived simply on the basis of a corresponding differential equation for the local energy in the INM model, its theoretical foundation otherwise has been clearly demonstrated. We further exploit the differential equation in using the very definitions of the derivatives to obtain two different recursion relations for B(E2)↑, connecting in each case three neighboring even-even nuclei from lower to higher mass numbers and vice versa. We demonstrate their numerical validity using available data throughout the nuclear chart and also explore their possible utility in predicting B(E2)↑ values.

  19. Phosphate is not an absolute requirement for the inhibitory effects of cyclosporin A or cyclophilin D deletion on mitochondrial permeability transition.

    PubMed

    McGee, Allison M; Baines, Christopher P

    2012-04-01

    CypD (cyclophilin D) has been established as a critical regulator of the MPT (mitochondrial permeability transition) pore, and pharmacological or genetic inhibition of CypD attenuates MPT in numerous systems. However, it has recently been suggested that the inhibitory effects of CypD inhibition only manifest when P(i) (inorganic phosphate) is present, and that inhibition is lost when P(i) is replaced by As(i) (inorganic arsenate) or V(i) (inorganic vanadate). To test this, liver mitochondria were isolated from wild-type and CypD-deficient (Ppif-/-) mice and then incubated in buffer containing P(i), As(i) or V(i). MPT was induced under both energized and de-energized conditions by the addition of Ca2+, and the resultant mitochondrial swelling was measured spectrophotometrically. For pharmacological inhibition of CypD, wild-type mitochondria were pre-incubated with CsA (cyclosporin A) before the addition of Ca2+. In energized and de-energized mitochondria, Ca2+ induced MPT regardless of the anion present, although the magnitude differed between P(i), As(i) and V(i). However, in all cases, pre-treatment with CsA significantly inhibited MPT. Moreover, these effects were independent of mouse strain, organ type and rodent species. Similarly, attenuation of Ca2+-induced MPT in the Ppif-/- mitochondria was still observed irrespective of whether P(i), As(i) or V(i) was present. We conclude that the pharmacological and genetic inhibition of CypD is still able to attenuate MPT even in the absence of P(i). PMID:22236255

  20. First-principles relativistic calculations of the fine-structure intervals and magnetic dipole transition probabilities in the 1 s sup 2 2 p configuration of the lithium isoelectric sequence

    SciTech Connect

    Das, B.P.; Venugopal, E.P. ); Idrees, M. )

    1990-12-01

    We present the results of our first-principles relativistic calculations of the fine-structure intervals and magnetic dipole transition probabilities for the 1{ital s}{sup 2}2{ital p} configuration of the lithium isoelectronic sequence using a variational approach. The contributions of the Breit interaction and approximate Lamb-shift corrections are incorporated via first-order perturbation theory. Our results of the fine-structure intervals are in good agreement with experiment, but experimental data for the magnetic dipole transition probabilities are not available for comparison with our calculations.

  1. Transitions.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1993-01-01

    This theme issue on transitions for individuals with disabilities contains nine papers discussing transition programs and issues. "Transition Issues for the 1990s," by Michael J. Ward and William D. Halloran, discusses self-determination, school responsibility for transition, continued educational engagement of at-risk students, and service…

  2. Is spacetime absolutely or just most probably Lorentzian?

    NASA Astrophysics Data System (ADS)

    Davidson, Aharon; Yellin, Ben

    2016-08-01

    Pre-gauging the cosmological scale factor a(t) does not introduce unphysical degrees of freedom into the exact FLRW classical solution. It seems to lead, however, to a non-dynamical mini superspace. The missing ingredient, a generalized momentum enjoying canonical Dirac (rather than Poisson) brackets with the lapse function n(t), calls for measure scaling which can be realized by means of a scalar field. The latter is essential for establishing a geometrical connection with the five-dimensional Kaluza–Klein Schwarzschild–deSitter black hole. Contrary to the Hartle–Hawking approach, (i) the t-independent wave function \\psi (a) is traded for an explicit t-dependent \\psi (n,t), (ii) the classical FLRW configuration does play a major role in the structure of the ’most classical’ cosmological wave packet, and (iii) the non-singular Euclid/Lorentz crossovers get quantum mechanically smeared.

  3. Why Probability?

    ERIC Educational Resources Information Center

    Weatherly, Myra S.

    1984-01-01

    Instruction in mathematical probability to enhance higher levels of critical and creative thinking with gifted students is described. Among thinking skills developed by such an approach are analysis, synthesis, evaluation, fluency, and complexity. (CL)

  4. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  5. Transitions.

    ERIC Educational Resources Information Center

    Field, David; And Others

    1992-01-01

    Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)

  6. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition Issues for the 1990s" (William Halloran…

  7. The absolute path command

    Energy Science and Technology Software Center (ESTSC)

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  8. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  9. Nonequilibrium equalities in absolutely irreversible processes

    NASA Astrophysics Data System (ADS)

    Murashita, Yuto; Funo, Ken; Ueda, Masahito

    2015-03-01

    Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as = 1 . Although nonequilibrium equalities apply to rather general nonequilibrium situations, they break down in absolutely irreversible processes, where the forward-path probability vanishes and the entropy production diverges. We identify the mathematical origins of this inapplicability as the singularity of probability measure. As a result, we generalize conventional integral nonequilibrium equalities to absolutely irreversible processes as = 1 -λS , where λS is the probability of the singular part defined based on Lebesgue's decomposition theorem. The acquired equality contains two physical quantities related to irreversibility: σ characterizing ordinary irreversibility and λS describing absolute irreversibility. An inequality derived from the obtained equality demonstrates the absolute irreversibility leads to the fundamental lower bound on the entropy production. We demonstrate the validity of the obtained equality for a simple model.

  10. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  11. Periodic-orbit formula for quantum reactions through transition states

    SciTech Connect

    Schubert, Roman; Goussev, Arseni; Wiggins, Stephen; Waalkens, Holger

    2010-07-15

    Transition state theory forms the basis of computing reaction rates in chemical and other systems. Recently, it has been shown how transition state theory can rigorously be realized in phase space by using an explicit algorithm. The quantization has been demonstrated to lead to an efficient procedure to compute cumulative reaction probabilities and the associated Gamov-Siegert resonances. In this paper, these results are used to express the cumulative reaction probability as an absolutely convergent sum over periodic orbits contained in the transition state.

  12. VESPA: False positive probabilities calculator

    NASA Astrophysics Data System (ADS)

    Morton, Timothy D.

    2015-03-01

    Validation of Exoplanet Signals using a Probabilistic Algorithm (VESPA) calculates false positive probabilities and statistically validates transiting exoplanets. Written in Python, it uses isochrones [ascl:1503.010] and the package simpledist.

  13. IMPROVED log(gf) VALUES FOR LINES OF Ti I AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti I)

    SciTech Connect

    Lawler, J. E.; Guzman, A.; Wood, M. P.; Sneden, C.; Cowan, J. J. E-mail: adrianaguzman2014@u.northwestern.edu E-mail: chris@verdi.as.utexas.edu

    2013-04-01

    New atomic transition probability measurements for 948 lines of Ti I are reported. Branching fractions from Fourier transform spectra and from spectra recorded using a 3 m echelle spectrometer are combined with published radiative lifetimes from laser-induced fluorescence measurements to determine these transition probabilities. Generally good agreement is found in comparisons to the NIST Atomic Spectra Database. The new Ti I data are applied to re-determine the Ti abundance in the photospheres of the Sun and metal-poor star HD 84937 using many lines covering a range of wavelength and excitation potential to explore possible non-local thermal equilibrium effects. The variation of relative Ti/Fe abundance with metallicity in metal-poor stars observed in earlier studies is supported in this study.

  14. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  15. Absolute and Convective Instability of a Liquid Jet in Microgravity

    NASA Technical Reports Server (NTRS)

    Lin, Sung P.; Vihinen, I.; Honohan, A.; Hudman, Michael D.

    1996-01-01

    The transition from convective to absolute instability is observed in the 2.2 second drop tower of the NASA Lewis Research Center. In convective instability the disturbance grows spatially as it is convected downstream. In absolute instability the disturbance propagates both downstream and upstream, and manifests itself as an expanding sphere. The transition Reynolds numbers are determined for two different Weber numbers by use of Glycerin and a Silicone oil. Preliminary comparisons with theory are made.

  16. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  17. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  18. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  19. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  20. K{beta}/K{alpha} X-Ray Transition-Probability Ratios for 8 Elements in the range 69 {<=} Z {<=} 76

    SciTech Connect

    Kaya, N.; Tirasoglu, E.; Aylikci, V.; Cengiz, E.

    2007-04-23

    K{beta}/K{alpha} X-ray transition-probabilitiy ratios for 8 elements in the range 69 {<=} Z {<=} 76 were measured with an Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. The characteristic K X-rays were produced by a 25 mCi 57Co annular source. Experimental results have been compared with theoretically calculated values and other available experimental results.

  1. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  2. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  3. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  4. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  5. The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction

    SciTech Connect

    Welsch, Ralph Manthe, Uwe

    2014-11-07

    Full-dimensional calculations of initial state-selected reaction probabilities on an accurate ab initio potential energy surface (PES) have been communicated recently [R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014)]. These calculations use the quantum transition state concept, the multi-layer multi-configurational time-dependent Hartree approach, and graphics processing units to speed up the potential evaluation. Here further results of these calculations and an extended analysis are presented. State-selected reaction probabilities are given for many initial ro-vibrational states. The role of the vibrational states of the activated complex is analyzed in detail. It is found that rotationally cold methane mainly reacts via the ground state of the activated complex while rotationally excited methane mostly reacts via H–H–CH{sub 3}-bending excited states of the activated complex. Analyzing the different contributions to the reactivity of the vibrationally states of methane, a complex pattern is found. Comparison with initial state-selected reaction probabilities computed on the semi-empirical Jordan-Gilbert PES reveals the dependence of the results on the specific PES.

  6. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  7. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  8. Measurement of the O{sub 2} (b{sup 1{Sigma}}{sub g}{sup +} {yields} a{sup 1{Delta}}{sub g}) transition probability by the method of intracavity laser spectroscopy

    SciTech Connect

    Vagin, Nikolai P; Ionin, Andrei A; Podmar'kov, Yu P; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P

    2005-04-30

    The method of intracavity laser spectroscopy using a Co:MgF{sub 2} laser is applied to record the absorption spectra from the first excited a{sup 1{Delta}}{sub g} state of gaseous molecular oxygen at the a{sup 1{Delta}}{sub g} {yields} b{sup 1{Sigma}}{sub g}{sup +} transition at 1.91 {mu}m. The gas flow from a chemical singlet oxygen generator with a known concentration of singlet oxygen O{sub 2} (a{sup 1{Delta}}{sub g}) was supplied to the cavity of the Co:MgF{sub 2} laser. The absorption line intensities are measured for five spectral lines of the Q-branch of the 0-0 vibrational band for the a{sup 1{Delta}}{sub g} {yields} b{sup 1{Sigma}}{sub g}{sup +} transition. The O{sub 2} (b{sup 1{Sigma}}{sub g}{sup +} {yields} a{sup 1{Delta}}{sub g}) transition probability calculated from these data was (1.20 {+-} 0.25) x 10{sup -3} s{sup -1}. (laser applications and other topics in quantum electronics)

  9. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  10. Stretching Probability Explorations with Geoboards

    ERIC Educational Resources Information Center

    Wheeler, Ann; Champion, Joe

    2016-01-01

    Students are faced with many transitions in their middle school mathematics classes. To build knowledge, skills, and confidence in the key areas of algebra and geometry, students often need to practice using numbers and polygons in a variety of contexts. Teachers also want students to explore ideas from probability and statistics. Teachers know…

  11. Determination of K-capture Probability in the Decay of {sup 139}Ce

    SciTech Connect

    Ganbaatar, N.; Ichinkhorloo, D.; Tserenchimeg, E.

    2009-03-31

    We have been studying the KX and gamma rays spectra in the electron capture decay of {sup 139}Ce{yields}{sup 139}La, which were measured by Ge-spectrometer. The absolute intensity of KX and the 165.8 keV gamma rays has been determined and the known conversion coefficients of the 165.8 keV gamma transition of {sup 139}La were used. The probability P{sub K} was determined as 0.755{+-}0.054. Our results have good agreement with the results of other works.

  12. Effect of the Framework Convention on Tobacco Control and Voluntary Industry Health Warning Labels on Passage of Mandated Cigarette Warning Labels From 1965 to 2012: Transition Probability and Event History Analyses

    PubMed Central

    Sanders-Jackson, Ashley N.; Song, Anna V.; Hiilamo, Heikki

    2013-01-01

    Objectives. We quantified the pattern and passage rate of cigarette package health warning labels (HWLs), including the effect of the Framework Convention on Tobacco Control (FCTC) and HWLs voluntarily implemented by tobacco companies. Methods. We used transition probability matrices to describe the pattern of HWL passage and change rate in 4 periods. We used event history analysis to estimate the effect of the FCTC on adoption and to compare that effect between countries with voluntary and mandatory HWLs. Results. The number of HWLs passed during each period accelerated, from a transition rate among countries that changed from 2.42 per year in 1965–1977 to 6.71 in 1977–1984, 8.42 in 1984–2003, and 22.33 in 2003–2012. The FCTC significantly accelerated passage of FCTC-compliant HWLs for countries with initially mandatory policies with a hazard of 1.27 per year (95% confidence interval = 1.11, 1.45), but only marginally increased the hazard for countries that had an industry voluntary HWL of 1.68 per year (95% confidence interval = 0.95, 2.97). Conclusions. Passage of HWLs is accelerating, and the FCTC is associated with further acceleration. Industry voluntary HWLs slowed mandated HWLs. PMID:24028248

  13. Infants Segment Continuous Events Using Transitional Probabilities

    ERIC Educational Resources Information Center

    Stahl, Aimee E.; Romberg, Alexa R.; Roseberry, Sarah; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-01-01

    Throughout their 1st year, infants adeptly detect statistical structure in their environment. However, little is known about whether statistical learning is a primary mechanism for event segmentation. This study directly tests whether statistical learning alone is sufficient to segment continuous events. Twenty-eight 7- to 9-month-old infants…

  14. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  15. Probability 1/e

    ERIC Educational Resources Information Center

    Koo, Reginald; Jones, Martin L.

    2011-01-01

    Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.

  16. Is There a Rule of Absolute Neutralization in Nupe?

    ERIC Educational Resources Information Center

    Krohn, Robert

    1975-01-01

    A previously prosed rule of absolute neutralization (merging underlying low vowels) is eliminated in an alternative analysis including instead a rule that "breaks" the feature matrix of certain low vowels and redistributes the features of each vowel as a sequence of vowel-like transition plus (a). (Author/RM)

  17. Absolute cross sections for near-threshold electron-impact excitation of the dipole-allowed transitions 3s2 1S-->3s3p 1P in Cl5+ and 3s 2S-->3p 2P in Cl6+

    NASA Astrophysics Data System (ADS)

    Djurić, N.; Bannister, M. E.; Derkatch, A. M.; Griffin, D. C.; Krause, H. F.; Popović, D. B.; Smith, A. C.; Wallbank, B.; Dunn, G. H.

    2002-05-01

    Experimental and theoretical cross sections for electron-impact excitation of the dipole-allowed transitions 3s2 1S-->3s3p 1P in Cl5+ and 3s 2S-->3p 2P in Cl6+ near the excitation thresholds are reported. Absolute cross sections are measured using the merged electron-ion beams energy-loss technique. The intermediate-coupling frame-transformation R-matrix method is used to obtain theoretical cross sections. The total cross sections, for the transitions studied in both ions, exhibit resonance structures near threshold. There is excellent agreement between theory and experiment with respect to both the shape and the magnitude of the cross section for the 3s 2S-->3p 2P transition in Cl6+. For Cl5+, structures and trends in both the present R-matrix calculation and the previous calculation of Baluja and Mohan [J. Phys. B 20, 831 (1987)] agree well with the experimental results. However, the magnitudes of the theoretical cross sections for Cl5+ are significantly smaller than the measured cross section, which has been corrected for metastable contamination.

