Science.gov

Sample records for absorbed dose optimization

  1. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease

    NASA Astrophysics Data System (ADS)

    Merrill, S.; Horowitz, J.; Traino, A. C.; Chipkin, S. R.; Hollot, C. V.; Chait, Y.

    2011-02-01

    Calculation of the therapeutic activity of radioiodine 131I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of 131I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent 131I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration 131I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.

  2. [Absorbed doses in dental radiology].

    PubMed

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk. PMID:8966249

  3. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  4. The MIRD method of estimating absorbed dose

    SciTech Connect

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine.

  5. On the definition of absorbed dose

    NASA Astrophysics Data System (ADS)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  6. Temporal, latitude and altitude absorbed dose dependences

    NASA Astrophysics Data System (ADS)

    Stozhkov, Y.; Svirzhevsky, N.; Bazilevskaya, G.

    The regular balloon measurements in the Earth's atmosphere are carried on at the Lebedev Physical Institute since 1957. The regular balloon flights have been made at the high latitude stations (near Murmansk - northern hemisphere and Mi ny -r Antarctica) and at the middle latitude (Moscow). Based on these long-term measurements as well as on the latitude data obtained in the several Soviet Antarctic expeditions the calculations of absorbed doses were fulfilled for altitudes of 10, 15, 20 and 30 km. The absorbed dose dependences on the geomagnetic cutoff rigidities and the phase of the 11-year solar cycle were found. The evaluation of the solar proton events and energetic electron precipitation contributions to the absorbed dose enhancements was made.

  7. Absorbed doses from temporomandibular joint radiography

    SciTech Connect

    Brooks, S.L.; Lanzetta, M.L.

    1985-06-01

    Thermoluminescent dosimeters were used in a tissue-equivalent phantom to measure doses of radiation absorbed by various structures in the head when the temporomandibular joint was examined by four different radiographic techniques--the transcranial, transorbital, and sigmoid notch (Parma) projections and the lateral tomograph. The highest doses of radiation occurred at the point of entry for the x-ray beam, ranging from 112 mrad for the transorbital view to 990 mrad for the sigmoid notch view. Only the transorbital projection a radiation dose to the lens of the eye. Of the four techniques evaluated, the lateral tomograph produced the highest doses to the pituitary gland and the bone marrow, while the sigmoid notch radiograph produced the highest doses to the parotid gland.

  8. An absorbed dose calorimeter for IMRT dosimetry

    NASA Astrophysics Data System (ADS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N. D.; Thomas, C. G.; Palmans, H.

    2012-10-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%).

  9. Absorbed dose measurements and predictions on LDEF

    NASA Technical Reports Server (NTRS)

    Frank, A. L.; Benton, E. V.; Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    The overall radiation environment of the Long Duration Exposure Facility (LDEF) was determined in part through the use of thermoluminescent detectors (TLD's) which were included in several experiments. The results given are from four experiments (A0015 Biostack, M0004 Fiber Optics Data Link, P0004 Seeds in Space, and P0006 Linear Energy Transfer Spectrum Measurement) and represent a large fraction of existing absorbed dose data. The TLD's were located on the leading and the trailing edges and the Earth end of the spacecraft under various shielding depths (0.48 to 15.4 g/sq cm). The measured absorbed doses were found to reflect both directional dependence of incident trapped protons and shielding. At the leading edge, doses ranged from 2.10 to 2.58 Gy under shielding of 2.90 to 1.37 g/sq cm Al equivalent (M0004). At the trailing edge, doses varied from 3.04 to 4.49 Gy under shielding of 11.7 to 3.85 g/sq cm (A0015), doses varied from 2.91 to 6.64 Gy under shielding of 11.1 to 0.48 g/sq cm (P0004), and a dose range of 2.66 to 6.48 Gy was measured under shielding of 15.4 to 0.48 g/sq cm (P0006). At the Earth end of the spacecraft, doses from 2.41 to 3.93 Gy were found under shielding of 10.0 to 1.66 g/sq cm (A0015). The effect of the trapped proton anisotropy was such that the western side of LDEF received more than 2 times the dose of the eastern side at shielding depths of approximately 1 g/sq cm. Calculations utilizing a directional model of trapped proton spectra predict smaller doses than those measured, being about 50 percent of measured values at the trailing edge and Earth end, and about 80 percent near the leading edge.

  10. Optimization of ramified absorber networks doing desalination.

    PubMed

    Singleton, Martin S; Heiss, Gregor; Hübler, Alfred

    2011-01-01

    An iterated function system is used to generate fractal-like ramified graph networks of absorbers, which are optimized for desalination performance. The diffusion equation is solved for the boundary case of constant pressure difference at the absorbers and a constant ambient salt concentration far from the absorbers, while constraining both the total length of the network and the total area of the absorbers to be constant as functions of generation G. A linearized form of the solution was put in dimensionless form which depends only on a dimensionless membrane resistance, a dimensionless inverse svelteness ratio, and G. For each of the first nine generations G=2,…,10, the optimal graph shapes were obtained. Total water production rate increases parabolically as a function of generation, with a maximum at G=7. Total water production rate is shown to be approximately linearly related to the power consumed, for a fixed generation. Branching ratios which are optimal for desalination asymptote decreasingly to r=0.510 for large G, while branching angles which are optimal for desalination asymptote decreasingly to 1.17 radians. Asymmetric graphs were found to be less efficient for desalination than symmetric graphs. The geometry which is optimal for desalination does not depend strongly on the dimensionless parameters, but the optimal water production does. The optimal generation was found to increase with the inverse svelteness ratio. PMID:21405775

  11. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Granville, Dal A.; Sahoo, Narayan; Sawakuchi, Gabriel O.

    2016-02-01

    The biological response resulting from proton therapy depends on both the absorbed dose in the irradiated tissue and the linear energy transfer (LET) of the beam. Currently, optimization of proton therapy treatment plans is based only on absorbed dose. However, recent advances in proton therapy delivery have made it possible to vary the LET distribution for potential therapeutic gain, leading to investigations of using LET as an additional parameter in plan optimization. Having a method to measure and verify both absorbed dose and LET as part of a quality assurance program would be ideal for the safe delivery of such plans. Here we demonstrated the potential of an optically stimulated luminescence (OSL) technique to simultaneously measure absorbed dose and LET. We calibrated the ratio of ultraviolet (UV) to blue emission intensities from Al2O3:C OSL detectors as a function of LET to facilitate LET measurements. We also calibrated the intensity of the blue OSL emission for absorbed dose measurements and introduced a technique to correct for the LET-dependent dose response of OSL detectors exposed to therapeutic proton beams. We demonstrated the potential of our OSL technique by using it to measure LET and absorbed dose under new irradiation conditions, including patient-specific proton therapy treatment plans. In the beams investigated, we found the OSL technique to measure dose-weighted LET within 7.9% of Monte Carlo-simulated values and absorbed dose within 2.5% of ionization chamber measurements.

  12. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams.

    PubMed

    Granville, Dal A; Sahoo, Narayan; Sawakuchi, Gabriel O

    2016-02-21

    The biological response resulting from proton therapy depends on both the absorbed dose in the irradiated tissue and the linear energy transfer (LET) of the beam. Currently, optimization of proton therapy treatment plans is based only on absorbed dose. However, recent advances in proton therapy delivery have made it possible to vary the LET distribution for potential therapeutic gain, leading to investigations of using LET as an additional parameter in plan optimization. Having a method to measure and verify both absorbed dose and LET as part of a quality assurance program would be ideal for the safe delivery of such plans. Here we demonstrated the potential of an optically stimulated luminescence (OSL) technique to simultaneously measure absorbed dose and LET. We calibrated the ratio of ultraviolet (UV) to blue emission intensities from Al2O3:C OSL detectors as a function of LET to facilitate LET measurements. We also calibrated the intensity of the blue OSL emission for absorbed dose measurements and introduced a technique to correct for the LET-dependent dose response of OSL detectors exposed to therapeutic proton beams. We demonstrated the potential of our OSL technique by using it to measure LET and absorbed dose under new irradiation conditions, including patient-specific proton therapy treatment plans. In the beams investigated, we found the OSL technique to measure dose-weighted LET within 7.9% of Monte Carlo-simulated values and absorbed dose within 2.5% of ionization chamber measurements. PMID:26859539

  13. Determination of neutron absorbed doses in lithium aluminates.

    PubMed

    Delfín Loya, A; Carrera, L M; Ureña-Núñez, F; Palacios, O; Bosch, P

    2003-04-01

    Lithium-based ceramics have been proposed as tritium breeders for fusion reactors. The lithium aluminate (gamma phase) seems to be thermally and structurally stable, the damages produced by neutron irradiation depend on the absorbed dose. A method based on the measurement of neutron activation of foils through neutron capture has been developed to obtain the neutron absorbed dose in lithium aluminates irradiated in the thermal column facility and in the fixed irradiation system of a Triga Mark III Nuclear Reactor. PMID:12672632

  14. Direct MC conversion of absorbed dose to graphite to absorbed dose to water for 60Co radiation.

    PubMed

    Lye, J E; Butler, D J; Franich, R D; Harty, P D; Oliver, C P; Ramanathan, G; Webb, D V; Wright, T

    2013-06-01

    The ARPANSA calibration service for (60)Co gamma rays is based on a primary standard graphite calorimeter that measures absorbed dose to graphite. Measurements with the calorimeter are converted to the absorbed dose to water using the calculation of the ratio of the absorbed dose in the calorimeter to the absorbed dose in a water phantom. ARPANSA has recently changed the basis of this calculation from a photon fluence scaling method to a direct Monte Carlo (MC) calculation. The MC conversion uses an EGSnrc model of the cobalt source that has been validated against water tank and graphite phantom measurements, a step that is required to quantify uncertainties in the underlying interaction coefficients in the MC code. A comparison with the Bureau International des Poids et Mesures (BIPM) as part of the key comparison BIPM.RI(I)-K4 showed an agreement of 0.9973 (53). PMID:23152147

  15. Radiation Dose Optimization For Critical Organs

    NASA Astrophysics Data System (ADS)

    Khodadadegan, Yasaman

    Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities, however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical

  16. Measuring absorbed dose for i-CAT CBCT examinations in child, adolescent and adult phantoms

    PubMed Central

    Choi, E

    2015-01-01

    Objectives: Design and construct child and adolescent head phantoms to measure the absorbed doses imparted during dental CBCT and compare with the absorbed dose measured in an adult phantom. Methods: A child phantom was developed to represent the smallest patients receiving CBCT, usually for craniofacial developmental concerns, and an adolescent phantom was developed to represent healthy orthodontic patients. Absorbed doses were measured using a thimble ionization chamber for the custom-built child and adolescent phantoms and compared with measurements using a commercially available adult phantom. Imaging was performed with an i-CAT Next Generation (Imaging Sciences International, Hatfield, PA) CBCT using two different fields of view covering the craniofacial complex (130 mm high) or maxilla/mandible (60 mm high). Results: Measured absorbed doses varied depending on the location of the ionization chamber within the phantoms. For CBCT images obtained using the same protocol for all phantoms, the highest absorbed dose was measured in all locations of the small child phantom. The lowest absorbed dose was measured in the adult phantom. Conclusions: Images were obtained with the same protocol for the adult, adolescent and child phantoms. A consistent trend was observed with the highest absorbed dose being measured in the smallest phantom (child), while the lowest absorbed dose was measured in the largest phantom (adult). This study demonstrates the importance of child-sizing the dose by using dedicated paediatric protocols optimized for the imaging task, which is critical as children are more sensitive to harmful effects of radiation and have a longer life-span post-irradiation for radiation-induced symptoms to develop than do adults. PMID:25785822

  17. Absorbed dose to water reference dosimetry using solid phantoms in the context of absorbed-dose protocols

    SciTech Connect

    Seuntjens, Jan; Olivares, Marina; Evans, Michael; Podgorsak, Ervin

    2005-09-15

    For reasons of phantom material reproducibility, the absorbed dose protocols of the American Association of Physicists in Medicine (AAPM) (TG-51) and the International Atomic Energy Agency (IAEA) (TRS-398) have made the use of liquid water as a phantom material for reference dosimetry mandatory. In this work we provide a formal framework for the measurement of absorbed dose to water using ionization chambers calibrated in terms of absorbed dose to water but irradiated in solid phantoms. Such a framework is useful when there is a desire to put dose measurements using solid phantoms on an absolute basis. Putting solid phantom measurements on an absolute basis has distinct advantages in verification measurements and quality assurance. We introduce a phantom dose conversion factor that converts a measurement made in a solid phantom and analyzed using an absorbed dose calibration protocol into absorbed dose to water under reference conditions. We provide techniques to measure and calculate the dose transfer from solid phantom to water. For an Exradin A12 ionization chamber, we measured and calculated the phantom dose conversion factor for six Solid Water{sup TM} phantoms and for a single Lucite phantom for photon energies between {sup 60}Co and 18 MV photons. For Solid Water{sup TM} of certified grade, the difference between measured and calculated factors varied between 0.0% and 0.7% with the average dose conversion factor being low by 0.4% compared with the calculation whereas for Lucite, the agreement was within 0.2% for the one phantom examined. The composition of commercial plastic phantoms and their homogeneity may not always be reproducible and consistent with assumed composition. By comparing measured and calculated phantom conversion factors, our work provides methods to verify the consistency of a given plastic for the purpose of clinical reference dosimetry.

