Sample records for absolute upper bound

  1. Upper bounds on superpartner masses from upper bounds on the Higgs boson mass.

    PubMed

    Cabrera, M E; Casas, J A; Delgado, A

    2012-01-13

    The LHC is putting bounds on the Higgs boson mass. In this Letter we use those bounds to constrain the minimal supersymmetric standard model (MSSM) parameter space using the fact that, in supersymmetry, the Higgs mass is a function of the masses of sparticles, and therefore an upper bound on the Higgs mass translates into an upper bound for the masses for superpartners. We show that, although current bounds do not constrain the MSSM parameter space from above, once the Higgs mass bound improves big regions of this parameter space will be excluded, putting upper bounds on supersymmetry (SUSY) masses. On the other hand, for the case of split-SUSY we show that, for moderate or large tanβ, the present bounds on the Higgs mass imply that the common mass for scalars cannot be greater than 10(11)  GeV. We show how these bounds will evolve as LHC continues to improve the limits on the Higgs mass.

  2. Absolute Lower Bound on the Bounce Action

    NASA Astrophysics Data System (ADS)

    Sato, Ryosuke; Takimoto, Masahiro

    2018-03-01

    The decay rate of a false vacuum is determined by the minimal action solution of the tunneling field: bounce. In this Letter, we focus on models with scalar fields which have a canonical kinetic term in N (>2 ) dimensional Euclidean space, and derive an absolute lower bound on the bounce action. In the case of four-dimensional space, we show the bounce action is generically larger than 24 /λcr, where λcr≡max [-4 V (ϕ )/|ϕ |4] with the false vacuum being at ϕ =0 and V (0 )=0 . We derive this bound on the bounce action without solving the equation of motion explicitly. Our bound is derived by a quite simple discussion, and it provides useful information even if it is difficult to obtain the explicit form of the bounce solution. Our bound offers a sufficient condition for the stability of a false vacuum, and it is useful as a quick check on the vacuum stability for given models. Our bound can be applied to a broad class of scalar potential with any number of scalar fields. We also discuss a necessary condition for the bounce action taking a value close to this lower bound.

  3. Upper Bound on Diffusivity

    NASA Astrophysics Data System (ADS)

    Hartman, Thomas; Hartnoll, Sean A.; Mahajan, Raghu

    2017-10-01

    The linear growth of operators in local quantum systems leads to an effective light cone even if the system is nonrelativistic. We show that the consistency of diffusive transport with this light cone places an upper bound on the diffusivity: D ≲v2τeq. The operator growth velocity v defines the light cone, and τeq is the local equilibration time scale, beyond which the dynamics of conserved densities is diffusive. We verify that the bound is obeyed in various weakly and strongly interacting theories. In holographic models, this bound establishes a relation between the hydrodynamic and leading nonhydrodynamic quasinormal modes of planar black holes. Our bound relates transport data—including the electrical resistivity and the shear viscosity—to the local equilibration time, even in the absence of a quasiparticle description. In this way, the bound sheds light on the observed T -linear resistivity of many unconventional metals, the shear viscosity of the quark-gluon plasma, and the spin transport of unitary fermions.

  4. UPPER BOUND RISK ESTIMATES FOR MIXTURES OF CARCINOGENS

    EPA Science Inventory

    The excess cancer risk that might result from exposure to a mixture of chemical carcinogens usually is estimated with data from experiments conducted on individual chemicals. An upper bound on the total excess risk is estimated commonly by summing individual upper bound risk esti...

  5. Upper bounds on sequential decoding performance parameters

    NASA Technical Reports Server (NTRS)

    Jelinek, F.

    1974-01-01

    This paper presents the best obtainable random coding and expurgated upper bounds on the probabilities of undetectable error, of t-order failure (advance to depth t into an incorrect subset), and of likelihood rise in the incorrect subset, applicable to sequential decoding when the metric bias G is arbitrary. Upper bounds on the Pareto exponent are also presented. The G-values optimizing each of the parameters of interest are determined, and are shown to lie in intervals that in general have nonzero widths. The G-optimal expurgated bound on undetectable error is shown to agree with that for maximum likelihood decoding of convolutional codes, and that on failure agrees with the block code expurgated bound. Included are curves evaluating the bounds for interesting choices of G and SNR for a binary-input quantized-output Gaussian additive noise channel.

  6. Upper bounds on the photon mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Accioly, Antonio; Group of Field Theory from First Principles, Sao Paulo State University; Instituto de Fisica Teorica

    2010-09-15

    The effects of a nonzero photon rest mass can be incorporated into electromagnetism in a simple way using the Proca equations. In this vein, two interesting implications regarding the possible existence of a massive photon in nature, i.e., tiny alterations in the known values of both the anomalous magnetic moment of the electron and the gravitational deflection of electromagnetic radiation, are utilized to set upper limits on its mass. The bounds obtained are not as stringent as those recently found; nonetheless, they are comparable to other existing bounds and bring new elements to the issue of restricting the photon mass.

  7. Upper and lower bounds for the speed of pulled fronts with a cut-off

    NASA Astrophysics Data System (ADS)

    Benguria, R. D.; Depassier, M. C.; Loss, M.

    2008-02-01

    We establish rigorous upper and lower bounds for the speed of pulled fronts with a cut-off. For all reaction terms of KPP type a simple analytic upper bound is given. The lower bounds however depend on details of the reaction term. For a small cut-off parameter the two leading order terms in the asymptotic expansion of the upper and lower bounds coincide and correspond to the Brunet-Derrida formula. For large cut-off parameters the bounds do not coincide and permit a simple estimation of the speed of the front.

  8. Upper bounds on secret-key agreement over lossy thermal bosonic channels

    NASA Astrophysics Data System (ADS)

    Kaur, Eneet; Wilde, Mark M.

    2017-12-01

    Upper bounds on the secret-key-agreement capacity of a quantum channel serve as a way to assess the performance of practical quantum-key-distribution protocols conducted over that channel. In particular, if a protocol employs a quantum repeater, achieving secret-key rates exceeding these upper bounds is evidence of having a working quantum repeater. In this paper, we extend a recent advance [Liuzzo-Scorpo et al., Phys. Rev. Lett. 119, 120503 (2017), 10.1103/PhysRevLett.119.120503] in the theory of the teleportation simulation of single-mode phase-insensitive Gaussian channels such that it now applies to the relative entropy of entanglement measure. As a consequence of this extension, we find tighter upper bounds on the nonasymptotic secret-key-agreement capacity of the lossy thermal bosonic channel than were previously known. The lossy thermal bosonic channel serves as a more realistic model of communication than the pure-loss bosonic channel, because it can model the effects of eavesdropper tampering and imperfect detectors. An implication of our result is that the previously known upper bounds on the secret-key-agreement capacity of the thermal channel are too pessimistic for the practical finite-size regime in which the channel is used a finite number of times, and so it should now be somewhat easier to witness a working quantum repeater when using secret-key-agreement capacity upper bounds as a benchmark.

  9. Upper bound of abutment scour in laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen

    2016-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a field investigation of abutment scour in South Carolina and used those data to develop envelope curves that define the upper bound of abutment scour. To expand on this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with abutment scour data from other sources and evaluate upper bound patterns with this larger data set. To facilitate this analysis, 446 laboratory and 331 field measurements of abutment scour were compiled into a digital database. This extensive database was used to evaluate the South Carolina abutment scour envelope curves and to develop additional envelope curves that reflected the upper bound of abutment scour depth for the laboratory and field data. The envelope curves provide simple but useful supplementary tools for assessing the potential maximum abutment scour depth in the field setting.

  10. Upper bound on the slope of steady water waves with small adverse vorticity

    NASA Astrophysics Data System (ADS)

    So, Seung Wook; Strauss, Walter A.

    2018-03-01

    We consider the angle of inclination (with respect to the horizontal) of the profile of a steady 2D inviscid symmetric periodic or solitary water wave subject to gravity. There is an upper bound of 31.15° in the irrotational case [1] and an upper bound of 45° in the case of favorable vorticity [13]. On the other hand, if the vorticity is adverse, the profile can become vertical. We prove here that if the adverse vorticity is sufficiently small, then the angle still has an upper bound which is slightly larger than 45°.

  11. Upper-Bound Estimates Of SEU in CMOS

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1990-01-01

    Theory of single-event upsets (SEU) (changes in logic state caused by energetic charged subatomic particles) in complementary metal oxide/semiconductor (CMOS) logic devices extended to provide upper-bound estimates of rates of SEU when limited experimental information available and configuration and dimensions of SEU-sensitive regions of devices unknown. Based partly on chord-length-distribution method.

  12. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Rodemich, E. R.; Rumsey, H., Jr.; Welch, L. R.

    1977-01-01

    An upper bound on the rate of a binary code as a function of minimum code distance (using a Hamming code metric) is arrived at from Delsarte-MacWilliams inequalities. The upper bound so found is asymptotically less than Levenshtein's bound, and a fortiori less than Elias' bound. Appendices review properties of Krawtchouk polynomials and Q-polynomials utilized in the rigorous proofs.

  13. On the upper bound in the Bohm sheath criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotelnikov, I. A., E-mail: I.A.Kotelnikov@inp.nsk.su; Skovorodin, D. I., E-mail: D.I.Skovorodin@inp.nsk.su

    2016-02-15

    The question is discussed about the existence of an upper bound in the Bohm sheath criterion, according to which the Debye sheath at the interface between plasma and a negatively charged electrode is stable only if the ion flow velocity in plasma exceeds the ion sound velocity. It is stated that, with an exception of some artificial ionization models, the Bohm sheath criterion is satisfied as an equality at the lower bound and the ion flow velocity is equal to the speed of sound. In the one-dimensional theory, a supersonic flow appears in an unrealistic model of a localized ionmore » source the size of which is less than the Debye length; however, supersonic flows seem to be possible in the two- and three-dimensional cases. In the available numerical codes used to simulate charged particle sources with a plasma emitter, the presence of the upper bound in the Bohm sheath criterion is not supposed; however, the correspondence with experimental data is usually achieved if the ion flow velocity in plasma is close to the ion sound velocity.« less

  14. Upper bound on the Abelian gauge coupling from asymptotic safety

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Versteegen, Fleur

    2018-01-01

    We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above the Planck scale. Simultaneously, quantum gravity fluctuations balance against matter fluctuations to generate an interacting fixed point, which acts as a boundary of the basin of attraction of the free fixed point. This enforces an upper bound on the infrared value of the Abelian gauge coupling. In the regime of gravity couplings which in our approximation also allows for a prediction of the top quark and Higgs mass close to the experimental value [1], we obtain an upper bound approximately 35% above the infrared value of the hypercharge coupling in the Standard Model.

  15. Upper and lower bounds of ground-motion variabilities: implication for source properties

    NASA Astrophysics Data System (ADS)

    Cotton, Fabrice; Reddy-Kotha, Sreeram; Bora, Sanjay; Bindi, Dino

    2017-04-01

    One of the key challenges of seismology is to be able to analyse the physical factors that control earthquakes and ground-motion variabilities. Such analysis is particularly important to calibrate physics-based simulations and seismic hazard estimations at high frequencies. Within the framework of the development of ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-source records and modern GMPE analysis technics allow to partition these residuals into between- and a within-event components. In particular, the between-event term quantifies all those repeatable source effects (e.g. related to stress-drop or kappa-source variability) which have not been accounted by the magnitude-dependent term of the model. In this presentation, we first discuss the between-event variabilities computed both in the Fourier and Response Spectra domains, using recent high-quality global accelerometric datasets (e.g. NGA-west2, Resorce, Kiknet). These analysis lead to the assessment of upper bounds for the ground-motion variability. Then, we compare these upper bounds with lower bounds estimated by analysing seismic sequences which occurred on specific fault systems (e.g., located in Central Italy or in Japan). We show that the lower bounds of between-event variabilities are surprisingly large which indicates a large variability of earthquake dynamic properties even within the same fault system. Finally, these upper and lower bounds of ground-shaking variability are discussed in term of variability of earthquake physical properties (e.g., stress-drop and kappa_source).

  16. Computing an upper bound on contact stress with surrogate duality

    NASA Astrophysics Data System (ADS)

    Xuan, Zhaocheng; Papadopoulos, Panayiotis

    2016-07-01

    We present a method for computing an upper bound on the contact stress of elastic bodies. The continuum model of elastic bodies with contact is first modeled as a constrained optimization problem by using finite elements. An explicit formulation of the total contact force, a fraction function with the numerator as a linear function and the denominator as a quadratic convex function, is derived with only the normalized nodal contact forces as the constrained variables in a standard simplex. Then two bounds are obtained for the sum of the nodal contact forces. The first is an explicit formulation of matrices of the finite element model, derived by maximizing the fraction function under the constraint that the sum of the normalized nodal contact forces is one. The second bound is solved by first maximizing the fraction function subject to the standard simplex and then using Dinkelbach's algorithm for fractional programming to find the maximum—since the fraction function is pseudo concave in a neighborhood of the solution. These two bounds are solved with the problem dimensions being only the number of contact nodes or node pairs, which are much smaller than the dimension for the original problem, namely, the number of degrees of freedom. Next, a scheme for constructing an upper bound on the contact stress is proposed that uses the bounds on the sum of the nodal contact forces obtained on a fine finite element mesh and the nodal contact forces obtained on a coarse finite element mesh, which are problems that can be solved at a lower computational cost. Finally, the proposed method is verified through some examples concerning both frictionless and frictional contact to demonstrate the method's feasibility, efficiency, and robustness.

  17. Lower and upper bounds for entanglement of Rényi-α entropy.

    PubMed

    Song, Wei; Chen, Lin; Cao, Zhuo-Liang

    2016-12-23

    Entanglement Rényi-α entropy is an entanglement measure. It reduces to the standard entanglement of formation when α tends to 1. We derive analytical lower and upper bounds for the entanglement Rényi-α entropy of arbitrary dimensional bipartite quantum systems. We also demonstrate the application our bound for some concrete examples. Moreover, we establish the relation between entanglement Rényi-α entropy and some other entanglement measures.

  18. The upper bound of Pier Scour defined by selected laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted several field investigations of pier scour in South Carolina (Benedict and Caldwell, 2006; Benedict and Caldwell, 2009) and used that data to develop envelope curves defining the upper bound of pier scour. To expand upon this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with pier-scour data from other sources and evaluate the upper bound of pier scour with this larger data set. To facilitate this analysis, a literature review was made to identify potential sources of published pier-scour data, and selected data were compiled into a digital spreadsheet consisting of approximately 570 laboratory and 1,880 field measurements. These data encompass a wide range of laboratory and field conditions and represent field data from 24 states within the United States and six other countries. This extensive database was used to define the upper bound of pier-scour depth with respect to pier width encompassing the laboratory and field data. Pier width is a primary variable that influences pier-scour depth (Laursen and Toch, 1956; Melville and Coleman, 2000; Mueller and Wagner, 2005, Ettema et al. 2011, Arneson et al. 2012) and therefore, was used as the primary explanatory variable in developing the upper-bound envelope curve. The envelope curve provides a simple but useful tool for assessing the potential maximum pier-scour depth for pier widths of about 30 feet or less.

  19. Upper bound of pier scour in laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2016-01-01

    The U.S. Geological Survey (USGS), in cooperation with the South Carolina Department of Transportation, conducted several field investigations of pier scour in South Carolina and used the data to develop envelope curves defining the upper bound of pier scour. To expand on this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with pier scour data from other sources and to evaluate upper-bound relations with this larger data set. To facilitate this analysis, 569 laboratory and 1,858 field measurements of pier scour were compiled to form the 2014 USGS Pier Scour Database. This extensive database was used to develop an envelope curve for the potential maximum pier scour depth encompassing the laboratory and field data. The envelope curve provides a simple but useful tool for assessing the potential maximum pier scour depth for effective pier widths of about 30 ft or less.

  20. A tight upper bound for quadratic knapsack problems in grid-based wind farm layout optimization

    NASA Astrophysics Data System (ADS)

    Quan, Ning; Kim, Harrison M.

    2018-03-01

    The 0-1 quadratic knapsack problem (QKP) in wind farm layout optimization models possible turbine locations as nodes, and power loss due to wake effects between pairs of turbines as edges in a complete graph. The goal is to select up to a certain number of turbine locations such that the sum of selected node and edge coefficients is maximized. Finding the optimal solution to the QKP is difficult in general, but it is possible to obtain a tight upper bound on the QKP's optimal value which facilitates the use of heuristics to solve QKPs by giving a good estimate of the optimality gap of any feasible solution. This article applies an upper bound method that is especially well-suited to QKPs in wind farm layout optimization due to certain features of the formulation that reduce the computational complexity of calculating the upper bound. The usefulness of the upper bound was demonstrated by assessing the performance of the greedy algorithm for solving QKPs in wind farm layout optimization. The results show that the greedy algorithm produces good solutions within 4% of the optimal value for small to medium sized problems considered in this article.

  1. Upper bounds on the error probabilities and asymptotic error exponents in quantum multiple state discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audenaert, Koenraad M. R., E-mail: koenraad.audenaert@rhul.ac.uk; Department of Physics and Astronomy, University of Ghent, S9, Krijgslaan 281, B-9000 Ghent; Mosonyi, Milán, E-mail: milan.mosonyi@gmail.com

    2014-10-01

    We consider the multiple hypothesis testing problem for symmetric quantum state discrimination between r given states σ₁, …, σ{sub r}. By splitting up the overall test into multiple binary tests in various ways we obtain a number of upper bounds on the optimal error probability in terms of the binary error probabilities. These upper bounds allow us to deduce various bounds on the asymptotic error rate, for which it has been hypothesized that it is given by the multi-hypothesis quantum Chernoff bound (or Chernoff divergence) C(σ₁, …, σ{sub r}), as recently introduced by Nussbaum and Szkoła in analogy with Salikhov'smore » classical multi-hypothesis Chernoff bound. This quantity is defined as the minimum of the pairwise binary Chernoff divergences min{sub j« less

  2. General upper bound on single-event upset rate. [due to ionizing radiation in orbiting vehicle avionics

    NASA Technical Reports Server (NTRS)

    Chlouber, Dean; O'Neill, Pat; Pollock, Jim

    1990-01-01

    A technique of predicting an upper bound on the rate at which single-event upsets due to ionizing radiation occur in semiconducting memory cells is described. The upper bound on the upset rate, which depends on the high-energy particle environment in earth orbit and accelerator cross-section data, is given by the product of an upper-bound linear energy-transfer spectrum and the mean cross section of the memory cell. Plots of the spectrum are given for low-inclination and polar orbits. An alternative expression for the exact upset rate is also presented. Both methods rely only on experimentally obtained cross-section data and are valid for sensitive bit regions having arbitrary shape.

  3. The Upper and Lower Bounds of the Prediction Accuracies of Ensemble Methods for Binary Classification

    PubMed Central

    Wang, Xueyi; Davidson, Nicholas J.

    2011-01-01

    Ensemble methods have been widely used to improve prediction accuracy over individual classifiers. In this paper, we achieve a few results about the prediction accuracies of ensemble methods for binary classification that are missed or misinterpreted in previous literature. First we show the upper and lower bounds of the prediction accuracies (i.e. the best and worst possible prediction accuracies) of ensemble methods. Next we show that an ensemble method can achieve > 0.5 prediction accuracy, while individual classifiers have < 0.5 prediction accuracies. Furthermore, for individual classifiers with different prediction accuracies, the average of the individual accuracies determines the upper and lower bounds. We perform two experiments to verify the results and show that it is hard to achieve the upper and lower bounds accuracies by random individual classifiers and better algorithms need to be developed. PMID:21853162

  4. Exact lower and upper bounds on stationary moments in stochastic biochemical systems

    NASA Astrophysics Data System (ADS)

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A.; Lamperski, Andrew; Singh, Abhyudai

    2017-08-01

    In the stochastic description of biochemical reaction systems, the time evolution of statistical moments for species population counts is described by a linear dynamical system. However, except for some ideal cases (such as zero- and first-order reaction kinetics), the moment dynamics is underdetermined as lower-order moments depend upon higher-order moments. Here, we propose a novel method to find exact lower and upper bounds on stationary moments for a given arbitrary system of biochemical reactions. The method exploits the fact that statistical moments of any positive-valued random variable must satisfy some constraints that are compactly represented through the positive semidefiniteness of moment matrices. Our analysis shows that solving moment equations at steady state in conjunction with constraints on moment matrices provides exact lower and upper bounds on the moments. These results are illustrated by three different examples—the commonly used logistic growth model, stochastic gene expression with auto-regulation and an activator-repressor gene network motif. Interestingly, in all cases the accuracy of the bounds is shown to improve as moment equations are expanded to include higher-order moments. Our results provide avenues for development of approximation methods that provide explicit bounds on moments for nonlinear stochastic systems that are otherwise analytically intractable.

  5. Marginal Consistency: Upper-Bounding Partition Functions over Commutative Semirings.

    PubMed

    Werner, Tomás

    2015-07-01

    Many inference tasks in pattern recognition and artificial intelligence lead to partition functions in which addition and multiplication are abstract binary operations forming a commutative semiring. By generalizing max-sum diffusion (one of convergent message passing algorithms for approximate MAP inference in graphical models), we propose an iterative algorithm to upper bound such partition functions over commutative semirings. The iteration of the algorithm is remarkably simple: change any two factors of the partition function such that their product remains the same and their overlapping marginals become equal. In many commutative semirings, repeating this iteration for different pairs of factors converges to a fixed point when the overlapping marginals of every pair of factors coincide. We call this state marginal consistency. During that, an upper bound on the partition function monotonically decreases. This abstract algorithm unifies several existing algorithms, including max-sum diffusion and basic constraint propagation (or local consistency) algorithms in constraint programming. We further construct a hierarchy of marginal consistencies of increasingly higher levels and show than any such level can be enforced by adding identity factors of higher arity (order). Finally, we discuss instances of the framework for several semirings, including the distributive lattice and the max-sum and sum-product semirings.

  6. Upper bound on the efficiency of certain nonimaging concentrators in the physical-optics model

    NASA Astrophysics Data System (ADS)

    Welford, W. T.; Winston, R.

    1982-09-01

    Upper bounds on the performance of nonimaging concentrators are obtained within the framework of scalar-wave theory by using a simple approach to avoid complex calculations on multiple phase fronts. The approach consists in treating a theoretically perfect image-forming device and postulating that no non-image-forming concentrator can have a better performance than such an ideal image-forming system. The performance of such a system can be calculated according to wave theory, and this will provide, in accordance with the postulate, upper bounds on the performance of nonimaging systems. The method is demonstrated for a two-dimensional compound parabolic concentrator.

  7. The upper bound of abutment scour defined by selected laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a field investigation of abutment scour in South Carolina and used that data to develop envelope curves defining the upper bound of abutment scour. To expand upon this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with abutment-scour data from other sources and evaluate the upper bound of abutment scour with the larger data set. To facilitate this analysis, a literature review was made to identify potential sources of published abutment-scour data, and selected data, consisting of 446 laboratory and 331 field measurements, were compiled for the analysis. These data encompassed a wide range of laboratory and field conditions and represent field data from 6 states within the United States. The data set was used to evaluate the South Carolina abutment-scour envelope curves. Additionally, the data were used to evaluate a dimensionless abutment-scour envelope curve developed by Melville (1992), highlighting the distinct difference in the upper bound for laboratory and field data. The envelope curves evaluated in this investigation provide simple but useful tools for assessing the potential maximum abutment-scour depth in the field setting.

  8. Upper and lower bounds for semi-Markov reliability models of reconfigurable systems

    NASA Technical Reports Server (NTRS)

    White, A. L.

    1984-01-01

    This paper determines the information required about system recovery to compute the reliability of a class of reconfigurable systems. Upper and lower bounds are derived for these systems. The class consists of those systems that satisfy five assumptions: the components fail independently at a low constant rate, fault occurrence and system reconfiguration are independent processes, the reliability model is semi-Markov, the recovery functions which describe system configuration have small means and variances, and the system is well designed. The bounds are easy to compute, and examples are included.

  9. Safe Upper-Bounds Inference of Energy Consumption for Java Bytecode Applications

    NASA Technical Reports Server (NTRS)

    Navas, Jorge; Mendez-Lojo, Mario; Hermenegildo, Manuel V.

    2008-01-01

    Many space applications such as sensor networks, on-board satellite-based platforms, on-board vehicle monitoring systems, etc. handle large amounts of data and analysis of such data is often critical for the scientific mission. Transmitting such large amounts of data to the remote control station for analysis is usually too expensive for time-critical applications. Instead, modern space applications are increasingly relying on autonomous on-board data analysis. All these applications face many resource constraints. A key requirement is to minimize energy consumption. Several approaches have been developed for estimating the energy consumption of such applications (e.g. [3, 1]) based on measuring actual consumption at run-time for large sets of random inputs. However, this approach has the limitation that it is in general not possible to cover all possible inputs. Using formal techniques offers the potential for inferring safe energy consumption bounds, thus being specially interesting for space exploration and safety-critical systems. We have proposed and implemented a general frame- work for resource usage analysis of Java bytecode [2]. The user defines a set of resource(s) of interest to be tracked and some annotations that describe the cost of some elementary elements of the program for those resources. These values can be constants or, more generally, functions of the input data sizes. The analysis then statically derives an upper bound on the amount of those resources that the program as a whole will consume or provide, also as functions of the input data sizes. This article develops a novel application of the analysis of [2] to inferring safe upper bounds on the energy consumption of Java bytecode applications. We first use a resource model that describes the cost of each bytecode instruction in terms of the joules it consumes. With this resource model, we then generate energy consumption cost relations, which are then used to infer safe upper bounds. How

  10. Upper bounds on the error probabilities and asymptotic error exponents in quantum multiple state discrimination

    NASA Astrophysics Data System (ADS)

    Audenaert, Koenraad M. R.; Mosonyi, Milán

    2014-10-01

    We consider the multiple hypothesis testing problem for symmetric quantum state discrimination between r given states σ1, …, σr. By splitting up the overall test into multiple binary tests in various ways we obtain a number of upper bounds on the optimal error probability in terms of the binary error probabilities. These upper bounds allow us to deduce various bounds on the asymptotic error rate, for which it has been hypothesized that it is given by the multi-hypothesis quantum Chernoff bound (or Chernoff divergence) C(σ1, …, σr), as recently introduced by Nussbaum and Szkoła in analogy with Salikhov's classical multi-hypothesis Chernoff bound. This quantity is defined as the minimum of the pairwise binary Chernoff divergences min _{jbound is actually achieved. It was known to be achieved, in particular, when the state pair that is closest together in Chernoff divergence is more than 6 times closer than the next closest pair. Our results improve on this in two ways. First, we show that the optimal asymptotic rate must lie between C/2 and C. Second, we show that the Chernoff bound is already achieved when the closest state pair is more than 2 times closer than the next closest pair. We also show that the Chernoff bound is achieved when at least r - 2 of the states are pure, improving on a previous result by Nussbaum and Szkoła. Finally, we indicate a number of potential pathways along which a proof (or disproof) may eventually be found that the multi-hypothesis quantum Chernoff bound is always achieved.

  11. A new upper bound for the norm of interval matrices with application to robust stability analysis of delayed neural networks.

    PubMed

    Faydasicok, Ozlem; Arik, Sabri

    2013-08-01

    The main problem with the analysis of robust stability of neural networks is to find the upper bound norm for the intervalized interconnection matrices of neural networks. In the previous literature, the major three upper bound norms for the intervalized interconnection matrices have been reported and they have been successfully applied to derive new sufficient conditions for robust stability of delayed neural networks. One of the main contributions of this paper will be the derivation of a new upper bound for the norm of the intervalized interconnection matrices of neural networks. Then, by exploiting this new upper bound norm of interval matrices and using stability theory of Lyapunov functionals and the theory of homomorphic mapping, we will obtain new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slope-bounded activation functions. The results obtained in this paper will be shown to be new and they can be considered alternative results to previously published corresponding results. We also give some illustrative and comparative numerical examples to demonstrate the effectiveness and applicability of the proposed robust stability condition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Length bounds for connecting discharges in triggered lightning subsequent strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idone, V.P.

    1990-11-20

    Highly time resolved streak recordings from nine subsequent strokes in four triggered flashes have been examined for evidence of the occurrence of upward connecting discharges. These photographic recordings were obtained with superior spatial and temporal resolution (0.3 m and 0.5 {lambda}s) and were examined with a video image analysis system to help delineate the separate leader and return stroke image tracks. Unfortunately, a definitive determination of the occurrence of connecting discharges in these strokes could not be made. The data did allow various determinations of an upper bound length for any possible connecting discharge in each stroke. Under the simplestmore » analysis approach possible, an 'absolute' upper bound set of lengths was measured that ranged from 12 to 27 m with a mean of 19 m; two other more involved analyses yielded arguably better upper bound estimates of 8-18 m and 7-26 m with means of 19 m; two other more involved analyses yielded arguably better upper bound estimates of 8-18 m and 7-26 m with means of 12 and 13 m, respectively. An additional set of low time-resolution telephoto recordings of the lowest few meters of channel revealed six strokes in these flashes with one or more upward unconnected channels originating from the lightning rod tip. The maximum length of unconnected channel seen in each of these strokes ranged from 0.2 to 1.6 m with a mean of 0.7 m. This latter set of observations is interpreted as indirect evidence that connecting discharges did occur in these strokes and that the lower bound for their length is about 1 m.« less

  13. Generalized monogamy inequalities and upper bounds of negativity for multiqubit systems

    NASA Astrophysics Data System (ADS)

    Yang, Yanmin; Chen, Wei; Li, Gang; Zheng, Zhu-Jun

    2018-01-01

    In this paper, we present some generalized monogamy inequalities and upper bounds of negativity based on convex-roof extended negativity (CREN) and CREN of assistance (CRENOA). These monogamy relations are satisfied by the negativity of N -qubit quantum systems A B C1⋯CN -2 , under the partitions A B | C1⋯CN -2 and A B C1| C2⋯CN -2 . Furthermore, the W -class states are used to test these generalized monogamy inequalities.

  14. Upper Bounds on the Expected Value of a Convex Function Using Gradient and Conjugate Function Information.

    DTIC Science & Technology

    1987-08-01

    of the absolute difference between the random variable and its mean.Gassmann and Ziemba 119861 provide a weaker bound that does not require...2.8284, and EX4tV) -12 EX’iX) = -42. Hence C = -2 -€t* i-4’]= I-- . 1213. £1 2 5 COMPARISONS OF BOUNDS IN IIn Gassmann and Ziemba 11986) extend an idea...solution of the foLLowing Linear program: (see Gassmann, Ziemba (1986),Theorem 1) m m m-GZ=max(XT(vi) I: z. 1=1,Z vo=x io (5.1hk i-l i=i i=1 I I where 0

  15. An Upper Bound on High Speed Satellite Collision Probability When Only One Object has Position Uncertainty Information

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    Upper bounds on high speed satellite collision probability, PC †, have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum PC. If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but potentially useful Pc upper bound.

  16. An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Nilanjana, E-mail: n.datta@statslab.cam.ac.uk; Hsieh, Min-Hsiu, E-mail: Min-Hsiu.Hsieh@uts.edu.au; Oppenheim, Jonathan, E-mail: j.oppenheim@ucl.ac.uk

    State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol ofmore » coherent state merging as a primitive.« less

  17. Intrinsic upper bound on two-qubit polarization entanglement predetermined by pump polarization correlations in parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Subrahmanyam, V.; Jha, Anand K.

    2016-06-01

    We study how one-particle correlations transfer to manifest as two-particle correlations in the context of parametric down-conversion (PDC), a process in which a pump photon is annihilated to produce two entangled photons. We work in the polarization degree of freedom and show that for any two-qubit generation process that is both trace-preserving and entropy-nondecreasing, the concurrence C (ρ ) of the generated two-qubit state ρ follows an intrinsic upper bound with C (ρ )≤(1 +P )/2 , where P is the degree of polarization of the pump photon. We also find that for the class of two-qubit states that is restricted to have only two nonzero diagonal elements such that the effective dimensionality of the two-qubit state is the same as the dimensionality of the pump polarization state, the upper bound on concurrence is the degree of polarization itself, that is, C (ρ )≤P . Our work shows that the maximum manifestation of two-particle correlations as entanglement is dictated by one-particle correlations. The formalism developed in this work can be extended to include multiparticle systems and can thus have important implications towards deducing the upper bounds on multiparticle entanglement, for which no universally accepted measure exists.

  18. SAS and SPSS macros to calculate standardized Cronbach's alpha using the upper bound of the phi coefficient for dichotomous items.

    PubMed

    Sun, Wei; Chou, Chih-Ping; Stacy, Alan W; Ma, Huiyan; Unger, Jennifer; Gallaher, Peggy

    2007-02-01

    Cronbach's a is widely used in social science research to estimate the internal consistency of reliability of a measurement scale. However, when items are not strictly parallel, the Cronbach's a coefficient provides a lower-bound estimate of true reliability, and this estimate may be further biased downward when items are dichotomous. The estimation of standardized Cronbach's a for a scale with dichotomous items can be improved by using the upper bound of coefficient phi. SAS and SPSS macros have been developed in this article to obtain standardized Cronbach's a via this method. The simulation analysis showed that Cronbach's a from upper-bound phi might be appropriate for estimating the real reliability when standardized Cronbach's a is problematic.

  19. Robust control design with real parameter uncertainty using absolute stability theory. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds.

  20. Tight upper bound for the maximal quantum value of the Svetlichny operators

    NASA Astrophysics Data System (ADS)

    Li, Ming; Shen, Shuqian; Jing, Naihuan; Fei, Shao-Ming; Li-Jost, Xianqing

    2017-10-01

    It is a challenging task to detect genuine multipartite nonlocality (GMNL). In this paper, the problem is considered via computing the maximal quantum value of Svetlichny operators for three-qubit systems and a tight upper bound is obtained. The constraints on the quantum states for the tightness of the bound are also presented. The approach enables us to give the necessary and sufficient conditions of violating the Svetlichny inequality (SI) for several quantum states, including the white and color noised Greenberger-Horne-Zeilinger (GHZ) states. The relation between the genuine multipartite entanglement concurrence and the maximal quantum value of the Svetlichny operators for mixed GHZ class states is also discussed. As the SI is useful for the investigation of GMNL, our results give an effective and operational method to detect the GMNL for three-qubit mixed states.

  1. Effects of general relativity on glitch amplitudes and pulsar mass upper bounds

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Montoli, A.; Pizzochero, P. M.

    2018-04-01

    Pinning of vortex lines in the inner crust of a spinning neutron star may be the mechanism that enhances the differential rotation of the internal neutron superfluid, making it possible to freeze some amount of angular momentum which eventually can be released, thus causing a pulsar glitch. We investigate the general relativistic corrections to pulsar glitch amplitudes in the slow-rotation approximation, consistently with the stratified structure of the star. We thus provide a relativistic generalization of a previous Newtonian model that was recently used to estimate upper bounds on the masses of glitching pulsars. We find that the effect of general relativity on the glitch amplitudes obtained by emptying the whole angular momentum reservoir is less than 30 per cent. Moreover, we show that the Newtonian upper bounds on the masses of large glitchers obtained from observations of their maximum recorded event differ by less than a few percent from those calculated within the relativistic framework. This work can also serve as a basis to construct more sophisticated models of angular momentum reservoir in a relativistic context: in particular, we present two alternative scenarios for macroscopically rigid and slack pinned vortex lines, and we generalize the Feynman-Onsager relation to the case when both entrainment coupling between the fluids and a strong axisymmetric gravitational field are present.

  2. Upper bounds of deformation in the Upper Rhine Graben from GPS data - First results from GURN (GNSS Upper Rhine Graben Network)

    NASA Astrophysics Data System (ADS)

    Masson, Frederic; Knoepfler, Andreas; Mayer, Michael; Ulrich, Patrice; Heck, Bernhard

    2010-05-01

    In September 2008, the Institut de Physique du Globe de Strasbourg (Ecole et Observatoire des Sciences de la Terre, EOST) and the Geodetic Institute (GIK) of Karlsruhe University (TH) established a transnational cooperation called GURN (GNSS Upper Rhine Graben Network). Within the GURN initiative these institutions are cooperating in order to establish a highly precise and highly sensitive network of permanently operating GNSS sites for the detection of crustal movements in the Upper Rhine Graben region. At the beginning, the network consisted of the permanently operating GNSS sites of SAPOS®-Baden-Württemberg, different data providers in France (e.g. EOST, Teria, RGP) and some further sites (e.g. IGS). In July 2009, the network was extended to the South when swisstopo (Switzerland) and to the North when SAPOS®-Rheinland-Pfalz joined GURN. Therefore, actually the GNSS network consists of approx. 80 permanently operating reference sites. The presentation will discuss the actual status of GURN, main research goals, and will present first results concerning the data quality as well as time series of a first reprocessing of all available data since 2002 using GAMIT/GLOBK (EOST working group) and the Bernese GPS Software (GIK working group). Based on these time series, the velocity as well as strain fields will be calculated in the future. The GURN initiative is also aiming for the estimation of the upper bounds of deformation in the Upper Rhine Graben region.

  3. Theoretical investigation of the upper and lower bounds of a generalized dimensionless bearing health indicator

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tsui, Kwok-Leung

    2018-01-01

    Bearing-supported shafts are widely used in various machines. Due to harsh working environments, bearing performance degrades over time. To prevent unexpected bearing failures and accidents, bearing performance degradation assessment becomes an emerging topic in recent years. Bearing performance degradation assessment aims to evaluate the current health condition of a bearing through a bearing health indicator. In the past years, many signal processing and data mining based methods were proposed to construct bearing health indicators. However, the upper and lower bounds of these bearing health indicators were not theoretically calculated and they strongly depended on historical bearing data including normal and failure data. Besides, most health indicators are dimensional, which connotes that these health indicators are prone to be affected by varying operating conditions, such as varying speeds and loads. In this paper, based on the principle of squared envelope analysis, we focus on theoretical investigation of bearing performance degradation assessment in the case of additive Gaussian noises, including distribution establishment of squared envelope, construction of a generalized dimensionless bearing health indicator, and mathematical calculation of the upper and lower bounds of the generalized dimensionless bearing health indicator. Then, analyses of simulated and real bearing run to failure data are used as two case studies to illustrate how the generalized dimensionless health indicator works and demonstrate its effectiveness in bearing performance degradation assessment. Results show that squared envelope follows a noncentral chi-square distribution and the upper and lower bounds of the generalized dimensionless health indicator can be mathematically established. Moreover, the generalized dimensionless health indicator is sensitive to an incipient bearing defect in the process of bearing performance degradation.

  4. Pre-Test Assessment of the Upper Bound of the Drag Coefficient Repeatability of a Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; L'Esperance, A.

    2017-01-01

    A new method is presented that computes a pre{test estimate of the upper bound of the drag coefficient repeatability of a wind tunnel model. This upper bound is a conservative estimate of the precision error of the drag coefficient. For clarity, precision error contributions associated with the measurement of the dynamic pressure are analyzed separately from those that are associated with the measurement of the aerodynamic loads. The upper bound is computed by using information about the model, the tunnel conditions, and the balance in combination with an estimate of the expected output variations as input. The model information consists of the reference area and an assumed angle of attack. The tunnel conditions are described by the Mach number and the total pressure or unit Reynolds number. The balance inputs are the partial derivatives of the axial and normal force with respect to all balance outputs. Finally, an empirical output variation of 1.0 microV/V is used to relate both random instrumentation and angle measurement errors to the precision error of the drag coefficient. Results of the analysis are reported by plotting the upper bound of the precision error versus the tunnel conditions. The analysis shows that the influence of the dynamic pressure measurement error on the precision error of the drag coefficient is often small when compared with the influence of errors that are associated with the load measurements. Consequently, the sensitivities of the axial and normal force gages of the balance have a significant influence on the overall magnitude of the drag coefficient's precision error. Therefore, results of the error analysis can be used for balance selection purposes as the drag prediction characteristics of balances of similar size and capacities can objectively be compared. Data from two wind tunnel models and three balances are used to illustrate the assessment of the precision error of the drag coefficient.

  5. Calculation of upper confidence bounds on proportion of area containing not-sampled vegetation types: An application to map unit definition for existing vegetation maps

    Treesearch

    Paul L. Patterson; Mark Finco

    2011-01-01

    This paper explores the information forest inventory data can produce regarding forest types that were not sampled and develops the equations necessary to define the upper confidence bounds on not-sampled forest types. The problem is reduced to a Bernoulli variable. This simplification allows the upper confidence bounds to be calculated based on Cochran (1977)....

  6. Absolute limit on rotation of gravitationally bound stars

    NASA Astrophysics Data System (ADS)

    Glendenning, N. K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 solar mass neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable.

  7. Physical Uncertainty Bounds (PUB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switchingmore » out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.« less

  8. Calculation of upper confidence bounds on not-sampled vegetation types using a systematic grid sample: An application to map unit definition for existing vegetation maps

    Treesearch

    Paul L. Patterson; Mark Finco

    2009-01-01

    This paper explores the information FIA data can produce regarding forest types that were not sampled and develops the equations necessary to define the upper confidence bounds on not-sampled forest types. The problem is reduced to a Bernoulli variable. This simplification allows the upper confidence bounds to be calculated based on Cochran (1977). Examples are...

  9. Upper bound for the span of pencil graph

    NASA Astrophysics Data System (ADS)

    Parvathi, N.; Vimala Rani, A.

    2018-04-01

    An L(2,1)-Coloring or Radio Coloring or λ coloring of a graph is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x) ‑ f(y)| ≥ 2 if d(x,y) = 1 and |f(x) ‑ f(y)| ≥ 1 if d(x,y)=2, where d(x,y) denotes the distance between x and y in G. The L(2,1)-coloring number or span number λ(G) of G is the smallest number k such that G has an L(2,1)-coloring with max{f(v) : v ∈ V(G)} = k. [2]The minimum number of colors used in L(2,1)-coloring is called the radio number rn(G) of G (Positive integer). Griggs and yeh conjectured that λ(G) ≤ Δ2 for any simple graph with maximum degree Δ>2. In this article, we consider some special graphs like, n-sunlet graph, pencil graph families and derive its upper bound of (G) and rn(G).

  10. Improved upper bounds on energy dissipation rates in plane Couette flow with boundary injection and suction

    NASA Astrophysics Data System (ADS)

    Lee, Harry; Wen, Baole; Doering, Charles

    2017-11-01

    The rate of viscous energy dissipation ɛ in incompressible Newtonian planar Couette flow (a horizontal shear layer) imposed with uniform boundary injection and suction is studied numerically. Specifically, fluid is steadily injected through the top plate with a constant rate at a constant angle of injection, and the same amount of fluid is sucked out vertically through the bottom plate at the same rate. This set-up leads to two control parameters, namely the angle of injection, θ, and the Reynolds number of the horizontal shear flow, Re . We numerically implement the `background field' variational problem formulated by Constantin and Doering with a one-dimensional unidirectional background field ϕ(z) , where z aligns with the distance between the plates. Computation is carried out at various levels of Re with θ = 0 , 0 .1° ,1° and 2°, respectively. The computed upper bounds on ɛ scale like Re0 as Re > 20 , 000 for each fixed θ, this agrees with Kolmogorov's hypothesis on isotropic turbulence. The outcome provides new upper bounds to ɛ among any solution to the underlying Navier-Stokes equations, and they are sharper than the analytical bounds presented in Doering et al. (2000). This research was partially supported by the NSF Award DMS-1515161, and the University of Michigan's Rackham Graduate Student Research Grant.

  11. Upper bound on three-tangles of reduced states of four-qubit pure states

    NASA Astrophysics Data System (ADS)

    Sharma, S. Shelly; Sharma, N. K.

    2017-06-01

    Closed formulas for upper bounds on three-tangles of three-qubit reduced states in terms of three-qubit-invariant polynomials of pure four-qubit states are obtained. Our results offer tighter constraints on total three-way entanglement of a given qubit with the rest of the system than those used by Regula et al. [Phys. Rev. Lett. 113, 110501 (2014), 10.1103/PhysRevLett.113.110501 and Phys. Rev. Lett. 116, 049902(E) (2016)], 10.1103/PhysRevLett.116.049902 to verify monogamy of four-qubit quantum entanglement.

  12. An upper bound on the radius of a highly electrically conducting lunar core

    NASA Technical Reports Server (NTRS)

    Hobbs, B. A.; Hood, L. L.; Herbert, F.; Sonett, C. P.

    1983-01-01

    Parker's (1980) nonlinear inverse theory for the electromagnetic sounding problem is converted to a form suitable for analysis of lunar day-side transfer function data by: (1) transforming the solution in plane geometry to that in spherical geometry; and (2) transforming the theoretical lunar transfer function in the dipole limit to an apparent resistivity function. The theory is applied to the revised lunar transfer function data set of Hood et al. (1982), which extends in frequency from 10 to the -5th to 10 to the -3rd Hz. On the assumption that an iron-rich lunar core, whether molten or solid, can be represented by a perfect conductor at the minimum sampled frequency, an upper bound of 435 km on the maximum radius of such a core is calculated. This bound is somewhat larger than values of 360-375 km previously estimated from the same data set via forward model calculations because the prior work did not consider all possible mantle conductivity functions.

  13. How Deep is Shallow? Improving Absolute and Relative Locations of Upper Crustal Seismicity in Switzerland

    NASA Astrophysics Data System (ADS)

    Diehl, T.; Kissling, E. H.; Singer, J.; Lee, T.; Clinton, J. F.; Waldhauser, F.; Wiemer, S.

    2017-12-01

    Information on the structure of upper-crustal fault systems and their connection with seismicity is key to the understanding of neotectonic processes. Precisely determined focal depths in combination with structural models can provide important insight into deformation styles of the upper crust (e.g. thin- vs. versus thick-skinned tectonics). Detailed images of seismogenic fault zones in the upper crust, on the other hand, will contribute to the assessment of the hazard related to natural and induced earthquakes, especially in regions targeted for radioactive waste repositories or geothermal energy production. The complex velocity structure of the uppermost crust and unfavorable network geometries, however, often hamper precise locations (i.e. focal depth) of shallow seismicity and therefore limit tectonic interpretations. In this study we present a new high-precision catalog of absolute locations of seismicity in Switzerland. High-quality travel-time data from local and regional earthquakes in the period 2000-2017 are used to solve the coupled hypocenter-velocity structure problem in 1D. For this purpose, the well-known VELEST inversion software was revised and extended to improve the quality assessment of travel-time data and to facilitate the identification of erroneous picks in the bulletin data. Results from the 1D inversion are used as initial parameters for a 3D local earthquake tomography. Well-studied earthquakes and high-quality quarry blasts are used to assess the quality of 1D and 3D relocations. In combination with information available from various controlled-source experiments, borehole data, and geological profiles, focal depths and associated host formations are assessed through comparison with the resolved 3D velocity structure. The new absolute locations and velocity models are used as initial values for relative double-difference relocation of earthquakes in Switzerland. Differential times are calculated from bulletin picks and waveform cross

  14. A note on the upper bound of the spectral radius for SOR iteration matrix

    NASA Astrophysics Data System (ADS)

    Chang, D.-W. Da-Wei

    2004-05-01

    Recently, Wang and Huang (J. Comput. Appl. Math. 135 (2001) 325, Corollary 4.7) established the following estimation on the upper bound of the spectral radius for successive overrelaxation (SOR) iteration matrix:ρSOR≤1-ω+ωρGSunder the condition that the coefficient matrix A is a nonsingular M-matrix and ω≥1, where ρSOR and ρGS are the spectral radius of SOR iteration matrix and Gauss-Seidel iteration matrix, respectively. In this note, we would like to point out that the above estimation is not valid in general.

