Sample records for absorbed assessment quantificacao

  1. Developability assessment of clinical drug products with maximum absorbable doses.

    PubMed

    Ding, Xuan; Rose, John P; Van Gelder, Jan

    2012-05-10

    Maximum absorbable dose refers to the maximum amount of an orally administered drug that can be absorbed in the gastrointestinal tract. Maximum absorbable dose, or D(abs), has proved to be an important parameter for quantifying the absorption potential of drug candidates. The purpose of this work is to validate the use of D(abs) in a developability assessment context, and to establish appropriate protocol and interpretation criteria for this application. Three methods for calculating D(abs) were compared by assessing how well the methods predicted the absorption limit for a set of real clinical candidates. D(abs) was calculated for these clinical candidates by means of a simple equation and two computer simulation programs, GastroPlus and an program developed at Eli Lilly and Company. Results from single dose escalation studies in Phase I clinical trials were analyzed to identify the maximum absorbable doses for these compounds. Compared to the clinical results, the equation and both simulation programs provide conservative estimates of D(abs), but in general D(abs) from the computer simulations are more accurate, which may find obvious advantage for the simulations in developability assessment. Computer simulations also revealed the complex behavior associated with absorption saturation and suggested in most cases that the D(abs) limit is not likely to be achieved in a typical clinical dose range. On the basis of the validation findings, an approach is proposed for assessing absorption potential, and best practices are discussed for the use of D(abs) estimates to inform clinical formulation development strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments

    PubMed Central

    Wang, Juan; Smith, Christopher E.; Sankar, Jagannathan; Yun, Yeoheung; Huang, Nan

    2015-01-01

    Absorbable metals have been widely tested in various in vitro settings using cells to evaluate their possible suitability as an implant material. However, there exists a gap between in vivo and in vitro test results for absorbable materials. A lot of traditional in vitro assessments for permanent materials are no longer applicable to absorbable metallic implants. A key step is to identify and test the relevant microenvironment and parameters in test systems, which should be adapted according to the specific application. New test methods are necessary to reduce the difference between in vivo and in vitro test results and provide more accurate information to better understand absorbable metallic implants. In this investigative review, we strive to summarize the latest test methods for characterizing absorbable magnesium-based stent for bioabsorption/biodegradation behavior in the mimicking vascular environments. Also, this article comprehensively discusses the direction of test standardization for absorbable stents to paint a more accurate picture of the in vivo condition around implants to determine the most important parameters and their dynamic interactions. PMID:26816631

  3. Reflection measurements of microwave absorbers

    NASA Astrophysics Data System (ADS)

    Baker, Dirk E.; van der Neut, Cornelis A.

    1988-12-01

    A swept-frequency interferometer is described for making rapid, real-time assessments of localized inhomogeneities in planar microwave absorber panels. An aperture-matched exponential horn is used to reduce residual reflections in the system to about -37 dB. This residual reflection is adequate for making comparative measurements on planar absorber panels whose reflectivities usually fall in the -15 to -25 dB range. Reflectivity measurements on a variety of planar absorber panels show that multilayer Jaumann absorbers have the greatest inhomogeneity, while honeycomb absorbers generally have excellent homogeneity within a sheet and from sheet to sheet. The test setup is also used to measure the center frequencies of resonant absorbers. With directional couplers and aperture-matched exponential horns, the technique can be easily applied in the standard 2 to 40 GHz waveguide bands.

  4. Two years' outcome of thread lifting with absorbable barbed PDO threads: Innovative score for objective and subjective assessment.

    PubMed

    Ali, Yasser Helmy

    2018-02-01

    Thread-lifting rejuvenation procedures have evolved again, with the development of absorbable threads. Although they have gained popularity among plastic surgeons and dermatologists, very few articles have been written in literature about absorbable threads. This study aims to evaluate two years' outcome of thread lifting using absorbable barbed threads for facial rejuvenation. Prospective comparative stud both objectively and subjectively and follow-up assessment for 24 months. Thread lifting for face rejuvenation has significant long-lasting effects that include skin lifting from 3-10 mm and high degree of patients' satisfaction with less incidence rate of complications, about 4.8%. Augmented results are obtained when thread lifting is combined with other lifting and rejuvenation modalities. Significant facial rejuvenation is achieved by thread lifting and highly augmented results are observed when they are combined with Botox, fillers, and/or platelet rich plasma (PRP) rejuvenations.

  5. Assessment of capabilities of multiangle imaging photo-polarimetry for atmospheric correction in presence of absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F. C.; Diner, D. J.

    2015-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard

  6. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs.

    PubMed

    Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza

    2016-01-01

    Gallium-68 DOTA-DPhe 1 -Tyr 3 -Octreotide ( 68 Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68 Ga-DOTATOC preparation, using a novel germanium-68 ( 68 Ge)/ 68 Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. 68 Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68 Ga-DOTATOC. The obtained results showed that 68 Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran.

  7. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs

    PubMed Central

    Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza

    2016-01-01

    Objective(s): Gallium-68 DOTA-DPhe1-Tyr3-Octreotide (68Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68Ga-DOTATOC preparation, using a novel germanium-68 (68Ge)/68Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. Methods: The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. Results: 68Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68Ga-DOTATOC. Conclusion: The obtained results showed that 68Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran. PMID:27904870

  8. Development of a primary standard for absorbed dose from unsealed radionuclide solutions

    NASA Astrophysics Data System (ADS)

    Billas, I.; Shipley, D.; Galer, S.; Bass, G.; Sander, T.; Fenwick, A.; Smyth, V.

    2016-12-01

    Currently, the determination of the internal absorbed dose to tissue from an administered radionuclide solution relies on Monte Carlo (MC) calculations based on published nuclear decay data, such as emission probabilities and energies. In order to validate these methods with measurements, it is necessary to achieve the required traceability of the internal absorbed dose measurements of a radionuclide solution to a primary standard of absorbed dose. The purpose of this work was to develop a suitable primary standard. A comparison between measurements and calculations of absorbed dose allows the validation of the internal radiation dose assessment methods. The absorbed dose from an yttrium-90 chloride (90YCl) solution was measured with an extrapolation chamber. A phantom was developed at the National Physical Laboratory (NPL), the UK’s National Measurement Institute, to position the extrapolation chamber as closely as possible to the surface of the solution. The performance of the extrapolation chamber was characterised and a full uncertainty budget for the absorbed dose determination was obtained. Absorbed dose to air in the collecting volume of the chamber was converted to absorbed dose at the centre of the radionuclide solution by applying a MC calculated correction factor. This allowed a direct comparison of the analytically calculated and experimentally determined absorbed dose of an 90YCl solution. The relative standard uncertainty in the measurement of absorbed dose at the centre of an 90YCl solution with the extrapolation chamber was found to be 1.6% (k  =  1). The calculated 90Y absorbed doses from published medical internal radiation dose (MIRD) and radiation dose assessment resource (RADAR) data agreed with measurements to within 1.5% and 1.4%, respectively. This study has shown that it is feasible to use an extrapolation chamber for performing primary standard absorbed dose measurements of an unsealed radionuclide solution. Internal radiation

  9. Assessment of human effective absorbed dose of 67 Ga-ECC based on biodistribution rat data.

    PubMed

    Shanehsazzadeh, Saeed; Yousefnia, Hassan; Lahooti, Afsaneh; Zolghadri, Samaneh; Jalilian, Amir Reza; Afarideh, Hossien

    2015-02-01

    In a diagnostic context, determination of absorbed dose is required before the introduction of a new radiopharmaceutical to the market to obtain marketing authorization from the relevant agencies. In this work, the absorbed dose of [67 Ga]-ethylenecysteamine cysteine [(67 Ga)ECC] to human organs was determined by using distribution data for rats. For biodistribution data, the animals were sacrificed by CO2 asphyxiation at selected times after injection (0.5, 2 and 48 h, n = 3 for each time interval), then the tissue (blood, heart, lung, brain, intestine, feces, skin, stomach, kidneys, liver, muscle and bone) were removed. The absorbed dose was determined by Medical Internal Radiation Dose (MIRD) method after calculating cumulated activities in each organ. Our prediction shows that a 185-MBq injection of (67)Ga-ECC into the humans might result in an estimated absorbed dose of 0.029 mGy in the whole body. The highest absorbed doses are observed in the spleen and liver with 33.766 and 16.847 mGy, respectively. The results show that this radiopharmaceutical can be a good SPECT tracer since it can be produced easily and also the absorbed dose in each organ is less than permitted absorbed dose.

  10. Case control study to assess the possibility of decrease the risk of osteoradionecrosis in relation to the dose of radiation absorbed by the jaw

    PubMed Central

    Carini, Fabrizio; Bucalo, Concetta; Saggese, Vito; Monai, Dario; Porcaro, Gianluca

    2012-01-01

    Summary Aims the assessment of the limit dose for the organs at risk in external radiotherapy is a fundamental step to guarantee an optimal risk-benefit ratio. The aim of this study was to assess, through contouring the single dental cavities, the absorbed radiation dose on irradiated alveolar bones during the treatment of cervico-facial tumours, so as to test the correlation between the absorbed dose of radiation at alveolar level and the level of individual surgical risk for osteonecrosis. Materials and methods we selected 45 out of 89 patients on the basis of different exclusion criteria. Nine of these patients showed evidence of osteoradionecrosis. The patients were treated either with 3D conformational radiation therapy (3D-CRT) or with intensity-modulated radiation therapy (IMRT), there after alveolar bones were contoured using computed axial tomography (CAT scans) carried out following oncological and dental treatment. The dose-volume histograms (DVH) were obtained on the basis of such data, which included those relating to the dental cavities in addition to those inherent to the tumours and the organs at risk. Results all patients, irrespective of type of treatment, received an average of 60 to 70 grays in 30/35 sittings. The patients treated with IMRT showed higher variation in absorbed radiation dose than those treated with 3D-CRT. The alveolar encirclement allowed the assessment of the absorbed radiation dose, and consequently it also allowed to assess the individual surgical risk for osteonecrosis in patients with head and neck tumours who underwent radiography treatment. Conclusions the study of DVH allows the assessment of limit dose and the detection of the areas at greater risk for osteoradionecrosis before dental surgery. PMID:23285316

  11. Evaluation of energy absorbers for use in a roadside/median barrier.

    DOT National Transportation Integrated Search

    2014-02-01

    Several types of elastomeric energy absorbers were evaluated for use in a Manual for Assessing Safety Hardware (MASH) : Test Level 4 (TL-4) energy-absorbing, urban roadside/median barrier. Twelve dynamic bogie tests were conducted on 60- : and 80-dur...

  12. Primary DNA damage assessed with the comet assay and comparison to the absorbed dose of diagnostic X-rays in children.

    PubMed

    Milkovic, Durdica; Garaj-Vrhovac, Vera; Ranogajec-Komor, Mária; Miljanic, Saveta; Gajski, Goran; Knezevic, Zeljka; Beck, Natko

    2009-01-01

    The aim of this work is to assess DNA damage in peripheral blood lymphocytes of children prior to and following airway X-ray examinations of the chest using the alkaline comet assay and to compare data with the measured absorbed dose. Twenty children with pulmonary diseases, between the ages of 5 and 14 years, are assessed. Absorbed dose measurements are conducted for posterior-anterior projection on the forehead, thyroid gland, gonads, chest, and back. Doses are measured using thermoluminescent and radiophotoluminescent dosimetry systems. Differences between tail lengths, tail intensity, and tail moments as well as for the long-tailed nuclei before and after exposures are statistically significant and are dependent on the individual. The results demonstrate the usefulness of the comet assay as a measure of X-ray damage to lymphocytes in a clinical setting. Doses measured with both dosimeters show satisfactory agreement (0.01 mSv) and are suitable for dosimetric measurements in X-ray diagnostics.

  13. Assessment, Selection, Use, and Evaluation of Body-Worn Absorbent Products for Adults With Incontinence: A WOCN Society Consensus Conference.

    PubMed

    Gray, Mikel; Kent, Dea; Ermer-Seltun, JoAnn; McNichol, Laurie

    The Wound, Ostomy and Continence Nurses (WOCN) Society charged a task force with creating recommendations for assessment, selection, use, and evaluation of body-worn absorbent products. The 3-member task force, assisted by a moderator with knowledge of this area of care, completed a scoping literature review to identify recommendations supported by adequate research to qualify as evidence-based, and area of care where evidence needed to guide care was missing. Based on findings of this scoping review, the Society then convened a panel of experts to develop consensus statements guiding assessment, use, and evaluation of the effect of body-worn absorbent products for adults with urinary and/or fecal incontinence. These consensus-based statements underwent a second round of content validation using a modified Delphi technique using a different panel of clinicians with expertise in this area of care. This article reports on the scoping review and subsequent evidence-based statements, along with generation and validation of consensus-based statements that will be used to create an algorithm to aid clinical decision making.

  14. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  15. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  16. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  17. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  18. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  19. Monte Carlo Assessments of Absorbed Doses to the Hands of Radiopharmaceutical Workers Due to Photon Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan; Eckerman, Keith F; Karagiannis, Harriet

    This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters that are used to show compliance with applicable regulations may overestimate or underestimate radiation doses to the skin depending on the nature of the particular procedure and the radionuclide being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations of realistic configurations typical for workers handling radiopharmaceuticals weremore » performedfor a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from dosimeter readings when dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less

  20. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  1. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  2. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  3. Exploring the relationship between skin property and absorbent pad environment.

    PubMed

    Shigeta, Yoshie; Nakagami, Gojiro; Sanada, Hiromi; Oba, Miho; Fujikawa, Junko; Konya, Chizuko; Sugama, Junko

    2009-06-01

    The aim of this study is to identify the related factors of skin lesions found in the surrounding environment of absorbent pads by clinical investigation. Most older patients with incontinence use absorbent products, therefore causing many patients to have skin lesion in the absorbent pad area. To prevent these skin lesions from occurring, it is necessary to examine the absorbent pad environment of clinical patients since there are many contributing factors that complicate the pathophysiology in this area. A cross-sectional design was used. One hundred older Japanese patients with faecal and/or urinary incontinence using diapers and absorbent pads participated. Excluding blanchable erythema, the presence of skin lesions in the absorbent pad area was confirmed. Skin pH, hydration level and bacterial cultures were used to assess the skin property. Absorbent pad environment and patient demographics were also investigated. The overall prevalence of skin lesions was 36%. Forty percent of the skin lesions were contact dermatitis. Multivariate logistic regression analysis revealed that only the presence of diarrhoea independently affected contact dermatitis. There was a significant relationship between contact dermatitis and the use of absorbent pads when the patient had diarrhoea. Although the factors related to skin lesions in the absorbent pad area are complexly intertwined, this study was the first to be able to determine diarrhoea as one specific factor in clinical setting. This finding suggests that the presence of diarrhoea is significantly related with contact dermatitis. Therefore, when a patient has diarrhoea, health-care professionals should immediately implement a preventative care program which includes careful skin observation and improved skin care. It is also necessary to develop a more effective absorbent pad to protect the skin of incontinent patients who suffer from the irritating effects of liquid stool.

  4. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  5. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  6. UV absorbers for cellulosic apparels: A computational and experimental study

    NASA Astrophysics Data System (ADS)

    Sahar, Anum; Ali, Shaukat; Hussain, Tanveer; Irfan, Muhammad; Eliasson, Bertil; Iqbal, Javed

    2018-01-01

    Two triazine based Ultra Violet (UV) absorbers Sulfuric acid mono-(2-{4-[4-chloro-6-(4-{4-chloro-6-[4-(2-sulfooxy-ethanesulfonyl)-phenylamino]-[1,3,5] triazin-2-ylamino-phenylamino)-[1,3,5]triazin-2-ylamino]-benzenesulfonyl}-ethyl) ester (1a) and 4-{4-chloro-6-[4-(2-sulfooxy-ethanesulfonyl)-phenylamino]-[1,3,5] triazin-2-ylamino}-2-[4-chloro-6-(2-sulfooxy-ethanesulfonyl)-[1,3,5]triazin-2-ylamino]-benzenesulfonic acid (2a) with different substituents were designed computationally. The influence of different substituents on the electrochemical properties and UV spectra of the absorbers was investigated. The presence of electron deficient unit in 1a to the molecular core significantly reduces the LUMO levels and energy gap. The designed absorbers were synthesized via condensation reaction and characterized by UV-Vis, FT-IR, MS studies. The performance of synthesized compounds as UV absorbers and their fastness properties were assessed by finishing the cotton fabric through exhaust method at different concentration and results appeared in good range.

  7. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  8. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  9. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    NASA Astrophysics Data System (ADS)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  10. Mechanical energy absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor)

    1993-01-01

    An energy absorbing system for controlling the force where a moving object engages a stationary stop and where the system utilized telescopic tubular members, energy absorbing diaphragm elements, force regulating disc springs, and a return spring to return the telescoping member to its start position after stroking is presented. The energy absorbing system has frusto-conical diaphragm elements frictionally engaging the shaft and are opposed by a force regulating set of disc springs. In principle, this force feedback mechanism serves to keep the stroking load at a reasonable level even if the friction coefficient increases greatly. This force feedback device also serves to desensitize the singular and combined effects of manufacturing tolerances, sliding surface wear, temperature changes, dynamic effects, and lubricity.

  11. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2012-04-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  12. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  13. Alterations of pulsation absorber characteristics in experimental hydrocephalus.

    PubMed

    Park, Eun-Hyoung; Dombrowski, Stephen; Luciano, Mark; Zurakowski, David; Madsen, Joseph R

    2010-08-01

    Analysis of waveform data in previous studies suggests that the pulsatile movement of CSF may play a role in attenuating strong arterial pulsations entering the cranium, and its effectiveness in attenuating these pulsations may be altered by changes in intracranial pressure (ICP). These findings were obtained in studies performed in canines with normal anatomy of the CSF spaces. How then would pulsation absorbance respond to changes in CSF movement under obstructive conditions such as the development of hydrocephalus? In the present study, chronic obstructive hydrocephalus was induced by the injection of cyanoacrylate gel into the fourth ventricle of canines, and pulsation absorbance was compared before and after hydrocephalus induction. Five animals were evaluated with simultaneous recordings of ICP and arterial blood pressure (ABP) before and at 4 and 12 weeks after fourth ventricle obstruction by cyanoacrylate. To assess how the intracranial system responds to the arterial pulsatile component, ABP and ICP waveforms recorded in a time domain had to be analyzed in a frequency domain. In an earlier study the authors introduced a particular technique that allows characterization of the intracranial system in the frequency domain with sufficient accuracy and efficiency. This same method was used to analyze the relationship between ABP and ICP waveforms recorded during several acute states including hyperventilation as well as CSF withdrawal and infusion under conditions before and after inducing chronic obstructive hydrocephalus. Such a relationship is reflected in terms of a gain, which is a function of frequency. The cardiac pulsation absorbance (CPA) index, which is simply derived from a gain evaluated at the cardiac frequency, was used to quantitatively evaluate the changes in pulsation absorber function associated with the development of hydrocephalus within each of the animals, which did become hydrocephalic. To account for normal and hydrocephalic conditions

  14. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  15. Intrascleral outflow after deep sclerectomy with absorbable and non-absorbable implants in the rabbit eye.

    PubMed

    Kałużny, Jakub J; Grzanka, Dariusz; Wiśniewska, Halina; Niewińska, Alicja; Kałużny, Bartłomiej J; Grzanka, Alina

    2012-10-01

    The purpose of the study is an analysis of intrascleral drainage vessels formed in rabbits' eyes after non-penetrating deep sclerectomy (NPDS) with absorbable and non-absorbable implants, and comparison to eyes in which surgery was performed without implanted material. NPDS was carried out in 12 rabbits, with implantation of non-absorbable methacrylic hydrogel (N=10 eyes) or absorbable cross-linked sodium hyaluronate (N=6 eyes), or without any implant (N=8 eyes). All the animals were euthanized 1 year after surgery. Twenty-one eyeballs were prepared for light microscopy and 3 were prepared for transmission electron microscope (TEM) analysis. Aqueous humour pathways were stained with ferritin in 6 eyeballs. By light microscopy, small vessels adjacent to the areas of scarring were the most common abnormality. Vessel density was significantly higher in operated sclera compared to normal, healthy tissue, regardless of the type of implant used. The average vessel densities were 2.18±1.48 vessels/mm2 in non-implanted sclera, 2.34±1.69 vessels/mm2 in eyes with absorbable implants, and 3.64±1.78 vessels/mm2 in eyes with non-absorbable implants. Analysis of iron distribution in ferritin-injected eyes showed a positive reaction inside new aqueous draining vessels in all groups. TEM analysis showed that the ultrastructure of new vessels matched the features of the small veins. Aqueous outflow after NPDS can be achieved through the newly formed network of small intrascleral veins. Use of non-absorbable implants significantly increases vessel density in the sclera adjacent to implanted material compared to eyes in which absorbable implants or no implants were used.

  16. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  17. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    DOEpatents

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  18. [Study of new blended chemical absorbents to absorb CO2].

    PubMed

    Wang, Jin-Lian; Fang, Meng-Xiang; Yan, Shui-Ping; Luo, Zhong-Yang; Cen, Ke-Fa

    2007-11-01

    Three kinds of blended absorbents were investigated on bench-scale experimental bench according to absorption rate and regeneration grade to select a reasonable additive concentration. The results show that, among methyldiethanolamine (MDEA) and piperazine (PZ) mixtures, comparing MDEA : PZ = 1 : 0.4 (m : m) with MDEA : PZ = 1 : 0.2 (m : m), the absorption rate is increased by about 70% at 0.2 mol x mol(-1). When regeneration lasting for 40 min, regeneration grade of blended absorbents with PZ concentration of 0.2, 0.4, and 0.8 is decreased to 83.06%, 77.77% and 76.67% respectively while 91.04% for PZ concentration of 0. MDEA : PZ = 1 : 0.4(m : m) is a suitable ratio for MDEA/PZ mixtures as absorption and regeneration properties of the blended absorbents are all improved. The aqueous blends with 10% primary amines and 2% tertiary amines could keep high CO2 absorption rate, and lower regeneration energy consumption. Adding 2% 2-Amino-2-methyl-1-propanol (AMP) to 10% diethanolamine (DEA), the blended amine solvents have an advantage in absorption and regeneration properties over other DEA/AMP mixtures. Blended solvents, which consist of a mixture of primary amines with a small amount of tertiary amines, have the highest absorption rate among the three. And mixed absorbents of secondary amines and a small amount of sterically hindered amines have the best regeneration property. To combine absorption and regeneration properties, blends with medium activator addition to tertiary amines are competitive.

  19. Shock absorber servicing tool

    NASA Technical Reports Server (NTRS)

    Koepler, Jack L. (Inventor); Hill, Robert L. (Inventor)

    1981-01-01

    A tool to assist in the servicing of a shock absorber wherein the shock absorber is constructed of a pair of aligned gas and liquid filled chambers. Each of the chambers is separated by a movable separator member. Maximum efficiency of the shock absorber is achieved in the locating of a precise volume of gas within the gas chamber and a precise volume of liquid within the liquid chamber. The servicing tool of this invention employs a rod which is to connect with the separator and by observation of the position of the rod with respect to the gauge body, the location of the separator is ascertained even though it is not directly observable.

  20. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  1. Shock Absorbing System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A lightweight, inexpensive shock-absorbing system, developed by Langley Research Center 20 years ago, is now in service as safety device for an automated railway at Duke University Medical Center. The transportation system travels at about 25 miles per hour, carrying patients, visitors, staff and cargo. At the end of each guideway of the system are "frangible," (breakable) tube "buffers." If a slowing car fails to make a complete stop at the terminal, it would bump and shatter the tubes, absorbing energy that might otherwise jolt the passengers or damage the vehicle.

  2. Carbon Absorber Retrofit Equipment (CARE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Eric

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO 2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO 2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO 2 removal was achieved with greater thanmore » 95% CO 2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO 2 captured from a sub-critical PC plant.« less

  3. Absorbent product and articles made therefrom

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multilayer absorbent product for use in contact with the skin to absorb fluids is described. The product has a water pervious facing layer for contacting the skin, and a first fibrous wicking layer overlaying the water pervious layer. A first container section is defined by inner and outer layers of a water pervious wicking material in between a first absorbent mass and a second container section defined by inner and outer layers of a water pervious wicking material between what is disposed a second absorbent mass, and a liquid impermeable/gas permeable layer overlaying the second fibrous wicking layer.

  4. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  5. Wideband acoustic absorbance in children with Down syndrome.

    PubMed

    Durante, Alessandra Spada; Santos, Mayara; Roque, Nayara M C de F; Gameiro, Marcella S; Almeida, Katia de; Sousa Neto, Osmar Mesquita de

    2018-01-10

    Tympanometry is currently the most frequently used tool for assessing the status of the middle ear, commonly assessed using a single 226Hz tone. However, the use of the Acoustic Immittance Measures with a wideband stimulus is a promising high-resolution evaluation, especially in individuals known to have middle ear alterations, such as Down syndrome patients. The aim of this study was to analyze the acoustic absorbance measurements in children with Down syndrome. Cross-sectional study, approved by the institution's ethics committee. Data were collected from 30 children, with a mean age of 8.4 years, 15 with Down syndrome (DS-study group) and 15 children with typical development and no hearing complaints (control group). Energy absorbance was measured at frequencies of 226-8000Hz at ambient pressure and at peak pressure as a function of frequency using TITAN equipment. Statistical analysis was performed using the established level of statistical significance of 5%. With the 226Hz probe tone, 30 ears of the control group and 22 of the study group exhibited Type A tympanograms, whereas Type B was observed in eight children in the study group. The mean acoustic absorbance ratio of the study group was lower than that of the control group at frequencies centered at 2520Hz (p=0.008) for those with normal tympanometry results, and 226-4000Hz (p<0.03) for those with a Type B tympanometry curve. The low energy absorption in the presence of normal tympanograms in children with Down syndrome may suggest middle ear abnormalities. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  6. Solar sustained plasma/absorber conceptual design

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.; Krascella, N. L.; Kendall, J. S.

    1979-01-01

    A space power system concept was evaluated which uses concentrated solar energy to heat a working fluid to temperatures as high as 4000 K. The high temperature working fluid could be used for efficient electric power production in advanced thermal or magnetohydrodynamic conversion cycles. Energy absorber configurations utilizing particles or cesium vapor absorber material were investigaed. Results of detailed radiant heat transfer calculations indicated approximately 86 percent of the incident solar energy could be absorbed within a 12-cm-dia flowing stream of gas borne carbon particles. Calculated total energy absorption in the cesium vapor seeded absorber configuration ranged from 34 percent to 64 percent of the incident solar energy. Solar flux concentration ratios of between approximately 3000 and 10,000 will be required to sustain absorber temperatures in the range from 3000 K to 4000 K.

  7. Structured Metal Film as Perfect Absorber

    NASA Astrophysics Data System (ADS)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  8. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  9. Plumbing system shock absorbers as a source of Legionella pneumophila.

    PubMed

    Memish, Z A; Oxley, C; Contant, J; Garber, G E

    1992-12-01

    Water distribution systems have been demonstrated to be a major source of nosocomial legionellosis. We describe an outbreak in our institution in which a novel source of Legionella pneumophila was identified in the plumbing system. After an outbreak of 10 cases of legionellosis in our hospital, recommended measures including superheating of the hot water to 80 degrees C, hyperchlorination to 2 ppm, and flushing resulted in no new cases in the following 5 years. Recently, despite these control measures, three new cases occurred. Surveillance cultures of shower heads and water tanks were negative; cultures of tap water samples remained positive. This prompted a search for another reservoir. Shock absorbers installed within water pipes to decrease noise were suspected. One hundred twenty-five shock absorbers were removed and cultured. A total of 13 (10%) yielded heavy growth of L. pneumophila (serogroup 1). Since their removal, no new cases have been found and the percentage of positive results of random tap water culture has dropped from 20% to 5%. This is the first report that identifies shock absorbers as a possible reservoir for L. pneumophila. We recommend that institutions with endemic legionellosis assess the water system for possible removal of shock absorbers.

  10. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  11. Dynamic testing of airplane shock-absorbing struts

    NASA Technical Reports Server (NTRS)

    Langer, P; Thome, W

    1932-01-01

    Measurement of perpendicular impacts of a landing gear with different shock-absorbing struts against the drum testing stand. Tests were made with pneumatic shock absorbers having various degrees of damping, liquid shock absorbers, steel-spring shock absorbers and rigid struts. Falling tests and rolling tests. Maximum impact and gradual reduction of the impacts in number and time in the falling tests. Maximum impact and number of weaker impacts in rolling tests.

  12. Impedance approach to designing efficient vibration energy absorbers

    NASA Astrophysics Data System (ADS)

    Bobrovnitskii, Y. I.; Morozov, K. D.; Tomilina, T. M.

    2017-03-01

    The concept introduced previously by the authors on the best sound absorber having the maximum allowable efficiency in absorbing the energy of an incident sound field has been extended to arbitrary linear elastic media and structures. Analytic relations have been found for the input impedance characteristics that the best vibrational energy absorber should have. The implementation of these relations is the basis of the proposed impedance method of designing efficient vibration and noise absorbers. We present the results of a laboratory experiment that confirms the validity of the obtained theoretical relations, and we construct the simplest best vibration absorber. We also calculate the parameters and demonstrate the efficiency of a dynamic vibration absorber as the best absorber.

  13. Absorbable synthetic versus catgut suture material for perineal repair

    PubMed Central

    Kettle, Christine

    2014-01-01

    Background Approximately 70% of women will experience some degree of perineal trauma following vaginal delivery and will require stitches. This may result in perineal pain and superficial dyspareunia. Objectives The objective of this review was to assess the effects of absorbable synthetic suture material as compared with catgut on the amount of short and long term pain experienced by mothers following perineal repair. Search strategy We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register. Selection criteria Randomised trials comparing absorbable synthetic (polyglycolic acid and polyglactin) with plain or chromic catgut suture for perineal repair in mothers after vaginal delivery. Data collection and analysis Trial quality was assessed independently by two reviewers. Data were extracted by one reviewer and checked by the second reviewer. Main results Eight trials were included. Compared with catgut, the polyglycolic acid and polyglactin groups were associated with less pain in first three days (odds ratio 0.62, 95% confidence interval 0.54 to 0.71). There was also less need for analgesia (odds ratio 0.63, 95% confidence interval 0.52 to 0.77) and less suture dehiscence (odds ratio 0.45, 95% confidence interval 0.29 to 0.70). There was no significant difference in long term pain (odds ratio 0.81, 95% confidence interval 0.61 to 1.08). Removal of suture material was significantly more common in the polyglycolic acid and polyglactin groups (odds ratio 2.01, 95% confidence interval 1.56 to 2.58). There was no difference in the amount of dyspareunia experienced by women. Authors’ conclusions Absorbable synthetic suture material (in the form of polyglycolic acid and polyglactin sutures) for perineal repair following childbirth appears to decrease women’s experience of short-term pain. The length of time taken for the synthetic material to be absorbed is of concern. A trial addressing the use of polyglactin has recently been completed and this has

  14. Composite neutron absorbing coatings for nuclear criticality control

    DOEpatents

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  15. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  16. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  17. Two-dimensional QR-coded metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zhang, Jieqiu; Qu, Shaobo

    2016-01-01

    In this paper, the design of metamaterial absorbers is proposed based on QR coding and topology optimization. Such absorbers look like QR codes and can be recognized by decoding softwares as well as mobile phones. To verify the design, two lightweight wideband absorbers are designed, which can achieve wideband absorption above 90 % in 6.68-19.30 and 7.00-19.70 GHz, respectively. More importantly, polarization-independent absorption over 90 % can be maintained under incident angle within 55°. The QR code absorber not only can achieve wideband absorption, but also can carry information such as texts and Web sites. They are of important values in applications such identification and electromagnetic protection.

  18. Assessing the role of hydrogen in Fermi-level pinning in chalcopyrite and kesterite solar absorbers from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Varley, J. B.; Lordi, V.; Ogitsu, T.; Deangelis, A.; Horsley, K.; Gaillard, N.

    2018-04-01

    Understanding the impact of impurities in solar absorbers is critical to engineering high-performance in devices, particularly over extended periods of time. Here, we use hybrid functional calculations to explore the role of hydrogen interstitial (Hi) defects in the electronic properties of a number of attractive solar absorbers within the chalcopyrite and kesterite families to identify how this common impurity may influence device performance. Our results identify that Hi can inhibit the highly p-type conditions desirable for several higher-band gap absorbers and that H incorporation could detrimentally affect the open-circuit voltage (Voc) and limit device efficiencies. Additionally, we find that Hi can drive the Fermi level away from the valence band edge enough to lead to n-type conductivity in a number of chalcopyrite and kesterite absorbers, particularly those containing Ag rather than Cu. We find that these effects can lead to interfacial Fermi-level pinning that can qualitatively explain the observed performance in high-Ga content CIGSe solar cells that exhibit saturation in the Voc with increasing band gap. Our results suggest that compositional grading rather than bulk alloying, such as by creating In-rich surfaces, may be a better strategy to favorably engineering improved thin-film photovoltaics with larger-band gap absorbers.

  19. On the definition of absorbed dose

    NASA Astrophysics Data System (ADS)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  20. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  1. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  2. Pressurized Wideband Absorbance Findings in Healthy Neonates: A Preliminary Study

    ERIC Educational Resources Information Center

    Wali, Hamzah A.; Mazlan, Rafidah; Kei, Joseph

    2017-01-01

    Purpose: The present study aimed to establish normative data for wideband absorbance (WBA) measured at tympanometric peak pressure (TPP) and 0 daPa and to assess the test-retest reliability of both measurements in healthy neonates. Method: Participants of this cross-sectional study included 99 full-term neonates (165 ears) with mean chronological…

  3. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  4. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  5. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  6. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  7. Frequency Tuning of Vibration Absorber Using Topology Optimization

    NASA Astrophysics Data System (ADS)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  8. Reflection by absorbing periodically stratified media

    NASA Astrophysics Data System (ADS)

    Lekner, John

    2014-03-01

    Existing theory gives the optical properties of a periodically stratified medium in terms of a two by two matrix. This theory is valid also for absorbing media, because the matrix remains unimodular. The main effect of absorption is that the reflection (of either polarization) becomes independent of the number of periods N, and of the substrate properties, provided N exceeds a certain value which depends on the absorption. The s and p reflections are then given by simple formulae. The stop-band structure, which gives total reflection in bands of frequency and angle of incidence in the non-absorbing case, remains influential in weakly absorbing media, causing strong variations in reflectivity. The theory is applied to the frequency dependence of the normal-incidence reflectivity of a quarter-wave stack in which the high-index and low-index layers both absorb weakly. Analytical expressions are obtained for the frequency at which the reflectivity is maximum, the maximum reflectivity, and also for the reflectivity at the band edges of the stop band of the non-absorbing stack.

  9. 21 CFR 880.5300 - Medical absorbent fiber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical absorbent fiber. 880.5300 Section 880.5300...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5300 Medical absorbent fiber. (a) Identification. A medical absorbent fiber is a device...

  10. 21 CFR 880.5300 - Medical absorbent fiber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical absorbent fiber. 880.5300 Section 880.5300...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5300 Medical absorbent fiber. (a) Identification. A medical absorbent fiber is a device...

  11. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    PubMed

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.

  12. Electrical tree initiation in polyethylene absorbing Penning gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, N.; Tohyama, N.; Sato, H.

    1996-12-31

    Ac tree initiation voltage was examined in untreated LDPE, vacuum degassed LDPE and LDPE absorbing He gas (He gas was absorbed after vacuum degassing). The authors have already reported that vacuum degassed LDPE shows much higher tree initiation voltage than untreated one because of absence of oxygen. Therefore they expected that LDPE absorbing He shows the same property with vacuum degassed LDPE. However tree initiation voltage of LDPE absorbing He is as low as that of untreated LDPE. LDPE absorbing Ar gas shows the same tendency. He or Ar gas does not change so much impulse tree initiation voltage. LDPEmore » absorbing He was not well dyed with methylene blue after ac voltage application, which indicates that active oxidation does not occur. Low ac tree initiation voltage in LDPE absorbing He or Ar may be caused by Penning ionization in free volume.« less

  13. Vibration analysis on compact car shock absorber

    NASA Astrophysics Data System (ADS)

    Tan, W. H.; Cheah, J. X.; Lam, C. K.; Lim, E. A.; Chuah, H. G.; Khor, C. Y.

    2017-10-01

    Shock absorber is a part of the suspension system which provides comfort experience while driving. Resonance, a phenomenon where forced frequency is coinciding with the natural frequency has significant effect on the shock absorber itself. Thus, in this study, natural frequencies of the shock absorber in a 2 degree-of-freedom system were investigated using Wolfram Mathematica 11, CATIA, and ANSYS. Both theoretical and simulation study how will the resonance affect the car shock absorber. The parametric study on the performance of shock absorber also had been conducted. It is found that the failure tends to occur on coil sprung of the shock absorber before the body of the shock absorber is fail. From mathematical modelling, it can also be seen that higher vibration level occurred on un-sprung mass compare to spring mass. This is due to the weight of sprung mass which could stabilize as compared with the weight of un-sprung mass. Besides that, two natural frequencies had been obtained which are 1.0 Hz and 9.1 Hz for sprung mass and un-sprung mass respectively where the acceleration is recorded as maximum. In conclusion, ANSYS can be used to validate with theoretical results with complete model in order to match with mathematical modelling.

  14. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  15. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  16. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  17. PT-symmetric laser absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano

    2010-09-15

    In a recent work, Y. D. Chong et al. [Phys. Rev. Lett. 105, 053901 (2010)] proposed the idea of a coherent perfect absorber (CPA) as the time-reversed counterpart of a laser, in which a purely incoming radiation pattern is completely absorbed by a lossy medium. The optical medium that realizes CPA is obtained by reversing the gain with absorption, and thus it generally differs from the lasing medium. Here it is shown that a laser with an optical medium that satisfies the parity-time (PT) symmetry condition {epsilon}(-r)={epsilon}*(r) for the dielectric constant behaves simultaneously as a laser oscillator (i.e., it canmore » emit outgoing coherent waves) and as a CPA (i.e., it can fully absorb incoming coherent waves with appropriate amplitudes and phases). Such a device can thus be referred to as a PT-symmetric CPA laser. The general amplification or absorption features of the PT CPA laser below lasing threshold driven by two fields are determined.« less

  18. Gold absorbing film for a composite bolometer

    NASA Technical Reports Server (NTRS)

    Dragovan, M.; Moseley, S. H.

    1984-01-01

    The principles governing the design of metal films are reviewed, with attention also given to the choice of metals. A description is then given of the characteristics of a bolometer with a gold absorbing film. It is demonstrated that gold is effective as an absorbing film for a millimeter bolometer operated at 1.5 K. At 1.5 K, gold is significantly better than bismuth since gold has a lower heat capacity for the absorbing film. At 0.3 K, gold and bismuth are both suitable. It is pointed out that at temperatures below 0.3 K, a superconducting absorbing film can have a heat capacity low enough not to dominate the heat capacity of the detector; for this reason, it may give better performance than a nonsuperconducting absorbing film.

  19. Energy absorber for the CETA

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1994-01-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  20. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a devic...

  1. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorbent. 868.5300 Section 868.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a...

  2. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorbent. 868.5300 Section 868.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a...

  3. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a devic...

  4. Mushroom plasmonic metamaterial infrared absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke; Hata, Hisatoshi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved bymore » isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.« less

  5. Shock absorber operates over wide range

    NASA Technical Reports Server (NTRS)

    Creasy, W. K.; Jones, J. C.

    1965-01-01

    Piston-type hydraulic shock absorber, with a metered damping system, operates over a wide range of kinetic energy loading rates. It is used for absorbing shock and vibration on mounted machinery and heavy earth-moving equipment.

  6. Design of a nonlinear torsional vibration absorber

    NASA Astrophysics Data System (ADS)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  7. Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  8. Pilot in vivo study of an absorbable polydioxanone vena cava filter.