  18. Evaluation of absorbed dose in Gadolinium neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Abdullaeva, Gayane; Djuraeva, Gulnara; Kim, Andrey; Koblik, Yuriy; Kulabdullaev, Gairatulla; Rakhmonov, Turdimukhammad; Saytjanov, Shavkat

    2015-02-01

    Gadolinium neutron capture therapy (GdNCT) is used for treatment of radioresistant malignant tumors. The absorbed dose in GdNCT can be divided into four primary dose components: thermal neutron, fast neutron, photon and natural gadolinium doses. The most significant is the dose created by natural gadolinium. The amount of gadolinium at the irradiated region is changeable and depends on the gadolinium delivery agent and on the structure of the location where the agent is injected. To de- fine the time dependence of the gadolinium concentration ρ(t) in the irradiated region the pharmacokinetics of gadolinium delivery agent (Magnevist) was studied at intratumoral injection in mice and intramuscular injection in rats. A polynomial approximation was applied to the experimental data and the influence of ρ(t) on the relative change of the absorbed dose of gadolinium was studied.

  19. Computational determination of absorbed dose distributions from gamma ray sources

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanyu; Inanc, Feyzi

    2001-04-01

    A biomedical procedure known as brachytherapy involves insertion of many radioactive seeds into a sick gland for eliminating sick tissue. For such implementations, the spatial distribution of absorbed dose is very important. A simulation tool has been developed to determine the spatial distribution of absorbed dose in heterogeneous environments where the gamma ray source consists of many small internal radiation emitters. The computation is base on integral transport method and the computations are done in a parallel fashion. Preliminary results involving 137Cs and 125I sources surrounded by water and comparison of the results to the experimental and computational data available in the literature are presented.

  20. Reduction of absorbed doses in radiography of the facial skeleton

    SciTech Connect

    Julin, P.; Kraepelien, T.

    1984-11-01

    Radiation absorbed doses from radiography of the paranasal sinuses and the facial skeleton were measured with thermoluminescent dosimeters (TLD) on a phantom head using high-sensitivity screens in an Orbix stand. The entrance doses to the skin of the head ranged from 0.31 to 2.9 mGy per exposure. The absorbed dose from a full series of sinus exposures averaged 0.33 mGy for the oral mucous membrane, 0.33 mGy for the maxillary sinus mucous membrane, 0.11 MgY for the parotid gland, 0.15 MgY for the submandibular gland, 0.61 mGy for the eye lens, and 0.75 mGy for the thyroid gland region. A leaded soft collar adapted to the thyroid region reduced the thyroid doses by more than one order of magnitude, but also reduced the image field.

  1. Absorbed dose behind eye shields during kilovoltage photon radiotherapy.

    PubMed

    Baker, C R; Luhana, F; Thomas, S J

    2002-08-01

    The absorbed dose at the position of the lens of the eye under lead or tungsten eye shields during kilovoltage photon radiotherapy is critically dependent not so much on the thickness of the eye shield itself as on the size of the treatment field and the diameter of the shield used. Whilst dose from primary photons is easily attenuated to relatively insignificant levels by a few millimetres of lead or tungsten, scattered photons from outside the shielded area can provide over 25% of the prescribed dose. Since backscatter factors do not increase monotonically with photon energy, it is not safe to assume that the highest photon energy used will provide the highest dose. A simple method to estimate the dose under an eye shield based on tabulated backscatter factors is shown. Measurements under commercially available eye shields were made to verify the expression and to determine the attenuation of primary photons. Predicted and measured absorbed dose under the eye shields were found to agree to within 1% of the prescribed dose. The relative dose due to primary photons beneath the eye shields was found to be less than 0.1% and 0.5 (+/-0.1)% for the 150 kV and 260 kV beams, respectively. This is considerably less than the dose from backscattered radiation. PMID:12153943

  2. Space radiation absorbed dose distribution in a human phantom.

    PubMed

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  3. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  4. Optimal active vibration absorber - Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1993-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  5. Optimal active vibration absorber: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1992-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  6. Evaluation of lens absorbed dose with Cone Beam IGRT procedures.

    PubMed

    Palomo, R; Pujades, M C; Gimeno-Olmos, J; Carmona, V; Lliso, F; Candela-Juan, C; Vijande, J; Ballester, F; Perez-Calatayud, J

    2015-12-01

    The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v.1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71  ±  0.07 mGy/CBCT and 0.70  ±  0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account. PMID:26457404

  7. Absorbed dose assessment in newborns during x-ray examinations

    NASA Astrophysics Data System (ADS)

    Taipe, Patricia K.; Berrocal, Mariella J.; Carita, Raúl F.

    2012-02-01

    Often a newborn presents breathing problems during the early days of life, i.e. bronchopneumonia, wich are caused in most of cases, by aspirating a mixture of meconium and amniotic fluid. In these cases, it is necessary to make use of a radiograph, requested by the physician to reach a diagnosis. This paper seeks to evaluate the absorbed doses in neonates undergoing a radiograph. For this reason we try to simulate the real conditions in a X-ray room from Lima hospitals. With this finality we perform a simulation made according a questionnaire related to technical data of X-ray equipment, distance between the source and the neonate, and its position to be irradiated. The information obtained has been used to determine the absorbed dose by infants, using the MCNP code. Finally, the results are compared with reference values of international health agencies.

  8. A portable absorbed dose measuring instrument with gamma discrimination

    NASA Technical Reports Server (NTRS)

    Quam, W. M.; Wilde, W. I.

    1972-01-01

    The characteristics of an electronic instrument for measuring the radiation dose absorbed by tissues are presented. The detector is a sphere of tissue-equivalent plastic with a single wire located on a diameter of the sphere. The electronic circuits and method of operation of the detector are described. Advantages are the small size and easy portability plus ability to selectively measure neutron and gamma plus neutron events.

  9. Reduction of absorbed doses in radiography of the facial skeleton

    SciTech Connect

    Julin, P.; Kraepelien, T.

    1984-11-01

    Radiation absorbed doses from radiography of the paranasal sinuses and the facial skeleton were measured with thermoluminescent dosimeters (TLD) on a phantom head using high-sensitivity screens in an Orbix stand. The entrance doses to the skin of the head ranged from 0.31 to 2.9 mGy per exposure. The absorbed dose from a full series of sinus exposures averaged 0.33 mGy for the oral mucous membrane, 0.33 mGy for the maxillary sinus mucous membrane, 0.11 mGy for the parotid gland, 0.15 mGy for the submandibular gland, 0.61 mGy for the eye lens, and 0.75 mGy for the thyroid gland region. A leaded soft collar adapted to the thyroid region reduced the thyroid doses by more than one order of magnitude, but also reduced the image field. The mean energy imparted from a full series of paranasal sinus projections was 4.8 mJ and from a total series of the facial skeleton, 7.9 mJ.

  10. The absorbed dose to blood from blood-borne activity

    NASA Astrophysics Data System (ADS)

    Hänscheid, H.; Fernández, M.; Lassmann, M.

    2015-01-01

    The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10-11 Gy·s-1·Bq-1·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1-1.2·10-11 Gy·s-1·Bq-1·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m.

  11. Optimally tuned vibration absorbers to control sound transmission

    NASA Astrophysics Data System (ADS)

    Grissom, Michael; Belegundu, Ashok; Koopmann, Gary

    2002-05-01

    A design optimization method is proposed for controlling broadband vibration of a structure and it concomitant acoustic radiation using multiple-tuned absorbers. A computationally efficient model of a structure is developed and coupled with a nonlinear optimization search algorithm. The eigenvectors of the original structure are used as repeated basis functions in the analysis of the structural dynamic re-analysis problem. The re-analysis time for acoustic power computations is reduced by calculating and storing modal radiation resistance matrices at discrete frequencies. The matrices are then interpolated within the optimization loop for eigenvalues that fall between stored frequencies. The method is demonstrated by applying multiple-tuned vibration absorbers to an acoustically-excited composite panel. The absorber parameters are optimized with an objective of maximizing the panel's sound power transmission loss. It is shown that in some cases the optimal solution includes vibration absorbers that are tuned very closely in frequency, thus acting effectively as a broadband vibration absorber (BBVA). The numerical model and design optimization method are validated experimentally, and the BBVA is found to be an effective noise abatement tool.

  12. Strontium-89 therapy: measurement of absorbed dose to skeletal metastases.

    PubMed

    Blake, G M; Zivanovic, M A; Blaquiere, R M; Fine, D R; McEwan, A J; Ackery, D M

    1988-04-01

    We report measurements of absorbed dose to vertebral metastases in ten patients referred for 89Sr therapy for disseminated prostatic carcinoma. Patients received a tracer dose of 85Sr at the time of 89Sr treatment and metastatic strontium retention was monitored scintigraphically for 6 mo. Metastatic 85Sr activity corrected for tissue attenuation was measured using the conjugate view principle, with special care taken to eliminate errors due to the selection of the metastatic region of interest. Metastatic volume was determined from high resolution CT images, and density inferred from Hounsfield number using the QCT bone mineral calibration of Genant and Cann. The mean absorbed dose was 850 rad/mCi (23 cGy/MBq) with a range from 220-2260 rad/mCi (6 to 61 cGy/MBq). The wide range found was consistent with the variation expected to arise due to differences in strontium renal plasma clearance (range 0.1-11.81/day) and extent of skeletal metastatic disease (varying from two small metastases to a superscan on [99mTc]MDP images) among the patients studied. PMID:3351609

  13. Radiation environments and absorbed dose estimations on manned space missions

    NASA Astrophysics Data System (ADS)

    Curtis, S. B.; Atwell, W.; Beever, R.; Hardy, A.

    In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5°, 57° and 90°) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5° orbital inclination.

  14. Red bone marrow doses, integral absorbed doses, and somatically effective dose equivalent from four maxillary occlusal projections

    SciTech Connect

    Berge, T.I.; Wohni, T.

    1984-02-01

    Phantom measurements of red bone marrow (RBM) doses, integral absorbed doses, and somatically effective dose equivalent (SEDE) from four different maxillary occlusal projections are presented. For each projection, different combinations of focus-skin distances and tube potentials were compared with regard to the patient's radiation load. The axial incisal view produced the highest patient exposures, with a maximum red bone marrow dose of 122.5 microGy/exposure, integral absorbed dose of 8.6 mJ/exposure, and SEDE values of 39.6 microSv/exposure. The corresponding values from the frontal, lateral occlusal, and tuber views ranged between 4% and 44% of the axial incisal view values for the integral absorbed dose and SEDE values, and between 0.3% and 3% for the red bone marrow doses. Increasing the focus-skin distance from 17.5 cm to 27 cm is accompanied by a 24% to 30% reduction in integral absorbed dose. Increasing the tube potential from 50 kV to 65 kV likewise results in a 23% reduction in absorbed energy.