  15. Current Global Absolute Plate Velocities Inferred from the Trends of Hotspot Tracks: Implications for Motion between Groups of Hotspots and Comparison and Combination with Absolute Velocities Inferred from the Orientation of Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gordon, R. G.; Zheng, L.

    2016-12-01

    Hotspot tracks are widely used to estimate the absolute velocities of plates, i.e., relative to the lower mantle. Knowledge of current motion between hotspots is important for both plate kinematics and mantle dynamics and informs the discussion on the origin of the Hawaiian-Emperor Bend. Following Morgan & Morgan (2007), we focus only on the trends of young hotspot tracks and omit volcanic propagation rates. The dispersion of the trends can be partitioned into between-plate and within-plate dispersion. Applying the method of Gripp & Gordon (2002) to the hotspot trend data set of Morgan & Morgan (2007) constrained to the MORVEL relative plate angular velocities (DeMets et al., 2010) results in a standard deviation of the 56 hotspot trends of 22°. The largest angular misfits tend to occur on the slowest moving plates. Alternatively, estimation of best-fitting poles to hotspot tracks on the nine individual plates, results in a standard deviation of trends of only 13°, a statistically significant reduction from the introduction of 15 additional adjustable parameters. If all of the between-plate misfit is due to motion of groups of hotspots (beneath different plates), nominal velocities relative to the mean hotspot reference frame range from 1 to 4 mm/yr with the lower bounds ranging from 1 to 3 mm/yr and the greatest upper bound being 8 mm/yr. These are consistent with bounds on motion between Pacific and Indo-Atlantic hotspots over the past ≈50 Ma, which range from zero (lower bound) to 8 to 13 mm/yr (upper bounds) (Koivisto et al., 2014). We also determine HS4-MORVEL, a new global set of plate angular velocities relative to the hotspots constrained to consistency with the MORVEL relative plate angular velocities, using a two-tier analysis similar to that used by Zheng et al. (2014) to estimate the SKS-MORVEL global set of absolute plate velocities fit to the orientation of seismic anisotropy. We find that the 95% confidence limits of HS4-MORVEL and SKS

  16. Bounds for Asian basket options

    NASA Astrophysics Data System (ADS)

    Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle

    2008-09-01

    In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.

  17. Using a Water Balance Model to Bound Potential Irrigation Development in the Upper Blue Nile Basin

    NASA Astrophysics Data System (ADS)

    Jain Figueroa, A.; McLaughlin, D.

    2016-12-01

    The Grand Ethiopian Renaissance Dam (GERD), on the Blue Nile is an example of water resource management underpinning food, water and energy security. Downstream countries have long expressed concern about water projects in Ethiopia because of possible diversions to agricultural uses that could reduce flow in the Nile. Such diversions are attractive to Ethiopia as a partial solution to its food security problems but they could also conflict with hydropower revenue from GERD. This research estimates an upper bound on diversions above the GERD project by considering the potential for irrigated agriculture expansion and, in particular, the availability of water and land resources for crop production. Although many studies have aimed to simulate downstream flows for various Nile basin management plans, few have taken the perspective of bounding the likely impacts of upstream agricultural development. The approach is to construct an optimization model to establish a bound on Upper Blue Nile (UBN) agricultural development, paying particular attention to soil suitability and seasonal variability in climate. The results show that land and climate constraints impose significant limitations on crop production. Only 25% of the land area is suitable for irrigation due to the soil, slope and temperature constraints. When precipitation is also considered only 11% of current land area could be used in a way that increases water consumption. The results suggest that Ethiopia could consume an additional 3.75 billion cubic meters (bcm) of water per year, through changes in land use and storage capacity. By exploiting this irrigation potential, Ethiopia could potentially decrease the annual flow downstream of the UBN by 8 percent from the current 46 bcm/y to the modeled 42 bcm/y.

  18. Exponential bound in the quest for absolute zero

    NASA Astrophysics Data System (ADS)

    Stefanatos, Dionisis

    2017-10-01

    In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.

  19. Exponential bound in the quest for absolute zero.

    PubMed

    Stefanatos, Dionisis

    2017-10-01

    In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.

  20. Upper bounds on quantum uncertainty products and complexity measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, Angel; Sanchez-Moreno, Pablo; Dehesa, Jesus S.

    The position-momentum Shannon and Renyi uncertainty products of general quantum systems are shown to be bounded not only from below (through the known uncertainty relations), but also from above in terms of the Heisenberg-Kennard product . Moreover, the Cramer-Rao, Fisher-Shannon, and Lopez-Ruiz, Mancini, and Calbet shape measures of complexity (whose lower bounds have been recently found) are also bounded from above. The improvement of these bounds for systems subject to spherically symmetric potentials is also explicitly given. Finally, applications to hydrogenic and oscillator-like systems are done.

  1. The upper bound to the Relative Reporting Ratio—a measure of the impact of the violation of hidden assumptions underlying some disproportionality methods used in signal detection

    PubMed Central

    Van Holle, Lionel; Bauchau, Vincent

    2014-01-01

    Purpose For disproportionality measures based on the Relative Reporting Ratio (RRR) such as the Information Component (IC) and the Empirical Bayesian Geometrical Mean (EBGM), each product and event is assumed to represent a negligible fraction of the spontaneous report database (SRD). Here, we provide the tools for allowing signal detection experts to assess the consequence of the violation of this assumption on their specific SRD. Methods For each product–event pair (P–E), a worst-case scenario associated all the reported events-of-interest with the product of interest. The values of the RRR under this scenario were measured for different sets of stratification factors using the GlaxoSmithKline vaccines SRD. These values represent the RRR upper bound that RRR cannot exceed whatever the true strength of association. Results Depending on the choice of stratification factors, the RRR could not exceed an upper bound of 2 for up to 2.4% of the P–Es. For Engerix™, 23.4% of all reports in the SDR, the RRR could not exceed an upper bound of 2 for up to 13.8% of pairs. For the P–E Rotarix™-Intussusception, the choice of stratification factors impacted the upper bound to RRR: from 52.5 for an unstratified RRR to 2.0 for a fully stratified RRR. Conclusions The quantification of the upper bound can indicate whether measures such as EBGM, IC, or RRR can be used for SRD for which products or events represent a non-negligible fraction of the entire SRD. In addition, at the level of the product or P–E, it can also highlight detrimental impact of overstratification. © 2014 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons, Ltd. PMID:24395594

  2. The Estimation of the IRT Reliability Coefficient and Its Lower and Upper Bounds, with Comparisons to CTT Reliability Statistics

    ERIC Educational Resources Information Center

    Kim, Seonghoon; Feldt, Leonard S.

    2010-01-01

    The primary purpose of this study is to investigate the mathematical characteristics of the test reliability coefficient rho[subscript XX'] as a function of item response theory (IRT) parameters and present the lower and upper bounds of the coefficient. Another purpose is to examine relative performances of the IRT reliability statistics and two…

  3. An upper bound on the particle-laden dependency of shear stresses at solid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.

    2018-03-01

    In modern advanced manufacturing processes, such as three-dimensional printing of electronics, fine-scale particles are added to a base fluid yielding a modified fluid. For example, in three-dimensional printing, particle-functionalized inks are created by adding particles to freely flowing solvents forming a mixture, which is then deposited onto a surface, which upon curing yields desirable solid properties, such as thermal conductivity, electrical permittivity and magnetic permeability. However, wear at solid-fluid interfaces within the machinery walls that deliver such particle-laden fluids is typically attributed to the fluid-induced shear stresses, which increase with the volume fraction of added particles. The objective of this work is to develop a rigorous strict upper bound for the tolerable volume fraction of particles that can be added, while remaining below a given stress threshold at a fluid-solid interface. To illustrate the bound's utility, the expression is applied to a series of classical flow regimes.

  4. Bond additive modeling 10. Upper and lower bounds of bond incident degree indices of catacondensed fluoranthenes

    NASA Astrophysics Data System (ADS)

    Vukičević, Damir; Đurđević, Jelena

    2011-10-01

    Bond incident degree index is a descriptor that is calculated as the sum of the bond contributions such that each bond contribution depends solely on the degrees of its incident vertices (e.g. Randić index, Zagreb index, modified Zagreb index, variable Randić index, atom-bond connectivity index, augmented Zagreb index, sum-connectivity index, many Adriatic indices, and many variable Adriatic indices). In this Letter we find tight upper and lower bounds for bond incident degree index for catacondensed fluoranthenes with given number of hexagons.

  5. Complexity Bounds for Quantum Computation

    DTIC Science & Technology

    2007-06-22

    Programs Trustees of Boston University Boston, MA 02215 - Complexity Bounds for Quantum Computation REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION...Complexity Bounds for Quantum Comp[utation Report Title ABSTRACT This project focused on upper and lower bounds for quantum computability using constant...classical computation models, particularly emphasizing new examples of where quantum circuits are more powerful than their classical counterparts. A second

  6. Determining Normal-Distribution Tolerance Bounds Graphically

    NASA Technical Reports Server (NTRS)

    Mezzacappa, M. A.

    1983-01-01

    Graphical method requires calculations and table lookup. Distribution established from only three points: mean upper and lower confidence bounds and lower confidence bound of standard deviation. Method requires only few calculations with simple equations. Graphical procedure establishes best-fit line for measured data and bounds for selected confidence level and any distribution percentile.

  7. Finite-error metrological bounds on multiparameter Hamiltonian estimation

    NASA Astrophysics Data System (ADS)

    Kura, Naoto; Ueda, Masahito

    2018-01-01

    Estimation of multiple parameters in an unknown Hamiltonian is investigated. We present upper and lower bounds on the time required to complete the estimation within a prescribed error tolerance δ . The lower bound is given on the basis of the Cramér-Rao inequality, where the quantum Fisher information is bounded by the squared evolution time. The upper bound is obtained by an explicit construction of estimation procedures. By comparing the cases with different numbers of Hamiltonian channels, we also find that the few-channel procedure with adaptive feedback and the many-channel procedure with entanglement are equivalent in the sense that they require the same amount of time resource up to a constant factor.

  8. The upper bounds of reduced axial and shear moduli in cross-ply laminates with matrix cracks

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, D. H.; Harris, C. E.

    1991-01-01

    The present study proposes a mathematical model utilizing the internal state variable concept for predicting the upper bounds of the reduced axial and shear stiffnesses in cross-ply laminates with matrix cracks. The displacement components at the matrix crack surfaces are explicitly expressed in terms of the observable axial and shear strains and the undamaged material properties. The reduced axial and shear stiffnesses are predicted for glass/epoxy and graphite/epoxy laminates. Comparison of the model with other theoretical and experimental studies is also presented to confirm direct applicability of the model to angle-ply laminates with matrix cracks subjected to general in-plane loading.

  9. Bounds of memory strength for power-law series.

    PubMed

    Guo, Fangjian; Yang, Dan; Yang, Zimo; Zhao, Zhi-Dan; Zhou, Tao

    2017-05-01

    Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents α. By permuting the independently drawn samples from a power-law distribution, we present nontrivial bounds on the memory strength (first-order autocorrelation) as a function of α, which are markedly different from the ordinary ±1 bounds for Gaussian or uniform distributions. When 1<α≤3, as α grows bigger, the upper bound increases from 0 to +1 while the lower bound remains 0; when α>3, the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the posts on Twitter, ratings of MovieLens, calling records of the mobile operator Orange, and the browsing behavior of Taobao, we find that empirical power-law-distributed data produced by human activities obey such constraints. The present findings explain some observed constraints in bursty time series and scale-free networks and challenge the validity of measures such as autocorrelation and assortativity coefficient in heterogeneous systems.

  10. Bounds of memory strength for power-law series

    NASA Astrophysics Data System (ADS)

    Guo, Fangjian; Yang, Dan; Yang, Zimo; Zhao, Zhi-Dan; Zhou, Tao

    2017-05-01

    Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents α . By permuting the independently drawn samples from a power-law distribution, we present nontrivial bounds on the memory strength (first-order autocorrelation) as a function of α , which are markedly different from the ordinary ±1 bounds for Gaussian or uniform distributions. When 1 <α ≤3 , as α grows bigger, the upper bound increases from 0 to +1 while the lower bound remains 0; when α >3 , the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the posts on Twitter, ratings of MovieLens, calling records of the mobile operator Orange, and the browsing behavior of Taobao, we find that empirical power-law-distributed data produced by human activities obey such constraints. The present findings explain some observed constraints in bursty time series and scale-free networks and challenge the validity of measures such as autocorrelation and assortativity coefficient in heterogeneous systems.

  11. Bound of dissipation on a plane Couette dynamo

    NASA Astrophysics Data System (ADS)

    Alboussière, Thierry

    2009-06-01

    Variational turbulence is among the few approaches providing rigorous results in turbulence. In addition, it addresses a question of direct practical interest, namely, the rate of energy dissipation. Unfortunately, only an upper bound is obtained as a larger functional space than the space of solutions to the Navier-Stokes equations is searched. Yet, in some cases, this upper bound is in good agreement with experimental results in terms of order of magnitude and power law of the imposed Reynolds number. In this paper, the variational approach to turbulence is extended to the case of dynamo action and an upper bound is obtained for the global dissipation rate (viscous and Ohmic). A simple plane Couette flow is investigated. For low magnetic Prandtl number Pm fluids, the upper bound of energy dissipation is that of classical turbulence (i.e., proportional to the cubic power of the shear velocity) for magnetic Reynolds numbers below Pm-1 and follows a steeper evolution for magnetic Reynolds numbers above Pm-1 (i.e., proportional to the shear velocity to the power of 4) in the case of electrically insulating walls. However, the effect of wall conductance is crucial: for a given value of wall conductance, there is a value for the magnetic Reynolds number above which energy dissipation cannot be bounded. This limiting magnetic Reynolds number is inversely proportional to the square root of the conductance of the wall. Implications in terms of energy dissipation in experimental and natural dynamos are discussed.

  12. An Upper Bound on Orbital Debris Collision Probability When Only One Object has Position Uncertainty Information

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    Upper bounds on high speed satellite collision probability, P (sub c), have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum P (sub c). If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but useful P (sub c) upper bound. There are various avenues along which an upper bound on the high speed satellite collision probability has been pursued. Typically, for the collision plane representation of the high speed collision probability problem, the predicted miss position in the collision plane is assumed fixed. Then the shape (aspect ratio of ellipse), the size (scaling of standard deviations) or the orientation (rotation of ellipse principal axes) of the combined position error ellipse is varied to obtain a maximum P (sub c). Regardless as to the exact details of the approach, previously presented methods all assume that an individual position error covariance matrix is available for each object and the two are combined into a single, relative position error covariance matrix. This combined position error covariance matrix is then modified according to the chosen scheme to arrive at a maximum P (sub c). But what if error covariance information for one of the two objects is not available? When error covariance information for one of the objects is not available the analyst has commonly defaulted to the situation in which only the relative miss position and velocity are known without any corresponding state error covariance information. The various usual methods of finding a maximum P (sub c) do

  13. Removing cosmic spikes using a hyperspectral upper-bound spectrum method

    DOE PAGES

    Anthony, Stephen Michael; Timlin, Jerilyn A.

    2016-11-04

    Cosmic ray spikes are especially problematic for hyperspectral imaging because of the large number of spikes often present and their negative effects upon subsequent chemometric analysis. Fortunately, while the large number of spectra acquired in a hyperspectral imaging data set increases the probability and number of cosmic spikes observed, the multitude of spectra can also aid in the effective recognition and removal of the cosmic spikes. Zhang and Ben-Amotz were perhaps the first to leverage the additional spatial dimension of hyperspectral data matrices (DM). They integrated principal component analysis (PCA) into the upper bound spectrum method (UBS), resulting in amore » hybrid method (UBS-DM) for hyperspectral images. Here, we expand upon their use of PCA, recognizing that principal components primarily present in only a few pixels most likely correspond to cosmic spikes. Eliminating the contribution of those principal components in those pixels improves the cosmic spike removal. Both simulated and experimental hyperspectral Raman image data sets are used to test the newly developed UBS-DM-hyperspectral (UBS-DM-HS) method which extends the UBS-DM method by leveraging characteristics of hyperspectral data sets. As a result, a comparison is provided between the performance of the UBS-DM-HS method and other methods suitable for despiking hyperspectral images, evaluating both their ability to remove cosmic ray spikes and the extent to which they introduce spectral bias.« less

  14. Removing cosmic spikes using a hyperspectral upper-bound spectrum method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, Stephen Michael; Timlin, Jerilyn A.

    Cosmic ray spikes are especially problematic for hyperspectral imaging because of the large number of spikes often present and their negative effects upon subsequent chemometric analysis. Fortunately, while the large number of spectra acquired in a hyperspectral imaging data set increases the probability and number of cosmic spikes observed, the multitude of spectra can also aid in the effective recognition and removal of the cosmic spikes. Zhang and Ben-Amotz were perhaps the first to leverage the additional spatial dimension of hyperspectral data matrices (DM). They integrated principal component analysis (PCA) into the upper bound spectrum method (UBS), resulting in amore » hybrid method (UBS-DM) for hyperspectral images. Here, we expand upon their use of PCA, recognizing that principal components primarily present in only a few pixels most likely correspond to cosmic spikes. Eliminating the contribution of those principal components in those pixels improves the cosmic spike removal. Both simulated and experimental hyperspectral Raman image data sets are used to test the newly developed UBS-DM-hyperspectral (UBS-DM-HS) method which extends the UBS-DM method by leveraging characteristics of hyperspectral data sets. As a result, a comparison is provided between the performance of the UBS-DM-HS method and other methods suitable for despiking hyperspectral images, evaluating both their ability to remove cosmic ray spikes and the extent to which they introduce spectral bias.« less

  15. Removing Cosmic Spikes Using a Hyperspectral Upper-Bound Spectrum Method.

    PubMed

    Anthony, Stephen M; Timlin, Jerilyn A

    2017-03-01

    Cosmic ray spikes are especially problematic for hyperspectral imaging because of the large number of spikes often present and their negative effects upon subsequent chemometric analysis. Fortunately, while the large number of spectra acquired in a hyperspectral imaging data set increases the probability and number of cosmic spikes observed, the multitude of spectra can also aid in the effective recognition and removal of the cosmic spikes. Zhang and Ben-Amotz were perhaps the first to leverage the additional spatial dimension of hyperspectral data matrices (DM). They integrated principal component analysis (PCA) into the upper bound spectrum method (UBS), resulting in a hybrid method (UBS-DM) for hyperspectral images. Here, we expand upon their use of PCA, recognizing that principal components primarily present in only a few pixels most likely correspond to cosmic spikes. Eliminating the contribution of those principal components in those pixels improves the cosmic spike removal. Both simulated and experimental hyperspectral Raman image data sets are used to test the newly developed UBS-DM-hyperspectral (UBS-DM-HS) method which extends the UBS-DM method by leveraging characteristics of hyperspectral data sets. A comparison is provided between the performance of the UBS-DM-HS method and other methods suitable for despiking hyperspectral images, evaluating both their ability to remove cosmic ray spikes and the extent to which they introduce spectral bias.

  16. An upper-bound assessment of the benefits of reducing perchlorate in drinking water.

    PubMed

    Lutter, Randall

    2014-10-01

    The Environmental Protection Agency plans to issue new federal regulations to limit drinking water concentrations of perchlorate, which occurs naturally and results from the combustion of rocket fuel. This article presents an upper-bound estimate of the potential benefits of alternative maximum contaminant levels for perchlorate in drinking water. The results suggest that the economic benefits of reducing perchlorate concentrations in drinking water are likely to be low, i.e., under $2.9 million per year nationally, for several reasons. First, the prevalence of detectable perchlorate in public drinking water systems is low. Second, the population especially sensitive to effects of perchlorate, pregnant women who are moderately iodide deficient, represents a minority of all pregnant women. Third, and perhaps most importantly, reducing exposure to perchlorate in drinking water is a relatively ineffective way of increasing iodide uptake, a crucial step linking perchlorate to health effects of concern. © 2014 Society for Risk Analysis.

  17. Hardening Effect Analysis by Modular Upper Bound and Finite Element Methods in Indentation of Aluminum, Steel, Titanium and Superalloys

    PubMed Central

    Bermudo, Carolina; Sevilla, Lorenzo; Martín, Francisco; Trujillo, Francisco Javier

    2017-01-01

    The application of incremental processes in the manufacturing industry is having a great development in recent years. The first stage of an Incremental Forming Process can be defined as an indentation. Because of this, the indentation process is starting to be widely studied, not only as a hardening test but also as a forming process. Thus, in this work, an analysis of the indentation process under the new Modular Upper Bound perspective has been performed. The modular implementation has several advantages, including the possibility of the introduction of different parameters to extend the study, such as the friction effect, the temperature or the hardening effect studied in this paper. The main objective of the present work is to analyze the three hardening models developed depending on the material characteristics. In order to support the validation of the hardening models, finite element analyses of diverse materials under an indentation are carried out. Results obtained from the Modular Upper Bound are in concordance with the results obtained from the numerical analyses. In addition, the numerical and analytical methods are in concordance with the results previously obtained in the experimental indentation of annealed aluminum A92030. Due to the introduction of the hardening factor, the new modular distribution is a suitable option for the analysis of indentation process. PMID:28772914

  18. Noisy metrology: a saturable lower bound on quantum Fisher information

    NASA Astrophysics Data System (ADS)

    Yousefjani, R.; Salimi, S.; Khorashad, A. S.

    2017-06-01

    In order to provide a guaranteed precision and a more accurate judgement about the true value of the Cramér-Rao bound and its scaling behavior, an upper bound (equivalently a lower bound on the quantum Fisher information) for precision of estimation is introduced. Unlike the bounds previously introduced in the literature, the upper bound is saturable and yields a practical instruction to estimate the parameter through preparing the optimal initial state and optimal measurement. The bound is based on the underling dynamics, and its calculation is straightforward and requires only the matrix representation of the quantum maps responsible for encoding the parameter. This allows us to apply the bound to open quantum systems whose dynamics are described by either semigroup or non-semigroup maps. Reliability and efficiency of the method to predict the ultimate precision limit are demonstrated by three main examples.

  19. Can compliant fault zones be used to measure absolute stresses in the upper crust?

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.; Fialko, Y.

    2009-04-01

    Geodetic and seismic observations reveal long-lived zones with reduced elastic moduli along active crustal faults. These fault zones localize strain from nearby earthquakes, consistent with the response of a compliant, elastic layer. Fault zone trapped wave studies documented a small reduction in P and S wave velocities along the Johnson Valley Fault caused by the 1999 Hector Mine earthquake. This reduction presumably perturbed a permanent compliant structure associated with the fault. The inferred changes in the fault zone compliance may produce a measurable deformation in response to background (tectonic) stresses. This deformation should have the same sense as the background stress, rather than the coseismic stress change. Here we investigate how the observed deformation of compliant zones in the Mojave Desert can be used to constrain the fault zone structure and stresses in the upper crust. We find that gravitational contraction of the coseismically softened zones should cause centimeters of coseismic subsidence of both the compliant zones and the surrounding region, unless the compliant fault zones are shallow and narrow, or essentially incompressible. We prefer the latter interpretation because profiles of line of sight displacements across compliant zones cannot be fit by a narrow, shallow compliant zone. Strain of the Camp Rock and Pinto Mountain fault zones during the Hector Mine and Landers earthquakes suggests that background deviatoric stresses are broadly consistent with Mohr-Coulomb theory in the Mojave upper crust (with μ ≥ 0.7). Large uncertainties in Mojave compliant zone properties and geometry preclude more precise estimates of crustal stresses in this region. With improved imaging of the geometry and elastic properties of compliant zones, and with precise measurements of their strain in response to future earthquakes, the modeling approach we describe here may eventually provide robust estimates of absolute crustal stress.

  20. Estimation variance bounds of importance sampling simulations in digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, D.; Yao, K.

    1991-01-01

    In practical applications of importance sampling (IS) simulation, two basic problems are encountered, that of determining the estimation variance and that of evaluating the proper IS parameters needed in the simulations. The authors derive new upper and lower bounds on the estimation variance which are applicable to IS techniques. The upper bound is simple to evaluate and may be minimized by the proper selection of the IS parameter. Thus, lower and upper bounds on the improvement ratio of various IS techniques relative to the direct Monte Carlo simulation are also available. These bounds are shown to be useful and computationally simple to obtain. Based on the proposed technique, one can readily find practical suboptimum IS parameters. Numerical results indicate that these bounding techniques are useful for IS simulations of linear and nonlinear communication systems with intersymbol interference in which bit error rate and IS estimation variances cannot be obtained readily using prior techniques.

  1. Bounds on the information rate of quantum-secret-sharing schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarvepalli, Pradeep

    An important metric of the performance of a quantum-secret-sharing scheme is its information rate. Beyond the fact that the information rate is upper-bounded by one, very little is known in terms of bounds on the information rate of quantum-secret-sharing schemes. Furthermore, not every scheme can be realized with rate one. In this paper we derive upper bounds for the information rates of quantum-secret-sharing schemes. We show that there exist quantum access structures on n players for which the information rate cannot be better than O((log{sub 2}n)/n). These results are the quantum analogues of the bounds for classical-secret-sharing schemes proved bymore » Csirmaz.« less

  2. Improved bounds on the energy-minimizing strains in martensitic polycrystals

    NASA Astrophysics Data System (ADS)

    Peigney, Michaël

    2016-07-01

    This paper is concerned with the theoretical prediction of the energy-minimizing (or recoverable) strains in martensitic polycrystals, considering a nonlinear elasticity model of phase transformation at finite strains. The main results are some rigorous upper bounds on the set of energy-minimizing strains. Those bounds depend on the polycrystalline texture through the volume fractions of the different orientations. The simplest form of the bounds presented is obtained by combining recent results for single crystals with a homogenization approach proposed previously for martensitic polycrystals. However, the polycrystalline bound delivered by that procedure may fail to recover the monocrystalline bound in the homogeneous limit, as is demonstrated in this paper by considering an example related to tetragonal martensite. This motivates the development of a more detailed analysis, leading to improved polycrystalline bounds that are notably consistent with results for single crystals in the homogeneous limit. A two-orientation polycrystal of tetragonal martensite is studied as an illustration. In that case, analytical expressions of the upper bounds are derived and the results are compared with lower bounds obtained by considering laminate textures.

  3. Evidence for a bound on the lifetime of de Sitter space

    NASA Astrophysics Data System (ADS)

    Freivogel, Ben; Lippert, Matthew

    2008-12-01

    Recent work has suggested a surprising new upper bound on the lifetime of de Sitter vacua in string theory. The bound is parametrically longer than the Hubble time but parametrically shorter than the recurrence time. We investigate whether the bound is satisfied in a particular class of de Sitter solutions, the KKLT vacua. Despite the freedom to make the supersymmetry breaking scale exponentially small, which naively would lead to extremely stable vacua, we find that the lifetime is always less than about exp(1022) Hubble times, in agreement with the proposed bound. This result, however, is contingent on several estimates and assumptions; in particular, we rely on a conjectural upper bound on the Euler number of the Calabi-Yau fourfolds used in KKLT compactifications.

  4. Heterogeneous upper-bound finite element limit analysis of masonry walls out-of-plane loaded

    NASA Astrophysics Data System (ADS)

    Milani, G.; Zuccarello, F. A.; Olivito, R. S.; Tralli, A.

    2007-11-01

    A heterogeneous approach for FE upper bound limit analyses of out-of-plane loaded masonry panels is presented. Under the assumption of associated plasticity for the constituent materials, mortar joints are reduced to interfaces with a Mohr Coulomb failure criterion with tension cut-off and cap in compression, whereas for bricks both limited and unlimited strength are taken into account. At each interface, plastic dissipation can occur as a combination of out-of-plane shear, bending and torsion. In order to test the reliability of the model proposed, several examples of dry-joint panels out-of-plane loaded tested at the University of Calabria (Italy) are discussed. Numerical results are compared with experimental data for three different series of walls at different values of the in-plane compressive vertical loads applied. The comparisons show that reliable predictions of both collapse loads and failure mechanisms can be obtained by means of the numerical procedure employed.

  5. Upper bound dose values for meson radiation in heavy-ion therapy.

    PubMed

    Rabin, C; Gonçalves, M; Duarte, S B; González-Sprinberg, G A

    2018-06-01

    Radiation treatment of cancer has evolved to include massive particle beams, instead of traditional irradiation procedures. Thus, patient doses and worker radiological protection have become issues of constant concern in the use of these new technologies, especially for proton- and heavy-ion-therapy. In the beam energies of interest of heavy-ion-therapy, secondary particle radiation comes from proton, neutron, and neutral and charged pions produced in the nuclear collisions of the beam with human tissue atoms. This work, for the first time, offers the upper bound of meson radiation dose in organic tissues due to secondary meson radiation in heavy-ion therapy. A model based on intranuclear collision has been used to follow in time the nuclear reaction and to determine the secondary radiation due to the meson yield produced in the beam interaction with nuclei in the tissue-equivalent media and water. The multiplicity, energy spectrum, and angular distribution of these pions, as well as their decay products, have been calculated in different scenarios for the nuclear reaction mechanism. The results of the produced secondary meson particles has been used to estimate the energy deposited in tissue using a cylindrical phantom by a transport Monte Carlo simulation and we have concluded that these mesons contribute at most 0.1% of the total prescribed dose.

  6. Bounds for the Z-spectral radius of nonnegative tensors.

    PubMed

    He, Jun; Liu, Yan-Min; Ke, Hua; Tian, Jun-Kang; Li, Xiang

    2016-01-01

    In this paper, we have proposed some new upper bounds for the largest Z-eigenvalue of an irreducible weakly symmetric and nonnegative tensor, which improve the known upper bounds obtained in Chang et al. (Linear Algebra Appl 438:4166-4182, 2013), Song and Qi (SIAM J Matrix Anal Appl 34:1581-1595, 2013), He and Huang (Appl Math Lett 38:110-114, 2014), Li et al. (J Comput Anal Appl 483:182-199, 2015), He (J Comput Anal Appl 20:1290-1301, 2016).

  7. Bounds for the price of discrete arithmetic Asian options

    NASA Astrophysics Data System (ADS)

    Vanmaele, M.; Deelstra, G.; Liinev, J.; Dhaene, J.; Goovaerts, M. J.

    2006-01-01

    In this paper the pricing of European-style discrete arithmetic Asian options with fixed and floating strike is studied by deriving analytical lower and upper bounds. In our approach we use a general technique for deriving upper (and lower) bounds for stop-loss premiums of sums of dependent random variables, as explained in Kaas et al. (Ins. Math. Econom. 27 (2000) 151-168), and additionally, the ideas of Rogers and Shi (J. Appl. Probab. 32 (1995) 1077-1088) and of Nielsen and Sandmann (J. Financial Quant. Anal. 38(2) (2003) 449-473). We are able to create a unifying framework for European-style discrete arithmetic Asian options through these bounds, that generalizes several approaches in the literature as well as improves the existing results. We obtain analytical and easily computable bounds. The aim of the paper is to formulate an advice of the appropriate choice of the bounds given the parameters, investigate the effect of different conditioning variables and compare their efficiency numerically. Several sets of numerical results are included. We also discuss hedging using these bounds. Moreover, our methods are applicable to a wide range of (pricing) problems involving a sum of dependent random variables.

  8. Bounds on geologically current rates of motion of groups of hot spots

    NASA Astrophysics Data System (ADS)

    Wang, Chengzu; Gordon, Richard G.; Zhang, Tuo

    2017-06-01

    It is widely believed that groups of hot spots in different regions of the world are in relative motion at rates of 10 to 30 mm a-1 or more. Here we present a new method for analyzing geologically current motion between groups of hot spots beneath different plates. In an inversion of 56 globally distributed, equally weighted trends of hot spot tracks, the dispersion is dominated by differences in trend between different plates rather than differences within plates. Nonetheless the rate of hot spot motion perpendicular to the direction of absolute plate motion, vperp, differs significantly from zero for only 3 of 10 plates and then by merely 0.3 to 1.4 mm a-1. The global mean upper bound on |vperp| is 3.2 ± 2.7 mm a-1. Therefore, hot spots move slowly and can be used to define a global reference frame for plate motions.

  9. Bounds on geologically current rates of motion of groups of hotspots.

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gordon, R. G.; Zhang, T.

    2017-12-01

    It is widely believed that groups of hotspots in different regions of the world are in relative motion at rates of 10 to 30 mm a-1 or more. Here we present a new method for analyzing geologically current motion between groups of hotspots beneath different plates. In an inversion of 56 globally distributed, equally weighted trends of hotspot tracks, the dispersion is dominated by differences in trend between different plates rather than differences within plates. Nonetheless the rate of hotspot motion perpendicular to the direction of absolute plate motion, vperp, differs significantly from zero for only three of ten plates and then by merely 0.3 to 1.4 mm a-1. The global mean upper bound on |vperp| is 3.2 ±2.7 mm a-1. Therefore, groups of hotspots move slowly and can be used to define a global reference frame for plate motions. Further implications for uncertainties in hotspot trends and current plate motion relative to hotspots will be discussed.

  10. Computational experience with a parallel algorithm for tetrangle inequality bound smoothing.

    PubMed

    Rajan, K; Deo, N

    1999-09-01

    Determining molecular structure from interatomic distances is an important and challenging problem. Given a molecule with n atoms, lower and upper bounds on interatomic distances can usually be obtained only for a small subset of the 2(n(n-1)) atom pairs, using NMR. Given the bounds so obtained on the distances between some of the atom pairs, it is often useful to compute tighter bounds on all the 2(n(n-1)) pairwise distances. This process is referred to as bound smoothing. The initial lower and upper bounds for the pairwise distances not measured are usually assumed to be 0 and infinity. One method for bound smoothing is to use the limits imposed by the triangle inequality. The distance bounds so obtained can often be tightened further by applying the tetrangle inequality--the limits imposed on the six pairwise distances among a set of four atoms (instead of three for the triangle inequalities). The tetrangle inequality is expressed by the Cayley-Menger determinants. For every quadruple of atoms, each pass of the tetrangle inequality bound smoothing procedure finds upper and lower limits on each of the six distances in the quadruple. Applying the tetrangle inequalities to each of the (4n) quadruples requires O(n4) time. Here, we propose a parallel algorithm for bound smoothing employing the tetrangle inequality. Each pass of our algorithm requires O(n3 log n) time on a REW PRAM (Concurrent Read Exclusive Write Parallel Random Access Machine) with O(log(n)n) processors. An implementation of this parallel algorithm on the Intel Paragon XP/S and its performance are also discussed.

  11. How much can Greenland melt? An upper bound on mass loss from the Greenland Ice Sheet through surface melting

    NASA Astrophysics Data System (ADS)

    Liu, X.; Bassis, J. N.

    2015-12-01

    With observations showing accelerated mass loss from the Greenland Ice Sheet due to surface melt, the Greenland Ice Sheet is becoming one of the most significant contributors to sea level rise. The contribution of the Greenland Ice Sheet o sea level rise is likely to accelerate in the coming decade and centuries as atmospheric temperatures continue to rise, potentially triggering ever larger surface melt rates. However, at present considerable uncertainty remains in projecting the contribution to sea level of the Greenland Ice Sheet both due to uncertainty in atmospheric forcing and the ice sheet response to climate forcing. Here we seek an upper bound on the contribution of surface melt from the Greenland to sea level rise in the coming century using a surface energy balance model coupled to an englacial model. We use IPCC Representative Concentration Pathways (RCP8.5, RCP6, RCP4.5, RCP2.6) climate scenarios from an ensemble of global climate models in our simulations to project the maximum rate of ice volume loss and related sea-level rise associated with surface melting. To estimate the upper bound, we assume the Greenland Ice Sheet is perpetually covered in thick clouds, which maximize longwave radiation to the ice sheet. We further assume that deposition of black carbon darkens the ice substantially turning it nearly black, substantially reducing its albedo. Although assuming that all melt water not stored in the snow/firn is instantaneously transported off the ice sheet increases mass loss in the short term, refreezing of retained water warms the ice and may lead to more melt in the long term. Hence we examine both assumptions and use the scenario that leads to the most surface melt by 2100. Preliminary models results suggest that under the most aggressive climate forcing, surface melt from the Greenland Ice Sheet contributes ~1 m to sea level by the year 2100. This is a significant contribution and ignores dynamic effects. We also examined a lower bound

  12. Performance bounds on parallel self-initiating discrete-event

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1990-01-01

    The use is considered of massively parallel architectures to execute discrete-event simulations of what is termed self-initiating models. A logical process in a self-initiating model schedules its own state re-evaluation times, independently of any other logical process, and sends its new state to other logical processes following the re-evaluation. The interest is in the effects of that communication on synchronization. The performance is considered of various synchronization protocols by deriving upper and lower bounds on optimal performance, upper bounds on Time Warp's performance, and lower bounds on the performance of a new conservative protocol. The analysis of Time Warp includes the overhead costs of state-saving and rollback. The analysis points out sufficient conditions for the conservative protocol to outperform Time Warp. The analysis also quantifies the sensitivity of performance to message fan-out, lookahead ability, and the probability distributions underlying the simulation.

  13. An Upper Bound on Neutron Star Masses from Models of Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lawrence, Scott; Tervala, Justin G.; Bedaque, Paulo F.; Miller, M. Coleman

    2015-08-01

    The discovery of two neutron stars with gravitational masses ≈ 2 {M}⊙ has placed a strong lower limit on the maximum mass of nonrotating neutron stars, and with it a strong constraint on the properties of cold matter beyond nuclear density. Current upper mass limits are much looser. Here, we note that if most short gamma-ray bursts are produced by the coalescence of two neutron stars, and if the merger remnant collapses quickly, then the upper mass limit is constrained tightly. If the rotation of the merger remnant is limited only by mass-shedding (which seems probable based on numerical studies), then the maximum gravitational mass of a nonrotating neutron star is ≈ 2-2.2 {M}⊙ if the masses of neutron stars that coalesce to produce gamma-ray bursts are in the range seen in Galactic double neutron star systems. These limits would be increased by ˜4% in the probably unrealistic case that the remnants rotate at ˜30% below mass-shedding, and by ˜15% in the extreme case that the remnants do not rotate at all. Future coincident detection of short gamma-ray bursts with gravitational waves will strengthen these arguments because they will produce tight bounds on the masses of the components for individual events. If these limits are accurate, then a reasonable fraction of double neutron star mergers might not produce gamma-ray bursts. In that case, or in the case that many short bursts are produced instead by the mergers of neutron stars with black holes, the implied rate of gravitational wave detections will be increased.

  14. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tews, Ingo; Lattimer, James M.; Ohnishi, Akira

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S {sub 0}. In addition, for assumed values of S {sub 0} above this minimum, this bound impliesmore » both upper and lower limits to the symmetry energy slope parameter L , which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust–core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.« less

  15. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    NASA Astrophysics Data System (ADS)

    Tews, Ingo; Lattimer, James M.; Ohnishi, Akira; Kolomeitsev, Evgeni E.

    2017-10-01

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S 0. In addition, for assumed values of S 0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L ,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.

  16. Sublinear Upper Bounds for Stochastic Programs with Recourse. Revision.

    DTIC Science & Technology

    1987-06-01

    approximation procedures for (1.1) generally rely on discretizations of E (Huang, Ziemba , and Ben-Tal (1977), Kall and Stoyan (1982), Birge and Wets...Wright, Practical optimization (Academic Press, London and New York,1981). C.C. Huang, W. Ziemba , and A. Ben-Tal, "Bounds on the expectation of a con

  17. Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow.

    PubMed

    Priede, Jānis; Gerbeth, Gunter

    2009-04-01

    We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field [helical magnetorotational instability (HMRI)] using the inductionless approximation defined by a zero magnetic Prandtl number (Pr_{m}=0) . The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small-amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the threshold of absolute instability is just slightly above the convective one although the critical wavelength of the former is noticeably shorter than that of the latter. Beyond the Rayleigh line the lower threshold of absolute instability rises significantly above the corresponding convective one while the upper one descends significantly below its convective counterpart. As a result, the extension of the absolute HMRI beyond the Rayleigh line is considerably shorter than that of the convective instability. The absolute HMRI is supposed to be self-sustained and, thus, experimentally observable without any external excitation in a system of sufficiently large axial extension.

  18. Sample Complexity Bounds for Differentially Private Learning

    PubMed Central

    Chaudhuri, Kamalika; Hsu, Daniel

    2013-01-01

    This work studies the problem of privacy-preserving classification – namely, learning a classifier from sensitive data while preserving the privacy of individuals in the training set. In particular, the learning algorithm is required in this problem to guarantee differential privacy, a very strong notion of privacy that has gained significant attention in recent years. A natural question to ask is: what is the sample requirement of a learning algorithm that guarantees a certain level of privacy and accuracy? We address this question in the context of learning with infinite hypothesis classes when the data is drawn from a continuous distribution. We first show that even for very simple hypothesis classes, any algorithm that uses a finite number of examples and guarantees differential privacy must fail to return an accurate classifier for at least some unlabeled data distributions. This result is unlike the case with either finite hypothesis classes or discrete data domains, in which distribution-free private learning is possible, as previously shown by Kasiviswanathan et al. (2008). We then consider two approaches to differentially private learning that get around this lower bound. The first approach is to use prior knowledge about the unlabeled data distribution in the form of a reference distribution chosen independently of the sensitive data. Given such a reference , we provide an upper bound on the sample requirement that depends (among other things) on a measure of closeness between and the unlabeled data distribution. Our upper bound applies to the non-realizable as well as the realizable case. The second approach is to relax the privacy requirement, by requiring only label-privacy – namely, that the only labels (and not the unlabeled parts of the examples) be considered sensitive information. An upper bound on the sample requirement of learning with label privacy was shown by Chaudhuri et al. (2006); in this work, we show a lower bound. PMID:25285183

  19. Variational bounds on the temperature distribution

    NASA Astrophysics Data System (ADS)

    Kalikstein, Kalman; Spruch, Larry; Baider, Alberto

    1984-02-01

    Upper and lower stationary or variational bounds are obtained for functions which satisfy parabolic linear differential equations. (The error in the bound, that is, the difference between the bound on the function and the function itself, is of second order in the error in the input function, and the error is of known sign.) The method is applicable to a range of functions associated with equalization processes, including heat conduction, mass diffusion, electric conduction, fluid friction, the slowing down of neutrons, and certain limiting forms of the random walk problem, under conditions which are not unduly restrictive: in heat conduction, for example, we do not allow the thermal coefficients or the boundary conditions to depend upon the temperature, but the thermal coefficients can be functions of space and time and the geometry is unrestricted. The variational bounds follow from a maximum principle obeyed by the solutions of these equations.

  20. ``Carbon Credits'' for Resource-Bounded Computations Using Amortised Analysis

    NASA Astrophysics Data System (ADS)

    Jost, Steffen; Loidl, Hans-Wolfgang; Hammond, Kevin; Scaife, Norman; Hofmann, Martin

    Bounding resource usage is important for a number of areas, notably real-time embedded systems and safety-critical systems. In this paper, we present a fully automatic static type-based analysis for inferring upper bounds on resource usage for programs involving general algebraic datatypes and full recursion. Our method can easily be used to bound any countable resource, without needing to revisit proofs. We apply the analysis to the important metrics of worst-case execution time, stack- and heap-space usage. Our results from several realistic embedded control applications demonstrate good matches between our inferred bounds and measured worst-case costs for heap and stack usage. For time usage we infer good bounds for one application. Where we obtain less tight bounds, this is due to the use of software floating-point libraries.

  1. Explicit Lower and Upper Bounds on the Entangled Value of Multiplayer XOR Games

    NASA Astrophysics Data System (ADS)

    Briët, Jop; Vidick, Thomas

    2013-07-01

    The study of quantum-mechanical violations of Bell inequalities is motivated by the investigation, and the eventual demonstration, of the nonlocal properties of entanglement. In recent years, Bell inequalities have found a fruitful re-formulation using the language of multiplayer games originating from Computer Science. This paper studies the nonlocal properties of entanglement in the context of the simplest such games, called XOR games. When there are two players, it is well known that the maximum bias—the advantage over random play—of players using entanglement can be at most a constant times greater than that of classical players. Recently, Pérez-García et al. (Commun. Mathe. Phys. 279:455, 2008) showed that no such bound holds when there are three or more players: the use of entanglement can provide an unbounded advantage, and scale with the number of questions in the game. Their proof relies on non-trivial results from operator space theory, and gives a non-explicit existence proof, leading to a game with a very large number of questions and only a loose control over the local dimension of the players' shared entanglement. We give a new, simple and explicit (though still probabilistic) construction of a family of three-player XOR games which achieve a large quantum-classical gap (QC-gap). This QC-gap is exponentially larger than the one given by Pérez-García et. al. in terms of the size of the game, achieving a QC-gap of order {√{N}} with N 2 questions per player. In terms of the dimension of the entangled state required, we achieve the same (optimal) QC-gap of {√{N}} for a state of local dimension N per player. Moreover, the optimal entangled strategy is very simple, involving observables defined by tensor products of the Pauli matrices. Additionally, we give the first upper bound on the maximal QC-gap in terms of the number of questions per player, showing that our construction is only quadratically off in that respect. Our results rely on

  2. Bound-Electron Nonlinearity Beyond the Ionization Threshold.

    PubMed

    Wahlstrand, J K; Zahedpour, S; Bahl, A; Kolesik, M; Milchberg, H M

    2018-05-04

    We present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, nitrogen, and oxygen up to ionization fractions of a few percent. These measurements enable determination of the strongly nonperturbative bound-electron nonlinear polarizability well beyond the ionization threshold, where it is found to remain approximately quadratic in the laser field, a result normally expected at much lower intensities where perturbation theory applies.

  3. Bound-Electron Nonlinearity Beyond the Ionization Threshold

    NASA Astrophysics Data System (ADS)

    Wahlstrand, J. K.; Zahedpour, S.; Bahl, A.; Kolesik, M.; Milchberg, H. M.

    2018-05-01

    We present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, nitrogen, and oxygen up to ionization fractions of a few percent. These measurements enable determination of the strongly nonperturbative bound-electron nonlinear polarizability well beyond the ionization threshold, where it is found to remain approximately quadratic in the laser field, a result normally expected at much lower intensities where perturbation theory applies.

  4. Energy Bounds for a Compressed Elastic Film on a Substrate

    NASA Astrophysics Data System (ADS)

    Bourne, David P.; Conti, Sergio; Müller, Stefan

    2017-04-01

    We study pattern formation in a compressed elastic film which delaminates from a substrate. Our key tool is the determination of rigorous upper and lower bounds on the minimum value of a suitable energy functional. The energy consists of two parts, describing the two main physical effects. The first part represents the elastic energy of the film, which is approximated using the von Kármán plate theory. The second part represents the fracture or delamination energy, which is approximated using the Griffith model of fracture. A simpler model containing the first term alone was previously studied with similar methods by several authors, assuming that the delaminated region is fixed. We include the fracture term, transforming the elastic minimisation into a free boundary problem, and opening the way for patterns which result from the interplay of elasticity and delamination. After rescaling, the energy depends on only two parameters: the rescaled film thickness, {σ }, and a measure of the bonding strength between the film and substrate, {γ }. We prove upper bounds on the minimum energy of the form {σ }^a {γ }^b and find that there are four different parameter regimes corresponding to different values of a and b and to different folding patterns of the film. In some cases, the upper bounds are attained by self-similar folding patterns as observed in experiments. Moreover, for two of the four parameter regimes we prove matching, optimal lower bounds.

  5. The upper bound on the lowest mass halo

    NASA Astrophysics Data System (ADS)

    Jethwa, P.; Erkal, D.; Belokurov, V.