  18. IMPROVED LABORATORY TRANSITION PROBABILITIES FOR Ce II, APPLICATION TO THE CERIUM ABUNDANCES OF THE SUN AND FIVE r-PROCESS-RICH, METAL-POOR STARS, AND RARE EARTH LAB DATA SUMMARY

    SciTech Connect

    Lawler, J. E.; Den Hartog, E. A.; Sneden, C.; Cowan, J. J.; Ivans, I. I. E-mail: eadenhar@wisc.edu E-mail: cowan@nhn.ou.edu

    2009-05-15

    Recent radiative lifetime measurements accurate to {+-}5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log {epsilon} = 1.61 {+-} 0.01 ({sigma} = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log {epsilon} = 1.61 {+-} 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17{sup 0}3248, CS 22892-052, CS 31082-001, HD 115444, and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of {+-}0.01 dex similar to the solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process-only model predictions for solar system material. This consistent match with small scatter over a wide range of stellar metallicities lends support to these predictions of elemental fractions. A companion paper includes an interpretation of these new precision abundance results for Ce as well as new abundance results and interpretation for Pr, Dy, and Tm.

  19. Probability and Relative Frequency

    NASA Astrophysics Data System (ADS)

    Drieschner, Michael

    2016-01-01

    The concept of probability seems to have been inexplicable since its invention in the seventeenth century. In its use in science, probability is closely related with relative frequency. So the task seems to be interpreting that relation. In this paper, we start with predicted relative frequency and show that its structure is the same as that of probability. I propose to call that the `prediction interpretation' of probability. The consequences of that definition are discussed. The "ladder"-structure of the probability calculus is analyzed. The expectation of the relative frequency is shown to be equal to the predicted relative frequency. Probability is shown to be the most general empirically testable prediction.

  20. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  1. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  2. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  3. Evolution and Probability.

    ERIC Educational Resources Information Center

    Bailey, David H.

    2000-01-01

    Some of the most impressive-sounding criticisms of the conventional theory of biological evolution involve probability. Presents a few examples of how probability should and should not be used in discussing evolution. (ASK)

  4. BIODEGRADATION PROBABILITY PROGRAM (BIODEG)

    EPA Science Inventory

    The Biodegradation Probability Program (BIODEG) calculates the probability that a chemical under aerobic conditions with mixed cultures of microorganisms will biodegrade rapidly or slowly. It uses fragment constants developed using multiple linear and non-linear regressions and d...

  5. Probability on a Budget.

    ERIC Educational Resources Information Center

    Ewbank, William A.; Ginther, John L.

    2002-01-01

    Describes how to use common dice numbered 1-6 for simple mathematical situations including probability. Presents a lesson using regular dice and specially marked dice to explore some of the concepts of probability. (KHR)

  6. Dependent Probability Spaces

    ERIC Educational Resources Information Center

    Edwards, William F.; Shiflett, Ray C.; Shultz, Harris

    2008-01-01

    The mathematical model used to describe independence between two events in probability has a non-intuitive consequence called dependent spaces. The paper begins with a very brief history of the development of probability, then defines dependent spaces, and reviews what is known about finite spaces with uniform probability. The study of finite…

  7. Searching with probabilities

    SciTech Connect

    Palay, A.J.

    1985-01-01

    This book examines how probability distributions can be used as a knowledge representation technique. It presents a mechanism that can be used to guide a selective search algorithm to solve a variety of tactical chess problems. Topics covered include probabilities and searching the B algorithm and chess probabilities - in practice, examples, results, and future work.

  8. Dipole moments and transition probabilities of the i 3Pi sub g-b 3Sigma(+) sub u, c 3Pi sub u-a 3Sigma(+) sub g, and i 3Pi sub g-c 3Pi sub u systems of molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.; Dalgarno, A.

    1992-01-01

    Bonn-Oppenheimer-based ab initio calculations of dipole moments from the i 3Pi sub g-b 3Sigma(+) sub u, c 3Pi sub u-a 3Sigma(+) sub g, and i 3Pi sub g-c 3Pi sub u transitions of H2 have been conducted, to yield a tabulation of the dipole transition probabilities and Franck-Condon factors. These factors are given for transitions originating in the lowest vibrational level of the ground X 1Sigma(+) sub g state.

  9. The gain-of-function enhancement of IP3-receptor channel gating by familial Alzheimer's disease-linked presenilin mutants increases the open probability of mitochondrial permeability transition pore.

    PubMed

    Toglia, Patrick; Ullah, Ghanim

    2016-07-01

    Mutants in presenilins (PS1 or PS2) are the major cause of familial Alzheimer's disease (FAD). They affect intracellular Ca(2+) homeostasis by increasing the open probability (Po) of inositol 1,4,5-trisposphate (IP3) receptor (IP3R) Ca(2+) release channel located on the endoplasmic reticulum (ER) leading to exaggerated Ca(2+) release into a cytoplasmic microdomain formed by neighboring cluster of a few IP3R channels and mitochondrial Ca(2+) uniporter (MCU). Ca(2+) concentration in the microdomain ( [Formula: see text] ) depends on the distance between the cluster and MCU (r); the number of IP3R in the cluster releasing Ca(2+) to the cytoplasm ( [Formula: see text] ), and Po of IP3R. Using experimental whole-cell IP3R-mediated cytosolic Ca(2+) data, in conjunction with a computational model of cell bioenergetics, a data-driven Markov chain model for IP3R gating, and a model for the dynamics of the mitochondrial permeability transition pore (PTP), we explore differences in mitochondrial Ca(2+) uptake in cells expressing wild type (PS1-WT) and FAD-causing mutant (PS1-M146L) PS. We find that increased mitochondrial [Formula: see text] due to the gain-of-function enhancement of IP3R channels in the cells expressing PS1-M146L leads to the opening of PTP in high conductance state (PTPh), where the latency of opening is inversely correlated with r and proportional to [Formula: see text] . Furthermore, we observe diminished inner mitochondrial membrane potential (ΔΨm), [NADH], [Formula: see text] , and [ATP] when PTP opens. Additionally, we explore how parameters such as the pH gradient, inorganic phosphate concentration, and the rate of the Na(+)/Ca(2+)-exchanger affect the latency of PTP to open in PTPh. PMID:27184076

  10. In All Probability, Probability is not All

    ERIC Educational Resources Information Center

    Helman, Danny

    2004-01-01

    The national lottery is often portrayed as a game of pure chance with no room for strategy. This misperception seems to stem from the application of probability instead of expectancy considerations, and can be utilized to introduce the statistical concept of expectation.

  11. Measurement and Calculation of Absolute Single- and Multiple-Charge-Exchange Cross Sections for Feq+ Ions Impacting CO and CO2

    SciTech Connect

    Simcic, J.; Mawhorter, R. J.; Cadez, I.; Greenwood, J. B.; Chutjian, A.; Smith, S. J.

    2010-01-01

    Absolute cross sections are reported for single, double, and triple charge exchange of Feq+ (q=5- 13) ions with CO and CO2. The highly-charged Fe ions are generated in an electron cyclotron resonance ion source. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental results are compared with new calculations of these cross sections in the n-electron classical trajectory Monte-Carlo approximation, in which the ensuing radiative and non-radiative cascades are approximated with scaled hydrogenic transition probabilities and scaled Auger rates. The present data are needed in astrophysical applications of solar- and stellar-wind charge-exchange with comets, planetary atmospheres, and circumstellar clouds.

  12. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  13. Derivation of quantum probability from measurement

    NASA Astrophysics Data System (ADS)

    Herbut, Fedor

    2016-05-01

    To begin with, it is pointed out that the form of the quantum probability formula originates in the very initial state of the object system as seen when the state is expanded with the eigenprojectors of the measured observable. Making use of the probability reproducibility condition, which is a key concept in unitary measurement theory, one obtains the relevant coherent distribution of the complete-measurement results in the final unitary-measurement state in agreement with the mentioned probability formula. Treating the transition from the final unitary, or premeasurement, state, where all possible results are present, to one complete-measurement result sketchily in the usual way, the well-known probability formula is derived. In conclusion it is pointed out that the entire argument is only formal unless one makes it physical assuming that the quantum probability law is valid in the extreme case of probability-one (certain) events (projectors).

  14. Cumulative reaction probabilities and transition state properties: A study of the H{sup +}+H{sub 2} and H{sup +}+D{sub 2} proton exchange reactions

    SciTech Connect

    Jambrina, P. G.; Aoiz, F. J.; Eyles, C. J.; Herrero, V. J.; Saez Rabanos, V.

    2009-05-14

    Cumulative reaction probabilities (CRPs) have been calculated by accurate (converged, close coupling) quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical QCT (SQCT) methods for the H{sup +}+H{sub 2} and H{sup +}+D{sub 2} reactions at collision energies up to 1.2 eV and total angular momentum J=0-4. A marked resonance structure is found in the QM CRP, most especially for the H{sub 3}{sup +} system and J=0. When the CRPs are resolved in their ortho and para contributions, a clear steplike structure is found associated with the opening of internal states of reactants and products. The comparison of the QCT results with those of the other methods evinces the occurrence of two transition states, one at the entrance and one at the exit. At low J values, except for the quantal resonance structure and the lack of quantization in the product channel, the agreement between QM and QCT is very good. The SQCT model, that reflects the steplike structure associated with the opening of initial and final states accurately, clearly tends to overestimate the value of the CRP as the collision energy increases. This effect seems more marked for the H{sup +}+D{sub 2} isotopic variant. For sufficiently high J values, the growth of the centrifugal barrier leads to an increase in the threshold of the CRP. At these high J values the discrepancy between SQCT and QCT becomes larger and is magnified with growing collision energy. The total CRPs calculated with the QCT and SQCT methods allowed the determination of the rate constant for the H{sup +}+D{sub 2} reaction. It was found that the rate, in agreement with experiment, decreases with temperature as expected for an endothermic reaction. In the range of temperatures between 200 and 500 K the differences between SQCT and QCT rate results are relatively minor. Although exact QM calculations are formidable for an exact determination of the k(T), it can be reliably expected that their value will lie between those given by

  15. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  16. Population-based absolute risk estimation with survey data.

    PubMed

    Kovalchik, Stephanie A; Pfeiffer, Ruth M

    2014-04-01

    Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614

  17. Anytime synthetic projection: Maximizing the probability of goal satisfaction

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John L.

    1990-01-01

    A projection algorithm is presented for incremental control rule synthesis. The algorithm synthesizes an initial set of goal achieving control rules using a combination of situation probability and estimated remaining work as a search heuristic. This set of control rules has a certain probability of satisfying the given goal. The probability is incrementally increased by synthesizing additional control rules to handle 'error' situations the execution system is likely to encounter when following the initial control rules. By using situation probabilities, the algorithm achieves a computationally effective balance between the limited robustness of triangle tables and the absolute robustness of universal plans.

  18. Probability with Roulette

    ERIC Educational Resources Information Center

    Marshall, Jennings B.

    2007-01-01

    This article describes how roulette can be used to teach basic concepts of probability. Various bets are used to illustrate the computation of expected value. A betting system shows variations in patterns that often appear in random events.

  19. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  20. Improving HST Pointing & Absolute Astrometry

    NASA Astrophysics Data System (ADS)

    Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.

    2007-05-01

    Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.

  1. Absolute oral bioavailability of ciprofloxacin.

    PubMed

    Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

    1986-09-01

    We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

  2. Absolute Instability in Coupled-Cavity TWTs

    NASA Astrophysics Data System (ADS)

    Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.

    2014-10-01

    This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.

  3. Potential Skin Regeneration Activity and Chemical Composition of Absolute from Pueraria thunbergiana Flower.

    PubMed

    Kim, Do-Yoon; Won, Kyung-Jong; Hwang, Dae-Il; Yoon, Seok Won; Lee, Su Jin; Park, Joo-Hoon; Yoon, Myeong Sik; Kim, Bokyung; Lee, Hwan Myung

    2015-11-01

    The flower of Pueraria thunbergiana BENTH (PTBF) contains isoflavonoids and essential oil components. It has many biological and pharmacological activities, including anti-diabetes, anti-oxidant, and weight loss. However, its effect on skin regeneration remains unknown. In the present study, we isolated the absolute from PTBF through solvent extraction and determined the role of the absolute on skin regeneration-associated responses in human epidermal-keratinocytes (HaCats). The PTBF absolute, which contained 10 compounds, stimulated migration and proliferation and increased the phosphorylation of serine/threonine-specific protein kinase and extracellular signal-regulated kinasel/2 in HaCats. It induced type I and IV collagen synthesis in HaCats. In addition, treatment with PTBF absolute resulted in increased sprout outgrowth in HaCats. These findings suggest that PTBF absolute may participate in skin regeneration, probably through promotion of migration, proliferation, and collagen synthesis. PMID:26749850

  4. Experimental Probability in Elementary School

    ERIC Educational Resources Information Center

    Andrew, Lane

    2009-01-01

    Concepts in probability can be more readily understood if students are first exposed to probability via experiment. Performing probability experiments encourages students to develop understandings of probability grounded in real events, as opposed to merely computing answers based on formulae.

  5. Absolute negative mobility of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

    2015-12-01

    Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

  6. Acceptance, values, and probability.

    PubMed

    Steel, Daniel

    2015-10-01

    This essay makes a case for regarding personal probabilities used in Bayesian analyses of confirmation as objects of acceptance and rejection. That in turn entails that personal probabilities are subject to the argument from inductive risk, which aims to show non-epistemic values can legitimately influence scientific decisions about which hypotheses to accept. In a Bayesian context, the argument from inductive risk suggests that value judgments can influence decisions about which probability models to accept for likelihoods and priors. As a consequence, if the argument from inductive risk is sound, then non-epistemic values can affect not only the level of evidence deemed necessary to accept a hypothesis but also degrees of confirmation themselves. PMID:26386533

  7. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  8. Varga: On Probability.

    ERIC Educational Resources Information Center

    Varga, Tamas

    This booklet resulted from a 1980 visit by the author, a Hungarian mathematics educator, to the Teachers' Center Project at Southern Illinois University at Edwardsville. Included are activities and problems that make probablility concepts accessible to young children. The topics considered are: two probability games; choosing two beads; matching…

  9. Application of Quantum Probability

    NASA Astrophysics Data System (ADS)

    Bohdalová, Mária; Kalina, Martin; Nánásiová, Ol'ga

    2009-03-01

    This is the first attempt to smooth time series using estimators with applying quantum probability with causality (non-commutative s-maps on an othomodular lattice). In this context it means that we use non-symmetric covariance matrix to construction of our estimator.

  10. Univariate Probability Distributions

    ERIC Educational Resources Information Center

    Leemis, Lawrence M.; Luckett, Daniel J.; Powell, Austin G.; Vermeer, Peter E.

    2012-01-01

    We describe a web-based interactive graphic that can be used as a resource in introductory classes in mathematical statistics. This interactive graphic presents 76 common univariate distributions and gives details on (a) various features of the distribution such as the functional form of the probability density function and cumulative distribution…

  11. Inequalities, Absolute Value, and Logical Connectives.

    ERIC Educational Resources Information Center

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  12. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  13. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  14. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  15. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  16. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  17. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  18. Waste Package Misload Probability

    SciTech Connect

    J.K. Knudsen

    2001-11-20

    The objective of this calculation is to calculate the probability of occurrence for fuel assembly (FA) misloads (i.e., Fa placed in the wrong location) and FA damage during FA movements. The scope of this calculation is provided by the information obtained from the Framatome ANP 2001a report. The first step in this calculation is to categorize each fuel-handling events that occurred at nuclear power plants. The different categories are based on FAs being damaged or misloaded. The next step is to determine the total number of FAs involved in the event. Using the information, a probability of occurrence will be calculated for FA misload and FA damage events. This calculation is an expansion of preliminary work performed by Framatome ANP 2001a.

  19. Overspecification of color, pattern, and size: salience, absoluteness, and consistency

    PubMed Central

    Tarenskeen, Sammie; Broersma, Mirjam; Geurts, Bart

    2015-01-01

    The rates of overspecification of color, pattern, and size are compared, to investigate how salience and absoluteness contribute to the production of overspecification. Color and pattern are absolute and salient attributes, whereas size is relative and less salient. Additionally, a tendency toward consistent responses is assessed. Using a within-participants design, we find similar rates of color and pattern overspecification, which are both higher than the rate of size overspecification. Using a between-participants design, however, we find similar rates of pattern and size overspecification, which are both lower than the rate of color overspecification. This indicates that although many speakers are more likely to include color than pattern (probably because color is more salient), they may also treat pattern like color due to a tendency toward consistency. We find no increase in size overspecification when the salience of size is increased, suggesting that speakers are more likely to include absolute than relative attributes. However, we do find an increase in size overspecification when mentioning the attributes is triggered, which again shows that speakers tend to refer in a consistent manner, and that there are circumstances in which even size overspecification is frequently produced. PMID:26594190

  20. Determination of absolute structure using Bayesian statistics on Bijvoet differences

    PubMed Central

    Hooft, Rob W. W.; Straver, Leo H.; Spek, Anthony L.