  15. Calirimeter/absorber optimization for a RHIC dimuon experiment

    SciTech Connect

    Aronson, S.H.; Murtagh, M.J.; Starks, M.; Liu, X.T.; Petitt, G.A.; Zhang, Z.; Ewell, L.A.; Hill, J.C.; Wohn, F.K.; Costales, J.B.; Namboodiri, M.N., Sangster, T.C.; Thomas, J.H.; Gavron, A.; Waters, L.; Kehoe, W.L.; Steadman, S.G.; Awes, T.C.; Obenshain, F.E.; Saini, S.; Young, G.R.; Chang, J.; Fung, S.Y.; Kang, J.H.; Kreke, J.; He, Xiaochun, Sorensen, S.P.; Cornell, E.C.; Maguire, C.F.

    1991-12-31

    The RD-10 R&D effort on calorimeter/absorber optimization for a RHIC experiment had an extended run in 1991 using the A2 test beam at the AGS. Measurements were made of the leakage of particles behind various model hadron calorimeters. Behavior of the calorimeter/absorber as a muon-identifier was studied. First comparisons of results from test measurements to calculated results using the GHEISHA code were made

  16. Absorbed dose to water: Standards and traceability for radiation oncology

    SciTech Connect

    Almond, P.R.

    1995-12-31

    Although the need for appropriate quantities and units for ionizing radiation has existed since shortly after discovery of X-rays, the quantities and units in general use today were not completely formalized until about 15 years ago. The development of appropriate national and international standards have also been ongoing. For many years the quantity, exposure, measured in units of roentgen was the national standard and they were also the quantity and units in which radiotherapy was described. With the introduction of megavoltage X-ray and electron-beam equipment and the adoption of the quantity {open_quotes}absorbed-dose{close_quotes} measured in units of rad (or gray) different approaches to calibrating these beams were needed. This was especially the case since the national standard in terms of exposure at a maximum photon energy for {sup 60}Co gamma rays was only available. Since the late 1960s various machine calibration protocols have been published. These protocols have to accommodate changes in modality, energy, quantities and units between the national standard and the user. Because of this, a new definition of traceability is proposed to accommodate the present system. By recording all intercomparisons and parameters used, an auditable calibration chain can be maintained. Even with the introduction of calibration protocols based upon national absorbed dose standards, the proposed traceability definition will still be needed.

  17. Calculation of the absorbed dose and dose equivalent induced by medium energy neutrons and protons and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Bishop, B. L.

    1972-01-01

    Monte Carlo calculations have been carried out to determine the absorbed dose and dose equivalent for 592-MeV protons incident on a cylindrical phantom and for neutrons from 580-MeV proton-Be collisions incident on a semi-infinite phantom. For both configurations, the calculated depth dependence of the absorbed dose is in good agreement with experimental data.

  18. Absorbed dose and LET spectra measurements on LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Csige, I.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J.; Harmon, A.

    1995-01-01

    Total absorbed doses measured with TLD's, linear energy transfer (LET) spectra measured with plastic track detectors, and low energy neutrons measured on LDEF have been compared with model calculations. The total absorbed doses measured in TLD's were higher than predicted in the calculations of Armstrong et al. and differ from the calculations of Atwell et al. LDEF LET spectra are dependent on detector orientation, shielding and experiment location. These factors need to be taken into account when modeling the LDEF LET spectra. LET spectra measured with plastic nuclear track detectors (PNTD's) also deviate significantly from calculations especially for high LET particles (LET(sub infinity) H2O greater than 100keV/micron). Modeling efforts to date do not include the contribution of proton induced secondaries. Analysis of polycarbonate PNTD's from the West-side of LDEF has revealed a very high fluence of tracks (greater than 1 x 10(exp 7) tracks/cm(exp 2) under 2 gm/cm(exp 2) shielding). Fluence drops off rapidly as shielding depth increases. Tracks only form in the region of the detector closest to the surface, not in the bulk of the detector. To date no adequate explanation for this observation has been found. We plan to measure range distribution of very high LET (LET (sub infinity) H2O greater than 500 keV/micron) secondary particles produced in silicon wafer by high energy primary cosmic ray particles. Refinements of experimental techniques and model calculations are being carried out in order to understand existing discrepancies between experimental measurements and calculations.

  19. Scaling neutron absorbed dose distributions from one medium to another

    SciTech Connect

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1982-11-01

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone TE-solutions, mineral oil and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. the OAR's measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. It is recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. A table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry.

  20. The Fricke dosimeter as an absorbed dose to water primary standard for Ir-192 brachytherapy

    NASA Astrophysics Data System (ADS)

    El Gamal, Islam; Cojocaru, Claudiu; Mainegra-Hing, Ernesto; McEwen, Malcolm

    2015-06-01

    The aim of this project was to develop an absorbed dose to water primary standard for Ir-192 brachytherapy based on the Fricke dosimeter. To achieve this within the framework of the existing TG-43 protocol, a determination of the absorbed dose to water at the reference position, D(r0,θ0), was undertaken. Prior to this investigation, the radiation chemical yield of the ferric ions (G-value) at the Ir-192 equivalent photon energy (0.380 MeV) was established by interpolating between G-values obtained for Co-60 and 250 kV x-rays. An irradiation geometry was developed with a cylindrical holder to contain the Fricke solution and allow irradiations in a water phantom to be conducted using a standard Nucletron microSelectron V2 HDR Ir-192 afterloader. Once the geometry and holder were optimized, the dose obtained with the Fricke system was compared to the standard method used in North America, based on air-kerma strength. Initial investigations focused on reproducible positioning of the ring-shaped holder for the Fricke solution with respect to the Ir-192 source and obtaining an acceptable type A uncertainty in the optical density measurements required to yield the absorbed dose. Source positioning was found to be reproducible to better than 0.3 mm, and a careful cleaning and control procedure reduced the variation in optical density reading due to contamination of the Fricke solution by the PMMA holder. It was found that fewer than 10 irradiations were required to yield a type A standard uncertainty of less than 0.5%. Correction factors to take account of the non-water components of the geometry and the volume averaging effect of the Fricke solution volume were obtained from Monte Carlo calculations. A sensitivity analysis showed that the dependence on the input data used (e.g. interaction cross-sections) was small with a type B uncertainty for these corrections estimated to be 0.2%. The combined standard uncertainty in the determination of absorbed dose to water

  1. The Fricke dosimeter as an absorbed dose to water primary standard for Ir-192 brachytherapy.

    PubMed

    El Gamal, Islam; Cojocaru, Claudiu; Mainegra-Hing, Ernesto; McEwen, Malcolm

    2015-06-01

    The aim of this project was to develop an absorbed dose to water primary standard for Ir-192 brachytherapy based on the Fricke dosimeter. To achieve this within the framework of the existing TG-43 protocol, a determination of the absorbed dose to water at the reference position, D(r0,θ0), was undertaken. Prior to this investigation, the radiation chemical yield of the ferric ions (G-value) at the Ir-192 equivalent photon energy (0.380 MeV) was established by interpolating between G-values obtained for Co-60 and 250 kV x-rays.An irradiation geometry was developed with a cylindrical holder to contain the Fricke solution and allow irradiations in a water phantom to be conducted using a standard Nucletron microSelectron V2 HDR Ir-192 afterloader. Once the geometry and holder were optimized, the dose obtained with the Fricke system was compared to the standard method used in North America, based on air-kerma strength.Initial investigations focused on reproducible positioning of the ring-shaped holder for the Fricke solution with respect to the Ir-192 source and obtaining an acceptable type A uncertainty in the optical density measurements required to yield the absorbed dose. Source positioning was found to be reproducible to better than 0.3 mm, and a careful cleaning and control procedure reduced the variation in optical density reading due to contamination of the Fricke solution by the PMMA holder. It was found that fewer than 10 irradiations were required to yield a type A standard uncertainty of less than 0.5%.Correction factors to take account of the non-water components of the geometry and the volume averaging effect of the Fricke solution volume were obtained from Monte Carlo calculations. A sensitivity analysis showed that the dependence on the input data used (e.g. interaction cross-sections) was small with a type B uncertainty for these corrections estimated to be 0.2%.The combined standard uncertainty in the determination of absorbed dose to water at

  2. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    SciTech Connect

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-07-15

    . Conclusions: The simulation results showed that the deterministic method can be effectively used to estimate the absorbed dose in a CTDI phantom. The accuracy of the discrete ordinates method was close to that of a Monte Carlo simulation, and the primary benefit of the discrete ordinates method lies in its rapid computation speed. It is expected that further optimization of this method in routine clinical CT dose estimation will improve its accuracy and speed.

  3. An absorbed dose to water calorimeter for collimated radiation fields

    NASA Astrophysics Data System (ADS)

    Brede, H. J.; Hecker, O.; Hollnagel, R.

    2000-12-01

    A transportable calorimeter of compact design has been developed as a device for the absolute determination of the absorbed dose to water. The ease of operation of the calorimeter allows the application in clinical therapy beams of various energies, specifically for neutron, proton and heavy ion beams. The calorimeter requires collimated radiation fields with diameters lesser than 40 mm. The temperature rise caused by radiation is measured with a thermistor probe which is located in the centre of the calorimeter core. The calorimeter core consists of a cylindrical water-filled gilded aluminium can suspended by three thin nylon threads in a vacuum block in order to reduce the heat transfer by conduction. In addition, it operates at a temperature of 4°C, preventing heat transfer in water by convection. Heat transfer from the core to the surrounding by radiation is minimised by the use of two concentric temperature-controlled jackets, the inner jacket being operated at core temperature. A description of the mechanical and electrical design, of the construction and operation of the water calorimeter is given. In addition, calculations with a finite-element program code performed to determine correction factors for various radiation conditions are included.

  4. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, K; Hosoda, M; Fukushi, M; Furukawa, M; Tokonami, S

    2015-11-01

    The monitoring of absorbed dose rate in air has been carried out continually at various locations in metropolitan Tokyo after the accident of the Fukushima Daiichi Nuclear Power Plant. While the data obtained before the accident are needed to more accurately assess the effects of radionuclide contamination from the accident, detailed data for metropolitan Tokyo obtained before the accident have not been reported. A car-borne survey of the absorbed dose rate in air in metropolitan Tokyo was carried out during August to September 2003. The average absorbed dose rate in air in metropolitan Tokyo was 49±6 nGy h(-1). The absorbed dose rate in air in western Tokyo was higher compared with that in central Tokyo. Here, if the absorbed dose rate indoors in Tokyo is equivalent to that outdoors, the annual effective dose would be calculated as 0.32 mSv y(-1). PMID:25944962

  5. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    SciTech Connect

    Aydogan, B.; Miller, L.F.; Sparks, R.B.; Stubbs, J.B.

    1999-01-01

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation was considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.