    2018-01-01

    We explore the connection between galaxies and dark matter haloes in the Milky Way (MW) and quantify the implications on properties of the dark matter particle and the phenomenology of low-mass galaxy formation. This is done through a probabilistic comparison of the luminosity function of MW dwarf satellite galaxies to models based on two suites of zoom-in simulations. One suite is dark-matter-only, while the other includes a disc component, therefore we can quantify the effect of the MW's baryonic disc on our results. We apply numerous stellar-mass-halo-mass (SMHM) relations allowing for multiple complexities: scatter, a characteristic break scale, and subhaloes which host no galaxy. In contrast to previous works, we push the model/data comparison to the faintest dwarfs by modelling observational incompleteness, allowing us to draw three new conclusions. First, we constrain the SMHM relation for 102 < M*/ M⊙ < 108 galaxies, allowing us to bound the peak halo mass of the faintest MW satellite to Mvir > 2.4 × 108 M⊙ (1σ). Secondly, by translating to a warm dark matter (WDM) cosmology, we bound the thermal relic mass mWDM > 2.9 keV at 95 per cent confidence, on a par with recent constraints from the Lyman-α forest. Lastly, we find that the observed number of ultra-faint MW dwarfs is in tension with the theoretical prediction that reionization prevents galaxy formation in almost all 108 M⊙ haloes. This can be tested with the next generation of deep imaging surveys. To this end, we predict the likely number of detectable satellite galaxies in the Subaru/Hyper Suprime-Cam survey and the Large Synoptic Survey Telescope. Confronting these predictions with future observations will be amongst our strongest tests of WDM and the effect reionization on low-mass systems.

  6. Circuit bounds on stochastic transport in the Lorenz equations

    NASA Astrophysics Data System (ADS)

    Weady, Scott; Agarwal, Sahil; Wilen, Larry; Wettlaufer, J. S.

    2018-07-01

    In turbulent Rayleigh-Bénard convection one seeks the relationship between the heat transport, captured by the Nusselt number, and the temperature drop across the convecting layer, captured by the Rayleigh number. In experiments, one measures the Nusselt number for a given Rayleigh number, and the question of how close that value is to the maximal transport is a key prediction of variational fluid mechanics in the form of an upper bound. The Lorenz equations have traditionally been studied as a simplified model of turbulent Rayleigh-Bénard convection, and hence it is natural to investigate their upper bounds, which has previously been done numerically and analytically, but they are not as easily accessible in an experimental context. Here we describe a specially built circuit that is the experimental analogue of the Lorenz equations and compare its output to the recently determined upper bounds of the stochastic Lorenz equations [1]. The circuit is substantially more efficient than computational solutions, and hence we can more easily examine the system. Because of offsets that appear naturally in the circuit, we are motivated to study unique bifurcation phenomena that arise as a result. Namely, for a given Rayleigh number, we find a reentrant behavior of the transport on noise amplitude and this varies with Rayleigh number passing from the homoclinic to the Hopf bifurcation.

  7. Bounds on quantum confinement effects in metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Blackman, G. Neal; Genov, Dentcho A.

    2018-03-01

    Quantum size effects on the permittivity of metal nanoparticles are investigated using the quantum box model. Explicit upper and lower bounds are derived for the permittivity and relaxation rates due to quantum confinement effects. These bounds are verified numerically, and the size dependence and frequency dependence of the empirical Drude size parameter is extracted from the model. Results suggest that the common practice of empirically modifying the dielectric function can lead to inaccurate predictions for highly uniform distributions of finite-sized particles.

  8. Thermalization Time Bounds for Pauli Stabilizer Hamiltonians

    NASA Astrophysics Data System (ADS)

    Temme, Kristan

    2017-03-01

    We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as {λ ≥ O(N^{-1} exp(-2β overline{ɛ}))}, where {overline{ɛ}} is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N -1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.

  9. Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.

    2018-06-01

    We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .

  10. Improved Lower Bounds on the Price of Stability of Undirected Network Design Games

    NASA Astrophysics Data System (ADS)

    Bilò, Vittorio; Caragiannis, Ioannis; Fanelli, Angelo; Monaco, Gianpiero

    Bounding the price of stability of undirected network design games with fair cost allocation is a challenging open problem in the Algorithmic Game Theory research agenda. Even though the generalization of such games in directed networks is well understood in terms of the price of stability (it is exactly H n , the n-th harmonic number, for games with n players), far less is known for network design games in undirected networks. The upper bound carries over to this case as well while the best known lower bound is 42/23 ≈ 1.826. For more restricted but interesting variants of such games such as broadcast and multicast games, sublogarithmic upper bounds are known while the best known lower bound is 12/7 ≈ 1.714. In the current paper, we improve the lower bounds as follows. We break the psychological barrier of 2 by showing that the price of stability of undirected network design games is at least 348/155 ≈ 2.245. Our proof uses a recursive construction of a network design game with a simple gadget as the main building block. For broadcast and multicast games, we present new lower bounds of 20/11 ≈ 1.818 and 1.862, respectively.

  11. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, Pat; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  12. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry.

    PubMed

    Wang, G; Wu, K; Hu, H; Li, G; Wang, L J

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  13. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  14. Host-Guest Assembly of a Molecular Reporter with Chiral Cyanohydrins for Assignment of Absolute Stereochemistry.

    PubMed

    Gholami, Hadi; Anyika, Mercy; Zhang, Jun; Vasileiou, Chrysoula; Borhan, Babak

    2016-06-27

    The absolute stereochemistry of cyanohydrins, derived from ketones and aldehydes, is obtained routinely, in a microscale and derivatization-free manner, upon their complexation with Zn-MAPOL, a zincated porphyrin host with a binding pocket comprised of a biphenol core. The host-guest complex leads to observable exciton-coupled circular dichroism (ECCD), the sign of which is easily correlated to the absolute stereochemistry of the bound cyanohydrin. A working model, based on the ECCD signal of cyanohydrins with known configuration, is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Vinay L.; Siemiginowska, Aneta; Van Dyk, David A.

    2010-08-10

    A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error),more » and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing

  16. The random coding bound is tight for the average code.

    NASA Technical Reports Server (NTRS)

    Gallager, R. G.

    1973-01-01

    The random coding bound of information theory provides a well-known upper bound to the probability of decoding error for the best code of a given rate and block length. The bound is constructed by upperbounding the average error probability over an ensemble of codes. The bound is known to give the correct exponential dependence of error probability on block length for transmission rates above the critical rate, but it gives an incorrect exponential dependence at rates below a second lower critical rate. Here we derive an asymptotic expression for the average error probability over the ensemble of codes used in the random coding bound. The result shows that the weakness of the random coding bound at rates below the second critical rate is due not to upperbounding the ensemble average, but rather to the fact that the best codes are much better than the average at low rates.

  17. Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory

    NASA Astrophysics Data System (ADS)

    Alvarez, Diego A.; Uribe, Felipe; Hurtado, Jorge E.

    2018-02-01

    Random set theory is a general framework which comprises uncertainty in the form of probability boxes, possibility distributions, cumulative distribution functions, Dempster-Shafer structures or intervals; in addition, the dependence between the input variables can be expressed using copulas. In this paper, the lower and upper bounds on the probability of failure are calculated by means of random set theory. In order to accelerate the calculation, a well-known and efficient probability-based reliability method known as subset simulation is employed. This method is especially useful for finding small failure probabilities in both low- and high-dimensional spaces, disjoint failure domains and nonlinear limit state functions. The proposed methodology represents a drastic reduction of the computational labor implied by plain Monte Carlo simulation for problems defined with a mixture of representations for the input variables, while delivering similar results. Numerical examples illustrate the efficiency of the proposed approach.

  18. Resistivity bound for hydrodynamic bad metals

    PubMed Central

    Lucas, Andrew; Hartnoll, Sean A.

    2017-01-01

    We obtain a rigorous upper bound on the resistivity ρ of an electron fluid whose electronic mean free path is short compared with the scale of spatial inhomogeneities. When such a hydrodynamic electron fluid supports a nonthermal diffusion process—such as an imbalance mode between different bands—we show that the resistivity bound becomes ρ≲AΓ. The coefficient A is independent of temperature and inhomogeneity lengthscale, and Γ is a microscopic momentum-preserving scattering rate. In this way, we obtain a unified mechanism—without umklapp—for ρ∼T2 in a Fermi liquid and the crossover to ρ∼T in quantum critical regimes. This behavior is widely observed in transition metal oxides, organic metals, pnictides, and heavy fermion compounds and has presented a long-standing challenge to transport theory. Our hydrodynamic bound allows phonon contributions to diffusion constants, including thermal diffusion, to directly affect the electrical resistivity. PMID:29073054

  19. Bounds on the Coupling of the Majoron to Light Neutrinos from Supernova Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman

    2002-12-02

    We explore the role of Majoron (J) emission in the supernova cooling process, as a source of upper bound on the neutrino-Majoron coupling. We show that the strongest upper bound on the coupling to {nu}{sub 3} comes from the {nu}{sub e}{nu}{sub e} {yields} J process in the core of a supernova. We also find bounds on diagonal couplings of the Majoron to {nu}{sub {mu}({tau})}{nu}{sub {mu}({tau})} and on off-diagonal {nu}{sub e}{nu}{sub {mu}({tau})} couplings in various regions of the parameter space. We discuss the evaluation of cross-section for four-particle interactions ({nu}{nu} {yields} JJ and {nu}J {yields} {nu}J). We show that these aremore » typically dominated by three-particle sub-processes and do not give new independent constraints.« less

  20. Absolute Definition of Phase Shift in the Elastic Scattering of a Particle from Compound Systems

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1961-01-01

    The projection of the target wave function on the total wave function of a scattered particle interacting with the target system is used to define an absolute phase shift including any multiples of pi. With this definition of the absolute phase shift, one can prove rigorously in the limit of zero energy for s-wave electrons scattered from atomic hydrogen that the triplet phase shift must approach a nonzero multiple of pi. One can further show that at least one pi of this phase shift is not connected with the existence of a bound state of the H- ion.

  1. Theoretical Bounds of Direct Binary Search Halftoning.

    PubMed

    Liao, Jan-Ray

    2015-11-01

    Direct binary search (DBS) produces the images of the best quality among half-toning algorithms. The reason is that it minimizes the total squared perceived error instead of using heuristic approaches. The search for the optimal solution involves two operations: (1) toggle and (2) swap. Both operations try to find the binary states for each pixel to minimize the total squared perceived error. This error energy minimization leads to a conjecture that the absolute value of the filtered error after DBS converges is bounded by half of the peak value of the autocorrelation filter. However, a proof of the bound's existence has not yet been found. In this paper, we present a proof that shows the bound existed as conjectured under the condition that at least one swap occurs after toggle converges. The theoretical analysis also indicates that a swap with a pixel further away from the center of the autocorrelation filter results in a tighter bound. Therefore, we propose a new DBS algorithm which considers toggle and swap separately, and the swap operations are considered in the order from the edge to the center of the filter. Experimental results show that the new algorithm is more efficient than the previous algorithm and can produce half-toned images of the same quality as the previous algorithm.

  2. Generalized Hofmann quantum process fidelity bounds for quantum filters

    NASA Astrophysics Data System (ADS)

    Sedlák, Michal; Fiurášek, Jaromír

    2016-04-01

    We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K . These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005), 10.1103/PhysRevLett.94.160504] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K , because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.

  3. Magnetic Properties and Absolute Paleointensity of Upper Oceanic Crust Generated by Superfast Seafloor Spreading, ODP Leg 209.

    NASA Astrophysics Data System (ADS)

    Herrero-Bervera, E.; Acton, G.

    2005-12-01

    We investigate the magnetic mineralogy and absolute paleointensity of oceanic basalt samples from Hole 1256D, cored during Ocean Drilling Program (ODP) Leg 206. Hole 1256D is located on the Cocos Plate about 5 km east of the transition zone between marine magnetic anomalies 5Bn.2n and 5Br (~15 Ma). During Leg 206, the hole penetrated 502 m into basalts of the upper oceanic crust that was generated by superfast seafloor spreading (>200 mm/yr) along the East Pacific Rise. Rock magnetic investigations included continuous low field (k-T) thermomagnetic analyses, alternating field (AF) and thermal demagnetization, optical microscopy, saturation isothermal remanent magnetization (SIRM), and magnetic grain size analyses. Following the removal of a drilling overprint, AF and thermal demagnetization paths for most samples decay linearly to the origin on orthogonal vector end point diagrams, suggesting that a stable characteristic remanent magnetization component can be resolved. Optical microscopy and k-T (Curie points) identified titanomagnetites and titanomaghemites as the main magnetic carriers and grain size studies indicate that the carriers are either single domain (SD) and/or pseudosingle domain (PSD) in nature. Using the modified Thellier-Coe double heating method, we determined absolute paleointensity determinations for 51 specimens sampled from different ``stratigraphic'' levels of the core. pTRM checks were performed systematically one temperature step down the last pTRM acquisition in order to document magnetomineralogical changes during heating. The temperature was incremented by steps of 50°C between room temperature and 500°C and every 25-30°C for higher temperatures. The paleointensity determinations were obtained from the slope of the Arai diagrams. Special care was taken to interpret the Arai diagrams within the same range of temperatures lower than 300°C unless a clear and unique slope was present over a higher range of temperatures. Only about 10

  4. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.

    PubMed

    Wang, Xiaoliang; Jiang, Peng; Li, Deshi; Sun, Tao

    2017-09-19

    Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region.

  5. Coefficient of performance and its bounds with the figure of merit for a general refrigerator

    NASA Astrophysics Data System (ADS)

    Long, Rui; Liu, Wei

    2015-02-01

    A general refrigerator model with non-isothermal processes is studied. The coefficient of performance (COP) and its bounds at maximum χ figure of merit are obtained and analyzed. This model accounts for different heat capacities during the heat transfer processes. So, different kinds of refrigerator cycles can be considered. Under the constant heat capacity condition, the upper bound of the COP is the Curzon-Ahlborn (CA) coefficient of performance and is independent of the time durations of the heat exchanging processes. With the maximum χ criterion, in the refrigerator cycles, such as the reversed Brayton refrigerator cycle, the reversed Otto refrigerator cycle and the reversed Atkinson refrigerator cycle, where the heat capacity in the heat absorbing process is not less than that in the heat releasing process, their COPs are bounded by the CA coefficient of performance; otherwise, such as for the reversed Diesel refrigerator cycle, its COP can exceed the CA coefficient of performance. Furthermore, the general refined upper and lower bounds have been proposed.

  6. Verifying the error bound of numerical computation implemented in computer systems

    DOEpatents

    Sawada, Jun

    2013-03-12

    A verification tool receives a finite precision definition for an approximation of an infinite precision numerical function implemented in a processor in the form of a polynomial of bounded functions. The verification tool receives a domain for verifying outputs of segments associated with the infinite precision numerical function. The verification tool splits the domain into at least two segments, wherein each segment is non-overlapping with any other segment and converts, for each segment, a polynomial of bounded functions for the segment to a simplified formula comprising a polynomial, an inequality, and a constant for a selected segment. The verification tool calculates upper bounds of the polynomial for the at least two segments, beginning with the selected segment and reports the segments that violate a bounding condition.

  7. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  8. Interfacially polymerized layers for oxygen enrichment: a method to overcome Robeson's upper-bound limit.

    PubMed

    Tsai, Ching-Wei; Tsai, Chieh; Ruaan, Ruoh-Chyu; Hu, Chien-Chieh; Lee, Kueir-Rarn

    2013-06-26

    Interfacial polymerization of four aqueous phase monomers, diethylenetriamine (DETA), m-phenylenediamine (mPD), melamine (Mela), and piperazine (PIP), and two organic phase monomers, trimethyl chloride (TMC) and cyanuric chloride (CC), produce a thin-film composite membrane of polymerized polyamide layer capable of O2/N2 separation. To achieve maximum efficiency in gas permeance and O2/N2 permselectivity, the concentrations of monomers, time of interfacial polymerization, number of reactive groups in monomers, and the structure of monomers need to be optimized. By controlling the aqueous/organic monomer ratio between 1.9 and 2.7, we were able to obtain a uniformly interfacial polymerized layer. To achieve a highly cross-linked layer, three reactive groups in both the aqueous and organic phase monomers are required; however, if the monomers were arranged in a planar structure, the likelihood of structural defects also increased. On the contrary, linear polymers are less likely to result in structural defects, and can also produce polymer layers with moderate O2/N2 selectivity. To minimize structural defects while maximizing O2/N2 selectivity, the planar monomer, TMC, containing 3 reactive groups, was reacted with the semirigid monomer, PIP, containing 2 reactive groups to produce a membrane with an adequate gas permeance of 7.72 × 10(-6) cm(3) (STP) s(-1) cm(-2) cm Hg(-1) and a high O2/N2 selectivity of 10.43, allowing us to exceed the upper-bound limit of conventional thin-film composite membranes.

  9. Optimal bounds and extremal trajectories for time averages in nonlinear dynamical systems

    NASA Astrophysics Data System (ADS)

    Tobasco, Ian; Goluskin, David; Doering, Charles R.

    2018-02-01

    For any quantity of interest in a system governed by ordinary differential equations, it is natural to seek the largest (or smallest) long-time average among solution trajectories, as well as the extremal trajectories themselves. Upper bounds on time averages can be proved a priori using auxiliary functions, the optimal choice of which is a convex optimization problem. We prove that the problems of finding maximal trajectories and minimal auxiliary functions are strongly dual. Thus, auxiliary functions provide arbitrarily sharp upper bounds on time averages. Moreover, any nearly minimal auxiliary function provides phase space volumes in which all nearly maximal trajectories are guaranteed to lie. For polynomial equations, auxiliary functions can be constructed by semidefinite programming, which we illustrate using the Lorenz system.

  10. Termination Proofs for String Rewriting Systems via Inverse Match-Bounds

    NASA Technical Reports Server (NTRS)

    Butler, Ricky (Technical Monitor); Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2004-01-01

    Annotating a letter by a number, one can record information about its history during a reduction. A string rewriting system is called match-bounded if there is a global upper bound to these numbers. In earlier papers we established match-boundedness as a strong sufficient criterion for both termination and preservation of regular languages. We show now that the string rewriting system whose inverse (left and right hand sides exchanged) is match-bounded, also have exceptional properties, but slightly different ones. Inverse match-bounded systems effectively preserve context-free languages; their sets of normalized strings and their sets of immortal strings are effectively regular. These sets of strings can be used to decide the normalization, the termination and the uniform termination problems of inverse match-bounded systems. We also show that the termination problem is decidable in linear time, and that a certain strong reachability problem is deciable, thus solving two open problems of McNaughton's.

  11. A geometrical upper bound on the inflaton range

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele; Ciupke, David; Mayrhofer, Christoph; Shukla, Pramod

    2018-05-01

    We argue that in type IIB LVS string models, after including the leading order moduli stabilisation effects, the moduli space for the remaining flat directions is compact due the Calabi-Yau Kähler cone conditions. In cosmological applications, this gives an inflaton field range which is bounded from above, in analogy with recent results from the weak gravity and swampland conjectures. We support our claim by explicitly showing that it holds for all LVS vacua with h 1,1 = 3 obtained from 4-dimensional reflexive polytopes. In particular, we first search for all Calabi-Yau threefolds from the Kreuzer-Skarke list with h 1,1 = 2, 3 and 4 which allow for LVS vacua, finding several new LVS geometries which were so far unknown. We then focus on the h 1,1 = 3 cases and show that the Kähler cones of all toric hypersurface threefolds force the effective 1-dimensional LVS moduli space to be compact. We find that the moduli space size can generically be trans-Planckian only for K3 fibred examples.

  12. Absolute continuity for operator valued completely positive maps on C∗-algebras

    NASA Astrophysics Data System (ADS)

    Gheondea, Aurelian; Kavruk, Ali Şamil

    2009-02-01

    Motivated by applicability to quantum operations, quantum information, and quantum probability, we investigate the notion of absolute continuity for operator valued completely positive maps on C∗-algebras, previously introduced by Parthasarathy [in Athens Conference on Applied Probability and Time Series Analysis I (Springer-Verlag, Berlin, 1996), pp. 34-54]. We obtain an intrinsic definition of absolute continuity, we show that the Lebesgue decomposition defined by Parthasarathy is the maximal one among all other Lebesgue-type decompositions and that this maximal Lebesgue decomposition does not depend on the jointly dominating completely positive map, we obtain more flexible formulas for calculating the maximal Lebesgue decomposition, and we point out the nonuniqueness of the Lebesgue decomposition as well as a sufficient condition for uniqueness. In addition, we consider Radon-Nikodym derivatives for absolutely continuous completely positive maps that, in general, are unbounded positive self-adjoint operators affiliated to a certain von Neumann algebra, and we obtain a spectral approximation by bounded Radon-Nikodym derivatives. An application to the existence of the infimum of two completely positive maps is indicated, and formulas in terms of Choi's matrices for the Lebesgue decomposition of completely positive maps in matrix algebras are obtained.

  13. Minimum-error quantum distinguishability bounds from matrix monotone functions: A comment on 'Two-sided estimates of minimum-error distinguishability of mixed quantum states via generalized Holevo-Curlander bounds' [J. Math. Phys. 50, 032106 (2009)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyson, Jon

    2009-06-15

    Matrix monotonicity is used to obtain upper bounds on minimum-error distinguishability of arbitrary ensembles of mixed quantum states. This generalizes one direction of a two-sided bound recently obtained by the author [J. Tyson, J. Math. Phys. 50, 032106 (2009)]. It is shown that the previously obtained special case has unique properties.

  14. Generalized surface tension bounds in vacuum decay

    NASA Astrophysics Data System (ADS)

    Masoumi, Ali; Paban, Sonia; Weinberg, Erick J.

    2018-02-01

    Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever the surface tension in the bubble wall exceeds an upper bound proportional to the difference of the square roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very formulation becomes ambiguous because the surface tension is not well defined. We propose a definition of the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical values and the bound is saturated. The bounce solution then disappears and a static planar domain wall solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this is only guaranteed along the trajectory in field space traced out by the bounce.

  15. Divergences and estimating tight bounds on Bayes error with applications to multivariate Gaussian copula and latent Gaussian copula

    NASA Astrophysics Data System (ADS)

    Thelen, Brian J.; Xique, Ismael J.; Burns, Joseph W.; Goley, G. Steven; Nolan, Adam R.; Benson, Jonathan W.

    2017-04-01

    In Bayesian decision theory, there has been a great amount of research into theoretical frameworks and information- theoretic quantities that can be used to provide lower and upper bounds for the Bayes error. These include well-known bounds such as Chernoff, Battacharrya, and J-divergence. Part of the challenge of utilizing these various metrics in practice is (i) whether they are "loose" or "tight" bounds, (ii) how they might be estimated via either parametric or non-parametric methods, and (iii) how accurate the estimates are for limited amounts of data. In general what is desired is a methodology for generating relatively tight lower and upper bounds, and then an approach to estimate these bounds efficiently from data. In this paper, we explore the so-called triangle divergence which has been around for a while, but was recently made more prominent in some recent research on non-parametric estimation of information metrics. Part of this work is motivated by applications for quantifying fundamental information content in SAR/LIDAR data, and to help in this, we have developed a flexible multivariate modeling framework based on multivariate Gaussian copula models which can be combined with the triangle divergence framework to quantify this information, and provide approximate bounds on Bayes error. In this paper we present an overview of the bounds, including those based on triangle divergence and verify that under a number of multivariate models, the upper and lower bounds derived from triangle divergence are significantly tighter than the other common bounds, and often times, dramatically so. We also propose some simple but effective means for computing the triangle divergence using Monte Carlo methods, and then discuss estimation of the triangle divergence from empirical data based on Gaussian Copula models.

  16. Reduced conservatism in stability robustness bounds by state transformation

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.; Liang, Z.

    1986-01-01

    This note addresses the issue of 'conservatism' in the time domain stability robustness bounds obtained by the Liapunov approach. A state transformation is employed to improve the upper bounds on the linear time-varying perturbation of an asymptotically stable linear time-invariant system for robust stability. This improvement is due to the variance of the conservatism of the Liapunov approach with respect to the basis of the vector space in which the Liapunov function is constructed. Improved bounds are obtained, using a transformation, on elemental and vector norms of perturbations (i.e., structured perturbations) as well as on a matrix norm of perturbations (i.e., unstructured perturbations). For the case of a diagonal transformation, an algorithm is proposed to find the 'optimal' transformation. Several examples are presented to illustrate the proposed analysis.

  17. Upper Limit of Weights in TAI Computation

    NASA Technical Reports Server (NTRS)

    Thomas, Claudine; Azoubib, Jacques

    1996-01-01

    The international reference time scale International Atomic Time (TAI) computed by the Bureau International des Poids et Mesures (BIPM) relies on a weighted average of data from a large number of atomic clocks. In it, the weight attributed to a given clock depends on its long-term stability. In this paper the TAI algorithm is used as the basis for a discussion of how to implement an upper limit of weight for clocks contributing to the ensemble time. This problem is approached through the comparison of two different techniques. In one case, a maximum relative weight is fixed: no individual clock can contribute more than a given fraction to the resulting time scale. The weight of each clock is then adjusted according to the qualities of the whole set of contributing elements. In the other case, a parameter characteristic of frequency stability is chosen: no individual clock can appear more stable than the stated limit. This is equivalent to choosing an absolute limit of weight and attributing this to to the most stable clocks independently of the other elements of the ensemble. The first technique is more robust than the second and automatically optimizes the stability of the resulting time scale, but leads to a more complicated computatio. The second technique has been used in the TAI algorithm since the very beginning. Careful analysis of tests on real clock data shows that improvement of the stability of the time scale requires revision from time to time of the fixed value chosen for the upper limit of absolute weight. In particular, we present results which confirm the decision of the CCDS Working Group on TAI to increase the absolute upper limit by a factor of 2.5. We also show that the use of an upper relative contribution further helps to improve the stability and may be a useful step towards better use of the massive ensemble of HP 507IA clocks now contributing to TAI.

  18. A duality approach for solving bounded linear programming problems with fuzzy variables based on ranking functions and its application in bounded transportation problems

    NASA Astrophysics Data System (ADS)

    Ebrahimnejad, Ali

    2015-08-01

    There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.

  19. Tightening the entropic uncertainty bound in the presence of quantum memory

    NASA Astrophysics Data System (ADS)

    Adabi, F.; Salimi, S.; Haseli, S.

    2016-06-01

    The uncertainty principle is a fundamental principle in quantum physics. It implies that the measurement outcomes of two incompatible observables cannot be predicted simultaneously. In quantum information theory, this principle can be expressed in terms of entropic measures. M. Berta et al. [Nat. Phys. 6, 659 (2010), 10.1038/nphys1734] have indicated that uncertainty bound can be altered by considering a particle as a quantum memory correlating with the primary particle. In this article, we obtain a lower bound for entropic uncertainty in the presence of a quantum memory by adding an additional term depending on the Holevo quantity and mutual information. We conclude that our lower bound will be tightened with respect to that of Berta et al. when the accessible information about measurements outcomes is less than the mutual information about the joint state. Some examples have been investigated for which our lower bound is tighter than Berta et al.'s lower bound. Using our lower bound, a lower bound for the entanglement of formation of bipartite quantum states has been obtained, as well as an upper bound for the regularized distillable common randomness.

  20. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs

    PubMed Central

    Jiang, Peng; Li, Deshi; Sun, Tao

    2017-01-01

    Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region. PMID:28925960

  1. Bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations

    DOE PAGES

    Azunre, P.

    2016-09-21

    Here in this paper, two novel techniques for bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations are developed. The first provides a theorem to construct interval bounds, while the second provides a theorem to construct lower bounds convex and upper bounds concave in the parameter. The convex/concave bounds can be significantly tighter than the interval bounds because of the wrapping effect suffered by interval analysis in dynamical systems. Both types of bounds are computationally cheap to construct, requiring solving auxiliary systems twice and four times larger than the original system, respectively. An illustrative numerical examplemore » of bound construction and use for deterministic global optimization within a simple serial branch-and-bound algorithm, implemented numerically using interval arithmetic and a generalization of McCormick's relaxation technique, is presented. Finally, problems within the important class of reaction-diffusion systems may be optimized with these tools.« less

  2. [Design and accuracy analysis of upper slicing system of MSCT].

    PubMed

    Jiang, Rongjian

    2013-05-01

    The upper slicing system is the main components of the optical system in MSCT. This paper focuses on the design of upper slicing system and its accuracy analysis to improve the accuracy of imaging. The error of slice thickness and ray center by bearings, screw and control system were analyzed and tested. In fact, the accumulated error measured is less than 1 microm, absolute error measured is less than 10 microm. Improving the accuracy of the upper slicing system contributes to the appropriate treatment methods and success rate of treatment.

  3. Tri-critical behavior of the Blume-Emery-Griffiths model on a Kagomé lattice: Effective-field theory and Rigorous bounds

    NASA Astrophysics Data System (ADS)

    Santos, Jander P.; Sá Barreto, F. C.

    2016-01-01

    Spin correlation identities for the Blume-Emery-Griffiths model on Kagomé lattice are derived and combined with rigorous correlation inequalities lead to upper bounds on the critical temperature. From the spin correlation identities the mean field approximation and the effective field approximation results for the magnetization, the critical frontiers and the tricritical points are obtained. The rigorous upper bounds on the critical temperature improve over those effective-field type theories results.

  4. Search for Chemically Bound Water in the Surface Layer of Mars Based on HEND/Mars Odyssey Data

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.; Litvak, M. L.; Mitrofanov, I. G.; Boynton, W.; Saunders, R. S.

    2003-01-01

    This study is emphasized on search for signatures of chemically bound water in surface layer of Mars based on data acquired by High Energy Neutron Detector (HEND) which is part of the Mars Odyssey Gamma Ray Spectrometer (GRS). Fluxes of epithermal (probe the upper 1-2 m) and fast (the upper 20-30 cm) neutrons, considered in this work, were measured since mid February till mid June 2002. First analysis of this data set with emphasis of chemically bound water was made. Early publications of the GRS results reported low neutron flux at high latitudes, interpreted as signature of ground water ice, and in two low latitude areas: Arabia and SW of Olympus Mons (SWOM), interpreted as 'geographic variations in the amount of chemically and/or physically bound H2O and or OH...'. It is clear that surface materials of Mars do contain chemically bound water, but its amounts are poorly known and its geographic distribution was not analyzed.

  5. New Anomalous Lieb-Robinson Bounds in Quasiperiodic XY Chains

    NASA Astrophysics Data System (ADS)

    Damanik, David; Lemm, Marius; Lukic, Milivoje; Yessen, William

    2014-09-01

    We announce and sketch the rigorous proof of a new kind of anomalous (or sub-ballistic) Lieb-Robinson (LR) bound for an isotropic XY chain in a quasiperiodic transversal magnetic field. Instead of the usual effective light cone |x|≤v|t|, we obtain |x|≤v|t|α for some 0<α <1. We can characterize the allowed values of α exactly as those exceeding the upper transport exponent αu+ of a one-body Schrödinger operator. To our knowledge, this is the first rigorous derivation of anomalous quantum many-body transport. We also discuss anomalous LR bounds with power-law tails for a random dimer field.

  6. Bounds on Block Error Probability for Multilevel Concatenated Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Moorthy, Hari T.; Stojanovic, Diana

    1996-01-01

    Maximum likelihood decoding of long block codes is not feasable due to large complexity. Some classes of codes are shown to be decomposable into multilevel concatenated codes (MLCC). For these codes, multistage decoding provides good trade-off between performance and complexity. In this paper, we derive an upper bound on the probability of block error for MLCC. We use this bound to evaluate difference in performance for different decompositions of some codes. Examples given show that a significant reduction in complexity can be achieved when increasing number of stages of decoding. Resulting performance degradation varies for different decompositions. A guideline is given for finding good m-level decompositions.

  7. Comonotonic bounds on the survival probabilities in the Lee-Carter model for mortality projection

    NASA Astrophysics Data System (ADS)

    Denuit, Michel; Dhaene, Jan

    2007-06-01

    In the Lee-Carter framework, future survival probabilities are random variables with an intricate distribution function. In large homogeneous portfolios of life annuities, value-at-risk or conditional tail expectation of the total yearly payout of the company are approximately equal to the corresponding quantities involving random survival probabilities. This paper aims to derive some bounds in the increasing convex (or stop-loss) sense on these random survival probabilities. These bounds are obtained with the help of comonotonic upper and lower bounds on sums of correlated random variables.

  8. Determination of the absolute binding free energies of HIV-1 protease inhibitors using non-equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ngo, Son Tung; Nguyen, Minh Tung; Nguyen, Minh Tho

    2017-05-01

    The absolute binding free energy of an inhibitor to HIV-1 Protease (PR) was determined throughout evaluation of the non-bonded interaction energy difference between the two bound and unbound states of the inhibitor and surrounding molecules by the fast pulling of ligand (FPL) process using non-equilibrium molecular dynamics (NEMD) simulations. The calculated free energy difference terms help clarifying the nature of the binding. Theoretical binding affinities are in good correlation with experimental data, with R = 0.89. The paradigm used is able to rank two inhibitors having the maximum difference of ∼1.5 kcal/mol in absolute binding free energies.

  9. Bounds on strong field magneto-transport in three-dimensional composites

    NASA Astrophysics Data System (ADS)

    Briane, Marc; Milton, Graeme W.

    2011-10-01

    This paper deals with bounds satisfied by the effective non-symmetric conductivity of three-dimensional composites in the presence of a strong magnetic field. On the one hand, it is shown that for general composites the antisymmetric part of the effective conductivity cannot be bounded solely in terms of the antisymmetric part of the local conductivity, contrary to the columnar case studied by Briane and Milton [SIAM J. Appl. Math. 70(8), 3272-3286 (2010), 10.1137/100798090]. Thus a suitable rank-two laminate, the conductivity of which has a bounded antisymmetric part together with a high-contrast symmetric part, may generate an arbitrarily large antisymmetric part of the effective conductivity. On the other hand, bounds are provided which show that the antisymmetric part of the effective conductivity must go to zero if the upper bound on the antisymmetric part of the local conductivity goes to zero, and the symmetric part of the local conductivity remains bounded below and above. Elementary bounds on the effective moduli are derived assuming the local conductivity and the effective conductivity have transverse isotropy in the plane orthogonal to the magnetic field. New Hashin-Shtrikman type bounds for two-phase three-dimensional composites with a non-symmetric conductivity are provided under geometric isotropy of the microstructure. The derivation of the bounds is based on a particular variational principle symmetrizing the problem, and the use of Y-tensors involving the averages of the fields in each phase.

  10. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  11. Synthesis and Applications of (ONO Pincer)Ruthenium‐Complex‐Bound Norvalines

    PubMed Central

    Yokoi, Tomoya; Yoshida, Ryota; Ogata, Kazuki; Hashizume, Daisuke; Yasuda, Nobuhiro; Sadakane, Koichiro

    2016-01-01

    Abstract Two (ONO pincer)ruthenium‐complex‐bound norvalines, Boc−[Ru(pydc)(terpy)]Nva−OMe (1; Boc=tert‐butyloxycarbonyl, terpy=terpyridyl, Nva=norvaline) and Boc−[Ru(pydc)(tBu‐terpy)]Nva−OMe (5), were successfully synthesized and their molecular structures and absolute configurations were unequivocally determined by single‐crystal X‐ray diffraction. The robustness of the pincer Ru complexes and norvaline scaffolds against acidic/basic, oxidizing, and high‐temperature conditions enabled us to perform selective transformations of the N‐Boc and C−OMe termini into various functional groups, such as alkyl amide, alkyl urea, and polyether groups, without the loss of the Ru center or enantiomeric purity. The resulting dialkylated Ru‐bound norvaline, n‐C11H23CO−l‐[Ru(pydc)(terpy)]Nva−NH‐n‐C11H23 (l‐4) was found to have excellent self‐assembly properties in organic solvents, thereby affording the corresponding supramolecular gels. Ru‐bound norvaline l‐1 exhibited a higher catalytic activity for the oxidation of alcohols by H2O2 than parent complex [Ru(pydc)(terpy)] (11 a). PMID:26879368

  12. Low energy theorems and the unitarity bounds in the extra U(1) superstring inspired E{sub 6} models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, N.K.; Saxena, Pranav; Nagawat, Ashok K.

    2005-11-01

    ,c}(M{sub Z}) congruent with 1.315. Thus superpotential coupling values obtained by both the approaches are in good agreement. Theoretically we have obtained bounds on physical mass parameters using the unitarity constrained superpotential couplings. The bounds are as follows: (i) Absolute upper bound on top quark mass m{sub t}{<=}225 GeV (ii) the upper bound on the lightest neutral Higgs boson mass at the tree level is m{sub H{sub 2}{sup 0}}{sup tree}{<=}169 GeV, and after the inclusion of the one-loop radiative correction it is m{sub H{sub 2}{sup 0}}{<=}229 GeV when {lambda}{sub t}{ne}{lambda}{sub b} at the grand unified theory scale. On the other hand, these are m{sub H{sub 2}{sup 0}}{sup tree}{<=}159 GeV, m{sub H{sub 2}{sup 0}}{<=}222 GeV, respectively, when {lambda}{sub t}={lambda}{sub b} at the grand unified theory scale. A plausible range on D-quark mass as a function of mass scale M{sub Z{sub 2}} is m{sub D}{approx_equal}O(3 TeV) for M{sub Z{sub 2}}{approx_equal}O(1 TeV) for the favored values of tan{beta}{<=}1. The bounds on aforesaid physical parameters in the case of {chi}, {psi}, and {nu} models in the 27 representation are almost identical with those of {eta} model and are consistent with the present day experimental precision measurements.« less

  13. Accuracy and precision of flash glucose monitoring sensors inserted into the abdomen and upper thigh compared with the upper arm.

    PubMed

    Charleer, Sara; Mathieu, Chantal; Nobels, Frank; Gillard, Pieter

    2018-06-01

    Nowadays, most Belgian patients with type 1 diabetes use flash glucose monitoring (FreeStyle Libre [FSL]; Abbott Diabetes Care, Alameda, California) to check their glucose values, but some patients find the sensor on the upper arm too visible. The aim of the present study was to compare the accuracy and precision of FSL sensors when placed on different sites. A total of 23 adults with type 1 diabetes used three FSL sensors simultaneously for 14 days on the upper arm, abdomen and upper thigh. FSL measurements were compared with capillary blood glucose (BG) measurements obtained with a built-in FSL BG meter. The aggregated mean absolute relative difference was 11.8 ± 12.0%, 18.5 ± 18.4% and 12.3 ± 13.8% for the arm, abdomen (P = .002 vs arm) and thigh (P = .5 vs arm), respectively. Results of Clarke error grid analysis for the arm and thigh were similar (zone A: 84.9% vs 84.5%; P = .6), while less accuracy was seen for the abdomen (zone A: 69.4%; P = .01). Apart from the first day, the accuracy of FSL sensors on the arm and thigh was more stable across the 14-day wear duration than accuracy of sensors on the abdomen, which deteriorated mainly during week 2 (P < .0005). The aggregated precision absolute relative difference was markedly lower for the arm/thigh (10.9 ± 11.9%) compared with the arm/abdomen (20.9 ± 22.8%; P = .002). Our results indicate that the accuracy and precision of FSL sensors placed on the upper thigh are similar to the upper arm, whereas the abdomen performed unacceptably poorly. © 2018 John Wiley & Sons Ltd.

  14. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  15. Theorising "Geo-Identity" and David Harvey's Space: School Choices of the Geographically Bound Middle-Class

    ERIC Educational Resources Information Center

    Rowe, Emma

    2015-01-01

    This paper draws on David Harvey's theories of absolute and relational space in order to critique geographically bound school choices of the gentrified middle-class in the City of Melbourne, Australia. The paper relies on interviews with inner-city school choosers as generated by a longitudinal ethnographic school choice study. I argue that the…

  16. A Posteriori Finite Element Bounds for Sensitivity Derivatives of Partial-Differential-Equation Outputs. Revised

    NASA Technical Reports Server (NTRS)

    Lewis, Robert Michael; Patera, Anthony T.; Peraire, Jaume

    1998-01-01

    We present a Neumann-subproblem a posteriori finite element procedure for the efficient and accurate calculation of rigorous, 'constant-free' upper and lower bounds for sensitivity derivatives of functionals of the solutions of partial differential equations. The design motivation for sensitivity derivative error control is discussed; the a posteriori finite element procedure is described; the asymptotic bounding properties and computational complexity of the method are summarized; and illustrative numerical results are presented.

  17. Upper mantle anisotropy from long-period P polarization

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, Vera; Masters, Guy; Shearer, Peter M.

    2001-10-01

    We introduce a method to infer upper mantle azimuthal anisotropy from the polarization, i.e., the direction of particle motion, of teleseismic long-period P onsets. The horizontal polarization of the initial P particle motion can deviate by >10° from the great circle azimuth from station to source despite a high degree of linearity of motion. Recent global isotropic three-dimensional mantle models predict effects that are an order of magnitude smaller than our observations. Stations within regional distances of each other show consistent azimuthal deviation patterns, while the deviations seem to be independent of source depth and near-source structure. We demonstrate that despite this receiver-side spatial coherence, our polarization data cannot be fit by a large-scale joint inversion for whole mantle structure. However, they can be reproduced by azimuthal anisotropy in the upper mantle and crust. Modeling with an anisotropic reflectivity code provides bounds on the magnitude and depth range of the anisotropy manifested in our data. Our method senses anisotropy within one wavelength (250 km) under the receiver. We compare our inferred fast directions of anisotropy to those obtained from Pn travel times and SKS splitting. The results of the comparison are consistent with azimuthal anisotropy situated in the uppermost mantle, with SKS results deviating from Pn and Ppol in some regions with probable additional deeper anisotropy. Generally, our fast directions are consistent with anisotropic alignment due to lithospheric deformation in tectonically active regions and to absolute plate motion in shield areas. Our data provide valuable additional constraints in regions where discrepancies between results from different methods exist since the effect we observe is local rather than cumulative as in the case of travel time anisotropy and shear wave splitting. Additionally, our measurements allow us to identify stations with incorrectly oriented horizontal components.

  18. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  19. Bounds on OPE coefficients from interference effects in the conformal collider

    NASA Astrophysics Data System (ADS)

    Córdova, Clay; Maldacena, Juan; Turiaci, Gustavo J.

    2017-11-01

    We apply the average null energy condition to obtain upper bounds on the three-point function coefficients of stress tensors and a scalar operator, < TTOi>, in general CFTs. We also constrain the gravitational anomaly of U(1) currents in four-dimensional CFTs, which are encoded in three-point functions of the form 〈 T T J 〉. In theories with a large N AdS dual we translate these bounds into constraints on the coefficient of a higher derivative bulk term of the form ∫ϕ W 2. We speculate that these bounds also apply in de-Sitter. In this case our results constrain inflationary observables, such as the amplitude for chiral gravity waves that originate from higher derivative terms in the Lagrangian of the form ϕ W W ∗.

  20. Bounds on area and charge for marginally trapped surfaces with a cosmological constant

    NASA Astrophysics Data System (ADS)

    Simon, Walter

    2012-03-01

    We sharpen the known inequalities AΛ ⩽ 4π(1 - g) (Hayward et al 1994 Phys. Rev. D 49 5080, Woolgar 1999 Class. Quantum Grav. 16 3005) and A ⩾ 4πQ2 (Dain et al 2012 Class. Quantum Grav. 29 035013) between the area A and the electric charge Q of a stable marginally outer-trapped surface (MOTS) of genus g in the presence of a cosmological constant Λ. In particular, instead of requiring stability we include the principal eigenvalue λ of the stability operator. For Λ* = Λ + λ > 0, we obtain a lower and an upper bound for Λ*A in terms of Λ*Q2, as well as the upper bound Q \\le 1/(2\\sqrt{\\Lambda ^{*}}) for the charge, which reduces to Q \\le 1/(2\\sqrt{\\Lambda }) in the stable case λ ⩾ 0. For Λ* < 0, there only remains a lower bound on A. In the spherically symmetric, static, stable case, one of our area inequalities is saturated iff the surface gravity vanishes. We also discuss implications of our inequalities for ‘jumps’ and mergers of charged MOTS.

  1. Diabetes Among United States-Bound Adult Refugees, 2009-2014.

    PubMed

    Benoit, Stephen R; Gregg, Edward W; Zhou, Weigong; Painter, John A

    2016-12-01

    We reported diabetes prevalence among all US-bound adult refugees and assessed factors associated with disease. We analyzed overseas medical evaluations of US-bound refugees from 2009 through 2014 by using CDC's Electronic Disease Notification System. We identified refugees with diabetes by searching for diabetes-related keywords and medications in examination forms with text-parsing techniques. Age-adjusted prevalence rates were reported and factors associated with diabetes were assessed by using logistic regression. Of 248,850 refugees aged ≥18 years examined over 5 years, 5767 (2.3 %) had diabetes. Iraqis had the highest crude (5.1 %) and age-adjusted (8.9 %) prevalence of disease. Higher age group and body mass index were associated with diabetes in all regions. Diabetes prevalence varied by refugee nationality. Although the absolute rates were lower than rates in the United States, the prevalence is still concerning given the younger age of the population and their need for health services upon resettlement.

  2. A Priori Bound on the Velocity in Axially Symmetric Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Lei, Zhen; Navas, Esteban A.; Zhang, Qi S.

    2016-01-01

    Let v be the velocity of Leray-Hopf solutions to the axially symmetric three-dimensional Navier-Stokes equations. Under suitable conditions for initial values, we prove the following a priori bound |v(x, t)| ≤ C |ln r|^{1/2}/r^2, qquad 0 < r ≤ 1/2, where r is the distance from x to the z axis, and C is a constant depending only on the initial value. This provides a pointwise upper bound (worst case scenario) for possible singularities, while the recent papers (Chiun-Chuan et al., Commun PDE 34(1-3):203-232, 2009; Koch et al., Acta Math 203(1):83-105, 2009) gave a lower bound. The gap is polynomial order 1 modulo a half log term.

  3. Efficiency bounds for nonequilibrium heat engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Pankaj; Polkovnikov, Anatoli, E-mail: asp@bu.edu

    2013-05-15

    We analyze the efficiency of thermal engines (either quantum or classical) working with a single heat reservoir like an atmosphere. The engine first gets an energy intake, which can be done in an arbitrary nonequilibrium way e.g. combustion of fuel. Then the engine performs the work and returns to the initial state. We distinguish two general classes of engines where the working body first equilibrates within itself and then performs the work (ergodic engine) or when it performs the work before equilibrating (non-ergodic engine). We show that in both cases the second law of thermodynamics limits their efficiency. For ergodicmore » engines we find a rigorous upper bound for the efficiency, which is strictly smaller than the equivalent Carnot efficiency. I.e. the Carnot efficiency can be never achieved in single reservoir heat engines. For non-ergodic engines the efficiency can be higher and can exceed the equilibrium Carnot bound. By extending the fundamental thermodynamic relation to nonequilibrium processes, we find a rigorous thermodynamic bound for the efficiency of both ergodic and non-ergodic engines and show that it is given by the relative entropy of the nonequilibrium and initial equilibrium distributions. These results suggest a new general strategy for designing more efficient engines. We illustrate our ideas by using simple examples. -- Highlights: ► Derived efficiency bounds for heat engines working with a single reservoir. ► Analyzed both ergodic and non-ergodic engines. ► Showed that non-ergodic engines can be more efficient. ► Extended fundamental thermodynamic relation to arbitrary nonequilibrium processes.« less

  4. Mutual Information Rate and Bounds for It

    PubMed Central

    Baptista, Murilo S.; Rubinger, Rero M.; Viana, Emilson R.; Sartorelli, José C.; Parlitz, Ulrich; Grebogi, Celso

    2012-01-01

    The amount of information exchanged per unit of time between two nodes in a dynamical network or between two data sets is a powerful concept for analysing complex systems. This quantity, known as the mutual information rate (MIR), is calculated from the mutual information, which is rigorously defined only for random systems. Moreover, the definition of mutual information is based on probabilities of significant events. This work offers a simple alternative way to calculate the MIR in dynamical (deterministic) networks or between two time series (not fully deterministic), and to calculate its upper and lower bounds without having to calculate probabilities, but rather in terms of well known and well defined quantities in dynamical systems. As possible applications of our bounds, we study the relationship between synchronisation and the exchange of information in a system of two coupled maps and in experimental networks of coupled oscillators. PMID:23112809

  5. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  6. On the realization of the bulk modulus bounds for two-phase viscoelastic composites

    NASA Astrophysics Data System (ADS)

    Andreasen, Casper Schousboe; Andreassen, Erik; Jensen, Jakob Søndergaard; Sigmund, Ole

    2014-02-01

    Materials with good vibration damping properties and high stiffness are of great industrial interest. In this paper the bounds for viscoelastic composites are investigated and material microstructures that realize the upper bound are obtained by topology optimization. These viscoelastic composites can be realized by additive manufacturing technologies followed by an infiltration process. Viscoelastic composites consisting of a relatively stiff elastic phase, e.g. steel, and a relatively lossy viscoelastic phase, e.g. silicone rubber, have non-connected stiff regions when optimized for maximum damping. In order to ensure manufacturability of such composites the connectivity of the matrix is ensured by imposing a conductivity constraint and the influence on the bounds is discussed.