    2008-01-01

    A new probabilistic approach is introduced for the determination of the absolute structure of a compound which is known to be enantiopure based on Bijvoet-pair intensity differences. The new method provides relative probabilities for different models of the chiral composition of the structure. The outcome of this type of analysis can also be cast in the form of a new value, along with associated standard uncertainty, that resembles the value of the well known Flack x parameter. The standard uncertainty we obtain is often about half of the standard uncertainty in the value of the Flack x parameter. The proposed formalism is suited in particular to absolute configuration determination from diffraction data of biologically active (pharmaceutical) compounds where the strongest resonant scattering signal often comes from oxygen. It is shown that a reliable absolute configuration assignment in such cases can be made on the basis of Cu Kα data, and in some cases even with carefully measured Mo Kα data. PMID:19461838

  1. Absolute optical instruments without spherical symmetry

    NASA Astrophysics Data System (ADS)

    Tyc, Tomáš; Dao, H. L.; Danner, Aaron J.

    2015-11-01

    Until now, the known set of absolute optical instruments has been limited to those containing high levels of symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method can be used to construct the index profiles of most previously known absolute optical instruments, as well as infinitely many different ones.

  2. Effects of Neutrino Decay on Oscillation Probabilities

    NASA Astrophysics Data System (ADS)

    Leonard, Kayla; de Gouvêa, André

    2016-01-01

    It is now well accepted that neutrinos oscillate as a quantum mechanical result of a misalignment between their mass-eigenstates and the flavor-eigenstates. We study neutrino decay—the idea that there may be new, light states that the three Standard Model flavors may be able to decay into. We consider what effects this neutrino decay would have on the observed oscillation probabilities.The Hamiltonian governs how the states change with time, so we use it to calculate an oscillation amplitude, and from that, the oscillation probability. We simplify the theoretical probabilities using results from experimental data, such as the neutrino mixing angles and mass differences. By exploring what values of the decay parameters are physically allowable, we can begin to understand just how large the decay parameters can be. We compare the probabilities in the case of no neutrino decay and in the case of maximum neutrino decay to determine how much of an effect neutrino decay could have on observations, and discuss the ability of future experiments to detect these differences.We also examine neutrino decay in the realm of CP invariance, and found that it is a new source of CP violation. Our work indicates that there is a difference in the oscillation probabilities between particle transitions and their corresponding antiparticle transitions. If neutrino decay were proven true, it could be an important factor in understanding leptogenesis and the particle-antiparticle asymmetry present in our Universe.

  3. Absolute uniqueness of phase retrieval with random illumination

    NASA Astrophysics Data System (ADS)

    Fannjiang, Albert

    2012-07-01

    Random illumination is proposed to enforce absolute uniqueness and resolve all types of ambiguity, trivial or nontrivial, in phase retrieval. Almost sure irreducibility is proved for any complex-valued object whose support set has rank ⩾ 2. While the new irreducibility result can be viewed as a probabilistic version of the classical result by Bruck, Sodin and Hayes, it provides a novel perspective and an effective method for phase retrieval. In particular, almost sure uniqueness, up to a global phase, is proved for complex-valued objects under general two-point conditions. Under a tight sector constraint absolute uniqueness is proved to hold with probability exponentially close to unity as the object sparsity increases. Under a magnitude constraint with random amplitude illumination, uniqueness modulo global phase is proved to hold with probability exponentially close to unity as object sparsity increases. For general complex-valued objects without any constraint, almost sure uniqueness up to global phase is established with two sets of Fourier magnitude data under two independent illuminations. Numerical experiments suggest that random illumination essentially alleviates most, if not all, numerical problems commonly associated with the standard phasing algorithms.

  4. Probability mapping of contaminants

    SciTech Connect

    Rautman, C.A.; Kaplan, P.G.; McGraw, M.A.; Istok, J.D.; Sigda, J.M.

    1994-04-01

    Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. The probability mapping approach illustrated in this paper appears to offer site operators a reasonable, quantitative methodology for many environmental remediation decisions and allows evaluation of the risk associated with those decisions. For example, output from this approach can be used in quantitative, cost-based decision models for evaluating possible site characterization and/or remediation plans, resulting in selection of the risk-adjusted, least-cost alternative. The methodology is completely general, and the techniques are applicable to a wide variety of environmental restoration projects. The probability-mapping approach is illustrated by application to a contaminated site at the former DOE Feed Materials Production Center near Fernald, Ohio. Soil geochemical data, collected as part of the Uranium-in-Soils Integrated Demonstration Project, have been used to construct a number of geostatistical simulations of potential contamination for parcels approximately the size of a selective remediation unit (the 3-m width of a bulldozer blade). Each such simulation accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination (potential clean-up or personnel-hazard thresholds).

  5. Measurement Uncertainty and Probability

    NASA Astrophysics Data System (ADS)

    Willink, Robin

    2013-02-01

    Part I. Principles: 1. Introduction; 2. Foundational ideas in measurement; 3. Components of error or uncertainty; 4. Foundational ideas in probability and statistics; 5. The randomization of systematic errors; 6. Beyond the standard confidence interval; Part II. Evaluation of Uncertainty: 7. Final preparation; 8. Evaluation using the linear approximation; 9. Evaluation without the linear approximations; 10. Uncertainty information fit for purpose; Part III. Related Topics: 11. Measurement of vectors and functions; 12. Why take part in a measurement comparison?; 13. Other philosophies; 14. An assessment of objective Bayesian methods; 15. A guide to the expression of uncertainty in measurement; 16. Measurement near a limit - an insoluble problem?; References; Index.

  6. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  7. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  8. [On Atomic Nuclear Fusion Processes at Low-Temperatures. An Enhancement of the Probability of Transition through a Potential Barrier Due to the So-Called Barrier Anti-Zeno Effect].

    PubMed

    Namiot, V A

    2016-01-01

    It is known that in quantum mechanics the act of observing the experiment can affect the experimental findings in some cases. In particular, it happens under the so-called Zeno effect. In this work it is shown that in contrast to the "standard" Zeno-effect where the act of observing a process reduces the probability of its reality, an inverse situation when a particle transmits through a potential barrier (a so-called barrier anti-Zeno effect) can be observed, the observation of the particle essentially increases the probability of its transmission through the barrier. The possibility of using the barrier anti-Zeno effect is discussed to explain paradoxical results of experiments on "cold nuclear fusion" observed in various systems including biological ones. (According to the observers who performed the observations, the energy generation, which could not be explained by any chemical processes, as well as the change in the isotope and even element composition of the studied object may occur in these systems. PMID:27192844

  9. Emptiness Formation Probability

    NASA Astrophysics Data System (ADS)

    Crawford, Nicholas; Ng, Stephen; Starr, Shannon

    2016-08-01

    We present rigorous upper and lower bounds on the emptiness formation probability for the ground state of a spin-1/2 Heisenberg XXZ quantum spin system. For a d-dimensional system we find a rate of decay of the order {exp(-c L^{d+1})} where L is the sidelength of the box in which we ask for the emptiness formation event to occur. In the {d=1} case this confirms previous predictions made in the integrable systems community, though our bounds do not achieve the precision predicted by Bethe ansatz calculations. On the other hand, our bounds in the case {d ≥ 2} are new. The main tools we use are reflection positivity and a rigorous path integral expansion, which is a variation on those previously introduced by Toth, Aizenman-Nachtergaele and Ueltschi.

  10. Gravitationally induced quantum transitions

    NASA Astrophysics Data System (ADS)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  11. Classical and Quantum Probability for Biologists - Introduction

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei.

    2010-01-01

    The aim of this review (oriented to biologists looking for applications of QM) is to provide a detailed comparative analysis of classical (Kolmogorovian) and quantum (Dirac-von Neumann) models. We will stress differences in the definition of conditional probability and as a consequence in the structures of matrices of transition probabilities, especially the condition of double stochasticity which arises naturally in QM. One of the most fundamental differences between two models is deformation of the classical formula of total probability (FTP) which plays an important role in statistics and decision making. An additional term appears in the QM-version of FTP - so called interference term. Finally, we discuss Bell's inequality and show that the common viewpoint that its violation induces either nonlocality or "death of realism" has not been completely justified. For us it is merely a sign of non-Kolmogorovianity of probabilistic data collected in a few experiments with incompatible setups of measurement devices.

  12. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed. PMID:19831037

  13. Transition Planning for Foster Youth

    ERIC Educational Resources Information Center

    Geenen, Sarah J.; Powers, Laurie E.

    2006-01-01

    The study evaluated the IEPs/Individualized Transition Plans of 45 students who were in special education and foster care, and compared them to the plans of 45 students who were in special education only. Results indicate that the transition plans of foster youth with disabilities were poor in quality, both in absolute terms and in comparison to…

  14. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  15. Absolute Pitch in Boreal Chickadees and Humans: Exceptions that Test a Phylogenetic Rule

    ERIC Educational Resources Information Center

    Weisman, Ronald G.; Balkwill, Laura-Lee; Hoeschele, Marisa; Moscicki, Michele K.; Bloomfield, Laurie L.; Sturdy, Christopher B.

    2010-01-01

    This research examined generality of the phylogenetic rule that birds discriminate frequency ranges more accurately than mammals. Human absolute pitch chroma possessors accurately tracked transitions between frequency ranges. Independent tests showed that they used note naming (pitch chroma) to remap the tones into ranges; neither possessors nor…

  16. Absolute isotopic abundances of TI in meteorites

    NASA Astrophysics Data System (ADS)

    Niederer, F. R.; Papanastassiou, D. A.; Wasserburg, G. J.

    1985-03-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46Ti/48Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. The authors provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components.

  17. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  18. Precise Measurement of the Absolute Fluorescence Yield

    NASA Astrophysics Data System (ADS)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  19. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed. PMID:26022836

  20. Volcano shapes, entropies, and eruption probabilities

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2014-05-01

    We propose that the shapes of polygenetic volcanic edifices reflect the shapes of the associated probability distributions of eruptions. In this view, the peak of a given volcanic edifice coincides roughly with the peak of the probability (or frequency) distribution of its eruptions. The broadness and slopes of the edifices vary widely, however. The shapes of volcanic edifices can be approximated by various distributions, either discrete (binning or histogram approximation) or continuous. For a volcano shape (profile) approximated by a normal curve, for example, the broadness would be reflected in its standard deviation (spread). Entropy (S) of a discrete probability distribution is a measure of the absolute uncertainty as to the next outcome/message: in this case, the uncertainty as to time and place of the next eruption. A uniform discrete distribution (all bins of equal height), representing a flat volcanic field or zone, has the largest entropy or uncertainty. For continuous distributions, we use differential entropy, which is a measure of relative uncertainty, or uncertainty change, rather than absolute uncertainty. Volcano shapes can be approximated by various distributions, from which the entropies and thus the uncertainties as regards future eruptions can be calculated. We use the Gibbs-Shannon formula for the discrete entropies and the analogues general formula for the differential entropies and compare their usefulness for assessing the probabilities of eruptions in volcanoes. We relate the entropies to the work done by the volcano during an eruption using the Helmholtz free energy. Many factors other than the frequency of eruptions determine the shape of a volcano. These include erosion, landslides, and the properties of the erupted materials (including their angle of repose). The exact functional relation between the volcano shape and the eruption probability distribution must be explored for individual volcanoes but, once established, can be used to

  1. A Tale of Two Probabilities

    ERIC Educational Resources Information Center

    Falk, Ruma; Kendig, Keith

    2013-01-01

    Two contestants debate the notorious probability problem of the sex of the second child. The conclusions boil down to explication of the underlying scenarios and assumptions. Basic principles of probability theory are highlighted.

  2. The Probability of Causal Conditionals

    ERIC Educational Resources Information Center

    Over, David E.; Hadjichristidis, Constantinos; Evans, Jonathan St. B. T.; Handley, Simon J.; Sloman, Steven A.

    2007-01-01

    Conditionals in natural language are central to reasoning and decision making. A theoretical proposal called the Ramsey test implies the conditional probability hypothesis: that the subjective probability of a natural language conditional, P(if p then q), is the conditional subjective probability, P(q [such that] p). We report three experiments on…

  3. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  4. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  5. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  6. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  7. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  8. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  9. Precision absolute positional measurement of laser beams.

    PubMed

    Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

    2013-04-20

    We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

  10. Quantum probability and many worlds

    NASA Astrophysics Data System (ADS)

    Hemmo, Meir; Pitowsky, Itamar

    We discuss the meaning of probabilities in the many worlds interpretation of quantum mechanics. We start by presenting very briefly the many worlds theory, how the problem of probability arises, and some unsuccessful attempts to solve it in the past. Then we criticize a recent attempt by Deutsch to derive the quantum mechanical probabilities from the non-probabilistic parts of quantum mechanics and classical decision theory. We further argue that the Born probability does not make sense even as an additional probability rule in the many worlds theory. Our conclusion is that the many worlds theory fails to account for the probabilistic statements of standard (collapse) quantum mechanics.

  11. Absolute absorption on the potassium D lines: theory and experiment

    NASA Astrophysics Data System (ADS)

    Hanley, Ryan K.; Gregory, Philip D.; Hughes, Ifan G.; Cornish, Simon L.

    2015-10-01

    We present a detailed study of the absolute Doppler-broadened absorption of a probe beam scanned across the potassium D lines in a thermal vapour. Spectra using a weak probe were measured on the 4S \\to 4P transition and compared to the theoretical model of the electric susceptibility detailed by Zentile et al (2015 Comput. Phys. Commun. 189 162-74) in the code named ElecSus. Comparisons were also made on the 4S \\to 5P transition with an adapted version of ElecSus. This is the first experimental test of ElecSus on an atom with a ground state hyperfine splitting smaller than that of the Doppler width. An excellent agreement was found between ElecSus and experimental measurements at a variety of temperatures with rms errors ˜ {10}-3. We have also demonstrated the use of ElecSus as an atomic vapour thermometry tool, and present a possible new measurement technique of transition decay rates which we predict to have a precision of ˜3 {kHz}.

  12. Probability workshop to be better in probability topic

    NASA Astrophysics Data System (ADS)

    Asmat, Aszila; Ujang, Suriyati; Wahid, Sharifah Norhuda Syed

    2015-02-01

    The purpose of the present study was to examine whether statistics anxiety and attitudes towards probability topic among students in higher education level have an effect on their performance. 62 fourth semester science students were given statistics anxiety questionnaires about their perception towards probability topic. Result indicated that students' performance in probability topic is not related to anxiety level, which means that the higher level in statistics anxiety will not cause lower score in probability topic performance. The study also revealed that motivated students gained from probability workshop ensure that their performance in probability topic shows a positive improvement compared before the workshop. In addition there exists a significance difference in students' performance between genders with better achievement among female students compared to male students. Thus, more initiatives in learning programs with different teaching approaches is needed to provide useful information in improving student learning outcome in higher learning institution.

  13. Active radiometric calorimeter for absolute calibration of radioactive sources

    NASA Astrophysics Data System (ADS)

    Stump, K. E.; DeWerd, L. A.; Rudman, D. A.; Schima, S. A.

    2005-03-01

    This report describes the design and initial noise floor measurements of a radiometric calorimeter designed to measure therapeutic medical radioactive sources. The instrument demonstrates a noise floor of approximately 2 nW. This low noise floor is achieved by using high temperature superconducting (HTS) transition edge sensor (TES) thermometers in a temperature-control feedback loop. This feedback loop will be used to provide absolute source calibrations based upon the electrical substitution method. Other unique features of the calorimeter are (a) its ability to change sources for calibration without disrupting the vacuum of the instrument, and (b) the ability to measure the emitted power of a source in addition to the total contained source power.