    PubMed

    Eggers, Mitchell D; McArthur, Mark J; Figueira, Tomas A; Abdelsalam, Mohamed E; Dixon, Katherine P; Pageon, Laura R; Wallace, Michael J; Huang, Steven Y

    2015-10-01

    The objectives of this study were to evaluate tensile strength retention of polydioxanone as a function of time in a swine venous system and to assess the feasibility of an absorbable inferior vena cava (IVC) filter made from polydioxanone in a pilot swine study. Twenty strands (60 cm each) of size 1 polydioxanone absorbable suture (Ethicon, Somerville, NJ) were placed in the central venous system of domestic swine. Strands were harvested at weekly intervals during 10 weeks for tensile strength testing. Results were compared with control samples obtained from an in vitro engineered circulation system containing sodium phosphate buffer solution. Three IVC filters braided from polydioxanone suture were also catheter deployed in three swine to assess absorbable IVC filter feasibility. Polydioxanone retained 82% tensile strength in vitro vs 79% in vivo at 35 days (P > .22), the desired prophylactic duration. For IVC filters made from polydioxanone, technical success of placement was achieved in all three filters deployed (100%). Autologous thrombus deployed inferior to the filter remained trapped in the filter until thrombus resorption, with no evidence of pulmonary emboli on follow-up computed tomography. There were no instances of caval penetration, filter-induced IVC thrombosis, filter migration, or tilt >15 degrees with imaging and clinical follow-up carried out to 32 weeks. Strength retention of polydioxanone suture placed in the venous system of swine is similar to earlier in vitro studies out to 10 weeks (P > .06 for all weeks) and is more than sufficient (8.20 ± 0.37 kg mean load at break for size 1) to trap thrombus. Pilot animal study suggests that an absorbable polydioxanone IVC filter can be catheter deployed to capture and to hold iatrogenically administered autologous thrombus through resorption. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  9. Cost--utility analysis of a shock-absorbing floor intervention to prevent injuries from falls in hospital wards for older people.

    PubMed

    Latimer, Nicholas; Dixon, Simon; Drahota, Amy Kim; Severs, Martin

    2013-09-01

    hospital falls place a substantial burden on healthcare systems. There has been limited research into the use of hospital flooring as an intervention against fall-related injuries. to assess the cost-effectiveness of shock-absorbing flooring compared with standard hospital flooring in hospital wards for older people. a cost-utility analysis was undertaken drawing upon data collected in a pilot cluster randomised controlled trial and the wider literature. the trial included eight hospital sites across England. Four sites installed shock-absorbing flooring in one bay, and four maintained their standard flooring. falls and resulting injuries and treatment were reported by hospital staff. Data on destination of discharge were collected. Patients were followed up at 3 months and further resource use data were collected. Health-related quality of life was assessed, allowing quality-adjusted life years (QALYs) to be estimated. The incremental cost-effectiveness ratio of the shock-absorbing flooring was assessed compared with the standard hospital flooring. in the base case, the shock-absorbing flooring was cost saving, but generated QALY losses due to an increase in the faller rate reported in the intervention arm. Scenario analysis showed that if the shock-absorbing flooring does not increase the faller rate it is likely to represent a dominant economic strategy-generating cost savings and QALY gains. the shock-absorbing flooring intervention has the potential to be cost-effective but further research is required on whether the intervention flooring results in a higher faller rate than standard flooring.

  10. Performance evaluation of CFRP-rubber shock absorbers

    NASA Astrophysics Data System (ADS)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  11. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  12. Performance evaluation of CFRP-rubber shock absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamanna, Giuseppe, E-mail: giuseppe.lamanna@unina2.it; Sepe, Raffaele, E-mail: giuseppe.lamanna@unina2.it

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in themore » case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.« less

  13. A Flexible Metamaterial Terahertz Perfect Absorber

    NASA Astrophysics Data System (ADS)

    Chen, X. R.; Zheng, Y. W.; Qin, L. M.; Wei, G. C.; Qin, Z. P.; Zhang, N. G.; Liu, K.; Li, S. Z.; Wang, S. X.

    2017-12-01

    We designed a THz matematerial absorber using metallic wires (MWs) and split resonant rings (SRRs). This matematerial absorber exhibits perfect absorption which up to 96% at 4.03 THz and is capable of wrapped around objects because of flexible polyimide dielectric substrate.

  14. Determination of decay coefficients for combustors with acoustic absorbers

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.; Espander, W. R.; Baer, M. R.

    1972-01-01

    An analytical technique for the calculation of linear decay coefficients in combustors with acoustic absorbers is presented. Tuned circumferential slot acoustic absorbers were designed for the first three transverse modes of oscillation, and decay coefficients for these absorbers were found as a function of backing distance for seven different chamber configurations. The effectiveness of the absorbers for off-design values of the combustion response and acoustic mode is also investigated. Results indicate that for tuned absorbers the decay coefficient increases approximately as the cube of the backing distance. For most off-design situations the absorber still provides a damping effect. However, if an absorber designed for some higher mode of oscillation is used to damp lower mode oscillations, a driving effect is frequently found.

  15. Low temperature selective absorber research

    NASA Astrophysics Data System (ADS)

    Herzenberg, S. A.; Silberglitt, R.

    1982-04-01

    Research carried out since 1979 on selective absorbers is surveyed, with particular attention given to the low-temperature coatings seen as promising for flat plate and evacuated tube applications. The most thoroughly investigated absorber is black chrome, which is highly selective and is the most durable low-temperature absorber. It is believed that other materials, because of their low cost and lower content of strategic materials, may eventually supplant black chrome. Among these candidates are chemically converted black nickel; anodically oxidized nickel, zinc, and copper composites; and nickel or other low-cost multilayer coatings. In reviewing medium and high-temperature research, black chrome, multilayer coatings and black cobalt are seen as best medium-temperature candidates. For high temperatures, an Al2O3/Pt-Al203 multilayer composite or the zirconium diboride coating is preferred.

  16. Ultrasensitive sensing with three-dimensional terahertz metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Tan, Siyu; Yan, Fengping; Wang, Wei; Zhou, Hong; Hou, Yafei

    2018-05-01

    Planar metasurfaces and metamaterial absorbers have shown great promise for label-free sensing applications at microwaves, optical and terahertz frequencies. The realization of high-quality-factor resonance in these structures is of significant interest to enhance the sensing sensitivities to detect minute frequency shifts. We propose and demonstrate in this manuscript an ultrasensitive terahertz metamaterial absorber sensor based on a three-dimensional split ring resonator absorber with a high quality factor of 60.09. The sensing performance of the proposed absorber sensor was systematically investigated through detailed numerical calculations and a maximum refractive index sensitivity of 34.40% RIU‑1 was obtained. Furthermore, the absorber sensor can maintain a high sensitivity for a wide range of incidence angles up to 60° under TM polarization incidence. These findings would improve the design flexibility of the absorber sensors and further open up new avenues to achieve ultrasensitive sensing in the terahertz regime.

  17. Method of absorbance correction in a spectroscopic heating value sensor

    DOEpatents

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  18. Non-absorbed Antibiotics for IBS

    DTIC Science & Technology

    2012-03-16

    absorbed antibiotic rifaximin for nonconstipated irritable bowel syndrome (IBS). This effort adds to the body of literature from other, smaller studies that...have demonstrated clinical efficacy for IBS with rifaximin . Non-absorbed antibiotics have been endorsed by the American College of Gastroenterology... rifaximin 400 mg three times daily for 10 days or placebo. During the initial 2 weeks of therapy and the subsequent 10 weeks of follow-up rifaximin

  19. Adaptive inertial shock-absorber

    NASA Astrophysics Data System (ADS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-03-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated.

  20. An Energy Absorber for the International Space Station

    NASA Technical Reports Server (NTRS)

    Wilkes, Bob; Laurence, Lora

    2000-01-01

    The energy absorber described herein is similar in size and shape to an automotive shock absorber, requiring a constant, high load to compress over the stroke, and self-resetting with a small load. The differences in these loads over the stroke represent the energy absorbed by the device, which is dissipated as friction. This paper describes the evolution of the energy absorber, presents the results of testing performed, and shows the sensitivity of this device to several key design variables.

  1. Phyllosphere Methylobacterium bacteria contain UVA-absorbing compounds.

    PubMed

    Yoshida, Shigenobu; Hiradate, Syuntaro; Koitabashi, Motoo; Kamo, Tsunashi; Tsushima, Seiya

    2017-02-01

    Microbes inhabiting the phyllosphere encounter harmful ultraviolet rays, and must develop adaptive strategies against this irradiation. In this study, we screened bacterial isolates originating from the phyllosphere of various plants which harbored absorbers of ultraviolet A (UVA), a wavelength range which is recognized as harmful to human skin. Of the 200 phyllosphere bacterial isolates we screened, methanol extracts from bacterial cells of seventeen isolates absorbed wavelengths in the range of 315-400nm. All of the UVA-absorbing strains belonged to Methylobacterium species based on 16S ribosomal RNA gene sequences, suggesting that cells of this bacterial genus contain specific UVA-absorbing compounds. When cells of a representative Methylobacterium strain were extracted using various solvents, UVA absorption was observed in the extracts obtained using several aqueous solvents, indicating that the UVA-absorbing compounds were highly polar. A compound was purified using solid columns and HPLC separation, and comparative analysis revealed that the absorption strength and spectrum of the compound were similar to those of the known UVA filter, avobenzone. The compound was also verified to be stable under UVA exposure for at least 480min. Based on these results, the UVA-absorbing compound harbored by Methylobacterium has potential to be used as a novel sunscreen ingredient. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation.

    PubMed

    Peacock, Mike; Evans, Chris D; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Jones, Timothy G; Lebron, Inma

    2014-05-01

    Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.

  3. Selective solar absorber emittance measurement at elevated temperature

    NASA Astrophysics Data System (ADS)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  4. Properties of CGM-Absorbing Galaxies

    NASA Astrophysics Data System (ADS)

    Hamill, Colin; Conway, Matthew; Apala, Elizabeth; Scott, Jennifer

    2018-01-01

    We extend the results of a study of the sightlines of 45 low-redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use photometric data and measured galaxy parameters from SDSS DR12 to examine the distributions of galaxy properties such as virial radius, morphology, and position angle among those that match to absorbers within a specific range of impact parameters. We compare those distributions to galaxies within the same impact parameter range that are not matched to any absorber in the HST/COS spectrum in order to investigate global properties of the circumgalactic medium.

  5. Production and characterization of large-area sputtered selective solar absorber coatings

    NASA Astrophysics Data System (ADS)

    Graf, Wolfgang; Koehl, Michael; Wittwer, Volker

    1992-11-01

    Most of the commercially available selective solar absorber coatings are produced by electroplating. Often the reproducibility or the durability of their optical properties is not very satisfying. Good reproducibility can be achieved by sputtering, the technique for the production of low-(epsilon) coatings for windows. The suitability of this kind of deposition technique for flat-plate solar absorber coatings based on the principle of ceramic/metal composites was investigated for different material combinations, and prototype collectors were manufactured. The optical characterization of the coatings is based on spectral measurements of the near-normal/hemispherical and the angle-dependent reflectance in the wavelength-range 0.38 micrometers - 17 micrometers . The durability assessment was carried out by temperature tests in ovens and climatic chambers.

  6. Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber

    NASA Astrophysics Data System (ADS)

    Kecik, Krzysztof

    2018-06-01

    The paper presents a novel system for simultaneous energy harvesting and vibration mitigation. The system consists of two main parts: an autoparametric pendulum vibration absorber and an energy harvester device. The recovered energy is from oscillation of a levitating magnet in a coil. The energy harvesting system is mounted in a pendulum structure. The system allows energy recovery from a semi-trivial solution (pendulum in rest) or/and swinging of a pendulum. The influence of harvester parameters on the system response and energy harvesting in a parametric resonance is studied in detail. The harvester device does not decrease vibration reduction effectiveness.

  7. Container and method for absorbing and reducing hydrogen concentration

    DOEpatents

    Wicks, George G.; Lee, Myung W.; Heung, Leung K.

    2001-01-01

    A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.

  8. A shock absorber model for structure-borne noise analyses

    NASA Astrophysics Data System (ADS)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  9. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  10. Simulation, fabrication and characterization of THz metamaterial absorbers.

    PubMed

    Grant, James P; McCrindle, Iain J H; Cumming, David R S

    2012-12-27

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical(1) and experimental demonstration(2) of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical(3), near IR(4), mid IR(5) , THz(6) , mm-wave(7) , microwave(8) and radio(9) bands. Applications include perfect lenses(10), sensors(11), telecommunications(12), invisibility cloaks(13) and filters(14,15). We have recently developed single band(16), dual band(17) and broadband(18) THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers(19). In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems.

  11. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  12. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  13. Better Absorbents for Ammonia Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malmali, Mahdi; Le, Giang; Hendrickson, Jennifer

    Making ammonia from renewable wind energy at a competitive price may be possible if the conventional ammonia condenser is replaced with an ammonia absorber. Such a process change requires an ammonia selective absorbent. Supported metal halide sorbents for this separation display outstanding dynamic capacity close to their equilibrium thermodynamic limits. Alkaline earth chlorides and bromides supported on silica and zeolite Y are the most promising. MgCl 2 and CaBr 2 at 40% loading on silica show capacities of 60-70 mg NH3/gsorbent at 150 °C and 4 bar. Overall, cations with smaller atomic numbers show more affinity to ammonia; bromides holdmore » ammonia more strongly than chlorides. Different solvents and metal halide mixtures do not show significant changes in the absorption capacity. Finally, these absorbents can be incorporated into ammonia reaction-absorption syntheses to achieve faster production rates.« less

  14. Better Absorbents for Ammonia Separation

    DOE PAGES

    Malmali, Mahdi; Le, Giang; Hendrickson, Jennifer; ...

    2018-03-30

    Making ammonia from renewable wind energy at a competitive price may be possible if the conventional ammonia condenser is replaced with an ammonia absorber. Such a process change requires an ammonia selective absorbent. Supported metal halide sorbents for this separation display outstanding dynamic capacity close to their equilibrium thermodynamic limits. Alkaline earth chlorides and bromides supported on silica and zeolite Y are the most promising. MgCl 2 and CaBr 2 at 40% loading on silica show capacities of 60-70 mg NH3/gsorbent at 150 °C and 4 bar. Overall, cations with smaller atomic numbers show more affinity to ammonia; bromides holdmore » ammonia more strongly than chlorides. Different solvents and metal halide mixtures do not show significant changes in the absorption capacity. Finally, these absorbents can be incorporated into ammonia reaction-absorption syntheses to achieve faster production rates.« less

  15. Using ultraviolet absorbance and color to assess pharmaceutical oxidation during ozonation of wastewater.

    PubMed

    Wert, Eric C; Rosario-Ortiz, Fernando L; Snyder, Shane A

    2009-07-01

    The reduction of ultraviolet (UV) absorbance at 254 nm (UV254) and true color were identified as appropriate surrogates to assess the oxidation of six pharmaceuticals (i.e., carbamazepine, meprobamate, dilantin, primidone, atenolol, and iopromide) during ozonation of wastewater. Three tertiary-treated wastewaters were evaluated during oxidation with ozone (O3) and O3 coupled with hydrogen peroxide (O3/H2O2). The correlation between pharmaceutical oxidation and removal of UV254 was dependent upon the reactivity of each specific compound toward ozone, as measured by the second-order rate constant (k'(O3)). Oxidation of compounds with k'(O3) > 10(3) M(-1) s(-1) correlated well (R2 > 0.73) with UV254 reduction between 0-50%. Oxidation of compounds with apparent k'(O3) < 10 M(-1) s(-1) resulted primarily from hydroxyl radicals and correlated well (R2 > 0.80) with the UV254 reduction of 15-85%. The removal of true color also correlated well (R2 > 0.85) with the oxidation of pharmaceuticals during the ozonation of two wastewaters. These correlations demonstrate that UV254 reduction and true color removal may be used as surrogates to evaluate pharmaceutical oxidation in the presence or absence of dissolved ozone residual during advanced wastewater treatment with O3 or O3/H2O2. The use of online UV254 measurements would allow wastewater utilities to optimize the ozone dose required to meet their specific treatment objectives.

  16. Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents.

    PubMed

    Chon, Kangmin; Salhi, Elisabeth; von Gunten, Urs

    2015-09-15

    In this study, the changes in UV absorbance at 254 nm (UVA254) and electron donating capacity (EDC) were investigated as surrogate indicators for assessing removal of micropollutants and bromate formation during ozonation of wastewater effluents. To measure the EDC, a novel method based on size exclusion chromatography followed by a post-column reaction was developed and calibrated against an existing electrochemical method. Low specific ozone doses led to a more efficient abatement of EDC than of UVA254. This was attributed to the abatement of phenolic moieties in the dissolved organic matter (DOM), which lose their EDC upon oxidation, but are partially transformed into quinones, which still absorb in the measured UV range. For higher specific ozone doses, the relative EDC abatement was lower than the relative UVA abatement, which can be explained by the oxidation of UV absorbing moieties (e.g. non-activated aromatic compounds), which contribute less to EDC. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), atenolol (ATE), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) varied significantly depending on their reactivity with ozone in the examined specific ozone dose range of 0-1.45 mgO3/mgDOC. The decrease of EE2 and CBZ with high ozone reactivity was linearly proportional to the reduction of the relative residuals of UVA254 and EDC. The abatement of ATE, BZF, IBU, and pCBA with intermediate to low ozone reactivities was not significant in a first phase (UVA254/UVA254,0 = 1.00-0.70; EDC/EDC0 = 1.00-0.56) while their abatement was more efficient than the degradation of the relative residual UVA254 and much more noticeable than the degradation of the relative residual EDC in a second phase (UVA254/UVA254,0 = 0.70-0.25; EDC/EDC0 = 0.56-0.25) because the partially destroyed UV absorbing and electron donating DOM moieties become recalcitrant to ozone attack. Bromate formation was

  17. Development of a new energy-absorbing roadside/median barrier system with restorable elastomer cartridges.

    DOT National Transportation Integrated Search

    2013-07-01

    A Manual for Assessing Safety Hardware (MASH) Test Level 4 (TL-4) energy-absorbing, urban roadside/median barrier was developed to reduce lateral vehicle accelerations below those observed during similar crashes into permanent concrete barriers. Seve...

  18. Highly efficient special sound absorbing solutions

    NASA Technical Reports Server (NTRS)

    Ionescu, M.; Petre-Lazar, S.

    1974-01-01

    Highly efficient special sound absorbing structures with the following criteria are considered: (1) A distribution surface of the sound absorbing material greater than that of the building element on which the structure is placed; (2) The highest possible absorption coefficient in the widest possible frequency band; and (3) adaptability to different construction and aesthetic conditions.

  19. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hader, J.; Moloney, J. V.; College of Optical Sciences, University of Arizona, Tucson, Arizona 85721

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap,more » the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.« less

  20. Tunable metamaterial dual-band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Luo, C. Y.; Li, Z. Z.; Guo, Z. H.; Yue, J.; Luo, Q.; Yao, G.; Ji, J.; Rao, Y. K.; Li, R. K.; Li, D.; Wang, H. X.; Yao, J. Q.; Ling, F. R.

    2015-11-01

    We report a design of a temperature controlled tunable dual band terahertz absorber. The compact single unit cell consists of two nested closed square ring resonators and a layer metallic separated by a substrate strontium titanate (STO) dielectric layer. It is found that the absorber has two distinctive absorption peaks at frequencies 0.096 THz and 0.137 THz, whose peaks are attained 97% and 75%. Cooling the absorber from 400 K to 250 K causes about 25% and 27% shift compared to the resonance frequency of room temperature, when we cooling the temperature to 150 K, we could attained both the two tunabilities exceeding 53%. The frequency tunability is owing to the variation of the dielectric constant of the low-temperature co-fired ceramic (LTCC) substrate. The mechanism of the dual band absorber is attributed to the overlapping of dual resonance frequencies, and could be demonstrated by the distributions of the electric field. The method opens up avenues for designing tunable terahertz devices in detection, imaging, and stealth technology.

  1. Metamaterial Absorber Based Multifunctional Sensor Application

    NASA Astrophysics Data System (ADS)

    Ozer, Z.; Mamedov, A. M.; Ozbay, E.

    2017-02-01

    In this study metamaterial based (MA) absorber sensor, integrated with an X-band waveguide, is numerically and experimentally suggested for important application including pressure, density sensing and marble type detecting applications based on rectangular split ring resonator, sensor layer and absorber layer that measures of changing in the dielectric constant and/or the thickness of a sensor layer. Changing of physical, chemical or biological parameters in the sensor layer can be detected by measuring the resonant frequency shifting of metamaterial absorber based sensor. Suggested MA based absorber sensor can be used for medical, biological, agricultural and chemical detecting applications in microwave frequency band. We compare the simulation and experimentally obtained results from the fabricated sample which are good agreement. Simulation results show that the proposed structure can detect the changing of the refractive indexes of different materials via special resonance frequencies, thus it could be said that the MA-based sensors have high sensitivity. Additionally due to the simple and tiny structures it could be adapted to other electronic devices in different sizes.

  2. Shock-Absorbent Ball-Screw Mechanism

    NASA Technical Reports Server (NTRS)

    Hirr, Otto A., Jr.; Meneely, R. W.

    1986-01-01

    Actuator containing two ball screws in series employs Belleville springs to reduce impact loads, thereby increasing life expectancy. New application of springs increases reliability of equipment in which ball screws commonly used. Set of three springs within lower screw of ball-screw mechanism absorbs impacts that result when parts reach their upper and lower limits of movement. Mechanism designed with Belleville springs as shock-absorbing elements because springs have good energy-to-volume ratio and easily stacked to attain any stiffness and travel.

  3. Performance of a new carbon dioxide absorbent, Yabashi lime® as compared to conventional carbon dioxide absorbent during sevoflurane anesthesia in dogs.

    PubMed

    Kondoh, Kei; Atiba, Ayman; Nagase, Kiyoshi; Ogawa, Shizuko; Miwa, Takashi; Katsumata, Teruya; Ueno, Hiroshi; Uzuka, Yuji

    2015-08-01

    In the present study, we compare a new carbon dioxide (CO2) absorbent, Yabashi lime(®) with a conventional CO2 absorbent, Sodasorb(®) as a control CO2 absorbent for Compound A (CA) and Carbon monoxide (CO) productions. Four dogs were anesthetized with sevoflurane. Each dog was anesthetized with four preparations, Yabashi lime(®) with high or low-flow rate of oxygen and control CO2 absorbent with high or low-flow rate. CA and CO concentrations in the anesthetic circuit, canister temperature and carbooxyhemoglobin (COHb) concentration in the blood were measured. Yabashi lime(®) did not produce CA. Control CO2 absorbent generated CA, and its concentration was significantly higher in low-flow rate than a high-flow rate. CO was generated only in low-flow rate groups, but there was no significance between Yabashi lime(®) groups and control CO2 absorbent groups. However, the CO concentration in the circuit could not be detected (≤5ppm), and no change was found in COHb level. Canister temperature was significantly higher in low-flow rate groups than high-flow rate groups. Furthermore, in low-flow rate groups, the lower layer of canister temperature in control CO2 absorbent group was significantly higher than Yabashi lime(®) group. CA and CO productions are thought to be related to the composition of CO2 absorbent, flow rate and canister temperature. Though CO concentration is equal, it might be safer to use Yabashi lime(®) with sevoflurane anesthesia in dogs than conventional CO2 absorbent at the point of CA production.

  4. About sound mufflers sound-absorbing panels aircraft engine

    NASA Astrophysics Data System (ADS)

    Dudarev, A. S.; Bulbovich, R. V.; Svirshchev, V. I.

    2016-10-01

    The article provides a formula for calculating the frequency of sound absorbed panel with a perforated wall. And although the sound absorbing structure is a set of resonators Helmholtz, not individual resonators should be considered in acoustic calculations, and all the perforated wall panel. The analysis, showing how the parameters affect the size and sound-absorbing structures in the absorption rate.

  5. Absorber arc mitigation during CHI on NSTX

    NASA Astrophysics Data System (ADS)

    Mueller, D.; Bell, M. G.; Roquemore, A. L.; Raman, R.; Nelson, B. A.; Jarboe, T. R.

    2009-11-01

    A method of non-inductive startup, referred to as transient coaxial helicity injection (CHI), was successfully developed on the Helicity Injected Torus (HIT-II) experiment and employed on the National Spherical Torus Experiment (NSTX). This technique has produced 160 kA of plasma current on closed flux surfaces. Over 100 kA of the CHI current has been coupled to inductively driven current ramp-up. In transient CHI, a voltage is applied across the insulating gap separating the inner and outer vacuum vessel and gas is introduced at the lower gap (the injector). The resulting current in the injector follows the helical magnetic field connecting the electrodes, forms a toroidal current and expands into the vacuum vessel. At higher CHI current, the poloidal field due to the plasma can connect the inner and outer vessels at the insulating gap at the top (called the absorber) of NSTX and lower the impedance there. This results in arcs in the absorber which are a source of impurities and which reduce the desired current in the injector. Two coils installed in the absorber will be used to reduce the magnetic field across the absorber gap and mitigate the absorber arcs.

  6. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  7. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  8. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. Glagolenko; D. Wachs; N. Woolstenhulme

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily duemore » to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.« less

  9. Optimal active vibration absorber: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1992-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  10. Absorbing and scattering aerosols over the source region of biomass burning emissions: Implications in the assessment of optical and radiative properties

    NASA Astrophysics Data System (ADS)

    Singh, Atinderpal; Srivastava, Rohit; Rastogi, Neeraj; Singh, Darshan

    2016-02-01

    The current study focuses on the assessment of model simulated optical and radiative properties of aerosols incorporating the measured chemical composition of aerosol samples collected at Patiala during October, 2011-February, 2012. Monthly average mass concentration of PM2.5, elemental carbon (EC), primary organic carbon (POC), water-soluble (WS) and insoluble (INS) aerosols ranged from 120 to 192, 6.2 to 7.2, 20 to 39, 59 to 111 and 35 to 90 μg m-3, respectively. Mass concentration of different components of aerosols was further used for the assessment of optical properties derived from Optical Properties of Aerosols and Clouds (OPAC) model simulations. Microtops based measured aerosol optical depth (AOD500) ranged from 0.47 to 0.62 showing maximum value during November and December, and minimum during February. Ångström exponent (α380-870) remained high (>0.90) throughout the study period except in February (0.74), suggesting predominance of fine mode particles over the study region. The observed ratio of scattering to absorbing aerosols was incorporated in OPAC model simulations and single scattering albedo (SSA at 500 nm) so obtained ranged between 0.80 and 0.92 with relatively low values during the period of extensive biomass burning. In the present study, SBDART based estimated values of aerosol radiative forcing (ARF) at the surface (SRF) and top of the atmosphere (TOA) ranged from -31 to -66 Wm-2 and -2 to -18 W m-2 respectively. The atmospheric ARF, ranged between + 18 and + 58 Wm-2 resulting in the atmospheric heating rate between 0.5 and 1.6 K day-1. These results signify the role of scattering and absorbing aerosols in affecting the magnitude of aerosol forcing.

  11. Strain Gage Measurements of Aft Nacelle Shock Absorbers.

    DTIC Science & Technology

    ENGINE NACELLES, SHOCK ABSORBERS ), (* SHOCK ABSORBERS , STRESSES), SURFACE TO SURFACE MISSILES, LAUNCHING, STRAIN GAGES, COMPRESSIVE PROPERTIES, CALIBRATION, STRAIN(MECHANICS), FAILURE, GROUND SUPPORT EQUIPMENT.

  12. Measurement of Absorbed Dose from Radionuclide Solutions Mixed Intimately with the Fbx Dosimeter.

    NASA Astrophysics Data System (ADS)

    Benedetto, Anthony Richard

    Chemical dosimeters are used widely for accurate measurement of large radiation doses due to external beam irradiation from radioisotope sources and from particle accelerators. Their use for measurement of absorbed doses from radioactive solutions mixed in the dosimeter solution was reported as early as 1952, but the large activities needed to produce suitable absorbance values in the relatively insensitive dosimeters of that time discouraged further work. This manuscript reports the results of an investigation into the suitability of the ferrous sulfate-benzoic acid -xylenol orange (FBX) dosimeter for measurement of small absorbed doses caused by radionuclide solutions dissolved in the dosimeter solution. The FBX dosimeter exhibited a linear dose response as a function of activity for two common radiopharmaceuticals, technetium-99m sodium pertechnetate and iodine-131 sodium iodide. Conditions under which the FBX dosimeter may be used with radionuclide solutions were studied and were found to be amenable to routine use by laboratories possessing relatively unsophisticated instrumentation. It appears likely that any radionuclide could be studied using this dosimeter. Finally, potential applications and future research work are suggested, including measurement of absorbed dose from radiopharmaceuticals using realistic human-like phantoms to assess the risk from clinical nuclear medicine studies.

  13. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    NASA Astrophysics Data System (ADS)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  14. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated formore » up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.« less

  15. Shock Absorbing Helmets

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This paper presents a description of helmets used by football players that offer three times the shock-absorbing capacity of earlier types. An interior padding for the helmets, composed of Temper Foam, first used by NASA's Ames Research Center in the design of aircraft seats is described.

  16. Mechanical device for determining the stiffness and the viscous friction coefficient of shock absorber elements modelled by bond graph

    NASA Astrophysics Data System (ADS)

    Ibănescu, R.; Ibănescu, M.

    2016-11-01

    The present paper presents a mechanical device for the assessment of the fundamental parameters of a shock absorber: the spring stiffness and the viscous friction coefficient, without disassembling the absorber. The device produces an oscillatory motion of the shock absorber and can measure its amplitude and angular velocities. The dynamic model of the system, consisting of the mechanical device and the shock absorber, is performed by using the bond- graph method. Based on this model, the motion equations are obtained, which by integration lead to the motion law. The two previously mentioned parameters are determined by using this law and the measured values of two amplitudes and of their corresponding angular velocities. They result as solutions of a system of two non-linear algebraic equations.

  17. Acute dermal toxicity and sensitization studies of novel nano-enhanced UV absorbers.

    PubMed

    Piasecka-Zelga, Joanna; Zelga, Piotr; Górnicz, Magdalena; Strzelczyk, Paweł; Sójka-Ledakowicz, Jadwiga

    2015-01-01

    Many employees working outside are exposed to the harmful effects of UV radiation. A growing problem is also sensitization to textile materials and allergic reactions to active compounds. Groups of inorganic UV blockers with nanoparticles may provide superior properties over organic UV absorbers with relatively less potential of provoking dermatitis. To assess acute dermal irritation and sensitization of nano UV absorbers. Five UV absorbers with nano-sized particles (Z11, TiO2 - SiO2 [TDPK], TK44, TK11, A8G) and 2 vehicles (paste-based on 10% PEG, and dispersion with 1% HEC) were tested. Acute dermal irritation was tested using group of 3 rabbits for each absorber. The sensitization study was carried out on groups of 15 guinea pigs for each tested textile with a UV absorber showing an Ultraviolet Protection Factor (UPF)>40. This research was designed according to OECD Test Guideline No. 404 and 406, and 21 rabbits and 60 guinea pigs were used in the study. In acute dermal irritation, Z11 and A8G modifiers and the analyzed paste gave results of 0.047 to 0.33 which classifies them as barely perceptible irritants, whereas the other analyzed modifiers and dispersion gave results of 0.00 and were classified as nonirritating. Only the textile with TK 11 did not have UPF>40. The analyzed barrier materials were classified as nonsenitizers (TDPK, A8G) or mild sensitizers (TK44, Z11). None of the analyzed materials or modifiers induced major skin reactions in animals. Therefore, they present low risk of provoking skin reactions in humans.

  18. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  19. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  20. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    DOEpatents

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  1. Study on the quality assurance of diagnostic X-ray machines and assessment of the absorbed dose to patients

    NASA Astrophysics Data System (ADS)

    Hassan, G. M.; Rabie, N.; Mustafa, K. A.; Abdel-Khalik, S. S.

    2012-09-01

    Radiation exposure and image quality in X-ray diagnostic radiology provide a clear understanding of the relationship between the radiation dose delivered to a patient and image quality in optimizing medical diagnostic radiology. Because a certain amount of radiation is unavoidably delivered to patients, this should be as low as reasonably achievable. Several X-ray diagnostic machines were used at different medical diagnostic centers in Egypt for studying the beam quality and the dose delivered to the patient. This article studies the factors affecting the beam quality, such as the kilo-volt peak (kVp), exposure time (mSc), tube current (mAs) and the absorbed dose in (μGy) for different examinations. The maximum absorbed dose measured per mAs was 594±239 and 12.5±3.7 μGy for the abdomen and the chest, respectively, while the absorbed dose at the elbow was 18±6 μGy, which was the minimum dose recorded. The compound and expanded uncertainties accompanying these measurements were 4±0.35% and 8±0.7%, respectively. The measurements were done through quality control tests as acceptance procedures.

  2. HS 1603+3820 and its Warm Absorber

    NASA Astrophysics Data System (ADS)

    Nikołajuk, M.; Różańska, A.; Czerny, B.; Dobrzycki, A.

    2009-07-01

    We use photoionization codes CLOUDY and TITAN to obtain physical conditions in the absorbing medium close to the nucleus of a distant quasar (z = 2.54) HS 1603+3820. We found that the total column density of this Warm Absorber is 2 x 1022 cm-2. Due to the softness of the quasars spectrum the modelling allowed us also to determine uniquely the volume hydrogen density of this warm gas (n = 1010 cm-3) which combined with the other quasar parameters leads to a distance determination to the Warm Absorber from the central source which is ~ 1.5 x 1016 cm.

  3. Identifying the perfect absorption of metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  4. Translatory shock absorber for attitude sensors

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L.; Morgan, I. T., Jr.; Kirby, C. A. (Inventor)

    1976-01-01

    A translatory shock absorber is provided for mounting an attitude sensor thereon for isolating a sensor from translatory vibrations. The translatory shock absorber includes a hollow block structure formed as one piece to form a parallelogram. The absorber block structure includes a movable top plate for supporting the attitude sensor and a fixed base plate with opposed side plates interposed between. At the junctions of the side plates, and the base and top plates, there are provided grooves which act as flexible hinges for attenuating translatory vibrations. A damping material is supported on a pedestal which is carried on the base plate between the side plates thereof. The top of the damping material rests against the bottom surface of the top plate for eliminating the resonant peaks of vibration.

  5. A wideband absorber for television studios

    NASA Astrophysics Data System (ADS)

    Baird, M. D. M.

    The acoustic treatment in BBC television has taken various forms to date, all of which have been relatively expensive, some of which provide inadequate absorption. An investigation has been conducted into the possibilities of producing a new type of wideband absorber which would be more economic, also taking installation time into account, than earlier designs. This Report describes the absorption coefficient measurements made on various combinations of materials, from which a wideband sound absorber has been developed. The absorber works efficiently between 50 Hz and 10 kHz, is simple and easy to construct using readily available materials, and is fire resistant. The design lends itself, if necessary, to on-site fine tuning, and savings in the region of 50 percent can be achieved in terms of cost and space with respect to previous designs.

  6. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; ...

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  7. Freeze-Dried Carbon Nanotube Aerogels for High-Frequency Absorber Applications.

    PubMed

    Anoshkin, Ilya V; Campion, James; Lioubtchenko, Dmitri V; Oberhammer, Joachim

    2018-06-13

    A novel technique for millimeter wave absorber material embedded in a metal waveguide is proposed. The absorber material is a highly porous carbon nanotube (CNT) aerogel prepared by a freeze-drying technique. CNT aerogel structures are shown to be good absorbers with a low reflection coefficient, less than -12 dB at 95 GHz. The reflection coefficient of the novel absorber is 3-4 times lower than that of commercial absorbers with identical geometry. Samples prepared by freeze-drying at -25 °C demonstrate resonance behavior, while those prepared at liquid nitrogen temperature (-196 °C) exhibit a significant decrease in reflection coefficient, with no resonant behavior. CNT absorbers of identical volume based on wet-phase drying preparation show significantly worse performance than the CNT aerogel absorbers prepared by freeze-drying. Treatment of the freeze-dried CNT aerogel with n- and p-dopants (monoethanolamine and iodine vapors, respectively) shows remarkable improvement in the performance of the waveguide embedded absorbers, reducing the reflection coefficient by 2 dB across the band.

  8. 21 CFR 880.6025 - Absorbent tipped applicator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... stick. The device is used to apply medications to, or to take specimens from, a patient. (b...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6025 Absorbent tipped applicator. (a) Identification. An absorbent tipped applicator is a...

  9. Wideband Aural Acoustic Absorbance Predicts Conductive Hearing Loss in Children

    PubMed Central

    Keefe, Douglas H.; Sanford, Chris A.; Ellison, John C.; Fitzpatrick, Denis F.; Gorga, Michael P.

    2013-01-01

    Objective This study tested the hypothesis that wideband aural absorbance predicts conductive hearing loss (CHL) in children medically classified as having otitis media with effusion. Design Absorbance was measured in the ear canal over frequencies from 0.25 to 8 kHz at ambient pressure or as a swept tympanogram. CHL was defined using criterion air-bone gaps of 20, 25 and 30 dB at octaves from 0.25 to 4 kHz. A likelihood-ratio predictor of CHL was constructed across frequency for ambient absorbance and across frequency and pressure for absorbance tympanometry. Performance was evaluated at individual frequencies and for any frequency at which a CHL was present. Study Sample Absorbance and conventional 226-Hz tympanograms were measured in children of age 3 to 8 years with CHL and with normal hearing. Results Absorbance was smaller at frequencies above 0.7 kHz in the CHL group than the control group. Based on the area under the receiver operating characteristic curve, wideband absorbance in ambient and tympanometric tests were significantly better predictors of CHL than tympanometric width, the best 226-Hz predictor. Accuracies of ambient and tympanometric wideband absorbance did not differ. Conclusions Absorbance accurately predicted CHL in children and was more accurate than conventional 226-Hz tympanometry. PMID:23072655

  10. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-01

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.

  11. Magneto-rheological fluid shock absorbers for HMMWV

    NASA Astrophysics Data System (ADS)

    Gordaninejad, Faramarz; Kelso, Shawn P.

    2000-04-01

    This paper presents the development and evaluation of a controllable, semi-active magneto-rheological fluid (MRF) shock absorber for a High Mobility Multi-purpose Wheeled Vehicle (HMMWV). The University of Nevada, Reno (UNR) MRF damper is tailored for structures and ground vehicles that undergo a wide range of dynamic loading. It also has the capability for unique rebound and compression characteristics. The new MRF shock absorber emulates the original equipment manufacturer (OEM) shock absorber behavior in passive mode, and provides a wide controllable damping force range. A theoretical study is performed to evaluate the UNR MRF shock absorber. The Bingham plastic theory is employed to model the nonlinear behavior of the MR fluid. A fluid-mechanics-based theoretical model along with a three-dimensional finite element electromagnetic analysis is utilized to predict the MRF damper performance. The theoretical results are compared with experimental data and are demonstrated to be in excellent agreement.

  12. Design of a magnetorheological automotive shock absorber

    NASA Astrophysics Data System (ADS)

    Lindler, Jason E.; Dimock, Glen A.; Wereley, Norman M.

    2000-06-01

    Double adjustable shock absorbers allow for independent adjustment of the yield force and post-yield damping in the force versus velocity response. To emulate the performance of a conventional double adjustable shock absorber, a magnetorheological (MR) automotive shock absorber was designed and fabricated at the University of Maryland. Located in the piston head, an applied magnetic field between the core and flux return increases the force required for a given piston rod velocity. Between the core and flux return, two different shaped gaps meet the controllable performance requirements of a double adjustable shock. A uniform gap between the core and the flux return primarily adjusts the yield force of the shock absorber, while a non-uniform gap allows for control of the post-yield damping. Force measurements from sinusoidal displacement cycles, recorded on a mechanical damper dynamometer, validate the performance of uniform and non- uniform gaps for adjustment of the yield force and post-yield damping, respectively.

  13. The HI Environment of Nearby Lyman-alpha Absorbers

    NASA Technical Reports Server (NTRS)

    VanGorkom, J. H.; Carilli, C. L.; Stocke, John T.; Perlman, Eric S.; Shull, J. Michael

    1996-01-01

    We present the results of a VLA and WSRT search for H I emission from the vicinity of seven nearby clouds, which were observed in Ly-alpha absorption with HST toward Mrk 335, Mrk 501, and PKS 2155-304. Around the absorbers, we searched a volume of 4O' x 40' x 1000 km/s; for one of the absorbers we probed a velocity range of only 600 km/s. The H I mass sensitivity (5 sigma) very close to the lines of sight varies from 5 x 10(exp 6) solar mass at best to 5 x 10(exp 8) solar mass at worst. We detected H I emission in the vicinity of four out of seven absorbers. The closest galaxy we find to the absorbers is a small dwarf galaxy at a projected distance of 68 h(exp -1) kpc from the sight line toward Mrk 335. This optically uncataloged galaxy has the same velocity (V = 1970 km/s) as one of the absorbers, is fainter than the SMC, and has an H I mass of only 4 x 10(exp 7) solar mass. We found a somewhat more luminous galaxy at exactly the velocity (V = 5100 km/s) of one of the absorbers toward PKS 2155-304 at a projected distance of 230 h(exp -1) kpc from the sight line. Two other, stronger absorbers toward PKS 2155-304 at V approx. 17,000 km/s appear to be associated with a loose group of three bright spiral galaxies, at projected distances of 300 to 600 h(exp -1) kpc. These results support the conclusions emerging from optical searches that most nearby Ly-alpha forest clouds trace the large-scale structures outlined by the optically luminous galaxies, although this is still based on small-number statistics. We do not find any evidence from the H I distribution or kinematics that there is a physical association between an absorber and its closest galaxy. While the absorbing clouds are at the systemic velocity of the galaxies, the H I extent of the galaxies is fairly typical, and at least an order of magnitude smaller than the projected distance to the sight line at which the absorbers are seen. On the other hand, we also do not find evidence against such a connection. In

  14. Energy-Absorbing, Lightweight Wheels

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.