  6. Assessment of out-of-field absorbed dose and equivalent dose in proton fields

    PubMed Central

    Clasie, Ben; Wroe, Andrew; Kooy, Hanne; Depauw, Nicolas; Flanz, Jay; Paganetti, Harald; Rosenfeld, Anatoly

    2010-01-01

    Purpose: In proton therapy, as in other forms of radiation therapy, scattered and secondary particles produce undesired dose outside the target volume that may increase the risk of radiation-induced secondary cancer and interact with electronic devices in the treatment room. The authors implement a Monte Carlo model of this dose deposited outside passively scattered fields and compare it to measurements, determine the out-of-field equivalent dose, and estimate the change in the dose if the same target volumes were treated with an active beam scanning technique. Methods: Measurements are done with a thimble ionization chamber and the Wellhofer MatriXX detector inside a Lucite phantom with field configurations based on the treatment of prostate cancer and medulloblastoma. The authors use a GEANT4 Monte Carlo simulation, demonstrated to agree well with measurements inside the primary field, to simulate fields delivered in the measurements. The partial contributions to the dose are separated in the simulation by particle type and origin. Results: The agreement between experiment and simulation in the out-of-field absorbed dose is within 30% at 10–20 cm from the field edge and 90% of the data agrees within 2 standard deviations. In passive scattering, the neutron contribution to the total dose dominates in the region downstream of the Bragg peak (65%–80% due to internally produced neutrons) and inside the phantom at distances more than 10–15 cm from the field edge. The equivalent doses using 10 for the neutron weighting factor at the entrance to the phantom and at 20 cm from the field edge are 2.2 and 2.6 mSv∕Gy for the prostate cancer and cranial medulloblastoma fields, respectively. The equivalent dose at 15–20 cm from the field edge decreases with depth in passive scattering and increases with depth in active scanning. Therefore, active scanning has smaller out-of-field equivalent dose by factors of 30–45 in the entrance region and this factor decreases

  7. Assessment of out-of-field absorbed dose and equivalent dose in proton fields

    SciTech Connect

    Clasie, Ben; Wroe, Andrew; Kooy, Hanne; Depauw, Nicolas; Flanz, Jay; Paganetti, Harald; Rosenfeld, Anatoly

    2010-01-15

    Purpose: In proton therapy, as in other forms of radiation therapy, scattered and secondary particles produce undesired dose outside the target volume that may increase the risk of radiation-induced secondary cancer and interact with electronic devices in the treatment room. The authors implement a Monte Carlo model of this dose deposited outside passively scattered fields and compare it to measurements, determine the out-of-field equivalent dose, and estimate the change in the dose if the same target volumes were treated with an active beam scanning technique. Methods: Measurements are done with a thimble ionization chamber and the Wellhofer MatriXX detector inside a Lucite phantom with field configurations based on the treatment of prostate cancer and medulloblastoma. The authors use a GEANT4 Monte Carlo simulation, demonstrated to agree well with measurements inside the primary field, to simulate fields delivered in the measurements. The partial contributions to the dose are separated in the simulation by particle type and origin. Results: The agreement between experiment and simulation in the out-of-field absorbed dose is within 30% at 10-20 cm from the field edge and 90% of the data agrees within 2 standard deviations. In passive scattering, the neutron contribution to the total dose dominates in the region downstream of the Bragg peak (65%-80% due to internally produced neutrons) and inside the phantom at distances more than 10-15 cm from the field edge. The equivalent doses using 10 for the neutron weighting factor at the entrance to the phantom and at 20 cm from the field edge are 2.2 and 2.6 mSv/Gy for the prostate cancer and cranial medulloblastoma fields, respectively. The equivalent dose at 15-20 cm from the field edge decreases with depth in passive scattering and increases with depth in active scanning. Therefore, active scanning has smaller out-of-field equivalent dose by factors of 30-45 in the entrance region and this factor decreases with depth

  8. Optimized multilayered wideband absorbers with graded fractal FSS

    NASA Astrophysics Data System (ADS)

    Vinoy, K. J.; Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.

    2001-08-01

    Various approaches have been followed for the reduction of radar cross section (RCS), especially of aircraft and missiles. In this paper we present the use of multiple layers of FSS-like fractal geometries printed on dielectric substrates for the same goal. The experimental results shown here indicate 15 dB reduction in the reflection of a flat surface, by the use of this configuration with low loss dielectrics. An extensive optimization scheme is required for extending the angle coverage as well as the bandwidth of the absorber. A brief investigation of such a scheme involving genetic algorithm for this purpose is also presented here.

  9. Magnetic Resonance Imaging-Based Radiation-Absorbed Dose Estimation of {sup 166}Ho Microspheres in Liver Radioembolization

    SciTech Connect

    Seevinck, Peter R.; Maat, Gerrit H. van de; Wit, Tim C. de; Vente, Maarten A.D.; Nijsen, Johannes F.W.; Bakker, Chris J.G.

    2012-07-01

    -volume histograms. Conclusions: Quantitative MRI was demonstrated to provide accurate three-dimensional {sup 166}Ho-PLLA-MS activity distributions, enabling localized intrahepatic radiation-absorbed dose estimation by convolution with a {sup 166}Ho dose point-kernel for liver radioembolization treatment optimization and evaluation.

  10. Optimization of X-ray Absorbers for TES Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Iyomoto, Naoko; Sadleir, John E.; Figueroa-Feliciano, Enectali; Saab, Tarek; Bandler, Simon; Kilbourne, Caroline; Chervenak, James; Talley, Dorothy; Finkbeiner, Fred; Brekosky, Regis

    2004-01-01

    We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K(sub 1) the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with an SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough t o fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x l0(exp 3) micrometers squared per microsecond in a film that consists of 2.25 micrometers of Bi and 0.1 micrometers of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorbers.

  11. Direct absorbed dose to water determination based on water calorimetry in scanning proton beam delivery

    SciTech Connect

    Sarfehnia, A.; Clasie, B.; Chung, E.; Lu, H. M.; Flanz, J.; Cascio, E.; Engelsman, M.; Paganetti, H.; Seuntjens, J.

    2010-07-15

    Purpose: The aim of this manuscript is to describe the direct measurement of absolute absorbed dose to water in a scanned proton radiotherapy beam using a water calorimeter primary standard. Methods: The McGill water calorimeter, which has been validated in photon and electron beams as well as in HDR {sup 192}Ir brachytherapy, was used to measure the absorbed dose to water in double scattering and scanning proton irradiations. The measurements were made at the Massachusetts General Hospital proton radiotherapy facility. The correction factors in water calorimetry were numerically calculated and various parameters affecting their magnitude and uncertainty were studied. The absorbed dose to water was compared to that obtained using an Exradin T1 Chamber based on the IAEA TRS-398 protocol. Results: The overall 1-sigma uncertainty on absorbed dose to water amounts to 0.4% and 0.6% in scattered and scanned proton water calorimetry, respectively. This compares to an overall uncertainty of 1.9% for currently accepted IAEA TRS-398 reference absorbed dose measurement protocol. The absorbed dose from water calorimetry agrees with the results from TRS-398 well to within 1-sigma uncertainty. Conclusions: This work demonstrates that a primary absorbed dose standard based on water calorimetry is feasible in scattered and scanned proton beams.

  12. The changes in optical absorbance of ZrO2 thin film with the rise of the absorbed dose

    NASA Astrophysics Data System (ADS)

    Abayli, D.; Baydogan, N.

    2016-03-01

    In this study, zirconium oxide (ZrO2) thin film samples prepared by sol-gel method were irradiated using Co-60 radioisotope as gamma source. Then, it was investigated the ionizing effect on optical properties of ZrO2 thin film samples with the rise of the absorbed dose. The changes in the optical absorbance of ZrO2 thin films were determined by using optical transmittance and the reflectance measurements in the range between 190 - 1100 nm obtained from PG Instruments T80 UV-Vis spectrophotometer.

  13. Photon extremity absorbed dose and kerma conversion coefficients for calibration geometries.

    PubMed

    Veinot, K G; Hertel, N E

    2007-02-01

    Absorbed dose and dose equivalent conversion coefficients are routinely used in personnel dosimetry programs. These conversion coefficients can be applied to particle fluences or to measured air kerma values to determine appropriate operational monitoring quantities such as the ambient dose equivalent or personal dose equivalent for a specific geometry. For personnel directly handling materials, the absorbed dose to the extremities is of concern. This work presents photon conversion coefficients for two extremity calibration geometries using finger and wrist/arm phantoms described in HPS N13.32. These conversion coefficients have been calculated as a function of photon energy in terms of the kerma and the absorbed dose using Monte Carlo techniques and the calibration geometries specified in HPS N13.32. Additionally, kerma and absorbed dose conversion coefficients for commonly used x-ray spectra and calibration source fields are presented. The kerma values calculated in this work for the x-ray spectra and calibration sources compare well to those listed in HPS N13.32. The absorbed dose values, however, differ significantly for higher energy photons because charged particle equilibrium conditions have not been satisfied for the shallow depth. Thus, the air-kerma-to-dose and exposure-to-dose conversion coefficients for Cs and Co listed in HPS N13.32 overestimate the absorbed dose to the extremities. Applying the conversion coefficients listed in HPS N13.32 for Cs, for example, would result in an overestimate of absorbed dose of 62% for the finger phantom and 55% for the wrist phantom. PMID:17220720

  14. Absorbed radiation doses in transcranial temporomandibular joint radiography

    SciTech Connect

    Saini, T.S.; Fischer, W.G.; Verbin, R.S.

    1986-05-01

    Lateral transcranial radiographs are commonly used to evaluate TMJ morphology and function. This study evaluated the use of four TMJ positioners in controlling the amount of radiation absorbed at predetermined sites on a phantom head. Use of positioners and collimators can reduce the amount of radiation exposure.

  15. Multiple anatomy optimization of accumulated dose

    SciTech Connect

    Watkins, W. Tyler Siebers, Jeffrey V.; Moore, Joseph A.; Gordon, James; Hugo, Geoffrey D.

    2014-11-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  16. Multiple anatomy optimization of accumulated dose

    PubMed Central

    Watkins, W. Tyler; Moore, Joseph A.; Gordon, James; Hugo, Geoffrey D.; Siebers, Jeffrey V.

    2014-01-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated. PMID:25370619

  17. Genetic effects induced by neutrons in Drosophila melanogaster I. Determination of absorbed dose.

    PubMed

    Delfin, A; Paredes, L C; Zambrano, F; Guzmán-Rincón, J; Ureña-Nuñez, F

    2001-12-01

    A method to obtain the absorbed dose in Drosophila melanogaster irradiated in the thermal column facility of the Triga Mark III Reactor has been developed. The method is based on the measurements of neutron activation of gold foils produced by neutron capture to obtain the neutron fluxes. These fluxes, combined with the calculations of kinetic energy released per unit mass, enables one to obtain the absorbed doses in Drosophila melanogaster. PMID:11761104

  18. Absorbed dose measurements in the build-up region of flattened versus unflattened megavoltage photon beams.

    PubMed

    De Puysseleyr, Annemieke; Lechner, Wolfgang; De Neve, Wilfried; Georg, Dietmar; De Wagter, Carlos

    2016-06-01

    This study evaluated absorbed dose measurements in the build-up region of conventional (FF) versus flattening filter-free (FFF) photon beams. The absorbed dose in the build-up region of static 6 and 10MV FF and FFF beams was measured using radiochromic film and extrapolation chamber dosimetry for single beams with a variety of field sizes, shapes and positions relative to the central axis. Removing the flattening filter generally resulted in slightly higher relative build-up doses. No considerable impact on the depth of maximum dose was found. PMID:27020966

  19. The absorbed dose in femur exposed to diagnostic radiography.

    PubMed

    Salehi, Z; Yusoff, A L

    2013-01-01

    A femur phantom made of wax and a real human bone was used to study the dose during radiographical procedures. The depth dose inside the phantom was determined using DOSXYZnrc, a Monte Carlo simulation software. The results were verified with measurements using TLD-100H. It was found that for 2.5 mm aluminium filtered 84-kVp X-rays, the radiation dose in the bone reached 57 % higher than the surface dose, i.e. 3.23 mGy as opposed to 2.06 mGy at the surface. The use of real bone introduces variations in the bone density in the DOSXYZnrc model, resulting in a lower attenuation effect than expected from solid bone tissues. PMID:23012482

  20. Boron neutron capture therapy (BNCT) for malignant melanoma with special reference to absorbed doses to the normal skin and tumor.

    PubMed

    Fukuda, H; Hiratsuka, J; Kobayashi, T; Sakurai, Y; Yoshino, K; Karashima, H; Turu, K; Araki, K; Mishima, Y; Ichihashi, M

    2003-09-01

    Twenty-two patients with malignant melanoma were treated with boron neutron capture therapy (BNCT) using 10B-p-boronophenylalanine (BPA). The estimation of absorbed dose and optimization of treatment dose based on the pharmacokinetics of BPA in melanoma patients is described. The doses of gamma-rays were measured using small TLDs of Mg2SiO4 (Tb) and thermal neutron fluence was measured using gold foil and wire. The total absorbed dose to the tissue from BNCT was obtained by summing the primary and capture gamma-ray doses and the high LET radiation doses from 10B(n, alpha)7Li and 14N(n,p)14C reactions. The key point of the dose optimization is that the skin surrounding the tumour is always irradiated to 18 Gy-Eq, which is the maximum tolerable dose to the skin, regardless of the 10B-concentration in the tumor. The neutron fluence was optimized as follows. (1) The 10B concentration in the blood was measured 15-40 min after the start of neutron irradiation. (2) The 10B-concentration in the skin was estimated by multiplying the blood 10B value by a factor of 1.3. (3) The neutron fluence was calculated. Absorbed doses to the skin ranged from 15.7 to 37.1 Gy-Eq. Among the patients, 16 out of 22 patients exhibited tolerable skin damage. Although six patients showed skin damage that exceeded the tolerance level, three of them could be cured within a few months after BNCT and the remaining three developed severe skin damage requiring skin grafts. The absorbed doses to the tumor ranged from 15.7 to 68.5 Gy-Eq and the percentage of complete response was 73% (16/22). When BNCT is used in the treatment of malignant melanoma, based on the pharmacokinetics of BPA and radiobiological considerations, promising clinical results have been obtained, although many problems and issues remain to be solved. PMID:14626847

  1. Multicriteria optimization of the spatial dose distribution

    SciTech Connect

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-12-15

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution.