  14. Absolute negative mobility induced by potential phase modulation

    NASA Astrophysics Data System (ADS)

    Dandogbessi, Bruno S.; Kenfack, Anatole

    2015-12-01

    We investigate the transport properties of a particle subjected to a deterministic inertial rocking system, under a constant bias, for which the phase of the symmetric spatial potential used is time modulated. We show that this modulated phase, assisted by a periodic driving force, can lead to the occurrence of the so-called absolute negative mobility (ANM), the phenomenon in which the particle surprisingly moves against the bias. Furthermore, we discover that ANM predominantly originates from chaotic-periodic transitions. While a detailed mechanism of ANM remains unclear, we show that one can manipulate the control parameters, i.e., the amplitude and the frequency of the phase, in order to enforce the motion of the particle in a given direction. Finally, for this experimentally realizable system, we devise a two-parameter current plot which may be a good guide for controlling ANM.

  15. Propensity, Probability, and Quantum Theory

    NASA Astrophysics Data System (ADS)

    Ballentine, Leslie E.

    2016-08-01

    Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.

  16. Two-stage model of African absolute motion during the last 30 million years

    NASA Astrophysics Data System (ADS)

    Pollitz, Fred F.

    1991-07-01

    The absolute motion of Africa (relative to the hotspots) for the past 30 My is modeled with two Euler vectors, with a change occurring at 6 Ma. Because of the high sensitivity of African absolute motions to errors in the absolute motions of the North America and Pacific plates, both the pre-6 Ma and post-6 Ma African absolute motions are determined simultaneously with North America and Pacific absolute motions for various epochs. Geologic data from the northern Atlantic and hotspot tracks from the African plate are used to augment previous data sets for the North America and Pacific plates. The difference between the pre-6 Ma and post-6 Ma absolute plate motions may be represented as a counterclockwise rotation about a pole at 48 °S, 84 °E, with angular velocity 0.085 °/My. This change is supported by geologic evidence along a large portion of the African plate boundary, including the Red Sea and Gulf of Aden spreading systems, the Alpine deformation zone, and the central and southern mid-Atlantic Ridge. Although the change is modeled as one abrupt transition at 6 Ma, it was most likely a gradual change spanning the period 8-4 Ma. As a likely mechanism for the change, we favor strong asthenospheric return flow from the Afar hotspot towards the southwest; this could produce the uniform southwesterly shift in absolute motion which we have inferred as well as provide a mechanism for the opening of the East African Rift. Comparing the absolute motions of the North America and Pacific plates with earlier estimates, the pole positions are revised by up to 5° and the angular velocities are decreased by 10-20%.

  17. Methods for Calculating the Absolute Entropy and free energy of biological systems based on ideas from Polymer Physics

    PubMed Central

    Meirovitch, Hagai

    2009-01-01

    The commonly used simulation techniques, Metropolis Monte Carlo (MC) and molecular dynamics (MD) are of a dynamical type which enables one to sample system configurations i correctly with the Boltzmann probability, PiB while the value of PiB is not provided directly; therefore, it is difficult to obtain the absolute entropy, S ~ -ln PiB, and the Helmholtz free energy, F. With a different simulation approach developed in polymer physics, a chain is grown step-by-step with transition probabilities (TPs), and thus their product is the value of the construction probability; therefore, the entropy is known. Because all exact simulation methods are equivalent, i.e. they lead to the same averages and fluctuations of physical properties, one can treat an MC or MD sample as if its members have rather been generated step-by-step. Thus, each configuration i of the sample can be reconstructed (from nothing) by calculating the TPs with which it could have been constructed. This idea applies also to bulk systems such as fluids or magnets. This approach has led earlier to the “local states” (LS) and the “hypothetical scanning” (HS) methods, which are approximate in nature. A recent development is the hypothetical scanning Monte Carlo (HSMC) (or molecular dynamics, HSMD) method which is based on stochastic TPs where all interactions are taken into account. In this respect HSMC(D) can be viewed as exact and the only approximation involved is due to insufficient MC(MD) sampling for calculating the TPs. The validity of HSMC has been established by applying it first to liquid argon, TIP3P water, self-avoiding walks, and polyglycine models, where the results for F were found to agree with those obtained by other methods. Subsequently, HSMD was applied to mobile loops of the enzymes porcine pancreatic α-amylase and acetylcholineesterase in explicit water, where the difference of F between the bound and free states of the loop was calculated. Currently HSMD is being extended for

  18. Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics.

    PubMed

    Meirovitch, Hagai

    2010-01-01

    The commonly used simulation techniques, Metropolis Monte Carlo (MC) and molecular dynamics (MD) are of a dynamical type which enables one to sample system configurations i correctly with the Boltzmann probability, P(i)(B), while the value of P(i)(B) is not provided directly; therefore, it is difficult to obtain the absolute entropy, S approximately -ln P(i)(B), and the Helmholtz free energy, F. With a different simulation approach developed in polymer physics, a chain is grown step-by-step with transition probabilities (TPs), and thus their product is the value of the construction probability; therefore, the entropy is known. Because all exact simulation methods are equivalent, i.e. they lead to the same averages and fluctuations of physical properties, one can treat an MC or MD sample as if its members have rather been generated step-by-step. Thus, each configuration i of the sample can be reconstructed (from nothing) by calculating the TPs with which it could have been constructed. This idea applies also to bulk systems such as fluids or magnets. This approach has led earlier to the "local states" (LS) and the "hypothetical scanning" (HS) methods, which are approximate in nature. A recent development is the hypothetical scanning Monte Carlo (HSMC) (or molecular dynamics, HSMD) method which is based on stochastic TPs where all interactions are taken into account. In this respect, HSMC(D) can be viewed as exact and the only approximation involved is due to insufficient MC(MD) sampling for calculating the TPs. The validity of HSMC has been established by applying it first to liquid argon, TIP3P water, self-avoiding walks (SAW), and polyglycine models, where the results for F were found to agree with those obtained by other methods. Subsequently, HSMD was applied to mobile loops of the enzymes porcine pancreatic alpha-amylase and acetylcholinesterase in explicit water, where the difference in F between the bound and free states of the loop was calculated. Currently

  19. Sounding rocket measurement of the absolute solar EUV flux utilizing a silicon photodiode

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Canfield, L. R.

    1990-01-01

    A newly developed stable and high quantum efficiency silicon photodiode was used to obtain an accurate measurement of the integrated absolute magnitude of the solar extreme UV photon flux in the spectral region between 50 and 800 A. The adjusted daily 10.7-cm solar radio flux and sunspot number were 168.4 and 121, respectively. The unattenuated absolute value of the solar EUV flux at 1 AU in the specified wavelength region was 6.81 x 10 to the 10th photons/sq cm per s. Based on a nominal probable error of 7 percent for National Institute of Standards and Technology detector efficiency measurements in the 50- to 500-A region (5 percent on longer wavelength measurements between 500 and 1216 A), and based on experimental errors associated with the present rocket instrumentation and analysis, a conservative total error estimate of about 14 percent is assigned to the absolute integral solar flux obtained.

  20. Integrated analysis of incidence, progression, regression and disappearance probabilities

    PubMed Central

    Huang, Guan-Hua

    2008-01-01

    Background Age-related maculopathy (ARM) is a leading cause of vision loss in people aged 65 or older. ARM is distinctive in that it is a disease which can transition through incidence, progression, regression and disappearance. The purpose of this study is to develop methodologies for studying the relationship of risk factors with different transition probabilities. Methods Our framework for studying this relationship includes two different analytical approaches. In the first approach, one can define, model and estimate the relationship between each transition probability and risk factors separately. This approach is similar to constraining a population to a certain disease status at the baseline, and then analyzing the probability of the constrained population to develop a different status. While this approach is intuitive, one risks losing available information while at the same time running into the problem of insufficient sample size. The second approach specifies a transition model for analyzing such a disease. This model provides the conditional probability of a current disease status based upon a previous status, and can therefore jointly analyze all transition probabilities. Throughout the paper, an analysis to determine the birth cohort effect on ARM is used as an illustration. Results and conclusion This study has found parallel separate and joint analyses to be more enlightening than any analysis in isolation. By implementing both approaches, one can obtain more reliable and more efficient results. PMID:18577235

  1. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  2. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  3. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  4. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  5. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  6. Absolute calibration of TFTR helium proportional counters

    SciTech Connect

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Barnes, C.W. |; Loughlin, M. |

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  7. Absolute enantioselective separation: optical activity ex machina.

    PubMed

    Bielski, Roman; Tencer, Michal

    2005-11-01

    The paper describes methodology of using three independent macroscopic factors affecting molecular orientation to accomplish separation of a racemic mixture without the presence of any other chiral compounds, i. e., absolute enantioselective separation (AES) which is an extension of a concept of applying these factors to absolute asymmetric synthesis. The three factors may be applied simultaneously or, if their effects can be retained, consecutively. The resulting three mutually orthogonal or near orthogonal directors constitute a true chiral influence and their scalar triple product is the measure of the chirality of the system. AES can be executed in a chromatography-like microfluidic process in the presence of an electric field. It may be carried out on a chemically modified flat surface, a monolithic polymer column made of a mesoporous material, each having imparted directional properties. Separation parameters were estimated for these media and possible implications for the natural homochirality are discussed. PMID:16342798

  8. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  9. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  10. PROBABILITY SURVEYS, CONDITIONAL PROBABILITIES, AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Asscssment Program EMAP) can be analyzed with a conditional probability analysis (CPA) to conduct quantitative probabi...

  11. Probability Surveys, Conditional Probability, and Ecological Risk Assessment

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency’s (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  12. Metallic Magnetic Calorimeters for Absolute Activity Measurement

    NASA Astrophysics Data System (ADS)

    Loidl, M.; Leblanc, E.; Rodrigues, M.; Bouchard, J.; Censier, B.; Branger, T.; Lacour, D.

    2008-05-01

    We present a prototype of metallic magnetic calorimeters that we are developing for absolute activity measurements of low energy emitting radionuclides. We give a detailed description of the realization of the prototype, containing an 55Fe source inside the detector absorber. We present the analysis of first data taken with this detector and compare the result of activity measurement with liquid scintillation counting. We also propose some ways for reducing the uncertainty on the activity determination with this new technique.

  13. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  14. Blood pressure targets and absolute cardiovascular risk.

    PubMed

    Odutayo, Ayodele; Rahimi, Kazem; Hsiao, Allan J; Emdin, Connor A

    2015-08-01

    In the Eighth Joint National Committee guideline on hypertension, the threshold for the initiation of blood pressure-lowering treatment for elderly adults (≥60 years) without chronic kidney disease or diabetes mellitus was raised from 140/90 mm Hg to 150/90 mm Hg. However, the committee was not unanimous in this decision, particularly because a large proportion of adults ≥60 years may be at high cardiovascular risk. On the basis of Eighth Joint National Committee guideline, we sought to determine the absolute 10-year risk of cardiovascular disease among these adults through analyzing the National Health and Nutrition Examination Survey (2005-2012). The primary outcome measure was the proportion of adults who were at ≥20% predicted absolute cardiovascular risk and above goals for the Seventh Joint National Committee guideline but reclassified as at target under the Eighth Joint National Committee guideline (reclassified). The Framingham General Cardiovascular Disease Risk Score was used. From 2005 to 2012, the surveys included 12 963 adults aged 30 to 74 years with blood pressure measurements, of which 914 were reclassified based on the guideline. Among individuals reclassified as not in need of additional treatment, the proportion of adults 60 to 74 years without chronic kidney disease or diabetes mellitus at ≥20% absolute risk was 44.8%. This corresponds to 0.8 million adults. The proportion at high cardiovascular risk remained sizable among adults who were not receiving blood pressure-lowering treatment. Taken together, a sizable proportion of reclassified adults 60 to 74 years without chronic kidney disease or diabetes mellitus was at ≥20% absolute cardiovascular risk. PMID:26056340

  15. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  16. Absolute distance measurements by variable wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Bien, F.; Camac, M.; Caulfield, H. J.; Ezekiel, S.

    1981-02-01

    This paper describes a laser interferometer which provides absolute distance measurements using tunable lasers. An active feedback loop system, in which the laser frequency is locked to the optical path length difference of the interferometer, is used to tune the laser wavelengths. If the two wavelengths are very close, electronic frequency counters can be used to measure the beat frequency between the two laser frequencies and thus to determine the optical path difference between the two legs of the interferometer.

  17. Absolute measures of the completeness of the fossil record

    NASA Technical Reports Server (NTRS)

    Foote, M.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1999-01-01

    Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

  18. Absolute dosimetry for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Berger, Kurt W.; Campiotti, Richard H.

    2000-06-01

    The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

  19. The relationship between species detection probability and local extinction probability

    USGS Publications Warehouse

    Alpizar-Jara, R.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Pollock, K.H.; Rosenberry, C.S.

    2004-01-01

    In community-level ecological studies, generally not all species present in sampled areas are detected. Many authors have proposed the use of estimation methods that allow detection probabilities that are <1 and that are heterogeneous among species. These methods can also be used to estimate community-dynamic parameters such as species local extinction probability and turnover rates (Nichols et al. Ecol Appl 8:1213-1225; Conserv Biol 12:1390-1398). Here, we present an ad hoc approach to estimating community-level vital rates in the presence of joint heterogeneity of detection probabilities and vital rates. The method consists of partitioning the number of species into two groups using the detection frequencies and then estimating vital rates (e.g., local extinction probabilities) for each group. Estimators from each group are combined in a weighted estimator of vital rates that accounts for the effect of heterogeneity. Using data from the North American Breeding Bird Survey, we computed such estimates and tested the hypothesis that detection probabilities and local extinction probabilities were negatively related. Our analyses support the hypothesis that species detection probability covaries negatively with local probability of extinction and turnover rates. A simulation study was conducted to assess the performance of vital parameter estimators as well as other estimators relevant to questions about heterogeneity, such as coefficient of variation of detection probabilities and proportion of species in each group. Both the weighted estimator suggested in this paper and the original unweighted estimator for local extinction probability performed fairly well and provided no basis for preferring one to the other.

  20. Correction due to the finite speed of light in absolute gravimeters Correction due to the finite speed of light in absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Nagornyi, V. D.; Zanimonskiy, Y. M.; Zanimonskiy, Y. Y.

    2011-06-01

    Equations (45) and (47) in our paper [1] in this issue have incorrect sign and should read \\tilde T_i=T_i+{b\\mp S_i\\over c},\\cr\\tilde T_i=T_i\\mp {S_i\\over c}. The error traces back to our formula (3), inherited from the paper [2]. According to the technical documentation [3, 4], the formula (3) is implemented by several commercially available instruments. An incorrect sign would cause a bias of about 20 µGal not known for these instruments, which probably indicates that the documentation incorrectly reflects the implemented measurement equation. Our attention to the error was drawn by the paper [5], also in this issue, where the sign is mentioned correctly. References [1] Nagornyi V D, Zanimonskiy Y M and Zanimonskiy Y Y 2011 Correction due to the finite speed of light in absolute gravimeters Metrologia 48 101-13 [2] Niebauer T M, Sasagawa G S, Faller J E, Hilt R and Klopping F 1995 A new generation of absolute gravimeters Metrologia 32 159-80 [3] Micro-g LaCoste, Inc. 2006 FG5 Absolute Gravimeter Users Manual [4] Micro-g LaCoste, Inc. 2007 g7 Users Manual [5] Niebauer T M, Billson R, Ellis B, Mason B, van Westrum D and Klopping F 2011 Simultaneous gravity and gradient measurements from a recoil-compensated absolute gravimeter Metrologia 48 154-63

  1. Viscous linear stability of axisymmetric low-density jets: Parameters influencing absolute instability

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Hallberg, M. P.; Strykowski, P. J.

    2010-02-01

    Viscous linear stability calculations are presented for model low-density axisymmetric jet flows. Absolute growth transitions for the jet column mode are mapped out in a parametric space including velocity ratio, density ratio, Reynolds number, momentum thickness, and subtle differences between velocity and density profiles. Strictly speaking, the profiles used in most jet stability studies to date are only applicable to unity Prandtl numbers and zero pressure gradient flows—the present work relaxes this requirement. Results reveal how subtle differences between the velocity and density profiles generally used in jet stability theory can dramatically alter the absolute growth rate of the jet column mode in these low-density flows. The results suggest heating/cooling or mass diffusion at the outer nozzle surface can suppress absolute instability and potentially global instability in low-density jets.