  15. [Study on absorbing volatile oil with mesoporous carbon].

    PubMed

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.

  16. Innovative Anti Crash Absorber for a Crashworthy Landing Gear

    NASA Astrophysics Data System (ADS)

    Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano

    2014-06-01

    This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.

  17. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  18. Diesel NO{sub x} reduction by plasma-regenerated absorbent beds

    DOEpatents

    Wallman, P.H.; Vogtlin, G.E.

    1998-02-10

    Reduction of NO{sub x} from diesel engine exhaust by use of plasma-regenerated absorbent beds is described. This involves a process for the reduction of NO{sub x} and particulates from diesel engines by first absorbing NO{sub x} onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO{sub x} followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO{sub x} absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO{sub x} absorption properties up to temperatures around 400 C which is in the area of diesel engine exhaust temperatures. 1 fig.

  19. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.

    PubMed

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-22

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  20. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  1. Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Bandler, Simon; Brekosky, Regis; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Fred; Sadleir, Jack; Iyomoto, Naoko; Kelley, Richard; Kilbourne, Caroline; hide

    2007-01-01

    Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.

  2. Comparison of artificial absorbing boundaries for acoustic wave equation modelling

    NASA Astrophysics Data System (ADS)

    Gao, Yingjie; Song, Hanjie; Zhang, Jinhai; Yao, Zhenxing

    2017-12-01

    Absorbing boundary conditions are necessary in numerical simulation for reducing the artificial reflections from model boundaries. In this paper, we overview the most important and typical absorbing boundary conditions developed throughout history. We first derive the wave equations of similar methods in unified forms; then, we compare their absorbing performance via theoretical analyses and numerical experiments. The Higdon boundary condition is shown to be the best one among the three main absorbing boundary conditions that are based on a one-way wave equation. The Clayton and Engquist boundary is a special case of the Higdon boundary but has difficulty in dealing with the corner points in implementaion. The Reynolds boundary does not have this problem but its absorbing performance is the poorest among these three methods. The sponge boundary has difficulties in determining the optimal parameters in advance and too many layers are required to achieve a good enough absorbing performance. The hybrid absorbing boundary condition (hybrid ABC) has a better absorbing performance than the Higdon boundary does; however, it is still less efficient for absorbing nearly grazing waves since it is based on the one-way wave equation. In contrast, the perfectly matched layer (PML) can perform much better using a few layers. For example, the 10-layer PML would perform well for absorbing most reflected waves except the nearly grazing incident waves. The 20-layer PML is suggested for most practical applications. For nearly grazing incident waves, convolutional PML shows superiority over the PML when the source is close to the boundary for large-scale models. The Higdon boundary and hybrid ABC are preferred when the computational cost is high and high-level absorbing performance is not required, such as migration and migration velocity analyses, since they are not as sensitive to the amplitude errors as the full waveform inversion.

  3. Schoolgirls' experience and appraisal of menstrual absorbents in rural Uganda: a cross-sectional evaluation of reusable sanitary pads.

    PubMed

    Hennegan, Julie; Dolan, Catherine; Wu, Maryalice; Scott, Linda; Montgomery, Paul

    2016-12-07

    Governments, multinational organisations, and charities have commenced the distribution of sanitary products to address current deficits in girls' menstrual management. The few effectiveness studies conducted have focused on health and education outcomes but have failed to provide quantitative assessment of girls' preferences, experiences of absorbents, and comfort. Objectives of the study were, first, to quantitatively describe girls' experiences with, and ratings of reliability and acceptability of different menstrual absorbents. Second, to compare ratings of freely-provided reusable pads (AFRIpads) to other existing methods of menstrual management. Finally, to assess differences in self-reported freedom of activity during menses according to menstrual absorbent. Cross-sectional, secondary analysis of data from the final survey of a controlled trial of reusable sanitary padand puberty education provision was undertaken. Participants were 205 menstruating schoolgirls from eight schools in rural Uganda. 72 girls who reported using the intervention-provided reusable pads were compared to those using existing improvised methods (predominately new or old cloth). Schoolgirls using reusable pads provided significantly higher ratings of perceived absorbent reliability across activities, less difficulties changing absorbents, and less disgust with cleaning absorbents. There were no significant differences in reports of outside garment soiling (OR 1.00 95%CI 0.51-1.99), or odour (0.84 95%CI 0.40-1.74) during the last menstrual period. When girls were asked if menstruation caused them to miss daily activities there were no differences between those using reusable pads and those using other existing methods. However, when asked about activities avoided during menstruation, those using reusable pads participated less in physical sports, working in the field, fetching water, and cooking. Reusable pads were rated favourably. This translated into some benefits for self

  4. Method of absorbing UF.sub.6 from gaseous mixtures in alkamine absorbents

    DOEpatents

    Lafferty, Robert H.; Smiley, Seymour H.; Radimer, Kenneth J.

    1976-04-06

    A method of recovering uranium hexafluoride from gaseous mixtures employing as an absorbent a liquid composition at least one of the components of which is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2.

  5. Self-Alining End Supports for Energy Absorber

    NASA Technical Reports Server (NTRS)

    Alfaro-Bou, E.; Eichelberger, C. P.; Fasanella, E.

    1986-01-01

    Simple devices stabilize axially-loaded compressive members. Energyabsorbing column held by two end supports, which stabilize column and tolerate misalinement. Column absorbs excess load by collapsing lengthwise. Self-alining supports small, lightweight, and almost maintenance-free. Their use eliminates alinement problem, opening up more applications and providing higher reliability for compressively-loaded energy absorbers.

  6. An Absorbing Look at Terry-Cloth Towels

    ERIC Educational Resources Information Center

    Moyer, Richard; Everett, Susan

    2010-01-01

    This article describes a lesson where students explore the absorbency of several towels with different weaves and weights. The lesson follows the 5E learning-cycle model and incorporates engineering in the sense of product testing with a focus on the relationship between the weave of a towel and its absorbency. The National Science Education…

  7. Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient?

    PubMed

    Barthod, Sandrine; Cerovic, Zoran; Epron, Daniel

    2007-01-01

    The present study assesses light-induced variations in phenolic compounds in leaves of saplings of two co-occurring temperate species (Acer platanoides L., and Fraxinus excelsior L.) along a light gradient using a new non-invasive optical method (Dualex). The Dualex-derived UV absorbance of leaf epidermis (the sum of the adaxial and abaxial faces, AUV) increased significantly with increasing light in both species. AUV values were correlated with absorbance of the leaf extract at 305 nm and 375 nm (A305 and A375) in both species with similar slopes for both species. However, a large difference in intercept was observed between the two species when A305 was regressed against AUV. Similarly, AUV values were well correlated with the amount of phenolics in the leaf extracts assessed by the Folin-Ciocalteu method, but slopes were significantly different for the two species. Thus, the UV-A epidermal transmittance, despite being a reliable indicator of the UV-screening capacity of the leaf epidermis, cannot be used for any quantitative estimate of UV-B screening capacity or of energetic requirement for leaf construction without a species-specific calibration.

  8. A Wedge Absorber Experiment at MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David; Mohayai, Tanaz; Rogers, Chris

    2017-05-01

    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders, as well as configurations for low-energy muon sources. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  9. Perfect narrow band absorber for sensing applications.

    PubMed

    Luo, Shiwen; Zhao, Jun; Zuo, Duluo; Wang, Xinbing

    2016-05-02

    We design and numerically investigate a perfect narrow band absorber based on a metal-metal-dielectric-metal structure which consists of periodic metallic nanoribbon arrays. The absorber presents an ultra narrow absorption band of 1.11 nm with a nearly perfect absorption of over 99.9% in the infrared region. For oblique incidence, the absorber shows an absorption more than 95% for a wide range of incident angles from 0 to 50°. Structure parameters to the influence of the performance are investigated. The structure shows high sensing performance with a high sensitivity of 1170 nm/RIU and a large figure of merit of 1054. The proposed structure has great potential as a biosensor.

  10. FLUX-TRAP REACTOR WITH ABSORBER IN THE CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergen, W.K.

    1958-03-01

    An idealized flux-trap reactor is modified by the insertion of absorber. It is shown that, for appreciable absorption, a flux depression results, and the remaining flux is proportional to the diffusion constant D times the center flux in the nonabsorption case. This factor D just cancels the factor 1/D in the expression for this center flux so that the flux in the case with absorber is independent of D. In the case with absorber the advantage of Be and BeO largely disappears. (auth)

  11. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    PubMed

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  12. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOEpatents

    Christensen, Craig B.; Kutscher, Charles F.; Gawlik, Keith M.

    1997-01-01

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

  13. Physically absorbable reagents-collectors in elementary flotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.A. Kondrat'ev; I.G. Bochkarev

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  14. Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics

    PubMed Central

    Vora, Ankit; Gwamuri, Jephias; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M.; Güney, Durdu Ö.

    2014-01-01

    Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%–95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance. PMID:24811322

  15. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides

    PubMed Central

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-01-01

    ABSTRACT Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral

  16. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides.

    PubMed

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-03-15

    Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect

  17. Inferring Absorbing Organic Carbon Content from AERONET Data

    NASA Technical Reports Server (NTRS)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China.

  18. Assessment of out-of-field absorbed dose and equivalent dose in proton fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clasie, Ben; Wroe, Andrew; Kooy, Hanne

    2010-01-15

    depth. Conclusions: The dose deposited immediately downstream of the primary field, in these cases, is dominated by internally produced neutrons; therefore, scattered and scanned fields may have similar risk of second cancer in this region. The authors confirm that there is a reduction in the out-of-field dose in active scanning but the effect decreases with depth. GEANT4 is suitable for simulating the dose deposited outside the primary field. The agreement with measurements is comparable to or better than the agreement reported for other implementations of Monte Carlo models. Depending on the position, the absorbed dose outside the primary field is dominated by contributions from primary protons that may or may not have scattered in the brass collimating devices. This is noteworthy as the quality factor of the low LET protons is well known and the relative dose risk in this region can thus be assessed accurately.« less

  19. Reactive decontamination of absorbing thin film polymer coatings: model development and parameter determination

    NASA Astrophysics Data System (ADS)

    Varady, Mark; Mantooth, Brent; Pearl, Thomas; Willis, Matthew

    2014-03-01

    A continuum model of reactive decontamination in absorbing polymeric thin film substrates exposed to the chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (known as VX) was developed to assess the performance of various decontaminants. Experiments were performed in conjunction with an inverse analysis method to obtain the necessary model parameters. The experiments involved contaminating a substrate with a fixed VX exposure, applying a decontaminant, followed by a time-resolved, liquid phase extraction of the absorbing substrate to measure the residual contaminant by chromatography. Decontamination model parameters were uniquely determined using the Levenberg-Marquardt nonlinear least squares fitting technique to best fit the experimental time evolution of extracted mass. The model was implemented numerically in both a 2D axisymmetric finite element program and a 1D finite difference code, and it was found that the more computationally efficient 1D implementation was sufficiently accurate. The resulting decontamination model provides an accurate quantification of contaminant concentration profile in the material, which is necessary to assess exposure hazards.

  20. Automated Absorber Attachment for X-ray Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, S.; Allen, Christine; Kilbourne, Caroline; Miller, Timothy M.; Costen, Nick; Schulte, Eric; Moseley, Samuel J.

    2007-01-01

    Our goal is to develop a method for the automated attachment of large numbers of absorber tiles to large format detector arrays. This development includes the fabrication of high quality, closely spaced HgTe absorber tiles that are properly positioned for pick-and-place by our FC150 flip chip bonder. The FC150 also transfers the appropriate minute amount of epoxy to the detectors for permanent attachment of the absorbers. The success of this development will replace an arduous, risky and highly manual task with a reliable, high-precision automated process.

  1. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOEpatents

    Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.

    1997-12-02

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.

  2. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  3. Vertical-plane pendulum absorbers for minimizing helicopter vibratory loads

    NASA Technical Reports Server (NTRS)

    Amer, K. B.; Neff, J. R.

    1974-01-01

    The use of pendulum dynamic absorbers mounted on the blade root and operating in the vertical plane to minimize helicopter vibratory loads was discussed. A qualitative description was given of the concept of the dynamic absorbers and some results of analytical studies showing the degree of reduction in vibratory loads attainable are presented. Operational experience of vertical plane dynamic absorbers on the OH-6A helicopter is also discussed.

  4. Absorbing boundary conditions for second-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Jiang, Hong; Wong, Yau Shu

    1989-01-01

    A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.

  5. Design of broadband absorber using 2-D materials for thermo-photovoltaic cell application

    NASA Astrophysics Data System (ADS)

    Agarwal, Sajal; Prajapati, Y. K.

    2018-04-01

    Present study is done to analyze a nano absorber for thermo-photovoltaic cell application. Optical absorbance of two-dimensional materials is exploited to achieve high absorbance. It is found that few alternating layers of graphene/transition metal dichalcogenide provide high absorbance of electromagnetic wave in visible as well as near infrared region. Four transition metal dichalcogenides are considered and found that most of these provide perfect absorbance for almost full considered wavelength range i.e. 200-1000 nm. Demonstrated results confirm the extended operating region and improved absorbance of the proposed absorber in comparison to the existing absorbers made of different materials. Further, absorber performance is improved by using thin layers of gold and chromium. Simple geometry of the proposed absorber also ensures easy fabrication.

  6. Effects of Consecutive Wideband Tympanometry Trials on Energy Absorbance Measures of the Middle Ear

    ERIC Educational Resources Information Center

    Burdiek, Laina M.; Sun, Xiao-Ming

    2014-01-01

    Purpose: Wideband acoustic immittance (WAI) is a new technique for assessing middle ear transfer function. It includes energy absorbance (EA) measures and can be acquired with the ear canal pressure varied, known as "wideband tympanometry" (WBTymp). The authors of this study aimed to investigate effects of consecutive WBTymp testing on…

  7. Integrated tuned vibration absorbers: a theoretical study.

    PubMed

    Gardonio, Paolo; Zilletti, Michele

    2013-11-01

    This article presents a simulation study on two integrated tuned vibration absorbers (TVAs) designed to control the global flexural vibration of lightly damped thin structures subject to broad frequency band disturbances. The first one consists of a single axial switching TVA composed by a seismic mass mounted on variable axial spring and damper elements so that the characteristic damping and natural frequency of the absorber can be switched iteratively to control the resonant response of three flexural modes of the hosting structure. The second one consists of a single three-axes TVA composed by a seismic mass mounted on axial and rotational springs and dampers, which are arranged in such a way that the suspended mass is characterized by uncoupled heave and pitch-rolling vibrations. In this case the three damping and natural frequency parameters of the absorber are tuned separately to control three flexural modes of the hosting structure. The simulation study shows that the proposed single-unit absorbers produce, respectively, 5.3 and 8.7 dB reductions of the global flexural vibration of a rectangular plate between 20 and 120 Hz.

  8. Wave Absorber with Fine Weatherability for Improving ETC Environment

    NASA Astrophysics Data System (ADS)

    Miura, Yu; Matsumoto, Kouta; Okada, Osamu; Hashimoto, Osamu

    Wave absorber of rubber sheet containing natural rubber and EPDM is designed, fabricated and measured for improving ETC environment. As a result, proposed absorption material has fine weatherability and wave absorption satisfied with ETC standard can be realized theoretically before and after the weatherability test if the thickness of absorber is fabricated at the ranging from 2.26mm to 2.52mm. Moreover, absorber sheet sample based on theoretical values is fabricated and are measured. As a result, 20dB or more is also confirmed at the incident angle ranging from 5 to 55 degrees experimentally. Therefore, the wave absorber with fine weatherability being satisfied with ETC standard can be realized.

  9. The effect of poorly absorbed solute on intestinal absorption.

    PubMed

    Menzies, I S; Jenkins, A P; Heduan, E; Catt, S D; Segal, M B; Creamer, B

    1990-12-01

    To determine the effects of poorly absorbed solute on intestinal absorption, the urinary recovery of ingested lactulose, L-rhamnose, D-xylose, and 3-O-methyl-D-glucose was measured after simultaneous ingestion of various 'loads' of mannitol given in iso-osmolar solution. Mannitol reduced intestinal uptake of the poorly absorbed test sugars, lactulose and L-rhamnose; uptake of D-xylose and 3-O-methyl-D-glucose, which are absorbed by carrier-mediated transport largely from the jejunum, was less affected. The dose-response effect of mannitol on the absorption of L-rhamnose was approximately exponential; doses of 5, 10, and 20 g mannitol reduced the average urinary excretion of L-rhamnose by 34.7%, 51.7%, and 61.2%, respectively. In this respect, an osmotically equivalent load of lactulose, ingested as 'solute', was approximately twice as effective as mannitol in reducing L-rhamnose absorption, probably because lactulose is more poorly absorbed than mannitol (less than 1.0% versus 32-41%). Ingestion of other poorly absorbed solutes such as raffinose, sorbitol, xylitol, magnesium sulphate, and sodium sulphate also significantly depressed the absorption of L-rhamnose; in contrast, more efficiently absorbed solutes, such as sodium chloride, glucose, glycerol, and urea had little effect.

  10. Design and Development of Variable-Load Energy Absorbers

    DTIC Science & Technology

    1981-06-16

    Three concepts were developed and/or tested: a wire - bending mechanism, a tube-constricting mechanism, and a hydraulic energy absorber. Preliminary full...scale working models of the wire - bending mechanism and the tube-constricting mechanisms were built and tested. The hydraulic energy absorber was

  11. Shock-absorbing caster wheel is simple and compact

    NASA Technical Reports Server (NTRS)

    Kindley, R. J.

    1968-01-01

    Compact shock-absorbing caster wheel mitigates or absorbs shock by a compressible tire which deforms into a cavity between its inner edge and the wheel hub. A tee-shaped annular ring embedded in the tire distributes loads more uniformly throughout both wheel and tire.

  12. Quasar 2175 Å dust absorbers - I. Metallicity, depletion pattern and kinematics

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Ge, Jian; Zhao, Yinan; Prochaska, J. Xavier; Zhang, Shaohua; Ji, Tuo; Schneider, Donald P.

    2017-12-01

    We present 13 new 2175 Å dust absorbers at zabs = 1.0-2.2 towards background quasars from the Sloan Digital Sky Survey. These absorbers are examined in detail using data from the Echelle Spectrograph and Imager (ESI) on the Keck II telescope. Many low-ionization lines including Fe II, Zn II, Mg II, Si II, Al II, Ni II, Mn II, Cr II, Ti II and Ca II are present in the same absorber that gives rise to the 2175 Å bump. The relative metal abundances (with respect to Zn) demonstrate that the depletion patterns of our 2175 Å dust absorbers resemble that of the Milky Way clouds although some are disc-like and some are halo-like. The 2175 Å dust absorbers have significantly higher depletion levels compared to literature damped Lyman α absorbers (DLAs) and sub-DLAs. The dust depletion level indicator [Fe/Zn] tends to anticorrelate with bump strengths. The velocity profiles from the Keck/ESI spectra also provide kinematical information on the dust absorbers. The dust absorbers are found to have multiple velocity components with velocity widths extending from ∼100 to ∼600 km s-1, which are larger than those of most DLAs and sub-DLAs. Assuming the velocity width is a reliable tracer of stellar mass, the host galaxies of 2175 Å dust absorbers are expected to be more massive than DLA/sub-DLA hosts. Not all of the 2175 Å dust absorbers are intervening systems towards background quasars. The absorbers towards quasars J1006+1538 and J1047+3423 are proximate systems that could be associated with the quasar itself or the host galaxy.

  13. In vitro photostability and photoprotection studies of a novel 'multi-active' UV-absorber.

    PubMed

    Venditti, E; Spadoni, T; Tiano, L; Astolfi, P; Greci, L; Littarru, G P; Damiani, E

    2008-08-01

    This paper reports on the synthesis and properties of a new UV-absorber (OC-NO) based on the most popular UV filter worldwide, ethylhexyl methoxycinnamate (OMC) in which the methoxy group has been replaced with a pyrrolidine nitroxide bearing antioxidant activity. This sunscreen active has therefore both UV-absorbing and antioxidant properties which could ideally address both the UV-B and UV-A skin photo-damage. For broad-spectrum coverage, the combinations of OC-NO with two commonly used UV-A absorbers (BMDBM and DHHB) were also studied. The results obtained reveal that OC-NO: (a) is as photostable as OMC after UV-A exposure; (b) acts as free radical scavenger as demonstrated by EPR and chemical studies; (c) reduces UV-A and UV-A+BMDBM induced lipid peroxidation in liposomes and cells, measured as reduced TBARS levels and increased C11-BODIPY red fluorescence, respectively; (d) has comparable antioxidant activity to that of vitamin E and BHT commonly used in skin care formulations; (e) is non-cytotoxic to human skin fibroblasts as assessed with the MTT assay when exposed to increasing doses of UV-A; and (f) OC-NO+DHHB is a promising, photostable broad spectrum UV-filter combination that concomitantly reduces UV-induced free radical damage. These results suggest that nitroxide/antioxidant-based UV-absorbers may pave the way for the utilization of 'multi-active' ingredients in sunscreens thereby reducing the number of ingredients in these formulations.

  14. Review of Plasmonic Nanocomposite Metamaterial Absorber

    PubMed Central

    Hedayati, Mehdi Keshavarz; Faupel, Franz; Elbahri, Mady

    2014-01-01

    Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface _lasmon). These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on) perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented. PMID:28788511

  15. An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility

    NASA Astrophysics Data System (ADS)

    Shi, Chenglong; Pu, Xiaobing; Zheng, Guan; Feng, Xinglong; Yang, Xuan; Zhang, Baoliang; Zhang, Yu; Yin, Qingshui; Xia, Hong

    2016-11-01

    Implant-associated infections and non-absorbing materials are two important reasons for a second surgical procedure to remove internal fixation devices after an orthopedic internal fixation surgery. The objective of this study was to produce an antibacterial and absorbable fixation screw by adding gentamicin to silk-based materials. The antibacterial activity was assessed against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro by plate cultivation and scanning electron microscopy (SEM). We also investigated the properties, such as the mechanical features, swelling properties, biocompatibility and degradation, of gentamicin-loaded silk-based screws (GSS) in vitro. The GSS showed significant bactericidal effects against S. aureus and E. coli. The antibacterial activity remained high even after 4 weeks of immersion in protease solution. In addition, the GSS maintained the remarkable mechanical properties and excellent biocompatibility of pure silk-based screws (PSS). Interestingly, after gentamicin incorporation, the degradation rate and water-absorbing capacity increased and decreased, respectively. These GSS provide both impressive material properties and antibacterial activity and have great potential for use in orthopedic implants to reduce the incidence of second surgeries.

  16. Optical analysis of solar energy tubular absorbers.

    PubMed

    Saltiel, C; Sokolov, M

    1982-11-15

    The energy absorbed by a solar energy tubular receiver element for a single incident ray is derived. Two types of receiver elements were analyzed: (1) an inner tube with an absorbing coating surrounded by a semitransparent cover tube, and (2) a semitransparent inner tube filled with an absorbing fluid surrounded by a semitransparent cover tube. The formation of ray cascades in the semitransparent tubes is considered. A numerical simulation to investigate the influence of the angle of incidence, sizing, thickness, and coefficient of extinction of the tubes was performed. A comparison was made between receiver elements with and without cover tubes. Ray tracing analyses in which rays were followed within the tubular receiver element as well as throughout the rest of the collector were performed for parabolic and circular trough concentrating collectors.

  17. Dual-band polarization-/angle-insensitive metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Han; Chongqing University, College of Communication Engineering, Chongqing, 400044; Zhong, Lin-Lin

    A dual-band metamaterial absorber (MA) based on triangular resonators is designed and investigated in this paper. It is composed of a two-dimensional periodic metal-dielectric-metal sandwiches array on a dielectric substrate. The simulation results clearly show that this absorber has two absorption peaks at 14.9 and 18.9 GHz, respectively, and experiments are conducted to verify the proposed designs effectively. For each polarization, the dual-band absorber is insensitive to the incident angle (up to 60°) and the absorption peaks remain high for both transverse electric (TE) and transverse magnetic (TM) radiation. To study the physical mechanism of power loss, the current distributionmore » at the dual absorption peaks is given. The MA proposed in this paper has potential applications in many scientific and martial fields.« less

  18. Ferrite HOM Absorber for the RHIC ERL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn,H.; Choi, E.M.; Hammons, L.

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurementsmore » of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.« less

  19. Electromagnetic wave absorbing properties of amorphous carbon nanotubes.

    PubMed

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-07-10

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.

  20. Selective wave-transmitting electromagnetic absorber through composite metasurface

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Zhao, Junming; Zhu, Bo; Jiang, Tian; Feng, Yijun

    2017-11-01

    Selective wave-transmitting absorbers which have one or more narrow transmission bands inside a wide absorption band are often demanded in wireless communication and radome applications for reducing the coupling between different systems, improving anti-jamming capability, and reducing antennas' radar cross section. Here we propose a feasible method that utilizing composite of two metasurfaces with different polarization dependent characteristics, one works as electromagnetic polarization rotator and the other as a wideband polarization dependent electromagnetic wave absorber. The polarization rotator produces a cross polarization output in the wave-transmitting band, while preserves the polarization of the incidence outside the band. The metasurface absorber works for certain linear polarization with a much wider absorption band covering the wave-transmitting frequency. When combining these two metasurfaces properly, the whole structure behaves as a wideband absorber with a certain frequency transmission window. The proposal may be applied in radome designs to reduce the radar cross section of antenna or improving the electromagnetic compatibility in communication devices.

  1. Advanced EMU electrochemically regenerable CO2 and moisture absorber module breadboard

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Sudar, M.; Chang, B. J.

    1988-01-01

    The applicability of the Electrochemically Regenerable Carbon Dioxide and Moisture Absorption Technology to the advanced extravehicular mobility unit was demonstrated by designing, fabricating, and testing a breadboard Absorber Module and an Electrochemical Regenerator. Test results indicated that the absorber module meets or exceeds the carbon dioxide removal requirements specified for the design and can meet the moisture removal requirement when proper cooling is provided. CO2 concentration in the vent gas stream was reduced from 0.52 to 0.027 kPa (3.9 to 0.20 mm Hg) for the full five hour test period. Vent gas dew point was reduced from inlet values of 294 K (69 F) to 278 K (41 F) at the outlet. The regeneration of expended absorbent was achieved by the electrochemical method employed in the testing. An absorbent bed using microporous hydrophobic membrane sheets with circulating absorbent is shown to be the best approach to the design of an Absorber Module based on sizing and performance. Absorber Module safety design, comparison of various absorbents and their characteristics, moisture absorption and cooling study and subsystem design and operation time-lining study were also performed.

  2. 14 CFR 29.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 29.475 Section 29.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.475 Tires and shock absorbers. Unless otherwise...

  3. 21 CFR 878.4830 - Absorbable surgical gut suture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Absorbable surgical gut suture. 878.4830 Section 878.4830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4830 Absorbable...

  4. 21 CFR 878.4830 - Absorbable surgical gut suture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Absorbable surgical gut suture. 878.4830 Section 878.4830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4830 Absorbable...

  5. 21 CFR 878.4830 - Absorbable surgical gut suture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Absorbable surgical gut suture. 878.4830 Section 878.4830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4830 Absorbable...

  6. 21 CFR 878.4830 - Absorbable surgical gut suture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Absorbable surgical gut suture. 878.4830 Section 878.4830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4830 Absorbable...

  7. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1985-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a Landsat MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95 percent of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50 percent of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73 percent of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  8. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a LANDSAT MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95% of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50% of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73% of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  9. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers.

    PubMed

    Liu, X M; Yang, H R; Cui, Y D; Chen, G W; Yang, Y; Wu, X Q; Yao, X K; Han, D D; Han, X X; Zeng, C; Guo, J; Li, W L; Cheng, G; Tong, L M

    2016-05-16

    Graphene, whose absorbance is approximately independent of wavelength, allows broadband light-matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light-graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics.

  10. Colorful solar selective absorber integrated with different colored units.

    PubMed

    Chen, Feiliang; Wang, Shao-Wei; Liu, Xingxing; Ji, Ruonan; Li, Zhifeng; Chen, Xiaoshuang; Chen, Yuwei; Lu, Wei

    2016-01-25

    Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage.

  11. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers

    PubMed Central

    Liu, X. M.; Yang, H. R.; Cui, Y. D.; Chen, G. W.; Yang, Y.; Wu, X. Q.; Yao, X. K.; Han, D. D.; Han, X. X.; Zeng, C.; Guo, J.; Li, W. L.; Cheng, G.; Tong, L. M.

    2016-01-01

    Graphene, whose absorbance is approximately independent of wavelength, allows broadband light–matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light–graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics. PMID:27181419

  12. Towards Perfectly Absorbing Boundary Conditions for Euler Equations

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Hu, Fang Q.; Hussaini, M. Yousuff

    1997-01-01

    In this paper, we examine the effectiveness of absorbing layers as non-reflecting computational boundaries for the Euler equations. The absorbing-layer equations are simply obtained by splitting the governing equations in the coordinate directions and introducing absorption coefficients in each split equation. This methodology is similar to that used by Berenger for the numerical solutions of Maxwell's equations. Specifically, we apply this methodology to three physical problems shock-vortex interactions, a plane free shear flow and an axisymmetric jet- with emphasis on acoustic wave propagation. Our numerical results indicate that the use of absorbing layers effectively minimizes numerical reflection in all three problems considered.

  13. Investigations on laser transmission welding of absorber-free thermoplastics

    NASA Astrophysics Data System (ADS)

    Mamuschkin, Viktor; Olowinsky, Alexander; Britten, Simon W.; Engelmann, Christoph

    2014-03-01

    Within the plastic industry laser transmission welding ranks among the most important joining techniques and opens up new application areas continuously. So far, a big disadvantage of the process was the fact that the joining partners need different optical properties. Since thermoplastics are transparent for the radiation of conventional beam sources (800- 1100 nm) the absorbance of one of the joining partners has to be enhanced by adding an infrared absorber (IR-absorber). Until recently, welding of absorber-free parts has not been possible. New diode lasers provide a broad variety of wavelengths which allows exploiting intrinsic absorption bands of thermoplastics. The use of a proper wavelength in combination with special optics enables laser welding of two optically identical polymer parts without absorbers which can be utilized in a large number of applications primarily in the medical and food industry, where the use of absorbers usually entails costly and time-consuming authorization processes. In this paper some aspects of the process are considered as the influence of the focal position, which is crucial when both joining partners have equal optical properties. After a theoretical consideration, an evaluation is carried out based on welding trials with polycarbonate (PC). Further aspects such as gap bridging capability and the influence of thickness of the upper joining partner are investigated as well.

  14. 14 CFR 27.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 27.475 Section 27.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock absorbers. Unless otherwise prescribed...

  15. 21 CFR 878.4755 - Absorbable lung biopsy plug.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Absorbable lung biopsy plug. 878.4755 Section 878.4755 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4755 Absorbable lung biopsy...

  16. 21 CFR 878.4830 - Absorbable surgical gut suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable surgical gut suture. 878.4830 Section 878.4830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... surgical gut suture. (a) Identification. An absorbable surgical gut suture, both plain and chromic, is an...

  17. The design of broadband radar absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Suk, Go H.

    1990-09-01

    There has been a growing and widespread interest in radar absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being carried on. These requirements have led to the very low observable or stealth technology that reduces the probability of detection of an aircraft. The design of radar absorbing materials is limited by constraints on the allowable volume and weight of the surface coating, and it is difficult to design a broadband radar absorbing structure in limited volume. This thesis investigates the use of lossy dielectric materials of high dielectric permittivity in multilayer composites for the production of low radar cross section (RCS). The analysis is done by computing the plane wave reflection coefficient at the exterior surface of the composite coating by means of a computer program which selects layer parameters which determine low reflection coefficients for electromagnetic radiation under constraint of limited layer thickness as well as maximum frequency bandwidth.

  18. Acoustic absorbance measurements in neonates exposed to smoking during pregnancy.

    PubMed

    Pucci, Beatriz Paloma Corrêa; Roque, Nayara Michelle Costa de Freitas; Gamero, Marcella Scigliano; Durante, Alessandra Spada

    2017-04-01

    To analyze acoustic absorbance using wideband tympanometry in neonates exposed to passive smoking during pregnancy. A study comprising 54 neonates in the control group (CG - unexposed) and 19 in the study group (SG - exposed) was carried out. Subjects were submitted to the wideband tympanometry test and subsequent analysis of absorbance of 17 frequencies. Low frequencies had a lower level of absorbance compared to high frequencies for both ambient and peak pressures, with no difference between the groups. No effect of passive smoking on acoustic absorbance measurements in neonates was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Study on the millimeter-wave scale absorber based on the Salisbury screen

    NASA Astrophysics Data System (ADS)

    Yuan, Liming; Dai, Fei; Xu, Yonggang; Zhang, Yuan

    2018-03-01

    In order to solve the problem on the millimeter-wave scale absorber, the Salisbury screen absorber is employed and designed based on the RL. By optimizing parameters including the sheet resistance of the surface resistive layer, the permittivity and the thickness of the grounded dielectric layer, the RL of the Salisbury screen absorber could be identical with that of the theoretical scale absorber. An example is given to verify the effectiveness of the method, where the Salisbury screen absorber is designed by the proposed method and compared with the theoretical scale absorber. Meanwhile, plate models and tri-corner reflector (TCR) models are constructed according to the designed result and their scattering properties are simulated by FEKO. Results reveal that the deviation between the designed Salisbury screen absorber and the theoretical scale absorber falls within the tolerance of radar Cross section (RCS) measurement. The work in this paper has important theoretical and practical significance in electromagnetic measurement of large scale ratio.

  20. Air-Leak Effects on Ear-Canal Acoustic Absorbance

    PubMed Central

    Rasetshwane, Daniel M.; Kopun, Judy G.; Gorga, Michael P.; Neely, Stephen T.

    2015-01-01

    Objective: Accurate ear-canal acoustic measurements, such as wideband acoustic admittance, absorbance, and otoacoustic emissions, require that the measurement probe be tightly sealed in the ear canal. Air leaks can compromise the validity of the measurements, interfere with calibrations, and increase variability. There are no established procedures for determining the presence of air leaks or criteria for what size leak would affect the accuracy of ear-canal acoustic measurements. The purpose of this study was to determine ways to quantify the effects of air leaks and to develop objective criteria to detect their presence. Design: Air leaks were simulated by modifying the foam tips that are used with the measurement probe through insertion of thin plastic tubing. To analyze the effect of air leaks, acoustic measurements were taken with both modified and unmodified foam tips in brass-tube cavities and human ear canals. Measurements were initially made in cavities to determine the range of critical leaks. Subsequently, data were collected in ears of 21 adults with normal hearing and normal middle-ear function. Four acoustic metrics were used for predicting the presence of air leaks and for quantifying these leaks: (1) low-frequency admittance phase (averaged over 0.1–0.2 kHz), (2) low-frequency absorbance, (3) the ratio of compliance volume to physical volume (CV/PV), and (4) the air-leak resonance frequency. The outcome variable in this analysis was the absorbance change (Δabsorbance), which was calculated in eight frequency bands. Results: The trends were similar for both the brass cavities and the ear canals. ΔAbsorbance generally increased with air-leak size and was largest for the lower frequency bands (0.1–0.2 and 0.2–0.5 kHz). Air-leak effects were observed in frequencies up to 10 kHz, but their effects above 1 kHz were unpredictable. These high-frequency air leaks were larger in brass cavities than in ear canals. Each of the four predictor variables

  1. Air-leak effects on ear-canal acoustic absorbance.

    PubMed

    Groon, Katherine A; Rasetshwane, Daniel M; Kopun, Judy G; Gorga, Michael P; Neely, Stephen T

    2015-01-01

    Accurate ear-canal acoustic measurements, such as wideband acoustic admittance, absorbance, and otoacoustic emissions, require that the measurement probe be tightly sealed in the ear canal. Air leaks can compromise the validity of the measurements, interfere with calibrations, and increase variability. There are no established procedures for determining the presence of air leaks or criteria for what size leak would affect the accuracy of ear-canal acoustic measurements. The purpose of this study was to determine ways to quantify the effects of air leaks and to develop objective criteria to detect their presence. Air leaks were simulated by modifying the foam tips that are used with the measurement probe through insertion of thin plastic tubing. To analyze the effect of air leaks, acoustic measurements were taken with both modified and unmodified foam tips in brass-tube cavities and human ear canals. Measurements were initially made in cavities to determine the range of critical leaks. Subsequently, data were collected in ears of 21 adults with normal hearing and normal middle-ear function. Four acoustic metrics were used for predicting the presence of air leaks and for quantifying these leaks: (1) low-frequency admittance phase (averaged over 0.1-0.2 kHz), (2) low-frequency absorbance, (3) the ratio of compliance volume to physical volume (CV/PV), and (4) the air-leak resonance frequency. The outcome variable in this analysis was the absorbance change (Δabsorbance), which was calculated in eight frequency bands. The trends were similar for both the brass cavities and the ear canals. ΔAbsorbance generally increased with air-leak size and was largest for the lower frequency bands (0.1-0.2 and 0.2-0.5 kHz). Air-leak effects were observed in frequencies up to 10 kHz, but their effects above 1 kHz were unpredictable. These high-frequency air leaks were larger in brass cavities than in ear canals. Each of the four predictor variables exhibited consistent dependence on

  2. Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber

    PubMed Central

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-01-01

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform. PMID:25418040

  3. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Shuai; Yang, Shizhong; Tao, Lu

    2016-07-15

    In this study, the design, realization, and characterization of an ultrathin triple-band polarization-insensitive wide-angle metamaterial absorber are reported. The metamaterial absorber comprises a periodic array of modified six-fold symmetric snowflake-shaped resonators with strip spiral line load, which is printed on a dielectric substrate backed by a metal ground plane. It is shown that the absorber exhibits three distinct near-unity absorption peaks, which are distributed across C, X, Ku bands, respectively. Owing to the six-fold symmetry, the absorber is insensitive to the polarization of the incident radiation. In addition, the absorber shows excellent absorption performance over wide oblique incident angles formore » both transverse electric and transverse magnetic polarizations. Simulated surface current and field distributions at the three absorption peaks are demonstrated to understand the absorption mechanism. Particularly, the absorption modes come from the fundamental and high-order dipole resonances. Furthermore, the experimental verification of the designed absorber is conducted, and the measured results are in reasonable agreement with the simulated ones. The proposed ultrathin (∼0.018λ{sub 0}, λ{sub 0} corresponding to the lowest peak absorption frequency) compact (0.168λ{sub 0}×0.168λ{sub 0} corresponding to the area of a unit cell) absorber enables potential applications such as stealth technology, electromagnetic interference and spectrum identification.« less

  4. Acoustic Immittance, Absorbance, and Reflectance in the Human Ear Canal

    PubMed Central

    Rosowski, John J.; Wilber, Laura Ann

    2015-01-01

    Ear canal measurements of acoustic immittance (a term that groups impedance and its inverse, admittance) and the related quantities of acoustic reflectance and power absorbance have been used to assess auditory function and aid in the differential diagnosis of conductive hearing loss for over 50 years. The change in such quantities after stimulation of the acoustic reflex also has been used in diagnosis. In this article, we define these quantities, describe how they are commonly measured, and discuss appropriate calibration procedures and standards necessary for accurate immittance/reflectance measurements. PMID:27516708

  5. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes

    PubMed Central

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-01-01

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783

  6. Absorbers in the Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Boisvert, Jean-Sébastien; Marchildon, Louis

    2013-03-01

    The transactional interpretation of quantum mechanics, following the time-symmetric formulation of electrodynamics, uses retarded and advanced solutions of the Schrödinger equation and its complex conjugate to understand quantum phenomena by means of transactions. A transaction occurs between an emitter and a specific absorber when the emitter has received advanced waves from all possible absorbers. Advanced causation always raises the specter of paradoxes, and it must be addressed carefully. In particular, different devices involving contingent absorbers or various types of interaction-free measurements have been proposed as threatening the original version of the transactional interpretation. These proposals will be analyzed by examining in each case the configuration of absorbers and, in the special case of the so-called quantum liar experiment, by carefully following the development of retarded and advanced waves through the Mach-Zehnder interferometer. We will show that there is no need to resort to the hierarchy of transactions that some have proposed, and will argue that the transactional interpretation is consistent with the block-universe picture of time.