  7. Bounds on invisible Higgs boson decays extracted from LHC ttH production data.

    PubMed

    Zhou, Ning; Khechadoorian, Zepyoor; Whiteson, Daniel; Tait, Tim M P

    2014-10-10

    We present an upper bound on the branching fraction of the Higgs boson to invisible particles by recasting a CMS Collaboration search for stop quarks decaying to tt + E(T)(miss). The observed (expected) bound, BF(H → inv.) < 0.40(0.65) at 95% C.L., is the strongest direct limit to date, benefiting from a downward fluctuation in the CMS data in that channel. In addition, we combine this new constraint with existing published constraints to give an observed (expected) bound of BF(H → inv.) < 0.40(0.40) at 95% C.L., and we show some of the implications for theories of dark matter which communicate through the Higgs portal.

  8. Globular Clusters: Absolute Proper Motions and Galactic Orbits

    NASA Astrophysics Data System (ADS)

    Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.

    2018-04-01

    We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

  9. Bounds and inequalities relating h-index, g-index, e-index and generalized impact factor: an improvement over existing models.

    PubMed

    Abbas, Ash Mohammad

    2012-01-01

    In this paper, we describe some bounds and inequalities relating h-index, g-index, e-index, and generalized impact factor. We derive the bounds and inequalities relating these indexing parameters from their basic definitions and without assuming any continuous model to be followed by any of them. We verify the theorems using citation data for five Price Medalists. We observe that the lower bound for h-index given by Theorem 2, [formula: see text], g ≥ 1, comes out to be more accurate as compared to Schubert-Glanzel relation h is proportional to C(2/3)P(-1/3) for a proportionality constant of 1, where C is the number of citations and P is the number of papers referenced. Also, the values of h-index obtained using Theorem 2 outperform those obtained using Egghe-Liang-Rousseau power law model for the given citation data of Price Medalists. Further, we computed the values of upper bound on g-index given by Theorem 3, g ≤ (h + e), where e denotes the value of e-index. We observe that the upper bound on g-index given by Theorem 3 is reasonably tight for the given citation record of Price Medalists.

  10. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. © 2013 John Wiley & Sons Ltd.

  11. Extracting Loop Bounds for WCET Analysis Using the Instrumentation Point Graph

    NASA Astrophysics Data System (ADS)

    Betts, A.; Bernat, G.

    2009-05-01

    Every calculation engine proposed in the literature of Worst-Case Execution Time (WCET) analysis requires upper bounds on loop iterations. Existing mechanisms to procure this information are either error prone, because they are gathered from the end-user, or limited in scope, because automatic analyses target very specific loop structures. In this paper, we present a technique that obtains bounds completely automatically for arbitrary loop structures. In particular, we show how to employ the Instrumentation Point Graph (IPG) to parse traces of execution (generated by an instrumented program) in order to extract bounds relative to any loop-nesting level. With this technique, therefore, non-rectangular dependencies between loops can be captured, allowing more accurate WCET estimates to be calculated. We demonstrate the improvement in accuracy by comparing WCET estimates computed through our HMB framework against those computed with state-of-the-art techniques.

  12. Exploring L1 model space in search of conductivity bounds for the MT problem

    NASA Astrophysics Data System (ADS)

    Wheelock, B. D.; Parker, R. L.

    2013-12-01

    Geophysical inverse problems of the type encountered in electromagnetic techniques are highly non-unique. As a result, any single inverted model, though feasible, is at best inconclusive and at worst misleading. In this paper, we use modified inversion methods to establish bounds on electrical conductivity within a model of the earth. Our method consists of two steps, each making use of the 1-norm in model regularization. Both 1-norm minimization problems are framed without approximation as non-negative least-squares (NNLS) problems. First, we must identify a parsimonious set of regions within the model for which upper and lower bounds on average conductivity will be sought. This is accomplished by minimizing the 1-norm of spatial variation, which produces a model with a limited number of homogeneous regions; in fact, the number of homogeneous regions will never be greater than the number of data, regardless of the number of free parameters supplied. The second step establishes bounds for each of these regions with pairs of inversions. The new suite of inversions also uses a 1-norm penalty, but applied to the conductivity values themselves, rather than the spatial variation thereof. In the bounding step we use the 1-norm of our model parameters because it is proportional to average conductivity. For a lower bound on average conductivity, the 1-norm within a bounding region is minimized. For an upper bound on average conductivity, the 1-norm everywhere outside a bounding region is minimized. The latter minimization has the effect of concentrating conductance into the bounding region. Taken together, these bounds are a measure of the uncertainty in the associated region of our model. Starting with a blocky inverse solution is key in the selection of the bounding regions. Of course, there is a tradeoff between resolution and uncertainty: an increase in resolution (smaller bounding regions), results in greater uncertainty (wider bounds). Minimization of the 1-norm of

  13. LS Bound based gene selection for DNA microarray data.

    PubMed

    Zhou, Xin; Mao, K Z

    2005-04-15

    One problem with discriminant analysis of DNA microarray data is that each sample is represented by quite a large number of genes, and many of them are irrelevant, insignificant or redundant to the discriminant problem at hand. Methods for selecting important genes are, therefore, of much significance in microarray data analysis. In the present study, a new criterion, called LS Bound measure, is proposed to address the gene selection problem. The LS Bound measure is derived from leave-one-out procedure of LS-SVMs (least squares support vector machines), and as the upper bound for leave-one-out classification results it reflects to some extent the generalization performance of gene subsets. We applied this LS Bound measure for gene selection on two benchmark microarray datasets: colon cancer and leukemia. We also compared the LS Bound measure with other evaluation criteria, including the well-known Fisher's ratio and Mahalanobis class separability measure, and other published gene selection algorithms, including Weighting factor and SVM Recursive Feature Elimination. The strength of the LS Bound measure is that it provides gene subsets leading to more accurate classification results than the filter method while its computational complexity is at the level of the filter method. A companion website can be accessed at http://www.ntu.edu.sg/home5/pg02776030/lsbound/. The website contains: (1) the source code of the gene selection algorithm; (2) the complete set of tables and figures regarding the experimental study; (3) proof of the inequality (9). ekzmao@ntu.edu.sg.

  14. A new accuracy measure based on bounded relative error for time series forecasting

    PubMed Central

    Twycross, Jamie; Garibaldi, Jonathan M.

    2017-01-01

    Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred. PMID:28339480

  15. A new accuracy measure based on bounded relative error for time series forecasting.

    PubMed

    Chen, Chao; Twycross, Jamie; Garibaldi, Jonathan M

    2017-01-01

    Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred.

  16. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  17. Variability in sinking fluxes and composition of particle-bound phosphorus in the Xisha area of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Dong, Yuan; Li, Qian P.; Wu, Zhengchao; Zhang, Jia-Zhong

    2016-12-01

    Export fluxes of phosphorus (P) by sinking particles are important in studying ocean biogeochemical dynamics, whereas their composition and temporal variability are still inadequately understood in the global oceans, including the northern South China Sea (NSCS). A time-series study of particle fluxes was conducted at a mooring station adjacent to the Xisha Trough in the NSCS from September 2012 to September 2014, with sinking particles collected every two weeks by two sediment traps deployed at 500 m and 1500 m depths. Five operationally defined particulate P classes of sinking particles including loosely-bound P, Fe-bound P, CaCO3-bound P, detrital apatite P, and refractory organic P were quantified by a sequential extraction method (SEDEX). Our results revealed substantial variability in sinking particulate P composition at the Xisha over two years of samplings. Particulate inorganic P was largely contributed from Fe-bound P in the upper trap, but detrital P in the lower trap. Particulate organic P, including exchangeable organic P, CaCO3-bound organic P, and refractory organic P, contributed up to 50-55% of total sinking particulate P. Increase of CaCO3-bound P in the upper trap during 2014 could be related to a strong El Niño event with enhanced CaCO3 deposition. We also found sediment resuspension responsible for the unusual high particles fluxes at the lower trap based on analyses of a two-component mixing model. There was on average a total mass flux of 78±50 mg m-2 d-1 at the upper trap during the study period. A significant correlation between integrated primary productivity in the region and particle fluxes at 500 m of the station suggested the important role of biological production in controlling the concentration, composition, and export fluxes of sinking particulate P in the NSCS.

  18. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  20. A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments.

    PubMed

    Heskes, Tom; Eisinga, Rob; Breitling, Rainer

    2014-11-21

    The rank product method is a powerful statistical technique for identifying differentially expressed molecules in replicated experiments. A critical issue in molecule selection is accurate calculation of the p-value of the rank product statistic to adequately address multiple testing. Both exact calculation and permutation and gamma approximations have been proposed to determine molecule-level significance. These current approaches have serious drawbacks as they are either computationally burdensome or provide inaccurate estimates in the tail of the p-value distribution. We derive strict lower and upper bounds to the exact p-value along with an accurate approximation that can be used to assess the significance of the rank product statistic in a computationally fast manner. The bounds and the proposed approximation are shown to provide far better accuracy over existing approximate methods in determining tail probabilities, with the slightly conservative upper bound protecting against false positives. We illustrate the proposed method in the context of a recently published analysis on transcriptomic profiling performed in blood. We provide a method to determine upper bounds and accurate approximate p-values of the rank product statistic. The proposed algorithm provides an order of magnitude increase in throughput as compared with current approaches and offers the opportunity to explore new application domains with even larger multiple testing issue. The R code is published in one of the Additional files and is available at http://www.ru.nl/publish/pages/726696/rankprodbounds.zip .

  1. Viscosity bound versus the universal relaxation bound

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-10-01

    For gauge theories with an Einstein gravity dual, the AdS/CFT correspondence predicts a universal value for the ratio of the shear viscosity to the entropy density, η / s = 1 / 4 π. The holographic calculations have motivated the formulation of the celebrated KSS conjecture, according to which all fluids conform to the lower bound η / s ≥ 1 / 4 π. The bound on η / s may be regarded as a lower bound on the relaxation properties of perturbed fluids and it has been the focus of much recent attention. In particular, it was argued that for a class of field theories with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, η / s, could violate the conjectured KSS bound. In the present paper we argue that the proposed violations of the KSS bound are strongly constrained by Bekenstein's generalized second law (GSL) of thermodynamics. In particular, it is shown that physical consistency of the Gauss-Bonnet theory with the GSL requires its coupling constant to be bounded by λGB ≲ 0 . 063. We further argue that the genuine physical bound on the relaxation properties of physically consistent fluids is ℑω(k > 2 πT) > πT, where ω and k are respectively the proper frequency and the wavenumber of a perturbation mode in the fluid.

  2. A Reward-Maximizing Spiking Neuron as a Bounded Rational Decision Maker.

    PubMed

    Leibfried, Felix; Braun, Daniel A

    2015-08-01

    Rate distortion theory describes how to communicate relevant information most efficiently over a channel with limited capacity. One of the many applications of rate distortion theory is bounded rational decision making, where decision makers are modeled as information channels that transform sensory input into motor output under the constraint that their channel capacity is limited. Such a bounded rational decision maker can be thought to optimize an objective function that trades off the decision maker's utility or cumulative reward against the information processing cost measured by the mutual information between sensory input and motor output. In this study, we interpret a spiking neuron as a bounded rational decision maker that aims to maximize its expected reward under the computational constraint that the mutual information between the neuron's input and output is upper bounded. This abstract computational constraint translates into a penalization of the deviation between the neuron's instantaneous and average firing behavior. We derive a synaptic weight update rule for such a rate distortion optimizing neuron and show in simulations that the neuron efficiently extracts reward-relevant information from the input by trading off its synaptic strengths against the collected reward.

  3. On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces

    NASA Astrophysics Data System (ADS)

    Castro-González, N.; Vélez-Cerrada, J. Y.

    2008-05-01

    Given a bounded operator A on a Banach space X with Drazin inverse AD and index r, we study the class of group invertible bounded operators B such that I+AD(B-A) is invertible and . We show that they can be written with respect to the decomposition as a matrix operator, , where B1 and are invertible. Several characterizations of the perturbed operators are established, extending matrix results. We analyze the perturbation of the Drazin inverse and we provide explicit upper bounds of ||B#-AD|| and ||BB#-ADA||. We obtain a result on the continuity of the group inverse for operators on Banach spaces.

  4. Stoichiometry of the Cre recombinase bound to the lox recombining site.

    PubMed Central

    Mack, A; Sauer, B; Abremski, K; Hoess, R

    1992-01-01

    The site-specific recombinase Cre from bacteriophage P1 binds and carries out recombination at a 34 bp lox site. The lox site consists of two 13 bp inverted repeats, separated by an 8 bp spacer region. Both the palindromic nature of the site and the results of footprinting and band shift experiments suggest that a minimum of two Cre molecules bind to a lox site. We report here experiments that demonstrate the absolute stoichiometry of the Cre-lox complex to be one molecule of Cre bound per inverted repeat, or two molecules per lox site. Images PMID:1408747

  5. Optimal Design of the Absolute Positioning Sensor for a High-Speed Maglev Train and Research on Its Fault Diagnosis

    PubMed Central

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project. PMID:23112619

  6. Optimal design of the absolute positioning sensor for a high-speed maglev train and research on its fault diagnosis.

    PubMed

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project.

  7. Determination and error analysis of emittance and spectral emittance measurements by remote sensing

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Kumar, R.

    1977-01-01

    The author has identified the following significant results. From the theory of remote sensing of surface temperatures, an equation of the upper bound of absolute error of emittance was determined. It showed that the absolute error decreased with an increase in contact temperature, whereas, it increased with an increase in environmental integrated radiant flux density. Change in emittance had little effect on the absolute error. A plot of the difference between temperature and band radiance temperature vs. emittance was provided for the wavelength intervals: 4.5 to 5.5 microns, 8 to 13.5 microns, and 10.2 to 12.5 microns.

  8. Estimating the absolute wealth of households.

    PubMed

    Hruschka, Daniel J; Gerkey, Drew; Hadley, Craig

    2015-07-01

    To estimate the absolute wealth of households using data from demographic and health surveys. We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. The median absolute wealth estimates of 1,403,186 households were 2056 international dollars per capita (interquartile range: 723-6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R(2)  = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality.

  9. Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Vandresar, Neil T.; Haberbusch, Mark S.

    1994-01-01

    Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.

  10. The accuracy of less: Natural bounds explain why quantity decreases are estimated more accurately than quantity increases.

    PubMed

    Chandon, Pierre; Ordabayeva, Nailya

    2017-02-01

    Five studies show that people, including experts such as professional chefs, estimate quantity decreases more accurately than quantity increases. We argue that this asymmetry occurs because physical quantities cannot be negative. Consequently, there is a natural lower bound (zero) when estimating decreasing quantities but no upper bound when estimating increasing quantities, which can theoretically grow to infinity. As a result, the "accuracy of less" disappears (a) when a numerical or a natural upper bound is present when estimating quantity increases, or (b) when people are asked to estimate the (unbounded) ratio of change from 1 size to another for both increasing and decreasing quantities. Ruling out explanations related to loss aversion, symbolic number mapping, and the visual arrangement of the stimuli, we show that the "accuracy of less" influences choice and demonstrate its robustness in a meta-analysis that includes previously published results. Finally, we discuss how the "accuracy of less" may explain asymmetric reactions to the supersizing and downsizing of food portions, some instances of the endowment effect, and asymmetries in the perception of increases and decreases in physical and psychological distance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  12. Bounds on the cross-correlation functions of state m-sequences

    NASA Astrophysics Data System (ADS)

    Woodcock, C. F.; Davies, Phillip A.; Shaar, Ahmed A.

    1987-03-01

    Lower and upper bounds on the peaks of the periodic Hamming cross-correlation function for state m-sequences, which are often used in frequency-hopped spread-spectrum systems, are derived. The state position mapped (SPM) sequences of the state m-sequences are described. The use of SPM sequences for OR-channel code division multiplexing is studied. The relation between the Hamming cross-correlation function and the correlation function of SPM sequence is examined. Numerical results which support the theoretical data are presented.

  13. Finite state projection based bounds to compare chemical master equation models using single-cell data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Zachary; Neuert, Gregor; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232

    2016-08-21

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort.more » In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.« less

  14. Absolute neutrino mass measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments inmore » Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.« less

  15. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Absolute coverage groups. 404.1205 Section... Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent... are not under a retirement system. An absolute coverage group may include positions which were...

  16. Using a Novel Absolute Ontogenetic Age Determination Technique to Calculate the Timing of Tooth Eruption in the Saber-Toothed Cat, Smilodon fatalis.

    PubMed

    Wysocki, M Aleksander; Feranec, Robert S; Tseng, Zhijie Jack; Bjornsson, Christopher S

    2015-01-01

    Despite the superb fossil record of the saber-toothed cat, Smilodon fatalis, ontogenetic age determination for this and other ancient species remains a challenge. The present study utilizes a new technique, a combination of data from stable oxygen isotope analyses and micro-computed tomography, to establish the eruption rate for the permanent upper canines in Smilodon fatalis. The results imply an eruption rate of 6.0 millimeters per month, which is similar to a previously published average enamel growth rate of the S. fatalis upper canines (5.8 millimeters per month). Utilizing the upper canine growth rate, the upper canine eruption rate, and a previously published tooth replacement sequence, this study calculates absolute ontogenetic age ranges of tooth development and eruption in S. fatalis. The timing of tooth eruption is compared between S. fatalis and several extant conical-toothed felids, such as the African lion (Panthera leo). Results suggest that the permanent dentition of S. fatalis, except for the upper canines, was fully erupted by 14 to 22 months, and that the upper canines finished erupting at about 34 to 41 months. Based on these developmental age calculations, S. fatalis individuals less than 4 to 7 months of age were not typically preserved at Rancho La Brea. On the whole, S. fatalis appears to have had delayed dental development compared to dental development in similar-sized extant felids. This technique for absolute ontogenetic age determination can be replicated in other ancient species, including non-saber-toothed taxa, as long as the timing of growth initiation and growth rate can be determined for a specific feature, such as a tooth, and that growth period overlaps with the development of the other features under investigation.

  17. Bounding Averages Rigorously Using Semidefinite Programming: Mean Moments of the Lorenz System

    NASA Astrophysics Data System (ADS)

    Goluskin, David

    2018-04-01

    We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative polynomials with certain properties, similarly to the way nonlinear stability can be proved using Lyapunov functions. Nonnegativity is enforced by requiring the polynomials to be sums of squares, a condition which is then formulated as a semidefinite program (SDP) that can be solved computationally. Although such computations are subject to numerical error, we demonstrate two ways to obtain rigorous results: using interval arithmetic to control the error of an approximate SDP solution, and finding exact analytical solutions to relatively small SDPs. Previous formulations are extended to allow for bounds depending analytically on parametric variables. These methods are illustrated using the Lorenz equations, a system with three state variables ( x, y, z) and three parameters (β ,σ ,r). Bounds are reported for infinite-time averages of all eighteen moments x^ly^mz^n up to quartic degree that are symmetric under (x,y)\\mapsto (-x,-y). These bounds apply to all solutions regardless of stability, including chaotic trajectories, periodic orbits, and equilibrium points. The analytical approach yields two novel bounds that are sharp: the mean of z^3 can be no larger than its value of (r-1)^3 at the nonzero equilibria, and the mean of xy^3 must be nonnegative. The interval arithmetic approach is applied at the standard chaotic parameters to bound eleven average moments that all appear to be maximized on the shortest periodic orbit. Our best upper bound on each such average exceeds its value on the maximizing orbit by less than 1%. Many bounds reported here are much tighter than would be possible without computer assistance.

  18. Transition energy measurements in hydrogenlike and heliumlike ions strongly supporting bound-state QED calculations

    NASA Astrophysics Data System (ADS)

    Kubiček, K.; Mokler, P. H.; Mäckel, V.; Ullrich, J.; López-Urrutia, J. R. Crespo

    2014-09-01

    For the hydrogenlike Ar17+ ion, the 1s Lamb shift was absolutely determined with a 1.4% accuracy based on Lyman-α wavelength measurements that have negligible uncertainties from nuclear size effects. The result agrees with state-of-the-art quantum electrodynamics (QED) calculations, and demonstrates the suitability of Lyman-α transitions in highly charged ions as x-ray energy standards, accurate at the five parts-per-million level. For the heliumlike Ar16+ ion the transition energy for the 1s2p1P1→1s21S0 line was also absolutely determined on an even higher level of accuracy. Additionally, we present relative measurements of transitions in S15+,S14+, and Fe24+ ions. The data for the heliumlike S14+,Ar16+, and Fe24+ ions stringently confirm advanced bound-state QED predictions including screened QED terms that had recently been contested.

  19. Distal displacement of the maxilla and the upper first molar.

    PubMed

    Baumrind, S; Molthen, R; West, E E; Miller, D M

    1979-06-01

    Data from a sample of 198 Class II cases treated with various appliances which deliver distally directed forces to the maxilla were examined to determine the frequency of absolute distal displacement of the upper first molar and of the maxilla. Analysis revealed that such distal displacement is possible and that it is, in fact, a frequent finding following treatment. Long-range stability of distal displacement was not assessed.

  20. Fringe order correction for the absolute phase recovered by two selected spatial frequency fringe projections in fringe projection profilometry.

    PubMed

    Ding, Yi; Peng, Kai; Yu, Miao; Lu, Lei; Zhao, Kun

    2017-08-01

    The performance of the two selected spatial frequency phase unwrapping methods is limited by a phase error bound beyond which errors will occur in the fringe order leading to a significant error in the recovered absolute phase map. In this paper, we propose a method to detect and correct the wrong fringe orders. Two constraints are introduced during the fringe order determination of two selected spatial frequency phase unwrapping methods. A strategy to detect and correct the wrong fringe orders is also described. Compared with the existing methods, we do not need to estimate the threshold associated with absolute phase values to determine the fringe order error, thus making it more reliable and avoiding the procedure of search in detecting and correcting successive fringe order errors. The effectiveness of the proposed method is validated by the experimental results.

  1. Lower bounds on the violation of the monogamy inequality for quantum correlation measures

    NASA Astrophysics Data System (ADS)

    Kumar, Asutosh; Dhar, Himadri Shekhar

    2016-06-01

    In multiparty quantum systems, the monogamy inequality proposes an upper bound on the distribution of bipartite quantum correlation between a single party and each of the remaining parties in the system, in terms of the amount of quantum correlation shared by that party with the rest of the system taken as a whole. However, it is well known that not all quantum correlation measures universally satisfy the monogamy inequality. In this work, we aim at determining the nontrivial value by which the monogamy inequality can be violated by a quantum correlation measure. Using an information-theoretic complementarity relation between the normalized purity and quantum correlation in any given multiparty state, we obtain a nontrivial lower bound on the negative monogamy score for the quantum correlation measure. In particular, for the three-qubit states the lower bound is equal to the negative von Neumann entropy of the single qubit reduced density matrix. We analytically examine the tightness of the derived lower bound for certain n -qubit quantum states. Further, we report numerical results of the same for monogamy violating correlation measures using Haar uniformly generated three-qubit states.

  2. Comparisons of Upper Tropospheric Humidity Retrievals from TOVS and METEOSAT

    NASA Technical Reports Server (NTRS)

    Escoffier, C.; Bates, J.; Chedin, A.; Rossow, W. B.; Schmetz, J.

    1999-01-01

    Two different methods for retrieving Upper Tropospheric Humidities (UTH) from the TOVS (TIROS Operational Vertical Sounder) instruments aboard NOAA polar orbiting satellites are presented and compared. The first one, from the Environmental Technology Laboratory, computed by J. Bates and D. Jackson (hereafter BJ method), estimates UTH from a simplified radiative transfer analysis of the upper tropospheric infrared water vapor channel at wavelength measured by HIRS (6.3 micrometer). The second one results from a neural network analysis of the TOVS (HIRS and MSU) data developed at, the Laboratoire de Meteorologie Dynamique (hereafter the 3I (Improved Initialization Inversion) method). Although the two methods give very similar retrievals in temperate regions (30-60 N and S), an absolute bias up to 16% appears in the convective zone of the tropics. The two datasets have also been compared with UTH retrievals from infrared radiance measurements in the 6.3 micrometer channel from the geostationary satellite METEOSAT (hereafter MET method). The METEOSAT retrievals are systematically drier than the TOVS-based results by an absolute bias between 5 and 25%. Despite the biases, the spatial and temporal correlations are very good. The purpose of this study is to explain the deviations observed between the three datasets. The sensitivity of UTH to air temperature and humidity profiles is analysed as are the clouds effects. Overall, the comparison of the three retrievals gives an assessment of the current uncertainties in water vapor amounts in the upper troposphere as determined from NOAA and METEOSAT satellites.

  3. Robust Design Optimization via Failure Domain Bounding

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2007-01-01

    This paper extends and applies the strategies recently developed by the authors for handling constraints under uncertainty to robust design optimization. For the scope of this paper, robust optimization is a methodology aimed at problems for which some parameters are uncertain and are only known to belong to some uncertainty set. This set can be described by either a deterministic or a probabilistic model. In the methodology developed herein, optimization-based strategies are used to bound the constraint violation region using hyper-spheres and hyper-rectangles. By comparing the resulting bounding sets with any given uncertainty model, it can be determined whether the constraints are satisfied for all members of the uncertainty model (i.e., constraints are feasible) or not (i.e., constraints are infeasible). If constraints are infeasible and a probabilistic uncertainty model is available, upper bounds to the probability of constraint violation can be efficiently calculated. The tools developed enable approximating not only the set of designs that make the constraints feasible but also, when required, the set of designs for which the probability of constraint violation is below a prescribed admissible value. When constraint feasibility is possible, several design criteria can be used to shape the uncertainty model of performance metrics of interest. Worst-case, least-second-moment, and reliability-based design criteria are considered herein. Since the problem formulation is generic and the tools derived only require standard optimization algorithms for their implementation, these strategies are easily applicable to a broad range of engineering problems.

  4. Imaginary-frequency polarizability and van der Waals force constants of two-electron atoms, with rigorous bounds

    NASA Technical Reports Server (NTRS)

    Glover, R. M.; Weinhold, F.

    1977-01-01

    Variational functionals of Braunn and Rebane (1972) for the imagery-frequency polarizability (IFP) have been generalized by the method of Gramian inequalities to give rigorous upper and lower bounds, valid even when the true (but unknown) unperturbed wavefunction must be represented by a variational approximation. Using these formulas in conjunction with flexible variational trial functions, tight error bounds are computed for the IFP and the associated two- and three-body van der Waals interaction constants of the ground 1(1S) and metastable 2(1,3S) states of He and Li(+). These bounds generally establish the ground-state properties to within a fraction of a per cent and metastable properties to within a few per cent, permitting a comparative assessment of competing theoretical methods at this level of accuracy. Unlike previous 'error bounds' for these properties, the present results have a completely a priori theoretical character, with no empirical input data.

  5. Ground-truthing the Foraminifera-bound Nitrogen Isotope Paleo-proxy in the Modern Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Smart, S.; Ren, H. A.; Fawcett, S. E.; Conte, M. H.; Rafter, P. A.; Ellis, K. K.; Weigand, M. A.; Sigman, D. M.

    2016-02-01

    We present the nitrogen isotope ratios (δ15N) of planktonic foraminifera, a type of calcifying zooplankton, collected from surface ocean net tows, moored sediment traps and core-top sediments at the Bermuda Atlantic Time-series Study site in the Sargasso Sea between 2009 and 2013. Consistent with previous measurements from low-latitude core-top sediments, the annually averaged δ15N of organic matter bound within the shells of euphotic zone-dwelling foraminifera approximates that of thermocline nitrate, the dominant source of new nitrogen to Sargasso Sea surface waters. Based on net tow collections in the upper 200 m of the water column, we observe no systematic difference between the biomass δ15N and shell-bound δ15N of a given foraminifera species. For multiple species, the δ15N of net tow-collected upper ocean shells is lower than shells from sediment traps (by 0.5-2.1‰) and lower than shells from seafloor sediments (by 0.5-1.4‰). We are currently investigating whether these differences reflect actual processes affecting shell-bound δ15N or instead relate to the different time periods over which the three sample types integrate. The foraminiferal biomass δ15N time-series from the surface Sargasso Sea exhibits significant seasonal variations, with the lowest values in fall and the highest values in spring. The roles of hydrography, biogeochemistry, and ecosystem dynamics in driving these seasonal variations will be discussed. These data from the modern subtropical ocean form part of a greater effort to ground-truth the use of foram-bound δ15N to reconstruct past nutrient conditions, not only as a recorder of the isotopic composition of nitrogen supply in oligotrophic environments but also as a recorder of the degree of nitrate consumption in high-latitude regions such as the Southern Ocean.

  6. New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints

    DOE PAGES

    Munoz, F. D.; Hobbs, B. F.; Watson, J. -P.

    2016-02-01

    A novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems is proposed and it considers a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improvesmore » upon the standard Benders’ algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. But, the decomposition phase is required to attain optimality gaps. Moreover, use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately.« less

  7. New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, F. D.; Hobbs, B. F.; Watson, J. -P.

    A novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems is proposed and it considers a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improvesmore » upon the standard Benders’ algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. But, the decomposition phase is required to attain optimality gaps. Moreover, use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately.« less

  8. Seeking realistic upper-bounds for internal reliability of systems with uncorrelated observations

    NASA Astrophysics Data System (ADS)

    Prószyński, Witold

    2014-06-01

    From the theory of reliability it follows that the greater the observational redundancy in a network, the higher is its level of internal reliability. However, taking into account physical nature of the measurement process one may notice that the planned additional observations may increase the number of potential gross errors in a network, not raising the internal reliability to the theoretically expected degree. Hence, it is necessary to set realistic limits for a sufficient number of observations in a network. An attempt to provide principles for finding such limits is undertaken in the present paper. An empirically obtained formula (Adamczewski 2003) called there the law of gross errors, determining the chances that a certain number of gross errors may occur in a network, was taken as a starting point in the analysis. With the aid of an auxiliary formula derived on the basis of the Gaussian law, the Adamczewski formula was modified to become an explicit function of the number of observations in a network. This made it possible to construct tools necessary for the analysis and finally, to formulate the guidelines for determining the upper-bounds for internal reliability indices. Since the Adamczewski formula was obtained for classical networks, the guidelines should be considered as an introductory proposal requiring verification with reference to modern measuring techniques. Z teorii niezawodności wynika, że im większy jest nadmiar obserwacyjny w sieci, tym wyższy poziom jej niezawodności wewnętrznej. Biorąc jednakże pod uwagę fi zykalną naturę procesu pomiaru można zauważyć, że projektowane dodatkowe obserwacje mogą zwiększyć liczbę potencjalnych błędów grubych w sieci, nie podnosząc niezawodności wewnętrznej do oczekiwanego według teorii poziomu. Niezbędne jest zatem ustalenie realistycznych poziomów górnych dla liczby obserwacji w sieci. W niniejszym artykule podjęta jest próba sformułowania zasad ustalania takich poziom

  9. Existence and amplitude bounds for irrotational water waves in finite depth

    NASA Astrophysics Data System (ADS)

    Kogelbauer, Florian

    2017-12-01

    We prove the existence of solutions to the irrotational water-wave problem in finite depth and derive an explicit upper bound on the amplitude of the nonlinear solutions in terms of the wavenumber, the total hydraulic head, the wave speed and the relative mass flux. Our approach relies upon a reformulation of the water-wave problem as a one-dimensional pseudo-differential equation and the Newton-Kantorovich iteration for Banach spaces. This article is part of the theme issue 'Nonlinear water waves'.

  10. TH-E-BRE-09: TrueBeam Monte Carlo Absolute Dose Calculations Using Monitor Chamber Backscatter Simulations and Linac-Logged Target Current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A, Popescu I; Lobo, J; Sawkey, D

    2014-06-15

    Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulationsmore » in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the

  11. Stochastic analysis of three-dimensional flow in a bounded domain

    USGS Publications Warehouse

    Naff, R.L.; Vecchia, A.V.

    1986-01-01

    A commonly accepted first-order approximation of the equation for steady state flow in a fully saturated spatially random medium has the form of Poisson's equation. This form allows for the advantageous use of Green's functions to solve for the random output (hydraulic heads) in terms of a convolution over the random input (the logarithm of hydraulic conductivity). A solution for steady state three- dimensional flow in an aquifer bounded above and below is presented; consideration of these boundaries is made possible by use of Green's functions to solve Poisson's equation. Within the bounded domain the medium hydraulic conductivity is assumed to be a second-order stationary random process as represented by a simple three-dimensional covariance function. Upper and lower boundaries are taken to be no-flow boundaries; the mean flow vector lies entirely in the horizontal dimensions. The resulting hydraulic head covariance function exhibits nonstationary effects resulting from the imposition of boundary conditions. Comparisons are made with existing infinite domain solutions.

  12. Mathematical properties and bounds on haplotyping populations by pure parsimony.

    PubMed

    Wang, I-Lin; Chang, Chia-Yuan

    2011-06-01

    Although the haplotype data can be used to analyze the function of DNA, due to the significant efforts required in collecting the haplotype data, usually the genotype data is collected and then the population haplotype inference (PHI) problem is solved to infer haplotype data from genotype data for a population. This paper investigates the PHI problem based on the pure parsimony criterion (HIPP), which seeks the minimum number of distinct haplotypes to infer a given genotype data. We analyze the mathematical structure and properties for the HIPP problem, propose techniques to reduce the given genotype data into an equivalent one of much smaller size, and analyze the relations of genotype data using a compatible graph. Based on the mathematical properties in the compatible graph, we propose a maximal clique heuristic to obtain an upper bound, and a new polynomial-sized integer linear programming formulation to obtain a lower bound for the HIPP problem. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error

    NASA Astrophysics Data System (ADS)

    Khair, Ummul; Fahmi, Hasanul; Hakim, Sarudin Al; Rahim, Robbi

    2017-12-01

    Prediction using a forecasting method is one of the most important things for an organization, the selection of appropriate forecasting methods is also important but the percentage error of a method is more important in order for decision makers to adopt the right culture, the use of the Mean Absolute Deviation and Mean Absolute Percentage Error to calculate the percentage of mistakes in the least square method resulted in a percentage of 9.77% and it was decided that the least square method be worked for time series and trend data.

  14. Virial Expansion Bounds

    NASA Astrophysics Data System (ADS)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  15. Bounds on neutrino mass in viscous cosmology

    NASA Astrophysics Data System (ADS)

    Anand, Sampurn; Chaubal, Prakrut; Mazumdar, Arindam; Mohanty, Subhendra; Parashari, Priyank

    2018-05-01

    Effective field theoretic description of dark matter fluid on large scales predicts viscosity of the order 10‑6 H0 MP2. Recently, it has been shown that the same magnitude of viscosity can resolve the discordance between large scale structure observations and Planck CMB data in the σ8-Ωm0 and H0-Ωm0 parameters space. On the other hand, massive neutrinos suppresses the matter power spectrum on the small length scales similar to the viscosities. Therefore, it is expected that the viscous dark matter setup along with massive neutrinos can provide stringent constraint on neutrino mass. In this article, we show that the inclusion of effective viscosity, which arises from summing over non linear perturbations at small length scales, indeed severely constrains the cosmological bound on neutrino masses. Under a joint analysis of Planck CMB and different large scale observation data, we find that upper bound on the sum of the neutrino masses, at 2-σ level, decreases respectively from ∑ mν <= 0.396 eV (for normal hierarchy) and ∑ mν <= 0.378 eV (for inverted hierarchy) to ∑ mν <= 0.267 eV (for normal hierarchy) and ∑ mν <= 0.146 eV (for inverted hierarchy).

  16. Cosmological Entropy Bounds

    NASA Astrophysics Data System (ADS)

    Brustein, R.

    I review some basic facts about entropy bounds in general and about cosmological entropy bounds. Then I review the causal entropy bound, the conditions for its validity and its application to the study of cosmological singularities. This article is based on joint work with Gabriele Veneziano and subsequent related research.

  17. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  18. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  19. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  20. Rebuttal to "On the distribution of the modulus of Gabor wavelet coefficients and the upper bound of the dimensionless smoothness index in the case of additive Gaussian noises: Revisited" by Dong Wang, Qiang Zhou, and Kwok-Leung Tsui

    NASA Astrophysics Data System (ADS)

    Soltani Bozchalooi, Iman; Liang, Ming

    2018-04-01

    A discussion paper entitled "On the distribution of the modulus of Gabor wavelet coefficients and the upper bound of the dimensionless smoothness index in the case of additive Gaussian noises: revisited" by Dong Wang, Qiang Zhou, Kwok-Leung Tsui has been brought to our attention recently. This discussion paper (hereafter called Wang et al. paper) is based on arguments that are fundamentally incorrect and which we rebut within this commentary. However, as the flaws in the arguments proposed by Wang et al. are clear, we will keep this rebuttal as brief as possible.

  1. Absolute Effect of Prostate Cancer Screening: Balance of benefits and harms by center within the European Randomized Study of Prostate Cancer Screening

    PubMed Central

    Auvinen, Anssi; Moss, Sue M; Tammela, Teuvo L J; Taari, Kimmo; Roobol, Monique J; Schröder, Fritz H; Bangma, Chris H; Carlsson, Sigrid; Aus, Gunnar; Zappa, Marco; Puliti, Donella; Denis, Louis J; Nelen, Vera; Kwiatkowski, Maciej; Randazzo, Marco; Paez, Alvaro; Lujan, Marcos; Hugosson, Jonas

    2016-01-01

    Purpose The balance of benefits and harms in prostate cancer screening has not been sufficiently characterized. We related indicators of mortality reduction and overdetection by center within the European Randomized Study of Prostate Cancer Screening. Experimental Design We analyzed the absolute mortality reduction expressed as number needed to invite (NNI=1/absolute risk reduction; indicating how many men had to be randomized to screening arm to avert a prostate cancer death) for screening and the absolute excess of prostate cancer detection as number needed for overdetection (NNO=1/absolute excess incidence; indicating the number of men invited per additional prostate cancer case), and compared their relationship across the seven ERSPC centers. Results Both absolute mortality reduction (NNI) and absolute overdetection (NNO) varied widely between the centers: NNI 200-7000 and NNO 16-69. Extent of overdiagnosis and mortality reduction were closely associated (correlation coefficient r=0.76, weighted linear regression coefficient β=33, 95% 5-62, R2=0.72). For an averted prostate cancer death at 13 years of follow-up, 12-36 excess cases had to be detected in various centers. Conclusions The differences between the ERSPC centers likely reflect variations in prostate cancer incidence and mortality, as well as in screening protocol and performance. The strong interrelation between the benefits and harms suggests that efforts to maximize the mortality effect are bound to increase overdiagnosis, and might be improved by focusing on high-risk populations. The optimal balance between screening intensity and risk of overdiagnosis remains unclear. PMID:26289069

  2. Trace of totally positive algebraic integers and integer transfinite diameter

    NASA Astrophysics Data System (ADS)

    Flammang, V.

    2009-06-01

    Explicit auxiliary functions can be used in the ``Schur-Siegel- Smyth trace problem''. In the previous works, these functions were constructed only with polynomials having all their roots positive. Here, we use several polynomials with complex roots, which are found with Wu's algorithm, and we improve the known lower bounds for the absolute trace of totally positive algebraic integers. This improvement has a consequence for the search of Salem numbers that have a negative trace. The same method also gives a small improvement of the upper bound for the integer transfinite diameter of [0,1].

  3. Extreme hydrothermal conditions at an active plate-bounding fault.

    PubMed

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  4. Extreme hydrothermal conditions at an active plate-bounding fault

    NASA Astrophysics Data System (ADS)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  5. Simplest little Higgs model revisited: Hidden mass relation, unitarity, and naturalness

    NASA Astrophysics Data System (ADS)

    Cheung, Kingman; He, Shi-Ping; Mao, Ying-nan; Zhang, Chen; Zhou, Yang

    2018-06-01

    We analyze the scalar potential of the simplest little Higgs (SLH) model in an approach consistent with the spirit of continuum effective field theory (CEFT). By requiring correct electroweak symmetry breaking (EWSB) with the 125 GeV Higgs boson, we are able to derive a relation between the pseudoaxion mass mη and the heavy top mass mT, which serves as a crucial test of the SLH mechanism. By requiring mη2>0 an upper bound on mT can be obtained for any fixed SLH global symmetry breaking scale f . We also point out that an absolute upper bound on f can be obtained by imposing partial wave unitarity constraint, which in turn leads to absolute upper bounds of mT≲19 TeV , mη≲1.5 TeV , and mZ'≲48 TeV . We present the allowed region in the three-dimensional parameter space characterized by f ,tβ,mT, taking into account the requirement of valid EWSB and the constraint from perturbative unitarity. We also propose a strategy of analyzing the fine-tuning problem consistent with the spirit of CEFT and apply it to the SLH. We suggest that the scalar potential and fine-tuning analysis strategies adopted here should also be applicable to a wide class of little Higgs and twin Higgs models, which may reveal interesting relations as crucial tests of the related EWSB mechanism and provide a new perspective on assessing their degree of fine-tuning.

  6. Variance computations for functional of absolute risk estimates.

    PubMed

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  7. Variance computations for functional of absolute risk estimates

    PubMed Central

    Pfeiffer, R.M.; Petracci, E.

    2011-01-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates. PMID:21643476

  8. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  9. Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators.

    PubMed

    Wang, Yang; Li, Mingxing; Tu, Z C; Hernández, A Calvo; Roco, J M M

    2012-07-01

    The figure of merit for refrigerators performing finite-time Carnot-like cycles between two reservoirs at temperature T(h) and T(c) (bounded between 0 and (sqrt[9+8ε(c)] - 3)/2 for the low-dissipation refrigerators, where ε(c) = T(c)/(T(h) - T(c)) is the Carnot coefficient of performance for reversible refrigerators. These bounds can be reached for extremely asymmetric low-dissipation cases when the ratio between the dissipation constants of the processes in contact with the cold and hot reservoirs approaches to zero or infinity, respectively. The observed coefficients of performance for real refrigerators are located in the region between the lower and upper bounds, which is in good agreement with our theoretical estimation.

  10. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  11. Absolute Configuration of 3-METHYLCYCLOHEXANONE by Chiral Tag Rotational Spectroscopy and Vibrational Circular Dichroism

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Holdren, Martin S.; Mayer, Kevin J.; Smart, Taylor; West, Channing; Pate, Brooks

    2017-06-01

    The absolute configuration of 3-methylcyclohexanone was established by chiral tag rotational spectroscopy measurements using 3-butyn-2-ol as the tag partner. This molecule was chosen because it is a benchmark measurement for vibrational circular dichroism (VCD). A comparison of the analysis approaches of chiral tag rotational spectroscopy and VCD will be presented. One important issue in chiral analysis by both methods is the conformational flexibility of the molecule being analyzed. The analysis of conformational composition of samples will be illustrated. In this case, the high spectral resolution of molecular rotational spectroscopy and potential for spectral simplification by conformational cooling in the pulsed jet expansion are advantages for chiral tag spectroscopy. The computational chemistry requirements for the two methods will also be discussed. In this case, the need to perform conformer searches for weakly bound complexes and to perform reasonably high level quantum chemistry geometry optimizations on these complexes makes the computational time requirements less favorable for chiral tag rotational spectroscopy. Finally, the issue of reliability of the determination of the absolute configuration will be considered. In this case, rotational spectroscopy offers a "gold standard" analysis method through the determination of the ^{13}C-subsitution structure of the complex between 3-methylcyclohexanone and an enantiopure sample of the 3-butyn-2-ol tag.

  12. 78 FR 18326 - Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...; Comment Request; Upward Bound and Upward Bound Math Science Annual Performance Report AGENCY: The Office... considered public records. Title of Collection: Upward Bound and Upward Bound Math Science Annual Performance...) and Upward Bound Math and Science (UBMS) Programs. The Department is requesting a new APR because of...

  13. A global algorithm for estimating Absolute Salinity

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  14. Universal bounds on current fluctuations.

    PubMed

    Pietzonka, Patrick; Barato, Andre C; Seifert, Udo

    2016-05-01

    For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.

  15. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  16. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  17. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  18. Absolute quantification of microbial taxon abundances.

    PubMed

    Props, Ruben; Kerckhof, Frederiek-Maarten; Rubbens, Peter; De Vrieze, Jo; Hernandez Sanabria, Emma; Waegeman, Willem; Monsieurs, Pieter; Hammes, Frederik; Boon, Nico

    2017-02-01

    High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys.

  19. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  20. Two Upper Bounds for the Weighted Path Length of Binary Trees. Report No. UIUCDCS-R-73-565.

    ERIC Educational Resources Information Center

    Pradels, Jean Louis

    Rooted binary trees with weighted nodes are structures encountered in many areas, such as coding theory, searching and sorting, information storage and retrieval. The path length is a meaningful quantity which gives indications about the expected time of a search or the length of a code, for example. In this paper, two sharp bounds for the total…

  1. Nuclear Overhauser effect studies on the conformation of magnesium adenosine 5'-triphosphate bound to rabbit muscle creatine kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosevear, P.R.; Powers, V.M.; Dowhan, D.

    1987-08-25

    Nuclear Overhauser effects were used to determine interproton distances on MgATP bound to rabbit muscle creatine kinase. The internuclear distances were used in a distance geometry program that objectively determines both the conformation of the bound MgATP and its uniqueness. Two classes of structures were found that satisfied the measured interproton distances. Both classes had the same anti glycosidic torsional angle (X = 78 +/- 10/sup 0/) but differed in their ribose ring puckers (O1'-endo or C4'-exo). The uniqueness of the glycosidic torsional angle is consistent with the preference of creatine kinase for adenine nucleotides. One of these conformations ofmore » MgATP bound to creatine kinase is indistinguishable from the conformation found for Co(NH/sub 3/)/sub 4/ ATP bound to the catalytic subunit of protein kinase, which also has a high specificity for adenine nucleotides. Distance geometry calculations also suggest that upper limit distances, when low enough (less than or equal to 3.4 A), can be used instead of measured distances to define, within experimental error, the glycosidic torsional angle of bound nucleotides. However, this approach does not permit an evaluation of the ribose ring pucker.« less

  2. All the adiabatic bound states of NO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzgeber, R.F.; Mandelshtam, V.; Schlier, C.