  2. The Probabilities of Conditionals Revisited

    ERIC Educational Resources Information Center

    Douven, Igor; Verbrugge, Sara

    2013-01-01

    According to what is now commonly referred to as "the Equation" in the literature on indicative conditionals, the probability of any indicative conditional equals the probability of its consequent of the conditional given the antecedent of the conditional. Philosophers widely agree in their assessment that the triviality arguments of…

  3. Minimizing the probable maximum flood

    SciTech Connect

    Woodbury, M.S.; Pansic, N. ); Eberlein, D.T. )

    1994-06-01

    This article examines Wisconsin Electric Power Company's efforts to determine an economical way to comply with Federal Energy Regulatory Commission requirements at two hydroelectric developments on the Michigamme River. Their efforts included refinement of the area's probable maximum flood model based, in part, on a newly developed probable maximum precipitation estimate.

  4. Decision analysis with approximate probabilities

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas

    1992-01-01

    This paper concerns decisions under uncertainty in which the probabilities of the states of nature are only approximately known. Decision problems involving three states of nature are studied. This is due to the fact that some key issues do not arise in two-state problems, while probability spaces with more than three states of nature are essentially impossible to graph. The primary focus is on two levels of probabilistic information. In one level, the three probabilities are separately rounded to the nearest tenth. This can lead to sets of rounded probabilities which add up to 0.9, 1.0, or 1.1. In the other level, probabilities are rounded to the nearest tenth in such a way that the rounded probabilities are forced to sum to 1.0. For comparison, six additional levels of probabilistic information, previously analyzed, were also included in the present analysis. A simulation experiment compared four criteria for decisionmaking using linearly constrained probabilities (Maximin, Midpoint, Standard Laplace, and Extended Laplace) under the eight different levels of information about probability. The Extended Laplace criterion, which uses a second order maximum entropy principle, performed best overall.

  5. Probability of sea level rise

    SciTech Connect

    Titus, J.G.; Narayanan, V.K.

    1995-10-01

    The report develops probability-based projections that can be added to local tide-gage trends to estimate future sea level at particular locations. It uses the same models employed by previous assessments of sea level rise. The key coefficients in those models are based on subjective probability distributions supplied by a cross-section of climatologists, oceanographers, and glaciologists.

  6. Computation of Most Probable Numbers

    PubMed Central

    Russek, Estelle; Colwell, Rita R.

    1983-01-01

    A rapid computational method for maximum likelihood estimation of most-probable-number values, incorporating a modified Newton-Raphson method, is presented. The method offers a much greater reliability for the most-probable-number estimate of total viable bacteria, i.e., those capable of growth in laboratory media. PMID:6870242

  7. Absolute value optimization to estimate phase properties of stochastic time series

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1977-01-01

    Most existing deconvolution techniques are incapable of determining phase properties of wavelets from time series data; to assure a unique solution, minimum phase is usually assumed. It is demonstrated, for moving average processes of order one, that deconvolution filtering using the absolute value norm provides an estimate of the wavelet shape that has the correct phase character when the random driving process is nonnormal. Numerical tests show that this result probably applies to more general processes.

  8. Absolute standardization of the impurity (121)Te associated to the production of the radiopharmaceutical (123)I.

    PubMed

    Araújo, M T F; Poledna, R; Delgado, J U; Silva, R L; Iwahara, A; da Silva, C J; Tauhata, L; Oliveira, A E; de Almeida, M C M; Lopes, R T

    2016-03-01

    (123)I is widely used for radiodiagnostic procedures. It is produced by reaction of (124)Xe (p,2n) (123)Cs →(123)Xe →(123)I in cyclotrons. (121)Te and (125)I appear in a photon energy spectrum as impurities. An activity of (121)Te was calibrated absolutely by sum-peak method and its photon emitting probability was estimated, whose results were consistent with published results. PMID:26805708

  9. Theoretical transition probabilities for the OH Meinel system

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Werner, H.-J.; Rosmus, P.

    1986-01-01

    An electric dipole moment function (EDMF) for the X 2Pi ground state of OH, based on the complete active-space self-consistent field plus a multireference singles-plus-double excitation configuration-interaction procedure (using an extended Slater basis) is reported. Two theoretical EDMFS are considered: the MCSCF (7)-SCEP EDMF of Werner et al., (1983) and a previously unpublished EDMF based on the MCSCF multireference CI(SD) procedure using a large Slater basis. The theoretical treatment follows that of Mies (1974), except that the Hill and Van Vleck (1928) approximation to intermediate coupling is used. This approximation is shown to be accurate to better than 5 percent for the six principal branches of the OH Meinel system.

  10. Transition Probabilities and Different Levels of Prominence in Segmentation

    ERIC Educational Resources Information Center

    Ordin, Mikhail; Nespor, Marina

    2013-01-01

    A large body of empirical research demonstrates that people exploit a wide variety of cues for the segmentation of continuous speech in artificial languages, including rhythmic properties, phrase boundary cues, and statistical regularities. However, less is known regarding how the different cues interact. In this study we addressed the question of…

  11. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  12. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  13. The National Geodetic Survey absolute gravity program

    NASA Astrophysics Data System (ADS)

    Peter, George; Moose, Robert E.; Wessells, Claude W.

    1989-03-01

    The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.

  14. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  15. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  16. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  17. Absolute angular positioning in ultrahigh vacuum

    SciTech Connect

    Schief, H.; Marsico, V.; Kern, K.

    1996-05-01

    Commercially available angular resolvers, which are routinely used in machine tools and robotics, are modified and adapted to be used under ultrahigh-vacuum (UHV) conditions. They provide straightforward and reliable measurements of angular positions for any kind of UHV sample manipulators. The corresponding absolute reproducibility is on the order of 0.005{degree}, whereas the relative resolution is better than 0.001{degree}, as demonstrated by high-resolution helium-reflectivity measurements. The mechanical setup and possible applications are discussed. {copyright} {ital 1996 American Institute of Physics.}

  18. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  19. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  20. Anticipating abrupt shifts in temporal evolution of probability of eruption

    NASA Astrophysics Data System (ADS)

    Rohmer, Jeremy; Loschetter, Annick

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value and to the one of high probability value: the latter value generally supports the call for evacuation. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to >70% could be identified up 4 hours in advance, ~2.5 days before the evacuation call (decided for an eruption probability >80% during the MESIMEX exercise). This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  1. Determination of the absolute contours of optical flats

    NASA Technical Reports Server (NTRS)

    Primak, W.

    1969-01-01

    Emersons procedure is used to determine true absolute contours of optical flats. Absolute contours of standard flats are determined and a comparison is then made between standard and unknown flats. Contour differences are determined by deviation of Fizeau fringe.

  2. Probability currents and entropy production in nonequilibrium lattice systems

    NASA Astrophysics Data System (ADS)

    Szabó, György; Tomé, Tânia; Borsos, István

    2010-07-01

    The structure of probability currents is studied for the dynamical network after consecutive contraction on two-state, nonequilibrium lattice systems. This procedure allows us to investigate the transition rates between configurations on small clusters and highlights some relevant effects of lattice symmetries on the elementary transitions that are responsible for entropy production. A method is suggested to estimate the entropy production for different levels of approximations (cluster sizes) as demonstrated in the two-dimensional contact process with mutation.

  3. The probabilities of unique events.

    PubMed

    Khemlani, Sangeet S; Lotstein, Max; Johnson-Laird, Phil

    2012-01-01

    Many theorists argue that the probabilities of unique events, even real possibilities such as President Obama's re-election, are meaningless. As a consequence, psychologists have seldom investigated them. We propose a new theory (implemented in a computer program) in which such estimates depend on an intuitive non-numerical system capable only of simple procedures, and a deliberative system that maps intuitions into numbers. The theory predicts that estimates of the probabilities of conjunctions should often tend to split the difference between the probabilities of the two conjuncts. We report two experiments showing that individuals commit such violations of the probability calculus, and corroborating other predictions of the theory, e.g., individuals err in the same way even when they make non-numerical verbal estimates, such as that an event is highly improbable. PMID:23056224

  4. The Probabilities of Unique Events

    PubMed Central

    Khemlani, Sangeet S.; Lotstein, Max; Johnson-Laird, Phil

    2012-01-01

    Many theorists argue that the probabilities of unique events, even real possibilities such as President Obama's re-election, are meaningless. As a consequence, psychologists have seldom investigated them. We propose a new theory (implemented in a computer program) in which such estimates depend on an intuitive non-numerical system capable only of simple procedures, and a deliberative system that maps intuitions into numbers. The theory predicts that estimates of the probabilities of conjunctions should often tend to split the difference between the probabilities of the two conjuncts. We report two experiments showing that individuals commit such violations of the probability calculus, and corroborating other predictions of the theory, e.g., individuals err in the same way even when they make non-numerical verbal estimates, such as that an event is highly improbable. PMID:23056224

  5. Dinosaurs, Dinosaur Eggs, and Probability.

    ERIC Educational Resources Information Center

    Teppo, Anne R.; Hodgson, Ted

    2001-01-01

    Outlines several recommendations for teaching probability in the secondary school. Offers an activity that employs simulation by hand and using a programmable calculator in which geometry, analytical geometry, and discrete mathematics are explored. (KHR)

  6. Standardization of the cumulative absolute velocity

    SciTech Connect

    O'Hara, T.F.; Jacobson, J.P. )

    1991-12-01

    EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  7. Absolute rates of hole transfer in DNA.

    PubMed

    Senthilkumar, Kittusamy; Grozema, Ferdinand C; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; Lewis, Frederick D; Berlin, Yuri A; Ratner, Mark A; Siebbeles, Laurens D A

    2005-10-26

    Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA. PMID:16231945

  8. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  9. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  10. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  11. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  12. Joint probabilities and quantum cognition

    SciTech Connect

    Acacio de Barros, J.

    2012-12-18

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  13. Joint probabilities and quantum cognition

    NASA Astrophysics Data System (ADS)

    de Barros, J. Acacio

    2012-12-01

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  14. Evaluation of microbial release probabilities

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work undertaken to improve the estimation of the probability of release of microorganisms from unmanned Martian landing spacecraft is summarized. An analytical model is described for the development of numerical values for release parameters and release mechanisms applicable to flight missions are defined. Laboratory test data are used to evolve parameter values for use by flight projects in estimating numerical values for release probabilities. The analysis treats microbial burden located on spacecraft surfaces, between mated surfaces, and encapsulated within materials.

  15. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  16. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  17. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a...

  18. Maximum-entropy probability distributions under Lp-norm constraints

    NASA Technical Reports Server (NTRS)

    Dolinar, S.

    1991-01-01

    Continuous probability density functions and discrete probability mass functions are tabulated which maximize the differential entropy or absolute entropy, respectively, among all probability distributions with a given L sub p norm (i.e., a given pth absolute moment when p is a finite integer) and unconstrained or constrained value set. Expressions for the maximum entropy are evaluated as functions of the L sub p norm. The most interesting results are obtained and plotted for unconstrained (real valued) continuous random variables and for integer valued discrete random variables. The maximum entropy expressions are obtained in closed form for unconstrained continuous random variables, and in this case there is a simple straight line relationship between the maximum differential entropy and the logarithm of the L sub p norm. Corresponding expressions for arbitrary discrete and constrained continuous random variables are given parametrically; closed form expressions are available only for special cases. However, simpler alternative bounds on the maximum entropy of integer valued discrete random variables are obtained by applying the differential entropy results to continuous random variables which approximate the integer valued random variables in a natural manner. All the results are presented in an integrated framework that includes continuous and discrete random variables, constraints on the permissible value set, and all possible values of p. Understanding such as this is useful in evaluating the performance of data compression schemes.

  19. Wall Effect on the Convective-Absolute Boundary for the Compressible Shear Layer

    NASA Astrophysics Data System (ADS)

    Robinet, Jean-Christophe; Dussauge, Jean-Paul; Casalis, Grégoire

    The linear stability of inviscid compressible shear layers is studied. When the layer develops at the vicinity of a wall, the two parallel flows can have a velocity of the same sign or of opposite signs. This situation is examined in order to obtain first hints on the stability of separated flows in the compressible regime. The shear layer is described by a hyperbolic tangent profile for the velocity component and the Crocco relation for the temperature profile. Gravity effects and the superficial tension are neglected. By examining the temporal growth rate at the saddle point in the wave-number space, the flow is characterized as being either absolutely unstable or convectively unstable. This study principally shows the effect of the wall on the convective-absolute transition in compressible shear flow. Results are presented, showing the amount of the backflow necessary to have this type of transition for a range of primary flow Mach numbers M1 up to 3.0. The boundary of the convective-absolute transition is defined as a function of the velocity ratio, the temperature ratio and the Mach number. Unstable solutions are calculated for both streamwise and oblique disturbances in the shear layer.

  20. Investigation of Flood Inundation Probability in Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Chia-Ho; Lai, Yen-Wei; Chang, Tsang-Jung

    2010-05-01

    Taiwan is located at a special point, which is in the path of typhoons from northeast Pacific Ocean. Taiwan is also situated in a tropical-subtropical transition zone. As a result, rainfall is abundant all the year round, especially in summer and autumn. For flood inundation analysis in Taiwan, there exist a lot of uncertainties in hydrological, hydraulic and land-surface topography characteristics, which can change flood inundation characteristics. According to the 7th work item of article 22 in Disaster Prevention and Protection Act in Taiwan, for preventing flood disaster being deteriorating, investigation analysis of disaster potentials, hazardous degree and situation simulation must be proceeded with scientific approaches. However, the flood potential analysis uses a deterministic approach to define flood inundation without considering data uncertainties. This research combines data uncertainty concept in flood inundation maps for showing flood probabilities in each grid. It can be an emergency evacuation basis as typhoons come and extremely torrential rain begin. The research selects Hebauyu watershed of Chiayi County as the demonstration area. Owing to uncertainties of data used, sensitivity analysis is first conducted by using Latin Hypercube sampling (LHS). LHS data sets are next input into an integrated numerical model, which is herein developed to assess flood inundation hazards in coastal lowlands, base on the extension of the 1-D river routing model and the 2-D inundation routing model. Finally, the probability of flood inundation simulation is calculated, and the flood inundation probability maps are obtained. Flood Inundation probability maps can be an alternative of the old flood potential maps for being a regard of building new hydraulic infrastructure in the future.

  1. Joint probability distributions for projection probabilities of random orthonormal states

    NASA Astrophysics Data System (ADS)

    Alonso, L.; Gorin, T.

    2016-04-01

    The quantum chaos conjecture applied to a finite dimensional quantum system implies that such a system has eigenstates that show similar statistical properties as the column vectors of random orthogonal or unitary matrices. Here, we consider the different probabilities for obtaining a specific outcome in a projective measurement, provided the system is in one of its eigenstates. We then give analytic expressions for the joint probability density for these probabilities, with respect to the ensemble of random matrices. In the case of the unitary group, our results can be applied, also, to the phenomenon of universal conductance fluctuations, where the same mathematical quantities describe partial conductances in a two-terminal mesoscopic scattering problem with a finite number of modes in each terminal.

  2. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  3. Measurement and calculation of absolute cross sections for excitation of the 3s{sup 2}3p {sup 2}P{sub 1} at {sub {approx}}{sub sol{approx}} at {sub 2}{sup o}-3s{sup 2}3p {sup 2}P{sub 3} at {sub {approx}} {sub sol{approx}} at {sub 2}{sup o} fine-structure transition in Fe{sup 13+}

    SciTech Connect

    Hossain, S.; Smith, S. J.; Chutjian, A.; Tayal, S. S.; Raymond, J. C.