  7. Vibration reduction in a tilting rotor using centrifugal pendulum vibration absorbers

    NASA Astrophysics Data System (ADS)

    Shi, Chengzhi; Shaw, Steven W.; Parker, Robert G.

    2016-12-01

    This paper investigates vibration reduction in a rigid rotor with tilting, rotational, and translational motions using centrifugal pendulum vibration absorbers (CPVAs). A linearized vibration model is derived for the system consisting of the rotor and multiple sets of absorbers tuned to different orders. Each group of absorbers lies in a given plane perpendicular to the rotor rotation axis. Gyroscopic system modal analysis is applied to derive the steady-state response of the absorbers and the rotor to external, rotor-order, periodic forces and torques with frequency mΩ, where Ω is the mean rotor speed and m is the engine order (rotor-order). It is found that an absorber group with tuning order m is effective at reducing the rotor translational, tilting, and rotational vibrations, provided certain conditions are met. When the periodic force and torque are caused by N substructures that are equally spaced around the rotor, the rotor translational and tilting vibrations at order j are addressed by two absorber groups with tuning orders jN±1. In this case, the rotor rotational vibration at order j can be attenuated by an absorber group with tuning order jN. The results show how the response depends on the load amplitudes and order, the rotor speed, and design parameters associated with the sets of absorbers, most importantly, their tuning, mass, and plane of placement. In the ideal case with zero damping and exact tuning of the absorber sets, the vibrations can be eliminated for a range of loads over which the linearized model holds. The response for systems with detuned absorbers is also determined, which is relevant to applications where small detuning is employed due to robustness issues, and to allow for a larger range of operating loads over which the absorbers are effective. The system also exhibits undesirable resonances very close to these tuning conditions, an issue that is difficult to resolve and deserves further investigation.

  8. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, B.; Miller, L.F.; Sparks, R.B.

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation wasmore » considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.« less

  9. Efficacy and Safety of the Absorb Everolimus-Eluting Bioresorbable Scaffold for Treatment of Patients With Diabetes Mellitus: Results of the Absorb Diabetic Substudy.

    PubMed

    Kereiakes, Dean J; Ellis, Stephen G; Kimura, Takeshi; Abizaid, Alexandre; Zhao, Weiying; Veldhof, Susan; Vu, Minh-Thien; Zhang, Zhen; Onuma, Yoshinobu; Chevalier, Bernard; Serruys, Patrick W; Stone, Gregg W

    2017-01-09

    The study sought to evaluate the efficacy and safety of the Absorb everolimus-eluting bioresorbable vascular scaffold (BVS) (Abbott Vascular, Abbott Park, Illinois) in patients with diabetes mellitus. Randomized, controlled trials have demonstrated comparable clinical outcomes following percutaneous coronary intervention with either Absorb BVS or metallic Xience everolimus-eluting stent. However, these trials lack power required to provide reliable treatment effect estimates in this high-risk population. In a pre-specified, powered analysis, patients with diabetes who received ≥1 Absorb were pooled from the ABSORB II, III, and JAPAN randomized trials and from the single arm ABSORB EXTEND registry. The study composite primary endpoint was target lesion failure (TLF) at 1 year following Absorb BVS compared with a performance goal of 12.7%. Among 754 diabetic patients included in analysis (27.3% insulin treated), the 1-year TLF rate was 8.3% (upper 1-sided 95% confidence limit: 10.1%; p = 0.0001 vs. performance goal). Scaffold thrombosis (definite or probable) was observed in 2.3% of patients. Multivariable regression identified older age, insulin treatment, and smaller pre-procedure reference vessel diameter as significant independent predictors of 1-year TLF. The Absorb diabetic substudy suggests efficacy and safety of the Absorb BVS for treatment of patients with diabetes mellitus. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-07-13

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.

  11. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    PubMed Central

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891

  12. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    NASA Astrophysics Data System (ADS)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak

    2015-09-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  13. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    PubMed

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-09-10

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  14. Phase Space Exchange in Thick Wedge Absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  15. Analysis of single-layer metamaterial absorber with reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Tang, Ming-Chun; Hong, Jing-Song

    2015-04-01

    A reflection theory is employed to analyze a single-layered metamaterial absorber. With the necessary conditions for zero reflection, the permittivity and permeability as functions of absorptivity were obtained, which are suitable for analyzing the absorption properties of single-layered metamaterial absorber at both normal and oblique incidence cases. With the obtained expressions, it not only can explain why the absorption peaks monotonously decrease with increasing of the incident angles but also can explore the relationship between the absorptivity and spacer thickness of the dielectric slab. A Jerusalem cross metamaterial absorber was simulated and verified the validity of this proposed reflection theory. The main contribution of our work is that it can explain the physical mechanism of the various absorption peaks by using the analytical formula and highlights its potential guidance for designing and analyzing metamaterial absorbers in the future.

  16. Nylon shock absorber prevents injury to parachute jumpers

    NASA Technical Reports Server (NTRS)

    Mandel, J. A.

    1966-01-01

    Nylon shock absorbers reduce the canopy-opening shock of a parachute to a level that protects the wearer from injury. A shock absorber is mounted on each of the four risers between the shroud lines and the harness. Because of their size and location, they pose no problem in repacking the chute and harness after a jump.

  17. A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li

    2018-03-01

    Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.

  18. Development of sampling calorimeter with segmented lead glass absorber

    NASA Astrophysics Data System (ADS)

    Terada, R.; Takeshita, T.; Itoh, H.; Kanzaki, I.

    2018-02-01

    Sampling calorimeter is indispensable for physics measurement at collider experiment with PFA. Uncertainty of deposit energy at absorber layer degrades energy resolution. This problem will be solved by using lead glass as absorber, which is clear and heavy. High energy particles produce Cherenkov lights whose light yield corresponds to the track length in the lead glass. This information from the absorber will improve the energy resolution of the calorimeter. Performance of this calorimeter prototype tested for electrons at ELPH beam at Tohoku University has been described. We discuss the problems and its capabilities.

  19. Design, Fabrication, and Testing of Composite Energy-Absorbing Keel Beams for General Aviation Type Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Knight, Norman F., Jr.

    2002-01-01

    A lightweight energy-absorbing keel-beam concept was developed and retrofitted in a general aviation type aircraft to improve crashworthiness performance. The energy-absorbing beam consisted of a foam-filled cellular structure with glass fiber and hybrid glass/kevlar cell walls. Design, analysis, fabrication and testing of the keel beams prior to installation and subsequent full-scale crash testing of the aircraft are described. Factors such as material and fabrication constraints, damage tolerance, crush stress/strain response, seat-rail loading, and post crush integrity, which influenced the course of the design process are also presented. A theory similar to the one often used for ductile metal box structures was employed with appropriate modifications to estimate the sustained crush loads for the beams. This, analytical tool, coupled with dynamic finite element simulation using MSC.Dytran were the prime design and analysis tools. The validity of the theory as a reliable design tool was examined against test data from static crush tests of beam sections while the overall performance of the energy-absorbing subfloor was assessed through dynamic testing of 24 in long subfloor assemblies.

  20. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    PubMed

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  1. Microscopic modeling of nitride intersubband absorbance

    NASA Astrophysics Data System (ADS)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  2. Bayesian characterization of micro-perforated panels and multi-layer absorbers

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew Alexander Joseph

    First described by the late acoustician Dah-You Maa, micro-perforated panel (MPP) absorbers produce extremely high acoustic absorption coefficients. This is done without the use of conventional fibrous or porous materials that are often used in acoustic treatments, meaning MPP absorbers are capable of being implemented and withstanding critical situations where traditional absorbers do not suffice. The absorption function of a micro-perforated panel yields high yet relatively narrow results at certain frequencies, although wide-band absorption can be designed by stacking multiple MPP absorbers comprised of different characteristic parameters. Using Bayesian analysis, the physical properties of panel thickness, pore diameter, perforation ratio, and air depth are estimated inversely from experimental data of acoustic absorption, based on theoretical models for design of micro-perforated panels. Furthermore, this analysis helps to understand the interdependence and uncertainties of the parameters and how each affects the performance of the panel. Various micro-perforated panels are manufactured and tested in single- and double-layer absorber constructions.

  3. Midwavelength interband cascade infrared photodetectors with superlattice absorbers and gain

    NASA Astrophysics Data System (ADS)

    Lei, Lin; Li, Lu; Lotfi, Hossein; Ye, Hao; Yang, Rui Q.; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.

    2018-01-01

    We report on a comparison study of the electrical and optical properties of a set of device structures with different numbers of cascade stages, type-II superlattice (T2SL) absorber thickness, and doping variations, as well as a noncurrent-matched interband cascade infrared photodetectors (ICIP) structure with equal absorbers. Multistage ICIPs were demonstrated to be capable of operating at high temperatures at zero-bias with superior carrier transport over comparable conventional one-stage detectors. Based on the temperature dependence and bias sensitivity of their responsivities with various absorber thicknesses, the diffusion length is estimated to be between 0.6 and 1.0 μm for T2SL materials at high temperatures (>250 K). A comparison of responsivities between current matched ICIPs with varied absorber thicknesses and noncurrent-matched ICIPs with equal absorbers shows that the current-matching among cascade stages is necessary to maximize responsivity. Additionally, electrical gain exceeding unity is demonstrated in these detectors in the reverse-illumination configuration.

  4. Protecting the surface of a light absorber in a photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shu; Lewis, Nathan S.

    A photoanode includes a passivation layer on a light absorber. The passivation layer is more resistant to corrosion than the light absorber. The photoanode includes a surface modifying layer that is location on the passivation layer such that the passivation layer is between the light absorber and the surface modifying layer. The surface modifying layer reduces a resistance of the passivation layer to conduction of holes out of the passivation layer.

  5. Ultra-thin and -broadband microwave magnetic absorber enhanced by phase gradient metasurface incorporation

    NASA Astrophysics Data System (ADS)

    Fan, Ya; Wang, Jiafu; Li, Yongfeng; Pang, Yongqiang; Zheng, Lin; Xiang, Jiayu; Zhang, Jieqiu; Qu, Shaobo

    2018-05-01

    Based on the effect of anomalous reflection and refraction caused by the circularly cross-polarized phase gradient metasurface (PGM), an ultra-thin and -broadband composite absorber composed of metasurface and conventional magnetic absorbing film is proposed and demonstrated in this paper. In the case of keeping nearly the same thickness of absorbing layer, the equivalent thickness of magnetic absorbing film is enlarged by the effect of anomalous reflection and refraction, resulting in the expansion and improvement of the absorbing bandwidth and efficiency in low microwave frequency. A biarc metallic sub-cell for circularly crossed polarization is adopted to form a broadband phase gradient, by the means of rotating the Pancharatnam–Berry phases. As indicated in the experimental results, the fabricated 3.6 mm-thick absorber can averagely absorb microwave energy with the specular reflection below  ‑10 dB in the frequency interval of 2–12 GHz, which shows a good match with simulated results. Due to ultra-thin thickness and ultra-wide operating bandwidth, the proposed application of PGM in absorbing can provide an alternative way to enhance the absorbing property of current absorbing materials.

  6. Mechanical and microwave absorbing properties of carbon-filled polyurethane.

    PubMed

    Kucerová, Z; Zajícková, L; Bursíková, V; Kudrle, V; Eliás, M; Jasek, O; Synek, P; Matejková, J; Bursík, J

    2009-01-01

    Polyurethane (PU) matrix composites were prepared with various carbon fillers at different filler contents in order to investigate their structure, mechanical and microwave absorbing properties. As fillers, flat carbon microparticles, carbon microfibers and multiwalled carbon nanotubes (MWNT) were used. The microstructure of the composite was examined by scanning electron microscopy and transmission electron microscopy. Mechanical properties, namely universal hardness, plastic hardness, elastic modulus and creep were assessed by means of depth sensing indentation test. Mechanical properties of PU composite filled with different fillers were investigated and the composite always exhibited higher hardness, elastic modulus and creep resistance than un-filled PU. Influence of filler shape, content and dispersion was also investigated.

  7. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces

    PubMed Central

    Petoukhoff, Christopher E.; O'Carroll, Deirdre M.

    2015-01-01

    Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900

  8. Investigation into the energy-absorbing properties of multilayered circular thin-walled tube

    NASA Astrophysics Data System (ADS)

    Qi, Aidong; Liu, Chuanhua; Hu, Gongli; Gu, Hongjun

    2002-05-01

    With the rise in collision accident and the increase in requirement for resistance of blastproof structures in recent years, people attach much importance to the research and application of energy-absorbing device. In this paper the author calculates the specific strength, the specific hardness and ultimate internal force of a circular thin-walled tube by theoretic calculations, discusses the feasibility of using circular thin-walled tube as an energy-absorbing element, analyzes the energy-absorbing properties and the energy-absorbing mechanism through the energy-absorbing experiments using various materials and forms of arrangement, reaches the conclusion that the load-bearing capacity and energy-absorbing properties of multilayered tubes are superior to that of single tube, and puts forward the concept of 'grading tube'.

  9. Muscle as a molecular machine for protecting joints and bones by absorbing mechanical impacts

    PubMed Central

    Sarvazyan, Armen; Rudenko, Oleg; Aglyamov, Salavat; Emelianov, Stanislav

    2014-01-01

    out two functions, acting first as a nonlinear spring to slow down impact and second as a viscous damper to absorb the impact. Exploring the ability of muscle to absorb mechanical shock may shed light to many problems of medical biomechanics and sports medicine. Currently there are no clinical devices for real-time quantitative assessment of viscoelastic properties of contracting muscles in vivo. Such assessment may be important for diagnosis and monitoring of treatment of various muscle disorders such as muscle dystrophy, motor neuron diseases, inflammatory and metabolic myopathies and many more. PMID:24810676

  10. Absorber for microwave investigation in the open space

    NASA Astrophysics Data System (ADS)

    Kubacki, Roman; Smólski, Bogusław; Głuszewski, Wojciech; Przesmycki, Rafał; Rudyk, Karol

    2017-04-01

    In some circumstances there is a need to realize the Electromagnetic Compatibility (EMC) investigation not in the specialized anechoic chamber but in the open space. Typical absorbers used in anechoic chamber to reduce the reflected rays from walls and floor, such as ferrite plates and graphite cones, are not suitable in the open space. In the work the investigation of the flexible absorbing material intended to the liquidation of the radiation reflected from the ground has been presented. As an absorbing material the metallic-glass with graphite was elaborated. This material was additionally exposed to the ionizing radiation in the dose of 100 kGy in the radioactive gamma source. The permittivity, permeability as well as the shielding properties have been analyzed.

  11. Reflection and Refraction of Light in Absorbing Media

    NASA Astrophysics Data System (ADS)

    Katsumata, Koichi; Sasaki, Shosuke

    2018-05-01

    The results of a rigorous calculation of optical phenomena in absorbing media based on Maxwell's equations are reported. In the case of an absorbing dielectric, we assume a complex dielectric constant. We find an expression for the angle of refraction as a function of the incident angle and the real and imaginary parts of the complex dielectric constant, all of which are real. The amplitudes of the reflected and transmitted waves are calculated on the same footing. These amplitudes are shown to be complex, from which we deduce the magnitude and phase change of the reflection and transmission coefficients. The same argument applies to an absorbing magnetic material if we replace the complex dielectric constant by a complex magnetic permeability.

  12. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS)

    PubMed Central

    Kim, Kyeongseob; Lee, Dongju; Eom, Seunghyun; Lim, Sungjoon

    2016-01-01

    A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS). To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm) to 6.4 cm. PMID:27077861

  13. Integration of regenerative shock absorber into vehicle electric system

    NASA Astrophysics Data System (ADS)

    Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-03-01

    Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.

  14. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    NASA Astrophysics Data System (ADS)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  15. Comparison of metal versus absorbable implants in tension-band wiring: a preliminary study.

    PubMed

    Morgan, W J; Slowman, L A; Wotton, H M; Nairus, J

    2001-04-01

    The strength of tension-band wiring using bioabsorbable materials versus metal implants was assessed with a rabbit knee fusion model. Ten rabbit knees were osteotomized and rigidly fixed using a tension-band technique: five with metal implants (2 pins and 24-gauge wire) and five with absorbable implants (2-mm pins [Bionx, Blue Bell, Pa] and 1 Maxon [Davis and Geck, Danbury, Conn]). Biomechanical testing of the fixation strength was completed using a servohydraulic mechanical testing machine and a specifically designed four-point bending jig. The parameters assessed were maximal load, relative stiffness, displacement, and bending moment of the constructs. Results of the biomechanical testing showed no statistical difference between the constructs on any of the parameters assessed.

  16. Digital Alloy Absorber for Photodetectors

    NASA Technical Reports Server (NTRS)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  17. Large-scale broadband absorber based on metallic tungsten nanocone structure

    NASA Astrophysics Data System (ADS)

    Wang, Jiaxing; Liang, Yuzhang; Huo, Pengcheng; Wang, Daopeng; Tan, Jun; Xu, Ting

    2017-12-01

    We report a broadband tungsten absorber based on a nanocone metallic resonant structure fabricated by self-assembly nanosphere lithography. In experimental demonstration, the fabricated absorber has more than 90% average absorption efficiency and shows superior angular tolerance in the entire visible and near-infrared spectral region. We envision that this large-scale nanostructured broadband optical absorber would find great potential in the applications of high performance optoelectronic platforms and solar-thermal energy harvesting systems.

  18. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.

    PubMed

    Wen, Qi-Ye; Xie, Yun-Song; Zhang, Huai-Wu; Yang, Qing-Hui; Li, Yuan-Xun; Liu, Ying-Li

    2009-10-26

    Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.

  19. Integrated passive/active vibration absorber for multi-story buildings

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.

    1995-01-01

    Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.

  20. Failure mechanisms in energy-absorbing composite structures

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; David, Matthew

    2010-11-01

    Quasi-static tests are described for determination of the energy-absorption properties of composite crash energy-absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens were used to identify local compression crush failure mechanisms at the crush front. These mechanisms are important for selecting composite materials for energy-absorbing structures, such as helicopter and aircraft sub-floors. Finite element models of the failure processes are described that could be the basis for materials selection and future design procedures for crashworthy structures.

  1. Characteristic Model of a Shock Absorber in an Unmanned Ground Vehicle

    NASA Astrophysics Data System (ADS)

    Danko, Ján; Milesich, Tomáš; Bugár, Martin; Madarás, Juraj

    2012-12-01

    The paper deals with mathematical models for the shock absorber of an unmanned ground vehicle. The possibility of mathematically modeling the shock absorber is discussed. Specific types of mathematical models are described and the experimental measurement of a shock absorber is made. For modeling the characteristics of the shock absorber the modified Bouc-Wen model (Spencer model) is selected. From the mathematical model, a simulation model in Matlab/Simulink is created. The identification of the Spencer model parameters is performed and force-velocity and force-displacement characteristics of the shock absorber of an unmanned ground vehicle is made. In the conclusions, the simulated characteristics are verified and evaluated by the measured characteristics.

  2. Hybrid mode-scattering/sound-absorbing segmented liner system and method

    NASA Technical Reports Server (NTRS)

    Walker, Bruce E. (Inventor); Hersh, Alan S. (Inventor); Rice, Edward J. (Inventor)

    1999-01-01

    A hybrid mode-scattering/sound-absorbing segmented liner system and method in which an initial sound field within a duct is steered or scattered into higher-order modes in a first mode-scattering segment such that it is more readily and effectively absorbed in a second sound-absorbing segment. The mode-scattering segment is preferably a series of active control components positioned along the annulus of the duct, each of which includes a controller and a resonator into which a piezoelectric transducer generates the steering noise. The sound-absorbing segment is positioned acoustically downstream of the mode-scattering segment, and preferably comprises a honeycomb-backed passive acoustic liner. The invention is particularly adapted for use in turbofan engines, both in the inlet and exhaust.

  3. Development of Coatings for Radar Absorbing Materials at X-band

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Singh, Samarjit

    2018-03-01

    The present review gives a brief account on some of the technical features of radar absorbing materials (RAMs). The paper has been presented with a concentrated approach towards the material aspects for achieving enhanced radar absorption characteristics for its application as a promising candidate in stealth technology and electromagnetic interference (EMI) minimization problems. The effect of metal particles doping/dispersion in the ferrites and dielectrics has been discussed for obtaining tunable radar absorbing characteristics. A short theoretical overview on the development of absorber materials, implementation of genetic algorithm (GA) in multi-layering and frequency selective surfaces (FSSs) based multi-layer has also been presented for the development of radar absorbing coatings for achieving better absorption augmented with broadband features in order to counter the radar detection systems.

  4. Photodetector with absorbing region having resonant periodic absorption between reflectors

    DOEpatents

    Bryan, R.P.; Olbright, G.R.; Brennan, T.M.; Tsao, J.Y.

    1995-02-14

    A photodetector is disclosed that is responsive to a wavelength or wavelengths of interest which have heretofore been unrealized. The photodetector includes a resonant cavity structure bounded by first and second reflectors, the resonant cavity structure being resonant at the wavelength or wavelengths of interest for containing a plurality of standing waves therein. The photodetector further includes a radiation absorbing region disposed within the resonant cavity structure, the radiation absorbing region including a plurality of radiation absorbing layers spaced apart from one another by a distance substantially equal to a distance between antinodes of adjacent ones of the standing waves. Each of radiation absorbing layers is spatially positioned at a location of one of the antinodes of one of the standing waves such that radiation absorption is enhanced. The radiation absorbing layers may be either bulk layers or quantum wells includes a plurality of layers, each of which is comprised of a strained layer of InGaAs. Individual ones of the InGaAs layers are spaced apart from one another by a GaAs barrier layer. 11 figs.

  5. Measurements of Light Absorbing Particles on Tropical South American Glaciers

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; All, J.; Schwarz, J. P.; Arnott, W. P.; Warthon, J.; Andrade, M.; Celestian, A. J.; Hoffmann, D.; Cole, R. J.; Lapham, E.; Horodyskyj, U. N.; Froyd, K. D.; Liao, J.

    2014-12-01

    Glaciers in the tropical Andes have been losing mass rapidly in recent decades. In addition to the documented increase in temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we present results of measurements of light absorbing particles from glaciers in Peru and Bolivia. Samples have been collected by American Climber Science Program volunteers and scientists at altitudes up to 6770 meters. Collected snow samples were melted and filtered in the field. A new inexpensive technique, the Light Absorption Heating Method (LAHM) has been developed for analysis of light absorbing particles collected on filters. Results from LAHM analysis are calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). For snow samples collected at the same field location LAHM analysis and measurements from the Single Particle Soot Photometer (SP2) instrument are well correlated (r2 = 0.92). Co-located SP2 and LAHM filter analysis suggest that BC could be the dominant absorbing component of the light absorbing particles in some areas.

  6. Photodetector with absorbing region having resonant periodic absorption between reflectors

    DOEpatents

    Bryan, Robert P.; Olbright, Gregory R.; Brennan, Thomas M.; Tsao, Jeffrey Y.

    1995-02-14

    A photodetector that is responsive to a wavelength or wavelengths of interest which have heretofore been unrealized. The photodetector includes a resonant cavity structure bounded by first and second reflectors, the resonant cavity structure being resonant at the wavelength or wavelengths of interest for containing a plurality of standing waves therein. The photodetector further includes a radiation absorbing region disposed within the resonant cavity structure, the radiation absorbing region including a plurality of radiation absorbing layers spaced apart from one another by a distance substantially equal to a distance between antinodes of adjacent ones of the standing waves. Each of radiation absorbing layers is spatially positioned at a location of one of the antinodes of one of the standing waves such that radiation absorption is enhanced. The radiation absorbing layers may be either bulk layers or quantum wells includes a plurality of layers, each of which is comprised of a strained layer of InGaAs. Individual ones of the InGaAs layers are spaced apart from one another by a GaAs barrier layer.

  7. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  8. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Yong W.; Wiedermann, Arne H.; Ockert, Carl E.

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  9. New bone formation in a bone defect associated to dental implant using absorbable or non-absorbable membrane in a dog model

    PubMed Central

    Lopez, Maria de Almeida; Olate, Sergio; Lanata-Flores, Antonio; Pozzer, Leandro; Cavalieri-Pereira, Lucas; Cantín, Mario; Vásquez, Bélgica; de Albergaria-Barbosa, José

    2013-01-01

    The aim of this research was to determine the bone formation capacity in fenestration defects associated with dental implants using absorbable and non-absorbable membranes. Six dogs were used in the study. In both tibias of each animal 3 implants were installed, and around these 5 mm circular defects were created. The defects were covered with absorbable membranes (experimental group 1), non-absorbable membranes (experimental group 2), and the third defect was not covered (control group). At 3 and 8 weeks post-surgery, the animals were euthanized and the membranes with the bone tissue around the implants were processed for histological analysis. The statistical analysis was conducted with Tukey’s test, considering statistical significance when p<0.1. Adequate bone repair was observed in the membrane-covered defects. At 3 weeks, organization of the tissue, bone formation from the periphery of the defect and the absence of inflammatory infiltrate were observed in both experimental groups, but the defect covered with absorbable membrane presented statistically greater bone formation. At 8 weeks, both membrane-covered defects showed adequate bone formation without significant differences, although they did in fact present differences with the control defect in both periods (p>0.1). In the defects without membrane, continuous connective tissue invasions and bone repair deficiency were observed. There were no significant differences in the characteristics and volume of the neoformed bone in the defects around the implants covered by the different membranes, whereas the control defects produced significantly less bone. The use of biological membranes contributes to bone formation in three-wall defects. PMID:24228090

  10. 21 CFR 878.4490 - Absorbable hemostatic agent and dressing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Absorbable hemostatic agent and dressing. 878.4490 Section 878.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4490 Absorbable...

  11. 21 CFR 878.4490 - Absorbable hemostatic agent and dressing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Absorbable hemostatic agent and dressing. 878.4490 Section 878.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4490 Absorbable...

  12. 21 CFR 878.4490 - Absorbable hemostatic agent and dressing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable hemostatic agent and dressing. 878.4490 Section 878.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4490 Absorbable...

  13. 21 CFR 878.4490 - Absorbable hemostatic agent and dressing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Absorbable hemostatic agent and dressing. 878.4490 Section 878.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4490 Absorbable...

  14. 21 CFR 878.4490 - Absorbable hemostatic agent and dressing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Absorbable hemostatic agent and dressing. 878.4490 Section 878.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4490 Absorbable...

  15. 1 Mixing state and absorbing properties of black carbon during Arctic haze

    NASA Astrophysics Data System (ADS)

    Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi

    2016-04-01

    The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass

  16. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation

    PubMed Central

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-01-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber–based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m−2). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices. PMID:27152335

  17. Energy absorber for sodium-heated heat exchanger

    DOEpatents

    Essebaggers, J.

    1975-12-01

    A heat exchanger is described in which water-carrying tubes are heated by liquid sodium and in which the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes is minimized. An energy absorbing chamber contains a compressible gas and is connected to the body of flowing sodium by a channel so that, in the event of a sodium-water reaction, products of the reaction will partially fill the energy absorbing chamber to attenuate the rise in pressure within the heat exchanger.

  18. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    DOEpatents

    Zoch, Harold L.

    1979-11-27

    A neutron absorbing composition comprising a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide.

  19. Novel Ultraviolet Light Absorbing Polymers For Optical Applications

    NASA Astrophysics Data System (ADS)

    Doddi, Namassivaya; Yamada, Akira; Dunks, Gary B.

    1988-07-01

    Ultraviolet light absorbing monomers have been developed that can be copolymerized with acrylates. The composition of the resultant stable copolymers can be adjusted to totally block the transmission of light below about 430 nm. Fabrication of lenses from the materials is accomplished by lathe cutting and injection molding procedures. These ultraviolet light absorbing materials are non-mutagenic and non-toxic and are currently being used in intraocular lenses.

  20. Broadband infrared absorbers with stacked double chromium ring resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Huixu; Stan, Liliana; Czaplewski, David A.

    A broadband absorber in the infrared wavelength range from 1 μm up to 5 μm is designed and demonstrated with stacked double chromium ring resonators on a reflective chromium mirror. The near-perfect broadband absorption is realized by combining the multilayer impedance match in the short wavelength range and the double plasmonic resonances in the long wavelength range, which is illustrated with an equivalent circuit model for the impedance analysis. The broadband absorber is proved to be angle-insensitive and polarization-independent due to the geometrical symmetry. Lastly, the thermal analysis for heat generation and temperature distributions inside the absorber structure is alsomore » investigated.« less

  1. Broadband infrared absorbers with stacked double chromium ring resonators

    DOE PAGES

    Deng, Huixu; Stan, Liliana; Czaplewski, David A.; ...

    2017-10-31

    A broadband absorber in the infrared wavelength range from 1 μm up to 5 μm is designed and demonstrated with stacked double chromium ring resonators on a reflective chromium mirror. The near-perfect broadband absorption is realized by combining the multilayer impedance match in the short wavelength range and the double plasmonic resonances in the long wavelength range, which is illustrated with an equivalent circuit model for the impedance analysis. The broadband absorber is proved to be angle-insensitive and polarization-independent due to the geometrical symmetry. Lastly, the thermal analysis for heat generation and temperature distributions inside the absorber structure is alsomore » investigated.« less

  2. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    ERIC Educational Resources Information Center

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  3. Absorbance enhancement in microplate wells for improved-sensitivity biosensors.

    PubMed

    Suárez, Guillaume; Santschi, Christian; Plateel, Gregory; Martin, Olivier J F; Riediker, Michael

    2014-06-15

    A generic optical biosensing strategy was developed that relies on the absorbance enhancement phenomenon occurring in a multiple scattering matrix. Experimentally, inserts made of glass fiber membrane were placed into microplate wells in order to significantly lengthen the trajectory of the incident light through the sample and therefore increase the corresponding absorbance. Enhancement factor was calculated by comparing the absorbance values measured for a given amount of dye with and without the absorbance-enhancing inserts in the wells. Moreover, the dilution of dye in solutions with different refractive indices (RI) clearly revealed that the enhancement factor increased with the ΔRI between the membrane and the surrounding medium, reaching a maximum value (EF>25) when the membranes were dried. On this basis, two H2O2-biosensing systems were developed based on the biofunctionalization of the glass fiber inserts either with cytochrome c or horseradish peroxidase (HRP) and the analytical performances were systematically compared with the corresponding bioassay in solution. The efficiency of the absorbance-enhancement approach was particularly clear in the case of the cytochrome c-based biosensor with a sensitivity gain of 40 folds and wider dynamic range. Therefore, the developed strategy represents a promising way to convert standard colorimetric bioassays into optical biosensors with improved sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Absorber modeling for NGCC carbon capture with aqueous piperazine.

    PubMed

    Zhang, Yue; Freeman, Brice; Hao, Pingjiao; Rochelle, Gary T

    2016-10-20

    A hybrid system combining amine scrubbing with membrane technology for carbon capture from natural gas combined cycle (NGCC) power plants is proposed in this paper. In this process, the CO 2 in the flue gas can be enriched from 4% to 18% by the membrane, and the amine scrubbing system will have lower capture costs. Aqueous piperazine (PZ) is chosen as the solvent. Different direct contact cooler (DCC) options, multiple absorber operating conditions, optimal intercooling designs, and different cooling options have been evaluated across a wide range of inlet CO 2 . Amine scrubbing without DCC is a superior design for NGCC carbon capture. Pump-around cooling at the bottom of the absorber can effectively manage the temperature of the hot flue gas, and still be effective for CO 2 absorption. The absorber gas inlet must be designed to avoid excessive localized temperature and solvent evaporation. When the inlet CO 2 increases from 4% to 18%, total absorber CAPEX decreases by 60%; another 10% of the total absorber CAPEX can be saved by eliminating the DCC. In-and-out intercooling works well for high CO 2 , while pump-around intercooling is more effective for low CO 2 . Dry cooling requires more packing and energy but appears to be technically and economically feasible if cooling water availability is limited.

  5. Constraining MHD Disk-Winds with X-ray Absorbers

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Tombesi, F.; Shrader, C. R.; Kazanas, D.; Contopoulos, J.; Behar, E.

    2014-01-01

    From the state-of-the-art spectroscopic observations of active galactic nuclei (AGNs) the robust features of absorption lines (e.g. most notably by H/He-like ions), called warm absorbers (WAs), have been often detected in soft X-rays (< 2 keV). While the identified WAs are often mildly blueshifted to yield line-of-sight velocities up to ~100-3,000 km/sec in typical X-ray-bright Seyfert 1 AGNs, a fraction of Seyfert galaxies such as PG 1211+143 exhibits even faster absorbers (v/ 0.1-0.2) called ultra-fast outflows (UFOs) whose physical condition is much more extreme compared with the WAs. Motivated by these recent X-ray data we show that the magnetically- driven accretion-disk wind model is a plausible scenario to explain the characteristic property of these X-ray absorbers. As a preliminary case study we demonstrate that the wind model parameters (e.g. viewing angle and wind density) can be constrained by data from PG 1211+143 at a statistically significant level with chi-squared spectral analysis. Our wind models can thus be implemented into the standard analysis package, XSPEC, as a table spectrum model for general analysis of X-ray absorbers.

  6. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities.

    PubMed

    Bueno, M; Carrasco, P; Jornet, N; Muñoz-Montplet, C; Duch, M A

    2014-08-01

    The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)-two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a (7)Li-enriched LiF:Mg,Ti-based (MTS-7s)-as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5 x 5 cm2 to 20 x 20 cm2. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs' response was evaluated. TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%-5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a[Formula: see text] thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT's active layer material. TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  7. A new hybrid active/passive sound absorber with variable surface impedance

    NASA Astrophysics Data System (ADS)

    Betgen, Benjamin; Galland, Marie-Annick

    2011-07-01

    The context of the present paper is the wall treatment of flow ducts, notably aero-engine nacelle intakes and outlets. For this purpose, hybrid active/passive absorbers have been developed at the LMFA for about 15 years. A hybrid cell combines passive absorbent properties of a porous layer and active control at its rear face. Active control is mainly used to increase absorption at low frequencies by cancelling the imaginary part of the surface impedance presented by the absorber. However, the optimal impedance (i.e. the one that produces the highest noise reduction) of an absorber for flow duct applications is generally complex and frequency dependent. A new hybrid absorber intended to realise any of impedance has therefore been developed. The new cell uses one microphone on each side of a resistive cloth. Normal velocity can then be deduced by a simple pressure difference, which allows an estimation of the surface impedance of the absorber. In order to obtain an error signal related to a target impedance, the target impedance has to be reproduced in time domain. The design of a stable and causal filter is a difficult task, considering the kind of frequency response we seek. An alternative way of representing the impedance in time domain is therefore given. The new error signal is integrated into a feedback control structure. Fast convergence and good stability are observed for a wide range of target impedances. Typical optimal impedances with a positive increasing real part and a negative decreasing imaginary part have been successfully realised. Measurements in a grazing-incidence tube show that the new complex impedance absorber clearly outperforms the former active absorber.

  8. Ultrafast propagation of Schroedinger waves in absorbing media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, F.; Muga, J.G.; Ruschhaupt, A.

    2004-02-01

    We show that the temporal peak of a quantum wave may arrive at different locations simultaneously in an absorbing medium. The arrival occurs at the lifetime of the particle in the medium from the instant when a point source with a sharp onset is turned on. We also identify other characteristic times. In particular, the 'traversal' or 'Buettiker-Landauer' time (which grows linearly with the distance to the source) for the Hermitian, non-absorbing case is substituted by several characteristic quantities in the absorbing case. The simultaneous arrival due to absorption, unlike the Hartman effect, occurs for carrier frequencies under or abovemore » the cutoff, and for arbitrarily large distances. It holds also in a relativistic generalization but limited by causality. A possible physical realization is proposed by illuminating a two-level atom with a detuned laser.« less

  9. Superlattice photonic crystal as broadband solar absorber for high temperature operation.

    PubMed

    Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan

    2014-12-15

    A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.

  10. Design and measuring of a tunable hybrid metamaterial absorber for terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Liu, Shui Jie; Xu, Bang Li; Wang, Jie; Huang, Hua Qing

    2018-04-01

    A tunable hybrid metamaterial absorber is designed and experimentally produced in THz band. The hybrid metamaterial absorber contains two dielectric layers: SU-8 and VO2 layers. An absorption peak reaching to 83.5% is achieved at 1.04 THz. The hybrid metamaterial absorber exhibits high absorption when the incident angle reaches to 45°. Measured results indicate that the absorption amplitude and peak frequency of the hybrid metamaterial absorber is tunable in experiments. It is due to the insulator-to-metal phase transition is achieved when the measured temperature reaches to 68 °C. Moreover, the hybrid metamaterial absorber reveals high figure of merit (FOM) value when the measured temperature reaches to 68 °C.

  11. Design of integration-ready metasurface-based infrared absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogando, Karim, E-mail: karim@cab.cnea.gov.ar; Pastoriza, Hernán

    2015-07-28

    We introduce an integration ready design of metamaterial infrared absorber, highly compatible with many kinds of fabrication processes. We present the results of an exhaustive experimental characterization, including an analysis of the effects of single meta-atom geometrical parameters and collective arrangement. We confront the results with the theoretical interpretations proposed in the literature. Based on the results, we develop a set of practical design rules for metamaterial absorbers in the infrared region.

  12. Optical architecture design for detection of absorbers embedded in visceral fat.

    PubMed

    Francis, Robert; Florence, James; MacFarlane, Duncan

    2014-05-01

    Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector.

  13. Optical architecture design for detection of absorbers embedded in visceral fat

    PubMed Central

    Francis, Robert; Florence, James; MacFarlane, Duncan

    2014-01-01

    Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector. PMID:24877008

  14. Analysis of Urban Forest Needs as Anthropogenic (CO2) Gas Absorbent in Semarang City

    NASA Astrophysics Data System (ADS)

    Febriani, Anisa Putri; Retnaningsih Soeprobowati, Tri; Maryono

    2018-02-01

    Green open space in cities in significant needs to maintenance environment quality. On of the critical function is to absorb increasing number of gas CO2. Therefore, developing urban forest in cities is very importance. The objective of the study is to determine the area of urban forest as CO2 gas anthropogenic absorb which is formed from fuel, diesel fuel, liquid petroleum gas. The study consists of (1) Analyzing the number of CO2 gas emission by calculating the needs of petroleum and gas based on the number of population, (2) Analyzing the power of gas absorption, (3) Measuring the air concentration of CO2 gas ambient based on daily traffic activities. This study shown that from year 2013 to year 2017, the increasing of urban forest is not so significant. For year 2013 the green open space in Semarang City are 373.67 hectares (7.5 percent from Semarang City area), consists of 239 parks, 11 public cemeteries, production forests, community forests, and urban forests, however the area of urban forest is not increase. The study assess that Antidesmabunius is one of the green species which high absorb capacity planted for Semarang. This trees produce 31,31 ton annually. This study proposed to fostering Antidesmabunius as one principle threes in Semarang urban forest.

  15. Overview of the 2016 U.S. Food and Drug Administration Circulatory System Devices Advisory Panel Meeting on the Absorb Bioresorbable Vascular Scaffold System.

    PubMed

    Steinvil, Arie; Rogers, Toby; Torguson, Rebecca; Waksman, Ron

    2016-09-12

    This study aims to describe the discussions and recommendations made during the U.S. Food and Drug Administration (FDA) Circulatory System Device Panel pre-market approval application for the Absorb Bioresorbable Vascular Scaffold (BVS) System. The Absorb BVS System is a first-of-its-kind fully bioresorbable percutaneous coronary intervention technology. The absorb BVS was studied in the ABSORB III (A Clinical Evaluation of Absorb BVS, the Everolimus Eluting Bioresorbable Vascular Scaffold in the Treatment of Subjects with de Novo Native Coronary Artery Lesions) trial, the pivotal U.S. investigational device exemption trial. Observational report of the FDA Circulatory System Device Panel pre-market approval application meeting held on March 15, 2016. The U.S. FDA Circulatory System Device Panel members reviewed the ABSROB III trial outcomes and additional post hoc analyses presented by the sponsor and the FDA. The ABSORB III trial met the primary endpoint of noninferiority of Absorb BVS compared with the control, XIENCE drug-eluting stent, for target lesion failure at 1 year. Although a higher numerical trend for adverse outcomes was reported for the Absorb BVS, there were no statistical differences between Absorb BVS and XIENCE for any safety or effectiveness components for target lesion failure or for the secondary pre-specified outcomes. Panel members raised concerns with regard to the ABSORB III results and post hoc analyses focusing mainly on the noninferiority design of the trial, the apparent safety issues of the Absorb BVS in small vessels, the mismatch of visually versus intravascular imaging assessed vessel size found in ABSORB III and its implications on the adequate device labeling, the safety of Absorb BVS in specific patient and lesion subsets, and the post-approval commitments of the sponsor. Following panel discussions and the evidence presented, the panel voted for approval of the device. Copyright © 2016 American College of Cardiology Foundation

  16. 40 CFR 65.150 - Absorbers used as control devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control device on a Group 1 process vent or a high-throughput transfer rack with an absorber used as a... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Absorbers used as control devices. 65... (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas...