    1998-07-01

    We calculated all 2967 even and odd bound states of the adiabatic ground state of NO{sub 2}, using a modification of the abthinspinitio potential energy surface of Leonardi {ital et al.} [J. Chem. Phys. {bold 105}, 9051 (1996)]. The calculation was performed by harmonic inversion of the Chebyshev correlation function generated by a DVR Hamiltonian in Radau coordinates. The relative error for the computed eigenenergies (measured from the potential minimum), is 10{sup {minus}4} or better, corresponding to an absolute error of less than about 2.5thinspcm{sup {minus}1}. Near the dissociation threshold the average density of states is about 0.2/cm{sup {minus}1} formore » each symmetry. Statistical analysis of the states shows some interesting structure of the rigidity parameter {Delta}{sub 3} as a function of energy. {copyright} {ital 1998 American Institute of Physics.}« less

  3. Finite upper bound for the Hawking decay time of an arbitrarily large black hole in anti-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2018-01-01

    In an asymptotically flat spacetime of dimension d >3 and with the Newtonian gravitational constant G , a spherical black hole of initial horizon radius rh and mass M ˜rhd -3/G has a total decay time to Hawking emission of td˜rhd -1/G ˜G2 /(d -3 )M(d -1 )/(d -3 ) which grows without bound as the radius rh and mass M are taken to infinity. However, in asymptotically anti-de Sitter spacetime with a length scale ℓ and with absorbing boundary conditions at infinity, the total Hawking decay time does not diverge as the mass and radius go to infinity but instead remains bounded by a time of the order of ℓd-1/G .

  4. Activity of upper limb muscles during human walking.

    PubMed

    Kuhtz-Buschbeck, Johann P; Jing, Bo

    2012-04-01

    The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Low absolute neutrophil counts in African infants.

    PubMed

    Kourtis, Athena P; Bramson, Brian; van der Horst, Charles; Kazembe, Peter; Ahmed, Yusuf; Chasela, Charles; Hosseinipour, Mina; Knight, Rodney; Lugalia, Lebah; Tegha, Gerald; Joaki, George; Jafali, Robert; Jamieson, Denise J

    2005-07-01

    Infants of African origin have a lower normal range of absolute neutrophil counts than white infants; this fact, however, remains under appreciated by clinical researchers in the United States. During the initial stages of a clinical trial in Malawi, the authors noted an unexpectedly high number of infants with absolute neutrophil counts that would be classifiable as neutropenic using the National Institutes of Health's Division of AIDS toxicity tables. The authors argue that the relevant Division of AIDS table does not take into account the available evidence of low absolute neutrophil counts in African infants and that a systematic collection of data from many African settings might help establish the absolute neutrophil count cutpoints to be used for defining neutropenia in African populations.

  6. Absolute colorimetric characterization of a DSLR camera

    NASA Astrophysics Data System (ADS)

    Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo

    2014-03-01

    A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.

  7. Quantum localization and bound-state formation in Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franzosi, Roberto; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2010-12-15

    We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity andmore » a bounded energy spectrum.« less

  8. Upper bound on the center-of-mass energy of the collisional Penrose process

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-08-01

    Following the interesting work of Bañados, Silk, and West (2009) [6], it is repeatedly stated in the physics literature that the center-of-mass energy, Ec.m, of two colliding particles in a maximally rotating black-hole spacetime can grow unboundedly. For this extreme scenario to happen, the particles have to collide at the black-hole horizon. In this paper we show that Thorne's famous hoop conjecture precludes this extreme scenario from occurring in realistic black-hole spacetimes. In particular, it is shown that a new (and larger) horizon is formed before the infalling particles reach the horizon of the original black hole. As a consequence, the center-of-mass energy of the collisional Penrose process is bounded from above by the simple scaling relation Ec.mmax / 2 μ ∝(M / μ) 1 / 4, where M and μ are respectively the mass of the central black hole and the proper mass of the colliding particles.

  9. Computation of convex bounds for present value functions with random payments

    NASA Astrophysics Data System (ADS)

    Ahcan, Ales; Darkiewicz, Grzegorz; Goovaerts, Marc; Hoedemakers, Tom

    2006-02-01

    In this contribution we study the distribution of the present value function of a series of random payments in a stochastic financial environment. Such distributions occur naturally in a wide range of applications within fields of insurance and finance. We obtain accurate approximations by developing upper and lower bounds in the convex-order sense for present value functions. Technically speaking, our methodology is an extension of the results of Dhaene et al. [Insur. Math. Econom. 31(1) (2002) 3-33, Insur. Math. Econom. 31(2) (2002) 133-161] to the case of scalar products of mutually independent random vectors.

  10. Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet; Wilson-Ewing, Edward

    2014-02-01

    We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaître-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaître-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.

  11. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  12. Limits on cold dark matter cosmologies from new anisotropy bounds on the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Vittorio, Nicola; Meinhold, Peter; Lubin, Philip; Muciaccia, Pio Francesco; Silk, Joseph

    1991-01-01

    A self-consistent method is presented for comparing theoretical predictions of and observational upper limits on CMB anisotropy. New bounds on CDM cosmologies set by the UCSB South Pole experiment on the 1 deg angular scale are presented. An upper limit of 4.0 x 10 to the -5th is placed on the rms differential temperature anisotropy to a 95 percent confidence level and a power of the test beta = 55 percent. A lower limit of about 0.6/b is placed on the density parameter of cold dark matter universes with greater than about 3 percent baryon abundance and a Hubble constant of 50 km/s/Mpc, where b is the bias factor, equal to unity only if light traces mass.

  13. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  14. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  15. The QCD mass gap and quark deconfinement scales as mass bounds in strong gravity

    NASA Astrophysics Data System (ADS)

    Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.

    2017-11-01

    Though not a part of mainstream physics, Salam's theory of strong gravity remains a viable effective model for the description of strong interactions in the gauge singlet sector of QCD, capable of producing particle confinement and asymptotic freedom, but not of reproducing interactions involving SU(3) color charge. It may therefore be used to explore the stability and confinement of gauge singlet hadrons, though not to describe scattering processes that require color interactions. It is a two-tensor theory of both strong interactions and gravity, in which the strong tensor field is governed by equations formally identical to the Einstein equations, apart from the coupling parameter, which is of order 1 {GeV}^{-1}. We revisit the strong gravity theory and investigate the strong gravity field equations in the presence of a mixing term which induces an effective strong cosmological constant, Λ f. This introduces a strong de Sitter radius for strongly interacting fermions, producing a confining bubble, which allows us to identify Λ f with the `bag constant' of the MIT bag model, B ˜eq 2 × 10^{14} {g} {cm}^{-3}. Assuming a static, spherically symmetric geometry, we derive the strong gravity TOV equation, which describes the equilibrium properties of compact hadronic objects. From this, we determine the generalized Buchdahl inequalities for a strong gravity `particle', giving rise to upper and lower bounds on the mass/radius ratio of stable, compact, strongly interacting objects. We show, explicitly, that the existence of the lower mass bound is induced by the presence of Λ _f, producing a mass gap, and that the upper bound corresponds to a deconfinement phase transition. The physical implications of our results for holographic duality in the context of the AdS/QCD and dS/QCD correspondences are also discussed.

  16. Jasminum sambac flower absolutes from India and China--geographic variations.

    PubMed

    Braun, Norbert A; Sim, Sherina

    2012-05-01

    Seven Jasminum sambac flower absolutes from different locations in the southern Indian state of Tamil Nadu were analyzed using GC and GC-MS. Focus was placed on 41 key ingredients to investigate geographic variations in this species. These seven absolutes were compared with an Indian bud absolute and commercially available J. sambac flower absolutes from India and China. All absolutes showed broad variations for the 10 main ingredients between 8% and 96%. In addition, the odor of Indian and Chinese J. sambac flower absolutes were assessed.

  17. Advancing Absolute Calibration for JWST and Other Applications

    NASA Astrophysics Data System (ADS)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  18. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  19. Distribution of free and antibody-bound peptide hormones in two-phase aqueous polymer systems

    PubMed Central

    Desbuquois, Bernard; Aurbach, G. D.

    1972-01-01

    Peptide hormones labelled with radioactive iodine were partitioned into the aqueous two-phase polymer systems developed by Albertsson (1960) and the conditions required for separation of free from antibody-bound hormone have been worked out. Hormones studied included insulin, growth hormone, parathyroid hormone and [arginine]-vasopressin. Free and antibody-bound hormones show different distribution coefficients in a number of systems tested; two systems, the dextran–polyethylene glycol and dextran sulphate–polyethylene glycol system, give optimum separation. Free hormones distribute readily into the upper phase of these systems, whereas hormone–antibody complexes, as well as uncombined antibody, are found almost completely in the lower phase. Various factors including the polymer concentration, the ionic composition of the system, the nature of the hormone and the nature of added serum protein differentially affect the distribution coefficients for free and antibody-bound hormone. These factors can be adequately controlled so as to improve separation. The two-phase partition method has been successfully applied to measure binding of labelled hormone to antibody under standard radioimmunoassay conditions. It exhibits several advantages over the method of equilibration dialysis and can be applied to the study of non-immunological interactions. PMID:4672674

  20. Entanglement negativity bounds for fermionic Gaussian states

    NASA Astrophysics Data System (ADS)

    Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán

    2018-04-01

    The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.

  1. Curvature bound from gravitational catalysis

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Martini, Riccardo

    2018-04-01

    We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.

  2. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  3. Multi-Level Reduced Order Modeling Equipped with Probabilistic Error Bounds

    NASA Astrophysics Data System (ADS)

    Abdo, Mohammad Gamal Mohammad Mostafa

    This thesis develops robust reduced order modeling (ROM) techniques to achieve the needed efficiency to render feasible the use of high fidelity tools for routine engineering analyses. Markedly different from the state-of-the-art ROM techniques, our work focuses only on techniques which can quantify the credibility of the reduction which can be measured with the reduction errors upper-bounded for the envisaged range of ROM model application. Our objective is two-fold. First, further developments of ROM techniques are proposed when conventional ROM techniques are too taxing to be computationally practical. This is achieved via a multi-level ROM methodology designed to take advantage of the multi-scale modeling strategy typically employed for computationally taxing models such as those associated with the modeling of nuclear reactor behavior. Second, the discrepancies between the original model and ROM model predictions over the full range of model application conditions are upper-bounded in a probabilistic sense with high probability. ROM techniques may be classified into two broad categories: surrogate construction techniques and dimensionality reduction techniques, with the latter being the primary focus of this work. We focus on dimensionality reduction, because it offers a rigorous approach by which reduction errors can be quantified via upper-bounds that are met in a probabilistic sense. Surrogate techniques typically rely on fitting a parametric model form to the original model at a number of training points, with the residual of the fit taken as a measure of the prediction accuracy of the surrogate. This approach, however, does not generally guarantee that the surrogate model predictions at points not included in the training process will be bound by the error estimated from the fitting residual. Dimensionality reduction techniques however employ a different philosophy to render the reduction, wherein randomized snapshots of the model variables, such as the

  4. Investigation on the absolute and relative photoionization cross sections of 3 potential propargylic fuels.

    PubMed

    Winfough, Matthew; Meloni, Giovanni

    2017-12-01

    Absolute photoionization cross sections for 2 potential propargylic fuels (propargylamine and dipropargyl ether) along with the partial ionization cross sections for their dissociative fragments are measured and presented for the first time via synchrotron photoionization mass spectrometry. The experimental setup consists of a multiplexed orthogonal time-of-flight mass spectrometer and is located at the Advanced Light Source facility of the Lawrence Berkeley National Laboratory in Berkeley, California. Data for a third propargylic compound (propargyl alcohol) were taken; however, because of its low signal, due to its weakly bound cation, only the dissociative ionization fragment from the H-loss channel is observed and presented. Suggested pathways leading to formation of dissociative photoionization fragments along with CBS-QB3 calculated adiabatic ionization energies and appearance energies for the dissociative fragments are also presented. Copyright © 2017 John Wiley & Sons, Ltd.

  5. The Bound to Bound State Contribution to the Electric Polarizability of a Relativbistic Particle

    NASA Astrophysics Data System (ADS)

    Vidnovic, Theodore, III; Anis Maize, Mohamed

    1998-04-01

    We calculate, in our study, the contribution of the transition between bound energy states to the electric polarizability of a relativistic particle. The particle is moving under the influence of a one-dimensional delta potential. Our work is done in the case of the scalar potential. The solution of Dirac's equation and the calculation of the particles total electric polarizability has been done in references (1-3). The transitions contributing to the electric polarizability are: Continuum to continuum, bound to bound, negative energy bound states to continuum, and positive energy bound states to continuum. Our task is to study the bound to bound state contribution to the electric polarizability. We will also investigate the effect of the strength of the potential on the contribution. 1. T.H. Solomon and S. Fallieros, "Relativistic One Dimensional Binding and Two Dimensional Motion." J. Franklin Inst. 320, 323-344 (1985) 2. M.A. Maize and C.A. Burkholder, "Electric Polarizability and the Solution of an Inhomogenous Differential Equation." Am.J.Phys. 63, 244-247 (1995) 3. M.A. Maize, S. Paulson, and A. D'Avanti, "Electric Polarizability of a Relativistic Particle." Am.J.Phys. 65, 888-892 (1997)

  6. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound

    NASA Astrophysics Data System (ADS)

    Shiraishi, Naoto; Tajima, Hiroyasu

    2017-08-01

    A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.

  7. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound.

    PubMed

    Shiraishi, Naoto; Tajima, Hiroyasu

    2017-08-01

    A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.

  8. Linking Comparisons of Absolute Gravimeters: A Proof of Concept for a new Global Absolute Gravity Reference System.

    NASA Astrophysics Data System (ADS)

    Wziontek, H.; Palinkas, V.; Falk, R.; Vaľko, M.

    2016-12-01

    Since decades, absolute gravimeters are compared on a regular basis on an international level, starting at the International Bureau for Weights and Measures (BIPM) in 1981. Usually, these comparisons are based on constant reference values deduced from all accepted measurements acquired during the comparison period. Temporal changes between comparison epochs are usually not considered. Resolution No. 2, adopted by IAG during the IUGG General Assembly in Prague 2015, initiates the establishment of a Global Absolute Gravity Reference System based on key comparisons of absolute gravimeters (AG) under the International Committee for Weights and Measures (CIPM) in order to establish a common level in the microGal range. A stable and unique reference frame can only be achieved, if different AG are taking part in different kind of comparisons. Systematic deviations between the respective comparison reference values can be detected, if the AG can be considered stable over time. The continuous operation of superconducting gravimeters (SG) on selected stations further supports the temporal link of comparison reference values by establishing a reference function over time. By a homogenous reprocessing of different comparison epochs and including AG and SG time series at selected stations, links between several comparisons will be established and temporal comparison reference functions will be derived. By this, comparisons on a regional level can be traced to back to the level of key comparisons, providing a reference for other absolute gravimeters. It will be proved and discussed, how such a concept can be used to support the future absolute gravity reference system.

  9. Efficiency bounds of molecular motors under a trade-off figure of merit

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Huang, Chuankun; Lin, Guoxing; Chen, Jincan

    2017-05-01

    On the basis of the theory of irreversible thermodynamics and an elementary model of the molecular motors converting chemical energy by ATP hydrolysis to mechanical work exerted against an external force, the efficiencies of the molecular motors at two different optimization configurations for trade-off figure of merit representing a best compromise between the useful energy and the lost energy are calculated. The upper and lower bounds for the efficiency at two different optimization configurations are determined. It is found that the optimal efficiencies at the two different optimization configurations are always larger than 1 / 2.

  10. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  11. Match-bounded String Rewriting Systems

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2003-01-01

    We introduce a new class of automated proof methods for the termination of rewriting systems on strings. The basis of all these methods is to show that rewriting preserves regular languages. To this end, letters are annotated with natural numbers, called match heights. If the minimal height of all positions in a redex is h+1 then every position in the reduct will get height h+1. In a match-bounded system, match heights are globally bounded. Using recent results on deleting systems, we prove that rewriting by a match-bounded system preserves regular languages. Hence it is decidable whether a given rewriting system has a given match bound. We also provide a sufficient criterion for the abence of a match-bound. The problem of existence of a match-bound is still open. Match-boundedness for all strings can be used as an automated criterion for termination, for match-bounded systems are terminating. This criterion can be strengthened by requiring match-boundedness only for a restricted set of strings, for instance the set of right hand sides of forward closures.

  12. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  13. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets

    PubMed Central

    Wang, Xiaocheng; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-01-01

    The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets. PMID:27022727

  14. Bounding the number of limit cycles of discontinuous differential systems by using Picard-Fuchs equations

    NASA Astrophysics Data System (ADS)

    Yang, Jihua; Zhao, Liqin

    2018-05-01

    In this paper, by using Picard-Fuchs equations and Chebyshev criterion, we study the upper bounds of the number of limit cycles given by the first order Melnikov function for discontinuous differential systems, which can bifurcate from the periodic orbits of quadratic reversible centers of genus one (r19): x ˙ = y - 12x2 + 16y2, y ˙ = - x - 16 xy, and (r20): x ˙ = y + 4x2, y ˙ = - x + 16 xy, and the periodic orbits of the quadratic isochronous centers (S1) : x ˙ = - y +x2 -y2, y ˙ = x + 2 xy, and (S2) : x ˙ = - y +x2, y ˙ = x + xy. The systems (r19) and (r20) are perturbed inside the class of polynomial differential systems of degree n and the system (S1) and (S2) are perturbed inside the class of quadratic polynomial differential systems. The discontinuity is the line y = 0. It is proved that the upper bounds of the number of limit cycles for systems (r19) and (r20) are respectively 4 n - 3 (n ≥ 4) and 4 n + 3 (n ≥ 3) counting the multiplicity, and the maximum numbers of limit cycles bifurcating from the period annuluses of the isochronous centers (S1) and (S2) are exactly 5 and 6 (counting the multiplicity) on each period annulus respectively.

  15. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Standard Model in multiscale theories and observational constraints

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Nardelli, Giuseppe; Rodríguez-Fernández, David

    2016-08-01

    We construct and analyze the Standard Model of electroweak and strong interactions in multiscale spacetimes with (i) weighted derivatives and (ii) q -derivatives. Both theories can be formulated in two different frames, called fractional and integer picture. By definition, the fractional picture is where physical predictions should be made. (i) In the theory with weighted derivatives, it is shown that gauge invariance and the requirement of having constant masses in all reference frames make the Standard Model in the integer picture indistinguishable from the ordinary one. Experiments involving only weak and strong forces are insensitive to a change of spacetime dimensionality also in the fractional picture, and only the electromagnetic and gravitational sectors can break the degeneracy. For the simplest multiscale measures with only one characteristic time, length and energy scale t*, ℓ* and E*, we compute the Lamb shift in the hydrogen atom and constrain the multiscale correction to the ordinary result, getting the absolute upper bound t*<10-23 s . For the natural choice α0=1 /2 of the fractional exponent in the measure, this bound is strengthened to t*<10-29 s , corresponding to ℓ*<10-20 m and E*>28 TeV . Stronger bounds are obtained from the measurement of the fine-structure constant. (ii) In the theory with q -derivatives, considering the muon decay rate and the Lamb shift in light atoms, we obtain the independent absolute upper bounds t*<10-13 s and E*>35 MeV . For α0=1 /2 , the Lamb shift alone yields t*<10-27 s , ℓ*<10-19 m and E*>450 GeV .

  17. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  18. A Posteriori Bounds for Linear-Functional Outputs of Crouzeix-Raviart Finite Element Discretizations of the Incompressible Stokes Problem

    NASA Technical Reports Server (NTRS)

    Patera, Anthony T.; Paraschivoiu, Marius

    1998-01-01

    We present a finite element technique for the efficient generation of lower and upper bounds to outputs which are linear functionals of the solutions to the incompressible Stokes equations in two space dimensions; the finite element discretization is effected by Crouzeix-Raviart elements, the discontinuous pressure approximation of which is central to our approach. The bounds are based upon the construction of an augmented Lagrangian: the objective is a quadratic "energy" reformulation of the desired output; the constraints are the finite element equilibrium equations (including the incompressibility constraint), and the intersubdomain continuity conditions on velocity. Appeal to the dual max-min problem for appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output associated with a fine-mesh discretization; the Lagrange multipliers are generated by exploiting an associated coarse-mesh approximation. In addition to the requisite coarse-mesh calculations, the bound technique requires solution only of local subdomain Stokes problems on the fine-mesh. The method is illustrated for the Stokes equations, in which the outputs of interest are the flowrate past, and the lift force on, a body immersed in a channel.

  19. Absolute pitch in a four-year-old boy with autism.

    PubMed

    Brenton, James N; Devries, Seth P; Barton, Christine; Minnich, Heike; Sokol, Deborah K

    2008-08-01

    Absolute pitch is the ability to identify the pitch of an isolated tone. We report on a 4-year-old boy with autism and absolute pitch, one of the youngest reported in the literature. Absolute pitch is thought to be attributable to a single gene, transmitted in an autosomal-dominant fashion. The association of absolute pitch with autism raises the speculation that this talent could be linked to a genetically distinct subset of children with autism. Further, the identification of absolute pitch in even young children with autism may lead to a lifelong skill.

  20. Timed non-transferrin bound iron determinations probe the origin of chelatable iron pools during deferiprone regimens and predict chelation response

    PubMed Central

    Aydinok, Yesim; Evans, Patricia; Manz, Chantal Y.; Porter, John B.

    2012-01-01

    Background Plasma non-transferrin bound iron refers to heterogeneous plasma iron species, not bound to transferrin, which appear in conditions of iron overload and ineffective erythropoiesis. The clinical utility of non-transferrin bound iron in predicting complications from iron overload, or response to chelation therapy remains unproven. We undertook carefully timed measurements of non-transferrin bound iron to explore the origin of chelatable iron and to predict clinical response to deferiprone. Design and Methods Non-transferrin bound iron levels were determined at baseline and after 1 week of chelation in 32 patients with thalassemia major receiving deferiprone alone, desferrioxamine alone, or a combination of the two chelators. Samples were taken at baseline, following a 2-week washout without chelation, and after 1 week of chelation, this last sample being taken 10 hours after the previous evening dose of deferiprone and, in those receiving desferrioxamine, 24 hours after cessation of the overnight subcutaneous infusion. Absolute or relative non-transferrin bound iron levels were related to transfusional iron loading rates, liver iron concentration, 24-hour urine iron and response to chelation therapy over the subsequent year. Results Changes in non-transferrin bound iron at week 1 were correlated positively with baseline liver iron, and inversely with transfusional iron loading rates, with deferiprone-containing regimens but not with desferrioxamine monotherapy. Changes in week 1 non-transferrin bound iron were also directly proportional to the plasma concentration of deferiprone-iron complexes and correlated significantly with urine iron excretion and with changes in liver iron concentration over the next 12 months. Conclusions The widely used assay chosen for this study detects both endogenous non-transferrin bound iron and the iron complexes of deferiprone. The week 1 increments reflect chelatable iron derived both from liver stores and from red cell

  1. a Chiral Tagging Strategy for Determining Absolute Configuration and Enantiomeric Excess by Molecular Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Caminati, Walther; Patterson, David; Thomas, Javix; Xu, Yunjie; West, Channing; Pate, Brooks

    2017-06-01

    The introduction of three wave mixing rotational spectroscopy by Patterson, Schnell, and Doyle [1,2] has expanded applications of molecular rotational spectroscopy into the field of chiral analysis. Chiral analysis of a molecule is the quantitative measurement of the relative abundances of all stereoisomers of the molecule and these include both diastereomers (with distinct molecular rotational spectra) and enantiomers (with equivalent molecular rotational spectra). This work adapts a common strategy in chiral analysis of enantiomers to molecular rotational spectroscopy. A "chiral tag" is attached to the molecule of interest by making a weakly bound complex in a pulsed jet expansion. When this tag molecule is enantiopure, it will create diastereomeric complexes with the two enantiomers of the molecule being analyzed and these can be differentiated by molecule rotational spectroscopy. Identifying the structure of this complex, with knowledge of the absolute configuration of the tag, establishes the absolute configuration of the molecule of interest. Furthermore, the diastereomer complex spectra can be used to determine the enantiomeric excess of the sample. The ability to perform chiral analysis will be illustrated by a study of solketal using propylene oxide as the tag. The possibility of using current methods of quantum chemistry to assign a specific structure to the chiral tag complex will be discussed. Finally, chiral tag rotational spectroscopy offers a "gold standard" method for determining the absolute configuration of the molecule through determination of the substitution structure of the complex. When this measurement is possible, rotational spectroscopy can deliver a quantitative three dimensional structure of the molecule with correct stereochemistry as the analysis output. [1] David Patterson, Melanie Schnell, John M. Doyle, Nature 497, 475 (2013). [2] David Patterson, John M. Doyle, Phys. Rev. Lett. 111, 023008 (2013).

  2. Can absolute and proportional anthropometric characteristics distinguish stronger and weaker powerlifters?

    PubMed

    Keogh, Justin W L; Hume, Patria A; Pearson, Simon N; Mellow, Peter J

    2009-11-01

    This study sought to compare the anthropometric profiles of 17 weaker and 17 stronger Australasian and Pacific powerlifters who had competed in a regional-, national-, or international-level powerlifting competition in New Zealand. Stronger lifters were defined as those having a Wilks score greater than 410, whereas those in the weaker group had a Wilks score less than 370. Each powerlifter was assessed for 37 anthropometric dimensions by International Society for the Advancement of Kinanthropometry (ISAK) level II and III accredited anthropometrists. Because all powerlifters were highly mesomorphic and possessed large girths and bone breadths, both in absolute terms and when expressed as Phantom-Z scores compared through the Phantom, relatively few significant anthropometric differences were observed. However, stronger lifters had significantly greater muscle mass and larger muscular girths in absolute terms as well as greater Brugsch Index (chest girth/height) and "Phantom"-normalized muscle mass, upper arm, chest, and forearm girths. In terms of the segment lengths and bone breadths, the only significant difference was that stronger lifters had a significantly shorter lower leg than weaker lifters. Because the majority of the significant differences were for muscle mass and muscular girths, it would appear likely that these differences contributed to the stronger lifters' superior performance. Powerlifters may therefore need to devote some of their training to the development of greater levels of muscular hypertrophy if they wish to continue to improve their performance. To better understand the anthropometric determinants of muscular strength, future research should recruit larger samples (particularly of elite lifters) and follow these subjects prospectively.

  3. Distinguishing Majorana bound states and Andreev bound states with microwave spectra

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Tao

    2018-04-01

    Majorana fermions are a fascinating and not yet confirmed quasiparticles in condensed matter physics. Here we propose using microwave spectra to distinguish Majorana bound states (MBSs) from topological trivial Andreev bound states. By numerically calculating the transmission and Zeeman field dependence of the many-body excitation spectrum of a 1D Josephson junction, we find that the two kinds of bound states have distinct responses to variations in the related parameters. Furthermore, the singular behaviors of the MBSs spectrum could be attributed to the robust fractional Josephson coupling and nonlocality of MBSs. Our results provide a feasible method to verify the existence of MBSs and could accelerate its application to topological quantum computation.

  4. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  5. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).

  6. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  7. Ion wake field effects on the dust-ion-acoustic surface mode in a semi-bounded Lorentzian dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590

    The dispersion relation for the dust ion-acoustic surface waves propagating at the interface of semi-bounded Lorentzian dusty plasma with supersonic ion flow has been kinetically derived to investigate the nonthermal property and the ion wake field effect. We found that the supersonic ion flow creates the upper and the lower modes. The increase in the nonthermal particles decreases the wave frequency for the upper mode whereas it increases the frequency for the lower mode. The increase in the supersonic ion flow velocity is found to enhance the wave frequency for both modes. We also found that the increase in nonthermalmore » plasmas is found to enhance the group velocity of the upper mode. However, the nonthermal particles suppress the lower mode group velocity. The nonthermal effects on the group velocity will be reduced in the limit of small or large wavelength limit.« less

  8. An iPhone application for upper arm posture and movement measurements.

    PubMed

    Yang, Liyun; Grooten, Wilhelmus J A; Forsman, Mikael

    2017-11-01

    There is a need for objective methods for upper arm elevation measurements for accurate and convenient risk assessments. The aims of this study were (i) to compare a newly developed iOS application (iOS) for measuring upper arm elevation and angular velocity with a reference optical tracking system (OTS), and (ii) to compare the accuracy of the iOS incorporating a gyroscope and an accelerometer with using only an accelerometer, which is standard for inclinometry. The iOS-OTS limits of agreement for static postures (9 subjects) were -4.6° and 4.8°. All root mean square differences in arm swings and two simulated work tasks were <6.0°, and all mean correlation coefficients were >0.98. The mean absolute iOS-OTS difference of median angular velocity was <13.1°/s, which was significantly lower than only using an accelerometer (<43.5°/s). The accuracy of this iOS application compares well to that of today's research methods and it can be useful for practical upper arm measurements. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Upper body fat predicts metabolic syndrome similarly in men and women.

    PubMed

    Grundy, Scott M; Williams, Corbin; Vega, Gloria L

    2018-04-23

    The metabolic syndrome is a constellation of risk factors including dyslipidemia, dysglycemia, hypertension, a pro-inflammatory state, and a prothrombotic state. All of these factors are accentuated by obesity. However, obesity can be defined by body mass index (BMI), percent body fat, or by body fat distribution. The latter consists of upper body fat (subcutaneous and visceral fat) and lower body fat (gluteofemoral fat). Waist circumference is a common surrogate marker for upper body fat. Data from the National Health and Nutrition Examination Survey (NHANES) for the years 1999-2006 was examined for associations of metabolic risk factors with percent body fat, waist circumference, and BMI. Associations between absolute measures of waist circumference and risk factors were similiar for men and women. The similarities of associations between waist circumference and risk factors suggests that greater visceral fat in men does not accentuate the influence of upper body fat on risk factors. Different waist concumference values should not be used to define abdominal obesity in men and women. © 2018 The Authors. European Journal of Clinical Investigation published by John Wiley & Sons Ltd on behalf of Stichting European Society for Clinical Investigation Journal Foundation.

  10. Renorming c0 and closed, bounded, convex sets with fixed point property for affine nonexpansive mappings

    NASA Astrophysics Data System (ADS)

    Nezir, Veysel; Mustafa, Nizami

    2017-04-01

    In 2008, P.K. Lin provided the first example of a nonreflexive space that can be renormed to have fixed point property for nonexpansive mappings. This space was the Banach space of absolutely summable sequences l1 and researchers aim to generalize this to c0, Banach space of null sequences. Before P.K. Lin's intriguing result, in 1979, Goebel and Kuczumow showed that there is a large class of non-weak* compact closed, bounded, convex subsets of l1 with fixed point property for nonexpansive mappings. Then, P.K. Lin inspired by Goebel and Kuczumow's ideas to give his result. Similarly to P.K. Lin's study, Hernández-Linares worked on L1 and in his Ph.D. thesis, supervisored under Maria Japón, showed that L1 can be renormed to have fixed point property for affine nonexpansive mappings. Then, related questions for c0 have been considered by researchers. Recently, Nezir constructed several equivalent norms on c0 and showed that there are non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings. In this study, we construct a family of equivalent norms containing those developed by Nezir as well and show that there exists a large class of non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings.

  11. BPS-like bound and thermodynamics of the charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Monni, Cristina

    2009-07-01

    The charged Bañados-Teitelboim-Zanelli (BTZ) black hole is plagued by several pathologies: (a) Divergent boundary terms are present in the action; hence, we have a divergent black-hole mass. (b) Once a finite, renormalized, mass M is defined, black-hole states exist for arbitrarily negative values of M. (c) There is no upper bound on the charge Q. We show that these pathological features are an artifact of the renormalization procedure. They can be completely removed by using an alternative renormalization scheme leading to a different definition M0 of the black-hole mass, which is the total energy inside the horizon. The new mass satisfies a BPS-like bound M0≥(π)/(2)Q2, and the heat capacity of the hole is positive. We also discuss the black-hole thermodynamics that arises when M0 is interpreted as the internal energy of the system. We show, using three independent approaches (black-hole thermodynamics, Einstein equations, and Euclidean action formulation), that M0 satisfies the first law if a term describing the mechanical work done by the electrostatic pressure is introduced.

  12. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  13. Monolithically integrated absolute frequency comb laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  14. Bounds on the dynamics of sink populations with noisy immigration.

    PubMed

    Eager, Eric Alan; Guiver, Chris; Hodgson, Dave; Rebarber, Richard; Stott, Iain; Townley, Stuart

    2014-03-01

    Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics of sink populations are not easily modelled using the standard framework of per capita rates of immigration, because numbers of immigrants are determined by extrinsic sources (for example, source populations, or population managers). Here we appeal to a systems and control framework to place upper and lower bounds on both the transient and future dynamics of sink populations that are subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety of models found in the literature. We apply the results to case studies derived from published models for Chinook salmon (Oncorhynchus tshawytscha) and blowout penstemon (Penstemon haydenii). Copyright © 2013 Elsevier Inc. All rights reserved.

  15. An adaptive Bayesian inversion for upper-mantle structure using surface waves and scattered body waves

    NASA Astrophysics Data System (ADS)

    Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.

    2018-07-01

    We present a methodology for 1-D imaging of upper-mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parametrization based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.

  16. An adaptive Bayesian inversion for upper mantle structure using surface waves and scattered body waves

    NASA Astrophysics Data System (ADS)

    Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.

    2018-04-01

    We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.

  17. Contrasting upper-mantle shear wave anisotropy across the transpressive Queen Charlotte margin

    NASA Astrophysics Data System (ADS)

    Cao, Lingmin; Kao, Honn; Wang, Kelin

    2017-10-01

    In order to investigate upper mantle and crustal anisotropy along the transpressive Queen Charlotte margin between the Pacific (PA) and North America (NA) plates, we conducted shear wave splitting analyses using 17 seismic stations in and around the island of Haida Gwaii, Canada. Despite the limited station coverage at present, our reconnaissance study does reveal a systematic pattern of mantle anisotropy in this region. Fast directions derived from teleseismic SKS-phase splitting are mostly margin-parallel (NNW-SSE) near the plate boundary but transition to predominantly E-W-trending farther away. We propose that the former is associated with the absolute motion of PA, and the latter reflects a transition from this direction to that of the absolute motion of NA. The broad width of the zone of transition from the PA to NA direction is probably caused by the very obliquely subducting PA slab that travels primarily in the margin-parallel direction. Anisotropy of Haida Gwaii based on local earthquakes features a fast direction that cannot be explained with regional stresses and is probably associated with local structural fabric within the overriding crust. Our preliminary shear wave splitting measurements and working hypotheses based on them will serve to guide more refined future studies to unravel details of the geometry and kinematics of the subducted PA slab, as well as the viscous coupling between the slab and upper mantle in other transpressive margins.

  18. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  19. Hartree-Fock theory of the inhomogeneous electron gas at a jellium metal surface: Rigorous upper bounds to the surface energy and accurate work functions

    NASA Astrophysics Data System (ADS)

    Sahni, V.; Ma, C. Q.

    1980-12-01

    The inhomogeneous electron gas at a jellium metal surface is studied in the Hartree-Fock approximation by Kohn-Sham density functional theory. Rigorous upper bounds to the surface energy are derived by application of the Rayleigh-Ritz variational principle for the energy, the surface kinetic, electrostatic, and nonlocal exchange energy functionals being determined exactly for the accurate linear-potential model electronic wave functions. The densities obtained by the energy minimization constraint are then employed to determine work-function results via the variationally accurate "displaced-profile change-in-self-consistent-field" expression. The theoretical basis of this non-self-consistent procedure and its demonstrated accuracy for the fully correlated system (as treated within the local-density approximation for exchange and correlation) leads us to conclude these results for the surface energies and work functions to be essentially exact. Work-function values are also determined by the Koopmans'-theorem expression, both for these densities as well as for those obtained by satisfaction of the constraint set on the electrostatic potential by the Budd-Vannimenus theorem. The use of the Hartree-Fock results in the accurate estimation of correlation-effect contributions to these surface properties of the nonuniform electron gas is also indicated. In addition, the original work and approximations made by Bardeen in this attempt at a solution of the Hartree-Fock problem are briefly reviewed in order to contrast with the present work.

  20. Absolute laser-intensity measurement and online monitor calibration using a calorimeter at a soft X-ray free-electron laser beamline in SACLA

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro; Kato, Masahiro; Saito, Norio; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2018-06-01

    This paper reports measurement of the absolute intensity of free-electron laser (FEL) and calibration of online intensity monitors for a brand-new FEL beamline BL1 at SPring-8 Angstrom Compact free-electron LAser (SACLA) in Japan. To measure the absolute intensity of FEL, we used a room-temperature calorimeter originally developed for FELs in the hard X-ray range. By using the calorimeter, we calibrated online intensity monitors of BL1, gas monitors (GMs), based on the photoionization of argon gas, in the photon energy range from 25 eV to 150 eV. A good correlation between signals obtained from the calorimeter and GMs was observed in the pulse energy range from 1 μJ to 100 μJ, where the upper limit is nearly equal to the maximum pulse energy at BL1. Moreover, the calibration result of the GMs, measured in terms of the spectral responsivity, demonstrates a characteristic photon-energy dependence owing to the occurrence of the Cooper minimum in the total ionization cross-section of argon gas. These results validate the feasibility of employing the room-temperature calorimeter in the measurement of absolute intensity of FELs over the specified photon energy range.

  1. Analytic Confusion Matrix Bounds for Fault Detection and Isolation Using a Sum-of-Squared- Residuals Approach

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2009-01-01

    Given a system which can fail in 1 or n different ways, a fault detection and isolation (FDI) algorithm uses sensor data in order to determine which fault is the most likely to have occurred. The effectiveness of an FDI algorithm can be quantified by a confusion matrix, which i ndicates the probability that each fault is isolated given that each fault has occurred. Confusion matrices are often generated with simulation data, particularly for complex systems. In this paper we perform FDI using sums of squares of sensor residuals (SSRs). We assume that the sensor residuals are Gaussian, which gives the SSRs a chi-squared distribution. We then generate analytic lower and upper bounds on the confusion matrix elements. This allows for the generation of optimal sensor sets without numerical simulations. The confusion matrix bound s are verified with simulated aircraft engine data.

  2. 34 CFR 645.12 - What services may regular Upward Bound and Upward Bound Math-Science projects provide?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What services may regular Upward Bound and Upward Bound Math-Science projects provide? 645.12 Section 645.12 Education Regulations of the Offices of the... services may regular Upward Bound and Upward Bound Math-Science projects provide? Any project assisted...

  3. 34 CFR 645.12 - What services may regular Upward Bound and Upward Bound Math-Science projects provide?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What services may regular Upward Bound and Upward Bound Math-Science projects provide? 645.12 Section 645.12 Education Regulations of the Offices of the... services may regular Upward Bound and Upward Bound Math-Science projects provide? Any project assisted...

  4. 34 CFR 645.12 - What services may regular Upward Bound and Upward Bound Math-Science projects provide?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What services may regular Upward Bound and Upward Bound Math-Science projects provide? 645.12 Section 645.12 Education Regulations of the Offices of the... services may regular Upward Bound and Upward Bound Math-Science projects provide? Any project assisted...

  5. 34 CFR 645.12 - What services may regular Upward Bound and Upward Bound Math-Science projects provide?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What services may regular Upward Bound and Upward Bound Math-Science projects provide? 645.12 Section 645.12 Education Regulations of the Offices of the... services may regular Upward Bound and Upward Bound Math-Science projects provide? Any project assisted...

  6. A case study to quantify prediction bounds caused by model-form uncertainty of a portal frame

    NASA Astrophysics Data System (ADS)

    Van Buren, Kendra L.; Hall, Thomas M.; Gonzales, Lindsey M.; Hemez, François M.; Anton, Steven R.

    2015-01-01

    Numerical simulations, irrespective of the discipline or application, are often plagued by arbitrary numerical and modeling choices. Arbitrary choices can originate from kinematic assumptions, for example the use of 1D beam, 2D shell, or 3D continuum elements, mesh discretization choices, boundary condition models, and the representation of contact and friction in the simulation. This work takes a step toward understanding the effect of arbitrary choices and model-form assumptions on the accuracy of numerical predictions. The application is the simulation of the first four resonant frequencies of a one-story aluminum portal frame structure under free-free boundary conditions. The main challenge of the portal frame structure resides in modeling the joint connections, for which different modeling assumptions are available. To study this model-form uncertainty, and compare it to other types of uncertainty, two finite element models are developed using solid elements, and with differing representations of the beam-to-column and column-to-base plate connections: (i) contact stiffness coefficients or (ii) tied nodes. Test-analysis correlation is performed to compare the lower and upper bounds of numerical predictions obtained from parametric studies of the joint modeling strategies to the range of experimentally obtained natural frequencies. The approach proposed is, first, to characterize the experimental variability of the joints by varying the bolt torque, method of bolt tightening, and the sequence in which the bolts are tightened. The second step is to convert what is learned from these experimental studies to models that "envelope" the range of observed bolt behavior. We show that this approach, that combines small-scale experiments, sensitivity analysis studies, and bounding-case models, successfully produces lower and upper bounds of resonant frequency predictions that match those measured experimentally on the frame structure. (Approved for unlimited, public

  7. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  8. Bounds on negativity for the success of quantum teleportation of qutrit-qubit system

    NASA Astrophysics Data System (ADS)

    K G, Paulson; Satyanarayana, S. V. M.

    In the original protocol Bennet et.al., used maximally entangled pure states as quantum channel to teleport unknown states between distant observers with maximum fidelity. Noisy quantum channel can be used for imperfect teleportation. Both degree of entanglement and mixedness decide the success of teleportation in the case of mixed entangled quantum channel. . In one of our previous works, we discussed the existence of lower bound below which ,state is useless for quantum teleportation in the measure of entanglement for a fixed value of fidelity, and this lower bound decreases as rank increases for two-qubit system. We use negativity as the measure of entanglement. . In this work, we consider a qutrit-qubit system as quantum channel for teleportation, and study how the negativity and rank affect the teleportation fidelity for a class of states. We construct a new class of mixed entangled qutrit-qubit states as quantum channel, which is a convex sum of orthonormal maximally entangled and separable pure states. The classical limit of fidelity below which state is useless for quantum teleportation is fixed as 2/3. We numerically generate 30000 states and estimate the value of negativity below which each rank mixed state is useless for quantum teleportation. We also construct rank dependant boundary states by choosing appropriate eigen values, which act as upper bound for respective rank states.

  9. Bounds on graviton mass using weak lensing and SZ effect in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Rana, Akshay; Jain, Deepak; Mahajan, Shobhit; Mukherjee, Amitabha

    2018-06-01

    In General Relativity (GR), the graviton is massless. However, a common feature in several theoretical alternatives of GR is a non-zero mass for the graviton. These theories can be described as massive gravity theories. Despite many theoretical complexities in these theories, on phenomenological grounds the implications of massive gravity have been widely used to put bounds on graviton mass. One of the generic implications of giving a mass to the graviton is that the gravitational potential will follow a Yukawa-like fall off. We use this feature of massive gravity theories to probe the mass of graviton by using the largest gravitationally bound objects, namely galaxy clusters. In this work, we use the mass estimates of galaxy clusters measured at various cosmologically defined radial distances measured via weak lensing (WL) and Sunyaev-Zel'dovich (SZ) effect. We also use the model independent values of Hubble parameter H (z) smoothed by a non-parametric method, Gaussian process. Within 1σ confidence region, we obtain the mass of graviton mg < 5.9 ×10-30 eV with the corresponding Compton length scale λg > 6.82 Mpc from weak lensing and mg < 8.31 ×10-30 eV with λg > 5.012 Mpc from SZ effect. This analysis improves the upper bound on graviton mass obtained earlier from galaxy clusters.

  10. Redox-influenced seismic properties of upper-mantle olivine

    NASA Astrophysics Data System (ADS)

    Cline, C. J., II; Faul, U. H.; David, E. C.; Berry, A. J.; Jackson, I.

    2018-03-01

    Lateral variations of seismic wave speeds and attenuation (dissipation of strain energy) in the Earth’s upper mantle have the potential to map key characteristics such as temperature, major-element composition, melt fraction and water content. The inversion of these data into meaningful representations of physical properties requires a robust understanding of the micromechanical processes that affect the propagation of seismic waves. Structurally bound water (hydroxyl) is believed to affect seismic properties but this has yet to be experimentally quantified. Here we present a comprehensive low-frequency forced-oscillation assessment of the seismic properties of olivine as a function of water content within the under-saturated regime that is relevant to the Earth’s interior. Our results demonstrate that wave speeds and attenuation are in fact strikingly insensitive to water content. Rather, the redox conditions imposed by the choice of metal sleeving, and the associated defect chemistry, appear to have a substantial influence on the seismic properties. These findings suggest that elevated water contents are not responsible for low-velocity or high-attenuation structures in the upper mantle. Instead, the high attenuation observed in hydrous and oxidized regions of the upper mantle (such as above subduction zones) may reflect the prevailing oxygen fugacity. In addition, these data provide no support for the hypothesis whereby a sharp lithosphere–asthenosphere boundary is explained by enhanced grain boundary sliding in the presence of water.

  11. Bound states in string nets

    NASA Astrophysics Data System (ADS)

    Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien

    2016-11-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  12. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change.

    PubMed

    Diamond, Sarah E

    2017-02-01

    How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness-related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta-analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate. © 2016 New York Academy of Sciences.

  13. Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldes, Iason; Petraki, Kalliopi, E-mail: iason.baldes@desy.de, E-mail: kpetraki@lpthe.jussieu.fr

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of themore » annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s -wave and p -wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.« less

  14. Absolute Paleointensity Study of Miocene Tiva Canyon Tuff, Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Patiman, A.; Bowles, J.