    2007-02-15

    Experimental cross sections are reported for the Fe{sup 13+} coronal green line transition 3s{sup 2}3p {sup 2}P{sub 1} at {sub {approx}}{sub sol{approx}} at {sub 2}{sup o}-3s{sup 2}3p {sup 2}P{sub 3} at {sub {approx}}{sub sol{approx}} at {sub 2}{sup o} at {lambda}5303 A ring (2.338 eV). The center-of-mass interaction energies are in the range 1.7 eV (below threshold) through threshold, to 6.6 eV (2.9xthreshold). Data are compared with results of a 135-level Breit-Pauli R-matrix theory. Present experiment detects a strong maximum in the excitation cross section of magnitude 15x10{sup -16} cm{sup 2} at 2.6 eV. Smaller structures are observed between 3 eV and 6.6 eV, with a maximum cross section never exceeding about 1.2x10{sup -16} cm{sup 2}. All features are due to enhancement of the direct excitation via a multitude of narrow, closely-spaced resonances calculated by the theory, the effects of which are convoluted by the 125 meV energy resolution of the present experiment. Iron is present in practically every astrophysical object, as well as being an impurity in fusion plasmas. Present results are the highest charge state in any ion for which an absolute excitation cross section has been measured.

  4. Imprecise probabilities in engineering analyses

    NASA Astrophysics Data System (ADS)

    Beer, Michael; Ferson, Scott; Kreinovich, Vladik

    2013-05-01

    Probabilistic uncertainty and imprecision in structural parameters and in environmental conditions and loads are challenging phenomena in engineering analyses. They require appropriate mathematical modeling and quantification to obtain realistic results when predicting the behavior and reliability of engineering structures and systems. But the modeling and quantification is complicated by the characteristics of the available information, which involves, for example, sparse data, poor measurements and subjective information. This raises the question whether the available information is sufficient for probabilistic modeling or rather suggests a set-theoretical approach. The framework of imprecise probabilities provides a mathematical basis to deal with these problems which involve both probabilistic and non-probabilistic information. A common feature of the various concepts of imprecise probabilities is the consideration of an entire set of probabilistic models in one analysis. The theoretical differences between the concepts mainly concern the mathematical description of the set of probabilistic models and the connection to the probabilistic models involved. This paper provides an overview on developments which involve imprecise probabilities for the solution of engineering problems. Evidence theory, probability bounds analysis with p-boxes, and fuzzy probabilities are discussed with emphasis on their key features and on their relationships to one another. This paper was especially prepared for this special issue and reflects, in various ways, the thinking and presentation preferences of the authors, who are also the guest editors for this special issue.

  5. Measure and probability in cosmology

    NASA Astrophysics Data System (ADS)

    Schiffrin, Joshua S.; Wald, Robert M.

    2012-07-01

    General relativity has a Hamiltonian formulation, which formally provides a canonical (Liouville) measure on the space of solutions. In ordinary statistical physics, the Liouville measure is used to compute probabilities of macrostates, and it would seem natural to use the similar measure arising in general relativity to compute probabilities in cosmology, such as the probability that the Universe underwent an era of inflation. Indeed, a number of authors have used the restriction of this measure to the space of homogeneous and isotropic universes with scalar field matter (minisuperspace)—namely, the Gibbons-Hawking-Stewart measure—to make arguments about the likelihood of inflation. We argue here that there are at least four major difficulties with using the measure of general relativity to make probability arguments in cosmology: (1) Equilibration does not occur on cosmological length scales. (2) Even in the minisuperspace case, the measure of phase space is infinite and the computation of probabilities depends very strongly on how the infinity is regulated. (3) The inhomogeneous degrees of freedom must be taken into account (we illustrate how) even if one is interested only in universes that are very nearly homogeneous. The measure depends upon how the infinite number of degrees of freedom are truncated, and how one defines “nearly homogeneous.” (4) In a Universe where the second law of thermodynamics holds, one cannot make use of our knowledge of the present state of the Universe to retrodict the likelihood of past conditions.

  6. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  7. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  8. Absolute geostrophic currents in global tropical oceans

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-03-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  9. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  10. Absolute instability of a viscous hollow jet

    NASA Astrophysics Data System (ADS)

    Gañán-Calvo, Alfonso M.

    2007-02-01

    An investigation of the spatiotemporal stability of hollow jets in unbounded coflowing liquids, using a general dispersion relation previously derived, shows them to be absolutely unstable for all physical values of the Reynolds and Weber numbers. The roots of the symmetry breakdown with respect to the liquid jet case, and the validity of asymptotic models are here studied in detail. Asymptotic analyses for low and high Reynolds numbers are provided, showing that old and well-established limiting dispersion relations [J. W. S. Rayleigh, The Theory of Sound (Dover, New York, 1945); S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961)] should be used with caution. In the creeping flow limit, the analysis shows that, if the hollow jet is filled with any finite density and viscosity fluid, a steady jet could be made arbitrarily small (compatible with the continuum hypothesis) if the coflowing liquid moves faster than a critical velocity.

  11. Stitching interferometry: recent results and absolute calibration

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2004-02-01

    Stitching Interferometry is a method of analysing large optical components using a standard "small" interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically "stitching" these sub-apertures together. We have already reported the industrial use our Stitching Interferometry systems (Previous SPIE symposia), but experimental results had been lacking because this technique is still new, and users needed to get accustomed to it before producing reliable measurements. We now have more results. We will report user comments and show new, unpublished results. We will discuss sources of error, and show how some of these can be reduced to arbitrarily small values. These will be discussed in some detail. We conclude with a few graphical examples of absolute measurements performed by us.

  12. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  13. Calculations of Cascade Decay Processes Using Rudimentary Probability Theory.

    ERIC Educational Resources Information Center

    Zivitz, Maury

    1979-01-01

    Presents a new derivation based on simple theorems of probability theory for the established system of equations describing successive decay transitions of quantum systems. It is indicated that this derivation that has a quantum-mechanical foundation might be more appealing to applied physicists than other derivations. (HM)

  14. Weighted Wilcoxon-type Smoothly Clipped Absolute Deviation Method

    PubMed Central

    Wang, Lan; Li, Runze

    2009-01-01

    Summary Shrinkage-type variable selection procedures have recently seen increasing applications in biomedical research. However, their performance can be adversely influenced by outliers in either the response or the covariate space. This paper proposes a weighted Wilcoxon-type smoothly clipped absolute deviation (WW-SCAD) method, which deals with robust variable selection and robust estimation simultaneously. The new procedure can be conveniently implemented with the statistical software R. We establish that the WW-SCAD correctly identifies the set of zero coefficients with probability approaching one and estimates the nonzero coefficients with the rate n−1/2. Moreover, with appropriately chosen weights the WW-SCAD is robust with respect to outliers in both the x and y directions. The important special case with constant weights yields an oracle-type estimator with high efficiency at the presence of heavier-tailed random errors. The robustness of the WW-SCAD is partly justified by its asymptotic performance under local shrinking contamination. We propose a BIC-type tuning parameter selector for the WW-SCAD. The performance of the WW-SCAD is demonstrated via simulations and by an application to a study that investigates the effects of personal characteristics and dietary factors on plasma beta-carotene level. PMID:18647294

  15. Anticipating abrupt shifts in temporal evolution of probability of eruption

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Loschetter, A.

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value to a state of high probability value. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to > 70% could be identified up to 1-3 h in advance. This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  16. Splitting of liftings in products of probability spaces II

    NASA Astrophysics Data System (ADS)

    Macheras, N. D.; Musial, K.; Strauss, W.

    2007-11-01

    For a probability measure R on a product of two probability spaces that is absolutely continuous with respect to the product measure we prove the existence of liftings subordinated to a regular conditional probability and the existence of a lifting for R with lifted sections which satisfies in addition a rectangle formula. These results improve essentially some of the results from the former work of the authors [W. Strauss, N.D. Macheras, K. Musial, Splitting of liftings in products of probability spaces, Ann. ProbabE 32 (2004) 2389-2408], by weakening considerably the assumptions and by presenting more direct and shorter proofs. In comparison with [W. Strauss, N.D. Macheras, K. Musial, Splitting of liftings in products of probability spaces, Ann. Probab. 32 (2004) 2389-2408] it is crucial for applications intended that we can now prescribe one of the factor liftings completely freely. We demonstrate the latter by applications to [tau]-additive measures, transfer of strong liftings, and stochastic processes.

  17. Flood hazard probability mapping method

    NASA Astrophysics Data System (ADS)

    Kalantari, Zahra; Lyon, Steve; Folkeson, Lennart

    2015-04-01

    In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. Factors such as topography, land use, soil data and other PCDs were analysed in terms of their relative importance for flood generation. The specific objective was to test the methodology using statistical methods to identify factors having a significant role on controlling flooding. A second objective was to generate an index quantifying flood probability value for each cell, based on different weighted factors, in order to provide a more accurate analysis of potential high flood hazards than can be obtained using just a single variable. The ability of indicator covariance to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. By using PCD data, realistic representations of high probability flood regions was made, despite the magnitude of rain events. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.

  18. Interference of probabilities in dynamics

    SciTech Connect

    Zak, Michail

    2014-08-15

    A new class of dynamical systems with a preset type of interference of probabilities is introduced. It is obtained from the extension of the Madelung equation by replacing the quantum potential with a specially selected feedback from the Liouville equation. It has been proved that these systems are different from both Newtonian and quantum systems, but they can be useful for modeling spontaneous collective novelty phenomena when emerging outputs are qualitatively different from the weighted sum of individual inputs. Formation of language and fast decision-making process as potential applications of the probability interference is discussed.

  19. Probability as a Physical Motive

    NASA Astrophysics Data System (ADS)

    Martin, Peter

    2007-06-01

    Recent theoretical progress in nonequilibrium thermodynamics, linking thephysical principle of Maximum Entropy Production (“MEP”) to the information-theoretical“MaxEnt” principle of scientific inference, together with conjectures from theoreticalphysics that there may be no fundamental causal laws but only probabilities for physicalprocesses, and from evolutionary theory that biological systems expand “the adjacentpossible” as rapidly as possible, all lend credence to the proposition that probability shouldbe recognized as a fundamental physical motive. It is further proposed that spatial order andtemporal order are two aspects of the same thing, and that this is the essence of the secondlaw of thermodynamics.

  20. Knowledge typology for imprecise probabilities.

    SciTech Connect

    Wilson, G. D.; Zucker, L. J.

    2002-01-01

    When characterizing the reliability of a complex system there are often gaps in the data available for specific subsystems or other factors influencing total system reliability. At Los Alamos National Laboratory we employ ethnographic methods to elicit expert knowledge when traditional data is scarce. Typically, we elicit expert knowledge in probabilistic terms. This paper will explore how we might approach elicitation if methods other than probability (i.e., Dempster-Shafer, or fuzzy sets) prove more useful for quantifying certain types of expert knowledge. Specifically, we will consider if experts have different types of knowledge that may be better characterized in ways other than standard probability theory.

  1. Critical Probabilities and Convergence Time of Percolation Probabilistic Cellular Automata

    NASA Astrophysics Data System (ADS)

    Taggi, Lorenzo

    2015-05-01

    This paper considers a class of probabilistic cellular automata undergoing a phase transition with an absorbing state. Denoting by the neighbourhood of site , the transition probability is if or otherwise, . For any there exists a non-trivial critical probability that separates a phase with an absorbing state from a fluctuating phase. This paper studies how the neighbourhood affects the value of and provides lower bounds for . Furthermore, by using dynamic renormalization techniques, we prove that the expected convergence time of the processes on a finite space with periodic boundaries grows exponentially (resp. logarithmically) with the system size if (resp. ). This provides a partial answer to an open problem in Toom et al. (Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis, pp. 1-182. Manchester University Press, Manchester, 1990; Topics in Contemporary Probability and its Applications, pp. 117-157. CRC Press, Boca Raton, 1995).

  2. Effects of confining pressure, pore pressure and temperature on absolute permeability. SUPRI TR-27

    SciTech Connect

    Gobran, B.D.; Ramey, H.J. Jr.; Brigham, W.E.

    1981-10-01

    This study investigates absolute permeability of consolidated sandstone and unconsolidated sand cores to distilled water as a function of the confining pressure on the core, the pore pressure of the flowing fluid and the temperature of the system. Since permeability measurements are usually made in the laboratory under conditions very different from those in the reservoir, it is important to know the effect of various parameters on the measured value of permeability. All studies on the effect of confining pressure on absolute permeability have found that when the confining pressure is increased, the permeability is reduced. The studies on the effect of temperature have shown much less consistency. This work contradicts the past Stanford studies by finding no effect of temperature on the absolute permeability of unconsolidated sand or sandstones to distilled water. The probable causes of the past errors are discussed. It has been found that inaccurate measurement of temperature at ambient conditions and non-equilibrium of temperature in the core can lead to a fictitious permeability reduction with temperature increase. The results of this study on the effect of confining pressure and pore pressure support the theory that as confining pressure is increased or pore pressure decreased, the permeability is reduced. The effects of confining pressure and pore pressure changes on absolute permeability are given explicitly so that measurements made under one set of confining pressure/pore pressure conditions in the laboratory can be extrapolated to conditions more representative of the reservoir.

  3. Predicting AIDS-related events using CD4 percentage or CD4 absolute counts

    PubMed Central

    Pirzada, Yasmin; Khuder, Sadik; Donabedian, Haig

    2006-01-01

    Background The extent of immunosuppression and the probability of developing an AIDS-related complication in HIV-infected people is usually measured by the absolute number of CD4 positive T-cells. The percentage of CD4 positive cells is a more easily measured and less variable number. We analyzed sequential CD4 and CD8 numbers, percentages and ratios in 218 of our HIV infected patients to determine the most reliable predictor of an AIDS-related event. Results The CD4 percentage was an unsurpassed predictor of the occurrence of AIDS-related events when all subsets of patients are considered. The CD4 absolute count was the next most reliable, followed by the ratio of CD4/CD8 percentages. The value of CD4 percentage over the CD4 absolute count was seen even after the introduction of highly effective HIV therapy. Conclusion The CD4 percentage is unsurpassed as a parameter for predicting the onset of HIV-related diseases. The extra time and expense of measuring the CD4 absolute count may be unnecessary. PMID:16916461

  4. Finding Useful Questions: On Bayesian Diagnosticity, Probability, Impact, and Information Gain

    ERIC Educational Resources Information Center

    Nelson, Jonathan D.

    2005-01-01

    Several norms for how people should assess a question's usefulness have been proposed, notably Bayesian diagnosticity, information gain (mutual information), Kullback-Liebler distance, probability gain (error minimization), and impact (absolute change). Several probabilistic models of previous experiments on categorization, covariation assessment,…

  5. PABS: A Computer Program to Normalize Emission Probabilities and Calculate Realistic Uncertainties

    SciTech Connect

    Caron, D. S.; Browne, E.; Norman, E. B.

    2009-08-21

    The program PABS normalizes relative particle emission probabilities to an absolute scale and calculates the relevant uncertainties on this scale. The program is written in Java using the JDK 1.6 library. For additional information about system requirements, the code itself, and compiling from source, see the README file distributed with this program. The mathematical procedures used are given below.

  6. Probability Simulation in Middle School.

    ERIC Educational Resources Information Center

    Lappan, Glenda; Winter, M. J.

    1980-01-01

    Two simulations designed to teach probability to middle-school age pupils are presented. The first simulates the one-on-one foul shot simulation in basketball; the second deals with collecting a set of six cereal box prizes by buying boxes containing one toy each. (MP)

  7. Some Surprising Probabilities from Bingo.

    ERIC Educational Resources Information Center

    Mercer, Joseph O.

    1993-01-01

    Investigates the probability of winning the largest prize at Bingo through a series of five simpler problems. Investigations are conducted with the aid of either BASIC computer programs, spreadsheets, or a computer algebra system such as Mathematica. Provides sample data tables to illustrate findings. (MDH)

  8. GPS: Geometry, Probability, and Statistics

    ERIC Educational Resources Information Center

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  9. Conditional Independence in Applied Probability.

    ERIC Educational Resources Information Center

    Pfeiffer, Paul E.

    This material assumes the user has the background provided by a good undergraduate course in applied probability. It is felt that introductory courses in calculus, linear algebra, and perhaps some differential equations should provide the requisite experience and proficiency with mathematical concepts, notation, and argument. The document is…

  10. Dynamic SEP event probability forecasts

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Ling, A.