  2. Space Radiation Absorbed Dose Distribution in a Human Phantom Torso

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Yang, T.; Atwell, W.

    2000-01-01

    The flight of a human phantom torso with head that containing active dosimeters at 5 organ sites and 1400 TLDs distributed in 34 1" thick sections is described. Experimental dose rates and quality factors are compared with calculations for shielding distributions at the sites using the Computerized Anatomical Male (CAM) model. The measurements were complemented with those obtained from other instruments. These results have provided the most comprehensive data set to map the dose distribution inside a human and to assess the accuracy of radiation transport models and astronaut radiation risk.

  3. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    PubMed Central

    Sharafi, A A; Larijani, B; Mokhlesian, N; Hasanzadeh, H

    2008-01-01

    Objective The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Results There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 µGy and 1.81 µGy, respectively. Also, the scan center dose in the women was 5.70 µGy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry. PMID:18385556

  4. Monte Carlo dose computation for IMRT optimization*

    NASA Astrophysics Data System (ADS)

    Laub, W.; Alber, M.; Birkner, M.; Nüsslin, F.

    2000-07-01

    A method which combines the accuracy of Monte Carlo dose calculation with a finite size pencil-beam based intensity modulation optimization is presented. The pencil-beam algorithm is employed to compute the fluence element updates for a converging sequence of Monte Carlo dose distributions. The combination is shown to improve results over the pencil-beam based optimization in a lung tumour case and a head and neck case. Inhomogeneity effects like a broader penumbra and dose build-up regions can be compensated for by intensity modulation.

  5. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  6. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    SciTech Connect

    Akabani, G. ); Poston, J.W. . Dept. of Nuclear Engineering)

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs.

  7. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    SciTech Connect

    Akabani, G.; Poston, J.W. Sr. )

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No penetration of the radionuclide into the blood vessel was assumed nor was cross fire between the vessel assumed. The results are useful in assessing the dose to blood and blood vessel walls for different nuclear medicine procedures.

  8. First-order optimal linear and nonlinear detuning of centrifugal pendulum vibration absorbers

    NASA Astrophysics Data System (ADS)

    Mayet, J.; Ulbrich, H.

    2015-01-01

    Centrifugal pendulum vibration absorbers are used to attenuate steady-state torsional vibrations in rotating and reciprocating machines. In most practical implementations, a set of multiple absorbers is symmetrically arranged on a rotor. Typically, each absorber mass is bifilar suspended, which allows the absorber mass to be moved along a prescribed path. Previous studies have considered how to determine absorber paths in order to obtain absorbers with amplitude-independent frequency known as tautochronic absorbers. It is known that a tautochronic absorber is highly desirable if only one absorber is installed on the rotor. However, in most applications multiple interacting absorbers are installed and as a result symmetry-induced nonlinear instabilities or localization caused by relative imperfections among the absorbers may occur. An effective strategy to avoid such situations is to perturb the tautochronic tuning which has been confirmed in practice and by previous theoretical investigations. This paper presents an approach for detuning a recently developed general tautochronic absorber design. The general design makes it possible to consider a wide class of tautochronic absorbers, e.g. absorbers without bifilar suspensions. The intent of this paper is to extend the existing tautochronic design guideline to non-tautochronic designs. As a result, different absorber designs can be addressed by one uniform theoretical approach, and existing absorber designs are included as special cases. Former studies on detuning of bifilar tautochronic absorbers use a one-parameter family of curves on which the absorber mass rides. Here, however, the detuning is not restricted to a one-parameter family of curves, which makes it possible to either optimize system performance or to avoid asynchronous absorber responses. In the case of synchronously responding equal absorbers, a necessary condition for optimal performance is derived analytically. Further, it is shown that asynchronous

  9. Absorbed dose simulations in near-surface regions using high dose rate Iridium-192 sources applied for brachytherapy

    NASA Astrophysics Data System (ADS)

    Moura, E. S.; Zeituni, C. A.; Sakuraba, R. K.; Gonçalves, V. D.; Cruz, J. C.; Júnior, D. K.; Souza, C. D.; Rostelato, M. E. C. M.

    2014-02-01

    Brachytherapy treatment with Iridium-192 high dose rate (HDR) sources is widely used for various tumours and it could be developed in many anatomic regions. Iridium-192 sources are inserted inside or close to the region that will be treated. Usually, the treatment is performed in prostate, gynaecological, lung, breast and oral cavity regions for a better clinical dose coverage compared with other techniques, such as, high energy photons and Cobalt-60 machines. This work will evaluate absorbed dose distributions in near-surface regions around Ir-192 HDR sources. Near-surface dose measurements are a complex task, due to the contribution of beta particles in the near-surface regions. These dose distributions should be useful for non-tumour treatments, such as keloids, and other non-intracavitary technique. For the absorbed dose distribution simulations the Monte Carlo code PENELOPE with the general code penEasy was used. Ir-192 source geometry and a Polymethylmethacrylate (PMMA) tube, for beta particles shield were modelled to yield the percentage depth dose (PDD) on a cubic water phantom. Absorbed dose simulations were realized at the central axis to yield the Ir-192 dose fall-off along central axis. The results showed that more than 99.2% of the absorbed doses (relative to the surface) are deposited in 5 cm depth but with slower rate at higher distances. Near-surface treatments with Ir-192 HDR sources yields achievable measurements and with proper clinical technique and accessories should apply as an alternative for treatment of lesions where only beta sources were used.

  10. New absorbed dose measurement with cylindrical water phantoms for multidetector CT.

    PubMed

    Ohno, Takeshi; Araki, Fujio; Onizuka, Ryota; Hioki, Kazunari; Tomiyama, Yuuki; Yamashita, Yusuke

    2015-06-01

    The aim of this study was to develop new dosimetry with cylindrical water phantoms for multidetector computed tomography (MDCT). The ionization measurement was performed with a Farmer ionization chamber at the center and four peripheral points in the body-type and head-type cylindrical water phantoms. The ionization was converted to the absorbed dose using a (60)Co absorbed-dose-to-water calibration factor and Monte Carlo (MC) -calculated correction factors. The correction factors were calculated from MDCT (Brilliance iCT, 64-slice, Philips Electronics) modeled with GMctdospp (IMPS, Germany) software based on the EGSnrc MC code. The spectrum of incident x-ray beams and the configuration of a bowtie filter for MDCT were determined so that calculated photon intensity attenuation curves for aluminum (Al) and calculated off-center ratio (OCR) profiles in air coincided with those measured. The MC-calculated doses were calibrated by the absorbed dose measured at the center in both cylindrical water phantoms. Calculated doses were compared with measured doses at four peripheral points and the center in the phantom for various beam pitches and beam collimations. The calibration factors and the uncertainty of the absorbed dose determined using this method were also compared with those obtained by CTDIair (CT dose index in air). Calculated Al half-value layers and OCRs in air were within 0.3% and 3% agreement with the measured values, respectively. Calculated doses at four peripheral points and the centers for various beam pitches and beam collimations were within 5% and 2% agreement with measured values, respectively. The MC-calibration factors by our method were 44-50% lower than values by CTDIair due to the overbeaming effect. However, the calibration factors for CTDIair agreed within 5% with those of our method after correction for the overbeaming effect. Our method makes it possible to directly measure the absorbed dose for MDCT and is more robust and accurate than the

  11. New absorbed dose measurement with cylindrical water phantoms for multidetector CT

    NASA Astrophysics Data System (ADS)

    Ohno, Takeshi; Araki, Fujio; Onizuka, Ryota; Hioki, Kazunari; Tomiyama, Yuuki; Yamashita, Yusuke

    2015-06-01

    The aim of this study was to develop new dosimetry with cylindrical water phantoms for multidetector computed tomography (MDCT). The ionization measurement was performed with a Farmer ionization chamber at the center and four peripheral points in the body-type and head-type cylindrical water phantoms. The ionization was converted to the absorbed dose using a 60Co absorbed-dose-to-water calibration factor and Monte Carlo (MC) -calculated correction factors. The correction factors were calculated from MDCT (Brilliance iCT, 64-slice, Philips Electronics) modeled with GMctdospp (IMPS, Germany) software based on the EGSnrc MC code. The spectrum of incident x-ray beams and the configuration of a bowtie filter for MDCT were determined so that calculated photon intensity attenuation curves for aluminum (Al) and calculated off-center ratio (OCR) profiles in air coincided with those measured. The MC-calculated doses were calibrated by the absorbed dose measured at the center in both cylindrical water phantoms. Calculated doses were compared with measured doses at four peripheral points and the center in the phantom for various beam pitches and beam collimations. The calibration factors and the uncertainty of the absorbed dose determined using this method were also compared with those obtained by CTDIair (CT dose index in air). Calculated Al half-value layers and OCRs in air were within 0.3% and 3% agreement with the measured values, respectively. Calculated doses at four peripheral points and the centers for various beam pitches and beam collimations were within 5% and 2% agreement with measured values, respectively. The MC-calibration factors by our method were 44-50% lower than values by CTDIair due to the overbeaming effect. However, the calibration factors for CTDIair agreed within 5% with those of our method after correction for the overbeaming effect. Our method makes it possible to directly measure the absorbed dose for MDCT and is more robust and accurate than the

  12. Radiation absorbed dose from technetium-99m DTPA

    SciTech Connect

    Smith, T.; Zanelli, G.D.; Veall, N.

    1987-02-01

    The whole-body retention of intravenously administered (99mTc)DTPA was measured by urine analysis and whole-body counting in eight normal subjects. On average, the elimination of (99mTc)DTPA was faster in these subjects than in 11 patients under study for hypertension whose whole-body retention data were used in MIRD Dose Estimate Report No. 12. The average residence time for (99mTc)DTPA in total body, less bladder contents, was only 65% of the MIRD value. However, despite this difference, the dosimetry is similar in both cases largely owing to the influence of radioactivity in bladder contents. Approximately 2-3% of the administered radioactivity was retained in the body for a time that was long relative to the physical half-life of 99mTc, and probably reflects a small amount of protein binding of the DTPA preparation.