    2014-12-01

    Unoriented samples from the ~12.7 Ma Tiva Canyon (TC) tuff from Yucca Mountain, Nevada are studied in terms of magnetic properties and geomagnetic paleointensity. The magnetic mineralogy and magnetic properties of the TC tuff have previously been well documented, and the remanence-carrier in ~15-m thick zones at the top and bottom of the unit is dominantly is single domain (SD) to superparamagnetic (SP) magnetite, which may be considered ideal for absolute paleointensity studies. Among one of the several episodic volcanic eruptions of the Southwestern Nevada Volcanic Field (SWNVF), the welded TC tuff belongs to the Paintbrush Group. Here we present magnetic properties from two previously unreported sections of the TC tuff, as well as Thellier-type absolute paleointensity estimates. Samples were collected from the lower ~7 m at the base of the flow. Magnetic properties studied include hysteresis, bulk magnetic susceptibility, frequency-dependent susceptibility, and anhysteretic remanent magnetization acquisition. Magnetic property results are consistent with earlier work, showing that the main magnetic mineral is magnetite. SP samples are dominant from the lower ~1 m to ~3.6 m basal unit while the middle unit of ~3.7 m to 7.0 m mainly consists of SD samples. The paleointensity results are closely tied to the stratigraphic height and magnetic properties linked to domain state. The SD samples have consistent absolute paleointensity values 32.40±0.22 uT, VADM 5.74*1022 A.m2 and behaved ideally during paleointensity experiments. The SP samples have consistently higher paleointensity and less ideal behavior, but would likely pass many traditional quality-control tests. Since the magnetite has been interpreted to form by precipitation out of the glass post-emplacement, but at temperatures higher than the Curie temperature, we tentatively interpret the SD remanence to be a primary thermal remanent magnetization and the paleointensity result to be a valid estimate of

  15. Absolute geostrophic currents over the SR02 section south of Africa in December 2009

    NASA Astrophysics Data System (ADS)

    Tarakanov, Roman

    2017-04-01

    The structure of the absolute geostrophic currents is investigated on the basis of CTD-, SADCP- and LADCP-data over the hydrographic section occupied south of Africa from the Good Hope Cape to 57° S along the Prime Meridian, and on the basis of satellite data on absolute dynamic topography (ADT) produced by Ssalto/Duacs and distributed by Aviso, with a support from Cnes (http://www.aviso.altimetry.fr/duacs/). Thus the section crossed the subtropical zone (at the junction of the subtropical gyres of the Indian and Atlantic oceans), the Antarctic Circumpolar Current (ACC) and terminated at the northern periphery of the Weddell Gyre. A total of 87 stations were occupied here with CTD-, and LADCP-profiling in the entire water column. The distance between stations was 20 nautical miles. Absolute geostrophic currents were calculated between each pair of CTD-stations with barotropic correction based on two methods: by SADCP data and by ADT at these stations. The subtropical part of the section crossed a large segment of the Agulhas meander, already separated from the current and disintegrating into individual eddies. In addition, smaller formed cyclones and anticyclones of the Agulhas Current were also observed in this zone. These structural elements of the upper layer of the ocean currents do not penetrate deeper than 1000-1500 m. Oppositely directed barotropic currents with velocities up to 30 cm/s were observed below these depths extending to the ocean bottom. Such large velocities agree well with the data of the bottom tracking of Lowered ADCP. Only these data were the reliable results of LADCP measurements because of the high transparency of the deep waters of the subtropical zone. The total transport of absolute geostrophic currents in the section is estimated as 144 and 179 Sv to the east, based on the SADCP and ADT barotropic correction, respectively. A transport of 4 (2) Sv to the east was observed on the northern periphery of the Weddell Gyre, 187 (182) Sv to

  16. Isometric and isokinetic muscle strength in the upper extremity can be reliably measured in persons with chronic stroke.

    PubMed

    Ekstrand, Elisabeth; Lexell, Jan; Brogårdh, Christina

    2015-09-01

    To evaluate the test-retest reliability of isometric and isokinetic muscle strength measurements in the upper extremity after stroke. A test-retest design. Forty-five persons with mild to moderate paresis in the upper extremity > 6 months post-stroke. Isometric arm strength (shoulder abduction, elbow flexion), isokinetic arm strength (elbow extension/flexion) and isometric grip strength were measured with electronic dynamometers. Reliability was evaluated with intra-class correlation coefficients (ICC), changes in the mean, standard error of measurements (SEM) and smallest real differences (SRD). Reliability was high (ICCs: 0.92-0.97). The absolute and relative (%) SEM ranged from 2.7 Nm (5.6%) to 3.0 Nm (9.4%) for isometric arm strength, 2.6 Nm (7.4%) to 2.9 Nm (12.6%) for isokinetic arm strength, and 22.3 N (7.6%) to 26.4 N (9.2%) for grip strength. The absolute and relative (%) SRD ranged from 7.5 Nm (15.5%) to 8.4 Nm (26.1%) for isometric arm strength, 7.1 Nm (20.6%) to 8.0 Nm (34.8%) for isokinetic arm strength, and 61.8 N (21.0%) to 73.3 N (25.6%) for grip strength. Muscle strength in the upper extremity can be reliably measured in persons with chronic stroke. Isometric measurements yield smaller measurement errors than isokinetic measurements and might be preferred, but the choice depends on the research question.

  17. Bound-free Spectra for Diatomic Molecules

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    2012-01-01

    It is now recognized that prediction of radiative heating of entering space craft requires explicit treatment of the radiation field from the infrared (IR) to the vacuum ultra violet (VUV). While at low temperatures and longer wavelengths, molecular radiation is well described by bound-bound transitions, in the short wavelength, high temperature regime, bound-free transitions can play an important role. In this work we describe first principles calculations we have carried out for bound-bound and bound-free transitions in N2, O2, C2, CO, CN, NO, and N2+. Compared to bound ]bound transitions, bound-free transitions have several particularities that make them different to deal with. These include more complicated line shapes and a dependence of emission intensity on both bound state diatomic and atomic concentrations. These will be discussed in detail below. The general procedure we used was the same for all species. The first step is to generate potential energy curves, transition moments, and coupling matrix elements by carrying out ab initio electronic structure calculations. These calculations are expensive, and thus approximations need to be made in order to make the calculations tractable. The only practical method we have to carry out these calculations is the internally contracted multi-reference configuration interaction (icMRCI) method as implemented in the program suite Molpro. This is a widely used method for these kinds of calculations, and is capable of generating very accurate results. With this method, we must first of choose which electrons to correlate, the one-electron basis to use, and then how to generate the molecular orbitals.

  18. WHAMII - An enumeration and insertion procedure with binomial bounds for the stochastic time-constrained traveling salesman problem

    NASA Technical Reports Server (NTRS)

    Dahl, Roy W.; Keating, Karen; Salamone, Daryl J.; Levy, Laurence; Nag, Barindra; Sanborn, Joan A.

    1987-01-01

    This paper presents an algorithm (WHAMII) designed to solve the Artificial Intelligence Design Challenge at the 1987 AIAA Guidance, Navigation and Control Conference. The problem under consideration is a stochastic generalization of the traveling salesman problem in which travel costs can incur a penalty with a given probability. The variability in travel costs leads to a probability constraint with respect to violating the budget allocation. Given the small size of the problem (eleven cities), an approach is considered that combines partial tour enumeration with a heuristic city insertion procedure. For computational efficiency during both the enumeration and insertion procedures, precalculated binomial probabilities are used to determine an upper bound on the actual probability of violating the budget constraint for each tour. The actual probability is calculated for the final best tour, and additional insertions are attempted until the actual probability exceeds the bound.

  19. Upper bound on neutrino mass based on T2K neutrino timing measurements

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shaw, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-01-01

    The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino beam, produced at the J-PARC accelerator, a near detector complex and a large 295-km-distant far detector. The present work utilizes the T2K event timing measurements at the near and far detectors to study neutrino time of flight as a function of derived neutrino energy. Under the assumption of a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns provide sensitivity to neutrino mass in the few MeV /c2 range. We study the distribution of relative arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented in the data sample is found to be mν2<5.6 MeV2/c4 .

  20. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  1. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  2. Planck absolute entropy of a rotating BTZ black hole

    NASA Astrophysics Data System (ADS)

    Riaz, S. M. Jawwad

    2018-04-01

    In this paper, the Planck absolute entropy and the Bekenstein-Smarr formula of the rotating Banados-Teitelboim-Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.

  3. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Estimating Upper Bounds for Occupancy and Number of Manatees in Areas Potentially Affected by Oil from the Deepwater Horizon Oil Spill

    PubMed Central

    Martin, Julien; Edwards, Holly H.; Bled, Florent; Fonnesbeck, Christopher J.; Dupuis, Jérôme A.; Gardner, Beth; Koslovsky, Stacie M.; Aven, Allen M.; Ward-Geiger, Leslie I.; Carmichael, Ruth H.; Fagan, Daniel E.; Ross, Monica A.; Reinert, Thomas R.

    2014-01-01

    The explosion of the Deepwater Horizon drilling platform created the largest marine oil spill in U.S. history. As part of the Natural Resource Damage Assessment process, we applied an innovative modeling approach to obtain upper estimates for occupancy and for number of manatees in areas potentially affected by the oil spill. Our data consisted of aerial survey counts in waters of the Florida Panhandle, Alabama and Mississippi. Our method, which uses a Bayesian approach, allows for the propagation of uncertainty associated with estimates from empirical data and from the published literature. We illustrate that it is possible to derive estimates of occupancy rate and upper estimates of the number of manatees present at the time of sampling, even when no manatees were observed in our sampled plots during surveys. We estimated that fewer than 2.4% of potentially affected manatee habitat in our Florida study area may have been occupied by manatees. The upper estimate for the number of manatees present in potentially impacted areas (within our study area) was estimated with our model to be 74 (95%CI 46 to 107). This upper estimate for the number of manatees was conditioned on the upper 95%CI value of the occupancy rate. In other words, based on our estimates, it is highly probable that there were 107 or fewer manatees in our study area during the time of our surveys. Because our analyses apply to habitats considered likely manatee habitats, our inference is restricted to these sites and to the time frame of our surveys. Given that manatees may be hard to see during aerial surveys, it was important to account for imperfect detection. The approach that we described can be useful for determining the best allocation of resources for monitoring and conservation. PMID:24670971

  5. Negativity Bounds for Weyl-Heisenberg Quasiprobability Representations

    NASA Astrophysics Data System (ADS)

    DeBrota, John B.; Fuchs, Christopher A.

    2017-08-01

    The appearance of negative terms in quasiprobability representations of quantum theory is known to be inevitable, and, due to its equivalence with the onset of contextuality, of central interest in quantum computation and information. Until recently, however, nothing has been known about how much negativity is necessary in a quasiprobability representation. Zhu (Phys Rev Lett 117 (12):120404, 2016) proved that the upper and lower bounds with respect to one type of negativity measure are saturated by quasiprobability representations which are in one-to-one correspondence with the elusive symmetric informationally complete quantum measurements (SICs). We define a family of negativity measures which includes Zhu's as a special case and consider another member of the family which we call "sum negativity." We prove a sufficient condition for local maxima in sum negativity and find exact global maxima in dimensions 3 and 4. Notably, we find that Zhu's result on the SICs does not generally extend to sum negativity, although the analogous result does hold in dimension 4. Finally, the Hoggar lines in dimension 8 make an appearance in a conjecture on sum negativity.

  6. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  7. Logistic quantile regression provides improved estimates for bounded avian counts: A case study of California Spotted Owl fledgling production

    USGS Publications Warehouse

    Cade, Brian S.; Noon, Barry R.; Scherer, Rick D.; Keane, John J.

    2017-01-01

    Counts of avian fledglings, nestlings, or clutch size that are bounded below by zero and above by some small integer form a discrete random variable distribution that is not approximated well by conventional parametric count distributions such as the Poisson or negative binomial. We developed a logistic quantile regression model to provide estimates of the empirical conditional distribution of a bounded discrete random variable. The logistic quantile regression model requires that counts are randomly jittered to a continuous random variable, logit transformed to bound them between specified lower and upper values, then estimated in conventional linear quantile regression, repeating the 3 steps and averaging estimates. Back-transformation to the original discrete scale relies on the fact that quantiles are equivariant to monotonic transformations. We demonstrate this statistical procedure by modeling 20 years of California Spotted Owl fledgling production (0−3 per territory) on the Lassen National Forest, California, USA, as related to climate, demographic, and landscape habitat characteristics at territories. Spotted Owl fledgling counts increased nonlinearly with decreasing precipitation in the early nesting period, in the winter prior to nesting, and in the prior growing season; with increasing minimum temperatures in the early nesting period; with adult compared to subadult parents; when there was no fledgling production in the prior year; and when percentage of the landscape surrounding nesting sites (202 ha) with trees ≥25 m height increased. Changes in production were primarily driven by changes in the proportion of territories with 2 or 3 fledglings. Average variances of the discrete cumulative distributions of the estimated fledgling counts indicated that temporal changes in climate and parent age class explained 18% of the annual variance in owl fledgling production, which was 34% of the total variance. Prior fledgling production explained as much of

  8. Population-based absolute risk estimation with survey data

    PubMed Central

    Kovalchik, Stephanie A.; Pfeiffer, Ruth M.

    2013-01-01

    Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614

  9. Absolute marine gravimetry with matter-wave interferometry.

    PubMed

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  10. Search for weakly decaying Λ n - and ΛΛ exotic bound states in central Pb–Pb collisions at s NN = 2.76  TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.; Adamová, D.; Aggarwal, M. M.

    Here, we present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possiblemore » $$\\overline{Λn}$$ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ = 2.76 TeV, by invariant mass analysis in the decay modes $$\\overline{Λn}$$ → $$\\bar{d}$$π + and H-dibaryon →Λpπ -. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.« less

  11. Search for weakly decaying Λ n - and ΛΛ exotic bound states in central Pb–Pb collisions at s NN = 2.76  TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-11-28

    Here, we present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possiblemore » $$\\overline{Λn}$$ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ = 2.76 TeV, by invariant mass analysis in the decay modes $$\\overline{Λn}$$ → $$\\bar{d}$$π + and H-dibaryon →Λpπ -. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.« less

  12. The absolute dynamic ocean topography (ADOT)

    NASA Astrophysics Data System (ADS)

    Bosch, Wolfgang; Savcenko, Roman

    The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.

  13. Absolute configuration of a chiral CHD group via neutron diffraction: confirmation of the absolute stereochemistry of the enzymatic formation of malic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bau, R.; Brewer, I.; Chiang, M.Y.

    Neutron diffraction has been used to monitor the absolute stereochemistry of an enzymatic reaction. (-)(2S)malic-3-d acid was prepared by the action of fumarase on fumaric acid in D/sub 2/O. After a large number of cations were screened, it was found that (+)(R)..cap alpha..-phenylethylamine forms the large crystals necessary for a neutron diffraction analysis. The subsequent structure determination showed that (+)(R)..cap alpha..-phenylethylammonium (-)(2S)malate-3-d has an absolute configuration of R at the CHD site. This result confirms the absolute stereochemistry of fumarate-to-malate transformation as catalyzed by the enzyme fumarase.

  14. Career Development and Personal Functioning Differences between Work-Bound and Non-Work Bound Students

    ERIC Educational Resources Information Center

    Creed, Peter A.; Patton, Wendy; Hood, Michelle

    2010-01-01

    We surveyed 506 Australian high school students on career development (exploration, planning, job-knowledge, decision-making, indecision), personal functioning (well-being, self-esteem, life satisfaction, school satisfaction) and control variables (parent education, school achievement), and tested differences among work-bound, college-bound and…

  15. A sharp lower bound for the sum of a sine series with convex coefficients

    NASA Astrophysics Data System (ADS)

    Solodov, A. P.

    2016-12-01

    The sum of a sine series g(\\mathbf b,x)=\\sumk=1^∞ b_k\\sin kx with coefficients forming a convex sequence \\mathbf b is known to be positive on the interval (0,π). Its values near zero are conventionally evaluated using the Salem function v(\\mathbf b,x)=x\\sumk=1m(x) kb_k, m(x)=[π/x]. In this paper it is proved that 2π-2v(\\mathbf b,x) is not a minorant for g(\\mathbf b,x). The modified Salem function v_0(\\mathbf b,x)=x\\bigl(\\sumk=1m(x)-1 kb_k+(1/2)m(x)bm(x)\\bigr) is shown to satisfy the lower bound g(\\mathbf b,x)>2π-2v_0(\\mathbf b,x) in some right neighbourhood of zero. This estimate is shown to be sharp on the class of convex sequences \\mathbf b. Moreover, the upper bound for g(\\mathbf b,x) is refined on the class of monotone sequences \\mathbf b. Bibliography: 11 titles.

  16. The Absolute Magnitude of the Sun in Several Filters

    NASA Astrophysics Data System (ADS)

    Willmer, Christopher N. A.

    2018-06-01

    This paper presents a table with estimates of the absolute magnitude of the Sun and the conversions from vegamag to the AB and ST systems for several wide-band filters used in ground-based and space-based observatories. These estimates use the dustless spectral energy distribution (SED) of Vega, calibrated absolutely using the SED of Sirius, to set the vegamag zero-points and a composite spectrum of the Sun that coadds space-based observations from the ultraviolet to the near-infrared with models of the Solar atmosphere. The uncertainty of the absolute magnitudes is estimated by comparing the synthetic colors with photometric measurements of solar analogs and is found to be ∼0.02 mag. Combined with the uncertainty of ∼2% in the calibration of the Vega SED, the errors of these absolute magnitudes are ∼3%–4%. Using these SEDs, for three of the most utilized filters in extragalactic work the estimated absolute magnitudes of the Sun are M B = 5.44, M V = 4.81, and M K = 3.27 mag in the vegamag system and M B = 5.31, M V = 4.80, and M K = 5.08 mag in AB.

  17. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  18. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.

  19. Preparation of an oakmoss absolute with reduced allergenic potential.

    PubMed

    Ehret, C; Maupetit, P; Petrzilka, M; Klecak, G

    1992-06-01

    Synopsis Oakmoss absolute, an extract of the lichen Evernia prunastri, is known to cause allergenic skin reactions due to the presence of certain aromatic aldehydes such as atranorin, chloratranorin, ethyl hematommate and ethyl chlorohematommate. In this paper it is shown that treatment of Oakmoss absolute with amino acids such as lysine and/or leucine, lowers considerably the content of these allergenic constituents including atranol and chloratranol. The resulting Oakmoss absolute, which exhibits an excellent olfactive quality, was tested extensively in comparative studies on guinea pigs and on man. The results of the Guinea Pig Maximization Test (GPMT) and Human Repeated Insult Patch Test (HRIPT) indicate that, in comparison with the commercial test sample, the allergenicity of this new quality of Oakmoss absolute was considerably reduced, and consequently better skin tolerance of this fragrance for man was achieved.

  20. Physics of negative absolute temperatures.

    PubMed

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  1. Absolute gravimetry for monitoring geodynamics in Greenland.

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Strykowski, G.; Forsberg, R.

    2015-12-01

    Here are presented the preliminary results of the absolute gravity measurements done in Greenland by DTU Space with their A10 absolute gravimeter (the A10-019). The purpose, besides establishing and maintaining a national gravity network, is to study geodynamics.The absolute gravity measurements are juxtaposed with the permanent GNET GNSS stations. The first measurements were conducted in 2009 and a few sites have been re-visited. As of present is there a gravity value at 18 GNET sites.There are challenges in interpreting the measurements from Greenland and several signals has to be taken into account, besides the geodynamical signals originating from the changing load of the ice, there is also a clear signal of direct attraction from different masses. Here are presented the preliminary results of our measurements in Greenland and attempts explain them through modelling of the geodynamical signals and the direct attraction from the ocean and ice.

  2. Strongly nonlinear theory of rapid solidification near absolute stability

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the

  3. Note on a modified return period scale for upper-truncated unbounded flood distributions

    NASA Astrophysics Data System (ADS)

    Bardsley, Earl

    2017-01-01

    Probability distributions unbounded to the right often give good fits to annual discharge maxima. However, all hydrological processes are in reality constrained by physical upper limits, though not necessarily well defined. A result of this contradiction is that for sufficiently small exceedance probabilities the unbounded distributions anticipate flood magnitudes which are impossibly large. This raises the question of whether displayed return period scales should, as is current practice, have some given number of years, such as 500 years, as the terminating rightmost tick-point. This carries the implication that the scale might be extended indefinitely to the right with a corresponding indefinite increase in flood magnitude. An alternative, suggested here, is to introduce a sufficiently high upper truncation point to the flood distribution and modify the return period scale accordingly. The rightmost tick-mark then becomes infinity, corresponding to the upper truncation point discharge. The truncation point is likely to be set as being above any physical upper bound and the return period scale will change only slightly over all practical return periods of operational interest. The rightmost infinity tick point is therefore proposed, not as an operational measure, but rather to signal in flood plots that the return period scale does not extend indefinitely to the right.

  4. Consistent Tolerance Bounds for Statistical Distributions

    NASA Technical Reports Server (NTRS)

    Mezzacappa, M. A.

    1983-01-01

    Assumption that sample comes from population with particular distribution is made with confidence C if data lie between certain bounds. These "confidence bounds" depend on C and assumption about distribution of sampling errors around regression line. Graphical test criteria using tolerance bounds are applied in industry where statistical analysis influences product development and use. Applied to evaluate equipment life.

  5. Absolute far-ultraviolet spectrophotometry of hot subluminous stars from Voyager

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Ali, B.; Carone, T. E.; Polidan, R. S.

    1991-01-01

    Observations, obtained with the Voyager ultraviolet spectrometers, are presented of absolute fluxes for two well-known hot subluminous stars: BD + 28 deg 4211, an sdO, and G191 - B2B, a hot DA white dwarf. Complete absolute energy distributions for these two stars, from the Lyman limit at 912 A to 1 micron, are given. For BD + 28 deg 4211, a single power law closely represents the entire observed energy distribution. For G191 - B2B, a pure hydrogen model atmosphere provides an excellent match to the entire absolute energy distribution. Voyager absolute fluxes are discussed in relation to those reported from various sounding rocket experiments, including a recent rocket observation of BD + 28 deg 4211.

  6. Search for weakly decaying Λn ‾ and ΛΛ exotic bound states in central Pb-Pb collisions at √{sNN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jachołkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kouzinopoulos, C.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yano, S.; Yasnopolskiy, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-01-01

    We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible Λn ‾ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at √{sNN} = 2.76 TeV, by invariant mass analysis in the decay modes Λn ‾ → d ‾π+ and H-dibaryon → Λpπ-. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.

  7. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  8. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  9. Dynamical error bounds for continuum discretisation via Gauss quadrature rules—A Lieb-Robinson bound approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, M. P.; Centre for Quantum Technologies, National University of Singapore; QuTech, Delft University of Technology, Lorentzweg 1, 2611 CJ Delft

    2016-02-15

    Instances of discrete quantum systems coupled to a continuum of oscillators are ubiquitous in physics. Often the continua are approximated by a discrete set of modes. We derive error bounds on expectation values of system observables that have been time evolved under such discretised Hamiltonians. These bounds take on the form of a function of time and the number of discrete modes, where the discrete modes are chosen according to Gauss quadrature rules. The derivation makes use of tools from the field of Lieb-Robinson bounds and the theory of orthonormal polynomials.

  10. Electronic spin polarization in the Majorana bound state in one-dimensional wires

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Aksenov, S. V.

    2017-10-01

    We have studied the effect of magnetic field and disorder on the electronic z-spin polarization at the ends of the one-dimensional wire with strong Rashba spin-orbit coupling deposited on an s-wave superconductor. It was shown that in the topologically nontrivial phase the polarization as well as the energy of the Majorana bound state oscillate as a function of the magnetic field. Despite being substantially nonzero in the low transversal and longitudinal fields the polarization at one of the wire's ends is significantly suppressed at a certain range of the magnitudes and angles of the canted magnetic field. Thus, in this case the polarization cannot be regarded as a local order parameter. However, the sum of the absolute values of the polarization at both ends remains significantly nonzero. It was demonstrated that Anderson disorder does not seriously affect observed properties but leads to the appearance of the additional areas with weak spin polarization at the high magnetic fields.

  11. Coulomb bound states of strongly interacting photons

    DOE PAGES

    Maghrebi, M. F.; Gullans, Michael J.; Bienias, P.; ...

    2015-09-16

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency (EIT) can interact via an effective Coulomb potential. The interaction then gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb problem, thus obtaining a photonic analogue of the hydrogen atom. These states propagate with a negative group velocity in the medium, which allows for a simple preparation and detection scheme, before they slowlymore » decay to pairs of bound Rydberg atoms. As a result, we verify the metastability and backward propagation of these Coulomb bound states with exact numerical simulations.« less

  12. Magnitude error bounds for sampled-data frequency response obtained from the truncation of an infinite series, and compensator improvement program

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.

    1972-01-01

    The frequency response method of analyzing control system performance is discussed, and the difficulty of obtaining the sampled frequency response of the continuous system is considered. An upper bound magnitude error equation is obtained which yields reasonable estimates of the actual error. Finalization of the compensator improvement program is also reported, and the program was used to design compensators for Saturn 5/S1-C dry workshop and Saturn 5/S1-C Skylab.

  13. Relationship between the upper mantle high velocity seismic lid and the continental lithosphere

    NASA Astrophysics Data System (ADS)

    Priestley, Keith; Tilmann, Frederik

    2009-04-01

    useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~ 200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~ 300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285-301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surface-wave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an

  14. Estimating the physicochemical properties of polyhalogenated aromatic and aliphatic compounds using UPPER: part 1. Boiling point and melting point.

    PubMed

    Admire, Brittany; Lian, Bo; Yalkowsky, Samuel H

    2015-01-01

    The UPPER (Unified Physicochemical Property Estimation Relationships) model uses enthalpic and entropic parameters to estimate 20 biologically relevant properties of organic compounds. The model has been validated by Lian and Yalkowsky on a data set of 700 hydrocarbons. The aim of this work is to expand the UPPER model to estimate the boiling and melting points of polyhalogenated compounds. In this work, 19 new group descriptors are defined and used to predict the transition temperatures of an additional 1288 compounds. The boiling points of 808 and the melting points of 742 polyhalogenated compounds are predicted with average absolute errors of 13.56 K and 25.85 K, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Probative value of absolute and relative judgments in eyewitness identification.

    PubMed

    Clark, Steven E; Erickson, Michael A; Breneman, Jesse

    2011-10-01

    It is well-accepted that eyewitness identification decisions based on relative judgments are less accurate than identification decisions based on absolute judgments. However, the theoretical foundation for this view has not been established. In this study relative and absolute judgments were compared through simulations of the WITNESS model (Clark, Appl Cogn Psychol 17:629-654, 2003) to address the question: Do suspect identifications based on absolute judgments have higher probative value than suspect identifications based on relative judgments? Simulations of the WITNESS model showed a consistent advantage for absolute judgments over relative judgments for suspect-matched lineups. However, simulations of same-foils lineups showed a complex interaction based on the accuracy of memory and the similarity relationships among lineup members.

  16. Northwest Outward Bound Instructor's Manual.

    ERIC Educational Resources Information Center

    Northwest Outward Bound School, Portland, OR.

    Instructor responsibilities, procedures for completing activities safely, and instructional methods and techniques are outlined to assist instructors in the Northwest Outward Bound School (Portland, Oregon) as they strive for teaching excellence. Information is organized into six chapters addressing: history and philosophy of Outward Bound; course…

  17. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  18. Computationally Aided Absolute Stereochemical Determination of Enantioenriched Amines.

    PubMed

    Zhang, Jun; Gholami, Hadi; Ding, Xinliang; Chun, Minji; Vasileiou, Chrysoula; Nehira, Tatsuo; Borhan, Babak

    2017-03-17

    A simple and efficient protocol for sensing the absolute stereochemistry and enantiomeric excess of chiral monoamines is reported. Preparation of the sample requires a single-step reaction of the 1,1'-(bromomethylene)dinaphthalene (BDN) with the chiral amine. Analysis of the exciton coupled circular dichroism generated from the BDN-derivatized chiral amine sample, along with comparison to conformational analysis performed computationally, yields the absolute stereochemistry of the parent chiral monoamine.

  19. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  20. Do Reuss and Voigt Bounds Really Bound in High-Pressure Rheology Experiments?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,J.; Li, L.; Yu, T.

    2006-01-01

    Energy dispersive synchrotron x-ray diffraction is carried out to measure differential lattice strains in polycrystalline Fe{sub 2}SiO{sub 4} (fayalite) and MgO samples using a multi-element solid state detector during high-pressure deformation. The theory of elastic modeling with Reuss (iso-stress) and Voigt (iso-strain) bounds is used to evaluate the aggregate stress and weight parameter, {alpha} (0{le}{alpha}{le}1), of the two bounds. Results under the elastic assumption quantitatively demonstrate that a highly stressed sample in high-pressure experiments reasonably approximates to an iso-stress state. However, when the sample is plastically deformed, the Reuss and Voigt bounds are no longer valid ({alpha} becomes beyond 1).more » Instead, if plastic slip systems of the sample are known (e.g. in the case of MgO), the aggregate property can be modeled using a visco-plastic self-consistent theory.« less

  1. A Special Application of Absolute Value Techniques in Authentic Problem Solving

    ERIC Educational Resources Information Center

    Stupel, Moshe

    2013-01-01

    There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value…

  2. Structure elucidation and absolute stereochemistry of isomeric monoterpene chromane esters.

    PubMed

    Batista, João M; Batista, Andrea N L; Mota, Jonas S; Cass, Quezia B; Kato, Massuo J; Bolzani, Vanderlan S; Freedman, Teresa B; López, Silvia N; Furlan, Maysa; Nafie, Laurence A

    2011-04-15

    Six novel monoterpene chromane esters were isolated from the aerial parts of Peperomia obtusifolia (Piperaceae) using chiral chromatography. This is the first time that chiral chromane esters of this kind, ones with a tethered chiral terpene, have been isolated in nature. Due to their structural features, it is not currently possible to assess directly their absolute stereochemistry using any of the standard classical approaches, such as X-ray crystallography, NMR, optical rotation, or electronic circular dichroism (ECD). Herein we report the absolute configuration of these molecules, involving four chiral centers, using vibrational circular dichroism (VCD) and density functional theory (DFT) (B3LYP/6-31G*) calculations. This work further reinforces the capability of VCD to determine unambiguously the absolute configuration of structurally complex molecules in solution, without crystallization or derivatization, and demonstrates the sensitivity of VCD to specify the absolute configuration for just one among a number of chiral centers. We also demonstrate the sufficiency of using the so-called inexpensive basis set 6-31G* compared to the triple-ζ basis set TZVP for absolute configuration analysis of larger molecules using VCD. Overall, this work extends our knowledge of secondary metabolites in plants and provides a straightforward way to determine the absolute configuration of complex natural products involving a chiral parent moiety combined with a chiral terpene adduct.

  3. Fractional diffusion on bounded domains

    DOE PAGES

    Defterli, Ozlem; D'Elia, Marta; Du, Qiang; ...

    2015-03-13

    We found that the mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. In this paper we discuss the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.

  4. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  5. On the Perceptual Subprocess of Absolute Pitch.

    PubMed

    Kim, Seung-Goo; Knösche, Thomas R

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them.

  6. On the Perceptual Subprocess of Absolute Pitch

    PubMed Central

    Kim, Seung-Goo; Knösche, Thomas R.

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them. PMID:29085275

  7. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  8. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  9. High-resolution absolute position detection using a multiple grating

    NASA Astrophysics Data System (ADS)

    Schilling, Ulrich; Drabarek, Pawel; Kuehnle, Goetz; Tiziani, Hans J.

    1996-08-01

    To control electro-mechanical engines, high-resolution linear and rotary encoders are needed. Interferometric methods (grating interferometers) promise a resolution of a few nanometers, but have an ambiguity range of some microns. Incremental encoders increase the absolute measurement range by counting the signal periods starting from a defined initial point. In many applications, however, it is not possible to move to this initial point, so that absolute encoders have to be used. Absolute encoders generally have a scale with two or more tracks placed next to each other. Therefore, they use a two-dimensional grating structure to measure a one-dimensional position. We present a new method, which uses a one-dimensional structure to determine the position in one dimension. It is based on a grating with a large grating period up to some millimeters, having the same diffraction efficiency in several predefined diffraction orders (multiple grating). By combining the phase signals of the different diffraction orders, it is possible to establish the position in an absolute range of the grating period with a resolution like incremental grating interferometers. The principal functionality was demonstrated by applying the multiple grating in a heterodyne grating interferometer. The heterodyne frequency was generated by a frequency modulated laser in an unbalanced interferometer. In experimental measurements an absolute range of 8 mm was obtained while achieving a resolution of 10 nm.

  10. Locating Bound Structures in the Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Pearson, David; Batuski, D. J.

    2013-01-01

    Given the overwhelming evidence of the universe’s accelerating expansion, the question of what structures are gravitationally bound becomes one of utmost interest. Dunner et al. 2006 (D06) and Busha et al. 2003 (B03) set out to answer this question analytically, and they arrived at fairly different answers owing to the differences in their assumptions of velocities at the present epoch. Applying their criteria to different superclusters, it’s possible to make predictions about what structures may be bound. We apply the criteria of D06 and B03 to the Aquarius, Microscopium, Corona Borealis, and Shapley superclusters to make predictions about what structures might be bound and compare with the results of simple N-body simulations to determine which method is a better predictor and to determine the likelihood that parts or all of the superclusters listed above are bound. We find that D06 tend to predict more structure to be bound than B03, and the results of the N-body simulations usually lie somewhere in between the two sets of predictions. Observational evidence, and simulation data suggests that pairs of clusters in Aquarius and Microscopium are gravitationally bound, and that Shapley contains a large complex of clusters that are bound, along with some additional bound pairs. The likelihood that any of the clusters in Corona Borealis are bound to one another is very small, contrary to the claims of Small et al. 1998, who claimed that the entire supercluster is likely gravitationally bound. Busha M. T., Adams F. C., Wechsler R. H., Evrard A. E., 2003, ApJ, 596, 713 Dunner R., Araya P. A., Meza A., Reisenegger A., 2006, MNRAS, 306, 803 Small T. A., Ma C., Sargent W. L. W., Hamilton D., 1998, ApJ, 492, 45

  11. Relative arrival-time upper-mantle tomography and the elusive background mean

    NASA Astrophysics Data System (ADS)

    Bastow, Ian D.

    2012-08-01

    The interpretation of seismic tomographic images of upper-mantle seismic wave speed structure is often a matter of considerable debate because the observations can usually be explained by a range of hypotheses, including variable temperature, composition, anisotropy, and the presence of partial melt. An additional problem, often overlooked in tomographic studies using relative as opposed to absolute arrival-times, is the issue of the resulting velocity model's zero mean. In shield areas, for example, relative arrival-time analysis strips off a background mean velocity structure that is markedly fast compared to the global average. Conversely, in active areas, the background mean is often markedly slow compared to the global average. Appreciation of this issue is vital when interpreting seismic tomographic images: 'high' and 'low' velocity anomalies should not necessarily be interpreted, respectively, as 'fast' and 'slow' compared to 'normal mantle'. This issue has been discussed in the seismological literature in detail over the years, yet subsequent tomography studies have still fallen into the trap of mis-interpreting their velocity models. I highlight here some recent examples of this and provide a simple strategy to address the problem using constraints from a recent global tomographic model, and insights from catalogues of absolute traveltime anomalies. Consultation of such absolute measures of seismic wave speed should be routine during regional tomographic studies, if only for the benefit of the broader Earth Science community, who readily follow the red = hot and slow, blue = cold and fast rule of thumb when interpreting the images for themselves.

  12. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  13. Full-potential multiple scattering theory with space-filling cells for bound and continuum states.

    PubMed

    Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R

    2010-05-12

    We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.

  14. Absolute and Relative Socioeconomic Health Inequalities across Age Groups

    PubMed Central

    van Zon, Sander K. R.; Bültmann, Ute; Mendes de Leon, Carlos F.; Reijneveld, Sijmen A.

    2015-01-01

    Background The magnitude of socioeconomic health inequalities differs across age groups. It is less clear whether socioeconomic health inequalities differ across age groups by other factors that are known to affect the relation between socioeconomic position and health, like the indicator of socioeconomic position, the health outcome, gender, and as to whether socioeconomic health inequalities are measured in absolute or in relative terms. The aim is to investigate whether absolute and relative socioeconomic health inequalities differ across age groups by indicator of socioeconomic position, health outcome and gender. Methods The study sample was derived from the baseline measurement of the LifeLines Cohort Study and consisted of 95,432 participants. Socioeconomic position was measured as educational level and household income. Physical and mental health were measured with the RAND-36. Age concerned eleven 5-years age groups. Absolute inequalities were examined by comparing means. Relative inequalities were examined by comparing Gini-coefficients. Analyses were performed for both health outcomes by both educational level and household income. Analyses were performed for all age groups, and stratified by gender. Results Absolute and relative socioeconomic health inequalities differed across age groups by indicator of socioeconomic position, health outcome, and gender. Absolute inequalities were most pronounced for mental health by household income. They were larger in younger than older age groups. Relative inequalities were most pronounced for physical health by educational level. Gini-coefficients were largest in young age groups and smallest in older age groups. Conclusions Absolute and relative socioeconomic health inequalities differed cross-sectionally across age groups by indicator of socioeconomic position, health outcome and gender. Researchers should critically consider the implications of choosing a specific age group, in addition to the indicator of

  15. Upper Lower Cambrian depositional sequence in Avalonian New Brunswick

    USGS Publications Warehouse

    Landing, E.; Westrop, S.R.

    1996-01-01

    The Hanford Brook Formation (emended) is a thin (up to 42+ m), upper Lower Cambrian depositional sequence that is unconformably bounded by the lower Lower Cambrian (Random Formation) and the middle Middle Cambrian (Fossil Brook Member of the Chamberlain's Brook Formation). These stratigraphic relationships of the trilobite-bearing Hanford Brook Formation indicate deposition on the Avalonian marginal platform in the Saint John, New Brunswick, region and provide more evidence for a uniform, latest Precambrian-Cambrian epeirogenic history and cover sequence in Avalon. The Hanford Brook Formation is a deepening - shoaling sequence with (i) lower, transgressive sandstone deposited in episodically high-energy environments (St. Martins Member, new); (ii) highstand-regressive, dysaerobic mudstone - fine-grained sandstone with volcanic ashes (Somerset Street Member, new); and (iii) upper, regressive, planar and hummocky cross-stratified sandstone (Long Island Member, new). Trilobites are common in the distal Somerset Street Member, and ostracodes and brachiopods dominate the St. Martins and Long Island members. Condensation of the St. Martins Member and absence of the Long Island Member where the Random Formation and Fossil Brook Member are thinnest suggest onlap of the Hanford Brook and pronounced, sub-Middle Cambrian erosion across epeirogenically active blocks in southern New Brunswick.

  16. Some things ought never be done: moral absolutes in clinical ethics.

    PubMed

    Pellegrino, Edmund D

    2005-01-01

    Moral absolutes have little or no moral standing in our morally diverse modern society. Moral relativism is far more palatable for most ethicists and to the public at large. Yet, when pressed, every moral relativist will finally admit that there are some things which ought never be done. It is the rarest of moral relativists that will take rape, murder, theft, child sacrifice as morally neutral choices. In general ethics, the list of those things that must never be done will vary from person to person. In clinical ethics, however, the nature of the physician-patient relationship is such that certain moral absolutes are essential to the attainment of the good of the patient - the end of the relationship itself. These are all derivatives of the first moral absolute of all morality: Do good and avoid evil. In the clinical encounter, this absolute entails several subsidiary absolutes - act for the good of the patient, do not kill, keep promises, protect the dignity of the patient, do not lie, avoid complicity with evil. Each absolute is intrinsic to the healing and helping ends of the clinical encounter.

  17. Absolute and relative educational inequalities in depression in Europe.

    PubMed

    Dudal, Pieter; Bracke, Piet

    2016-09-01

    To investigate (1) the size of absolute and relative educational inequalities in depression, (2) their variation between European countries, and (3) their relationship with underlying prevalence rates. Analyses are based on the European Social Survey, rounds three and six (N = 57,419). Depression is measured using the shortened Centre of Epidemiologic Studies Depression Scale. Education is coded by use of the International Standard Classification of Education. Country-specific logistic regressions are applied. Results point to an elevated risk of depressive symptoms among the lower educated. The cross-national patterns differ between absolute and relative measurements. For men, large relative inequalities are found for countries including Denmark and Sweden, but are accompanied by small absolute inequalities. For women, large relative and absolute inequalities are found in Belgium, Bulgaria, and Hungary. Results point to an empirical association between inequalities and the underlying prevalence rates. However, the strength of the association is only moderate. This research stresses the importance of including both measurements for comparative research and suggests the inclusion of the level of population health in research into inequalities in health.

  18. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  19. Family of nonlocal bound entangled states

    NASA Astrophysics Data System (ADS)

    Yu, Sixia; Oh, C. H.

    2017-03-01

    Bound entanglement, being entangled yet not distillable, is essential to our understanding of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that violate a Bell inequality have been constructed for a two-qutrit system, disproving a conjecture by Peres that bound entanglement is local. Here we construct this kind of nonlocal bound entangled state for all finite dimensions larger than two, making possible their experimental demonstration in most general systems. We propose a Bell inequality, based on a Hardy-type argument for nonlocality, and a steering inequality to identify their nonlocality. We also provide a family of entanglement witnesses to detect their entanglement beyond the Bell inequality and the steering inequality.

  20. Bounds on the attractor dimension for magnetohydrodynamic channel flow with parallel magnetic field at low magnetic Reynolds number.

    PubMed

    Low, R; Pothérat, A

    2015-05-01

    We investigate aspects of low-magnetic-Reynolds-number flow between two parallel, perfectly insulating walls in the presence of an imposed magnetic field parallel to the bounding walls. We find a functional basis to describe the flow, well adapted to the problem of finding the attractor dimension and which is also used in subsequent direct numerical simulation of these flows. For given Reynolds and Hartmann numbers, we obtain an upper bound for the dimension of the attractor by means of known bounds on the nonlinear inertial term and this functional basis for the flow. Three distinct flow regimes emerge: a quasi-isotropic three-dimensional (3D) flow, a nonisotropic 3D flow, and a 2D flow. We find the transition curves between these regimes in the space parametrized by Hartmann number Ha and attractor dimension d(att). We find how the attractor dimension scales as a function of Reynolds and Hartmann numbers (Re and Ha) in each regime. We also investigate the thickness of the boundary layer along the bounding wall and find that in all regimes this scales as 1/Re, independently of the value of Ha, unlike Hartmann boundary layers found when the field is normal to the channel. The structure of the set of least dissipative modes is indeed quite different between these two cases but the properties of turbulence far from the walls (smallest scales and number of degrees of freedom) are found to be very similar.

  1. Determining absolute protein numbers by quantitative fluorescence microscopy.

    PubMed

    Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry

    2014-01-01

    Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers--fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. © 2014 Elsevier Inc. All rights reserved.

  2. Upper Bounds on r-Mode Amplitudes from Observations of Low-Mass X-Ray Binary Neutron Stars

    NASA Technical Reports Server (NTRS)

    Mahmoodifar, Simin; Strohmayer, Tod

    2013-01-01

    We present upper limits on the amplitude of r-mode oscillations and gravitational-radiation-induced spin-down rates in low-mass X-ray binary neutron stars, under the assumption that the quiescent neutron star luminosity is powered by dissipation from a steady-state r-mode. For masses <2M solar mass we find dimensionless r-mode amplitudes in the range from about 1×10(exp-8) to 1.5×10(exp-6). For the accreting millisecond X-ray pulsar sources with known quiescent spin-down rates, these limits suggest that approx. less than 1% of the observed rate can be due to an unstable r-mode. Interestingly, the source with the highest amplitude limit, NGC 6440, could have an r-mode spin-down rate comparable to the observed, quiescent rate for SAX J1808-3658. Thus, quiescent spin-down measurements for this source would be particularly interesting. For all sources considered here, our amplitude limits suggest that gravitational wave signals are likely too weak for detection with Advanced LIGO. Our highest mass model (2.21M solar mass) can support enhanced, direct Urca neutrino emission in the core and thus can have higher r-mode amplitudes. Indeed, the inferred r-mode spin-down rates at these higher amplitudes are inconsistent with the observed spin-down rates for some of the sources, such as IGR J00291+5934 and XTE J1751-305. In the absence of other significant sources of internal heat, these results could be used to place an upper limit on the masses of these sources if they were made of hadronic matter, or alternatively it could be used to probe the existence of exotic matter in them if their masses were known.

  3. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA.

    PubMed Central

    Khanna, M; Stotzky, G

    1992-01-01

    The equilibrium adsorption and binding of DNA from Bacillus subtilis on the clay mineral montmorillonite, the ability of bound DNA to transform competent cells, and the resistance of bound DNA to degradation by DNase I are reported. Maximum adsorption of DNA on the clay occurred after 90 min of contact and was followed by a plateau. Adsorption was pH dependent and was greatest at pH 1.0 (19.9 micrograms of DNA mg of clay-1) and least at pH 9.0 (10.7 micrograms of DNA mg of clay-1). The transformation frequency increased as the pH at which the clay-DNA complexes were prepared increased, and there was no transformation by clay-DNA complexes prepared at pH 1. After extensive washing with deionized distilled water (pH 5.5) or DNA buffer (pH 7.5), 21 and 28%, respectively, of the DNA remained bound. Bound DNA was capable of transforming competent cells (as was the desorbed DNA), indicating that adsorption, desorption, and binding did not alter the transforming ability of the DNA. Maximum transformation by bound DNA occurred at 37 degrees C (the other temperatures evaluated were 0, 25, and 45 degrees C). DNA bound on montmorillonite was protected against degradation by DNase, supporting the concept that "cryptic genes" may persist in the environment when bound on particulates. The concentration of DNase required to inhibit transformation by bound DNA was higher than that required to inhibit transformation by comparable amounts of free DNA, and considerably more bound than free DNase was required to inhibit transformation by the same amount of free DNA. Similarly, when DNA and DNase were bound on the same or separate samples of montmorillonite, the bound DNA was protected from the activity of DNase. PMID:1622268

  4. Establishing Ion Ratio Thresholds Based on Absolute Peak Area for Absolute Protein Quantification using Protein Cleavage Isotope Dilution Mass Spectrometry

    PubMed Central

    Loziuk, Philip L.; Sederoff, Ronald R.; Chiang, Vincent L.; Muddiman, David C.

    2014-01-01

    Quantitative mass spectrometry has become central to the field of proteomics and metabolomics. Selected reaction monitoring is a widely used method for the absolute quantification of proteins and metabolites. This method renders high specificity using several product ions measured simultaneously. With growing interest in quantification of molecular species in complex biological samples, confident identification and quantitation has been of particular concern. A method to confirm purity or contamination of product ion spectra has become necessary for achieving accurate and precise quantification. Ion abundance ratio assessments were introduced to alleviate some of these issues. Ion abundance ratios are based on the consistent relative abundance (RA) of specific product ions with respect to the total abundance of all product ions. To date, no standardized method of implementing ion abundance ratios has been established. Thresholds by which product ion contamination is confirmed vary widely and are often arbitrary. This study sought to establish criteria by which the relative abundance of product ions can be evaluated in an absolute quantification experiment. These findings suggest that evaluation of the absolute ion abundance for any given transition is necessary in order to effectively implement RA thresholds. Overall, the variation of the RA value was observed to be relatively constant beyond an absolute threshold ion abundance. Finally, these RA values were observed to fluctuate significantly over a 3 year period, suggesting that these values should be assessed as close as possible to the time at which data is collected for quantification. PMID:25154770

  5. Interpretation of the Arcade 2 Absolute Sky Brightness Measurement

    NASA Technical Reports Server (NTRS)

    Seiffert, M.; Fixsen, D. J.; Kogut, A.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Singal, J.; Villela, T.; Wollack, E.; hide

    2011-01-01

    We use absolutely calibrated data between 3 and 90 GHz from the 2006 balloon flight of the ARCADE 2 instrument, along with previous measurements at other frequencies to constrain models of extragalactic emission. Such emission is a combination of the cosmic microwave background (CMB) monopole, Galactic foreground emission, the integrated contribution of radio emission from external galaxies, any spectral distortions present in the CMB, and any other extragalactic source. After removal of estimates of foreground emission from our own Galaxy, and an estimated contribution of external galaxies, we present fits to a combination of the flat-spectrum CMB and potential spectral distortions in the CMB. We find 217 upper limits to CMB spectral distortions of u < 6x10(exp -4) and [Y(sub ff)] < 1x10(exp -4). We also find a significant detection of a residual signal beyond that, which can be explained by the CMB plus the integrated radio emission from galaxies estimated from existing surveys. This residual signal may be due to an underestimated galactic foreground contribution, an unaccounted for contribution of a background of radio sources, or some combination of both. The residual signal is consistent with emission in the form of a power law with amplitUde 18.4 +/- 2.1 K at 0.31 GHz and a spectral index of -2.57 +/- 0.05.