    2015-10-01

    The forecasting of solar energetic particle (SEP) event probabilities at Earth has been based primarily on the estimates of magnetic free energy in active regions and on the observations of peak fluxes and fluences of large (≥ M2) solar X-ray flares. These forecasts are typically issued for the next 24 h or with no definite expiration time, which can be deficient for time-critical operations when no SEP event appears following a large X-ray flare. It is therefore important to decrease the event probability forecast with time as a SEP event fails to appear. We use the NOAA listing of major (≥10 pfu) SEP events from 1976 to 2014 to plot the delay times from X-ray peaks to SEP threshold onsets as a function of solar source longitude. An algorithm is derived to decrease the SEP event probabilities with time when no event is observed to reach the 10 pfu threshold. In addition, we use known SEP event size distributions to modify probability forecasts when SEP intensity increases occur below the 10 pfu event threshold. An algorithm to provide a dynamic SEP event forecast, Pd, for both situations of SEP intensities following a large flare is derived.

  11. Robust absolute magnetometry with organic thin-film devices

    PubMed Central

    Baker, W.J.; Ambal, K.; Waters, D.P.; Baarda, R.; Morishita, H.; van Schooten, K.; McCamey, D.R.; Lupton, J.M.; Boehme, C.

    2012-01-01

    Magnetic field sensors based on organic thin-film materials have attracted considerable interest in recent years as they can be manufactured at very low cost and on flexible substrates. However, the technological relevance of such magnetoresistive sensors is limited owing to their narrow magnetic field ranges (∼30 mT) and the continuous calibration required to compensate temperature fluctuations and material degradation. Conversely, magnetic resonance (MR)-based sensors, which utilize fundamental physical relationships for extremely precise measurements of fields, are usually large and expensive. Here we demonstrate an organic magnetic resonance-based magnetometer, employing spin-dependent electronic transitions in an organic diode, which combines the low-cost thin-film fabrication and integration properties of organic electronics with the precision of a MR-based sensor. We show that the device never requires calibration, operates over large temperature and magnetic field ranges, is robust against materials degradation and allows for absolute sensitivities of <50 nT Hz−1/2. PMID:22692541

  12. On the calculation of the absolute grand potential of confined smectic-A phases

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Baus, Marc; Ryckaert, Jean-Paul

    2015-09-01

    We determine the absolute grand potential Λ along a confined smectic-A branch of a calamitic liquid crystal system enclosed in a slit pore of transverse area A and width L, using the rod-rod Gay-Berne potential and a rod-wall potential favouring perpendicular orientation at the walls. For a confined phase with an integer number of smectic layers sandwiched between the opposite walls, we obtain the excess properties (excess grand potential Λexc, solvation force fs and adsorption Γ) with respect to the bulk phase at the same μ (chemical potential) and T (temperature) state point. While usual thermodynamic integration methods are used along the confined smectic branch to estimate the grand potential difference as μ is varied at fixed L, T, the absolute grand potential at one reference state point is obtained via the evaluation of the absolute Helmholtz free energy in the (N, L, A, T) canonical ensemble. It proceeds via a sequence of free energy difference estimations involving successively the cost of localising rods on layers and the switching on of a one-dimensional harmonic field to keep layers integrity coupled to the elimination of inter-layers and wall interactions. The absolute free energy of the resulting set of fully independent layers of interacting rods is finally estimated via the existing procedures. This work opens the way to the computer simulation study of phase transitions implying confined layered phases.

  13. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  14. Absolute surface energy for zincblende semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, S. B.; Wei, Su-Huai

    2003-03-01

    Recent advance in nanosciences requires the determination of surface (or facet) energy of semiconductors, which is often difficult due to the polar nature of some of the most important surfaces such as the (111)A/(111)B surfaces. Several approaches have been developed in the past [1-3] to deal with the problem but an unambiguous division of the polar surface energies is yet to come [2]. Here we show that an accurate division is indeed possible for the zincblende semiconductors and will present the results for GaAs, ZnSe, and CuInSe2 [4], respectively. A general trend emerges, relating the absolute surface energy to the ionicity of the bulk materials. [1] N. Chetty and R. M. Martin, Phys. Rev. B 45, 6074 (1992). [2] N. Moll, et al., Phys. Rev. B 54, 8844 (1996). [3] S. Mankefors, Phys. Rev. B 59, 13151 (1999). [4] S. B. Zhang and S.-H. Wei, Phys. Rev. B 65, 081402 (2002).

  15. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  16. Absolute decay width measurements in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2012-09-01

    The reaction 126C(63Li, d)168O* at a 6Li bombarding energy of 42 MeV has been used to populate excited states in 16O. The deuteron ejectiles were measured using the high-resolution Munich Q3D spectrograph. A large-acceptance silicon-strip detector array was used to register the recoil and break-up products. This complete kinematic set-up has enabled absolute α-decay widths to be measured with high-resolution in the 13.9 to 15.9 MeV excitation energy regime in 16O; many for the first time. This energy region spans the 14.4 MeV four-α breakup threshold. Monte-Carlo simulations of the detector geometry and break-up processes yield detection efficiencies for the two dominant decay modes of 40% and 37% for the α+12C(g.s.) and a+12C(2+1) break-up channels respectively.

  17. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  18. Absolute spectrophotometry of northern compact planetary nebulae

    NASA Astrophysics Data System (ADS)

    Wright, S. A.; Corradi, R. L. M.; Perinotto, M.

    2005-06-01

    We present medium-dispersion spectra and narrowband images of six northern compact planetary nebulae (PNe): BoBn 1, DdDm 1, IC 5117, M 1-5, M 1-71, and NGC 6833. From broad-slit spectra, total absolute fluxes and equivalent widths were measured for all observable emission lines. High signal-to-noise emission line fluxes of Hα, Hβ, [Oiii], [Nii], and HeI may serve as emission line flux standards for northern hemisphere observers. From narrow-slit spectra, we derive systemic radial velocities. For four PNe, available emission line fluxes were measured with sufficient signal-to-noise to probe the physical properties of their electron densities, temperatures, and chemical abundances. BoBn 1 and DdDm 1, both type IV PNe, have an Hβ flux over three sigma away from previous measurements. We report the first abundance measurements of M 1-71. NGC 6833 measured radial velocity and galactic coordinates suggest that it is associated with the outer arm or possibly the galactic halo, and its low abundance ([O/H]=1.3× 10-4) may be indicative of low metallicity within that region.

  19. A Novel Approach for Toe Off Estimation During Locomotion and Transitions on Ramps and Level Ground.

    PubMed

    Joshi, Deepak; Nakamura, Bryson H; Hahn, Michael E

    2016-01-01

    Identification of the toe off event is critical in many gait applications. Accelerometer threshold-based algorithms lack adaptability and have not been tested for transitions between locomotion states. We describe a new approach for toe off identification using one accelerometer in over ground and ramp walking, including transitions. The method uses invariant foot acceleration features in the segment of gait, where toe off is probable. Wavelet analysis of foot acceleration is used to derive a unique feature in a particular frequency band, yielding estimated toe off occurrence. We tested the new method for five conditions: over ground walking (W), ramp ascending (RA), ramp descending (RD); transitions between states (W-RA, W-RD). Mean absolute estimation error was 17.4 ± 12.5, 13.8 ± 8.5, and 22.0 ± 16.4 ms for steady states W, RA, and RD, 20.1 ± 15.5, and 17.1 ± 13.7 ms for transitions W-RA and W-RD, respectively. Algorithm performance was equivalent across all pairs of transition and locomotion state except between RA and RD ( p = 0.03), demonstrating adaptability. The db1 wavelet outperformed db2 across states and transitions (p < 0.01). The presented algorithm is a simple, robust approach for toe off detection. PMID:25494517

  20. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  1. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  2. Probability densities in strong turbulence

    NASA Astrophysics Data System (ADS)

    Yakhot, Victor

    2006-03-01

    In this work we, using Mellin’s transform combined with the Gaussian large-scale boundary condition, calculate probability densities (PDFs) of velocity increments P(δu,r), velocity derivatives P(u,r) and the PDF of the fluctuating dissipation scales Q(η,Re), where Re is the large-scale Reynolds number. The resulting expressions strongly deviate from the Log-normal PDF P(δu,r) often quoted in the literature. It is shown that the probability density of the small-scale velocity fluctuations includes information about the large (integral) scale dynamics which is responsible for the deviation of P(δu,r) from P(δu,r). An expression for the function D(h) of the multifractal theory, free from spurious logarithms recently discussed in [U. Frisch, M. Martins Afonso, A. Mazzino, V. Yakhot, J. Fluid Mech. 542 (2005) 97] is also obtained.

  3. Probability, Information and Statistical Physics

    NASA Astrophysics Data System (ADS)

    Kuzemsky, A. L.

    2016-03-01

    In this short survey review we discuss foundational issues of the probabilistic approach to information theory and statistical mechanics from a unified standpoint. Emphasis is on the inter-relations between theories. The basic aim is tutorial, i.e. to carry out a basic introduction to the analysis and applications of probabilistic concepts to the description of various aspects of complexity and stochasticity. We consider probability as a foundational concept in statistical mechanics and review selected advances in the theoretical understanding of interrelation of the probability, information and statistical description with regard to basic notions of statistical mechanics of complex systems. It includes also a synthesis of past and present researches and a survey of methodology. The purpose of this terse overview is to discuss and partially describe those probabilistic methods and approaches that are used in statistical mechanics with the purpose of making these ideas easier to understanding and to apply.

  4. Probability for primordial black holes

    NASA Astrophysics Data System (ADS)

    Bousso, R.; Hawking, S. W.

    1995-11-01

    We consider two quantum cosmological models with a massive scalar field: an ordinary Friedmann universe and a universe containing primordial black holes. For both models we discuss the complex solutions to the Euclidean Einstein equations. Using the probability measure obtained from the Hartle-Hawking no-boundary proposal we find that the only unsuppressed black holes start at the Planck size but can grow with the horizon scale during the roll down of the scalar field to the minimum.

  5. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  6. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  7. Radar prediction of absolute rain fade distributions for earth-satellite paths and general methods for extrapolation of fade statistics to other locations

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1982-01-01

    The first absolute rain fade distribution method described establishes absolute fade statistics at a given site by means of a sampled radar data base. The second method extrapolates absolute fade statistics from one location to another, given simultaneously measured fade and rain rate statistics at the former. Both methods employ similar conditional fade statistic concepts and long term rain rate distributions. Probability deviations in the 2-19% range, with an 11% average, were obtained upon comparison of measured and predicted levels at given attenuations. The extrapolation of fade distributions to other locations at 28 GHz showed very good agreement with measured data at three sites located in the continental temperate region.

  8. Evaluation of the 1077 keV γ-ray emission probability from 68Ga decay

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Long; Jiang, Li-Yang; Chen, Xiong-Jun; Chen, Guo-Chang

    2014-04-01

    68Ga decays to the excited states of 68Zn through the electron capture decay mode. New recommended values for the emission probability of 1077 keV γ-ray given by the ENSDF and DDEP databases all use data from absolute measurements. In 2011, JIANG Li-Yang deduced a new value for 1077 keV γ-ray emission probability by measuring the 69Ga(n,2n) 68Ga reaction cross section. The new value is about 20% lower than values obtained from previous absolute measurements and evaluations. In this paper, the discrepancies among the measurements and evaluations are analyzed carefully and the new values are re-recommended. Our recommended value for the emission probability of 1077 keV γ-ray is (2.72±0.16)%.

  9. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  10. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  11. Absolute optical surface measurement with deflectometry

    NASA Astrophysics Data System (ADS)

    Li, Wansong; Sandner, Marc; Gesierich, Achim; Burke, Jan

    Deflectometry utilises the deformation and displacement of a sample pattern after reflection from a test surface to infer the surface slopes. Differentiation of the measurement data leads to a curvature map, which is very useful for surface quality checks with sensitivity down to the nanometre range. Integration of the data allows reconstruction of the absolute surface shape, but the procedure is very error-prone because systematic errors may add up to large shape deviations. In addition, there are infinitely many combinations for slope and object distance that satisfy a given observation. One solution for this ambiguity is to include information on the object's distance. It must be known very accurately. Two laser pointers can be used for positioning the object, and we also show how a confocal chromatic distance sensor can be used to define a reference point on a smooth surface from which the integration can be started. The used integration algorithm works without symmetry constraints and is therefore suitable for free-form surfaces as well. Unlike null testing, deflectometry also determines radius of curvature (ROC) or focal lengths as a direct result of the 3D surface reconstruction. This is shown by the example of a 200 mm diameter telescope mirror, whose ROC measurements by coordinate measurement machine and deflectometry coincide to within 0.27 mm (or a sag error of 1.3μm). By the example of a diamond-turned off-axis parabolic mirror, we demonstrate that the figure measurement uncertainty comes close to a well-calibrated Fizeau interferometer.

  12. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  13. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  14. ON THE LOW FALSE POSITIVE PROBABILITIES OF KEPLER PLANET CANDIDATES

    SciTech Connect

    Morton, Timothy D.; Johnson, John Asher E-mail: johnjohn@astro.caltech.edu

    2011-09-10

    We present a framework to conservatively estimate the probability that any particular planet-like transit signal observed by the Kepler mission is in fact a planet, prior to any ground-based follow-up efforts. We use Monte Carlo methods based on stellar population synthesis and Galactic structure models, and report false positive probabilities (FPPs) for every Kepler Object of Interest, assuming a 20% intrinsic occurrence rate of close-in planets in the radius range 0.5 R{sub +} < R{sub p} < 20 R{sub +}. Nearly 90% of the 1235 candidates have FPP <10%, and over half have FPP <5%. This probability varies with the magnitude and Galactic latitude of the target star, and with the depth of the transit signal-deeper signals generally have higher FPPs than shallower signals. We establish that a single deep high-resolution image will be an effective follow-up tool for the shallowest (Earth-sized) transits, providing the quickest route toward probabilistically validating the smallest candidates by potentially decreasing the FPP of an Earth-sized transit around a faint star from >10% to <1%. Since Kepler has detected many more planetary signals than can be positively confirmed with ground-based follow-up efforts in the near term, these calculations will be crucial to using the ensemble of Kepler data to determine population characteristics of planetary systems. We also describe how our analysis complements the Kepler team's more detailed BLENDER false positive analysis for planet validation.

  15. Absolute frequency measurement at 10-16 level based on the international atomic time

    NASA Astrophysics Data System (ADS)

    Hachisu, H.; Fujieda, M.; Kumagai, M.; Ido, T.

    2016-06-01

    Referring to International Atomic Time (TAI), we measured the absolute frequency of the 87Sr lattice clock with its uncertainty of 1.1 x 10-15. Unless an optical clock is continuously operated for the five days of the TAI grid, it is required to evaluate dead time uncertainty in order to use the available five-day average of the local frequency reference. We homogeneously distributed intermittent measurements over the five-day grid of TAI, by which the dead time uncertainty was reduced to low 10-16 level. Three campaigns of the five (or four)-day consecutive measurements have resulted in the absolute frequency of the 87Sr clock transition of 429 228 004 229 872.85 (47) Hz, where the systematic uncertainty of the 87Sr optical frequency standard amounts to 8.6 x 10-17.

  16. Multiscale Reactive Molecular Dynamics for Absolute pK a Predictions and Amino Acid Deprotonation.

    PubMed

    Nelson, J Gard; Peng, Yuxing; Silverstein, Daniel W; Swanson, Jessica M J

    2014-07-01

    Accurately calculating a weak acid's pK a from simulations remains a challenging task. We report a multiscale theoretical approach to calculate the free energy profile for acid ionization, resulting in accurate absolute pK a values in addition to insights into the underlying mechanism. Importantly, our approach minimizes empiricism by mapping electronic structure data (QM/MM forces) into a reactive molecular dynamics model capable of extensive sampling. Consequently, the bulk property of interest (the absolute pK a) is the natural consequence of the model, not a parameter used to fit it. This approach is applied to create reactive models of aspartic and glutamic acids. We show that these models predict the correct pK a values and provide ample statistics to probe the molecular mechanism of dissociation. This analysis shows changes in the solvation structure and Zundel-dominated transitions between the protonated acid, contact ion pair, and bulk solvated excess proton. PMID:25061442

  17. Absolute intensity measurement of the 4-0 vibration-rotation band of carbon monoxide

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Valero, F. P. J.