  13. Absorbed dose and dose rate using the Varian OBI 1.3 and 1.4 CBCT system.

    PubMed

    Palm, Asa; Nilsson, Elisabeth; Herrnsdorf, Lars

    2010-01-01

    According to published data, the absorbed dose used for a CBCT image acquisition with Varian OBI v1.3 can be as high as 100 mGy. In 2008 Varian released a new OBI version (v1.4), which promised to reduce the imaging dose. In this study, absorbed doses used for CBCT image acquisitions with the default irradiation techniques of Varian OBI v1.3 and v1.4 are measured. TLDs are used to derive dose distributions at three planes inside an anthropomorphic phantom. In addition, point doses and dose profiles inside a 'stack' of three CTDI body phantoms are measured using a new solid state detector, the CT Dose Profiler. With the CT Dose Profiler, the individual pulses from the X-ray tube are also studied. To verify the absorbed dose measured with the CT Dose Profiler, it is compared to TLD. The image quality is evaluated using a Catphan phantom. For OBI v1.3, doses measured in transverse planes of the Alderson phantom range between 64 mGy and 144 mGy. The average dose is around 100 mGy. For OBI v1.4, doses measured in transverse planes of the Alderson phantom range between 1 mGy and 51 mGy. Mean doses range between 3-35 mGy depending on CBCT mode. CT Dose Profiler data agree with TLD measurements in a CTDI phantom within the uncertainty of the TLD measurements (estimated SD +/- 10%). Instantaneous dose rate at the periphery of the phantom can be higher than 20 mGy/s, which is 10 times the dose rate at the center. The spatial resolution in v1.4 is not as high as in v1.3. In conclusion, measurements show that the imaging doses for default modes in Varian OBI v1.4 CBCT system are significantly lower than in v1.3. The CT Dose Profiler is proven fast and accurate for CBCT applications. PMID:20160695

  14. Independent absorbed-dose calculation using the Monte Carlo algorithm in volumetric modulated arc therapy

    PubMed Central

    2014-01-01

    Purpose To report the result of independent absorbed-dose calculations based on a Monte Carlo (MC) algorithm in volumetric modulated arc therapy (VMAT) for various treatment sites. Methods and materials All treatment plans were created by the superposition/convolution (SC) algorithm of SmartArc (Pinnacle V9.2, Philips). The beam information was converted into the format of the Monaco V3.3 (Elekta), which uses the X-ray voxel-based MC (XVMC) algorithm. The dose distribution was independently recalculated in the Monaco. The dose for the planning target volume (PTV) and the organ at risk (OAR) were analyzed via comparisons with those of the treatment plan. Before performing an independent absorbed-dose calculation, the validation was conducted via irradiation from 3 different gantry angles with a 10- × 10-cm2 field. For the independent absorbed-dose calculation, 15 patients with cancer (prostate, 5; lung, 5; head and neck, 3; rectal, 1; and esophageal, 1) who were treated with single-arc VMAT were selected. To classify the cause of the dose difference between the Pinnacle and Monaco TPSs, their calculations were also compared with the measurement data. Result In validation, the dose in Pinnacle agreed with that in Monaco within 1.5%. The agreement in VMAT calculations between Pinnacle and Monaco using phantoms was exceptional; at the isocenter, the difference was less than 1.5% for all the patients. For independent absorbed-dose calculations, the agreement was also extremely good. For the mean dose for the PTV in particular, the agreement was within 2.0% in all the patients; specifically, no large difference was observed for high-dose regions. Conversely, a significant difference was observed in the mean dose for the OAR. For patients with prostate cancer, the mean rectal dose calculated in Monaco was significantly smaller than that calculated in Pinnacle. Conclusions There was no remarkable difference between the SC and XVMC calculations in the high-dose regions

  15. Absorbed Dose in the Uterus of a Three Months Pregnant Woman Due to 131I

    NASA Astrophysics Data System (ADS)

    Vega-Carrillo, Héctor René; Manzanares-Acuña, Eduardo; Hernández-Dávila, Víctor Martín; Arcos-Pichardo, Areli; Barquero, Raquel; Iñiguez, M. Pilar

    2006-09-01

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organs and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation.

  16. Absorbed Dose in the Uterus of a Three Months Pregnant Woman Due to 131I

    SciTech Connect

    Vega-Carrillo, Hector Rene; Manzanares-Acuna, Eduardo; Hernandez-Davila, Victor Martin; Arcos-Pichardo, Areli; Barquero, Raquel; Iniguez, M. Pilar

    2006-09-08

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organs and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation.

  17. Estimation of absorbed dose in the covering skin of human melanoma treated by neutron capture therapy

    SciTech Connect

    Fukuda, H.; Kobayashi, T.; Hiratsuka, J.; Karashima, H.; Honda, C.; Yamamura, K.; Ichihashi, M.; Kanda, K.; Mishima, Y. )

    1989-07-01

    A patient with malignant melanoma was treated by thermal neutron capture therapy using 10B-paraboronophenylalanine. The compound was injected subcutaneously into ten locations in the tumor-surrounding skin, and the patient was then irradiated with thermal neutrons from the Musashi Reactor at reactor power of 100 KW and neutron flux of 1.2 X 10(9) n/cm{sup 2}/s. Total absorbed dose to the skin was 11.7-12.5 Gy in the radiation field. The dose equivalents of these doses were estimated as 21.5 and 24.4 Sv, respectively. Early skin reaction after irradiation was checked from day 1 to day 60. The maximum and mean skin scores were 2.0 and 1.5, respectively, and the therapy was safely completed as far as skin reaction was concerned. Some factors influencing the absorbed dose and dose equivalent to the skin are discussed.

  18. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  19. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    PubMed

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel. PMID:22128353

  20. Average fetal depth in utero: data for estimation of fetal absorbed radiation dose

    SciTech Connect

    Ragozzino, M.W.; Breckle, R.; Hill, L.M.; Gray, J.E.

    1986-02-01

    To estimate fetal absorbed dose from radiographic examinations, the depth from the anterior maternal surface to the midline of the fetal skull and abdomen was measured by ultrasound in 97 pregnant women. The relationships between fetal depth, fetal presentation, and maternal parameters of height, weight, anteroposterior (AP) thickness, gestational age, placental location, and bladder volume were analyzed. Maternal AP thickness (MAP) can be estimated from gestational age, maternal height, and maternal weight. Fetal midskull and abdominal depths were nearly equal. Fetal depth normalized to MAP was independent or nearly independent of maternal parameters and fetal presentation. These data enable a reasonable estimation of absorbed dose to fetal brain, abdomen, and whole body.

  1. Optimization of the acoustic absorption coefficients of certain functional absorbents

    NASA Technical Reports Server (NTRS)

    Pocsa, V.; Biborosch, L.; Veres, A.; Halpert, E.; Lorian, R.; Botos, T.

    1974-01-01

    The sound absorption coefficients of some functional absorbents (mineral wool plates) are determined by the reverberation chamber method. The influence of the angle of inclination of the sound absorbing material with respect to the surface to be treated is analyzed as well as the influence of the covering index, defined as the ratio of the designed area of a plate and the area of the treated surface belonging to another plate. As compared with the conventional method of applying sound-absorbing plates, the analyzed structures have a higher technological and economical efficiency. The optimum structure corresponds to an angle of inclination of 15 deg and a covering index of 0.8.

  2. Uncertainties of organ-absorbed doses to patients from 18f-choline

    NASA Astrophysics Data System (ADS)

    Li, W. B.; Janzen, T.; Zankl, M.; Giussani, A.; Hoeschen, C.

    2011-03-01

    Radiation doses of radiopharmaceuticals to patients in nuclear medicine are, as the standard method, estimated by the administered activity, medical imaging (e.g. PET imaging), compartmental modeling and Monte Carlo simulation of radiation with reference digital human phantoms. However, in each of the contributing terms, individual uncertainty due to measurement techniques, patient variability and computation methods may propagate to the uncertainties of the calculated organ doses to the individual patient. To evaluate the overall uncertainties and the quality assurance of internal absorbed doses, a method was developed within the framework of the MADEIRA Project (Minimizing Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations) to quantitatively analyze the uncertainties in each component of the organ absorbed doses after administration of 18F-choline to prostate cancer patients undergoing nuclear medicine diagnostics. First, on the basis of the organ PET and CT images of the patients as well as blood and urine samples, a model structure of 18F-choline was developed and the uncertainties of the model parameters were determined. Second, the model parameter values were sampled and biokinetic modeling using these sampled parameter values were performed. Third, the uncertainties of the new specific absorbed fraction (SAF) values derived with different phantoms representing individual patients were presented. Finally, the uncertainties of absorbed doses to the patients were calculated by applying the ICRP/ICRU adult male reference computational phantom. In addition to the uncertainty analysis, the sensitivity of the model parameters on the organ PET images and absorbed doses was indicated by coupling the model input and output using regression and partial correlation analysis. The results showed that the uncertainty factors of absorbed dose to patients are in most cases less than a factor of 2 without taking into account the uncertainties

  3. Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy

    NASA Astrophysics Data System (ADS)

    Carlsson Tedgren, Åsa; Alm Carlsson, Gudrun

    2013-04-01

    Model-based dose calculation algorithms (MBDCAs), recently introduced in treatment planning systems (TPS) for brachytherapy, calculate tissue absorbed doses. In the TPS framework, doses have hereto been reported as dose to water and water may still be preferred as a dose specification medium. Dose to tissue medium Dmed then needs to be converted into dose to water in tissue Dw,med. Methods to calculate absorbed dose to differently sized water compartments/cavities inside tissue, infinitesimal (used for definition of absorbed dose), small, large or intermediate, are reviewed. Burlin theory is applied to estimate photon energies at which cavity sizes in the range 1 nm-10 mm can be considered small or large. Photon and electron energy spectra are calculated at 1 cm distance from the central axis in cylindrical phantoms of bone, muscle and adipose tissue for 20, 50, 300 keV photons and photons from 125I, 169Yb and 192Ir sources; ratios of mass-collision-stopping powers and mass energy absorption coefficients are calculated as applicable to convert Dmed into Dw,med for small and large cavities. Results show that 1-10 nm sized cavities are small at all investigated photon energies; 100 µm cavities are large only at photon energies <20 keV. A choice of an appropriate conversion coefficient Dw, med/Dmed is discussed in terms of the cavity size in relation to the size of important cellular targets. Free radicals from DNA bound water of nanometre dimensions contribute to DNA damage and cell killing and may be the most important water compartment in cells implying use of ratios of mass-collision-stopping powers for converting Dmed into Dw,med.

  4. Improved estimates of the radiation absorbed dose to the urinary bladder wall

    NASA Astrophysics Data System (ADS)

    Andersson, Martin; Minarik, David; Johansson, Lennart; Mattsson, Sören; Leide-Svegborn, Sigrid

    2014-05-01

    Specific absorbed fractions (SAFs) have been calculated as a function of the content in the urinary bladder in order to allow more realistic calculations of the absorbed dose to the bladder wall. The SAFs were calculated using the urinary bladder anatomy from the ICRP male and female adult reference computational phantoms. The urinary bladder and its content were approximated by a sphere with a wall of constant mass, where the thickness of the wall depended on the amount of urine in the bladder. SAFs were calculated for males and females with 17 different urinary bladder volumes from 10 to 800 mL, using the Monte Carlo computer program MCNP5, at 25 energies of mono-energetic photons and electrons ranging from 10 KeV to 10 MeV. The decay was assumed to be homogeneously distributed in the urinary bladder content and the urinary bladder wall, and the mean absorbed dose to the urinary bladder wall was calculated. The Monte Carlo simulations were validated against measurements made with thermoluminescent dosimeters. The SAFs obtained for a urine volume of 200 mL were compared to the values calculated for the urinary bladder wall using the adult reference computational phantoms. The mean absorbed dose to the urinary wall from 18F-FDG was found to be 77 µGy/MBq formales and 86 µGy/MBq for females, while for 99mTc-DTPA the mean absorbed doses were 80 µGy/MBq for males and 86 µGy/MBq for females. Compared to calculations using a constant value of the SAF from the adult reference computational phantoms, the mean absorbed doses to the bladder wall were 60% higher for 18F-FDG and 30% higher for 99mTc-DTPA using the new SAFs.

  5. Radiation absorbed dose to bladder walls from positron emitters in the bladder content

    SciTech Connect

    Powell, G.F.; Chen, C.T.

    1987-11-01

    A method to calculate absorbed doses at depths in the walls of a static spherical bladder from a positron emitter in the bladder content has been developed. The beta ray dose component is calculated for a spherical model by employing the solutions to the integration of Loevinger and Bochkarev point source functions over line segments and a line segment source array technique. The gamma ray dose is determined using the specific gamma ray constant. As an example, absorbed radiation doses to the bladder walls from F-18 in the bladder content are presented for static spherical bladder models having radii of 2.0 and 3.5 cm, respectively. Experiments with ultra-thin thermoluminescent dosimeters (TLD's) were performed to verify the results of the calculations. Good agreement between TLD measurements and calculations was obtained.

  6. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.; Watts, J. W. Jr; Parnell, T. A.

    1990-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day-1 have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLDs) of U.S.S.R. and U.S.A. manufacture. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  7. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Akatov, Yu. A.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.