  17. 40 CFR 65.150 - Absorbers used as control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control device on a Group 1 process vent or a high-throughput transfer rack with an absorber used as a... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Absorbers used as control devices. 65... (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas...

  18. 40 CFR 65.150 - Absorbers used as control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control device on a Group 1 process vent or a high-throughput transfer rack with an absorber used as a... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Absorbers used as control devices. 65... (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas...

  19. Fault Detection for Automotive Shock Absorber

    NASA Astrophysics Data System (ADS)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  20. Broadband infrared metamaterial absorber based on anodic aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Yang, Jingfan; Qu, Shaobo; Ma, Hua; Wang, Jiafu; Yang, Shen; Pang, Yongqiang

    2018-05-01

    In this work, a broadband infrared metamaterial absorber is proposed based on trapezoid-shaped anodic aluminum oxide (AAO) template. Unlike traditional metamaterial absorber constructed from metal-dielectric-metal sandwich structure, our proposed absorber is composed of trapezoid-shaped AAO template with metallic nanowires inside. The infrared absorption efficiency is numerically calculated and the mechanism analysis is given in the paper. Owing to the superposition of multiple resonances produced by the nanowires with different heights, the infrared metamatrial absorber can keep high absorption efficiency during broad working wavelength band from 3.4 μm to 6.1 μm. In addition, the resonance wavelength is associated with the height of nanowires, which indicates that the resonance wavelength can be modulated flexibly through changing the heights of nanowires. This kind of design can also be adapted to other wavelength regions.

  1. Broadband planar multilayered absorbers tuned by VO2 phase transition

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Ji, Chunhui; Lu, Lulu; Li, Zhe; Li, Haoyang; Wang, Jun; Wu, Zhiming; Jiang, Yadong; Xu, Jimmy; Liu, Zhijun

    2017-08-01

    The metal-insulator transition makes vanadium dioxide an attractive material for developing reconfigurable optoelectronic components. Here we report on dynamically tunable broadband absorbers consisting of planar multilayered thin films. By thermally triggering the phase transition of vanadium dioxide, the effective impedance of multilayered structures is tuned in or out of the condition of impedance matching to free-space, leading to switchable broadband absorptions. Two types of absorbers are designed and demonstrated by using either the insulating or metallic state of vanadium dioxide at the impedance matched condition. The planar multilayered absorbers exhibit tunable absorption bands over the wavelength ranges of 5-9.3 μm and 3.9-8.2 μm, respectively. A large modulation depth up to 88% is measured. The demonstrated broadband absorbance tunability is of potential interest for reconfigurable bolometric sensing, camouflaging, and modulation of mid-infrared lights.

  2. Directionally Antagonistic Graphene Oxide-Polyurethane Hybrid Aerogel as a Sound Absorber.

    PubMed

    Oh, Jung-Hwan; Kim, Jieun; Lee, Hyeongrae; Kang, Yeonjune; Oh, Il-Kwon

    2018-06-21

    Innovative sound absorbers, the design of which is based on carbon nanotubes and graphene derivatives, could be used to make more efficient sound absorbing materials because of their excellent intrinsic mechanical and chemical properties. However, controlling the directional alignments of low-dimensional carbon nanomaterials, such as restacking, alignment, and dispersion, has been a challenging problem when developing sound absorbing forms. Herein, we present the directionally antagonistic graphene oxide-polyurethane hybrid aerogel we developed as a sound absorber, the physical properties of which differ according to the alignment of the microscopic graphene oxide sheets. This porous graphene sound absorber has a microporous hierarchical cellular structure with adjustable stiffness and improved sound absorption performance, thereby overcoming the restrictions of both geometric and function-orientated functions. Furthermore, by controlling the inner cell size and aligned structure of graphene oxide layers in this study, we achieved remarkable improvement of the sound absorption performance at low frequency. This improvement is attributed to multiple scattering of incident and reflection waves on the aligned porous surfaces, and air-viscous resistance damping inside interconnected structures between the urethane foam and the graphene oxide network. Two anisotropic sound absorbers based on the directionally antagonistic graphene oxide-polyurethane hybrid aerogels were fabricated. They show remarkable differences owing to the opposite alignment of graphene oxide layers inside the polyurethane foam and are expected to be appropriate for the engineering design of sound absorbers in consideration of the wave direction.

  3. Optimization of Perfect Absorbers with Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Li Voti, Roberto

    2018-02-01

    We study wide-angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers deposited onto a silver thick layer. An optimization procedure is introduced for searching the optimal thicknesses of the layers so as to design a perfect broadband absorber from 400 nm to 750 nm, for a wide range of angles of incidence from 0{°} to 50{°}, for both polarizations and with a low emissivity in the mid-infrared. We eventually compare the performances of several optimal structures that can be very promising for solar thermal energy harvesting and collectors.

  4. Applying an overstress principle in accelerated testing of absorbing mechanisms

    NASA Astrophysics Data System (ADS)

    Tsyss, V. G.; Sergaeva, M. Yu; Sergaev, A. A.

    2018-04-01

    The relevance of using overstress test as a forced one to determine the pneumatic absorber lifespan was studied. The obtained results demonstrated that at low load overstress the relative error for the absorber lifespan evaluation is no more than 3%. This means that the test results spread has almost no effect on the lifespan evaluation, and this effect is several times less than that at high load overstress tests. Accelerated testing of absorbers with low load overstress is more acceptable since the relative error for the lifespan evaluation is negligible.

  5. Efficacy of electrocoagulation in sealing the cystic artery and cystic duct occluded with only one absorbable clip during laparoscopic cholecystectomy.

    PubMed

    Yang, Chang-Ping; Cao, Jin-Lin; Yang, Ren-Rong; Guo, Hong-Rong; Li, Zhao-Hui; Guo, Hai-Ying; Shao, Yin-Can; Liu, Gui-Bao

    2014-02-01

    Even though laparoscopic cholecystectomy (LC) emerged over 20 years ago, controversies persist with regard to the best method to ligate the cystic duct and artery. We proposed to assess the effectiveness and safety of electrocoagulation to seal the cystic artery and cystic duct after their occlusion with only one absorbable clip. We retrospectively compared the clinical data for 635 patients undergoing LC using electrocoagulation to seal the cystic artery and cystic duct that were occluded with only one absorbable clip (Group 1) and 728 patients undergoing LC using titanium clips (Group 2). In parallel, 30 rabbits randomized into six groups underwent cholecystectomy. After cystic duct ligation with absorbable or titanium clips, the animals were sacrificed 1, 3, or 6 months later, and intraabdominal adhesions were assessed after celiotomy. The mean operative time was significantly shorter (41.6 versus 58.9 minutes, P<.01) in Group 1 than in Group 2. No cystic duct leaks occurred in any patients from Group 1, compared with seven leaks among the 728 (0.96%) patients from Group 2 (P<.05). The morbidity was significantly higher in Group 2 than in Group 1 (3.43% versus 1.58%). Mean intraoperative blood loss and hospitalization length were not significantly different between the two groups, and no deaths occurred in either group. In animal experiments, adhesion was tighter for absorbable than for titanium clips, but fibrous tissue encapsulation was thinner at the site of titanium clips. Electrocoagulation of the cystic artery and cystic duct that were occluded with only one absorbable clip is safe and effective during LC. This approach is associated with shortened operative times and reduced leakage, compared with the standard method using metal clips.

  6. Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials

    PubMed Central

    Zhong, Shuomin; He, Sailing

    2013-01-01

    We present a theory of perfect absorption in a bilayer model composed of a mu-near-zero (MNZ) metamaterial (MM) absorbing layer on a metallic substrate. Our analytical solutions reveal that a MM layer with a large purely imaginary permeability and a moderate permittivity backed by a metallic plane has a zero reflection at normal incidence when the thickness is ultrathin. The impedance-mismatched metamaterial absorber (MA) can be 77.3% thinner than conventional impedance-matched MAs with the same material loss in order to get the same absorption. A microwave absorber using double-layered spiral MMs with a thickness of only about one percent of the operating wavelength is designed and realized. An absorption efficiency above 93% at 1.74 GHz is demonstrated experimentally at illumination angles up to 60 degrees. Our absorber is 98% lighter than traditional microwave absorbers made of natural materials working at the same frequencies. PMID:23803861

  7. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    NASA Astrophysics Data System (ADS)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  8. Robust optimization of a tandem grating solar thermal absorber

    NASA Astrophysics Data System (ADS)

    Choi, Jongin; Kim, Mingeon; Kang, Kyeonghwan; Lee, Ikjin; Lee, Bong Jae

    2018-04-01

    Ideal solar thermal absorbers need to have a high value of the spectral absorptance in the broad solar spectrum to utilize the solar radiation effectively. Majority of recent studies about solar thermal absorbers focus on achieving nearly perfect absorption using nanostructures, whose characteristic dimension is smaller than the wavelength of sunlight. However, precise fabrication of such nanostructures is not easy in reality; that is, unavoidable errors always occur to some extent in the dimension of fabricated nanostructures, causing an undesirable deviation of the absorption performance between the designed structure and the actually fabricated one. In order to minimize the variation in the solar absorptance due to the fabrication error, the robust optimization can be performed during the design process. However, the optimization of solar thermal absorber considering all design variables often requires tremendous computational costs to find an optimum combination of design variables with the robustness as well as the high performance. To achieve this goal, we apply the robust optimization using the Kriging method and the genetic algorithm for designing a tandem grating solar absorber. By constructing a surrogate model through the Kriging method, computational cost can be substantially reduced because exact calculation of the performance for every combination of variables is not necessary. Using the surrogate model and the genetic algorithm, we successfully design an effective solar thermal absorber exhibiting a low-level of performance degradation due to the fabrication uncertainty of design variables.

  9. SINIS bolometer with a suspended absorber

    NASA Astrophysics Data System (ADS)

    Tarasov, M.; Edelman, V.; Mahashabde, S.; Fominsky, M.; Lemzyakov, S.; Chekushkin, A.; Yusupov, R.; Winkler, D.; Yurgens, A.

    2018-03-01

    We have developed a Superconductor-Insulator-Normal Metal-Insulator-Superconductor (SINIS) bolometer with a suspended normal metal bridge. The suspended bridge acts as a bolometric absorber with reduced heat losses to the substrate. Such bolometers were characterized at 100-350 mK bath temperatures and electrical responsivity of over 109 V/W was measured by dc heating the absorber through additional contacts. Suspended bolometers were also integrated in planar twin-slot and log-periodic antennas for operation in the submillimetre-band of radiation. The measured voltage response to radiation at 300 GHz and at 100 mK bath temperature is 3*108 V/W and a current response is 1.1*104 A/W which corresponds to a quantum efficiency of ~15 electrons per photon. An important feature of such suspended bolometers is the thermalization of electrons in the absorber heated by optical radiation, which in turn provides better quantum efficiency. This has been confirmed by comparison of bolometric response to dc and rf heating. We investigate the performance of direct SN traps and NIS traps with a tunnel barrier between the superconductor and normal metal trap. Increasing the volume of superconducting electrode helps to reduce overheating of superconductor. Influence of Andreev reflection and Kapitza resistance, as well as electron-phonon heat conductivity and thermal conductivity of N-wiring are estimated for such SINIS devices.

  10. Heaving buoys, point absorbers and arrays.

    PubMed

    Falnes, Johannes; Hals, Jørgen

    2012-01-28

    Absorption of wave energy may be considered as a phenomenon of interference between incident and radiated waves generated by an oscillating object; a wave-energy converter (WEC) that displaces water. If a WEC is very small in comparison with one wavelength, it is classified as a point absorber (PA); otherwise, as a 'quasi-point absorber'. The latter may be a dipole-mode radiator, for instance an immersed body oscillating in the surge mode or pitch mode, while a PA is so small that it should preferably be a source-mode radiator, for instance a heaving semi-submerged buoy. The power take-off capacity, the WEC's maximum swept volume and preferably also its full physical volume should be reasonably matched to the wave climate. To discuss this matter, two different upper bounds for absorbed power are applied in a 'Budal diagram'. It appears that, for a single WEC unit, a power capacity of only about 0.3 MW matches well to a typical offshore wave climate, and the full physical volume has, unfortunately, to be significantly larger than the swept volume, unless phase control is used. An example of a phase-controlled PA is presented. For a sizeable wave-power plant, an array consisting of hundreds, or even thousands, of mass-produced WEC units is required.

  11. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, E.P.

    1994-05-31

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer. 9 figs.

  12. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, Eric P.

    1994-01-01

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer.

  13. A dual-band THz absorber based on graphene sheet and ribbons

    NASA Astrophysics Data System (ADS)

    Xing, Rui; Jian, Shuisheng

    2018-03-01

    A dual-band graphene absorber is proposed and investigated in this paper. The absorber consists of the gold substrate, the graphene sheet sandwiched by dielectric layers and the array of graphene ribbon placed on the top. The two absorption peaks of the dual-band are 99.8% at 4.95 THz and 99.6% at 9.2 THz, respectively. Due to the characteristic of tunable surface conductivity of graphene, the absorption can be controlled by adjusting the chemical potential of graphene. We also investigate the dependence of the absorption curve of the proposed absorber on the structure parameters. In addition, the structure of the absorber is very simple and it can be manufactured by chemical vapor deposition (CVD).

  14. Oil and fat absorbing polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  15. Optimization of Sound Absorbers Number and Placement in an Enclosed Room by Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Lau, S. F.; Zainulabidin, M. H.; Yahya, M. N.; Zaman, I.; Azmir, N. A.; Madlan, M. A.; Ismon, M.; Kasron, M. Z.; Ismail, A. E.

    2017-10-01

    Giving a room proper acoustic treatment is both art and science. Acoustic design brings comfort in the built environment and reduces noise level by using sound absorbers. There is a need to give a room acoustic treatment by installing absorbers in order to decrease the reverberant sound. However, they are usually high in price which cost much for installation and there is no system to locate the optimum number and placement of sound absorbers. It would be a waste if the room is overly treated with absorbers or cause improper treatment if the room is treated with insufficient absorbers. This study aims to determine the amount of sound absorbers needed and optimum location of sound absorbers placement in order to reduce the overall sound pressure level in specified room by using ANSYS APDL software. The size of sound absorbers needed is found to be 11 m 2 by using Sabine equation and different unit sets of absorbers are applied on walls, each with the same total areas to investigate the best configurations. All three sets (single absorber, 11 absorbers and 44 absorbers) has successfully treating the room by reducing the overall sound pressure level. The greatest reduction in overall sound pressure level is that of 44 absorbers evenly distributed around the walls, which has reduced as much as 24.2 dB and the least effective configuration is single absorber whereby it has reduced the overall sound pressure level by 18.4 dB.

  16. Recycling of waste tyre rubber into oil absorbent.

    PubMed

    Wu, B; Zhou, M H

    2009-01-01

    The abundant and indiscriminant disposal of waste tyres has caused both health and environmental problems. In this work, we provide a new way to dispose off waste tyres by reusing the waste tyre rubber (WTR) for oil absorptive material production. To investigate this feasibility, a series of absorbents were prepared by graft copolymerization-blending method, using waste tyre rubber and 4-tert-butylstyrene (tBS) as monomers. Divinylbenzene (DVB) and benzoyl peroxide (BPO) were employed as crosslinker and initiator, respectively. The existence of graft-blends (WTR-g-tBS) was determined by FTIR spectrometry and verified using thin-layer chromatography (TLC). In addition, the thermal properties of WTR-g-tBS were confirmed by a thermogravimetric analyzer (TGA). Oil absorbency of the grafted-blends increased with increases in either feed ratio of WTR to tBS or DVB concentration. This absorbency reached a maximum of 24.0gg(-1) as the feed ratio and DVB concentration were 60/40 and 1wt%, respectively, after which it decreased. At other ratios and concentrations the absorbency decreased. The gel fraction of grafted-blends increased with increasing concentration of DVB. Oil-absorption processes in pure toluene and crude oil diluted with toluene were found to adhere to first-order absorption kinetics. Furthermore, the oil-absorption rate in diluted crude oil was observed to be lower than pure toluene.

  17. On the radiative effects of light-absorbing impurities on snowpack evolution

    NASA Astrophysics Data System (ADS)

    Dumont, M.; Tuzet, F.; Lafaysse, M.; Arnaud, L.; Picard, G.; Lejeune, Y.; Lamare, M.; Morin, S.; Voisin, D.; Di Mauro, B.

    2017-12-01

    The presence of light absorbing impurities in snow strongly decreases snow reflectance leading to an increase in the amount of solar energy absorbed by the snowpack. This effect is also known as impurities direct radiative effect. The change in the amount of energy absorbed by the snowpack modifies the temperature profile inside the snowpack and in turn snow metamorphism (impurities indirect radiative effects). In this work, we used the detailed snowpack model SURFEX/ISBA-Crocus with an explicit representation of snow light-absorbing impurities content (Tuzet et al., 2017) fed by medium-resolution ALADIN-Climate atmospheric model to represent dust and black carbon atmospheric deposition fluxes. The model is used at two sites: Col de Porte (medium elevation site in the French Alps) and Torgnon (high elevation site in the Italian Alps). The simulations are compared to in-situ observations and used to quantify the effects of light-absorbing impurities on snow melt rate and timing. The respective parts of the direct and indirect radiative effects of light-absorbing impurities in snow are also computed for the two sites, emphasizing the need to account for the interactions between snow metamorphism and LAI radiative properties, to accurately predict the effects of light-absorbing impurities in snow. Moreover, we describe how automated hyperspectral reflectance can be used to estimate effective impurities surface content in snow. Finally we demonstrate how these reflectances measurements either from in situ or satellite data can be used via an assimilation scheme to constrain snowpack ensemble simulations and better predict the snowpack state and evolution.

  18. Scattering Properties of Heterogeneous Mineral Particles with Absorbing Inclusions

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2015-01-01

    We analyze the results of numerically exact computer modeling of scattering and absorption properties of randomly oriented poly-disperse heterogeneous particles obtained by placing microscopic absorbing grains randomly on the surfaces of much larger spherical mineral hosts or by imbedding them randomly inside the hosts. These computations are paralleled by those for heterogeneous particles obtained by fully encapsulating fractal-like absorbing clusters in the mineral hosts. All computations are performed using the superposition T-matrix method. In the case of randomly distributed inclusions, the results are compared with the outcome of Lorenz-Mie computations for an external mixture of the mineral hosts and absorbing grains. We conclude that internal aggregation can affect strongly both the integral radiometric and differential scattering characteristics of the heterogeneous particle mixtures.

  19. Development of an innovative solar absorber

    NASA Astrophysics Data System (ADS)

    Goodchild, Gavin

    Solar thermal systems have great potential to replace or reduce the dependence of conventional fossil fuel based heating technologies required for space and water heating. Specifically solar domestic hot water systems can contribute 50-75% of the annual thermal load. To date residential users have been slow to purchase and install systems, primarily due to the large monetary investment required to purchase and install a system. Recent innovations in materials design and manufacturing techniques, offer opportunities for the development of absorber plate designs that have the potential to reduce cost, increase efficiency and reduce payback periods. Consequently, this design study was conducted in conjunction with industrial partners to develop an improved absorber based on roll bond manufacturing that can be produced at reduced cost with comparable or greater thermal efficiency.

  20. Use of Wedge Absorbers in MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D.; Summers, D.; Mohayai, T.

    2017-03-01

    Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse–longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore “direct” and “reverse” emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL andmore » G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.« less

  1. Power absorbed during whole-body vertical vibration: Effects of sitting posture, backrest, and footrest

    NASA Astrophysics Data System (ADS)

    Nawayseh, Naser; Griffin, Michael J.

    2010-07-01

    Previous studies have quantified the power absorbed in the seated human body during exposure to vibration but have not investigated the effects of body posture or the power absorbed at the back and the feet. This study investigated the effects of support for the feet and back and the magnitude of vibration on the power absorbed during whole-body vertical vibration. Twelve subjects were exposed to four magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 rms) of random vertical vibration (0.25-20 Hz) while sitting on a rigid seat in four postures (feet hanging, maximum thigh contact, average thigh contact, and minimum thigh contact) both with and without a rigid vertical backrest. Force and acceleration were measured at the seat, the feet, and the backrest to calculate the power absorbed at these three locations. At all three interfaces (seat, feet, and back) the absorbed power increased in proportion to the square of the magnitude of vibration, with most power absorbed from vibration at the seat. Supporting the back with the backrest decreased the power absorbed at the seat at low frequencies but increased the power absorbed at high frequencies. Supporting the feet with the footrest reduced the total absorbed power at the seat, with greater reductions with higher footrests. It is concluded that contact between the thighs and the seat increases the power absorbed at the seat whereas a backrest can either increase or decrease the power absorbed at the seat.

  2. Vibration analysis of rotor blades with pendulum absorbers

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Hammond, C. E.

    1979-01-01

    A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.

  3. Development of novel two-photon absorbing chromophores

    NASA Astrophysics Data System (ADS)

    Rogers, Joy E.; Slagle, Jonathan E.; McLean, Daniel G.; Sutherland, Richard L.; Krein, Douglas M.; Cooper, Thomas M.; Brant, Mark; Heinrichs, James; Kannan, Ramamurthi; Tan, Loon-Seng; Urbas, Augustine M.; Fleitz, Paul A.

    2006-08-01

    There has been much interest in the development of two-photon absorbing materials and many efforts to understand the nonlinear absorption properties of these dyes but this area is still not well understood. A computational model has been developed in our lab to understand the nanosecond nonlinear absorption properties that incorporate all of the measured one-photon photophysical parameters of a class of materials called AFX. We have investigated the nonlinear and photophysical properties of the AFX chromophores including the two-photon absorption cross-section, the excited state cross-section, the intersystem crossing quantum yield, and the singlet and triplet excited state lifetimes using a variety of experimental techniques that include UV-visible, fluorescence and phosphorescence spectroscopy, time correlated single photon counting, ultrafast transient absorption, and nanosecond laser flash photolysis. The model accurately predicts the nanosecond nonlinear transmittance data using experimentally measured parameters. Much of the strong nonlinear absorption has been shown to be due to excited state absorption from both the singlet and triplet excited states. Based on this understanding of the nonlinear absorption and the importance of singlet and triplet excited states we have begun to develop new two-photon absorbing molecules within the AFX class as well as linked to other classes of nonlinear absorbing molecules. This opens up the possibilities of new materials with unique and interesting properties. Specifically we have been working on a new class of two-photon absorbing molecules linked to platinum poly-ynes. In the platinum poly-yne chromophores the photophysics are more complicated and we have just started to understand what drives both the linear and non-linear photophysical properties.

  4. Estimated human absorbed dose of a new (153)Sm bone seeking agent based on biodistribution data in mice: Comparison with (153)Sm-EDTMP.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh

    2015-11-01

    The main goal in radiotherapy is to deliver the absorbed dose within the target organs in highest possible amount, while the absorbed dose of the other organs, especially the critical organs, should be kept as low as possible. In this work, the absorbed dose to human organs for a new (153)Sm bone-seeking agent was investigated. (153)Sm-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid ((153)Sm-BPAMD) complex was successfully prepared. The biodistribution of the complex was investigated in male Syrian mice up to 48 h post injection. The human absorbed dose of the complex was estimated based on the biodistribution data of the mice by radiation absorbed dose assessment resource (RADAR) method. The target to non-target absorbed dose ratios for (153)Sm-BPAMD were compared with these ratios for (153)Sm-EDTMP. The highest absorbed dose for (153)Sm-BPAMD was observed in bone surface with 5.828 mGy/MBq. The dose ratios of the bone surface to the red marrow and to the total body for (153)Sm-BPAMD were 5.3 and 20.0, respectively, while these ratios for (153)Sm-EDTMP were 4.4 and 18.3, respectively. This means, for a given dose to the bone surface as the target organ, the red marrow (as the main critical organ) and the total body would receive lesser absorbed dose in the case of (153)Sm-BPAMD. Generally, the human absorbed dose estimation of (153)Sm-BPAMD indicated that all other tissues approximately received insignificant absorbed dose in comparison with bone surface and therefore can be regarded as a new potential agent for bone pain palliation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Broadband polarization-independent and low-profile optically transparent metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Li, Long; Xi, Rui; Liu, Haixia; Lv, Zhiyong

    2018-05-01

    A transparent metamaterial absorber with simultaneously high optical transparency and broadband microwave absorption is presented in this paper. Consisting of a two-layer soda-lime glass substrate and three-layer patch-shaped indium tin oxide (ITO) films, the proposed absorber has advantages of broadband absorption with an absorptivity higher than 85% in the range from 6.1 to 22.1 GHz, good polarization insensitiveness, a high transparency, a low profile, and wide-incident-angle stability. A prototype of the proposed absorber is fabricated and experimentally measured to demonstrate its excellent performance. The measured results agree well with the theoretical design and numerical simulations.

  6. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  7. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  8. Timing the warm absorber in NGC4051

    NASA Astrophysics Data System (ADS)

    Silva, C.; Uttley, P.; Costantini, E.

    2015-07-01

    In this work we have combined spectral and timing analysis in the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ˜600ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC4051, whose spectrum has revealed a complex multi-component wind. Working simultaneously with RGS and PN data, we have performed a detailed analysis using a time-dependent photoionization code in combination with spectral and Fourier timing techniques. This method allows us to study in detail the response of the gas due to variations in the ionizing flux of the central source. As a result, we will show the contribution of the recombining gas to the time delays of the most highly absorbed energy bands relative to the continuum (Silva, Uttley & Costantini in prep.), which is also vital information for interpreting the continuum lags associated with propagation and reverberation effects in the inner emitting regions. Furthermore, we will illustrate how this powerful method can be applied to other sources and warm-absorber configurations, allowing for a wide range of studies.

  9. Multi-Absorber Transition-Edge Sensors for X-Ray Astronomy Applications

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing multi-absorber Transition-Edge Sensors (TESs) for applications in x-ray astronomy. These position-sensitive devices consist of multiple x-ray absorbers each with a different thermal coupling to a single readout TES. Heat diffusion between the absorbers and the TES gives rise to a characteristic pulse shape corresponding to each absorber element and enables position discrimination. The development of these detectors is motivated by a desire to maximize focal plane arrays with the fewest number of readout channels. In this contribution we report on the first results from devices consisting of nine) 65 X 65 sq. microns Au x-ray absorbers) 5 microns thick. These are coupled to a single 35 X 35 sq. microns Mo/Au bilayer TES. These devices have demonstrated full-width-half-maximum (FWHM) energy resolution of 2.1 eV at 1.5 keV) 2.5 eV at 5.9 keV and 3.3 eV at 8 keV. This is coupled with position discrimination from pulse shape over the same energy range. We use a finite-element model to reproduce the measured pulse shapes and investigate the detector non-linearity with energy) which impacts on the devices position sensitivity and energy resolution.

  10. Semiconductor meta-surface based perfect light absorber

    NASA Astrophysics Data System (ADS)

    Liu, Guiqiang; Nie, Yiyou; Fu, Guolan; Liu, Xiaoshan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2017-04-01

    We numerically proposed and demonstrated a semiconductor meta-surface light absorber, which consists of a silicon patches array on a silicon thin-film and an opaque silver substrate. The Mie resonances of the silicon patches and the fundamental cavity mode of the ultra-thin silicon film couple strongly to the incident optical field, leading to a multi-band perfect absorption. The maximal absorption is above 99.5% and the absorption is polarization-independent. Moreover, the absorption behavior is scalable in the frequency region via tuning the structural parameters. These features hold the absorber platform with wide applications in optoelectronics such as hot-electron excitation and photo-detection.

  11. Stable fixation with absorbable sutures in craniofacial surgery.

    PubMed

    Linz, C; Kunz, F; Krauß, J; Böhm, H; Wirth, C; Hartmann, S; Wirbelauer, J; Schweitzer, T

    2016-05-01

    The present study analyses the exclusive use of absorbable suture material (Vicryl(®), Ethicon, Germany) in the fixation of transposed bone segments in craniofacial surgery without modification of the osteotomy design. Among 129 children up to 24 months of age, osteosynthesis was conducted exclusively with Vicryl(®) sutures. The stability of postoperative results was evaluated and possible foreign body reactions were examined within the framework of clinical and radiological routine checks. All examined children exhibited stable postoperative conditions while the length of hospital stay was not affected. X-ray examinations of the skull in two planes demonstrated good bony union in all cases. Relevant foreign body reactions were not observed. The exclusive application of absorbable suture material enables stable and cost effective osteosynthesis. Significant foreign body reactions were not observed. The exclusive use of absorbable sutures did not alter the osteotomy design. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. Distance determination to Broad Line Absorbers in AGN

    NASA Astrophysics Data System (ADS)

    Bautista, Manuel; Arav, N.; Dunn, J.; Edmonds, D.; Korista, K. T.; Moe, M.; Benn, C.; Ignacio, G.

    2009-01-01

    We present various techniques for the determination of the physical conditions (density, temperature, total hydrogen column density, and ionization structure), chemical composition, and distances of Broad Line Absorbers (BAL) to the central engine in AGN. We start by discussing various density diagnostics from absorption lines from species such as C II, Si II, and Fe III. On the other hand, lines from metastable levels Fe II are often affected by Bowen fluorescence by scattered C IV photons. Lines from metastable levels of Ni II are usually excited by continuum fluorescence and mostly sensitive to the strength of the radiation field shortward of the Lyman continuum and as such they cam be used as direct distance indicators. Further, we show how the total hydrogen density of the absorber, its ionization parameter and distance can be determined through photoionization modeling of the absorber. Finally, we present our results for outflows of three different quasars: QSO 2359-1241 and SDSS J0318-0600.

  13. Experimental realization of a terahertz all-dielectric metasurface absorber.

    PubMed

    Liu, Xinyu; Fan, Kebin; Shadrivov, Ilya V; Padilla, Willie J

    2017-01-09

    Metamaterial absorbers consisting of metal, metal-dielectric, or dielectric materials have been realized across much of the electromagnetic spectrum and have demonstrated novel properties and applications. However, most absorbers utilize metals and thus are limited in applicability due to their low melting point, high Ohmic loss and high thermal conductivity. Other approaches rely on large dielectric structures and / or a supporting dielectric substrate as a loss mechanism, thereby realizing large absorption volumes. Here we present a terahertz (THz) all dielectric metasurface absorber based on hybrid dielectric waveguide resonances. We tune the metasurface geometry in order to overlap electric and magnetic dipole resonances at the same frequency, thus achieving an experimental absorption of 97.5%. A simulated dielectric metasurface achieves a total absorption coefficient enhancement factor of FT=140, with a small absorption volume. Our experimental results are well described by theory and simulations and not limited to the THz range, but may be extended to microwave, infrared and optical frequencies. The concept of an all-dielectric metasurface absorber offers a new route for control of the emission and absorption of electromagnetic radiation from surfaces with potential applications in energy harvesting, imaging, and sensing.

  14. Performance of a Multifunctional Space Evaporator- Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Bue, Grant; Quinn, Gregory

    2013-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 sq ft prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable heat rejection from the LCAR.

  15. Preparation and microwave absorbing properties of carbon/cobalt ferromagnetic composites.

    PubMed

    Li, Wangchang; Qiao, Xiaojing; Zhao, Hui; Wang, Shuman; Ren, Qingguo

    2013-02-01

    Carbon/cobalt ferromagnetic light composites with high performance of microwave absorbing properties were prepared by hydrothermal method using starch and hollow cobalt ferrites. It was concluded that after carbonization the spinel structure ferrites changed to Co3Fe7 alloys and the temperature of graphitization was significantly decreased for the catalytic of CoFe2O4/Co3Fe7. The increase of carbon content, and exist of CoFe2O4/Co3Fe7 heightened the microwave absorbing properties. Electromagnetic parameters were tested with 40% of the titled materials and 60% of paraffin wax composites by using HP8722ES vector network analyzer. The reflection was also simulated through transmission line theory. The microwave absorbers exhibited a maximum reflection loss -43 dB and the electromagnetic wave absorption less than -10 dB was found to exceed 3.0 GHz between 11.6 GHz and 15 GHz for an absorber thickness of 2 mm.

  16. Techniques for measuring intercepted and absorbed PAR in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.

    1984-01-01

    The quantity of radiation potentially available for photosynthesis that is captured by the crop is best described as absorbed photosynthetically active radiation (PAR). Absorbed PAR (APAR) is the difference between descending and ascending fluxes. The four components of APAR were measured above and within two planting densities of corn (Zea mays L.) and several methods of measuring and estimating APAR were examined. A line quantum sensor that spatially averages the photosynthetic photon flux density provided a rapid and portable method of measuring APAR. PAR reflectance from the soil (Typic Argiaquoll) surface decreased from 10% to less than 1% of the incoming PAR as the canopy cover increased. PAR reflectance from the canopy decreased to less than 3% at maximum vegetative cover. Intercepted PAR (1 - transmitted PAR) generally overestimated absorbed PAR by less than 4% throughout most of the growing season. Thus intercepted PAR appears to be a reasonable estimate of absorbed PAR.

  17. Analysis and measurement of electromagnetic scattering by pyramidal and wedge absorbers

    NASA Technical Reports Server (NTRS)

    Dewitt, B. T.; Burnside, Walter D.

    1986-01-01

    By modifying the reflection coefficients in the Uniform Geometrical Theory of Diffraction a solution that approximates the scattering from a dielectric wedge is found. This solution agrees closely with the exact solution of Rawlins which is only valid for a few minor cases. This modification is then applied to the corner diffraction coefficient and combined with an equivalent current and geometrical optics solutions to model scattering from pyramid and wedge absorbers. Measured results from 12 inch pyramid absorbers from 2 to 18 GHz are compared to calculations assuming the returns add incoherently and assuming the returns add coherently. The measured results tend to be between the two curves. Measured results from the 8 inch wedge absorber are also compared to calculations with the return being dominated by the wedge diffraction. The procedures for measuring and specifying absorber performance are discussed and calibration equations are derived to calculate a reflection coefficient or a reflectivity using a reference sphere. Shaping changes to the present absorber designs are introduced to improve performance based on both high and low frequency analysis. Some prototypes were built and tested.

  18. Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Zhang, Deyuan

    2016-04-01

    A silicone rubber composite filled with carbonyl iron particles and four different carbonous materials (carbon black, graphite, carbon fiber or multi-walled carbon nanotubes) was prepared using a two-roller mixture. The complex permittivity and permeability were measured using a vector network analyzer at the frequency of 2-18 GHz. Then a type-based mixing rule based on the dielectric absorbent and magnetic absorbent was proposed to reveal the enhancing mechanism on the permittivity and permeability. The enforcement effect lies in the decreased percolation threshold and the changing pending parameter as the carbonous materials were added. The reflection loss (RL) result showed the added carbonous materials enhanced the absorption in the lower frequency range, the RL decrement value being about 2 dB at 4-5 GHz with a thickness of 1 mm. All the added carbonous materials reinforced the shielding effectiveness (SE) of the composites. The maximum increment value of the SE was about 3.23 dB at 0.5 mm and 4.65 dB at 1 mm, respectively. The added carbonous materials could be effective additives for enforcing the absorption and shielding property of the absorbers.

  19. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  20. Characterization of selective solar absorber under high vacuum.

    PubMed

    Russo, Roberto; Monti, Matteo; di Giamberardino, Francesco; Palmieri, Vittorio G

    2018-05-14

    Total absorption and emission coefficients of selective solar absorbers are measured under high vacuum conditions from room temperature up to stagnation temperature. The sample under investigation is illuminated under vacuum @1000W/m 2 and the sample temperature is recorded during heat up, equilibrium and cool down. During stagnation, the absorber temperature exceeds 300°C without concentration. Data analysis allows evaluating the solar absorptance and thermal emittance at different temperatures. These in turn are useful to predict evacuated solar panel performances at operating conditions.

  1. [Bond strengths of absorbable polylactic acid root canal post with three different adhesives].

    PubMed

    Pan, Hui; Cheng, Can; Hu, Jia; Liu, He; Sun, Zhi-hui

    2015-12-18

    To find absorbable adhesives with suitable bonding properties for the absorbable polylactic acid root canal post. To test and compare the bond strengths of absorbable polylactic acid root canal post with three different adhesives. The absorbable polylactic acid root canal posts were used to restore the extracted teeth, using 3 different adhesives: cyanoacrylates, fibrin sealant and glass ionomer cement. The teeth were prepared into slices for micro-push-out test. The bond strength was statistically analyzed using ANOVA. The specimens were examined using microscope and the failure mode was divided into four categories: cohesive failure between absorbable polylactic acid root canal posts and adhesives, cohesive failure between dentin and adhesives, failure within the adhesives and failure within the absorbable polylactic acid root canal posts. The bond strength of cyanoacrylates [(16.83 ± 6.97) MPa] and glass ionomer cement [(12.10 ± 5.09) MPa] were significantly higher than fibrin sealant [(1.17 ± 0.50) MPa], P<0.001. There was no significant difference between cyanoacrylates and glass ionomer cement (P=0.156). In the group of cyanoacrylates, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 25.0%, the cohesive failure between the dentin and the adhesives was 16.7%, the failure within the adhesives was 33.3%, and the failure within the absorbable polylactic acid root canal posts was 25.0%. In the group of fibrin sealant, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 66.7%, the cohesive failure between the dentin and the adhesives was 22.2%, the failure within the adhesives was 11.1%. In the group of glass ionomer cement, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 87.5%, the failure within the adhesives was 12.5%. The major failure mode in fibrin sealant and glass ionomer cement was the cohesive failure

  2. Absorber Model: the Halo-like model for the Lyman-α forest

    NASA Astrophysics Data System (ADS)

    Iršič, Vid; McQuinn, Matthew

    2018-04-01

    We present a semi-analytic model for the Lyman-α forest that is inspired by the Halo Model. This model is built on the absorption line decomposition of the forest. Flux correlations are decomposed into those within each absorption line (the 1-absorber term) and those between separate lines (the 2-absorber term), treating the lines as biased tracers of the underlying matter fluctuations. While the nonlinear exponential mapping between optical depth and flux requires an infinite series of moments to calculate any statistic, we show that this series can be re-summed (truncating at the desired order in the linear matter overdensity). We focus on the z=2–3 line-of-sight power spectrum. Our model finds that 1-absorber term dominates the power on all scales, with most of its contribution coming from H I columns of 1014–1015 cm‑2, while the smaller 2-absorber contribution comes from lower columns that trace overdensities of a few. The prominence of the 1-absorber correlations indicates that the line-of-sight power spectrum is shaped principally by the lines' number densities and their absorption profiles, with correlations between lines contributing to a lesser extent. We present intuitive formulae for the effective optical depth as well as the large-scale limits of 1-absorber and 2-absorber terms, which simplify to integrals over the H I column density distribution with different equivalent-width weightings. With minimalist models for the bias of absorption systems and their peculiar velocity broadening, our model predicts values for the density bias and velocity gradient bias that are consistent with those found in simulations.

  3. Experimental investigation and model verification for a GAX absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, S.C.; Christensen, R.N.

    1996-12-31

    In the ammonia-water generator-absorber heat exchange (GAX) absorption heat pump, the heat and mass transfer processes which occur between the generator and absorber are the most crucial in assuring that the heat pump will achieve COPs competitive with those of current technologies. In this study, a model is developed for the heat and mass transfer processes that occur in a counter-current vertical fluted tube absorber (VFTA) with inserts. Correlations for heat and mass transfer in annuli are used to model the processes in the VTA. Experimental data is used to validate the model for three different insert geometries. Comparison ofmore » model results with experimental data provides insight into model corrections necessary to bring the model into agreement with the physical phenomena observed in the laboratory.« less

  4. Impact resistance of fiber composites - Energy-absorbing mechanisms and environmental effects

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1985-01-01

    Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.

  5. Impact resistance of fiber composites: Energy absorbing mechanisms and environmental effects

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1983-01-01

    Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.

  6. A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications.

    PubMed

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-06

    In this paper, a novel flexible tunable metasurface absorber is proposed for large-scale remote ethanol sensor applications. The proposed metasurface absorber consists of periodic split-ring-cross resonators (SRCRs) and microfluidic channels. The SRCR patterns are inkjet-printed on paper using silver nanoparticle inks. The microfluidic channels are laser-etched on polydimethylsiloxane (PDMS) material. The proposed absorber can detect changes in the effective permittivity for different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting changes in the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results show the resonant frequency increases from 8.9 GHz to 10.04 GHz when the concentration of ethanol is changed from 0% to 100%. In addition, the proposed absorber shows linear frequency shift from 20% to 80% of the different concentrations of ethanol.