    1976-01-01

    The absolute intensity of the 4-0 vibration band of CO is measured in spectra obtained using a 25-m base-path multiple-traversal absorption cell and a 5-m scanning spectrometer. The intensities of individual vibration-rotation lines in this band are determined from measurements of their equivalent widths, and absolute values for the rotationless transition moment and the vibration-rotation interaction factor are derived from the measured line strengths. The experimentally obtained vibration-rotation function is compared with a theoretical curve; agreement between theory and experiment is found to be good for the P-branch but poor for the R-branch. It is noted that numerical solutions to the radial Schroedinger equation lead to vibration-rotation function values that are in good agreement with the experiment.

  18. Exploring the saturation levels of stimulated Raman scattering in the absolute regime.

    PubMed

    Michel, D T; Depierreux, S; Stenz, C; Tassin, V; Labaune, C

    2010-06-25

    This Letter reports new experimental results that evidence the transition between the absolute and convective growth of stimulated Raman scattering (SRS). Significant reflectivities were observed only when the instability grows in the absolute regime. In this case, saturation processes efficiently limit the SRS reflectivity that is shown to scale linearly with the laser intensity, and the electron density and temperature. Such a scaling agrees with the one established by T. Kolber et al. [Phys. Fluids B 5, 138 (1993)10.1063/1.860861] and B Bezzerides et al. [Phys. Rev. Lett. 70, 2569 (1993)10.1103/PhysRevLett.70.2569], from numerical simulations where the Raman saturation is due to the coupling of electron plasma waves with ion waves dynamics. PMID:20867387

  19. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  20. Improved Absolute Frequency Measurement of the 171Yb Optical Lattice Clock towards a Candidate for the Redefinition of the Second

    NASA Astrophysics Data System (ADS)

    Yasuda, Masami; Inaba, Hajime; Kohno, Takuya; Tanabe, Takehiko; Nakajima, Yoshiaki; Hosaka, Kazumoto; Akamatsu, Daisuke; Onae, Atsushi; Suzuyama, Tomonari; Amemiya, Masaki; Hong, Feng-Lei

    2012-10-01

    We demonstrate an improved absolute frequency measurement of the 1S0–3P0 clock transition at 578 nm in 171Yb atoms in a one-dimensional optical lattice. The clock laser linewidth is reduced to ≈2 Hz by phase-locking the laser to an ultrastable neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 1064 nm through an optical frequency comb with an intracavity electrooptic modulator to achieve a high servo bandwidth. The absolute frequency is determined as 518 295 836 590 863.1(2.0) Hz relative to the SI second, and will be reported to the International Committee for Weights and Measures.

  1. Probability for Weather and Climate

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2013-12-01

    Over the last 60 years, the availability of large-scale electronic computers has stimulated rapid and significant advances both in meteorology and in our understanding of the Earth System as a whole. The speed of these advances was due, in large part, to the sudden ability to explore nonlinear systems of equations. The computer allows the meteorologist to carry a physical argument to its conclusion; the time scales of weather phenomena then allow the refinement of physical theory, numerical approximation or both in light of new observations. Prior to this extension, as Charney noted, the practicing meteorologist could ignore the results of theory with good conscience. Today, neither the practicing meteorologist nor the practicing climatologist can do so, but to what extent, and in what contexts, should they place the insights of theory above quantitative simulation? And in what circumstances can one confidently estimate the probability of events in the world from model-based simulations? Despite solid advances of theory and insight made possible by the computer, the fidelity of our models of climate differs in kind from the fidelity of models of weather. While all prediction is extrapolation in time, weather resembles interpolation in state space, while climate change is fundamentally an extrapolation. The trichotomy of simulation, observation and theory which has proven essential in meteorology will remain incomplete in climate science. Operationally, the roles of probability, indeed the kinds of probability one has access too, are different in operational weather forecasting and climate services. Significant barriers to forming probability forecasts (which can be used rationally as probabilities) are identified. Monte Carlo ensembles can explore sensitivity, diversity, and (sometimes) the likely impact of measurement uncertainty and structural model error. The aims of different ensemble strategies, and fundamental differences in ensemble design to support of

  2. The concepts of leak before break and absolute reliability of NPP equipment and piping

    SciTech Connect

    Getman, A.F.; Komarov, O.V.; Sokov, L.M.

    1997-04-01

    This paper describes the absolute reliability (AR) concept for ensuring safe operation of nuclear plant equipment and piping. The AR of a pipeline or component is defined as the level of reliability when the probability of an instantaneous double-ended break is near zero. AR analysis has been applied to Russian RBMK and VVER type reactors. It is proposed that analyses required for application of the leak before break concept should be included in AR implementation. The basic principles, methods, and approaches that provide the basis for implementing the AR concept are described.

  3. Probability of Detection Demonstration Transferability

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    2008-01-01

    The ongoing Mars Science Laboratory (MSL) Propellant Tank Penetrant Nondestructive Evaluation (NDE) Probability of Detection (POD) Assessment (NESC activity) has surfaced several issues associated with liquid penetrant POD demonstration testing. This presentation lists factors that may influence the transferability of POD demonstration tests. Initial testing will address the liquid penetrant inspection technique. Some of the factors to be considered in this task are crack aspect ratio, the extent of the crack opening, the material and the distance between the inspection surface and the inspector's eye.

  4. Probability, statistics, and computational science.

    PubMed

    Beerenwinkel, Niko; Siebourg, Juliane

    2012-01-01

    In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters. PMID:22407706

  5. Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…

  6. Supplementary and Enrichment Series: Absolute Value. SP-24.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…

  7. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  8. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  9. Karst Water System Investigated by Absolute Gravimetry

    NASA Astrophysics Data System (ADS)

    Quinif, Y.; Meus, P.; van Camp, M.; Kaufmann, O.; van Ruymbeke, M.; Vandiepenbeeck, M.; Camelbeeck, T.

    2006-12-01

    The highly anisotropic and heterogeneous hydrogeological characteristics of karst aquifers are difficult to characterize and present challenges for modeling of storage capacities. Little is known about the surface and groundwater interconnection, about the connection between the porous formations and the draining cave and conduits, and about the variability of groundwater volume within the system. Usually, an aquifer is considered as a black box, where water fluxes are monitored as input and output. However, water inflow and outflow are highly variable and cannot be measured directly. A recent project, begun in 2006 sought to constrain the water budget in a Belgian karst aquifer and to assess the porosity and water dynamics, combining absolute gravity (AG) measurements and piezometric levels around the Rochefort cave. The advantage of gravity measurements is that they integrate all the subsystems in the karst system. This is not the case with traditional geophysical tools like boring or monitoring wells, which are soundings affected by their near environment and its heterogeneity. The investigated cave results from the meander cutoff system of the Lomme River. The main inputs are swallow holes of the river crossing the limestone massif. The river is canalized and the karst system is partly disconnected from the hydraulic system. In February and March 2006, when the river spilled over its dyke and sank into the most important swallow hole, this resulted in dramatic and nearly instantaneous increases in the piezometric levels in the cave, reaching up to 13 meters. Meanwhile, gravity increased by 50 and 90 nms-2 in February and March, respectively. A first conclusion is that during these sudden floods, the pores and fine fissures were poorly connected with the enlarged fractures, cave, and conduits. With a rise of 13 meters in the water level and a 5% porosity, a gravity change of 250 nms-2 should have been expected. This moderate gravity variation suggests either a

  10. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  11. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  12. Testing the quasi-absolute method in photon activation analysis

    SciTech Connect

    Sun, Z. J.; Wells, D.; Starovoitova, V.; Segebade, C.

    2013-04-19

    In photon activation analysis (PAA), relative methods are widely used because of their accuracy and precision. Absolute methods, which are conducted without any assistance from calibration materials, are seldom applied for the difficulty in obtaining photon flux in measurements. This research is an attempt to perform a new absolute approach in PAA - quasi-absolute method - by retrieving photon flux in the sample through Monte Carlo simulation. With simulated photon flux and database of experimental cross sections, it is possible to calculate the concentration of target elements in the sample directly. The QA/QC procedures to solidify the research are discussed in detail. Our results show that the accuracy of the method for certain elements is close to a useful level in practice. Furthermore, the future results from the quasi-absolute method can also serve as a validation technique for experimental data on cross sections. The quasi-absolute method looks promising.

  13. Learning in the temporal bisection task: Relative or absolute?

    PubMed

    de Carvalho, Marilia Pinheiro; Machado, Armando; Tonneau, François

    2016-01-01

    We examined whether temporal learning in a bisection task is absolute or relational. Eight pigeons learned to choose a red key after a t-seconds sample and a green key after a 3t-seconds sample. To determine whether they had learned a relative mapping (short→Red, long→Green) or an absolute mapping (t-seconds→Red, 3t-seconds→Green), the pigeons then learned a series of new discriminations in which either the relative or the absolute mapping was maintained. Results showed that the generalization gradient obtained at the end of a discrimination predicted the pattern of choices made during the first session of a new discrimination. Moreover, most acquisition curves and generalization gradients were consistent with the predictions of the learning-to-time model, a Spencean model that instantiates absolute learning with temporal generalization. In the bisection task, the basis of temporal discrimination seems to be absolute, not relational. PMID:26752233

  14. Lectures on probability and statistics

    SciTech Connect

    Yost, G.P.

    1984-09-01

    These notes are based on a set of statistics lectures delivered at Imperial College to the first-year postgraduate students in High Energy Physics. They are designed for the professional experimental scientist. We begin with the fundamentals of probability theory, in which one makes statements about the set of possible outcomes of an experiment, based upon a complete a priori understanding of the experiment. For example, in a roll of a set of (fair) dice, one understands a priori that any given side of each die is equally likely to turn up. From that, we can calculate the probability of any specified outcome. We finish with the inverse problem, statistics. Here, one begins with a set of actual data (e.g., the outcomes of a number of rolls of the dice), and attempts to make inferences about the state of nature which gave those data (e.g., the likelihood of seeing any given side of any given die turn up). This is a much more difficult problem, of course, and one's solutions often turn out to be unsatisfactory in one respect or another.

  15. Measure and Probability in Cosmology

    NASA Astrophysics Data System (ADS)

    Schiffrin, Joshua; Wald, Robert

    2012-03-01

    General relativity has a Hamiltonian formulation, which formally provides a canonical (Liouville) measure on the space of solutions. A number of authors have used the restriction of this measure to the space of homogeneous and isotropic universes with scalar field matter (minisuperspace)---namely, the Gibbons-Hawking-Stewart measure---to make arguments about the likelihood of inflation. We argue here that there are at least four major difficulties with using the measure of general relativity to make probability arguments in cosmology: (1) Equilibration does not occur on cosmological length scales. (2) Even in the minisuperspace case, the measure of phase space is infinite and the computation of probabilities depends very strongly on how the infinity is regulated. (3) The inhomogeneous degrees of freedom must be taken into account even if one is interested only in universes that are very nearly homogeneous. The measure depends upon how the infinite number of degrees of freedom are truncated, and how one defines ``nearly homogeneous''. (4) In a universe where the second law of thermodynamics holds, one cannot make use of our knowledge of the present state of the universe to ``retrodict'' the likelihood of past conditions.

  16. Transition Planning

    ERIC Educational Resources Information Center

    Statfeld, Jenna L.

    2011-01-01

    Post-school transition is the movement of a child with disabilities from school to activities that occur after the completion of school. This paper provides information about: (1) post-school transition; (2) transition plan; (3) transition services; (4) transition planning; (5) vocational rehabilitation services; (6) services that are available…

  17. Measurement of Absolute Arterial Cerebral Blood Volume in Human Brain Without Using a Contrast Agent

    PubMed Central

    Hua, Jun; Qin, Qin; Pekar, James J.; van Zijl, Peter C. M.

    2011-01-01

    Arterial cerebral blood volume (CBVa) is a vital indicator of tissue perfusion and vascular reactivity. We extended the recently developed inflow vascular-space-occupancy (iVASO) MRI technique, which uses spatially selective inversion to suppress the signal from blood flowing into a slice, with a control scan to measure absolute CBVa using CSF for signal normalization. Images were acquired at multiple blood nulling times to account for the heterogeneity of arterial transit times across the brain, from which both CBVa and arterial transit times were quantified. Arteriolar CBVa was determined separately by incorporating velocity-dependent bipolar crusher gradients. Gray matter CBVa values (n = 11) were 2.04 ± 0.27 and 0.76 ± 0.17 ml blood/100 ml tissue without and with crusher gradients (b = 1.8 s/mm2), respectively. Arterial transit times were 671 ± 43 and 785 ± 69 ms, respectively. The arterial origin of the signal was validated by measuring its T2, which was within arterial range. The proposed approach does not require exogenous contrast agent administration, and provides a noninvasive alternative to existing blood volume techniques for mapping absolute CBVa in studies of brain physiology and neurovascular diseases. PMID:21608057

  18. Magnetic dipole transitions in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2011-03-15

    In homonuclear molecules, such as H{sub 2}, the electric dipole transitions are strongly forbidden, and the transitions between rovibrational states are of the electric quadrupole type. We show, however, that magnetic dipole transitions also take place, although they are significantly weaker. We evaluate the probabilities of such transitions between several of the lowest rotational states and compare them with those of the corresponding electric quadrupole transitions.

  19. Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry.

    PubMed

    Ludwig, Christina; Claassen, Manfred; Schmidt, Alexander; Aebersold, Ruedi

    2012-03-01

    For many research questions in modern molecular and systems biology, information about absolute protein quantities is imperative. This information includes, for example, kinetic modeling of processes, protein turnover determinations, stoichiometric investigations of protein complexes, or quantitative comparisons of different proteins within one sample or across samples. To date, the vast majority of proteomic studies are limited to providing relative quantitative comparisons of protein levels between limited numbers of samples. Here we describe and demonstrate the utility of a targeting MS technique for the estimation of absolute protein abundance in unlabeled and nonfractionated cell lysates. The method is based on selected reaction monitoring (SRM) mass spectrometry and the "best flyer" hypothesis, which assumes that the specific MS signal intensity of the most intense tryptic peptides per protein is approximately constant throughout a whole proteome. SRM-targeted best flyer peptides were selected for each protein from the peptide precursor ion signal intensities from directed MS data. The most intense transitions per peptide were selected from full MS/MS scans of crude synthetic analogs. We used Monte Carlo cross-validation to systematically investigate the accuracy of the technique as a function of the number of measured best flyer peptides and the number of SRM transitions per peptide. We found that a linear model based on the two most intense transitions of the three best flying peptides per proteins (TopPep3/TopTra2) generated optimal results with a cross-correlated mean fold error of 1.8 and a squared Pearson coefficient R(2) of 0.88. Applying the optimized model to lysates of the microbe Leptospira interrogans, we detected significant protein abundance changes of 39 target proteins upon antibiotic treatment, which correlate well with literature values. The described method is generally applicable and exploits the inherent performance advantages of SRM

  20. MSPI False Indication Probability Simulations

    SciTech Connect

    Dana Kelly; Kurt Vedros; Robert Youngblood

    2011-03-01

    This paper examines false indication probabilities in the context of the Mitigating System Performance Index (MSPI), in order to investigate the pros and cons of different approaches to resolving two coupled issues: (1) sensitivity to the prior distribution used in calculating the Bayesian-corrected unreliability contribution to the MSPI, and (2) whether (in a particular plant configuration) to model the fuel oil transfer pump (FOTP) as a separate component, or integrally to its emergency diesel generator (EDG). False indication probabilities were calculated for the following situations: (1) all component reliability parameters at their baseline values, so that the true indication is green, meaning that an indication of white or above would be false positive; (2) one or more components degraded to the extent that the true indication would be (mid) white, and “false” would be green (negative) or yellow (negative) or red (negative). In key respects, this was the approach taken in NUREG-1753. The prior distributions examined were the constrained noninformative (CNI) prior used currently by the MSPI, a mixture of conjugate priors, the Jeffreys noninformative prior, a nonconjugate log(istic)-normal prior, and the minimally informative prior investigated in (Kelly et al., 2010). The mid-white performance state was set at ?CDF = ?10 ? 10-6/yr. For each simulated time history, a check is made of whether the calculated ?CDF is above or below 10-6/yr. If the parameters were at their baseline values, and ?CDF > 10-6/yr, this is counted as a false positive. Conversely, if one or all of the parameters are set to values corresponding to ?CDF > 10-6/yr but that time history’s ?CDF < 10-6/yr, this is counted as a false negative indication. The false indication (positive or negative) probability is then estimated as the number of false positive or negative counts divided by the number of time histories (100,000). Results are presented for a set of base case parameter values