    1995-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day(exp -1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD's) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  8. Optimal radiotherapy dose schedules under parametric uncertainty

    NASA Astrophysics Data System (ADS)

    Badri, Hamidreza; Watanabe, Yoichi; Leder, Kevin

    2016-01-01

    We consider the effects of parameter uncertainty on the optimal radiation schedule in the context of the linear-quadratic model. Our interest arises from the observation that if inter-patient variability in normal and tumor tissue radiosensitivity or sparing factor of the organs-at-risk (OAR) are not accounted for during radiation scheduling, the performance of the therapy may be strongly degraded or the OAR may receive a substantially larger dose than the allowable threshold. This paper proposes a stochastic radiation scheduling concept to incorporate inter-patient variability into the scheduling optimization problem. Our method is based on a probabilistic approach, where the model parameters are given by a set of random variables. Our probabilistic formulation ensures that our constraints are satisfied with a given probability, and that our objective function achieves a desired level with a stated probability. We used a variable transformation to reduce the resulting optimization problem to two dimensions. We showed that the optimal solution lies on the boundary of the feasible region and we implemented a branch and bound algorithm to find the global optimal solution. We demonstrated how the configuration of optimal schedules in the presence of uncertainty compares to optimal schedules in the absence of uncertainty (conventional schedule). We observed that in order to protect against the possibility of the model parameters falling into a region where the conventional schedule is no longer feasible, it is required to avoid extremal solutions, i.e. a single large dose or very large total dose delivered over a long period. Finally, we performed numerical experiments in the setting of head and neck tumors including several normal tissues to reveal the effect of parameter uncertainty on optimal schedules and to evaluate the sensitivity of the solutions to the choice of key model parameters.

  9. MCNP simulation of absorbed energy and dose by iodinated contrast agent

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Mah, Eugene; Huda, Walter; Yao, Hai

    2012-03-01

    The purpose of this study is to investigate the absorbed dose and energy by iodinated contrast medium in diagnostic radiology. A simulation geometry in which an inner sphere (d = 0.2cm, 1cm, 5cm) filled with iodinated contrast medium (or water) is located at the center of a 20cm diameter water sphere was used in simulations performed with MCNP5 codes. Monoenergetic x-rays with energies ranging from 40 to 80keV from a cone beam source were utilized and contrast medium concentration ranged from 100 to 1mg/ml. Absorbed dose ratio (RD) to inner sphere and total absorbed energies ratio (RE) to the whole phantom with and without iodinated contrast medium were investigated. The maximum RD was ~13 for the 0.2cm diameter sphere with 100mg/ml contrast medium. The maximum RE was ~1.05 for the 5cm diameter contrast sphere at 80keV with 100mg/ml contrast medium. Under the same incident photon energy, increasing the inner sphere size from 0.2cm to 5cm caused a ~63% increase in the RD on average. Decreasing the contrast medium concentration from 100 to 10 mg/ml caused a decrease of RD of ~ 76%. A conclusion was reached that although local absorbed dose increase caused by iodinated contrast agent could be high; the increase in total absorbed energy is negligible.

  10. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-01-01

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PMID:27074452

  11. A method to efficiently simulate absorbed dose in radio-sensitive instrumentation components

    NASA Astrophysics Data System (ADS)

    Santana Leitner, M.

    2015-12-01

    Components installed in tunnels of high-power accelerators are prone to radiation-induced damage and malfunction. Such machines are usually modeled in detail and the radiation cascades are transported through the three-dimensional models in Monte Carlo codes. Very often those codes are used to compute energy deposition in beam components or radiation fields to the public and the environment. However, sensitive components such as electronic boards or insulator cables are less easily simulated, as their small size makes dose scoring a (statistically) inefficient process. Moreover the process to decide their location is iterative, as in order to define where these will be safely installed, the dose needs to be computed, but to do so the location needs to be known. This note presents a different approach to indirectly asses the potential absorbed dose by certain components when those are installed within a given radiation field. The method consists first in finding the energy and particle-dependent absorbed dose to fluence response function, and then programming those in a radiation transport Monte Carlo code, so that fluences in vacuum/air can be automatically converted real-time into potential absorbed doses and then mapped in the same way as fluences or dose equivalent magnitudes.

  12. Absorbed Dose Rates in Tissue from Prompt Gamma Emissions from Near-thermal Neutron Absorption.

    PubMed

    Schwahn, Scott O

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency's Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment. PMID:26313590

  13. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGESBeta

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  14. Electron paramagnetic resonance measurements of absorbed dose in teeth from citizens of Ozyorsk.

    PubMed

    Wieser, A; Vasilenko, E; Aladova, E; Fattibene, P; Semiochkina, N; Smetanin, M

    2014-05-01

    In 1945, within the frame of the Uranium Project for the production of nuclear weapons, the Mayak nuclear facilities were constructed at the Lake Irtyash in the Southern Urals, Russia. The nuclear workers of the Mayak Production Association (MPA), who lived in the city of Ozyorsk, are the focus of epidemiological studies for the assessment of health risks due to protracted exposure to ionising radiation. Electron paramagnetic resonance measurements of absorbed dose in tooth enamel have already been used in the past, in an effort to validate occupational external doses that were evaluated in the Mayak Worker Dosimetry System. In the present study, 229 teeth of Ozyorsk citizens not employed at MPA were investigated for the assessment of external background exposure in Ozyorsk. The annually absorbed dose in tooth enamel from natural background radiation was estimated to be (0.7 ± 0.3) mGy. For citizens living in Ozyorsk during the time of routine noble gas releases of the MPA, which peaked in 1953, the average excess absorbed dose in enamel above natural background was (36 ± 29) mGy, which is consistent with the gamma dose obtained by model calculations. In addition, there were indications of possible accidental gaseous MPA releases that affected the population of Ozyorsk, during the early and late MPA operation periods, before 1951 and after 1960. PMID:24604722

  15. Fetus absorbed dose evaluation in head and neck radiotherapy procedures of pregnant patients.

    PubMed

    da Costa, Etieli C; da Rosa, Luiz Antonio R; Batista, Delano Valdivino S

    2015-06-01

    In this work the head and neck cancer treatment of a pregnant patient was experimentally simulated. A female anthropomorphic Alderson phantom was used and the absorbed dose to the fetus was evaluated protecting the patient's abdomen with a 7cm lead layer and using no abdomen shielding. The target volume dose was 50Gy. The fetus doses evaluated with and without the lead shielding were, respectively, 0.52±0.039 and 0.88±0.052cGy. PMID:25620113

  16. Reduced radiation-absorbed dose to tissues with partial panoramic radiography for evaluation of third molars.

    PubMed

    Kircos, L T; Eakle, W S; Smith, R A

    1986-05-01

    The radiation-absorbed doses from panoramic radiography, distal molar radiography, and a partial panoramic radiographic technique that exposes only the third molar region to radiation are compared. Doses of radiation to the submandibular salivary gland were comparable by all three techniques, but doses of radiation to the head and neck were reduced greatly by the partial panoramic radiographic technique. Partial panoramic radiography is a diagnostically satisfactory and a radiologically safer technique for evaluation of third molar pathosis than is panoramic or distal molar radiography. PMID:3458783

  17. Reduced radiation-absorbed dose to tissues with partial panoramic radiography for evaluation of third molars

    SciTech Connect

    Kircos, L.T.; Eakle, W.S.; Smith, R.A.

    1986-05-01

    The radiation-absorbed doses from panoramic radiography, distal molar radiography, and a partial panoramic radiographic technique that exposes only the third molar region to radiation are compared. Doses of radiation to the submandibular salivary gland were comparable by all three techniques, but doses of radiation to the head and neck were reduced greatly by the partial panoramic radiographic technique. Partial panoramic radiography is a diagnostically satisfactory and a radiologically safer technique for evaluation of third molar pathosis than is panoramic or distal molar radiography.

  18. Absorbed dose measurements on external surface of Kosmos-satellites with glass thermoluminescent detectors.

    PubMed

    Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I

    1989-01-01

    In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation. PMID:11537297

  19. Uneven surface absorbed dose distribution in electron-accelerator irradiation of rubber items

    SciTech Connect

    Gorbunov, I.F.; Pashinin, V.I.; Vanyushkin, B.M.

    1988-02-01

    Electron accelerators for industrial use are equipped with scanning devices, where the scan frequency or linear velocity along the window may vary. In a flow technology, where the items are transported to the irradiation zone at a set rate, the speed of an item may be comparable with the scan speed, so there is substantial nonuniformity in the absorbed dose, which adversely affects the quality. We have examined the dose nonuniformity for long rubber items during vulcanization by means of LUE-8-5RV and ELV-2 accelerators. The absorbed dose is calculated for an elementary part along which the irradiation is uniform on the assumption that current density distribution in the unswept beam is uniform as a result of scattering in the foil.

  20. Assessment of effective absorbed dose of (111)In-DTPA-Buserelin in human on the basis of biodistribution rat data.

    PubMed

    Lahooti, Afsaneh; Shanehsazzadeh, Saeed; Jalilian, Amir Reza; Tavakoli, Mohammad Bagher

    2013-04-01

    In this study, the effective absorbed dose to human organs was estimated, following intra vascular administration of (111)In-DTPA-Buserelin using biodistribution data from rats. Rats were sacrificed at exact time intervals of 0.25, 0.5, 1, 2, 4 and 24 h post injections. The Medical Internal Radiation Dose formulation was applied to extrapolate from rats to humans and to project the absorbed radiation dose for various human organs. From rat data, it was estimated that a 185-MBq injection of (111)In-DTPA-Buserelin into the human might result in an estimated absorbed dose of 24.27 mGy to the total body and the highest effective absorbed dose was in kidneys, 28.39 mSv. The promising results of this study emphasises the importance of absorbed doses in humans estimated from data on rats. PMID:22874898

  1. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    SciTech Connect

    Waldenstroem, Ann-Charlotte; Olsson, Caroline; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Al-Abany, Massoud; Palm, Asa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-07-15

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses {>=}52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.

  2. Optimal design of a passive vibration absorber for a truss beam

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.

    1983-01-01

    The selection of the design parameters of passive vibration absorbers attached to a long cantilevered beam is studied. This study was motivated by the need for conducting parametric analysis of dynamics and control for Space-Shuttle-attached long beams. An optimization scheme using a quadratic cost function is introduced yielding the optimal sizing of the tip vibration absorber. Analytical solutions for an optimal absorber are presented for the case of one beam vibrational mode coupled with the absorber dynamics, and results are extended to cover the multiple mode case. An algorithm is developed to make an initial estimate of optimal tuning parameters which minimize the quadratic error cost function. Examples are given to illustrate the design concept.

  3. Dose-shaping using targeted sparse optimization

    SciTech Connect

    Sayre, George A.; Ruan, Dan

    2013-07-15

    }{sup sparse} improves tradeoff between planning goals by 'sacrificing' voxels that have already been violated to improve PTV coverage, PTV homogeneity, and/or OAR-sparing. In doing so, overall plan quality is increased since these large violations only arise if a net reduction in E{sub tot}{sup sparse} occurs as a result. For example, large violations to dose prescription in the PTV in E{sub tot}{sup sparse}-optimized plans will naturally localize to voxels in and around PTV-OAR overlaps where OAR-sparing may be increased without compromising target coverage. The authors compared the results of our method and the corresponding clinical plans using analyses of DVH plots, dose maps, and two quantitative metrics that quantify PTV homogeneity and overdose. These metrics do not penalize underdose since E{sub tot}{sup sparse}-optimized plans were planned such that their target coverage was similar or better than that of the clinical plans. Finally, plan deliverability was assessed with the 2D modulation index.Results: The proposed method was implemented using IBM's CPLEX optimization package (ILOG CPLEX, Sunnyvale, CA) and required 1-4 min to solve with a 12-core Intel i7 processor. In the testing procedure, the authors optimized for several points on the Pareto surface of four 7-field 6MV prostate cases that were optimized for different levels of PTV homogeneity and OAR-sparing. The generated results were compared against each other and the clinical plan by analyzing their DVH plots and dose maps. After developing intuition by planning the four prostate cases, which had relatively few tradeoffs, the authors applied our method to a 7-field 6 MV pancreas case and a 9-field 6MV head-and-neck case to test the potential impact of our method on more challenging cases. The authors found that our formulation: (1) provided excellent flexibility for balancing OAR-sparing with PTV homogeneity; and (2) permitted the dose planner more control over the evolution of the PTV's spatial dose

  4. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    SciTech Connect

    Willegaignon, J. Sapienza, M. T.; Coura-Filho, G. B.; Buchpiguel, C. A.; Watanabe, T.; Traino, A. C.