  7. Flow-Cell-Induced Dispersion in Flow-through Absorbance Detection Systems: True Column Effluent Peak Variance.

    PubMed

    Dasgupta, Purnendu K; Shelor, Charles Phillip; Kadjo, Akinde Florence; Kraiczek, Karsten G

    2018-02-06

    Following a brief overview of the emergence of absorbance detection in liquid chromatography, we focus on the dispersion caused by the absorbance measurement cell and its inlet. A simple experiment is proposed wherein chromatographic flow and conditions are held constant but a variable portion of the column effluent is directed into the detector. The temporal peak variance (σ t,obs 2 ), which increases as the flow rate (F) through the detector decreases, is found to be well-described as a quadratic function of 1 / F . This allows the extrapolation of the results to zero residence time in the detector and thence the determination of the true variance of the peak prior to the detector (this includes contribution of all preceding components). This general approach should be equally applicable to detection systems other than absorbance. We also experiment where the inlet/outlet system remains the same but the path length is varied. This allows one to assess the individual contributions of the cell itself and the inlet/outlet system.to the total observed peak. The dispersion in the cell itself has often been modeled as a flow-independent parameter, dependent only on the cell volume. Except for very long path/large volume cells, this paradigm is simply incorrect.

  8. Brief review of emerging photovoltaic absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakutayev, Andriy

    Photovoltaic solar cells have recently made significant commercial progress and are on track toward meeting more than 1% of global energy demand. However, further research is needed on photovoltaic technologies that face no scalability constraints in generating more than 10% of the world's electricity. This 2017 article briefly reviews emerging photovoltaic absorber materials, focusing on research progress over the past 2-3 years. Particular emphasis is given to emerging solar cell absorbers -- for example, SnS, Sb 2Se 3, Cu 2SnS 3, and CuSbSe 2 -- related to established solar cell technologies such as CdTe, Cu(In,Ga)Se 2, and CH 3NH 3PbImore » 3. Lastly, the general publication and performance trends are discussed, and the promising future research directions are pointed out.« less

  9. Brief review of emerging photovoltaic absorbers

    DOE PAGES

    Zakutayev, Andriy

    2017-02-08

    Photovoltaic solar cells have recently made significant commercial progress and are on track toward meeting more than 1% of global energy demand. However, further research is needed on photovoltaic technologies that face no scalability constraints in generating more than 10% of the world's electricity. This 2017 article briefly reviews emerging photovoltaic absorber materials, focusing on research progress over the past 2-3 years. Particular emphasis is given to emerging solar cell absorbers -- for example, SnS, Sb 2Se 3, Cu 2SnS 3, and CuSbSe 2 -- related to established solar cell technologies such as CdTe, Cu(In,Ga)Se 2, and CH 3NH 3PbImore » 3. Lastly, the general publication and performance trends are discussed, and the promising future research directions are pointed out.« less

  10. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  11. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings

    PubMed Central

    Ueda, Miki U.; Mizumachi, Eri; Tokuchi, Naoko

    2011-01-01

    Background and Aims Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated. Methods The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N. Key Results Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen. Conclusions The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems. PMID:21515608

  12. Optimization of the acoustic absorption coefficients of certain functional absorbents

    NASA Technical Reports Server (NTRS)

    Pocsa, V.; Biborosch, L.; Veres, A.; Halpert, E.; Lorian, R.; Botos, T.

    1974-01-01

    The sound absorption coefficients of some functional absorbents (mineral wool plates) are determined by the reverberation chamber method. The influence of the angle of inclination of the sound absorbing material with respect to the surface to be treated is analyzed as well as the influence of the covering index, defined as the ratio of the designed area of a plate and the area of the treated surface belonging to another plate. As compared with the conventional method of applying sound-absorbing plates, the analyzed structures have a higher technological and economical efficiency. The optimum structure corresponds to an angle of inclination of 15 deg and a covering index of 0.8.

  13. Stress absorbing membrane innerlayer : final report.

    DOT National Transportation Integrated Search

    1985-04-01

    The westbound lanes of the South Baker Interchange-Encina Interchange Section of I-84 were overlayed in 1977. A stress absorbing membrane innerlayer (SAMI), was included in this overlay as an experimental feature. This report is the final evaluation ...

  14. Croconic acid - An absorber in the Venus clouds?

    NASA Technical Reports Server (NTRS)

    Hartley, Karen K.; Wolff, Andrew R.; Travis, Larry D.

    1989-01-01

    The absorbing species responsible for the UV cloud features and pale yellow hue of the Venus clouds is presently suggested to be the carbon monoxide-polymer croconic acid, which strongly absorbs in the blue and near-UV. Laboratory absorption-coefficient measurements of a dilute solution of croconic acid in sulfuric acid are used as the bases of cloud-scattering models; the Venus planetary albedo's observed behavior in the blue and near-UV are noted to be qualitatively reproduced. Attention is given to a plausible croconic acid-production mechanism for the Venus cloudtop region.

  15. Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions

    NASA Astrophysics Data System (ADS)

    Huang, Hailong; Xia, Hui; Guo, Zhibo; Xie, Ding; Li, Hongjian

    2018-06-01

    The infrared polarization-insensitive absorber, which is composed of dendritic metal, graphene layer, silicon dioxides layer, gallium arsenide substrate, and metal plate, is investigated theoretically and numerically. The tunability can be realized by loading a graphene layer into the structure. The position of absorption peak can be tuned by manipulating the graphene's Fermi energy. Compared with the previously reported graphene-based absorbers, the system has the advantage of temperature-independent high absorption. The results indicate that the proposed absorber can be used in the applications of the refractive index sensor with a sensitivity of 587.8 nm/refractive index unit and temperature-insensitive infrared absorber.

  16. General design method of ultra-broadband perfect absorbers based on magnetic polaritons.

    PubMed

    Liu, Yuanbin; Qiu, Jun; Zhao, Junming; Liu, Linhua

    2017-10-02

    Starting from one-dimensional gratings and the theory of magnetic polaritons (MPs), we propose a general design method of ultra-broadband perfect absorbers. Based on the proposed design method, the obtained absorber can keep the spectrum-average absorptance over 99% at normal incidence in a wide range of wavelengths; this work simultaneously reveals the robustness of the absorber to incident angles and polarization angles of incident light. Furthermore, this work shows that the spectral band of perfect absorption can be flexibly extended to near the infrared regime by adjusting the structure dimension. The findings of this work may facilitate the active design of ultra-broadband absorbers based on plasmonic nanostructures.

  17. Age and Gender Effects on Wideband Absorbance in Adults with Normal Outer and Middle Ear Function

    ERIC Educational Resources Information Center

    Mazlan, Rafidah; Kei, Joseph; Ya, Cheng Li; Yusof, Wan Nur Hanim Mohd; Saim, Lokman; Zhao, Fei

    2015-01-01

    Purpose: This study examined the effects of age and gender on wideband energy absorbance in adults with normal middle ear function. Method: Forty young adults (14 men, 26 women, aged 20-38 years), 31 middle-aged adults (16 men, 15 women, aged 42-64 years), and 30 older adults (20 men, 10 women, aged 65-82 years) were assessed. Energy absorbance…

  18. Reducing heat loss from the energy absorber of a solar collector

    DOEpatents

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  19. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  20. Infrared bolometers with silicon nitride micromesh absorbers

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Turner, A. D.; DelCastillo, H. M.; Beeman, J. W.; Lange, A. E.; Mauskopf, P. D.

    1996-01-01

    Sensitive far infrared and millimeter wave bolometers fabricated from a freestanding membrane of low stress silicon nitride are reported. The absorber, consisting of a metallized silicon nitride micromesh thermally isolated by radial legs of silicon nitride, is placed in an integrating cavity to efficiently couple to single mode or multiple mode infrared radiation. This structure provides low heat capacity, low thermal conduction and minimal cross section to energetic particles. A neutron transmutation doped Ge thermister is bump bonded to the center of the device and read out with evaporated Cr-Au leads. The limiting performance of the micromesh absorber is discussed and the recent results obtained from a 300 mK cold stage are summarized.

  1. Energy absorber uses expanded coiled tube

    NASA Technical Reports Server (NTRS)

    Johnson, E. F.

    1972-01-01

    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  2. Apollo couch energy absorbers

    NASA Technical Reports Server (NTRS)

    Wesselski, C. J.; Drexel, R. E.

    1972-01-01

    Load attenuators for the Apollo spacecraft crew couch and its potential applications are described. Energy absorption is achieved through friction and cyclic deformation of material. In one concept, energy absorption is accomplished by rolling a compressed ring of metal between two surfaces. In another concept, energy is absorbed by forcing a plastically deformed washer along a rod. Among the design problems that had to be solved were material selection, fatigue life, ring slippage, lubrication, and friction loading.

  3. Magnetic graphene enabled tunable microwave absorber via thermal control.

    PubMed

    Quan, L; Qin, F X; Li, Y H; Estevez, D; Fu, G J; Wang, H; Peng, H-X

    2018-06-15

    By synthesizing nitrogen-doped graphene (NG) via a facile thermal annealing method, a fine control of the amount and location of doped nitrogen as well as the oxygen-containing functional groups is achieved with varying annealing temperature. The favorable magnetic properties have been achieved for N-doped rGO samples obtained at two temperatures of all NG samples, i.e., 500 °C and 900 °C with saturation magnetization of 0.63 emu g -1 and 0.67 emu g -1 at 2 K, respectively. This is attributed to the optimized competition of the N-doping and reduction process at 500 °C and the dominated reduction process at 900 °C. NG obtained at 300 °C affords the best overall absorbing performance: when the absorber thickness is 3.0 mm, the maximum absorption was -24.6 dB at 8.51 GHz, and the absorption bandwidth was 4.89 GHz (7.55-12.44 GHz) below -10 dB. It owes its large absorbing intensity to the good impedance match and significant dielectric loss. The broad absorption bandwidth benefits from local fluctuations of dielectric responses contributed by competing mechanisms. Despite the significant contribution from materials loss to the absorption, the one quarter-wavelength model is found to be responsible for the reflection loss peak positions. Of particular significance is that an appropriate set of electromagnetic parameters associated with reasonable reduction is readily accessible by convenient control of annealing temperature to modulate the microwave absorbing features of graphene. Thus, NG prepared by thermal annealing promises to be a highly efficient microwave absorbent.

  4. Magnetic graphene enabled tunable microwave absorber via thermal control

    NASA Astrophysics Data System (ADS)

    Quan, L.; Qin, F. X.; Li, Y. H.; Estevez, D.; Fu, G. J.; Wang, H.; Peng, H.-X.

    2018-06-01

    By synthesizing nitrogen-doped graphene (NG) via a facile thermal annealing method, a fine control of the amount and location of doped nitrogen as well as the oxygen-containing functional groups is achieved with varying annealing temperature. The favorable magnetic properties have been achieved for N-doped rGO samples obtained at two temperatures of all NG samples, i.e., 500 °C and 900 °C with saturation magnetization of 0.63 emu g‑1 and 0.67 emu g‑1 at 2 K, respectively. This is attributed to the optimized competition of the N-doping and reduction process at 500 °C and the dominated reduction process at 900 °C. NG obtained at 300 °C affords the best overall absorbing performance: when the absorber thickness is 3.0 mm, the maximum absorption was ‑24.6 dB at 8.51 GHz, and the absorption bandwidth was 4.89 GHz (7.55–12.44 GHz) below ‑10 dB. It owes its large absorbing intensity to the good impedance match and significant dielectric loss. The broad absorption bandwidth benefits from local fluctuations of dielectric responses contributed by competing mechanisms. Despite the significant contribution from materials loss to the absorption, the one quarter-wavelength model is found to be responsible for the reflection loss peak positions. Of particular significance is that an appropriate set of electromagnetic parameters associated with reasonable reduction is readily accessible by convenient control of annealing temperature to modulate the microwave absorbing features of graphene. Thus, NG prepared by thermal annealing promises to be a highly efficient microwave absorbent.

  5. Development of monofilar rotor hub vibration absorber

    NASA Technical Reports Server (NTRS)

    Duh, J.; Miao, W.

    1983-01-01

    A design and ground test program was conducted to study the performance of the monofilar absorber for vibration reduction on a four-bladed helicopter. A monofilar is a centrifugal tuned two degree-of-freedom rotor hub absorber that provides force attenuation at two frequencies using the same dynamic mass. Linear and non-linear analyses of the coupled monofilar/airframe system were developed to study tuning and attenuation characteristics. Based on the analysis, a design was fabricated and impact bench tests verified the calculated non-rotating natural frequencies and mode shapes. Performance characteristics were measured using a rotating absorber test facility. These tests showed significant attenuation of fixed-system 4P hub motions due to 3P inplane rotating-system hub forces. In addition, detuning effects of the 3P monofilar modal response were small due to the nonlinearities and tuning pin slippage. However, attenuation of 4P hub motions due to 5P inplane hub forces was poor. The performance of the 5P monofilar modal response was degraded by torsional motion of the dynamic mass relative to the support arm which resulted in binding of the dynamic components. Analytical design studies were performed to evaluate this torsional motion problem. An alternative design is proposed which may alleviate the torsional motion of the dynamic mass.

  6. Dendritic-metasurface-based flexible broadband microwave absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Weng, Bin; Zhao, Jing; Zhao, Xiaopeng

    2017-06-01

    Based on the dendritic metasurface model, a type of flexible and lightweight microwave absorber (MA) comprising resistance film array with dendritic slot (RFADS), dielectric material, and metal plate is proposed. A broadband absorptivity of >80% is obtained both from simulation and experiment at frequency ranges of 3.0-9.2 and 3.2-9.00 GHz, respectively. And the thickness of MA is 5 mm, which is only 0.05λ _{low}, or 0.15λ _ {high}, where the λ _{low} and the λ _{high} are the beginning and the end of the working frequency. By combining this metasurface-based MA with the dendritic-resistance-film-based microwave metasurface absorber (MMA), we designed a broadband MMA. The simulations and experiments showed that this kind of MMA can absorb the radiation effectively at a wide frequency range 4.5-17.5 GHz. And the thickness of this combined MMA is 4 mm. All the structures showed their insensitivity to the incident angle (0°-40°) and the polarization of the incident wave because of their structural symmetry. In addition, the small thickness, low apparent density, and flexibility made those structures possess the advantages of being applied in microwave stealth and radar cross-section (RCS) reduction.

  7. Shock wave absorber having a deformable liner

    DOEpatents

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  8. Discrete Huygens’ modeling for the characterization of a sound absorbing medium

    NASA Astrophysics Data System (ADS)

    Chai, L.; Kagawa, Y.

    2007-07-01

    Based on the equivalence between the wave propagation in the electrical transmission-lines and acoustic tubes, the authors proposed the use of the transmission-line matrix modeling (TLM) for time-domain solution method of the sound field. TLM is known in electromagnetic engineering community, which is equivalent to the discrete Huygens' modeling. The wave propagation is simulated by tracing the sequences of the transmission and scattering of impulses. The theory and the demonstrated examples are presented in the references, in which a sound absorbing field was preliminarily considered to be a medium with simple acoustic resistance independent of frequency and the angle of incidence for the absorbing layer placed on the room wall surface. The present work is concerned with the time-domain response for the characterization of the sound absorbing materials. A lossy component with variable propagation velocity is introduced for sound absorbing materials to facilitate the energy consumption. The frequency characteristics of the absorption coefficient are also considered for the normal, oblique and random incidence. Some numerical demonstrations show that the present modeling provide a reasonable modeling of the homogeneous sound absorbing materials in time domain.

  9. Laser Beam Melting of Alumina: Effect of Absorber Additions

    NASA Astrophysics Data System (ADS)

    Moniz, Liliana; Colin, Christophe; Bartout, Jean-Dominique; Terki, Karim; Berger, Marie-Hélène

    2018-03-01

    Ceramic laser beam melting offers new manufacturing possibilities for complex refractory structures. Poor absorptivity in near infra-red wavelengths of oxide ceramics is overcome with absorber addition to ceramic powders. Absorbers affect powder bed densities and geometrical stability of melted tracks. Optimum absorber content is defined for Al2O3 by minimizing powder bed porosity, maximizing melting pool geometrical stability and limiting shrinkage. Widest stability fields are obtained with addition of 0.1 wt.% C and 0.5 wt.% β-SiC. Absorption coefficient values of Beer-Lambert law follow stability trends: they increase with C additions, whereas with β-SiC, a maximum is reached for 0.5 wt.%. Powder particle ejections are also identified. Compared to metallic materials, this ejection phenomenon can no longer be neglected when establishing a three-dimensional manufacturing strategy.

  10. The advantages of absorbed-dose calibration factors.

    PubMed

    Rogers, D W

    1992-01-01

    A formalism for clinical external beam dosimetry based on use of ion chamber absorbed-dose calibration factors is outlined in the context and notation of the AAPM TG-21 protocol. It is shown that basing clinical dosimetry on absorbed-dose calibration factors ND leads to considerable simplification and reduced uncertainty in dose measurement. In keeping with a protocol which is used in Germany, a quantity kQ is defined which relates an absorbed-dose calibration factor in a beam of quality Q0 to that in a beam of quality Q. For 38 cylindrical ion chambers, two sets of values are presented for ND/NX and Ngas/ND and for kQ for photon beams with beam quality specified by the TPR20(10) ratio. One set is based on TG-21's protocol to allow the new formalism to be used while maintaining equivalence to the TG-21 protocol. To demonstrate the magnitude of the overall error in the TG-21 protocol, the other set uses corrected versions of the TG-21 equations and the more consistent physical data of the IAEA Code of Practice. Comparisons are made to procedures based on air-kerma or exposure calibration factors and it is shown that accuracy and simplicity are gained by avoiding the determination of Ngas from NX. It is also shown that the kQ approach simplifies the use of plastic phantoms in photon beams since kQ values change by less than 0.6% compared to those in water although an overall correction factor of 0.973 is needed to go from absorbed dose in water calibration factors to those in PMMA or polystyrene. Values of kQ calculated using the IAEA Code of Practice are presented but are shown to be anomalous because of the way the effective point of measurement changes for 60Co beams. In photon beams the major difference between the IAEA Code of Practice and the corrected AAPM TG-21 protocol is shown to be the Prepl correction factor. Calculated kQ curves and three parameter equations for them are presented for each wall material and are shown to represent accurately the kQ curve

  11. Cu-In Halide Perovskite Solar Absorbers.

    PubMed

    Zhao, Xin-Gang; Yang, Dongwen; Sun, Yuanhui; Li, Tianshu; Zhang, Lijun; Yu, Liping; Zunger, Alex

    2017-05-17

    The long-term chemical instability and the presence of toxic Pb in otherwise stellar solar absorber APbX 3 made of organic molecules on the A site and halogens for X have hindered their large-scale commercialization. Previously explored ways to achieve Pb-free halide perovskites involved replacing Pb 2+ with other similar M 2+ cations in ns 2 electron configuration, e.g., Sn 2+ or by Bi 3+ (plus Ag + ), but unfortunately this showed either poor stability (M = Sn) or weakly absorbing oversized indirect gaps (M = Bi), prompting concerns that perhaps stability and good optoelectronic properties might be contraindicated. Herein, we exploit the electronic structure underpinning of classic Cu[In,Ga]Se 2 (CIGS) chalcopyrite solar absorbers to design Pb-free halide perovskites by transmuting 2Pb to the pair [B IB + C III ] such as [Cu + Ga] or [Ag + In] and combinations thereof. The resulting group of double perovskites with formula A 2 BCX 6 (A = K, Rb, Cs; B = Cu, Ag; C = Ga, In; X = Cl, Br, I) benefits from the ionic, yet narrow-gap character of halide perovskites, and at the same time borrows the advantage of the strong Cu(d)/Se(p) → Ga/In(s/p) valence-to-conduction-band absorption spectra known from CIGS. This constitutes a new group of CuIn-based Halide Perovskite (CIHP). Our first-principles calculations guided by such design principles indicate that the CIHPs class has members with clear thermodynamic stability, showing direct band gaps, and manifesting a wide-range of tunable gap values (from zero to about 2.5 eV) and combination of light electron and heavy-light hole effective masses. Materials screening of candidate CIHPs then identifies the best-of-class Rb 2 [CuIn]Cl 6 , Rb 2 [AgIn]Br 6 , and Cs 2 [AgIn]Br 6 , having direct band gaps of 1.36, 1.46, and 1.50 eV, and theoretical spectroscopic limited maximal efficiency comparable to chalcopyrites and CH 3 NH 3 PbI 3 . Our finding offers a new routine for designing new-type Pb-free halide perovskite solar

  12. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    DOEpatents

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  13. Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides.

    PubMed

    Ito, Akinori; Lin, Guangxing; Penner, Joyce E

    2018-05-09

    Iron (Fe) oxides in aerosols are known to absorb sun light and heat the atmosphere. However, the radiative forcing (RF) of light-absorbing aerosols of pyrogenetic Fe oxides is ignored in climate models. For the first time, we use a global chemical transport model and a radiative transfer model to estimate the RF by light-absorbing aerosols of pyrogenetic Fe oxides. The model results suggest that strongly absorbing Fe oxides (magnetite) contribute a RF that is about 10% of the RF due to black carbon (BC) over East Asia. The seasonal average of the RF due to dark Fe-rich mineral particles over East Asia (0.4-1.0 W m -2 ) is comparable to that over major biomass burning regions. This additional warming effect is amplified over polluted regions where the iron and steel industries have been recently developed. These findings may have important implications for the projection of the climate change, due to the rapid growth in energy consumption of the heavy industry in newly developing countries.

  14. Development of absorber coupled TES polarimeter at millimeter wavelengths.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.; Yefremenko, V.; Novosad, V.

    2009-06-01

    We report an absorber coupled TES bolometric polarimeter, consisting of an absorptive metal grid and a Mo/Au bi-layer TES on a suspended silicon nitride membrane disk. The electromagnetic design of the polarization sensitive absorbers, the heat transport modeling of the detector, the thermal response of the TES, and the micro-fabrication processes are presented. We also report the results of laboratory tests of a single pixel prototype detector, and compare with theoretical expectations.

  15. A tunable sound-absorbing metamaterial based on coiled-up space

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhao, Honggang; Yang, Haibin; Zhong, Jie; Zhao, Dan; Lu, Zhongliang; Wen, Jihong

    2018-05-01

    This paper presents a theoretical, numerical, and experimental investigation of a deep-subwavelength absorber based on the concept of coiled-up space. By adjusting a partition panel in the cavity to form an unequal-section channel, it is found that the resonance frequency of the absorber is easily tuned and near-total absorption is acquired under a fixed deep-subwavelength thickness. The absorption mechanism induced by nearly critical coupling is revealed by graphically analyzing the reflection coefficient in the complex plane. In contrast to conventional techniques, near-total absorption can be adjusted over a wider frequency range. To further enhance the absorption, we demonstrate a broadband absorber with a relative bandwidth up to 33.3%.

  16. Recombinant granulocyte colony-stimulating factor administered enterally to neonates is not absorbed.

    PubMed

    Calhoun, Darlene A; Maheshwari, Akhil; Christensen, Robert D

    2003-08-01

    Granulocyte colony-stimulating factor (G-CSF) is present in liquids swallowed by the fetus and neonate; specifically, amniotic fluid, colostrum, and human milk. The swallowed G-CSF has local effects on enteric cells, which express the G-CSF receptor. However, some portion of the G-CSF ingested by the fetus and neonate might be absorbed into the circulation and have systemic actions, such as stimulating neutrophil production. To assess this possibility we sought to determine if circulating G-CSF concentrations of neonates increase after enteral administration of recombinant human granulocyte colony-stimulating factor (rhG-CSF). This was a single-center, prospective, blinded, randomized, 2 x 2 crossover study, with each infant receiving 1 dose of rhG-CSF (100 microg/kg) and 1 dose of placebo. Plasma G-CSF concentrations were measured at 2 and 4 hours after administration of the test solution. No significant change in plasma G-CSF concentration was observed after the enteral administration of rhG-CSF. On this basis, we conclude that orally administered rhG-CSF is not absorbed in significant quantities, and we speculate that the G-CSF swallowed by the fetus and neonate has local but not systemic effects.

  17. Intercomparison of standards of absorbed dose between the USSR and the UK

    NASA Astrophysics Data System (ADS)

    Berlyand, V. A.; Bregadze, J. I.; Burns, J. E.; Dusautoy, A. R.; Sharpe, P. H. G.

    1991-05-01

    A comparison of national standards of absorbed dose was carried out between the All-Union Research Institute for Physical Technical and Radiotechnical Measurements (VNIIFTRI), USSR, and the National Physical Laboratotry (NPL), UK (United Kingdom). Absorbed dose to water for cobalt 60 gamma radiation was compared by means of Fricke dosimeters and ionization chambers in 1985 and 1986. The primary standards used to derive absorbed dose to water were cavity ionization chambers at NPL and a graphite calorimeter at VNIIFTRI. The ratio of absorbed dose to water, NPL to VNIIFTRI, using Fricke dosimeters was 1.008; using ionization chambers it was 1.007. This agreement is within the estimated uncertainties of the standards and measurement methods.

  18. Analytical and numerical solution for wave reflection from a porous wave absorber

    NASA Astrophysics Data System (ADS)

    Magdalena, Ikha; Roque, Marian P.

    2018-03-01

    In this paper, wave reflection from a porous wave absorber is investigated theoretically and numerically. The equations that we used are based on shallow water type model. Modification of motion inside the absorber is by including linearized friction term in momentum equation and introducing a filtered velocity. Here, an analytical solution for wave reflection coefficient from a porous wave absorber over a flat bottom is derived. Numerically, we solve the equations using the finite volume method on a staggered grid. To validate our numerical model, comparison of the numerical reflection coefficient is made against the analytical solution. Further, we implement our numerical scheme to study the evolution of surface waves pass through a porous absorber over varied bottom topography.

  19. Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen

    2017-03-01

    A novel quad-band terahertz metamaterial absorber using four different modes of single pattern resonator is demonstrated. Four obvious frequencies with near-perfect absorption are realized. Near-field distributions of the four modes are provided to reveal the physical picture of the multiple-band absorption. Unlike most previous quad-band absorbers that typically require four or more patterns, the designed absorber has only one resonant structure, which is simpler than previous works. The presented quad-band absorber has potential applications in biological sensing, medical imaging, and material detection.

  20. [Absorbed doses to critical organs from full mouth dental radiography].

    PubMed

    Zhang, G; Yasuhiko, O; Hidegiko, Y

    1999-01-01

    A few studies were reported in China on radiological risk of dental radiography. The aim of this study is to evaluate the absorbed doses of patients from the full mouth radiographs, and to find out the contribution from each projection to the total absorbed dose of the organs. Absorbed doses to critical organs were measured from 14-film complete dental radiography. The organs included pituitary, optical lens, parotid glands, submandibular glands, sublingual glands, thyroid, breasts, ovary, testes and the skin in center field of each projection were studied. A-radiation analog dosimetry system (RANDO) phantom with thermoluminescent dosimeters (ILD200) was used for the study. All of the exposure parameters were fixed. The total filtration was 2 mm Al equivalent. The column collaboration was 6 cm in diameter and 20 cm in length. The absorbed doses of organs were measured three times in each projection of the full-mouth series (FMS) exposures. The absorbed dose of lenses in FMS (249 microGy) in present study was much less (10%) than the doses (2,630 microGy) reported in 1976. The doses absorbed of other organs in the present study were thyroid gland (125 microGy), pituitary gland (112 microGy), parotid gland (153 microGy), submandibular gland (629 microGy), sublingual gland (1,900 microGy), and breast gland (12 microGy). The doses of the ovary and testis were to small to further analysis. All of the results show that the radiation risk to patients in intraoral radiograph has been reduced significantly. In the pituitary, half of the dose is from both sides of the maxillary molar projection. For the lenses, the largest contribultions of radiation (60%) come from the ipsilateral molar and premolar projection of maxilla. In parotid gland, up to 57% of the dose is from the contralateral molar, pre-molar and canine of maxilla. It could be derived that about 90% of the absorbed doses could be avoided in FMS if the column collimator is 20 cm long and the filter is 2.0 mm thick

  1. Freshwater DOM quantity and quality from a two-component model of UV absorbance

    USGS Publications Warehouse

    Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John

    2012-01-01

    We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).

  2. Wide band design on the scaled absorbing material filled with flaky CIPs

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  3. Sweeping shunted electro-magnetic tuneable vibration absorber: Design and implementation

    NASA Astrophysics Data System (ADS)

    Turco, E.; Gardonio, P.

    2017-10-01

    This paper presents a study on the design and implementation of a time-varying shunted electro-magnetic Tuneable Vibration Absorber for broad-band vibration control of thin structures. A time-varying RL-shunt is used to harmonically vary the stiffness and damping properties of the Tuneable Vibration Absorber so that its mechanical fundamental natural frequency is continuously swept in a given broad frequency band whereas its mechanical damping is continuously adapted to maximize the vibration absorption from the hosting structure where it is mounted. The paper first recalls the tuning and positioning criteria for the case where a classical Tuneable Vibration Absorber is installed on a thin walled cylindrical structure to reduce the response of a resonating flexural mode. It then discusses the design of the time-varying shunt circuit to produce the desired stiffness and damping variations in the electro-magnetic Tuneable Vibration Absorber. Finally, it presents a numerical study on the flexural vibration and interior sound control effects produced when an array of these shunted electro-magnetic Tuneable Vibration Absorbers are mounted on a thin walled cylinder subject to a rain-on-the-roof stochastic excitation. The study shows that the array of proposed systems effectively controls the cylinder flexural response and interior noise over a broad frequency band without need of tuning and thus system identification of the structure. Therefore, the systems can be successfully used also on structures whose physical properties vary in time because of temperature changes or tensioning effects for example.

  4. 21 CFR 880.5300 - Medical absorbent fiber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...'s body surface. Absorbent fibers intended solely for cosmetic purposes are not included in this generic device category. (b) Classification. Class I (general controls). The device is exempt from the...

  5. 21 CFR 880.5300 - Medical absorbent fiber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...'s body surface. Absorbent fibers intended solely for cosmetic purposes are not included in this generic device category. (b) Classification. Class I (general controls). The device is exempt from the...

  6. 21 CFR 880.5300 - Medical absorbent fiber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...'s body surface. Absorbent fibers intended solely for cosmetic purposes are not included in this generic device category. (b) Classification. Class I (general controls). The device is exempt from the...

  7. MSAT boom joint testing and load absorber design

    NASA Technical Reports Server (NTRS)

    Klinker, D. H.; Shuey, K.; St.clair, D. R.

    1994-01-01

    Through a series of component and system-level tests, the torque margin for the MSAT booms is being determined. The verification process has yielded a number of results and lessons that can be applied to many other types of deployable spacecraft mechanisms. The MSAT load absorber has proven to be an effective way to provide high energy dissipation using crushable honeycomb. Using two stages of crushable honeycomb and a fusible link, a complex crush load profile has been designed and implemented. The design features of the load absorber lend themselves to use in other spacecraft applications.

  8. Bistability By Self-Reflection In A Saturable Absorber

    NASA Astrophysics Data System (ADS)

    Roso-Franco, Luis

    1987-01-01

    Propagation of laser light through a saturable absorber is theoretically studied. Computed steady state solutions of the Maxwell equations describing the unidimensional propagation of a plane monochromatic wave without introducing the slowly-varying envelope approximation are presented showing how saturation effects can influence the absorption of the field. At a certain range of refractive index and extintion coefficients, computed solutions display a very susprising behaviour, and a self-reflected wave appears inside the absorber. This can be useful for a new kind of biestable device, similar to a standard bistable cavity but with the back mirror self-induced by the light.

  9. Investigations on Absorber Materials at Cryogenic Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marhauser, Frank; Elliott, Thomas; Rimmer, Robert

    2009-05-01

    In the framework of the 12 GeV upgrade project for the Continuous Electron Beam Accelerator Facility (CEBAF) improvements are being made to refurbish cryomodules housing Thomas Jefferson National Accelerator Facility's (JLab) original 5-cell cavities. Recently we have started to look into a possible simplification of the existing Higher Order Mode (HOM) absorber design combined with the aim to find alternative material candidates. The absorbers are implemented in two HOM-waveguides immersed in the helium bath and operate at 2 K temperature. We have built a cryogenic setup to perform measurements on sample load materials to investigate their lossy characteristics and variationsmore » from room temperature down to 2 K. Initial results are presented in this paper.« less

  10. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  11. Light Absorbing Particle (LAP) Measurements in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Baumgardner, D.; Raga, G. B.; Anderson, B.; Diskin, G.; Sachse, G.; Kok, G.

    2003-01-01

    This viewgraph presentation covers the capabilities and design of the Single Particle Soot Photometer (SP-2), and reviews its role on the Sage III Ozone Loss Validation Experiment (SOLVE II) field campaign during 2003. On SOLVE II the SP-2 was carried into the Arctic onboard a DC-8 aircraft, in order to determine the size distribution of light-absorbing and non light-absorbing particles in the stratosphere. Graphs and tables relate some of the results from SOLVE II.

  12. The Interior Analysis and 3-D Reconstruction of Internally-Mixed Light-Absorbing Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Collins, S. M.; Anderson, I.; Herzing, A.

    2010-12-01

    Carbon-containing atmospheric particles may either absorb solar or outgoing long-wave radiation or scatter solar radiation, and thus, affect Earth’s radiative balance in multiple ways. Light-absorbing carbon that is common in urban air particles such as industrial coke dust, road dust, and diesel soot, often exists in the same particle with other phases that contain, for example, aluminum, calcium, iron, and sulfur. While the optical properties of atmospheric particles in general depend on overall particle size and shape, the inhomogeneity of chemical phases within internally-mixed particles may also greatly affect particle optical properties. In this study, a series of microscopic approaches were used to identify individual light-absorbing coarse-mode particles and to assess their interior structure and composition. Particle samples were collected in 2004 from one of the U.S. EPA’s Los Angeles Particulate Matter Supersites, and were likely affected substantially by road dust and construction dust. First, bright-field and dark-field light microscopy and computer-controlled scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDX) were used to distinguish predominantly light-absorbing carbonaceous particles from other particle types such as mineral dust, sea salt, and brake wear. Second, high-resolution SEM-EDX elemental mapping of individual carbonaceous particles was used to select particles with additional elemental phases that exhibited spatial inhomogeneity. Third, focused ion-beam SEM (FIB-SEM) with EDX was used to slice through selected particles to expose interior surfaces and to determine the spatial distribution of element phases throughout the particles. Fourth, study of the interior phases of a particle was augmented by the transmission electron microscopy (TEM) of a thin section of the particle prepared by FIB-SEM. Here, electron energy loss spectroscopy with TEM was used to study chemical bonding in the carbonaceous phase

  13. UV-absorbing bacteria in coral mucus and their response to simulated temperature elevations

    NASA Astrophysics Data System (ADS)

    Ravindran, J.; Kannapiran, E.; Manikandan, B.; Francis, K.; Arora, Shruti; Karunya, E.; Kumar, Amit; Singh, S. K.; Jose, Jiya

    2013-12-01

    Reef-building corals encompass various strategies to defend against harmful ultraviolet (UV) radiation. Coral mucus contains UV-absorbing compounds and has rich prokaryotic diversity associated with it. In this study, we isolated and characterized the UV-absorbing bacteria from the mucus of the corals Porites lutea and Acropora hyacinthus during the pre-summer and summer seasons. A total of 17 UV-absorbing bacteria were isolated and sequenced. The UV-absorbing bacteria showed UV absorption at wavelengths ranging from λ max = 333 nm to λ min = 208 nm. Analysis of the DNA sequences revealed that the majority of the UV-absorbing bacteria belonged to the family Firmicutes and the remaining belonged to the family Proteobacteria (class Gammaproteobacteria). Comparison of the sequences with the curated database yielded four distinct bacterial groups belonging to the genus Bacillus, Staphylococcus, Salinicoccus and Vibrio. The absorption peaks for the UV-absorbing bacteria shifted to the UV-A range (320-400 nm) when they were incubated at higher temperatures. Deciphering the complex relationship between corals and their associated bacteria will help us to understand their adaptive strategies to various stresses.

  14. Design on the wide band absorber with low density based on the particle distribution

    NASA Astrophysics Data System (ADS)

    Zheng, Dianliang; Liu, Ting; Liu, Longbin; Xu, Yonggang

    2018-04-01

    In order to widen the absorbing band, an equivalent gradient structure absorber was designed based on the particle distribution. Firstly, the electromagnetic parameter of the absorbent with uniform dispersion was tested using the vector network analyzer in 8-18 GHz. Three different equivalent materials of the spherical, square and hexagon empty shape were designed. The scattering parameters and the monostatic reflection loss (RL) of the periodic structural materials were simulated in the commercial software. Then the effective permittivity and the permeability was derived by the Nicolson-Ross-Weir algorithm and fitted by Maxwell-Garnett mixing rule. The results showed that the simulated reflectance and transmission parameters of equivalent composites with the different shapes were very close. The derived effective permittivity and permeability of the composite with different absorbent content was also close, and the average deviation was about 0.52 + j0.15 and 0.15 + j0.01 respectively. Finally, the wide band absorbing material was designed using the genetic algorithm. The optimized RL result showed that the absorbing composites with thickness 3 mm had an excellent absorbing property (RL <-10 dB) in 8-18 GHz, the equivalent absorber density could be decreased 30.7% compared with the uniform structure.

  15. Enhancement of acoustical performance of hollow tube sound absorber

    NASA Astrophysics Data System (ADS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-03-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  16. The influence of surface modification on sound absorption coefficient of albizzia wood absorber

    NASA Astrophysics Data System (ADS)

    Diharjo, Kuncoro; Prabowo, Anditya E.; Jamasri, Suharty, Neng Sri

    2017-01-01

    The purpose of this research is to investigate the influence of surface modification to sound absorption on absorber based albizia wood and kenaf fiber. The absorber was produced using the albizia wood as main materials, and the kenaf fiber was used as acoustic fill. The albizia wood used for producing the absorber was cut in the transverse direction so that its surface had good porosity. The size of specimens had 100 mm in diameter and 40 mm in thickness. The configuration of resonator cavities was 30 mm in diameter and 20 mm in depth, and each resonator was completed with a neck hole of the resonator. The types of surface modification were the addition of screen printing ink, fabric (with and without neck hole), and vinyl-wallpaper (with and without neck hole). According to ISO 10534-2, the absorber specimens were tested using two microphones impedance tube with random noise source to get the curve of noise absorption coefficient (NAC) for each specimen. The result shows that both unmodified absorber and absorber modified with screen printing ink have the similar characteristic of NAC and they are feasible to be used as an absorber in conversation rooms. The addition of fabric and vinyl-wallpaper as cover on the absorber surface give the positive effect of the air gap, and it increases the NAC in low frequency (100-400 Hz). However, the covers decrease the NAC in high frequency (400-1,400 Hz). The holes on the fabric and wallpaper covers give the improvement of NAC.

  17. Method for outlier detection: a tool to assess the consistency between laboratory data and ultraviolet-visible absorbance spectra in wastewater samples.

    PubMed

    Zamora, D; Torres, A

    2014-01-01

    Reliable estimations of the evolution of water quality parameters by using in situ technologies make it possible to follow the operation of a wastewater treatment plant (WWTP), as well as improving the understanding and control of the operation, especially in the detection of disturbances. However, ultraviolet (UV)-Vis sensors have to be calibrated by means of a local fingerprint laboratory reference concentration-value data-set. The detection of outliers in these data-sets is therefore important. This paper presents a method for detecting outliers in UV-Vis absorbances coupled to water quality reference laboratory concentrations for samples used for calibration purposes. Application to samples from the influent of the San Fernando WWTP (Medellín, Colombia) is shown. After the removal of outliers, improvements in the predictability of the influent concentrations using absorbance spectra were found.

  18. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    DOEpatents

    Zapata, Luis E.

    1994-01-01

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.

  19. A new optical method coupling light polarization and Vis-NIR spectroscopy to improve the measured absorbance signal's quality of soil samples.

    NASA Astrophysics Data System (ADS)

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2014-05-01

    Visible - Near-infrared spectroscopy (Vis-NIRS) is now commonly used to measure different physical and chemical parameters of soils, including carbon content. However, prediction model accuracy is insufficient for Vis-NIRS to replace routine laboratory analysis. One of the biggest issues this technique is facing up to is light scattering due to soil particles. It causes departure in the assumed linear relationship between the Absorbance spectrum and the concentration of the chemicals of interest as stated by Beer-Lambert's Law, which underpins the calibration models. Therefore it becomes essential to improve the metrological quality of the measured signal in order to optimize calibration as light/matter interactions are at the basis of the resulting linear modeling. Optics can help to mitigate scattering effect on the signal. We put forward a new optical setup coupling linearly polarized light with a Vis-NIR spectrometer to free the measured spectra from multi-scattering effect. The corrected measured spectrum was then used to compute an Absorbance spectrum of the sample, using Dahm's Equation in the frame of the Representative Layer Theory. This method has been previously tested and validated on liquid (milk+ dye) and powdered (sand + dye) samples showing scattering (and absorbing) properties. The obtained Absorbance was a very good approximation of the Beer-Lambert's law absorbance. Here, we tested the method on a set of 54 soil samples to predict Soil Organic Carbon content. In order to assess the signal quality improvement by this method, we built and compared calibration models using Partial Least Square (PLS) algorithm. The prediction model built from new Absorbance spectrum outperformed the model built with the classical Absorbance traditionally obtained with Vis-NIR diffuse reflectance. This study is a good illustration of the high influence of signal quality on prediction model's performances.