  6. Isometric Arm Strength and Subjective Rating of Upper Limb Fatigue in Two-Handed Carrying Tasks

    PubMed Central

    Li, Kai Way; Chiu, Wen-Sheng

    2015-01-01

    Sustained carrying could result in muscular fatigue of the upper limb. Ten male and ten female subjects were recruited for measurements of isometric arm strength before and during carrying a load for a period of 4 minutes. Two levels of load of carrying were tested for each of the male and female subjects. Exponential function based predictive equations for the isometric arm strength were established. The mean absolute deviations of these models in predicting the isometric arm strength were in the range of 3.24 to 17.34 N. Regression analyses between the subjective ratings of upper limb fatigue and force change index (FCI) for the carrying were also performed. The results indicated that the subjective rating of muscular fatigue may be estimated by multiplying the FCI with a constant. The FCI may, therefore, be adopted as an index to assess muscular fatigue for two-handed carrying tasks. PMID:25794159

  7. Isometric arm strength and subjective rating of upper limb fatigue in two-handed carrying tasks.

    PubMed

    Li, Kai Way; Chiu, Wen-Sheng

    2015-01-01

    Sustained carrying could result in muscular fatigue of the upper limb. Ten male and ten female subjects were recruited for measurements of isometric arm strength before and during carrying a load for a period of 4 minutes. Two levels of load of carrying were tested for each of the male and female subjects. Exponential function based predictive equations for the isometric arm strength were established. The mean absolute deviations of these models in predicting the isometric arm strength were in the range of 3.24 to 17.34 N. Regression analyses between the subjective ratings of upper limb fatigue and force change index (FCI) for the carrying were also performed. The results indicated that the subjective rating of muscular fatigue may be estimated by multiplying the FCI with a constant. The FCI may, therefore, be adopted as an index to assess muscular fatigue for two-handed carrying tasks.

  8. Degenerate quantum codes and the quantum Hamming bound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarvepalli, Pradeep; Klappenecker, Andreas

    2010-03-15

    The parameters of a nondegenerate quantum code must obey the Hamming bound. An important open problem in quantum coding theory is whether the parameters of a degenerate quantum code can violate this bound for nondegenerate quantum codes. In this article we show that Calderbank-Shor-Steane (CSS) codes, over a prime power alphabet q{>=}5, cannot beat the quantum Hamming bound. We prove a quantum version of the Griesmer bound for the CSS codes, which allows us to strengthen the Rains' bound that an [[n,k,d

  9. Essential Oils, Part VI: Sandalwood Oil, Ylang-Ylang Oil, and Jasmine Absolute.

    PubMed

    de Groot, Anton C; Schmidt, Erich

    In this article, some aspects of sandalwood oil, ylang-ylang oil, and jasmine absolute are discussed including their botanical origin, uses of the plants and the oils and absolute, chemical composition, contact allergy to and allergic contact dermatitis from these essential oils and absolute, and their causative allergenic ingredients.

  10. Gravity change from 2014 to 2015, Sierra Vista Subwatershed, Upper San Pedro Basin, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.

    2016-09-13

    Relative-gravity data and absolute-gravity data were collected at 68 stations in the Sierra Vista Subwatershed, Upper San Pedro Basin, Arizona, in May–June 2015 for the purpose of estimating aquifer-storage change. Similar data from 2014 and a description of the survey network were published in U.S. Geological Survey Open-File Report 2015–1086. Data collection and network adjustment results are presented in this report, which is accompanied by a supporting Web Data Release (http://dx.doi.org/10.5066/F7SQ8XHX). Station positions are presented from a Global Positioning System campaign to determine station elevation.

  11. Sign rank versus Vapnik-Chervonenkis dimension

    NASA Astrophysics Data System (ADS)

    Alon, N.; Moran, Sh; Yehudayoff, A.

    2017-12-01

    This work studies the maximum possible sign rank of sign (N × N)-matrices with a given Vapnik-Chervonenkis dimension d. For d=1, this maximum is three. For d=2, this maximum is \\widetilde{\\Theta}(N1/2). For d >2, similar but slightly less accurate statements hold. The lower bounds improve on previous ones by Ben-David et al., and the upper bounds are novel. The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given Vapnik-Chervonenkis dimension, and the number of maximum classes of a given Vapnik-Chervonenkis dimension--answering a question of Frankl from 1989, and (ii) design an efficient algorithm that provides an O(N/log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the adjacency (N × N)-matrix of a Δ-regular graph with a second eigenvalue of absolute value λ and Δ ≤ N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ. We use this connection to prove the existence of a maximum class C\\subseteq\\{+/- 1\\}^N with Vapnik-Chervonenkis dimension 2 and sign rank \\widetilde{\\Theta}(N1/2). This answers a question of Ben-David et al. regarding the sign rank of large Vapnik-Chervonenkis classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics. Bibliography: 69 titles.

  12. Distinguishing topological Majorana bound states from trivial Andreev bound states: Proposed tests through differential tunneling conductance spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Sau, Jay D.; Das Sarma, S.

    2018-06-01

    Trivial Andreev bound states arising from chemical-potential variations could lead to zero-bias tunneling conductance peaks at finite magnetic field in class-D nanowires, precisely mimicking the predicted zero-bias conductance peaks arising from the topological Majorana bound states. This finding raises a serious question on the efficacy of using zero-bias tunneling conductance peaks, by themselves, as evidence supporting the existence of topological Majorana bound states in nanowires. In the current work, we provide specific experimental protocols for tunneling spectroscopy measurements to distinguish between Andreev and Majorana bound states without invoking more demanding nonlocal measurements which have not yet been successfully performed in nanowire systems. In particular, we discuss three distinct experimental schemes involving the response of the zero-bias peak to local perturbations of the tunnel barrier, the overlap of bound states from the wire ends, and, most compellingly, introducing a sharp localized potential in the wire itself to perturb the zero-bias tunneling peaks. We provide extensive numerical simulations clarifying and supporting our theoretical predictions.

  13. SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS.

    PubMed

    Thiede, Erik; VAN Koten, Brian; Weare, Jonathan

    For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations.

  14. Temporal Dynamics of Microbial Rhodopsin Fluorescence Reports Absolute Membrane Voltage

    PubMed Central

    Hou, Jennifer H.; Venkatachalam, Veena; Cohen, Adam E.

    2014-01-01

    Plasma membrane voltage is a fundamentally important property of a living cell; its value is tightly coupled to membrane transport, the dynamics of transmembrane proteins, and to intercellular communication. Accurate measurement of the membrane voltage could elucidate subtle changes in cellular physiology, but existing genetically encoded fluorescent voltage reporters are better at reporting relative changes than absolute numbers. We developed an Archaerhodopsin-based fluorescent voltage sensor whose time-domain response to a stepwise change in illumination encodes the absolute membrane voltage. We validated this sensor in human embryonic kidney cells. Measurements were robust to variation in imaging parameters and in gene expression levels, and reported voltage with an absolute accuracy of 10 mV. With further improvements in membrane trafficking and signal amplitude, time-domain encoding of absolute voltage could be applied to investigate many important and previously intractable bioelectric phenomena. PMID:24507604

  15. Central-to-axial chirality transfer revealed by liquid crystals: a combined experimental and computational approach for the determination of absolute configuration of carboxylic acids with an α chirality centre.

    PubMed

    Ferrarini, Alberta; Ferroni, Fiammetta; Pieraccini, Silvia; Rosini, Carlo; Superchi, Stefano; Spada, Gian Piero

    2011-10-01

    The conversion into 6,7-dihydro-5H-dibenz[c,e]azepine (DAZ) N-protected amides is a viable route for the determination of the absolute configuration of chiral 2-substituted carboxylic acids. The biphenyl moiety of DAZ, besides being a probe of chirality for the electronic circular dichroism (ECD) spectroscopy, makes these systems suitable for configuration assignment by exploiting the chirality amplification which occurs in nematic liquid crystals. To assess the reliability of the liquid crystal method in detecting the absolute stereochemistry of chiral amides bound to a biphenyl group, we measured the helical twisting power of a series of DAZ-N-protected amides and compared these data with the results obtained from ECD measurements. We will show that the liquid crystal method, corroborated by HTP predictions, is trustworthy with our biphenyl derivatives, even when ECD spectra are ambiguous for the presence of aryl moieties displaying strong UV absorptions in the same range of the biphenyl chromophore. © 2011 Wiley-Liss, Inc.

  16. 21 CFR 862.1640 - Protein-bound iodine test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Protein-bound iodine test system. 862.1640 Section... Systems § 862.1640 Protein-bound iodine test system. (a) Identification. A protein-bound iodine test system is a device intended to measure protein-bound iodine in serum. Measurements of protein-bound...

  17. 21 CFR 862.1640 - Protein-bound iodine test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Protein-bound iodine test system. 862.1640 Section... Systems § 862.1640 Protein-bound iodine test system. (a) Identification. A protein-bound iodine test system is a device intended to measure protein-bound iodine in serum. Measurements of protein-bound...

  18. 21 CFR 862.1640 - Protein-bound iodine test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Protein-bound iodine test system. 862.1640 Section... Systems § 862.1640 Protein-bound iodine test system. (a) Identification. A protein-bound iodine test system is a device intended to measure protein-bound iodine in serum. Measurements of protein-bound...

  19. 21 CFR 862.1640 - Protein-bound iodine test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Protein-bound iodine test system. 862.1640 Section... Systems § 862.1640 Protein-bound iodine test system. (a) Identification. A protein-bound iodine test system is a device intended to measure protein-bound iodine in serum. Measurements of protein-bound...

  20. 242Pu absolute neutron-capture cross section measurement

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.

    2017-09-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ) cross section could be set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ) cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ) En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ) cross section.

  1. Shannon entropic temperature and its lower and upper bounds for non-Markovian stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Ray, Somrita; Bag, Bidhan Chandra

    2014-09-01

    In this article we have studied Shannon entropic nonequilibrium temperature (NET) extensively for a system which is coupled to a thermal bath that may be Markovian or non-Markovian in nature. Using the phase-space distribution function, i.e., the solution of the generalized Fokker Planck equation, we have calculated the entropy production, NET, and their bounds. Other thermodynamic properties like internal energy of the system, heat, and work, etc. are also measured to study their relations with NET. The present study reveals that the heat flux is proportional to the difference between the temperature of the thermal bath and the nonequilibrium temperature of the system. It also reveals that heat capacity at nonequilibrium state is independent of both NET and time. Furthermore, we have demonstrated the time variations of the above-mentioned and related quantities to differentiate between the equilibration processes for the coupling of the system with the Markovian and the non-Markovian thermal baths, respectively. It implies that in contrast to the Markovian case, a certain time is required to develop maximum interaction between the system and the non-Markovian thermal bath (NMTB). It also implies that longer relaxation time is needed for a NMTB compared to a Markovian one. Quasidynamical behavior of the NMTB introduces an oscillation in the variation of properties with time. Finally, we have demonstrated how the nonequilibrium state is affected by the memory time of the thermal bath.

  2. [Prognostic value of absolute monocyte count in chronic lymphocytic leukaemia].

    PubMed

    Szerafin, László; Jakó, János; Riskó, Ferenc

    2015-04-01

    The low peripheral absolute lymphocyte and high monocyte count have been reported to correlate with poor clinical outcome in various lymphomas and other cancers. However, a few data known about the prognostic value of absolute monocyte count in chronic lymphocytic leukaemia. The aim of the authors was to investigate the impact of absolute monocyte count measured at the time of diagnosis in patients with chronic lymphocytic leukaemia on the time to treatment and overal survival. Between January 1, 2005 and December 31, 2012, 223 patients with newly-diagnosed chronic lymphocytic leukaemia were included. The rate of patients needing treatment, time to treatment, overal survival and causes of mortality based on Rai stages, CD38, ZAP-70 positivity and absolute monocyte count were analyzed. Therapy was necessary in 21.1%, 57.4%, 88.9%, 88.9% and 100% of patients in Rai stage 0, I, II, III an IV, respectively; in 61.9% and 60.8% of patients exhibiting CD38 and ZAP-70 positivity, respectively; and in 76.9%, 21.2% and 66.2% of patients if the absolute monocyte count was <0.25 G/l, between 0.25-0.75 G/l and >0.75 G/l, respectively. The median time to treatment and the median overal survival were 19.5, 65, and 35.5 months; and 41.5, 65, and 49.5 months according to the three groups of monocyte counts. The relative risk of beginning the therapy was 1.62 (p<0.01) in patients with absolute monocyte count <0.25 G/l or >0.75 G/l, as compared to those with 0.25-0.75 G/l, and the risk of overal survival was 2.41 (p<0.01) in patients with absolute monocyte count lower than 0.25 G/l as compared to those with higher than 0.25 G/l. The relative risks remained significant in Rai 0 patients, too. The leading causes of mortality were infections (41.7%) and the chronic lymphocytic leukaemia (58.3%) in patients with low monocyte count, while tumours (25.9-35.3%) and other events (48.1 and 11.8%) occurred in patients with medium or high monocyte counts. Patients with low and high monocyte

  3. Modification of the activity of cell wall-bound peroxidase by hypergravity in relation to the stimulation of lignin formation in azuki bean epicotyls

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Kazuyuki; Nakano, Saho; Soga, Kouichi; Hoson, Takayuki

    Lignin is a component of cell walls of terrestrial plants, which provides cell walls with the mechanical rigidity. Lignin is a phenolic polymer with high molecular mass and formed by the polymerization of phenolic substances on a cellulosic matrix. The polymerization is catalyzed by cell wall-bound peroxidase, and thus the activity of this enzyme regulates the rate of formation of lignin. In the present study, the changes in the lignin content and the activity of cell wall peroxidase were investigated along epicotyls of azuki bean seedlings grown under hypergravity conditions. The endogenous growth occurred primarily in the upper regions of the epicotyl and no growth was detected in the middle or basal regions. The amounts of acetyl bromide-soluble lignin increased from the upper to the basal regions of epicotyls. The lignin content per unit length in the basal region was three times higher than that in the upper region. Hypergravity treatment at 300 g for 6 h stimulated the increase in the lignin content in all regions of epicotyls, particularly in the basal regions. The peroxidase activity in the protein fraction extracted from the cell wall preparation with a high ionic strength buffer also increased gradually toward the basal region, and hypergravity treatment clearly increased the activity in all regions. There was a close correlation between the lignin content and the enzyme activity. These results suggest that gravity stimuli modulate the activity of cell wall-bound peroxidase, which, in turn, causes the stimulation of the lignin formation in stem organs.

  4. A4 flavour model for Dirac neutrinos: Type I and inverse seesaw

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Karmakar, Biswajit

    2018-05-01

    We propose two different seesaw models namely, type I and inverse seesaw to realise light Dirac neutrinos within the framework of A4 discrete flavour symmetry. The additional fields and their transformations under the flavour symmetries are chosen in such a way that naturally predicts the hierarchies of different elements of the seesaw mass matrices in these two types of seesaw mechanisms. For generic choices of flavon alignments, both the models predict normal hierarchical light neutrino masses with the atmospheric mixing angle in the lower octant. Apart from predicting interesting correlations between different neutrino parameters as well as between neutrino and model parameters, the model also predicts the leptonic Dirac CP phase to lie in a specific range - π / 3 to π / 3. While the type I seesaw model predicts smaller values of absolute neutrino mass, the inverse seesaw predictions for the absolute neutrino masses can saturate the cosmological upper bound on sum of absolute neutrino masses for certain choices of model parameters.

  5. Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments

    ERIC Educational Resources Information Center

    Weber, Nathan; Brewer, Neil

    2004-01-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…

  6. Reliable absolute analog code retrieval approach for 3D measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Chen, Deyun

    2017-11-01

    The wrapped phase of phase-shifting approach can be unwrapped by using Gray code, but both the wrapped phase error and Gray code decoding error can result in period jump error, which will lead to gross measurement error. Therefore, this paper presents a reliable absolute analog code retrieval approach. The combination of unequal-period Gray code and phase shifting patterns at high frequencies are used to obtain high-frequency absolute analog code, and at low frequencies, the same unequal-period combination patterns are used to obtain the low-frequency absolute analog code. Next, the difference between the two absolute analog codes was employed to eliminate period jump errors, and a reliable unwrapped result can be obtained. Error analysis was used to determine the applicable conditions, and this approach was verified through theoretical analysis. The proposed approach was further verified experimentally. Theoretical analysis and experimental results demonstrate that the proposed approach can perform reliable analog code unwrapping.

  7. Auditory working memory predicts individual differences in absolute pitch learning.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  8. Inter-Annotator Agreement and the Upper Limit on Machine Performance: Evidence from Biomedical Natural Language Processing.

    PubMed

    Boguslav, Mayla; Cohen, Kevin Bretonnel

    2017-01-01

    Human-annotated data is a fundamental part of natural language processing system development and evaluation. The quality of that data is typically assessed by calculating the agreement between the annotators. It is widely assumed that this agreement between annotators is the upper limit on system performance in natural language processing: if humans can't agree with each other about the classification more than some percentage of the time, we don't expect a computer to do any better. We trace the logical positivist roots of the motivation for measuring inter-annotator agreement, demonstrate the prevalence of the widely-held assumption about the relationship between inter-annotator agreement and system performance, and present data that suggest that inter-annotator agreement is not, in fact, an upper bound on language processing system performance.

  9. Adaptive and bounded investment returns promote cooperation in spatial public goods games.

    PubMed

    Chen, Xiaojie; Liu, Yongkui; Zhou, Yonghui; Wang, Long; Perc, Matjaž

    2012-01-01

    The public goods game is one of the most famous models for studying the evolution of cooperation in sizable groups. The multiplication factor in this game can characterize the investment return from the public good, which may be variable depending on the interactive environment in realistic situations. Instead of using the same universal value, here we consider that the multiplication factor in each group is updated based on the differences between the local and global interactive environments in the spatial public goods game, but meanwhile limited to within a certain range. We find that the adaptive and bounded investment returns can significantly promote cooperation. In particular, full cooperation can be achieved for high feedback strength when appropriate limitation is set for the investment return. Also, we show that the fraction of cooperators in the whole population can become larger if the lower and upper limits of the multiplication factor are increased. Furthermore, in comparison to the traditionally spatial public goods game where the multiplication factor in each group is identical and fixed, we find that cooperation can be better promoted if the multiplication factor is constrained to adjust between one and the group size in our model. Our results highlight the importance of the locally adaptive and bounded investment returns for the emergence and dominance of cooperative behavior in structured populations.

  10. Adaptive and Bounded Investment Returns Promote Cooperation in Spatial Public Goods Games

    PubMed Central

    Chen, Xiaojie; Liu, Yongkui; Zhou, Yonghui; Wang, Long; Perc, Matjaž

    2012-01-01

    The public goods game is one of the most famous models for studying the evolution of cooperation in sizable groups. The multiplication factor in this game can characterize the investment return from the public good, which may be variable depending on the interactive environment in realistic situations. Instead of using the same universal value, here we consider that the multiplication factor in each group is updated based on the differences between the local and global interactive environments in the spatial public goods game, but meanwhile limited to within a certain range. We find that the adaptive and bounded investment returns can significantly promote cooperation. In particular, full cooperation can be achieved for high feedback strength when appropriate limitation is set for the investment return. Also, we show that the fraction of cooperators in the whole population can become larger if the lower and upper limits of the multiplication factor are increased. Furthermore, in comparison to the traditionally spatial public goods game where the multiplication factor in each group is identical and fixed, we find that cooperation can be better promoted if the multiplication factor is constrained to adjust between one and the group size in our model. Our results highlight the importance of the locally adaptive and bounded investment returns for the emergence and dominance of cooperative behavior in structured populations. PMID:22615836

  11. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  12. New design and facilities for the International Database for Absolute Gravity Measurements (AGrav): A support for the Establishment of a new Global Absolute Gravity Reference System

    NASA Astrophysics Data System (ADS)

    Wziontek, Hartmut; Falk, Reinhard; Bonvalot, Sylvain; Rülke, Axel

    2017-04-01

    After about 10 years of successful joint operation by BGI and BKG, the International Database for Absolute Gravity Measurements "AGrav" (see references hereafter) was under a major revision. The outdated web interface was replaced by a responsive, high level web application framework based on Python and built on top of Pyramid. Functionality was added, like interactive time series plots or a report generator and the interactive map-based station overview was updated completely, comprising now clustering and the classification of stations. Furthermore, the database backend was migrated to PostgreSQL for better support of the application framework and long-term availability. As comparisons of absolute gravimeters (AG) become essential to realize a precise and uniform gravity standard, the database was extended to document the results on international and regional level, including those performed at monitoring stations equipped with SGs. By this it will be possible to link different AGs and to trace their equivalence back to the key comparisons under the auspices of International Committee for Weights and Measures (CIPM) as the best metrological realization of the absolute gravity standard. In this way the new AGrav database accommodates the demands of the new Global Absolute Gravity Reference System as recommended by the IAG Resolution No. 2 adopted in Prague 2015. The new database will be presented with focus on the new user interface and new functionality, calling all institutions involved in absolute gravimetry to participate and contribute with their information to built up a most complete picture of high precision absolute gravimetry and improve its visibility. A Digital Object Identifier (DOI) will be provided by BGI to contributors to give a better traceability and facilitate the referencing of their gravity surveys. Links and references: BGI mirror site : http://bgi.obs-mip.fr/data-products/Gravity-Databases/Absolute-Gravity-data/ BKG mirror site: http

  13. Higher order terms in the inflation potential and the lower bound on the tensor to scalar ratio r

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Destri, C., E-mail: Claudio.Destri@mib.infn.it; Vega, H.J. de, E-mail: devega@lpthe.jussieu.fr; Observatoire de Paris, LERMA, Laboratoire Associe au CNRS UMR 8112, 61, Avenue de l'Observatoire, 75014 Paris

    Research Highlights: > In Ginsburg-Landau (G-L) approach data favors new inflation over chaotic inflation. > n{sub s} and r fall inside a universal banana-shaped region in G-L new inflation. > The banana region for the observed value n{sub s}=0.964 implies 0.021 Fermion condensate inflaton potential is a double well in the G-L class. - Abstract: The MCMC analysis of the CMB + LSS data in the context of the Ginsburg-Landau approach to inflation indicated that the fourth degree double-well inflaton potential in new inflation gives an excellent fit of the present CMB and LSS data. This provided a lowermore » bound for the ratio r of the tensor to scalar fluctuations and as most probable value r {approx_equal} 0.05, within reach of the forthcoming CMB observations. In this paper we systematically analyze the effects of arbitrarily higher order terms in the inflaton potential on the CMB observables: spectral index n{sub s} and ratio r. Furthermore, we compute in close form the inflaton potential dynamically generated when the inflaton field is a fermion condensate in the inflationary universe. This inflaton potential turns out to belong to the Ginsburg-Landau class too. The theoretical values in the (n{sub s}, r) plane for all double well inflaton potentials in the Ginsburg-Landau approach (including the potential generated by fermions) fall inside a universal banana-shaped region B. The upper border of the banana-shaped region B is given by the fourth order double-well potential and provides an upper bound for the ratio r. The lower border of B is defined by the quadratic plus an infinite barrier inflaton potential and provides a lower bound for the ratio r. For example, the current best value of the spectral index n{sub s} = 0.964, implies r is in the interval: 0.021 < r < 0.053. Interestingly enough, this range is within reach of forthcoming CMB observations.« less

  14. 237Np absolute delayed neutron yield measurements

    NASA Astrophysics Data System (ADS)

    Doré, D.; Ledoux, X.; Nolte, R.; Gagnon-Moisan, F.; Thulliez, L.; Litaize, O.; Roettger, S.; Serot, O.

    2017-09-01

    237Np absolute delayed neutron yields have been measured at different incident neutron energies from 1.5 to 16 MeV. The experiment was performed at the Physikalisch-Technische Bundesanstalt (PTB) facility where the Van de Graaff accelerator and the cyclotron CV28 delivered 9 different neutron energy beams using p+T, d+D and d+T reactions. The detection system is made up of twelve 3He tubes inserted into a polyethylene cylinder. In this paper, the experimental setup and the data analysis method are described. The evolution of the absolute DN yields as a function of the neutron incident beam energies are presented and compared to experimental data found in the literature and data from the libraries.

  15. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  16. Entropic bounds on currents in Langevin systems

    NASA Astrophysics Data System (ADS)

    Dechant, Andreas; Sasa, Shin-ichi

    2018-06-01

    We derive a bound on generalized currents for Langevin systems in terms of the total entropy production in the system and its environment. For overdamped dynamics, any generalized current is bounded by the total rate of entropy production. We show that this entropic bound on the magnitude of generalized currents imposes power-efficiency tradeoff relations for ratchets in contact with a heat bath: Maximum efficiency—Carnot efficiency for a Smoluchowski-Feynman ratchet and unity for a flashing or rocking ratchet—can only be reached at vanishing power output. For underdamped dynamics, while there may be reversible currents that are not bounded by the entropy production rate, we show that the output power and heat absorption rate are irreversible currents and thus obey the same bound. As a consequence, a power-efficiency tradeoff relation holds not only for underdamped ratchets but also for periodically driven heat engines. For weak driving, the bound results in additional constraints on the Onsager matrix beyond those imposed by the second law. Finally, we discuss the connection between heat and entropy in a nonthermal situation where the friction and noise intensity are state dependent.

  17. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  18. Rainfall forecast in the Upper Mahaweli basin in Sri Lanka using RegCM model

    NASA Astrophysics Data System (ADS)

    Muhammadh, K. M.; Mafas, M. M. M.; Weerakoon, S. B.

    2017-04-01

    The Upper Mahaweli basin is the upper most sub basin of 788 km2 in size above Polgolla barrage in the Mahaweli River, the longest river in Sri Lanka which starts from the central hills of the island and drains to the sea at the North-east coast. Rainfall forecast in the Upper Mahaweli basin is important for issuing flood warning in the river downstream of the reservoirs, landslide warning in the settlements in hilly areas. Anticipatory water management in the basin including reservoir operations, barrage gate operation for releasing water for irrigation and flood control also require reliable rainfall and runoff prediction in the sub basin. In this study, the Regional Climate Model (RegCM V4.4.5.11) is calibrated for the basin to dynamically downscale reanalysis weather data of Global Climate Model (GCM) to forecast the rainfall in the basin. Observed rainfalls at gauging stations within the basin were used for model calibration and validation. The observed rainfall data was analysed using ARC GIS and the output of RegCM was analysed using GrADS tool. The output of the model and the observed precipitation were obtained on grids of size 0.1 degrees and the accuracy of the predictions were analysed using RMSE and Mean Model Absolute Error percentage (MAME %). The predictions by the calibrated RegCM model for the basin is shown to be satisfactory. The model is a useful tool for rainfall forecast in the Upper Mahaweli River basin.

  19. A highly accurate absolute gravimetric network for Albania, Kosovo and Montenegro

    NASA Astrophysics Data System (ADS)

    Ullrich, Christian; Ruess, Diethard; Butta, Hubert; Qirko, Kristaq; Pavicevic, Bozidar; Murat, Meha

    2016-04-01

    The objective of this project is to establish a basic gravity network in Albania, Kosovo and Montenegro to enable further investigations in geodetic and geophysical issues. Therefore the first time in history absolute gravity measurements were performed in these countries. The Norwegian mapping authority Kartverket is assisting the national mapping authorities in Kosovo (KCA) (Kosovo Cadastral Agency - Agjencia Kadastrale e Kosovës), Albania (ASIG) (Autoriteti Shtetëror i Informacionit Gjeohapësinor) and in Montenegro (REA) (Real Estate Administration of Montenegro - Uprava za nekretnine Crne Gore) in improving the geodetic frameworks. The gravity measurements are funded by Kartverket. The absolute gravimetric measurements were performed from BEV (Federal Office of Metrology and Surveying) with the absolute gravimeter FG5-242. As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Laser and clock of the absolute gravimeter were calibrated before and after the measurements. The absolute gravimetric survey was carried out from September to October 2015. Finally all 8 scheduled stations were successfully measured: there are three stations located in Montenegro, two stations in Kosovo and three stations in Albania. The stations are distributed over the countries to establish a gravity network for each country. The vertical gradients were measured at all 8 stations with the relative gravimeter Scintrex CG5. The high class quality of some absolute gravity stations can be used for gravity monitoring activities in future. The measurement uncertainties of the absolute gravity measurements range around 2.5 micro Gal at all stations (1 microgal = 10-8 m/s2). In Montenegro the large gravity difference of 200 MilliGal between station Zabljak and Podgorica can be even used for calibration of relative gravimeters

  20. Switching of bound vector solitons for the coupled nonlinear Schrödinger equations with nonhomogenously stochastic perturbations

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying

    2012-12-01

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schrödinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  1. Switching of bound vector solitons for the coupled nonlinear Schrödinger equations with nonhomogenously stochastic perturbations.

    PubMed

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying

    2012-12-01

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schrödinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  2. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  3. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  4. Absolute angular encoder based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang

    2015-08-01

    A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.

  5. The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential

    NASA Astrophysics Data System (ADS)

    Grosche, Christian

    1988-10-01

    Rigorous path integral treatments on the Poincaré upper half-plane with a magnetic field and for the Morse potential are presented. The calculation starts with the path integral on the Poincaré upper half-plane with a magnetic field. By a Fourier expansion and a non-linear transformation this problem is reformulated in terms of the path integral for the Morse potential. This latter problem can be reduced by an appropriate space-time transformation to the path integral for the harmonic oscillator with generalised angular momentum, a technique which has been developed in recent years. The well-known solution for the last problem enables one to give explicit expressions for the Feynman kernels for the Morse potential and for the Poincaré upper half-plane with magnetic field, respectively. The wavefunctions and the energy spectrum for the bound and scattering states are given, respectively.

  6. Chang'e 3 lunar mission and upper limit on stochastic background of gravitational wave around the 0.01 Hz band

    NASA Astrophysics Data System (ADS)

    Tang, Wenlin; Xu, Peng; Hu, Songjie; Cao, Jianfeng; Dong, Peng; Bu, Yanlong; Chen, Lue; Han, Songtao; Gong, Xuefei; Li, Wenxiao; Ping, Jinsong; Lau, Yun-Kau; Tang, Geshi

    2017-09-01

    The Doppler tracking data of the Chang'e 3 lunar mission is used to constrain the stochastic background of gravitational wave in cosmology within the 1 mHz to 0.05 Hz frequency band. Our result improves on the upper bound on the energy density of the stochastic background of gravitational wave in the 0.02-0.05 Hz band obtained by the Apollo missions, with the improvement reaching almost one order of magnitude at around 0.05 Hz. Detailed noise analysis of the Doppler tracking data is also presented, with the prospect that these noise sources will be mitigated in future Chinese deep space missions. A feasibility study is also undertaken to understand the scientific capability of the Chang'e 4 mission, due to be launched in 2018, in relation to the stochastic gravitational wave background around 0.01 Hz. The study indicates that the upper bound on the energy density may be further improved by another order of magnitude from the Chang'e 3 mission, which will fill the gap in the frequency band from 0.02 Hz to 0.1 Hz in the foreseeable future.

  7. Family of fuzzy J-K flip-flops based on bounded product, bounded sum and complementation.

    PubMed

    Gniewek, L; Kluska, J

    1998-01-01

    This paper presents a concept of new fuzzy J-K flip-flops based on bounded product, bounded sum and fuzzy complementation operations. Relationships between various types of the J-K flip-flops are given and characteristics of them are graphically shown by computer simulation. Two examples of circuits able to memorize and fuzzy information processing using the proposed fuzzy J-K flip-flops are presented.

  8. Upper mantle anisotropy from teleseismic SKS splitting beneath Lützow-Holm Bay Region, East Antarctica

    USGS Publications Warehouse

    Usui, Y.; Kanao, M.; Kubo, A.; Hiramatsu, Y.; Negishi, H.

    2007-01-01

    Investigations of SKS wave splitting of teleseismic events from digital seismographs recorded at eight stations around the Lützow-Holm Bay Region have lead to understanding the evolution of the Antarctic Plate. The observed delay times of SKS splitting are up to 1.3 s, which are generally equal to the global average. A two-layer model reveals that the lower layer anisotropy is caused by the recent asthenospheric flow, as compared with the Absolute Plate Motion by the HS3-NUVEL1 model. The upper layer anisotropy corresponds well to polarization of NE–SW convergence direction between East and West Gondwana in Pan-African age. We suggest that the upper layer anisotropy was formed during Pan-African orogeny and was possibly influenced by the preexisting structure during Gondwana break-up. The origin of anisotropy is the Lattice Preferred Orientation of olivine which was caused by both paleo-tectonic events and the recent asthenospheric flow.

  9. Sound Velocity Bound and Neutron Stars

    DOE PAGES

    Bedaque, Paulo; Steiner, Andrew W.

    2015-01-21

    A conjecture that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by sqrt(3). Simple arguments support this bound in nonrelativistic and/or weakly coupled theories. Moreover, the bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. Here, we point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at low densities is in strong tension with this bound.

  10. Laser interferometry method for absolute measurement of the acceleration of gravity

    NASA Technical Reports Server (NTRS)

    Hudson, O. K.

    1971-01-01

    Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.

  11. 34 CFR 645.42 - What are Upward Bound stipends?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... grantee is permitted to provide: (1) For Regular Upward Bound projects and Upward Bound Math and Science... What are Upward Bound stipends? (a) An Upward Bound project may provide stipends for all participants... evidence of satisfactory participation in activities of the project including— (1) Regular attendance; and...

  12. 34 CFR 645.42 - What are Upward Bound stipends?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... grantee is permitted to provide: (1) For Regular Upward Bound projects and Upward Bound Math and Science... What are Upward Bound stipends? (a) An Upward Bound project may provide stipends for all participants... evidence of satisfactory participation in activities of the project including— (1) Regular attendance; and...

  13. 34 CFR 645.42 - What are Upward Bound stipends?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... grantee is permitted to provide: (1) For Regular Upward Bound projects and Upward Bound Math and Science... What are Upward Bound stipends? (a) An Upward Bound project may provide stipends for all participants... evidence of satisfactory participation in activities of the project including— (1) Regular attendance; and...

  14. Absolute Coefficients and the Graphical Representation of Airfoil Characteristics

    NASA Technical Reports Server (NTRS)

    Munk, Max

    1921-01-01

    It is argued that there should be an agreement as to what conventions to use in determining absolute coefficients used in aeronautics and in how to plot those coefficients. Of particular importance are the absolute coefficients of lift and drag. The author argues for the use of the German method over the kind in common use in the United States and England, and for the Continental over the usual American and British method of graphically representing the characteristics of an airfoil. The author notes that, on the whole, it appears that the use of natural absolute coefficients in a polar diagram is the logical method for presentation of airfoil characteristics, and that serious consideration should be given to the advisability of adopting this method in all countries, in order to advance uniformity and accuracy in the science of aeronautics.

  15. Peripheral absolute threshold spectral sensitivity in retinitis pigmentosa.

    PubMed Central

    Massof, R W; Johnson, M A; Finkelstein, D

    1981-01-01

    Dark-adapted spectral sensitivities were measured in the peripheral retinas of 38 patients diagnosed as having typical retinitis pigmentosa (RP) and in 3 normal volunteers. The patients included those having autosomal dominant and autosomal recessive inheritance patterns. Results were analysed by comparisons with the CIE standard scotopic spectral visibility function and with Judd's modification of the photopic spectral visibility function, with consideration of contributions from changes in spectral transmission of preretinal media. The data show 3 general patterns. One group of patients had absolute threshold spectral sensitivities that were fit by Judd's photopic visibility curve. Absolute threshold spectral sensitivities for a second group of patients were fit by a normal scotopic spectral visibility curve. The third group of patients had absolute threshold spectral sensitivities that were fit by a combination of scotopic and photopic spectral visibility curves. The autosomal dominant and autosomal recessive modes of inheritance were represented in each group of patients. These data indicate that RP patients have normal rod and/or cone spectral sensitivities, and support the subclassification of patients described previously by Massof and Finkelstein. PMID:7459312

  16. Neural Sensitivity to Absolute and Relative Anticipated Reward in Adolescents

    PubMed Central

    Vaidya, Jatin G.; Knutson, Brian; O'Leary, Daniel S.; Block, Robert I.; Magnotta, Vincent

    2013-01-01

    Adolescence is associated with a dramatic increase in risky and impulsive behaviors that have been attributed to developmental differences in neural processing of rewards. In the present study, we sought to identify age differences in anticipation of absolute and relative rewards. To do so, we modified a commonly used monetary incentive delay (MID) task in order to examine brain activity to relative anticipated reward value (neural sensitivity to the value of a reward as a function of other available rewards). This design also made it possible to examine developmental differences in brain activation to absolute anticipated reward magnitude (the degree to which neural activity increases with increasing reward magnitude). While undergoing fMRI, 18 adolescents and 18 adult participants were presented with cues associated with different reward magnitudes. After the cue, participants responded to a target to win money on that trial. Presentation of cues was blocked such that two reward cues associated with $.20, $1.00, or $5.00 were in play on a given block. Thus, the relative value of the $1.00 reward varied depending on whether it was paired with a smaller or larger reward. Reflecting age differences in neural responses to relative anticipated reward (i.e., reference dependent processing), adults, but not adolescents, demonstrated greater activity to a $1 reward when it was the larger of the two available rewards. Adults also demonstrated a more linear increase in ventral striatal activity as a function of increasing absolute reward magnitude compared to adolescents. Additionally, reduced ventral striatal sensitivity to absolute anticipated reward (i.e., the difference in activity to medium versus small rewards) correlated with higher levels of trait Impulsivity. Thus, ventral striatal activity in anticipation of absolute and relative rewards develops with age. Absolute reward processing is also linked to individual differences in Impulsivity. PMID:23544046

  17. A new bound on axion-like particles

    NASA Astrophysics Data System (ADS)

    Marsh, M. C. David; Russell, Helen R.; Fabian, Andrew C.; McNamara, Brian R.; Nulsen, Paul; Reynolds, Christopher S.

    2017-12-01

    Axion-like particles (ALPs) and photons can quantum mechanically interconvert when propagating through magnetic fields, and ALP-photon conversion may induce oscillatory features in the spectra of astrophysical sources. We use deep (370 ks), short frame time Chandra observations of the bright nucleus at the centre of the radio galaxy M87 in the Virgo cluster to search for signatures of light ALPs. The absence of substantial irregularities in the X-ray power-law spectrum leads to a new upper limit on the photon-ALP coupling, gaγ: using a very conservative model of the cluster magnetic field consistent with Faraday rotation measurements from M87 and M84, we find gaγ < 2.6 × 10-12 GeV-1 at 95% confidence level for ALP masses ma <= 10‑13 eV. Other consistent magnetic field models lead to stronger limits of gaγ lesssim 1.1–1.5 × 10‑12 GeV‑1. These bounds are all stronger than the limit inferred from the absence of a gamma-ray burst from SN1987A, and rule out a substantial fraction of the parameter space accessible to future experiments such as ALPS-II and IAXO.

  18. Local Upper Mantle Upwelling beneath New England: Evidence from Seismic Anisotropy.

    NASA Astrophysics Data System (ADS)

    Levin, V. L.; Long, M. D.; Lopez, I.; Li, Y.; Skryzalin, P. A.

    2017-12-01

    The upper mantle beneath eastern North America contains regions where seismic wave speed is significantly reduced. As they cut across the trend of the Appalachian terranes, these anomalies likely post-date the Paleozoic assembly of Pangea. Most prominent of them, the North Appalachian Anomaly (NAA), has been alternatively explained by the localized disruption of lithospheric fabric, the passage of the Great Meteor Hot Spot, and the current local upwelling of the asthenosphere. Comprehensive mapping of shear wave splitting identified a local perturbation of an otherwise uniform regional pattern, with no apparent splitting occurring at a site within the NAA. To evaluate the reality of this apparent localized disruption in the anisotropic fabric of the upper mantle beneath northeastern North America we used observations of shear wave splitting from a set of long-running observatories not included in previous studies. Three methods of evaluating shear wave splitting (rotation-correlation, minimization of the transverse component, and the splitting intensity) yield complementary results. We show that splitting of core-refracted shear waves within the outline of the NAA is significantly weaker than towards its edges and beyond them (Figure 1). Average fast orientations are close to the absolute plate motion in the hot-spot reference frame, thus we can attribute a large fraction of this signal to the coherently sheared sub-lithospheric upper mantle. A decrease in average delay we observe, from 1 s outside the NAA to under 0.2 s within it, translates into a reduction of the vertical extent of the sheared layer from 130 km to 16 km (assuming 4% anisotropy), or alternatively into a weakening of the azimuthal anisotropy from 5% to 0.6% (assuming a 100 km thick layer). The splitting reduction within the NAA is consistent with a localized change in anisotropic fabric that would be expected in case of geologically recent sub-vertical flow overprinting the broadly uniform upper

  19. Cardioprotective aspirin users and their excess risk of upper gastrointestinal complications.

    PubMed

    Hernández-Díaz, Sonia; García Rodríguez, Luis A

    2006-09-20

    To balance the cardiovascular benefits from low-dose aspirin against the gastrointestinal harm caused, studies have considered the coronary heart disease risk for each individual but not their gastrointestinal risk profile. We characterized the gastrointestinal risk profile of low-dose aspirin users in real clinical practice, and estimated the excess risk of upper gastrointestinal complications attributable to aspirin among patients with different gastrointestinal risk profiles. To characterize aspirin users in terms of major gastrointestinal risk factors (i.e., advanced age, male sex, prior ulcer history and use of non-steroidal anti-inflammatory drugs), we used The General Practice Research Database in the United Kingdom and the Base de Datos para la Investigación Farmacoepidemiológica en Atención Primaria in Spain. To estimate the baseline risk of upper gastrointestinal complications according to major gastrointestinal risk factors and the excess risk attributable to aspirin within levels of these factors, we used previously published meta-analyses on both absolute and relative risks of upper gastrointestinal complications. Over 60% of aspirin users are above 60 years of age, 4 to 6% have a recent history of peptic ulcers and over 13% use other non-steroidal anti-inflammatory drugs. The estimated average excess risk of upper gastrointestinal complications attributable to aspirin is around 5 extra cases per 1,000 aspirin users per year. However, the excess risk varies in parallel to the underlying gastrointestinal risk and might be above 10 extra cases per 1,000 person-years in over 10% of aspirin users. In addition to the cardiovascular risk, the underlying gastrointestinal risk factors have to be considered when balancing harms and benefits of aspirin use for an individual patient. The gastrointestinal harms may offset the cardiovascular benefits in certain groups of patients where the gastrointestinal risk is high and the cardiovascular risk is low.

  20. Cardioprotective aspirin users and their excess risk of upper gastrointestinal complications

    PubMed Central

    Hernández-Díaz, Sonia; García Rodríguez, Luis A

    2006-01-01

    Background To balance the cardiovascular benefits from low-dose aspirin against the gastrointestinal harm caused, studies have considered the coronary heart disease risk for each individual but not their gastrointestinal risk profile. We characterized the gastrointestinal risk profile of low-dose aspirin users in real clinical practice, and estimated the excess risk of upper gastrointestinal complications attributable to aspirin among patients with different gastrointestinal risk profiles. Methods To characterize aspirin users in terms of major gastrointestinal risk factors (i.e., advanced age, male sex, prior ulcer history and use of non-steroidal anti-inflammatory drugs), we used The General Practice Research Database in the United Kingdom and the Base de Datos para la Investigación Farmacoepidemiológica en Atención Primaria in Spain. To estimate the baseline risk of upper gastrointestinal complications according to major gastrointestinal risk factors and the excess risk attributable to aspirin within levels of these factors, we used previously published meta-analyses on both absolute and relative risks of upper gastrointestinal complications. Results Over 60% of aspirin users are above 60 years of age, 4 to 6% have a recent history of peptic ulcers and over 13% use other non-steroidal anti-inflammatory drugs. The estimated average excess risk of upper gastrointestinal complications attributable to aspirin is around 5 extra cases per 1,000 aspirin users per year. However, the excess risk varies in parallel to the underlying gastrointestinal risk and might be above 10 extra cases per 1,000 person-years in over 10% of aspirin users. Conclusion In addition to the cardiovascular risk, the underlying gastrointestinal risk factors have to be considered when balancing harms and benefits of aspirin use for an individual patient. The gastrointestinal harms may offset the cardiovascular benefits in certain groups of patients where the gastrointestinal risk is high and

  1. Absolute flux density calibrations of radio sources: 2.3 GHz

    NASA Technical Reports Server (NTRS)

    Freiley, A. J.; Batelaan, P. D.; Bathker, D. A.

    1977-01-01

    A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations.

  2. Assessing epistemic sophistication by considering domain-specific absolute and multiplicistic beliefs separately.

    PubMed

    Peter, Johannes; Rosman, Tom; Mayer, Anne-Kathrin; Leichner, Nikolas; Krampen, Günter

    2016-06-01

    Particularly in higher education, not only a view of science as a means of finding absolute truths (absolutism), but also a view of science as generally tentative (multiplicism) can be unsophisticated and obstructive for learning. Most quantitative epistemic belief inventories neglect this and understand epistemic sophistication as disagreement with absolute statements. This article suggests considering absolutism and multiplicism as separate dimensions. Following our understanding of epistemic sophistication as a cautious and reluctant endorsement of both positions, we assume evaluativism (a contextually adaptive view of knowledge as personally constructed and evidence-based) to be reflected by low agreement with both generalized absolute and generalized multiplicistic statements. Three studies with a total sample size of N = 416 psychology students were conducted. A domain-specific inventory containing both absolute and multiplicistic statements was developed. Expectations were tested by exploratory factor analysis, confirmatory factor analysis, and correlational analyses. Results revealed a two-factor solution with an absolute and a multiplicistic factor. Criterion validity of both factors was confirmed. Cross-sectional analyses revealed that agreement to generalized multiplicistic statements decreases with study progress. Moreover, consistent with our understanding of epistemic sophistication as a reluctant attitude towards generalized epistemic statements, evidence for a negative relationship between epistemic sophistication and need for cognitive closure was found. We recommend including multiplicistic statements into epistemic belief questionnaires and considering them as a separate dimension, especially when investigating individuals in later stages of epistemic development (i.e., in higher education). © 2015 The British Psychological Society.

  3. New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation

    NASA Astrophysics Data System (ADS)

    Liu, Jianzhou; Wang, Li; Zhang, Juan

    2017-11-01

    The discrete coupled algebraic Riccati equation (DCARE) has wide applications in control theory and linear system. In general, for the DCARE, one discusses every term of the coupled term, respectively. In this paper, we consider the coupled term as a whole, which is different from the recent results. When applying eigenvalue inequalities to discuss the coupled term, our method has less error. In terms of the properties of special matrices and eigenvalue inequalities, we propose several upper and lower matrix bounds for the solution of DCARE. Further, we discuss the iterative algorithms for the solution of the DCARE. In the fixed point iterative algorithms, the scope of Lipschitz factor is wider than the recent results. Finally, we offer corresponding numerical examples to illustrate the effectiveness of the derived results.

  4. Search For ɛ-Bound Nuclei

    NASA Astrophysics Data System (ADS)

    Machner, H.

    2011-10-01

    The η meson can be bound to atomic nuclei. Experimental search is discussed in the form of final state interaction for the reactions dp→3Heη and dd→4Heη. For the latter case tensor polarized deuterons were used in order to extract the s-wave strength. For both reactions complex scattering lengths are deduced: In a two-nucleon transfer reaction under quasi-free conditions, p27Al→3HeX, was investigated. The system X can be the bound 25Mg⊗η at rest. When a possible decay of an intermediate N*(1535) is required, a highly significant bump shows up in the missing mass spectrum. The data give for a bound state a binding energy of 13.3±1.6 MeV and a width of σ = 4.4±1.3 MeV.