  20. Sensitivity of multiangle photo-polarimetry to absorbing aerosol vertical layering and properties: Quantifying measurement uncertainties for ACE requirements

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Davis, A. B.; Natraj, V.; Diner, D. J.; Tanelli, S.; Martonchik, J. V.; JPl Team

    2011-12-01

    The impact of tropospheric aerosols on climate can vary greatly based upon relatively small variations in aerosol properties, such as composition, shape and size distributions, as well as vertical layering. Multi-angle polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol radiative forcing on climate. The central concern of this work is the assessment of the effects of absorbing aerosol properties under measurement uncertainties achievable for future generation multi-angle, polarimetric imaging instruments under ACE mission requirements. As guidelines, the on-orbit performance of MISR for multi-angle intensity measurements and the reported polarization sensitivities of a MSPI prototype were adopted. In particular, we will focus on sensitivities to absorbing aerosol layering and observation-constrained refractive indices (resulting in various single scattering albedos (SSA)) of both spherical and non-spherical absorbing aerosol types. We conducted modeling experiments to determine how the measured Stokes vector elements are affected in UV-NIR range by the vertical distribution, mixing and layering of smoke and dust aerosols, and aerosol SSA under the assumption of a black and polarizing ocean surfaces. We use a vector successive-orders-of-scattering (SOS) and VLIDORT transfer codes that show excellent agreement. Based on our sensitivity studies we will demonstrate advantages and disadvantages of wavelength selection in UV-NIR range to access absorbing aerosol properties. Polarized UV channels do not show particular advantage for absorbing aerosol property characterization due to dominating molecular signal. Polarimetric SSA sensitivity is small, however needed to be considered in the future polarimetric retrievals under ACE-defined uncertainty.

  1. Particles and Zinc on the Absorbed Impact Energy of Gravity Cast Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Corchado, Marcos; Reyes, Fernando; Suárez, Oscar Marcelo

    2014-06-01

    The effect of different amounts of boron, in the form of AlB2 particles, as well as zinc concentration in a gravity cast Al-B-Zn composite, was studied and related to the absorbed energy upon fracture during Charpy impact experiments. In addition, the authors correlated the composite Brinell hardness with the quantitative assessment of brittle and ductile fracture areas of the Charpy fractured specimens and found that increasing AlB2 particle concentration resulted in a reduction of absorbed impact energy. Although larger zinc levels produced somewhat similar results, the AlB2 effect was prevalent. The energy absorption upon impact reached a maximum when no particles were present; conversely, the lowest amount of absorbed energy corresponded to a composite with a composition of 15 wt.% Zn and 8% in volume of AlB2, i.e., the highest concentration of AlB2 and zinc studied. Raising the amount of AlB2 as well as zinc, as expected, resulted in higher Brinell hardness. A statistical analysis allowed studying of the particle size distribution, whereas values for crack tip opening displacement were subsequently calculated for the range of particle sizes found and the corresponding AlB2 particle volume percent. Higher porosity values were measured for larger AlB2 volume percent. Finally, analyses of fracture surfaces corroborated that brittle fracture was favored in composites with higher amounts of AlB2 and zinc.

  2. Management of comminuted patellar fracture with non-absorbable suture cerclage and Nitinol patellar concentrator.

    PubMed

    Lue, Tan Hong; Feng, Liu Wei; Jun, Wang Ming; Yin, Li Wu

    2014-12-01

    To evaluate the effectiveness and safety of a fixation technique for comminuted patellar fracture using non-absorbable suture cerclage and nickel-titanium patellar concentrator (Ni-Ti PC). Twenty-nine consecutive patients with displaced comminuted patellar fractures accepted internal fixation procedure using Ni-Ti PC augmented with different types of non-absorbable suture cerclage. During follow-up, the clinical grading scales of Böstman, including range of movement, pain, work, atrophy, assistance in walking, effusion, giving way, and stair-climbing, were used to evaluate the clinical results. Complications including implant loosening, fragment displacement, bone nonunion, infection, breakage of the implants, painful hardware, and post-traumatic osteoarthritis were also assessed. Patients were followed up for a mean period of 27 months. The bone union radiographically occurred approximately 2.5 months without implant loosening and fragment displacement. According to Böstman method, satisfactory results were obtained, and the mean score at final follow-up was 28 (range 20–30) points. Twenty-two patients with excellent results had mean score of 29.8 ± 0.5 (range 28–30) and seven patients with good results had mean score of 22.7 ± 3.14 (range 20–27). No postoperative complications, such as infection, dislocation, breakage of the implants, painful hardware, and post-traumatic osteoarthritis, were observed. Ni-Ti PC fixation with non-absorbable suture cerclage is a feasible approach for comminuted patellar fractures. Firm fixation with this technique resulted in satisfactory outcomes without obvious complications.

  3. A THz plasmonics perfect absorber and Fabry-Perot cavity mechanism (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Jiangfeng; Bhattarai, Khagendra; Silva, Sinhara; Jeon, Jiyeon; Kim, Junoh; Lee, Sang Jun; Ku, Zahyun

    2016-10-01

    The plasmonic metamaterial perfect absorber (MPA) is a recently developed branch of metamaterial which exhibits nearly unity absorption within certain frequency range.[1-6] The optically thin MPA possesses characteristic features of angular-independence, high Q-factor and strong field localization that have inspired a wide range of applications including electromagnetic wave absorption,[3, 7, 8] spatial[6] and spectral[5] modulation of light,[9] selective thermal emission,[9] thermal detecting[10] and refractive index sensing for gas[11] and liquid[12, 13] targets. In this work, we demonstrate a MPA working at terahertz (THz) regime and characterize it using an ultrafast THz time-domain spectroscopy (THz-TDS). Our study reveal an ultra-thin Fabry-Perot cavity mechanism compared to the impedance matching mechanism widely adopted in previous study [1-6]. Our results also shows higher-order resonances when the cavities length increases. These higher order modes exhibits much larger Q-factor that can benefit potential sensing and imaging applications. [1] C. M. Watts, X. L. Liu, and W. J. Padilla, "Metamaterial Electromagnetic Wave Absorbers," Advanced Materials, vol. 24, pp. 98-120, Jun 19 2012. [2] M. Hedayati, F. Faupel, and M. Elbahri, "Review of Plasmonic Nanocomposite Metamaterial Absorber," Materials, vol. 7, pp. 1221-1248, 2014. [3] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, vol. 100, p. 207402, May 23 2008. [4] H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, et al., "Optically Modulated Multiband Terahertz Perfect Absorber," Advanced Optical Materials, vol. 2, pp. 1221-1226, 2014. [5] D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, "Four-Color Metamaterial Absorber THz Spatial Light Modulator," Advanced Optical Materials, vol. 1, pp. 905-909, 2013. [6] S. Savo, D. Shrekenhamer, and W. J. Padilla, "Liquid Crystal Metamaterial Absorber Spatial

  4. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.

    PubMed

    Jiang, Zhi Hao; Yun, Seokho; Toor, Fatima; Werner, Douglas H; Mayer, Theresa S

    2011-06-28

    Metamaterials offer a new approach to create surface coatings with highly customizable electromagnetic absorption from the microwave to the optical regimes. Thus far, efficient metamaterial absorbers have been demonstrated at microwave frequencies, with recent efforts aimed at much shorter terahertz and infrared wavelengths. The present infrared absorbers have been constructed from arrays of nanoscale metal resonators with simple circular or cross-shaped geometries, which provide a single band response. In this paper, we demonstrate a conformal metamaterial absorber with a narrow band, polarization-independent absorptivity of >90% over a wide ±50° angular range centered at mid-infrared wavelengths of 3.3 and 3.9 μm. The highly efficient dual-band metamaterial was realized by using a genetic algorithm to identify an array of H-shaped nanoresonators with an effective electric and magnetic response that maximizes absorption in each wavelength band when patterned on a flexible Kapton and Au thin film substrate stack. This conformal metamaterial absorber maintains its absorption properties when integrated onto curved surfaces of arbitrary materials, making it attractive for advanced coatings that suppress the infrared reflection from the protected surface.

  5. The X-ray and ultraviolet absorbing outflow in 3C 351

    NASA Astrophysics Data System (ADS)

    Mathur, Smita; Wilkes, Belinda; Elvis, Martin; Fiore, Fabrizio

    1994-10-01

    3C 351 (z = 0.371), and X-ray-'quiet' quasar, is one of the few quasars showing signs of a 'warm absorber' in its X-ray spectrum; i.e., partially ionized absorbing material in the line of sight whose opacity depends on its ionization structure. The main feature in the X-ray spectrum is a K-edge due to O VII or O VIII. 3C 351 also shows unusually strong, blueshifted, associated, absorption lines in the ultraviolet (Bahcall et al. 1993) including O VI (lambda lambda 1031, 1037). This high ionization state strongly suggests an identification with the X-ray absorber and a site within the active nucleus. In this paper we demonstrate that the X-ray and UV absorption is due to the same material. This is the first confirmed UV/X-ray absorber. Physical conditions of the absorber are determined through the combination of constraints derived from both the X-ray and UV analysis. This highly ionized, outflowing, low-density, high-column density absorber situated outside the broad emission line region (BELR) is a previously unknown component of nuclear material. We rule out the identification of the absorber with a BELR cloud as the physical conditions in the two regions are inconsistent with one another. The effect of the X-ray quietness and IR upturn in the 3C 351 continuum on the BELR is also investigated. The strengths of the high-ionization lines of C IV lambda-1549 and O VI lambda-1034 with respect to Lyman-alpha are systematically lower (up to a factor of 10) in the material ionized by the 3C 351 continuum as compared to those produced by the 'standard' quasar continuum, the strongest effect being on the strength of O VI lambda-1034. We find that for a 3C 351-like continuum, C III) lambda-1909 ceases to be a density indicator.

  6. Enhancement of acoustical performance of hollow tube sound absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putra, Azma, E-mail: azma.putra@utem.edu.my; Khair, Fazlin Abd, E-mail: fazlinabdkhair@student.utem.edu.my; Nor, Mohd Jailani Mohd, E-mail: jai@utem.edu.my

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For testmore » sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.« less

  7. Energy Absorbing Seat System for an Agricultural Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.

  8. Experimental study of a smart foam sound absorber.

    PubMed

    Leroy, Pierre; Berry, Alain; Herzog, Philippe; Atalla, Noureddine

    2011-01-01

    This article presents the experimental implementation and results of a hybrid passive/active absorber (smart foam) made up from the combination of a passive absorbent (foam) and a curved polyvinylidene fluoride (PVDF) film actuator bonded to the rear surface of the foam. Various smart foam prototypes were built and tested in active absorption experiments conducted in an impedance tube under plane wave propagation condition at frequencies between 100 and 1500 Hz. Three control cases were tested. The first case used a fixed controller derived in the frequency domain from estimations of the primary disturbance at a directive microphone position in the tube and the transfer function between the control PVDF and the directive microphone. The two other cases used an adaptive time-domain feedforward controller to absorb either a single-frequency incident wave or a broadband incident wave. The non-linearity of the smart foams and the causality constraint were identified to be important factors influencing active control performance. The effectiveness of the various smart foam prototypes is discussed in terms of the active and passive absorption coefficients as well as the control voltage of the PVDF actuator normalized by the incident sound pressure.

  9. Rotation of large asymmetrical absorbing objects by Laguerre-Gauss beams.

    PubMed

    Herne, Catherine M; Capuzzi, Kristina M; Sobel, Emily; Kropas, Ryan T

    2015-09-01

    In this Letter, we show the manipulation and rotation of opaque graphite through adhesion with optically trapped polystyrene spheres. The absorbing graphite is rotated by the orbital angular momentum transfer from a Laguerre-Gauss laser mode and is trapped due to the presence of refracting spheres. This technique is effective for trapping and rotating absorbing objects of all sizes, including those larger than the laser mode.

  10. Absorbed dose assessment of 177Lu-zoledronate and 177Lu-EDTMP for human based on biodistribution data in rats

    PubMed Central

    Yousefnia, Hassan; Zolghadri, Samaneh; Jalilian, Amir Reza

    2015-01-01

    Over the past few decades, several bone-seeking radiopharmaceuticals including various bisphosphonate ligands and β-emitting radionuclides have been developed for bone pain palliation. Recently, 177Lu was successfully labeled with zoledronic acid (177Lu-ZLD) as a new generation potential bisphosphonate and demonstrated significant accumulation in bone tissue. In this work, the absorbed dose to each organ of human for 177Lu-ZLD and 177Lu-ethylenediaminetetramethylene phosphonic acid (177Lu-EDTMP;as the only clinically bone pain palliation agent) was investigated based on biodistribution data in rats by medical internal radiation dosimetry (MIRD) method. 177Lu-ZLD and 177Lu-EDTMP were prepared in high radiochemical purity (>99%, instant thin layer chromatography (ITLC)) at the optimized condition. The biodistribution of the complexes demonstrated fast blood clearance and major accumulation in the bone tissue. The highest absorbed dose for both 177Lu-ZLD and 177Lu-EDTMP is observed in trabecular bone surface with 12.173 and 10.019 mSv/MBq, respectively. The results showed that 177Lu-ZLD has better characteristics compared to 177Lu-EDTMP and can be a good candidate for bone pain palliation. PMID:26170557

  11. Burnable absorber arrangement for fuel bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Townsend, D.B.

    1986-12-16

    This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less

  12. Absorbing Software Testing into the Scrum Method

    NASA Astrophysics Data System (ADS)

    Tuomikoski, Janne; Tervonen, Ilkka

    In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.

  13. Emitter and absorber assembly for multiple self-dual operation and directional transparency

    NASA Astrophysics Data System (ADS)

    Kalozoumis, P. A.; Morfonios, C. V.; Kodaxis, G.; Diakonos, F. K.; Schmelcher, P.

    2017-03-01

    We demonstrate how to systematically design wave scattering systems with simultaneous coherent perfect absorbing and lasing operation at multiple and prescribed frequencies. The approach is based on the recursive assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility with respect to the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.

  14. The dynamics analysis of a ferrofluid shock absorber

    NASA Astrophysics Data System (ADS)

    Yao, Jie; Chang, Jianjun; Li, Decai; Yang, Xiaolong

    2016-03-01

    The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology.

  15. Neutron absorbing coating for nuclear criticality control

    DOEpatents

    Mizia, Ronald E.; Wright, Richard N.; Swank, William D.; Lister, Tedd E.; Pinhero, Patrick J.

    2007-10-23

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  16. Frequency-tunable terahertz absorber with wire-based metamaterial and graphene

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Jiang, Yan-Nan; Yang, Cheng; Zeng, Xiao-Ping

    2018-01-01

    We present a dynamically tunable metamaterial graphene absorber (MGA) in the terahertz regime. The unit cell of the proposed MGA consists of metal wire and graphene sheet over the grounded dielectric absorber. The MGA achieves frequency tunable characteristics via changing the chemical potential. In order to understand the absorption mechanism of this absorber, a simple equivalent circuit method has been proposed. Because the coupling between wire-based metamaterial and graphene is complicated and cannot be neglected an equivalent surface impedance was introduced and extracted for simplification. In addition to the chemical potential of graphene, the constitutive parameters of metal wire are also discussed in detail to completely understand how these factors affect the absorption properties. It is believed that this study may be useful for providing valuable guidance in the development of more advanced MGAs.

  17. An efficient absorbing system for spectrophotometric determination of nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Kaveeshwar, Rachana; Amlathe, Sulbha; Gupta, V. K.

    A simple and sensitive spectrophotometric method for determination of atmospheric nitrogen dioxide using o-nitroaniline as an efficient absorbing, as well as diazotizing, reagent is described. o-Nitroaniline present in the absorbing medium is diazotized by the absorbed nitrite ion to form diazonium compound. This is later coupled with 1-amino-2-naphthalene sulphonic acid (ANSA) in acidic medium to give red-violet-coloured dye,having λmax = 545 nm. The isoamyl extract of the red azo dye has λmax = 530 nm. The proposed reagents has ≈ 100% collection efficiency and the stoichiometric ratio of NO 2:NO 2- is 0.74. The other important analytical parameters have been investigated. By employing solvent extraction the sensitivity of the reaction was increased and up to 0.03 mg m -3 nitrogen dioxide could be estimated.

  18. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    DOEpatents

    Zapata, L.E.

    1994-08-02

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber. 16 figs.

  19. Characteristic analysis of a photoexcited metamaterial perfect absorber at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Bing, Pibin; Huang, Shichao; Li, Zhongyang; Yu, Zhou; Lu, Ying; Yao, Jianquan

    2017-06-01

    The absorption characteristics of a photoexcited metamaterial absorber at terahertz frequencies were analyzed in this study. Filling photosensitive semiconductor silicon into the gap between the resonator arms leads to modulation of its electromagnetic response through a pump beam which changes conductivity of silicon. Comparisons of terahertz absorbing properties which were caused by different thicknesses and dielectric constants of polyimide, cell sizes and widths of SRRs, and lengths and conductivities of the photosensitive silicon, were studied by using Finite Difference Time Domain (FDTD) from 0.4 THz to 1.6 THz. The results of this study will facilitate the design and preparation of terahertz modulator, filters and absorbers.

  20. The shock-absorbed system of the airplane landing gear

    NASA Technical Reports Server (NTRS)

    Callerio, Pietro

    1940-01-01

    A discussion is given of the behavior of the shock-absorbing system, consisting of elastic struts and tires, under landing, take-off, and taxying conditions, and a general formula derived for obtaining the minimum stroke required to satisfy the conditions imposed on the landing gear. Finally, the operation of some typical shock-absorbing systems are examined and the necessity brought out for taking into account, in dynamic landing-gear tests, the effect of the wing lift at the instant of contact with the ground.

  1. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  2. Absorber for solar power.

    PubMed

    Powell, W R

    1974-10-01

    A simple, economical absorber utilizing a new principle of operation to achieve very low reradiation losses while generating temperatures limited by material properties of quartz is described. Its performance is analyzed and indicates approximately 90% thermal efficiency and 73% conversion efficiency for an earth based unit with moderately concentrated (~tenfold) sunlight incident. It is consequently compatible with the most economic of concentrator mirrors (stamped) or mirrors deployable in space. Space applications are particularly attractive, as temperatures significantly below 300 K are possible and permit even higher conversion efficiency.

  3. Pain and mean absorbed dose to the pubic bone after radiotherapy among gynecological cancer survivors.

    PubMed

    Waldenström, Ann-Charlotte; Olsson, Caroline; Wilderäng, Ulrica; Dunberger, Gail; Lind, Helena; al-Abany, Massoud; Palm, Åsa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-07-15

    To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses ≥ 52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldenstroem, Ann-Charlotte, E-mail: ann-charlotte.waldenstrom@oncology.gu.se; Department of Oncology, Sahlgrenska University Hospital, Gothenburg; Olsson, Caroline

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-upmore » of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses {>=}52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.« less

  5. Shock absorbing mount for electrical components

    NASA Technical Reports Server (NTRS)

    Dillon, R. F., Jr.; Mayne, R. C. (Inventor)

    1975-01-01

    A shock mount for installing electrical components on circuit boards is described. The shock absorber is made of viscoelastic material which interconnects the electrical components. With this system, shocks imposed on one component of the circuit are not transmitted to other components. A diagram of a typical circuit is provided.

  6. Use of a New Simltaneous Absorbance-Fluorescene Instrument to Monitor Hydraluic Fracture Mining Waste Water to Prevent Drinking Water Contamination

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2013-05-01

    Recently, the issue of waste water effuse from oil and gas mining, especially that including hydraulic fracturing, has resurfaced on the news and the political atmosphere as an area of concern. One of the key concerns is drinking water contamination from the hydraulic fracturing chemicals and chemicals contained in the water introduced into the well at high-pressure and the flowback and produced water associate with the petroleum product extraction. The key to successfully meeting drinking water safety requirements lies in the drinking water treatment plant's ability to deal with often dramatic source-water variations in natural organic matter (NOM) content that can react during disinfection with high levels of chloride and bromide found in hydraulic facture waste water to form toxc disinfection by-products (DBPs). Importantly, the brominated DBP species are particularly dangerous. Whereas the regulated levels of NOM can roughly determined by measuring total organic carbon (TOC), often this parameter does not provide rapid or cost-effective qualitative or quantitative assessment of the various humic, fulvic and other aromatic NOM components associated with DBP formation. However, two main optical techniques namely UV absorbance and fluorescence excitation-emission mapping can be used for rapid assessment with precise identification of humic and fulvic components that cause DBPs. This study presents data from a new type of instrument which simultaneously measures the UV-VIS absorbance spectrum and EEM. The rapid absorbance-EEM is facilitated by a single system that is more than 100 time faster than conventional scanning absorbance and fluorescence optical benches. The new system can continuously collect EEMs and absorbance spectra at a rate often greater than 1 per min with the extra capacity to monitor the UV254 absorbance and fluorescence emission spectrum excited at 254 nm in 4 ms intervals (an equivalent scan rate of 5.5 million nm/min). The EEM spectral data is

  7. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    NASA Astrophysics Data System (ADS)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  8. Reducing variable frequency vibrations in a powertrain system with an adaptive tuned vibration absorber group

    NASA Astrophysics Data System (ADS)

    Gao, Pu; Xiang, Changle; Liu, Hui; Zhou, Han

    2018-07-01

    Based on a multiple degrees of freedom dynamic model of a vehicle powertrain system, natural vibration analyses and sensitivity analyses of the eigenvalues are performed to determine the key inertia for each natural vibration of a powertrain system. Then, the results are used to optimize the installation position of each adaptive tuned vibration absorber. According to the relationship between the variable frequency torque excitation and the natural vibration of a powertrain system, the entire vibration frequency band is divided into segments, and the auxiliary vibration absorber and dominant vibration absorber are determined for each sensitive frequency band. The optimum parameters of the auxiliary vibration absorber are calculated based on the optimal frequency ratio and the optimal damping ratio of the passive vibration absorber. The instantaneous change state of the natural vibrations of a powertrain system with adaptive tuned vibration absorbers is studied, and the optimized start and stop tuning frequencies of the adaptive tuned vibration absorber are obtained. These frequencies can be translated into the optimum parameters of the dominant vibration absorber. Finally, the optimal tuning scheme for the adaptive tuned vibration absorber group, which can be used to reduce the variable frequency vibrations of a powertrain system, is proposed, and corresponding numerical simulations are performed. The simulation time history signals are transformed into three-dimensional information related to time, frequency and vibration energy via the Hilbert-Huang transform (HHT). A comprehensive time-frequency analysis is then conducted to verify that the optimal tuning scheme for the adaptive tuned vibration absorber group can significantly reduce the variable frequency vibrations of a powertrain system.

  9. Acoustic Properties of Absorbent Asphalts

    NASA Astrophysics Data System (ADS)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  10. Intracardiac light catheter for rapid scanning transmural absorbance spectroscopy of perfused myocardium: measurement of myoglobin oxygenation and mitochondria redox state.

    PubMed

    Femnou, Armel N; Kuzmiak-Glancy, Sarah; Covian, Raul; Giles, Abigail V; Kay, Matthew W; Balaban, Robert S

    2017-12-01

    Absorbance spectroscopy of intrinsic cardiac chromophores provides nondestructive assessment of cytosolic oxygenation and mitochondria redox state. Isolated perfused heart spectroscopy is usually conducted by collecting reflected light from the heart surface, which represents a combination of surface scattering events and light that traversed portions of the myocardium. Reflectance spectroscopy with complex surface scattering effects in the beating heart leads to difficulty in quantitating chromophore absorbance. In this study, surface scattering was minimized and transmural path length optimized by placing a light source within the left ventricular chamber while monitoring transmurally transmitted light at the epicardial surface. The custom-designed intrachamber light catheter was a flexible coaxial cable (2.42-Fr) terminated with an encapsulated side-firing LED of 1.8 × 0.8 mm, altogether similar in size to a Millar pressure catheter. The LED catheter had minimal impact on aortic flow and heart rate in Langendorff perfusion and did not impact stability of the left ventricule of the working heart. Changes in transmural absorbance spectra were deconvoluted using a library of chromophore reference spectra to quantify the relative contribution of specific chromophores to the changes in measured absorbance. This broad-band spectral deconvolution approach eliminated errors that may result from simple dual-wavelength absorbance intensity. The myoglobin oxygenation level was only 82.2 ± 3.0%, whereas cytochrome c and cytochrome a + a 3 were 13.3 ± 1.4% and 12.6 ± 2.2% reduced, respectively, in the Langendorff-perfused heart. The intracardiac illumination strategy permits transmural optical absorbance spectroscopy in perfused hearts, which provides a noninvasive real-time monitor of cytosolic oxygenation and mitochondria redox state. NEW & NOTEWORTHY Here, a novel nondestructive real-time approach for monitoring intrinsic indicators of cardiac

  11. Energy-harvesting shock absorber with a mechanical motion rectifier

    NASA Astrophysics Data System (ADS)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-02-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.

  12. Embedded dielectric water "atom" array for broadband microwave absorber based on Mie resonance

    NASA Astrophysics Data System (ADS)

    Gogoi, Dhruba Jyoti; Bhattacharyya, Nidhi Saxena

    2017-11-01

    A wide band microwave absorber at X-band frequency range is demonstrated numerically and experimentally by embedding a simple rectangular structured dielectric water "atom" in flexible silicone substrate. The absorption peak of the absorber is tuned by manipulating the size of the dielectric water "atom." The frequency dispersive permittivity property of the water "atom" shows broadband absorption covering the entire X-band above 90% efficiency with varying the size of the water "atom." Mie resonance of the proposed absorber provides the desired impedance matching condition at the air-absorber interface across a wide frequency range in terms of electric and magnetic resonances. Multipole decomposition of induced current densities is used to identify the nature of observed resonances. Numerical absorptivity verifies that the designed absorber is polarization insensitive for normal incidence and can maintain an absorption bandwidth of more than 2 GHz in a wide-angle incidence. Additionally, the tunability of absorption property with temperature is shown experimentally.

  13. Nonlinear vibration absorption for a flexible arm via a virtual vibration absorber

    NASA Astrophysics Data System (ADS)

    Bian, Yushu; Gao, Zhihui

    2017-07-01

    A semi-active vibration absorption method is put forward to attenuate nonlinear vibration of a flexible arm based on the internal resonance. To maintain the 2:1 internal resonance condition and the desirable damping characteristic, a virtual vibration absorber is suggested. It is mathematically equivalent to a vibration absorber but its frequency and damping coefficients can be readily adjusted by simple control algorithms, thereby replacing those hard-to-implement mechanical designs. Through theoretical analyses and numerical simulations, it is proven that the internal resonance can be successfully established for the flexible arm, and the vibrational energy of flexible arm can be transferred to and dissipated by the virtual vibration absorber. Finally, experimental results are presented to validate the theoretical predictions. Since the proposed method absorbs rather than suppresses vibrational energy of the primary system, it is more convenient to reduce strong vibration than conventional active vibration suppression methods based on smart material actuators with limited energy output. Furthermore, since it aims to establish an internal vibrational energy transfer channel from the primary system to the vibration absorber rather than directly respond to external excitations, it is especially applicable for attenuating nonlinear vibration excited by unpredictable excitations.

  14. Microstructure Analysis of Bismuth Absorbers for Transition-Edge Sensor X-ray Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2018-03-01

    Given its large X-ray stopping power and low specific heat capacity, bismuth (Bi) is a promising absorber material for X-ray microcalorimeters and has been used with transition-edge sensors (TESs) in the past. However, distinct X-ray spectral features have been observed in TESs with Bi absorbers deposited with different techniques. Evaporated Bi absorbers are widely reported to have non-Gaussian low-energy tails, while electroplated ones do not show this feature. In this study, we fabricated Bi absorbers with these two methods and performed microstructure analysis using scanning electron microscopy and X-ray diffraction microscopy. The two types of material showed the same crystallographic structure, but the grain size of the electroplated Bi was about 40 times larger than that of the evaporated Bi. This distinction in grain size is likely to be the cause of their different spectral responses.

  15. Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers.

    PubMed

    Cheng, Fei; Yang, Xiaodong; Gao, Jie

    2014-06-01

    An infrared refractive index sensor based on plasmonic perfect absorbers for glucose concentration sensing is experimentally demonstrated. Utilizing substantial absorption contrast between a perfect absorber (∼98% at normal incidence) and a non-perfect absorber upon the refractive index change, a maximum value of figure of merit (FOM*) about 55 and a bulk wavelength sensitivity about 590  nm/RIU are achieved. The demonstrated sensing platform provides great potential in improving the performance of plasmonic refractive index sensors and developing future surface enhanced infrared spectroscopy.

  16. Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers.

    PubMed

    Ries, H; Spirkl, W

    1996-05-01

    For parabolic trough solar collectors with tubular absorbers, we design new tailored secondary concentrators. The design is applicable for any rim angle of a parabolic reflector. With the secondary, the concentration can be increased by a factor of more than 2 with a compact secondary reflector consisting of a single piece, even for the important case of a rim angle of 90 deg. The parabolic reflector can be used without changes; the reduced absorber is still tubular but smaller than the original absorber and slightly displaced toward the primary.

  17. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  18. Fast Ionized X-Ray Absorbers in AGNs

    NASA Technical Reports Server (NTRS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-01-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N(sub H), line-of-sight (LoS) velocity v, ionization parameter xi, among others. Assuming that the wind density scales as n varies as r(exp. -1), we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe K alpha absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  19. Fast ionized X-ray absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  20. Optimization of X-ray Absorbers for TES Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Iyomoto, Naoko; Sadleir, John E.; Figueroa-Feliciano, Enectali; Saab, Tarek; Bandler, Simon; Kilbourne, Caroline; Chervenak, James; Talley, Dorothy; Finkbeiner, Fred; Brekosky, Regis

    2004-01-01

    We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K(sub 1) the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with an SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough t o fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x l0(exp 3) micrometers squared per microsecond in a film that consists of 2.25 micrometers of Bi and 0.1 micrometers of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorbers.

  1. Analytical and Experimental Studies of Beam Waveguide Absorbers for Structural Damping.

    DTIC Science & Technology

    1988-03-01

    38 B. IMPEI)ANCES OF TlE WAVEUIDE ABSORBER ............... 45 - C. I)A IPING OF TIE PLATE .................................. 53 V. CO N C LU SIO N S...8217 viscoelastic beam waveguide absorber ip - dances at the center of the beam .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... 92 Fizure -51. Thle driving...j.J~ ~~ ~ Voz ~ S S*** / -.r T- 6 .. ... . ... .. .. bib

  2. Saliency Detection via Absorbing Markov Chain With Learnt Transition Probability.

    PubMed

    Lihe Zhang; Jianwu Ai; Bowen Jiang; Huchuan Lu; Xiukui Li

    2018-02-01

    In this paper, we propose a bottom-up saliency model based on absorbing Markov chain (AMC). First, a sparsely connected graph is constructed to capture the local context information of each node. All image boundary nodes and other nodes are, respectively, treated as the absorbing nodes and transient nodes in the absorbing Markov chain. Then, the expected number of times from each transient node to all other transient nodes can be used to represent the saliency value of this node. The absorbed time depends on the weights on the path and their spatial coordinates, which are completely encoded in the transition probability matrix. Considering the importance of this matrix, we adopt different hierarchies of deep features extracted from fully convolutional networks and learn a transition probability matrix, which is called learnt transition probability matrix. Although the performance is significantly promoted, salient objects are not uniformly highlighted very well. To solve this problem, an angular embedding technique is investigated to refine the saliency results. Based on pairwise local orderings, which are produced by the saliency maps of AMC and boundary maps, we rearrange the global orderings (saliency value) of all nodes. Extensive experiments demonstrate that the proposed algorithm outperforms the state-of-the-art methods on six publicly available benchmark data sets.

  3. Assessing the Progress and the Underlying Nature of the Flows of Doctoral and Master Degree Candidates Using Absorbing Markov Chains

    ERIC Educational Resources Information Center

    Nicholls, Miles G.

    2007-01-01

    In this paper, absorbing markov chains are used to analyse the flows of higher degree by research candidates (doctoral and master) within an Australian faculty of business. The candidates are analysed according to whether they are full time or part time. The need for such analysis stemmed from what appeared to be a rather poor completion rate (as…

  4. Conceptual design of quadriso particles with europium burnable absorber in HTRS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, A.; Nuclear Engineering Division

    2010-05-18

    In High Temperature Reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this study QUADRISO particles are proposed to manage the initial xcess reactivity of High Temperature Reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This echanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the nitialmore » excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, ore eutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic High Temperature Reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.« less

  5. Investigation on a mechanical vibration absorber with tunable piecewise-linear stiffness

    NASA Astrophysics Data System (ADS)

    Shui, Xin; Wang, Shimin

    2018-02-01

    The design and characterization of a mechanical vibration absorber are addressed. A distinctive feature of the absorber is its tunable piecewise-linear stiffness, which is realized by means of a slider with two stop-blocks installed constraining the bilateral deflections of the elastic support. A new analytical approach named as the equivalent stiffness technique (EST) is introduced and then employed to obtain the analytical relations of the frequency, amplitude and phase with a view to exhibit a more comprehensive characterization of the absorber. Experiments are conducted to demonstrate the feasibility of the design. The experimental data show good agreement with the analytical results. The final results indicate that the tunable stiffness absorber (TSA) possesses a typical nonlinear characteristic at each given position of the slider, and its stiffness can be tuned in real time over a wide range by adjusting the slider position. Hence the TSA has a large optimum vibration-absorption range together with a wide suppression band around each optimal position, which contributes to its excellent capacity of vibration absorption.

  6. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers

    PubMed Central

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-01-01

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898

  7. High-performance terahertz wave absorbers made of silicon-based metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Sheng; Zhu, Jianfei; Jiang, Wei

    2015-08-17

    Electromagnetic (EM) wave absorbers with high efficiency in different frequency bands have been extensively investigated for various applications. In this paper, we propose an ultra-broadband and polarization-insensitive terahertz metamaterial absorber based on a patterned lossy silicon substrate. Experimentally, a large absorption efficiency more than 95% in a frequency range of 0.9–2.5 THz was obtained up to a wave incident angle as large as 70°. Much broader absorption bandwidth and excellent oblique incidence absorption performance are numerically demonstrated. The underlying mechanisms due to the combination of a waveguide cavity mode and impedance-matched diffraction are analyzed in terms of the field patternsmore » and the scattering features. The monolithic THz absorber proposed here may find important applications in EM energy harvesting systems such as THz barometer or biosensor.« less

  8. Modeling MgII Absorbers from SDSS Spectroscopic and Imaging Catalogs

    NASA Astrophysics Data System (ADS)

    Rimoldini, L. G.; Menard, B.; Nestor, D. B.; Rao, S. M.; Sheth, R. K.; Turnshek, D. A.; Zibetti, S.; Feather, S.; Quider, A.

    2005-12-01

    The detection of more than 14,000 MgII absorption doublets along the sight-lines to SDSS DR4 QSOs (pursued by Turnshek, Nestor, Rao, and collaborators) has produced the largest sample of MgII absorbers to date in the redshift interval 0.37 < z < 2.30. The statistical relation between galaxies and MgII systems is investigated by cross-correlating the spectroscopic MgII catalog with the SDSS imaging catalog of galaxies in the neighborhood of QSO sight-lines. A model for MgII absorbers is derived to account for the measured MgII rest equivalent width distribution and the absorbing galaxy properties (e.g., luminosity, impact parameter, and morphological type). Some preliminary results of our analysis are presented. This work was supported in part by the National Science Foundation. L.G.R. acknowledges further support from the Z. Daniel's Predoctoral Fellowship.

  9. Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings.

    PubMed

    Grande, M; Vincenti, M A; Stomeo, T; Bianco, G V; de Ceglia, D; Aközbek, N; Petruzzelli, V; Bruno, G; De Vittorio, M; Scalora, M; D'Orazio, A

    2014-12-15

    A one-dimensional dielectric grating, based on a simple geometry, is proposed and investigated to enhance light absorption in a monolayer graphene exploiting guided mode resonances. Numerical findings reveal that the optimized configuration is able to absorb up to 60% of the impinging light at normal incidence for both TE and TM polarizations resulting in a theoretical enhancement factor of about 26 with respect to the monolayer graphene absorption (≈2.3%). Experimental results confirm this behavior showing CVD graphene absorbance peaks up to about 40% over narrow bands of a few nanometers. The simple and flexible design points to a way to realize innovative, scalable and easy-to-fabricate graphene-based optical absorbers.

  10. A black body absorber from vertically aligned single-walled carbon nanotubes

    PubMed Central

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  11. Multiple-Path-Length Optical Absorbance Cell

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,

  12. X-ray Absorbers as Probes of AGN Unification

    NASA Astrophysics Data System (ADS)

    Kazannas, Demosthenes

    We have developed, over the past few years, models of photoionized MHD winds off black hole accretion disks and showed that their properties are consistent with those of the AGN warm absorbers and those of the tori invoked in AGN unification schemes. Furthermore, we have shown that these models are sufficiently robust to reproduce the absorber properties (UV and X-ray) in AGN classes as diverse as Seyferts and BAL QSOs.With this proposal we request funding to model archival spectroscopic data of eighteen AGN with photoionized MHD winds. Successful implementation of this program will provide for the first time an association of the properties of warm absorbers with the parameters of a well-defined physical model, namely their density profiles, mass fluxes and inclination angles. Furthermore, determination of these parameters for our AGN sample will allow a statistical analysis of their properties and, as such, a better understanding of the properties of AGN structure. The value of our models lies in their simplicity: the winds are essentially analytic with only a small number of parameters. This simplicity makes possible the generation of a large grid of models which will be made available to the community through XSPEC/mtable for analysis of similar data by the observers.

  13. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    PubMed

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  14. Evaluation of asphalt rubber stress-absorbing membrane.

    DOT National Transportation Integrated Search

    1997-01-01

    This report describes the construction and evaluation of a stress-absorbing membrane (SAM) using a liquid asphalt binder containing ground tire rubber. Approximately 10 lane-km of SAM and 4 lane-km of control surface treatment for comparison were con...

  15. Simulating Carbon Flux Dynamics with the Product of PAR Absorbed by Chlorophyll (fAPARchl)

    NASA Astrophysics Data System (ADS)

    Yao, T.; Zhang, Q.

    2016-12-01

    A common way to estimate the gross primary production (GPP) is to use the fraction of photosynthetically radiation (PAR) absorbed by vegetation (FPAR). However, only the PAR absorbed by chlorophyll of the canopy, not the PAR absorbed by the foliage or by the entire canopy, is used for photosynthesis. MODIS fAPARchl product, which refers to the fraction of PAR absorbed by chlorophyll of the canopy, is derived from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance by using an advanced leaf-canopy-soil-water-snow coupled radiative transfer model PROSAIL4. PROSAIL4 can retrieve surface water cover fraction, snow cover fraction, and physiologically active canopy chemistry components (chlorophyll concentration and water content), fraction of photosynthetically active radiation (PAR) absorbed by a canopy (fAPARcanopy), fraction of PAR absorbed by photosynthetic vegetation (PV) component (mainly chlorophyll) throughout the canopy (fAPARPV, i.e., fAPARchl) and fraction of PAR absorbed by non-photosynthetic vegetation (NPV) component of the canopy (fAPARNPV). We have successfully retrieved these vegetation parameters for selected areas with PROSAIL4 and the MODIS images, or simulated spectrally MODIS-like images. In this study, the product of PAR absorbed by chlorophyll (fAPARchl) has been used to simulate carbon flux over different kinds of vegetation types. The results show that MODIS fAPARchl product has the ability to better characterize phenology than current phenology model in the Community Land Model and it also will likely be able to increase the accuracy of carbon fluxes simulations.

  16. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers.

    PubMed

    Siddique, Radwanul H; Donie, Yidenekachew J; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik

    2017-10-01

    The wings of the black butterfly, Pachliopta aristolochiae , are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells.

  17. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers

    PubMed Central

    Siddique, Radwanul H.; Donie, Yidenekachew J.; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik

    2017-01-01

    The wings of the black butterfly, Pachliopta aristolochiae, are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells. PMID:29057320

  18. Monte Carlo Simulation of Massive Absorbers for Cryogenic Calorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, D.; Asai, M.; Brink, P.L.