  5. Energy bounds in designer gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amsel, Aaron J.; Marolf, Donald

    We consider asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound in d{>=}4 spacetime dimensions. The boundary conditions in these ''designer gravity'' theories are defined in terms of an arbitrary function W. We give a general argument that the Hamiltonian generators of asymptotic symmetries for such systems will be finite, and proceed to construct these generators using the covariant phase space method. The direct calculation confirms that the generators are finite and shows that they take the form of the pure gravity result plus additional contributions from the scalar fields. Bymore » comparing the generators to the spinor charge, we derive a lower bound on the gravitational energy when W has a global minimum and the Breitenlohner-Freedman bound is not saturated.« less

  6. Some common indices of group diversity: upper boundaries.

    PubMed

    Solanas, Antonio; Selvam, Rejina M; Navarro, José; Leiva, David

    2012-12-01

    Workgroup diversity can be conceptualized as variety, separation, or disparity. Thus, the proper operationalization of diversity depends on how a diversity dimension has been defined. Analytically, the minimal diversity must be obtained when there are no differences on an attribute among the members of a group, however maximal diversity has a different shape for each conceptualization of diversity. Previous work on diversity indexes indicated maximum values for variety (e.g., Blau's index and Teachman's index), separation (e.g., standard deviation and mean Euclidean distance), and disparity (e.g., coefficient of variation and the Gini coefficient of concentration), although these maximum values are not valid for all group characteristics (i.e., group size and group size parity) and attribute scales (i.e., number of categories). We demonstrate analytically appropriate upper boundaries for conditional diversity determined by some specific group characteristics, avoiding the bias related to absolute diversity. This will allow applied researchers to make better interpretations regarding the relationship between group diversity and group outcomes.

  7. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  8. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  9. Absolute gravity measurements in California

    NASA Astrophysics Data System (ADS)

    Zumberge, M. A.; Sasagawa, G.; Kappus, M.

    1986-08-01

    An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.

  10. Upper limit set by causality on the tidal deformability of a neutron star

    NASA Astrophysics Data System (ADS)

    Van Oeveren, Eric D.; Friedman, John L.

    2017-04-01

    A principal goal of gravitational-wave astronomy is to constrain the neutron star equation of state (EOS) by measuring the tidal deformability of neutron stars. The tidally induced departure of the waveform from that of a point particle [or a spinless binary black hole (BBH)] increases with the stiffness of the EOS. We show that causality (the requirement that the speed of sound be less than the speed of light for a perfect fluid satisfying a one-parameter equation of state) places an upper bound on tidal deformability as a function of mass. Like the upper mass limit, the limit on deformability is obtained by using an EOS with vsound=c for high densities and matching to a low density (candidate) EOS at a matching density of order nuclear saturation density. We use these results and those of Lackey et al. [Phys. Rev. D 89, 043009 (2014), 10.1103/PhysRevD.89.043009] to estimate the resulting upper limit on the gravitational-wave phase shift of a black hole-neutron star (BHNS) binary relative to a BBH. Even for assumptions weak enough to allow a maximum mass of 4 M⊙ (a match at nuclear saturation density to an unusually stiff low-density candidate EOS), the upper limit on dimensionless tidal deformability is stringent. It leads to a still more stringent estimated upper limit on the maximum tidally induced phase shift prior to merger. We comment in an appendix on the relation among causality, the condition vsound

  11. Relational versus absolute representation in categorization.

    PubMed

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  12. Testing ΛCDM cosmology at turnaround: where to look for violations of the bound?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanoglidis, D.; Pavlidou, V.; Tomaras, T.N., E-mail: dtanogl@physics.uoc.gr, E-mail: pavlidou@physics.uoc.gr, E-mail: tomaras@physics.uoc.gr

    In ΛCDM cosmology, structure formation is halted shortly after dark energy dominates the mass/energy budget of the Universe. A manifestation of this effect is that in such a cosmology the turnaround radius—the non-expanding mass shell furthest away from the center of a structure— has an upper bound. Recently, a new, local, test for the existence of dark energy in the form of a cosmological constant was proposed based on this turnaround bound. Before designing an experiment that, through high-precision determination of masses and —independently— turnaround radii, will challenge ΛCDM cosmology, we have to answer two important questions: first, when turnaround-scalemore » structures are predicted to be close enough to their maximum size, so that a possible violation of the bound may be observable. Second, which is the best mass scale to target for possible violations of the bound. These are the questions we address in the present work. Using the Press-Schechter formalism, we find that turnaround structures have in practice already stopped forming, and consequently, the turnaround radius of structures must be very close to the maximum value today. We also find that the mass scale of ∼ 10{sup 13} M{sub ⊙} characterizes the turnaround structures that start to form in a statistically important number density today —and even at an infinite time in the future, since structure formation has almost stopped. This mass scale also separates turnaround structures with qualitatively different cosmological evolution: smaller structures are no longer readjusting their mass distribution inside the turnaround scale, they asymptotically approach their ultimate abundance from higher values, and they are common enough to have, at some epoch, experienced major mergers with structures of comparable mass; larger structures exhibit the opposite behavior. We call this mass scale the transitional mass scale and we argue that it is the optimal for the purpose outlined above

  13. Standardization approaches in absolute quantitative proteomics with mass spectrometry.

    PubMed

    Calderón-Celis, Francisco; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo

    2017-07-31

    Mass spectrometry-based approaches have enabled important breakthroughs in quantitative proteomics in the last decades. This development is reflected in the better quantitative assessment of protein levels as well as to understand post-translational modifications and protein complexes and networks. Nowadays, the focus of quantitative proteomics shifted from the relative determination of proteins (ie, differential expression between two or more cellular states) to absolute quantity determination, required for a more-thorough characterization of biological models and comprehension of the proteome dynamism, as well as for the search and validation of novel protein biomarkers. However, the physico-chemical environment of the analyte species affects strongly the ionization efficiency in most mass spectrometry (MS) types, which thereby require the use of specially designed standardization approaches to provide absolute quantifications. Most common of such approaches nowadays include (i) the use of stable isotope-labeled peptide standards, isotopologues to the target proteotypic peptides expected after tryptic digestion of the target protein; (ii) use of stable isotope-labeled protein standards to compensate for sample preparation, sample loss, and proteolysis steps; (iii) isobaric reagents, which after fragmentation in the MS/MS analysis provide a final detectable mass shift, can be used to tag both analyte and standard samples; (iv) label-free approaches in which the absolute quantitative data are not obtained through the use of any kind of labeling, but from computational normalization of the raw data and adequate standards; (v) elemental mass spectrometry-based workflows able to provide directly absolute quantification of peptides/proteins that contain an ICP-detectable element. A critical insight from the Analytical Chemistry perspective of the different standardization approaches and their combinations used so far for absolute quantitative MS-based (molecular and

  14. Towards absolute laser spectroscopic CO2 isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Anyangwe Nwaboh, Javis; Werhahn, Olav; Ebert, Volker

    2017-04-01

    Knowledge of isotope composition of carbon dioxide (CO2) in the atmosphere is necessary to identify sources and sinks of this key greenhouse gas. In the last years, laser spectroscopic techniques such as cavity ring-down spectroscopy (CRDS) and tunable diode laser absorption spectroscopy (TDLAS) have been shown to perform accurate isotope ratio measurements for CO2 and other gases like water vapour (H2O) [1,2]. Typically, isotope ratios are reported in literature referring to reference materials provided by e.g. the International Atomic Energy Agency (IAEA). However, there could be some benefit if field deployable absolute isotope ratio measurement methods were developed to address issues such as exhausted reference material like the Pee Dee Belemnite (PDB) standard. Absolute isotope ratio measurements would be particularly important for situations where reference materials do not even exist. Here, we present CRDS and TDLAS-based absolute isotope ratios (13C/12C ) in atmospheric CO2. We demonstrate the capabilities of the used methods by measuring CO2 isotope ratios in gas standards. We compare our results to values reported for the isotope certified gas standards. Guide to the expression of uncertainty in measurement (GUM) compliant uncertainty budgets on the CRDS and TDLAS absolute isotope ratio measurements are presented, and traceability is addressed. We outline the current impediments in realizing high accuracy absolute isotope ratio measurements using laser spectroscopic methods, propose solutions and the way forward. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] B. Kühnreich, S. Wagner, J. C. Habig,·O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119:177-187 (2015). [2] E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439-449 (2008).

  15. Effect of Absolute From Hibiscus syriacus L. Flower on Wound Healing in Keratinocytes

    PubMed Central

    Yoon, Seok Won; Lee, Kang Pa; Kim, Do-Yoon; Hwang, Dae Il; Won, Kyung-Jong; Lee, Dae Won; Lee, Hwan Myung

    2017-01-01

    Background: Proliferation and migration of keratinocytes are essential for the repair of cutaneous wounds. Hibiscus syriacus L. has been used in Asian medicine; however, research on keratinocytes is inadequate. Objective: To establish the dermatological properties of absolute from Hibiscus syriacus L. flower (HSF) and to provide fundamental research for alternative medicine. Materials and Methods: We identified the composition of HSF absolute using gas chromatography-mass spectrometry analysis. We also examined the effect of HSF absolute in HaCaT cells using the XTT assay, Boyden chamber assay, sprout-out growth assay, and western blotting. We conducted an in-vivo wound healing assay in rat tail-skin. Results: Ten major active compounds were identified from HSF absolute. As determined by the XTT assay, Boyden chamber assay, and sprout-out growth assay results, HSF absolute exhibited similar effects as that of epidermal growth factor on the proliferation and migration patterns of keratinocytes (HaCaT cells), which were significantly increased after HSF absolute treatment. The expression levels of the phosphorylated signaling proteins relevant to proliferation, including extracellular signal-regulated kinase 1/2 (Erk 1/2) and Akt, were also determined by western blot analysis. Conclusion: These results of our in-vitro and ex-vivo studies indicate that HSF absolute induced cell growth and migration of HaCaT cells by phosphorylating both Erk 1/2 and Akt. Moreover, we confirmed the wound-healing effect of HSF on injury of the rat tail-skin. Therefore, our results suggest that HSF absolute is promising for use in cosmetics and alternative medicine. SUMMARY Hisbiscus syriacus L. flower absolute increases HaCaT cell migration and proliferation.Hisbiscus syriacus L. flower absolute regulates phosphorylation of ERK 1/2 and Akt in HaCaT cell.Treatment with Hisbiscus syriacus L. flower induced sprout outgrowth.The wound in the tail-skin of rat was reduced by Hisbiscus syriacus

  16. Effect of Absolute From Hibiscus syriacus L. Flower on Wound Healing in Keratinocytes.

    PubMed

    Yoon, Seok Won; Lee, Kang Pa; Kim, Do-Yoon; Hwang, Dae Il; Won, Kyung-Jong; Lee, Dae Won; Lee, Hwan Myung

    2017-01-01

    Proliferation and migration of keratinocytes are essential for the repair of cutaneous wounds. Hibiscus syriacus L. has been used in Asian medicine; however, research on keratinocytes is inadequate. To establish the dermatological properties of absolute from Hibiscus syriacus L. flower (HSF) and to provide fundamental research for alternative medicine. We identified the composition of HSF absolute using gas chromatography-mass spectrometry analysis. We also examined the effect of HSF absolute in HaCaT cells using the XTT assay, Boyden chamber assay, sprout-out growth assay, and western blotting. We conducted an in-vivo wound healing assay in rat tail-skin. Ten major active compounds were identified from HSF absolute. As determined by the XTT assay, Boyden chamber assay, and sprout-out growth assay results, HSF absolute exhibited similar effects as that of epidermal growth factor on the proliferation and migration patterns of keratinocytes (HaCaT cells), which were significantly increased after HSF absolute treatment. The expression levels of the phosphorylated signaling proteins relevant to proliferation, including extracellular signal-regulated kinase 1/2 (Erk 1/2) and Akt, were also determined by western blot analysis. These results of our in-vitro and ex-vivo studies indicate that HSF absolute induced cell growth and migration of HaCaT cells by phosphorylating both Erk 1/2 and Akt. Moreover, we confirmed the wound-healing effect of HSF on injury of the rat tail-skin. Therefore, our results suggest that HSF absolute is promising for use in cosmetics and alternative medicine. Hisbiscus syriacus L. flower absolute increases HaCaT cell migration and proliferation. Hisbiscus syriacus L. flower absolute regulates phosphorylation of ERK 1/2 and Akt in HaCaT cell.Treatment with Hisbiscus syriacus L. flower induced sprout outgrowth.The wound in the tail-skin of rat was reduced by Hisbiscus syriacus L. flower absolute Abbreviations used: HSF: Hibiscus syriacus L. flower

  17. Robust Bounded Influence Tests in Linear Models

    DTIC Science & Technology

    1988-11-01

    sensitivity analysis and bounded influence estimation. In: Evaluation of Econometric Models, J. Kmenta and J.B. Ramsey (eds.) Academic Press, New York...1R’OBUST bOUNDED INFLUENCE TESTS IN LINEA’ MODELS and( I’homas P. [lettmansperger* Tim [PennsylvanLa State UJniversity A M i0d fix pu111 rsos.p JJ 1 0...November 1988 ROBUST BOUNDED INFLUENCE TESTS IN LINEAR MODELS Marianthi Markatou The University of Iowa and Thomas P. Hettmansperger* The Pennsylvania

  18. Lies, Damned Lies, and Health Inequality Measurements

    PubMed Central

    Gerdtham, Ulf-G; Petrie, Dennis

    2015-01-01

    Measuring and monitoring socioeconomic health inequalities are critical for understanding the impact of policy decisions. However, the measurement of health inequality is far from value neutral, and one can easily present the measure that best supports one’s chosen conclusion or selectively exclude measures. Improving people’s understanding of the often implicit value judgments is therefore important to reduce the risk that researchers mislead or policymakers are misled. While the choice between relative and absolute inequality is already value laden, further complexities arise when, as is often the case, health variables have both a lower and upper bound, and thus can be expressed in terms of either attainments or shortfalls, such as for mortality/survival. We bring together the recent parallel discussions from epidemiology and health economics regarding health inequality measurement and provide a deeper understanding of the different value judgments within absolute and relative measures expressed both in attainments and shortfalls, by graphically illustrating both hypothetical and real examples. We show that relative measures in terms of attainments and shortfalls have distinct value judgments, highlighting that for health variables with two bounds the choice is no longer only between an absolute and a relative measure but between an absolute, an attainment- relative and a shortfall-relative one. We illustrate how these three value judgments can be combined onto a single graph which shows the rankings according to all three measures, and illustrates how the three measures provide ethical benchmarks against which to judge the difference in inequality between populations. PMID:26133019

  19. The fading American dream: Trends in absolute income mobility since 1940.

    PubMed

    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy

    2017-04-28

    We estimated rates of "absolute income mobility"-the fraction of children who earn more than their parents-by combining data from U.S. Census and Current Population Survey cross sections with panel data from de-identified tax records. We found that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Increasing Gross Domestic Product (GDP) growth rates alone cannot restore absolute mobility to the rates experienced by children born in the 1940s. However, distributing current GDP growth more equally across income groups as in the 1940 birth cohort would reverse more than 70% of the decline in mobility. These results imply that reviving the "American dream" of high rates of absolute mobility would require economic growth that is shared more broadly across the income distribution. Copyright © 2017, American Association for the Advancement of Science.

  20. 34 CFR 648.33 - What priorities and absolute preferences does the Secretary establish?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What priorities and absolute preferences does the... AREAS OF NATIONAL NEED How Does the Secretary Make an Award? § 648.33 What priorities and absolute... area of national need and gives absolute preference to one or more of the general disciplines and sub...

  1. 34 CFR 648.33 - What priorities and absolute preferences does the Secretary establish?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What priorities and absolute preferences does the... AREAS OF NATIONAL NEED How Does the Secretary Make an Award? § 648.33 What priorities and absolute... area of national need and gives absolute preference to one or more of the general disciplines and sub...

  2. Data envelopment analysis with upper bound on output to measure efficiency performance of departments in Malaikulsaleh University

    NASA Astrophysics Data System (ADS)

    Abdullah, Dahlan; Suwilo, Saib; Tulus; Mawengkang, Herman; Efendi, Syahril

    2017-09-01

    The higher education system in Indonesia can be considered not only as an important source of developing knowledge in the country, but also could create positive living conditions for the country. Therefore it is not surprising that enrollments in higher education continue to expand. However, the implication of this situation, the Indonesian government is necessarily to support more funds. In the interest of accountability, it is essential to measure the efficiency for this higher institution. Data envelopment analysis (DEA) is a method to evaluate the technical efficiency of production units which have multiple input and output. The higher learning institution considered in this paper is Malikussaleh University located in Lhokseumawe, a city in Aceh province of Indonesia. This paper develops a method to evaluate efficiency for all departments in Malikussaleh University using DEA with bounded output. Accordingly, we present some important differences in efficiency of those departments. Finally we discuss the effort should be done by these departments in order to become efficient.

  3. Transversely bounded DFB lasers. [bounded distributed-feedback lasers

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G.; Yeh, C.

    1975-01-01

    Bounded distributed-feedback (DFB) lasers are studied in detail. Threshold gain and field distribution for a number of configurations are derived and analyzed. More specifically, the thin-film guide, fiber, diffusion guide, and hollow channel with inhomogeneous-cladding DFB lasers are considered. Optimum points exist and must be used in DFB laser design. Different-modes feedback and the effects of the transverse boundaries are included. A number of applications are also discussed.

  4. Absolute branching fraction measurements of exclusive D+ semileptonic decays.

    PubMed

    Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Park, W; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Weaver, K M; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J

    2005-10-28

    Using data collected at the psi(3770) resonance with the CLEO-c detector at the Cornell e+e- storage ring, we present improved measurements of the absolute branching fractions of D+decays to K0e+ve, pi0e+ve, K*0e+ve, and p0e+ve, and the first observation and absolute branching fraction measurement of D+ --> omega e+ve. We also report the most precise tests to date of isospin invariance in semileptonic D0 and D+ decays.

  5. Bounded-Angle Iterative Decoding of LDPC Codes

    NASA Technical Reports Server (NTRS)

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  6. The metamorphosis of 'culture-bound' syndromes.

    PubMed

    Jilek, W G; Jilek-Aall, L

    1985-01-01

    Starting from a critical review of the concept of 'culture-bound' disorders and its development in comparative psychiatry, the authors present the changing aspects of two so-called culture-bound syndromes as paradigms of transcultural metamorphosis (koro) and intra-cultural metamorphosis (Salish Indian spirit sickness), respectively. The authors present recent data on epidemics of koro, which is supposedly bound to Chinese culture, in Thailand and India among non-Chinese populations. Neither the model of Oedipal castration anxiety nor the model of culture-specific pathogenicity, commonly adduced in psychiatric and ethnological literature, explain these phenomena. The authors' data on Salish Indian spirit sickness describes the contemporary condition as anomic depression, which is significantly different from its traditional namesake. The traditional concept was redefined by Salish ritual specialists in response to current needs imposed by social changes. The stresses involved in creating the contemporary phenomena of koro and spirit sickness are neither culture-specific nor culture-inherent, as postulated for 'culture-bound' syndromes, rather they are generated by a feeling of powerlessness caused by perceived threats to ethnic survival.

  7. The effect of modeled absolute timing variability and relative timing variability on observational learning.

    PubMed

    Grierson, Lawrence E M; Roberts, James W; Welsher, Arthur M

    2017-05-01

    There is much evidence to suggest that skill learning is enhanced by skill observation. Recent research on this phenomenon indicates a benefit of observing variable/erred demonstrations. In this study, we explore whether it is variability within the relative organization or absolute parameterization of a movement that facilitates skill learning through observation. To do so, participants were randomly allocated into groups that observed a model with no variability, absolute timing variability, relative timing variability, or variability in both absolute and relative timing. All participants performed a four-segment movement pattern with specific absolute and relative timing goals prior to and following the observational intervention, as well as in a 24h retention test and transfers tests that featured new relative and absolute timing goals. Absolute timing error indicated that all groups initially acquired the absolute timing, maintained their performance at 24h retention, and exhibited performance deterioration in both transfer tests. Relative timing error revealed that the observation of no variability and relative timing variability produced greater performance at the post-test, 24h retention and relative timing transfer tests, but for the no variability group, deteriorated at absolute timing transfer test. The results suggest that the learning of absolute timing following observation unfolds irrespective of model variability. However, the learning of relative timing benefits from holding the absolute features constant, while the observation of no variability partially fails in transfer. We suggest learning by observing no variability and variable/erred models unfolds via similar neural mechanisms, although the latter benefits from the additional coding of information pertaining to movements that require a correction. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  9. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  10. An algorithm for the estimation of bounds on the emissivity and temperatures from thermal multispectral airborne remotely sensed data

    NASA Technical Reports Server (NTRS)

    Jaggi, S.; Quattrochi, D.; Baskin, R.

    1992-01-01

    The effective flux incident upon the detectors of a thermal sensor, after it has been corrected for atmospheric effects, is a function of a non-linear combination of the emissivity of the target for that channel and the temperature of the target. The sensor system cannot separate the contribution from the emissivity and the temperature that constitute the flux value. A method that estimates the bounds on these temperatures and emissivities from thermal data is described. This method is then tested with remotely sensed data obtained from NASA's Thermal Infrared Multispectral Scanner (TIMS) - a 6 channel thermal sensor. Since this is an under-determined set of equations i.e. there are 7 unknowns (6 emissivities and 1 temperature) and 6 equations (corresponding to the 6 channel fluxes), there exist theoretically an infinite combination of values of emissivities and temperature that can satisfy these equations. Using some realistic bounds on the emissivities, bounds on the temperature are calculated. These bounds on the temperature are refined to estimate a tighter bound on the emissivity of the source. An error analysis is also carried out to quantitatively determine the extent of uncertainty introduced in the estimate of these parameters. This method is useful only when a realistic set of bounds can be obtained for the emissivities of the data. In the case of water the lower and upper bounds were set at 0.97 and 1.00 respectively. Five flights were flown in succession at altitudes of 2 km (low), 6 km (mid), 12 km (high), and then back again at 6 km and 2 km. The area selected with the Ross Barnett reservoir near Jackson, Mississippi. The mission was flown during the predawn hours of 1 Feb. 1992. Radiosonde data was collected for that duration to profile the characteristics of the atmosphere. Ground truth temperatures using thermometers and radiometers were also obtained over an area of the reservoir. The results of two independent runs of the radiometer data averaged

  11. The success rate of TED upper eyelid retraction reoperations.

    PubMed

    Golan, Shani; Rootman, Dan B; Goldberg, Robert A

    2016-12-01

    Although reoperation rates for upper lid retraction surgery for thyroid eye disease (TED) typically range between 8% and 23%, there is little literature describing the outcomes of these second operations. In this retrospective observational cohort study, all patients that underwent surgery for upper eyelid retraction over a 14-year period at a single institution were included. Cases were included if a second eyelid retraction surgery was performed during the study period. Success of surgery was defined as a marginal reflex distance (MRD1) of 2.5 to 4.5 mm in each eye and less than 1 mm difference in MRD1 between the eyes. Overcorrection and undercorrection were defined as above and below these bounds, respectively. 72 eyes in 49 patients were included in the study. The mean age was 56.6 (±11.5) years. By definition, all patients had at least 1 lid lengthening surgery for upper eyelid retraction, and at least 1 subsequent surgery. For this second surgery, 61 eyes (85%) underwent retraction surgery and 11 eyes (15%) underwent ptosis surgery. After this second operation, 31% were undercorrected and 33% were overcorrected. A third surgery was performed in 19 eyes (25%), 12 had surgery for residual retraction and 7 for ptosis. After the third operation 10% of eyes were under corrected and 11% were over corrected. Four patients underwent a fourth surgery: one for retraction and three for ptosis. Success was noted in 35% after the second surgery and 44% after the third. Surgical success in eyelid retraction surgery increases from a second to a third consecutive surgery, and residual asymmetry was roughly equally distributed between over- and undercorrection.

  12. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    NASA Astrophysics Data System (ADS)

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2017-11-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.

  13. Twisting, supercoiling and stretching in protein bound DNA

    NASA Astrophysics Data System (ADS)

    Lam, Pui-Man; Zhen, Yi

    2018-04-01

    We have calculated theoretical results for the torque and slope of the twisted DNA, with various proteins bound on it, using the Neukirch-Marko model, in the regime where plectonemes exist. We found that the torque in the protein bound DNA decreases compared to that in the bare DNA. This is caused by the decrease in the free energy g(f) , and hence the smaller persistence lengths, in the case of protein bound DNA. We hope our results will encourage experimental investigations of supercoiling in protein bound DNA, which can provide further tests of the Neukirch-Marko model.

  14. Absolute quantitation of NAPQI-modified rat serum albumin by LC-MS/MS: monitoring acetaminophen covalent binding in vivo.

    PubMed

    LeBlanc, André; Shiao, Tze Chieh; Roy, René; Sleno, Lekha

    2014-09-15

    Acetaminophen is known to cause hepatoxicity via the formation of a reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), as a result of covalent binding to liver proteins. Serum albumin (SA) is known to be covalently modified by NAPQI and is present at high concentrations in the bloodstream and is therefore a potential biomarker to assess the levels of protein modification by NAPQI. A newly developed method for the absolute quantitation of serum albumin containing NAPQI covalently bound to its active site cysteine (Cys34) is described. This optimized assay represents the first absolute quantitation of a modified protein, with very low stoichiometric abundance, using a protein-level standard combined with isotope dilution. The LC-MS/MS assay is based on a protein standard modified with a custom-designed reagent, yielding a surrogate peptide (following digestion) that is a positional isomer to the target peptide modified by NAPQI. To illustrate the potential of this approach, the method was applied to quantify NAPQI-modified SA in plasma from rats dosed with acetaminophen. The resulting method is highly sensitive (capable of quantifying down to 0.0006% of total RSA in its NAPQI-modified form) and yields excellent precision and accuracy statistics. A time-course pharmacokinetic study was performed to test the usefulness of this method for following acetaminophen-induced covalent binding at four dosing levels (75-600 mg/kg IP), showing the viability of this approach to directly monitor in vivo samples. This approach can reliably quantify NAPQI-modified albumin, allowing direct monitoring of acetaminophen-related covalent binding.

  15. Conformational phases of membrane bound cytoskeletal filaments

    NASA Astrophysics Data System (ADS)

    Quint, David A.; Grason, Gregory; Gopinathan, Ajay

    2013-03-01

    Membrane bound cytoskeletal filaments found in living cells are employed to carry out many types of activities including cellular division, rigidity and transport. When these biopolymers are bound to a membrane surface they may take on highly non-trivial conformations as compared to when they are not bound. This leads to the natural question; What are the important interactions which drive these polymers to particular conformations when they are bound to a surface? Assuming that there are binding domains along the polymer which follow a periodic helical structure set by the natural monomeric handedness, these bound conformations must arise from the interplay of the intrinsic monomeric helicity and membrane binding. To probe this question, we study a continuous model of an elastic filament with intrinsic helicity and map out the conformational phases of this filament for various mechanical and structural parameters in our model, such as elastic stiffness and intrinsic twist of the filament. Our model allows us to gain insight into the possible mechanisms which drive real biopolymers such as actin and tubulin in eukaryotes and their prokaryotic cousins MreB and FtsZ to take on their functional conformations within living cells.

  16. Distinguishing Majorana bound states from localized Andreev bound states by interferometry

    NASA Astrophysics Data System (ADS)

    Hell, Michael; Flensberg, Karsten; Leijnse, Martin

    2018-04-01

    Experimental evidence for Majorana bound states (MBSs) is so far mainly based on the robustness of a zero-bias conductance peak. However, similar features can also arise due to Andreev bound states (ABSs) localized at the end of an island. We show that these two scenarios can be distinguished by an interferometry experiment based on embedding a Coulomb-blockaded island into an Aharonov-Bohm ring. For two ABSs, when the ground state is nearly degenerate, cotunneling can change the state of the island, and interference is suppressed. By contrast, for two MBSs the ground state is nondegenerate, and cotunneling has to preserve the island state, which leads to h /e -periodic conductance oscillations with magnetic flux. Such interference setups can be realized with semiconducting nanowires or two-dimensional electron gases with proximity-induced superconductivity and may also be a useful spectroscopic tool for parity-flip mechanisms.

  17. NIST Stars: Absolute Spectrophotometric Calibration of Vega and Sirius

    NASA Astrophysics Data System (ADS)

    Deustua, Susana; Woodward, John T.; Rice, Joseph P.; Brown, Steven W.; Maxwell, Stephen E.; Alberding, Brian G.; Lykke, Keith R.

    2018-01-01

    Absolute flux calibration of standard stars, traceable to SI (International System of Units) standards, is essential for 21st century astrophysics. Dark energy investigations that rely on observations of Type Ia supernovae and precise photometric redshifts of weakly lensed galaxies require a minimum accuracy of 0.5 % in the absolute color calibration. Studies that aim to address fundamental stellar astrophysics also benefit. In the era of large telescopes and all sky surveys well-calibrated standard stars that do not saturate and that are available over the whole sky are needed. Significant effort has been expended to obtain absolute measurements of the fundamental standards Vega and Sirius (and other stars) in the visible and near infrared, achieving total uncertainties between1% and 3%, depending on wavelength, that do not meet the needed accuracy. The NIST Stars program aims to determine the top-of-the-atmosphere absolute spectral irradiance of bright stars to an uncertainty less than 1% from a ground-based observatory. NIST Stars has developed a novel, fully SI-traceable laboratory calibration strategy that will enable achieving the desired accuracy. This strategy has two key components. The first is the SI-traceable calibration of the entire instrument system, and the second is the repeated spectroscopic measurement of the target star throughout the night. We will describe our experimental strategy, present preliminary results for Vega and Sirius and an end-to-end uncertainty budget

  18. An Integrated Model of Choices and Response Times in Absolute Identification

    ERIC Educational Resources Information Center

    Brown, Scott D.; Marley, A. A. J.; Donkin, Christopher; Heathcote, Andrew

    2008-01-01

    Recent theoretical developments in the field of absolute identification have stressed differences between relative and absolute processes, that is, whether stimulus magnitudes are judged relative to a shorter term context provided by recently presented stimuli or a longer term context provided by the entire set of stimuli. The authors developed a…

  19. Equivalence principle and bound kinetic energy.

    PubMed

    Hohensee, Michael A; Müller, Holger; Wiringa, R B

    2013-10-11

    We consider the role of the internal kinetic energy of bound systems of matter in tests of the Einstein equivalence principle. Using the gravitational sector of the standard model extension, we show that stringent limits on equivalence principle violations in antimatter can be indirectly obtained from tests using bound systems of normal matter. We estimate the bound kinetic energy of nucleons in a range of light atomic species using Green's function Monte Carlo calculations, and for heavier species using a Woods-Saxon model. We survey the sensitivities of existing and planned experimental tests of the equivalence principle, and report new constraints at the level of between a few parts in 10(6) and parts in 10(8) on violations of the equivalence principle for matter and antimatter.

  20. Organic and elemental carbon bound to particulate matter in the air of printing office and beauty salon

    NASA Astrophysics Data System (ADS)

    Rogula-Kopiec, Patrycja; Pastuszka, Józef S.; Rogula-Kozłowska, Wioletta; Mucha, Walter

    2017-11-01

    The aim of this study was to determine the role of internal sources of emissions on the concentrations of total suspended particulate matter (TSP) and its sub-fraction, so-called respirable PM (PM4; fraction of particles with particle size ≤ 4 µm) and to estimate to which extent those emissions participate in the formation of PM-bound elemental (EC) and organic (OC) carbon in two facilities - one beauty salon and one printing office located in Bytom (Upper Silesia, Poland). The average concentration of PM in the printing office and beauty salon during the 10-day measurement period was 10 and 4 (PM4) and 8 and 3 (TSP) times greater than the average concentration of PM fractions recorded in the same period in the atmospheric air; it was on average: 204 µg/m3 (PM4) and 319 µg/m3 (TSP) and 93 µg/m3 (PM4) and 136 µg/m3 (TSP), respectively. OC concentrations determined in the printing office were 38 µg/m3 (PM4) and 56 µg/m3 (TSP), and those referring to EC: 1.8 µg/m3 (PM4) and 3.5 µg/m3 (TSP). In the beauty salon the average concentration of OC for PM4 and TSP were 58 and 75 µg/m3, respectively and in case of EC - 3.1 and 4.7 µg/m3, respectively. The concentrations of OC and EC within the those facilities were approximately 1.7 (TSP-bound EC, beauty salon) to 4.7 (TSP-bound OC, printing office) times higher than the average atmospheric concentrations of those compounds measured in both PM fractions at the same time. In both facilities the main source of TSP-and PM4-bound OC in the indoor air were the chemicals - solvents, varnishes, paints, etc.

  1. Absolute branching fraction measurements of exclusive D0 semileptonic decays.

    PubMed

    Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Phillips, E A; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Park, W; Thorndike, E H

    2005-10-28

    With the first data sample collected by the CLEO-c detector at the psi(3770) resonance we have studied four exclusive semileptonic decays of the D0 meson. Our results include the first observation and absolute branching fraction measurement for D0 --> p-e+ve and improved measurements of the absolute branching fractions for D0 decays to K-e+ve, pi-e+ve, and K*-e+ve.

  2. Improvements in absolute seismometer sensitivity calibration using local earth gravity measurements

    USGS Publications Warehouse

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    The ability to determine both absolute and relative seismic amplitudes is fundamentally limited by the accuracy and precision with which scientists are able to calibrate seismometer sensitivities and characterize their response. Currently, across the Global Seismic Network (GSN), errors in midband sensitivity exceed 3% at the 95% confidence interval and are the least‐constrained response parameter in seismic recording systems. We explore a new methodology utilizing precise absolute Earth gravity measurements to determine the midband sensitivity of seismic instruments. We first determine the absolute sensitivity of Kinemetrics EpiSensor accelerometers to 0.06% at the 99% confidence interval by inverting them in a known gravity field at the Albuquerque Seismological Laboratory (ASL). After the accelerometer is calibrated, we install it in its normal configuration next to broadband seismometers and subject the sensors to identical ground motions to perform relative calibrations of the broadband sensors. Using this technique, we are able to determine the absolute midband sensitivity of the vertical components of Nanometrics Trillium Compact seismometers to within 0.11% and Streckeisen STS‐2 seismometers to within 0.14% at the 99% confidence interval. The technique enables absolute calibrations from first principles that are traceable to National Institute of Standards and Technology (NIST) measurements while providing nearly an order of magnitude more precision than step‐table calibrations.

  3. Absolute photoionization cross-section of the methyl radical.

    PubMed

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  4. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  5. Photophysics of aggregated 9-methylthiacarbocyanine bound to polyanions

    NASA Astrophysics Data System (ADS)

    Chibisov, Alexander K.; Görner, Helmut

    2002-05-01

    The photophysical properties of 3,3 '-diethyl-9-methylthiacarbocyanine (DTC) were studied in the presence of polystyrene sulfonate (PSS), polyacrylic acid (PAA) and polymethacrylic acid (PMA). The absorption spectra reflect a monomer/dimer equilibrium in neat aqueous solution and a shift towards bound H-aggregates, bound dimers and bound monomers on increasing the ratio of polyanion residue to dye concentrations ( r). These equilibria also determine the photodeactivation modes of DTC. The fluorescence intensity is reduced, when dimers and aggregates are present and strongly enhanced for low dye loading ( r=10 4). In contrast, the quantum yield of intersystem crossing is enhanced for bound dimers ( r=10 3).

  6. Classical Physics and the Bounds of Quantum Correlations.

    PubMed

    Frustaglia, Diego; Baltanás, José P; Velázquez-Ahumada, María C; Fernández-Prieto, Armando; Lujambio, Aintzane; Losada, Vicente; Freire, Manuel J; Cabello, Adán

    2016-06-24

    A unifying principle explaining the numerical bounds of quantum correlations remains elusive, despite the efforts devoted to identifying it. Here, we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenario with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the "quantum" bounds would also occur in a classical universe without quanta. The implications of this observation are discussed.

  7. Chronological reassessment of the Middle to Upper Paleolithic transition and Early Upper Paleolithic cultures in Cantabrian Spain

    PubMed Central

    Rios-Garaizar, Joseba; Straus, Lawrence G.; Jones, Jennifer R.; de la Rasilla, Marco; González Morales, Manuel R.; Richards, Michael; Altuna, Jesús; Mariezkurrena, Koro; Ocio, David

    2018-01-01

    Methodological advances in dating the Middle to Upper Paleolithic transition provide a better understanding of the replacement of local Neanderthal populations by Anatomically Modern Humans. Today we know that this replacement was not a single, pan-European event, but rather it took place at different times in different regions. Thus, local conditions could have played a role. Iberia represents a significant macro-region to study this process. Northern Atlantic Spain contains evidence of both Mousterian and Early Upper Paleolithic occupations, although most of them are not properly dated, thus hindering the chances of an adequate interpretation. Here we present 46 new radiocarbon dates conducted using ultrafiltration pre-treatment method of anthropogenically manipulated bones from 13 sites in the Cantabrian region containing Mousterian, Aurignacian and Gravettian levels, of which 30 are considered relevant. These dates, alongside previously reported ones, were integrated into a Bayesian age model to reconstruct an absolute timescale for the transitional period. According to it, the Mousterian disappeared in the region by 47.9–45.1ka cal BP, while the Châtelperronian lasted between 42.6k and 41.5ka cal BP. The Mousterian and Châtelperronian did not overlap, indicating that the latter might be either intrusive or an offshoot of the Mousterian. The new chronology also suggests that the Aurignacian appears between 43.3–40.5ka cal BP overlapping with the Châtelperronian, and ended around 34.6–33.1ka cal BP, after the Gravettian had already been established in the region. This evidence indicates that Neanderthals and AMH co-existed <1,000 years, with the caveat that no diagnostic human remains have been found with the latest Mousterian, Châtelperronian or earliest Aurignacian in Cantabrian Spain. PMID:29668700

  8. Chronological reassessment of the Middle to Upper Paleolithic transition and Early Upper Paleolithic cultures in Cantabrian Spain.

    PubMed

    Marín-Arroyo, Ana B; Rios-Garaizar, Joseba; Straus, Lawrence G; Jones, Jennifer R; de la Rasilla, Marco; González Morales, Manuel R; Richards, Michael; Altuna, Jesús; Mariezkurrena, Koro; Ocio, David

    2018-01-01

    Methodological advances in dating the Middle to Upper Paleolithic transition provide a better understanding of the replacement of local Neanderthal populations by Anatomically Modern Humans. Today we know that this replacement was not a single, pan-European event, but rather it took place at different times in different regions. Thus, local conditions could have played a role. Iberia represents a significant macro-region to study this process. Northern Atlantic Spain contains evidence of both Mousterian and Early Upper Paleolithic occupations, although most of them are not properly dated, thus hindering the chances of an adequate interpretation. Here we present 46 new radiocarbon dates conducted using ultrafiltration pre-treatment method of anthropogenically manipulated bones from 13 sites in the Cantabrian region containing Mousterian, Aurignacian and Gravettian levels, of which 30 are considered relevant. These dates, alongside previously reported ones, were integrated into a Bayesian age model to reconstruct an absolute timescale for the transitional period. According to it, the Mousterian disappeared in the region by 47.9-45.1ka cal BP, while the Châtelperronian lasted between 42.6k and 41.5ka cal BP. The Mousterian and Châtelperronian did not overlap, indicating that the latter might be either intrusive or an offshoot of the Mousterian. The new chronology also suggests that the Aurignacian appears between 43.3-40.5ka cal BP overlapping with the Châtelperronian, and ended around 34.6-33.1ka cal BP, after the Gravettian had already been established in the region. This evidence indicates that Neanderthals and AMH co-existed <1,000 years, with the caveat that no diagnostic human remains have been found with the latest Mousterian, Châtelperronian or earliest Aurignacian in Cantabrian Spain.

  9. Structure Functions of Bound Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian Kuhn

    2005-04-01

    We describe an experiment measuring electron scattering on a neutron bound in deuterium with coincident detection of a fast, backward-going spectator proton. Our data map out the relative importance of the pure PWIA spectator mechanism and final state interactions in various kinematic regions, and give a first glimpse of the modification of the structure function of a bound neutron as a function of its off-shell mass. We also discuss a new experimental program to study the structure of a free neutron by extending the same technique to much lower spectator momenta.

  10. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  11. The PMA Catalogue: 420 million positions and absolute proper motions

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    2017-07-01

    We present a catalogue that contains about 420 million absolute proper motions of stars. It was derived from the combination of positions from Gaia DR1 and 2MASS, with a mean difference of epochs of about 15 yr. Most of the systematic zonal errors inherent in the 2MASS Catalogue were eliminated before deriving the absolute proper motions. The absolute calibration procedure (zero-pointing of the proper motions) was carried out using about 1.6 million positions of extragalactic sources. The mean formal error of the absolute calibration is less than 0.35 mas yr-1. The derived proper motions cover the whole celestial sphere without gaps for a range of stellar magnitudes from 8 to 21 mag. In the sky areas where the extragalactic sources are invisible (the avoidance zone), a dedicated procedure was used that transforms the relative proper motions into absolute ones. The rms error of proper motions depends on stellar magnitude and ranges from 2-5 mas yr-1 for stars with 10 mag < G < 17 mag to 5-10 mas yr-1 for faint ones. The present catalogue contains the Gaia DR1 positions of stars for the J2015 epoch. The system of the PMA proper motions does not depend on the systematic errors of the 2MASS positions, and in the range from 14 to 21 mag represents an independent realization of a quasi-inertial reference frame in the optical and near-infrared wavelength range. The Catalogue also contains stellar magnitudes taken from the Gaia DR1 and 2MASS catalogues. A comparison of the PMA proper motions of stars with similar data from certain recent catalogues has been undertaken.

  12. 34 CFR 645.1 - What is the Upward Bound Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and Science Centers. (3) Veterans Upward Bound projects. (Authority: 20 U.S.C. 1070a-11 and 1070a-13) ...) The Upward Bound Program provides Federal grants to projects designed to generate in program...

  13. 34 CFR 645.1 - What is the Upward Bound Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and Science Centers. (3) Veterans Upward Bound projects. (Authority: 20 U.S.C. 1070a-11 and 1070a-13) ...) The Upward Bound Program provides Federal grants to projects designed to generate in program...

  14. 34 CFR 645.1 - What is the Upward Bound Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and Science Centers. (3) Veterans Upward Bound projects. (Authority: 20 U.S.C. 1070a-11 and 1070a-13) ...) The Upward Bound Program provides Federal grants to projects designed to generate in program...

  15. 34 CFR 645.1 - What is the Upward Bound Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and Science Centers. (3) Veterans Upward Bound projects. (Authority: 20 U.S.C. 1070a-11 and 1070a-13) ...) The Upward Bound Program provides Federal grants to projects designed to generate in program...

  16. A method for paraplegic upper-body posture estimation during standing: a pilot study for rehabilitation purposes.

    PubMed

    Pages, Gaël; Ramdani, Nacim; Fraisse, Philippe; Guiraud, David

    2009-06-01

    This paper presents a contribution for restoring standing in paraplegia while using functional electrical stimulation (FES). Movement generation induced by FES remains mostly open looped and stimulus intensities are tuned empirically. To design an efficient closed-loop control, a preliminary study has been carried out to investigate the relationship between body posture and voluntary upper body movements. A methodology is proposed to estimate body posture in the sagittal plane using force measurements exerted on supporting handles during standing. This is done by setting up constraints related to the geometric equations of a two-dimensional closed chain model and the hand-handle interactions. All measured quantities are subject to an uncertainty assumed unknown but bounded. The set membership estimation problem is solved via interval analysis. Guaranteed uncertainty bounds are computed for the estimated postures. In order to test the feasibility of our methodology, experiments were carried out with complete spinal cord injured patients.

  17. Development and validation of a cerebral oximeter capable of absolute accuracy.

    PubMed

    MacLeod, David B; Ikeda, Keita; Vacchiano, Charles; Lobbestael, Aaron; Wahr, Joyce A; Shaw, Andrew D

    2012-12-01

    Cerebral oximetry may be a valuable monitor, but few validation data are available, and most report the change from baseline rather than absolute accuracy, which may be affected by individuals whose oximetric values are outside the expected range. The authors sought to develop and validate a cerebral oximeter capable of absolute accuracy. An in vivo research study. A university human physiology laboratory. Healthy human volunteers were enrolled in calibration and validation studies of 2 cerebral oximetric sensors, the Nonin 8000CA and 8004CA. The 8000CA validation study identified 5 individuals with atypical cerebral oxygenation values; their data were used to design the 8004CA sensor, which subsequently underwent calibration and validation. Volunteers were taken through a stepwise hypoxia protocol to a minimum saturation of peripheral oxygen. Arteriovenous saturation (70% jugular bulb venous saturation and 30% arterial saturation) at 6 hypoxic plateaus was used as the reference value for the cerebral oximeter. Absolute accuracy was defined using a combination of the bias and precision of the paired saturations (A(RMS)). In the validation study for the 8000CA sensor (n = 9, 106 plateaus), relative accuracy was an A(RMS) of 2.7, with an absolute accuracy of 8.1, meeting the criteria for a relative (trend) monitor, but not an absolute monitor. In the validation study for the 8004CA sensor (n = 11, 119 plateaus), the A(RMS) of the 8004CA was 4.1, meeting the prespecified success criterion of <5.0. The Nonin cerebral oximeter using the 8004CA sensor can provide absolute data on regional cerebral saturation compared with arteriovenous saturation, even in subjects previously shown to have values outside the normal population distribution curves. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1991-01-01

    The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.

  19. Tsirelson's bound from a generalized data processing inequality

    NASA Astrophysics Data System (ADS)

    Dahlsten, Oscar C. O.; Lercher, Daniel; Renner, Renato

    2012-06-01

    The strength of quantum correlations is bounded from above by Tsirelson's bound. We establish a connection between this bound and the fact that correlations between two systems cannot increase under local operations, a property known as the data processing inequality (DPI). More specifically, we consider arbitrary convex probabilistic theories. These can be equipped with an entropy measure that naturally generalizes the von Neumann entropy, as shown recently in Short and Wehner (2010 New J. Phys. 12 033023) and Barnum et al (2010 New J. Phys. 12 033024). We prove that if the DPI holds with respect to this generalized entropy measure then the underlying theory necessarily respects Tsirelson's bound. We, moreover, generalize this statement to any entropy measure satisfying certain minimal requirements. A consequence of our result is that not all the entropic relations used for deriving Tsirelson's bound via information causality in Pawlowski et al (2009 Nature 461 1101-4) are necessary.

  20. Hydraulic head estimation at unobserved locations: Approximating the distribution of the absolute error based on geologic interpretations

    NASA Astrophysics Data System (ADS)

    Langousis, Andreas; Kaleris, Vassilios; Xeygeni, Vagia; Magkou, Foteini

    2017-04-01

    Assessing the availability of groundwater reserves at a regional level, requires accurate and robust hydraulic head estimation at multiple locations of an aquifer. To that extent, one needs groundwater observation networks that can provide sufficient information to estimate the hydraulic head at unobserved locations. The density of such networks is largely influenced by the spatial distribution of the hydraulic conductivity in the aquifer, and it is usually determined through trial-and-error, by solving the groundwater flow based on a properly selected set of alternative but physically plausible geologic structures. In this work, we use: 1) dimensional analysis, and b) a pulse-based stochastic model for simulation of synthetic aquifer structures, to calculate the distribution of the absolute error in hydraulic head estimation as a function of the standardized distance from the nearest measuring locations. The resulting distributions are proved to encompass all possible small-scale structural dependencies, exhibiting characteristics (bounds, multi-modal features etc.) that can be explained using simple geometric arguments. The obtained results are promising, pointing towards the direction of establishing design criteria based on large-scale geologic maps.