    There is a growing interest in cryogenic calorimeters with macroscopic absorbers for applications such as dark matter direct detection and rare event search experiments. The physics of energy transport in calorimeters with absorber masses exceeding several grams is made complex by the anisotropic nature of the absorber crystals as well as the changing mean free paths as phonons decay to progressively lower energies. We present a Monte Carlo model capable of simulating anisotropic phonon transport in cryogenic crystals. We have initiated the validation process and discuss the level of agreement between our simulation and experimental results reported in the literature,more » focusing on heat pulse propagation in germanium. The simulation framework is implemented using Geant4, a toolkit originally developed for high-energy physics Monte Carlo simulations. Geant4 has also been used for nuclear and accelerator physics, and applications in medical and space sciences. We believe that our current work may open up new avenues for applications in material science and condensed matter physics.« less

  19. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    PubMed

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Innovative energy absorbing devices based on composite tubes

    NASA Astrophysics Data System (ADS)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  1. The development of national quality performance standards for disposable absorbent products for adult incontinence.

    PubMed

    Muller, Nancy; McInnis, Elaine

    2013-09-01

    Disposable absorbent products are widely used in inpatient care settings and in the community to manage adult urinary and fecal incontinence, but few product standards exist to help guide their production or optimal use. Increasing costs and reduced revenues have caused a number of states to evaluate absorbent product use among persons who receive care at home with the assistance of the Medicaid Waiver Program, further increasing concerns about the lack of product performance standards. To address these issues, the National Association For Continence (NAFC) formed a council of experts and key stakeholders with the objective of establishing national, independent quality performance standards for disposable absorbent products provided by states to Waiver Program recipients. The Council consisted of representatives from five purposefully selected states, technical directors from six nonwoven product manufacturers, an officer of the nonwoven manufactures trade association, a delegate from an academic nursing program and professional societies, a family caregiver, and a patient representative. Following a consensus method and guidelines for use, nine specific recommendations were developed, posted for public comment, and further refined. Final recommendations for product performance assessment include: rewet rate (a measure of a product's ability to withstand multiple incontinent episodes between changes), rate of acquisition (a measure of the speed at which urine is drawn away from the skin by a product, product retention capacity (a measure of a product's capacity to hold fluid without rewetting the skin), sizing options, absorbency levels, product safety, closure technology, breathable zones (a measure of the air permeability across a textile-like fabric at a controlled differential pressure), and elasticity. The Council also set values for and recommended four quantifiable parameters, and the testing methodology associated with each, to help consumers and states

  2. Development of absorbing aerosol index simulator based on TM5-M7

    NASA Astrophysics Data System (ADS)

    Sun, Jiyunting; van Velthoven, Peter; Veefkind, Pepijn

    2017-04-01

    Aerosols alter the Earth's radiation budget directly by scattering and absorbing solar and thermal radiation, or indirectly by perturbing clouds formation and lifetime. These mechanisms offset the positive radiative forcing ascribed to greenhouse gases. In particular, absorbing aerosols such as black carbon and dust strongly enhance global warming. To quantify the impact of absorbing aerosol on global radiative forcing is challenging. In spite of wide spatial and temporal coverage space-borne instruments (we will use the Ozone Monitoring Instrument, OMI) are unable to derive complete information on aerosol distribution, composition, etc. The retrieval of aerosol optical properties also partly depends on additional information derived from other measurements or global atmospheric chemistry models. Common quantities of great interest presenting the amount of absorbing aerosol are AAOD (absorbing aerosol optical depth), the extinction due to absorption of aerosols under cloud free conditions; and AAI (absorbing aerosol index), a measure of aerosol absorption more directly derivable from UV band observations than AAOD. When comparing model simulations and satellite observations, resemblance is good in terms of the spatial distribution of both parameters. However, the quantitative discrepancy is considerable, indicating possible underestimates of simulated AAI by a factor of 2 to 3. Our research, hence, has started by evaluating to what extent aerosol models, such as our TM5-M7 model, represent the satellite measurements and by identifying the reasons for discrepancies. As a next step a transparent methodology for the comparison between model simulations and satellite observations is under development in the form of an AAI simulator based on TM5-M7.

  3. Research on temperature characteristics of laser energy meter absorber irradiated by ms magnitude long pulse laser

    NASA Astrophysics Data System (ADS)

    Li, Nan; Qiao, Chunhong; Fan, Chengyu; Zhang, Jinghui; Yang, Gaochao

    2017-10-01

    The research on temperature characteristics for large-energy laser energy meter absorber is about continuous wave (CW) laser before. For the measuring requirements of millisecond magnitude long pulse laser energy, the temperature characteristics for absorber are numerically calculated and analyzed. In calculation, the temperature field distributions are described by heat conduction equations, and the metal cylinder cavity is used for absorber model. The results show that, the temperature of absorber inwall appears periodic oscillation with pulse structure, the oscillation period and amplitude respectively relate to the pulse repetition frequency and single pulse energy. With the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and rises gradually with time. The factors to affect the temperature rise of absorber are single pulse energy, pulse width and repetition frequency. When the laser irradiation stops, the temperature between absorber inwall and outerwall will reach agreement rapidly. After special technology processing to enhance the capacity of resisting laser damage for absorber inwall, the ms magnitude long pulse laser energy can be obtained with the method of measuring the temperature of absorber outerwall. Meanwhile, by optimization design of absorber structure, when the repetition frequency of ms magnitude pulse laser is less than 10Hz, the energy of every pulse for low repetition frequency pulse sequence can be measured. The work offers valuable references for the design of ms magnitude large-energy pulse laser energy meter.

  4. Moving body velocity arresting line. [stainless steel cables with energy absorbing sleeves

    NASA Technical Reports Server (NTRS)

    Hull, R. A. (Inventor)

    1981-01-01

    The arresting of a moving body is improved through the use of steel cables that elongate to absorb the kinetic energy of the body. A sleeve surrounds the cables, protecting them from chafing and providing a failsafe energy absorbing system should the cables fail.

  5. Absorbing phase transitions in deterministic fixed-energy sandpile models

    NASA Astrophysics Data System (ADS)

    Park, Su-Chan

    2018-03-01

    We investigate the origin of the difference, which was noticed by Fey et al. [Phys. Rev. Lett. 104, 145703 (2010), 10.1103/PhysRevLett.104.145703], between the steady state density of an Abelian sandpile model (ASM) and the transition point of its corresponding deterministic fixed-energy sandpile model (DFES). Being deterministic, the configuration space of a DFES can be divided into two disjoint classes such that every configuration in one class should evolve into one of absorbing states, whereas no configurations in the other class can reach an absorbing state. Since the two classes are separated in terms of toppling dynamics, the system can be made to exhibit an absorbing phase transition (APT) at various points that depend on the initial probability distribution of the configurations. Furthermore, we show that in general the transition point also depends on whether an infinite-size limit is taken before or after the infinite-time limit. To demonstrate, we numerically study the two-dimensional DFES with Bak-Tang-Wiesenfeld toppling rule (BTW-FES). We confirm that there are indeed many thresholds. Nonetheless, the critical phenomena at various transition points are found to be universal. We furthermore discuss a microscopic absorbing phase transition, or a so-called spreading dynamics, of the BTW-FES, to find that the phase transition in this setting is related to the dynamical isotropic percolation process rather than self-organized criticality. In particular, we argue that choosing recurrent configurations of the corresponding ASM as an initial configuration does not allow for a nontrivial APT in the DFES.

  6. Absorbing phase transitions in deterministic fixed-energy sandpile models.

    PubMed

    Park, Su-Chan

    2018-03-01

    We investigate the origin of the difference, which was noticed by Fey et al. [Phys. Rev. Lett. 104, 145703 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.145703], between the steady state density of an Abelian sandpile model (ASM) and the transition point of its corresponding deterministic fixed-energy sandpile model (DFES). Being deterministic, the configuration space of a DFES can be divided into two disjoint classes such that every configuration in one class should evolve into one of absorbing states, whereas no configurations in the other class can reach an absorbing state. Since the two classes are separated in terms of toppling dynamics, the system can be made to exhibit an absorbing phase transition (APT) at various points that depend on the initial probability distribution of the configurations. Furthermore, we show that in general the transition point also depends on whether an infinite-size limit is taken before or after the infinite-time limit. To demonstrate, we numerically study the two-dimensional DFES with Bak-Tang-Wiesenfeld toppling rule (BTW-FES). We confirm that there are indeed many thresholds. Nonetheless, the critical phenomena at various transition points are found to be universal. We furthermore discuss a microscopic absorbing phase transition, or a so-called spreading dynamics, of the BTW-FES, to find that the phase transition in this setting is related to the dynamical isotropic percolation process rather than self-organized criticality. In particular, we argue that choosing recurrent configurations of the corresponding ASM as an initial configuration does not allow for a nontrivial APT in the DFES.

  7. Metamaterial absorber for molecular detection and identification (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuo

    2017-03-01

    Metamaterial absorber was used for a background-suppressed surface-enhanced molecular detection technique. By utilizing the resonant coupling between plasmonic modes of a metamaterial absorber and infrared (IR) vibrational modes of a self-assembled monolayer (SAM), attomole level molecular sensitivity was experimentally demonstrated. IR absorption spectroscopy of molecular vibrations is of importance in chemical, material, medical science and so on, since it provides essential information of the molecular structure, composition, and orientation. In the vibrational spectroscopic techniques, in addition to the weak signals from the molecules, strong background degrades the signal-to-noise ratio, and suppression of the background is crucial for the further improvement of the sensitivity. Here, we demonstrate low-background resonant Surface enhanced IR absorption (SEIRA) by using the metamaterial IR absorber that offers significant background suppression as well as plasmonic enhancement. By using mask-less laser lithography technique, metamaterial absorber which consisted of 1D array of Au micro-ribbons on a thick Au film separated by a transparent gap layer made of MgF2 was fabricated. This metamaterial structure was designed to exhibit an anomalous IR absorption at 3000 cm-1, which spectrally overlapped with C-H stretching vibrational modes. 16-Mercaptohexadecanoic acid (16-MHDA) was used as a test molecule, which formed a 2-nm thick SAM with their thiol head-group chemisorbed on the Au surface. In the FTIR measurements, the symmetric and asymmetric C-H stretching modes were clearly observed as reflection peaks within a broad plasmonic absorption of the metamaterial, and 1.8 attomole molecular sensitivity was experimentally demonstrated.

  8. Comparison of microdosimetry-based absorbed doses to control tumours and clinically obtained tumour absorbed doses in treatments with 223Ra.

    PubMed

    Minguez Gabina, Pablo; Roeske, John C; Mínguez, Ricardo; Gomez de Iturriaga, Alfonso; Rodeño, Emilia

    2018-06-20

    We performed Monte Carlo simulations in order to determine by means of microdosimetry calculations the average number of hits to the cell nucleus required to reach a tumour control probability (TCP) of 0.9, 〈n<sub>0.9</sub> 〉, for the source geometry of a nucleus embedded in a homogeneous distribution of <sup>223</sup>Ra atoms. From the results obtained and following the MIRD methodology, we determined the values of lesion absorbed doses needed to reach a TCP of 0.9, D<sub>0.9</sub>, for different values of mass density, cell radiosensitivity, nucleus radius and lesion volume. The greatest variation of those absorbed doses occurred with cell radiosensitivity and no dependence was found on mass density. The source geometry used was chosen because we aimed to compare the values of D<sub>0.9</sub> with the lesion absorbed doses obtained from image-based macrodosimetry in treatments of metastatic castration-resistant prostate cancer with <sup>223</sup>Ra which were obtained assuming a homogeneous distribution of <sup>223</sup>Ra atoms within the lesion. In a comparison with a study including 29 lesions, results showed that even for the case of the most radiosensitive cells simulated, 45% of the lesions treated following a schedule of two cycles of 110 kBq/kg body mass would receive absorbed doses below the values of D<sub>0.9</sub> determined in this study. © 2018 Institute of Physics and Engineering in Medicine.

  9. III-V semiconductor resonators: A new strategy for broadband light perfect absorbers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoshan; Chen, Jian; Liu, Jiasong; Huang, Zhenping; Yu, Meidong; Pan, Pingping; Liu, Zhengqi

    2017-11-01

    Broadband light perfect absorbers (BPAs) are desirable for applications in numerous optoelectronics devices. In this work, a semiconductor-based broadband light perfect absorber (S-BPA) has been numerically demonstrated by utilizing plasmonlike resonances of high-index semiconductor resonators. A maximal absorption of 99.7% is observed in the near-infrared region. By taking the absorption above 80% into account, the spectral bandwidth reaches 340 nm. The absorption properties mainly originate from the optical cavity modes induced by the cylinder resonators and ultrathin semiconductor film. These optical properties and simple structural features can maintain the absorber platform with wide applications in semiconductor optoelectronics.

  10. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer.

    PubMed

    Jung, Joo-Yun; Song, Kyungjun; Choi, Jun-Hyuk; Lee, Jihye; Choi, Dae-Geun; Jeong, Jun-Ho; Neikirk, Dean P

    2017-03-27

    We demonstrate an infrared broadband metasurface absorber that is suitable for increasing the response speed of a microbolometer by reducing its thermal mass. A large fraction of holes are made in a periodic pattern on a thin lossy metal layer characterised with a non-dispersive effective surface impedance. This can be used as a non-resonant metasurface that can be integrated with a Salisbury screen absorber to construct an absorbing membrane for a microbolometer that can significantly reduce the thermal mass while maintaining high infrared broadband absorption in the long wavelength infrared (LWIR) band. The non-dispersive effective surface impedance can be matched to the free space by optimising the surface resistance of the thin lossy metal layer depending on the size of the patterned holes by using a dc approximation method. In experiments a high broadband absorption was maintained even when the fill factor of the absorbing area was reduced to 28% (hole area: 72%), and it was theoretically maintained even when the fill factor of the absorbing area was reduced to 19% (hole area: 81%). Therefore, a metasurface with a non-dispersive effective surface impedance is a promising solution for reducing the thermal mass of infrared microbolometer pixels.

  11. Skin Health Connected to the Use of Absorbent Hygiene Products: A Review.

    PubMed

    Bender, Johanna Karlsson; Faergemann, Jan; Sköld, Maria

    2017-09-01

    Over the past 50 years, absorbent hygiene products such as baby diapers and incontinence products have become essential features of modern day life. Through innovation and enhanced technology, their design, composition and performance have been dramatically upgraded from their early forms, and they have transformed the lives of millions of people, improving their quality of life. Skin health related to the use of absorbent hygiene products has accordingly also greatly improved. Still, the wearing of absorbent hygiene products will affect the skin, and for some users the changes in microclimate, mechanical interactions and the exposure to urine and faeces may result in irritant contact dermatitis, i.e. diaper dermatitis (DD) or incontinence-associated dermatitis (IAD). Babies with developing skin and the elderly with deteriorating skin functions who are the most frequent users of absorbent hygiene products are more vulnerable to the causal factors. Although irritant reactions are the most common, allergic contact dermatitis should be considered if a DD/IAD fails to improve by recommended actions. There is also a connection between IAD and pressure ulcer development of which it is important to be aware. A holistic approach of using high-quality absorbent hygiene products in combination with appropriate skin care will help maintaining good skin health.

  12. Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Dong; Liu, Ming-Hai; Hu, Xi-Wei; Kong, Ling-Hua; Cheng, Li-Li; Chen, Zhao-Quan

    2014-01-01

    The influence of the gap on the absorption performance of the conventional split ring resonator (SRR) absorber is investigated at microwave frequencies. Our simulated results reveal that the geometry of the square SRR can be equivalent to a Jerusalem cross (JC) resonator and its corresponding metamaterial absorber (MA) is changed to a JC absorber. The JC MA exhibits an experimental absorption peak of 99.1% at 8.72 GHz, which shows an excellent agreement with our simulated results. By simply assembling several JCs with slightly different geometric parameters next to each other into a unit cell, a perfect multi-band absorption can be effectively obtained. The experimental results show that the MA has four distinct and strong absorption peaks at 8.32 GHz, 9.8 GHz, 11.52 GHz and 13.24 GHz. Finally, the multi-reflection interference theory is introduced to interpret the absorption mechanism.

  13. Shock absorber protects motive components against overloads

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Shock absorber with an output shaft, hollow gear, and a pair of springs forming a resilient driving connection between shaft and gear, operates when abnormally high torques are applied. This simple durable frictional device is valuable in rotating mechanisms subject to sudden overloads.

  14. Absorbance and light scattering of lenses organ cultured with glucose.

    PubMed

    Alghamdi, Ali Hendi Sahmi; Mohamed, Hasabelrasoul; Sledge, Samiyyah M; Borchman, Douglas

    2018-06-06

    Purpose/Aim: Diabetes is one of the major factors related to cataract. Our aim was to determine if the attenuation of light through glucose treated lenses was due to light scattering from structural changes or absorbance from metabolic changes. Human and rat lenses were cultured in a medium with and without 55 mM glucose for a period of five days. Absorbance and light scattering were measured using a ultraviolet spectrometer. Aldose reductase and catalase activity, RAGE, and glutathione were measured using classical assays. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes. Glucose treatment caused three absorbance band to appear at 484, 540 to 644 and 657 nm in both the rat and human lens. The optimum time point for equilibration of human lenses was found to be between 2 and 3 days in organ culture. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. Since the levels of glutathione, catalase and aldose reductase were reduced in glucose treated rat lenses compared with untreated lenses, glucose may have caused oxidative stress on the rat lens. The absorbance and light scattering of glucose treated lenses in organ culture were quantitated for the first time which could be important for future studies designed to test the efficacy of agents to ameliorate the opacity. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes and not absorbance from metabolic changes. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. The lens model employed could be used to study the efficacy of agents that potentially ameliorate lens opacity.

  15. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  16. Ultraviolet light absorbers having two different chromophors in the same molecule

    DOEpatents

    Vogl, O.; Li, S.

    1983-10-06

    This invention relates to novel ultraviolet light absorbers having two chromophors in the same molecule, and more particularly to benzotriazole substituted dihydroxybenzophenones and acetophenones. More particularly, this invention relates to 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxybenzophenone and 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxyacetophenone which are particularly useful as an ultraviolet light absorbers.

  17. Boron cage compound materials and composites for shielding and absorbing neutrons

    DOEpatents

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-03-04

    Boron cage compound-containing materials for shielding and absorbing neutrons. The materials include BCC-containing composites and compounds. BCC-containing compounds comprise a host polymer and a BCC attached thereto. BCC-containing composites comprise a mixture of a polymer matrix and a BCC filler. The BCC-containing materials can be used to form numerous articles of manufacture for shielding and absorbing neutrons.

  18. Modelling of TES X-ray Microcalorimeters with a Novel Absorber Design

    NASA Technical Reports Server (NTRS)

    Iyomoto, Naoko; Bandler, Simon; Brefosky, Regis; Brown, Ari; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Lindeman, Mark; hide

    2007-01-01

    Our development of a novel x-ray absorber design that has enabled the incorporation of high-conductivity electroplated gold into our absorbers has yielded devices that not only have achieved breakthrough performance at 6 keV, but also are extraordinarily well modelled. We have determined device parameters that reproduce complex impedance curves and noise spectra throughout transition. Observed pulse heights, decay time and baseline energy resolution were in good agreement with simulated results using the same parameters. In the presentation, we will show these results in detail and we will also show highlights of the characterization of our gold/bismuth-absorber devices. We will discuss possible improvement of our current devices and expected performance of future devices using the modelling results.

  19. Smart absorbing property of composites with MWCNTs and carbonyl iron as the filler

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Cai, Jun; Zhang, Deyuan

    2013-10-01

    A smart absorbing composite was prepared by mixing silicone rubber, multi-walled carbon nanotubes (MWCNTs) and flaky carbonyl iron particles (CIPs) in a two-roll mixer. The complex permittivity and permeability of composites with variable compression strain was measured by the transmission method and dc electric conductivity was measured by the standard four-point contact method, then the reflection loss (RL) could be calculated to evaluate the microwave absorbing ability. The results showed that the applied compression strain made the complex permittivity decrease but not obviously due to the broken original conductive network. The enforcement of the strain on the complex permeability was attributed to the orientation of flaky CIPs. With the compressing strain applied on the composites with thickness 1 mm or 1.5 mm, the RL value decreased (minimum -13.2 dB and -25.1 dB) and the absorbing band (RL<-10 dB) was widened (5.2-10.6 GHz and 4.0-8.4 GHz). While as the composite thickness decreased caused by the compression strain, the RL value still decreased (minimum -12.4 dB and -18.6 dB) and the absorbing band was also broadened (6.5-10.7 GHz and 4.4-10.0 GHz). Thus the smart absorbing property was effective on preparing absorbers with wide absorption band and high absorption ratio.

  20. Quantifying and correcting the impacts of freezing samples on dissolved organic matter absorbance

    NASA Astrophysics Data System (ADS)

    Griffin, C. G.; McClelland, J. W.; Frey, K. E.; Holmes, R. M.

    2012-12-01

    The use of optical measurements as proxies for organic matter concentration and composition has become increasingly popular in recent years. Absorbance of chromophoric dissolved organic matter (CDOM) can be used to estimate concentrations of dissolved organic carbon (DOC), as a qualitative assessment of dissolved organic matter (DOM) average molecular weight and is often used to calibrate satellite remote sensing of organic matter. However, there is evidence that preservation of samples can lead to significant changes in CDOM absorbance spectra. Freezing is a popular means of preservation, but can result in flocculation of DOM when samples are thawed for analysis. We hypothesize that the particles generated as a result of a freeze/thaw cycle lead to increasing absorption in visible wavelengths (400-800 nm). Yet, absorbance in the UV spectra should remain similar to original values. These hypotheses are tested on CDOM spectra collected from two large Arctic watersheds (the Mackenzie and Yukon rivers) and four smaller Texas watersheds (the Colorado, Guadalupe, Nueces and San Antonio rivers). In addition, we experiment with additional filtering and sonication to correct for flocculation from frozen samples. Preliminary data show that short wavelengths are relatively well preserved (200-300 nm). However, CDOM absorption changes unpredictably from 350-450 nm, the wavelengths most commonly used to estimate DOC. Absorption coefficients tend to be higher in these wavelengths after a freeze/thaw cycle, but the magnitude of this increase varies. Some of these impacts can be corrected for with sonication. For instance, when comparing experimental treatments to initial absorption at 365 nm from Mackenzie River samples, R2 increases from 0.60 to 0.79 for samples undergoing one freeze/thaw cycle to those that were also sonicated. Regardless of treatment, however, no spectral slopes were well preserved after a freeze/thaw cycle. These results reinforce earlier work that it is

  1. Characteristics and issues of an EUVL mask applying phase-shifting thinner absorber for device fabrication

    NASA Astrophysics Data System (ADS)

    Seo, Hwan-Seok; Lee, Dong-Gun; Ahn, Byung-Sup; Han, Hakseung; Huh, Sungmin; Kang, In-Yong; Kim, Hoon; Kim, Dongwan; Kim, Seong-Sue; Cho, Han-Ku

    2009-03-01

    Phase-shifting EUVL masks applying thinner absorber are investigated to design optimum mask structure with less shadowing problems. Simulations using S-Litho show that H-V bias in Si capping structure is higher than that of Ru capping since the high n (= 0.999) of Si increases sensible absorber height. Phase differences obtained from the patterned masks using the EUV CSM are well-matched with the calculated values using the practical refractive index of absorber materials. Although the mask with 62.4-nm-thick absorber, among the in-house masks, shows the closest phase ΔΦ(= 176°) to the out-of-phase condition, higher NILS and contrast as well as lower H-V bias are obtained with 52.4-nm-thick absorber (ΔΦ = 151°) which has higher R/R0 ratio. MET results also show that lithography performances including MEEF, PW, and resist threshold (dose), are improved with thinner absorber structure. However, low OD in EUVL mask, especially in thinner absorber structure, results in light leakage from the neighboring exposure shots, and thus an appropriate light-shielding layer should be introduced.

  2. Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials.

    PubMed

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2015-01-01

    Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Liposomogenic UV Absorbers are Water-Resistant on Pig Skin-A Model Study With Relevance for Sunscreens.

    PubMed

    Herzog, Bernd; Hüglin, Dietmar; Luther, Helmut

    2017-02-01

    An important property of sunscreens is their water resistance after the application on human skin. In this work, the hypothesis that UV absorber molecules which are able to form liposomes, so-called liposomogenic UV absorbers, show better water resistance on a pig skin model than UV-absorbing molecules lacking this ability was tested. The assumption behind is that molecules which can form liposomes are able to integrate into the stratum corneum lipids of the skin. Three different liposomogenic UV absorbers were synthesized and their behavior investigated, leading to the confirmation of the hypothesis. With one of the liposomogenic UV absorbers, it was possible to show the integration of the UV absorber molecules into the bilayers of another liposome consisting of phosphatidylcholine, supporting the assumption that liposomogenic UV absorbers exhibit improved water resistance because they integrate into the skin lipids. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Automated Hybridization of X-ray Absorber Elements-A Path to Large Format Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, S.; Kelley, R.; Allen, C.; Kilbourne, C.; Costen, N.; Miller, T.

    2007-01-01

    In the design of microcalorimeters, it is often desirable to produce the X-ray absorber separately from the detector element. In this case, the attachment of the absorber to the detector element with the required thermal and mechanical characteristics is a major challenge. In such arrays, the attachment has been done by hand. This process is not easily extended to the large format arrays required for future X- ray astronomy missions such as the New x-ray Telescope or NeXT. In this paper we present an automated process for attaching absorber tiles to the surface of a large-scale X-ray detector array. The absorbers are attached with stycast epoxy to a thermally isolating polymer structure made of SU-8. SU-8 is a negative epoxy based photo resist produced by Microchem. We describe the fabrication of the X-ray absorbers and their suspension on a handle die in an adhesive matrix. We describe the production process for the polymer isolators on the detector elements. We have developed a new process for the alignment, and simultaneous bonding of the absorber tiles to an entire detector array. This process uses equipment and techniques used in the flip-chip bonding industry and approaches developed in the fabrication of the XRS-2 instrument. XRS-2 was an X-ray spectrometer that was launched on the Suzaku telescope in July 10, 2005. We describe the process and show examples of sample arrays produced by this process. Arrays with up to 300 elements have been bonded. The present tests have used dummy absorbers made of Si. In future work, we will demonstrate bonding of HgTe absorbers.

  5. Highly Absorbent Antibacterial Hemostatic Dressing for Healing Severe Hemorrhagic Wounds

    PubMed Central

    Li, Ting-Ting; Lou, Ching-Wen; Chen, An-Pang; Lee, Mong-Chuan; Ho, Tsing-Fen; Chen, Yueh-Sheng; Lin, Jia-Horng

    2016-01-01

    To accelerate healing of severe hemorrhagic wounds, a novel highly absorbent hemostatic dressing composed of a Tencel®/absorbent-cotton/polylactic acid nonwoven base and chitosan/nanosilver antibacterial agent was fabricated by using a nonwoven processing technique and a freeze-drying technique. This study is the first to investigate the wicking and water-absorbing properties of a nonwoven base by measuring the vertical wicking height and water absorption ratio. Moreover, blood agglutination and hemostatic second tests were conducted to evaluate the hemostatic performance of the resultant wound dressing. The blending ratio of fibers, areal weight, punching density, and fiber orientation, all significantly influenced the vertical moisture wicking property. However, only the first two parameters markedly affected the water absorption ratio. After the nonwoven base absorbed blood, scanning electron microscope (SEM) observation showed that erythrocytes were trapped between the fibrin/clot network and nonwoven fibers when coagulation pathways were activated. Prothrombin time (PT) and activated partial thromboplastin time (APTT) blood agglutination of the resultant dressing decreased to 14.34 and 50.94 s, respectively. In the femoral artery of the rate bleeding model, hemostatic time was saved by 87.2% compared with that of cotton cloth. Therefore, the resultant antibacterial wound dressing demonstrated greater water and blood absorption, as well as hemostatic performance, than the commercially available cotton cloth, especially for healing severe hemorrhagic wounds. PMID:28773912

  6. In vitro evaluation of clot capture efficiency of an absorbable vena cava filter.

    PubMed

    Dria, Stephen J; Eggers, Mitchell D

    2016-10-01

    The purpose of this study was to determine the in vitro clot capture efficiency (CCE) of an investigational absorbable inferior vena cava filter (IVCF) vs the Greenfield IVCF. Investigational absorbable and Greenfield filters were challenged with polyacrylamide clot surrogates ranging from 3 × 5 to 10 × 24 mm (diameter × length) in a flow loop simulating the venous system. Filters were challenged with clots until CCE standard error of 5% or less was achieved under binomial statistics. Pressure gradients across the filters were measured for the largest size clot, enabling calculation of forces on the filter. The in vitro CCE of the absorbable IVCF was statistically similar to that of the Greenfield filter for all clot sizes apart from the 3 × 10-mm clot, for which there was statistically significant difference between filter CCEs (absorbable filter, 59%; Greenfield filter, 31%; P = .0001). CCE ranged from an average 32% for the 3 × 5-mm clot to 100% for 7 × 10-mm and larger clots for the absorbable IVCF. Pressure gradient across the absorbable filter with 10 × 24-mm clot averaged 0.14 mm Hg, corresponding to a net force on the filter of 2.1 × 10(-3) N, compared with 0.39 mm Hg or 5.8 × 10(-3) N (P < .001) for the Greenfield filter. CCE of the absorbable filter was statistically similar to or an improvement on that of the Greenfield stainless steel filter for all clot sizes tested. CCE of the Greenfield filter in this study aligned with data from previous studies. Given the efficacy of the Greenfield filter in attenuating the risk of pulmonary embolism, the current study suggests that the absorbable filter may be a viable candidate for subsequent human testing. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  7. Role of surface electromagnetic waves in metamaterial absorbers

    DOE PAGES

    Chen, Wen -Chen; Cardin, Andrew; Koirala, Machhindra; ...

    2016-03-18

    Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Furthermore, experimental results are supportedmore » by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.« less

  8. Laser pushing or pulling of absorbing airborne particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chuji, E-mail: cw175@msstate.edu; Gong, Zhiyong; Pan, Yong-Le

    2016-07-04

    A single absorbing particle formed by carbon nanotubes in the size range of 10–50 μm is trapped in air by a laser trapping beam and concurrently illuminated by another laser manipulating beam. When the trapping beam is terminated, the movement of the particle controlled by the manipulating beam is investigated. We report our observations of light-controlled pushing and pulling motions. We show that the movement direction has little relationship with the particle size and manipulating beam's parameters but is dominated by the particle's orientation and morphology. With this observation, the controllable optical manipulation is now able to be generalized to arbitrarymore » particles, including irregularly shaped absorbing particles that are shown in this work.« less

  9. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocer, Hasan; Department of Electrical Engineering, Turkish Military Academy, 06654 Ankara; Butun, Serkan

    2015-04-20

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20%more » and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68 °C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.« less

  10. Preparation and characterization of functional poly(vinylidene fluoride) (PVDF) membranes with ultraviolet-absorbing property

    NASA Astrophysics Data System (ADS)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Lin, Changhong; Zhou, Yan; Yang, Yuming

    2018-06-01

    We first reported a strategy to prepare functional poly(vinylidene fluoride) (PVDF) membranes with excellent ultraviolet-absorbing property through chemically induced grafting. Herein, the polymerizable ultraviolet (UV) absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) made by ourselves was grafted onto the PVDF chains that have been pretreated with tetraethylammonium hydroxide (TEAH) alkaline solution. Moreover, the effect of experiment conditions such as the alkali and monomer concentrations, alkali treatment time on the UV-absorbing property of the obtained PVDF-g-PBPMA membranes were studied in detail. The chemical structure of the modified membranes was confirmed by 1H NMR, FT-IR and XPS measurements. Meanwhile, the thermal and UV-absorbing properties were characterized by TGA, DSC and UV-Vis spectrophotometer, respectively. The results indicated that BPMA side chains were successfully introduced onto PVDF backbones. Most importantly, the obtained PVDF-g-PBPMA membranes exhibited excellent UV-absorbing property. The transmittance of UV light at 300 nm decreased to as low as 0.02% and the UV light below 388 nm could be completely absorbed by the PVDF-g-PBPMA membrane made under optimal condition.

  11. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation

    NASA Astrophysics Data System (ADS)

    Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong

    2016-11-01

    This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.

  12. A Unified View of X-ray Absorbers in AGNs and XRBs with MHD Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Behar, Ehud; Contopoulos, John

    2016-01-01

    The presence of UV and X-ray absorbers (aka. warm absorbers or WAs) has been long known for decades from extensive spectroscopic studies across diverse AGN populations such as nearby Seyfert galaxies and distant quasars. Furthermore, another class of seemingly distinct type of absorbers, ultra-fast outflows or UFOs, is becoming increasingly known today. Nonetheless, a physical identification of such absorbers, such as geometrical property and physical conditions, is very elusive to date despite the recent state-of-the-art observations. We develop a coherent scenario in which the detected absorbers are driven primarily (if not exclusively) by the action of global magnetic fields originating from a black hole accretion disk. In the context of MHD disk-wind of density profile of n~1/r, it is found that the properties of the observed WAs/UFOs are successfully described assuming a characteristic SED. As a case study, we analyze PG1211+143 and GRO J1655-40 to demonstrate that our wind model can systematically unify apparently diverse absorbers in both AGNs and XRBs in terms of explaining their global behavior as well as individual spectral lines.

  13. Independent polarization and multi-band THz absorber base on Jerusalem cross

    NASA Astrophysics Data System (ADS)

    Arezoomand, Afsaneh Saee; Zarrabi, Ferdows B.; Heydari, Samaneh; Gandji, Navid P.

    2015-10-01

    In this paper, we present the design and simulation of a single and multi-band perfect metamaterial absorber (MA) in the THz region base on Jerusalem cross (JC) and metamaterial load in unit cells. The structures consist of dual metallic layers for allowing near-perfect absorption with absorption peak of more than 99%. In this novel design, four-different shape of Jerusalem cross is presented and by adding L, U and W shape loaded to first structure, we tried to achieve a dual-band absorber. In addition, by good implementation of these loaded, we are able to control the absorption resonance at second resonance at 0.9, 0.7 and 0.85 THz respectively. In the other hand, we achieved a semi stable designing at first resonance between 0.53 and 0.58 THz. The proposed absorber has broadband polarization angle. The surface current modeled and proved the broadband polarization angle at prototype MA. The LC resonance of the metamaterial for Jerusalem cross and modified structures are extracting from equivalent circuit. As a result, proposed MA is useful for THz medical imaging and communication systems and the dual-band absorber has applications in many scientific and technological areas.

  14. Novel shock absorber features varying yield strengths

    NASA Technical Reports Server (NTRS)

    Geier, D. J.

    1964-01-01

    A shock absorbent webbing of partially drawn synthetic strands is arranged in sections of varying density related to the varying mass of the human body. This is contoured to protect the body at points of contact, when subjected to large acceleration or deceleration forces.

  15. How to build a molecular shock absorber.

    PubMed

    McGough, A

    1999-12-02

    Newly determined structures of the alpha-helical repeats that make up the key 'rod' domains of spectrin and alpha-actinin - which serve as spacers between their actin-binding domains - have provided important insights into how these proteins function as molecular shock absorbers in cells.

  16. Parametric study on the performance of automotive MR shock absorbers

    NASA Astrophysics Data System (ADS)

    Gołdasz, J.; Dzierżek, S.

    2016-09-01

    The paper contains the results of a parametric study to explore the influence of various quantities on the performance range of semi-active automotive shock absorbers using the magnetorheological (MR) fluid under steady-state and transient excitations. The analysis was performed with simulated data and using a standard single-tube shock absorber configuration with a single-gap MR valve. Additionally, the impact of material variables and valves geometry was examined as the parameters were varied and its dynamic range studied.

  17. Absorbent properties of carboxymethylated fiber, hydroentangled nonwoven and regenerated cellulose: a comparative study

    USDA-ARS?s Scientific Manuscript database

    Commercially-available, bleached cotton fibers, rayon, and their hydroentangled counterparts were carboxymethylated to produce cellulosic products with increased absorbency. These cellulose materials were tested for absorbance, spectroscopic properties, degree of substitution and carding ability. Ca...

  18. The Nature of the UV/X-ray Absorber In PG 2302+029

    NASA Technical Reports Server (NTRS)

    Sabra, Bassem M.; Hamann, Fred; Jannuzi, Buell T.; George, Ian M.; Shields, Joseph C.

    2003-01-01

    We present Chandra X-ray observations of the radio-quiet QSO PG 2302+029. This quasar has a rare system of ultra-high velocity (-56,000 km s(exp -1) UV absorption lines that form in an outflow from the active nucleus. The Chandra data indicate that soft X-ray absorption is also present. We perform a joint UV and X-ray analysis, using photoionization calculations, to determine the nature of the absorbing gas. The UV and X-ray datasets were not obtained simultaneously. Nonetheless, our analysis suggests that the X-ray absorption occurs at high velocities in the same general region as the UV absorber. There are not enough constraints to rule out multi-zone models. In fact, the distinct broad and narrow UV line profiles clearly indicate that multiple zones are present. Our preferred estimates of the ionization and total column density in the X-ray absorber (logU = 1.6, N(sub eta) = 10(exp 22.4) cm (exp -2) over predict the O VI lambda lambda1032,1038 absorption unless the X-ray absorber is also outflowing at approximately 56,000 km s(exp-l), but they over predict the Ne VIII lambda lambda 770,780 absorption at all velocities. If we assume that the X-ray absorbing gas is outflowing at the same velocity of the UV-absorbing wind and that the wind is radiatively accelerated, then the outflow must be launched at a radius of less than or equal to 10(exp 15) cm from the central continuum source. The smallness of this radius casts doubts on the assumption of radiative acceleration.

  19. Microwave absorbance properties of zirconium–manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Kishwar, E-mail: kknano@hotmail.com; Rehman, Sarish

    2014-02-01

    Highlights: • Good candidates for EM materials with low reflectivity. • Good candidates for broad bandwidth at microwave frequency. • Microwave absorbing bandwidth was modulated simply by manipulating the Zr–Mn. • Higher the Zr–Mn content, the higher absorption rates for the electromagnetic radiation. • The predicted reflection loss shows that this can be used for thin ferrite absorber. - Abstract: Nanocrystalline Zr–Mn (x) substituted Co ferrite having chemical formula CoFe{sub 2−2x}Zr{sub x}Mn{sub x}O{sub 4} (x = 0.1–0.4) was prepared by co-precipitation technique. Combining properties such as structural, electrical, magnetic and reflection loss characteristics. Crystal structure and surface morphology of themore » calcined samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). By using two point probe homemade resistivity apparatus to find resistivity of the sample. Electromagnetic (EM) properties are measured through RF impedance/materials analyzer over 1 MHz–3 GHz. The room-temperature dielectric measurements show dispersion behavior with increasing frequency from 100 Hz to 3 MHz. Magnetic properties confirmed relatively strong dependence of saturation magnetization on Zr–Mn composition. Curie temperature is also found to decrease linearly with addition of Zr–Mn. Furthermore, comprehensive analysis of microwave reflection loss (RL) is carried out as a function of substitution, frequency, and thickness. Composition accompanying maximum microwave absorption is suggested.« less

  20. On the incidence of Mg II absorbers along the blazar sightlines

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Chand, H.; Krishna, Gopal-; Joshi, R.; Shchekinov, Y. A.; Fatkhullin, T. A.

    2018-02-01

    It is widely believed that the cool gas clouds traced by Mg II absorption, within a velocity offset of 5000 km s-1 relative to the background quasar are mostly associated with the quasar itself, whereas the absorbers seen at larger velocity offsets towards us are intervening absorber systems and hence their existence is completely independent of the background quasar. Recent evidence by Bergeron et al. (hereinafter BBM) has seriously questioned this paradigm, by showing that the number density of intervening Mg II absorbers towards the 45 blazars in their sample is nearly two times the expectation based on the Mg II absorption systems seen towards normal quasars (QSOs). Given its serious implications, it becomes important to revisit this finding, by enlarging the blazar sample and subjecting it to an independent analysis. Here, we first report the outcome of our re-analysis of the available spectroscopic data for the BBM sample itself. Our analysis of the BBM sample reproduces their claimed factor of 2 excess of dN/dz along blazar sightlines, vis-à-vis normal QSOs. We have also assembled an approxmately three times larger sample of blazars, albeit with moderately sensitive optical spectra. Using this sample together with the BBM sample, our analysis shows that the dN/dz of the Mg II absorbers statistically matches that known for normal QSO sightlines. Further, the analysis indicates that associated absorbers might be contributing significantly to the estimated dN/dz up to offset speeds Δv ∼ 0.2c relative to the blazar.