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurements were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A

  5. Microdosimetric measurements for neutron-absorbed dose determination during proton therapy

    PubMed Central

    Pérez-Andújar, Angélica; DeLuca, Paul M.; Thornton, Allan F.; Fitzek, Markus; Hecksel, Draik; Farr, Jonathan

    2012-01-01

    This work presents microdosimetric measurements performed at the Midwest Proton Radiotherapy Institute in Bloomington, Indiana, USA. The measurements were done simulating clinical setups with a water phantom and for a variety of stopping targets. The water phantom was irradiated by a proton spread out Bragg peak (SOBP) and by a proton pencil beam. Stopping target measurements were performed only for the pencil beam. The targets used were made of polyethylene, brass and lead. The objective of this work was to determine the neutron-absorbed dose for a passive and active proton therapy delivery, and for the interactions of the proton beam with materials typically in the beam line of a proton therapy treatment nozzle. Neutron doses were found to be higher at 45° and 90° from the beam direction for the SOBP configuration by a factor of 1.1 and 1.3, respectively, compared with the pencil beam. Meanwhile, the pencil beam configuration produced neutron-absorbed doses 2.2 times higher at 0° than the SOBP. For stopping targets, lead was found to dominate the neutron-absorbed dose for most angles due to a large production of low-energy neutrons emitted isotropically. PMID:22334761

  6. Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose

  7. An international dosimetry exchange for boron neutron capture therapy, Part I: Absorbed dose measurements

    SciTech Connect

    Binns, P.J.; Riley, K.J.; Harling, O.K.

    2005-12-15

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 {mu}g g{sup -1} that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  8. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study. PMID:16475772

  9. Monte Carlo Assessments of Absorbed Doses to the Hands of Radiopharmaceutical Workers Due to Photon Emitters

    SciTech Connect

    Ilas, Dan; Eckerman, Keith F; Karagiannis, Harriet

    2009-01-01

    This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters that are used to show compliance with applicable regulations may overestimate or underestimate radiation doses to the skin depending on the nature of the particular procedure and the radionuclide being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations of realistic configurations typical for workers handling radiopharmaceuticals were performedfor a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from dosimeter readings when dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.

  10. Radioimmunotherapy treatment planning based on radiation absorbed dose or patient size

    SciTech Connect

    Eary, J.F.; Krohn, K.A.; Press, O.W. |

    1996-05-01

    Several approaches have been used to plan treatment doses for patients undergoing radioimmunotherapy. Investigators often use fixed doses, or doses based on patient size (mCi/kg or mCi/m{sup 2}). Our treatment protocols for lymphoma and leukemia involved calculation of tissue radiation absorbed dose based on images from a trace labeled infusion of antibody prior to treatment. In a recent analysis of patients treated in the Phase I and II dose escalation trial for treatment of non-Hodgkin`s lymphoma with I-131 anti-CD20 antibody (B1), we investigated the relationship between our dosimetry based treatment and dose based on patient size. Tissue radiation dose for several normal organs and for tumors were plotted versus the mCi administered per kg or m{sup 2} of the patient to evaluate the relationship between the two treatment approaches. These graphs showed correlation coefficients ranging from 0.021 to 0.684, demonstrating the variability in antibody catabolism between patients. This means that fixed doses or administrations based on patient size do not deliver consistent radiation doses to normal organs or tumors. This finding was extrapolated to show that toxicity from doses based on patient size di not correlate with treatment dose; those based on calculated rad/organ did. Phase I clinical trials using treatment doses based on patient size where there are likely to be variations in patient antibody catabolism will result in confounding toxicities at apparently similar mCi dose levels. Use of pre-treatment scans for treatment dose planning are worth the additional effort by normalizing the normal tissue toxicity.

  11. Evaluation and comparison of absorbed dose for electron beams by LiF and diamond dosimeters

    NASA Astrophysics Data System (ADS)

    Mosia, G. J.; Chamberlain, A. C.

    2007-09-01

    The absorbed dose response of LiF and diamond thermoluminescent dosimeters (TLDs), calibrated in 60Co γ-rays, has been determined using the MCNP4B Monte Carlo code system in mono-energetic megavoltage electron beams from 5 to 20 MeV. Evaluation of the dose responses was done against the dose responses of published works by other investigators. Dose responses of both dosimeters were compared to establish if any relation exists between them. The dosimeters were irradiated in a water phantom with the centre of their top surfaces (0.32×0.32 cm 2), placed at dmax perpendicular to the radiation beam on the central axis. For LiF TLD, dose responses ranged from 0.945±0.017 to 0.997±0.011. For the diamond TLD, the dose response ranged from 0.940±0.017 to 1.018±0.011. To correct for dose responses by both dosimeters, energy correction factors were generated from dose response results of both TLDs. For LiF TLD, these correction factors ranged from 1.003 up to 1.058 and for diamond TLD the factors ranged from 0.982 up to 1.064. The results show that diamond TLDs can be used in the place of the well-established LiF TLDs and that Monte Carlo code systems can be used in dose determinations for radiotherapy treatment planning.

  12. Optical tomograph optimized for tumor detection inside highly absorbent organs

    NASA Astrophysics Data System (ADS)

    Boutet, Jérôme; Koenig, Anne; Hervé, Lionel; Berger, Michel; Dinten, Jean-Marc; Josserand, Véronique; Coll, Jean-Luc

    2011-05-01

    This paper presents a tomograph for small animal fluorescence imaging. The compact and cost-effective system described in this article was designed to address the problem of tumor detection inside highly absorbent heterogeneous organs, such as lungs. To validate the tomograph's ability to detect cancerous nodules inside lungs, in vivo tumor growth was studied on seven cancerous mice bearing murine mammary tumors marked with Alexa Fluor 700. They were successively imaged 10, 12, and 14 days after the primary tumor implantation. The fluorescence maps were compared over this time period. As expected, the reconstructed fluorescence increases with the tumor growth stage.

  13. Computer program for absorbed dose to the breast in mammography. Final report

    SciTech Connect

    Andersen, L.W.; Rosenstein, M.

    1985-07-01

    Two computer programs are used to generate absorbed dose to tissues in the breast from mammographic procedures. The first program calculates the absorbed dose to total breast tissue and glandular tissue for five reference breast sizes and several compositions, for a number of mammographic x-ray spectra. A data file is generated containing these data. The second program uses the data file generated by the first program, and produces for each reference breast and breast composition a mathematical curve fit as a function of beam quality (HVL, mm Al), using a polynomial expansion. Data tables are then produced by interpolation at discrete values of beam quality. The programs are in FORTRAN IV and run on an IBM 370/168 system using Multiple Virtual Storage. All input/output files are sequential.

  14. Measurement of absorbed dose rate of gamma radiation for lead compounds

    NASA Astrophysics Data System (ADS)

    Rudraswamy, B.; Dhananjaya, N.; Manjunatha, H. C.

    2010-07-01

    An attempt has been made to estimate the absorbed dose rate using both theoretical and measured mass energy attenuation coefficient of gamma for the lead compounds such as PbNO 3, PbCl 2, PbO 2 and PbO using various gamma sources such as 22Na (511, 1274), 137Cs (661.6), 54Mn (835) and 60Co (1173, 1332 keV).

  15. Simulations of absorbed dose on the phantom surface of MATROSHKA-R experiment at the ISS

    NASA Astrophysics Data System (ADS)

    Kolísková (Mrázová), Z.; Sihver, L.; Ambrožová, I.; Sato, T.; Spurný, F.; Shurshakov, V. A.

    2012-01-01

    The health risks associated with exposure to various components of space radiation are of great concern when planning manned long-term interplanetary missions, such as future missions to Mars. Since it is not possible to measure the radiation environment inside of human organs in deep space, simulations based on radiation transport/interaction codes coupled to phantoms of tissue equivalent materials are used. However, the calculated results depend on the models used in the codes, and it is therefore necessary to verify their validity by comparison with measured data. The goal of this paper is to compare absorbed doses obtained in the MATROSHKA-R experiment performed at the International Space Station (ISS) with simulations performed with the three-dimensional Monte Carlo Particle and Heavy-Ion Transport code System (PHITS). The absorbed dose was measured using passive detectors (packages of thermoluminescent and plastic nuclear track detectors) placed on the surface of the spherical tissue equivalent phantom MATROSHKA-R, which was exposed aboard the ISS in the Service Zvezda Module from December 2005 to September 2006. The data calculated by PHITS assuming an ISS shielding of 3 g/cm2 and 5 g/cm2 aluminum mass thickness were in good agreement with the measurements. Using a simplified geometrical model of the ISS, the influence of variations in altitude and wall mass thickness of the ISS on the calculated absorbed dose was estimated. The uncertainties of the calculated data are also discussed; the relative expanded uncertainty of absorbed dose in phantom was estimated to be 44% at a 95% confidence level.

  16. Absorbed doses and energy imparted from radiographic examination of velopharyngeal function during speech

    SciTech Connect

    Isberg, A.; Julin, P.; Kraepelien, T.; Henrikson, C.O. )

    1989-04-01

    Absorbed doses of radiation were measured by thermoluminescent dosimeters (TLDs) using a skull phantom during simulated cinefluorographic and videofluorographic examination of velopharyngeal function in frontal and lateral projections. Dosages to the thyroid gland, the parotid gland, the pituitary gland, and ocular lens were measured. Radiation dosage was found to be approximately 10 times less for videofluoroscopy when compared with that of cinefluoroscopy. In addition, precautionary measures were found to reduce further the exposure of radiation-sensitive tissues. Head fixation and shielding resulted in dose reduction for both video- and cinefluoroscopy. Pulsing exposure for cinefluoroscopy also reduced the dosage.

  17. Absorbed Dose Calculations Using Mesh-based Human Phantoms And Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Kramer, Richard

    2011-08-01

    Health risks attributable to the exposure to ionizing radiation are considered to be a function of the absorbed or equivalent dose to radiosensitive organs and tissues. However, as human tissue cannot express itself in terms of equivalent dose, exposure models have to be used to determine the distribution of equivalent dose throughout the human body. An exposure model, be it physical or computational, consists of a representation of the human body, called phantom, plus a method for transporting ionizing radiation through the phantom and measuring or calculating the equivalent dose to organ and tissues of interest. The FASH2 (Female Adult meSH) and the MASH2 (Male Adult meSH) computational phantoms have been developed at the University of Pernambuco in Recife/Brazil based on polygon mesh surfaces using open source software tools and anatomical atlases. Representing standing adults, FASH2 and MASH2 have organ and tissue masses, body height and body mass adjusted to the anatomical data published by the International Commission on Radiological Protection for the reference male and female adult. For the purposes of absorbed dose calculations the phantoms have been coupled to the EGSnrc Monte Carlo code, which can transport photons, electrons and positrons through arbitrary media. This paper reviews the development of the FASH2 and the MASH2 phantoms and presents dosimetric applications for X-ray diagnosis and for prostate brachytherapy.

  18. Verification of absorbed dose using diodes in cobalt-60 radiation therapy.

    PubMed

    Gadhi, Muhammad Asghar; Fatmi, Shahab; Chughtai, Gul M; Arshad, Muhammad; Shakil, Muhammad; Rahmani, Uzma Mahmood; Imran, Malik Younas; Buzdar, Saeed Ahmad

    2016-03-01

    The objective of this work was to enhance the quality and safety of dose delivery in the practice of radiation oncology. To achieve this goal, the absorbed dose verification program was initiated by using the diode in vivo dosimetry (IVD) system (for entrance and exit). This practice was implemented at BINO, Bahawalpur, Pakistan. Diodes were calibrated for making absorbed dose measurements. Various correction factors (SSD, dose non-linearity, field size, angle of incidence, and wedge) were determined for diode IVD system. The measurements were performed in phantom in order to validate the IVD procedure. One hundred and nineteen patients were monitored and 995 measurements were performed. For phantom, the percentage difference between measured and calculated dose for entrance setting remained within ±2% and for exit setting ±3%. For patient measurements, the percentage difference between measured and calculated dose remained within ±5% for entrance/open fields and ±7% for exit/wedge/oblique fields. One hundred and nineteen patients and 995 fields have been monitored during the period of 6 months. The analysis of all available measurements gave a mean percent deviation of ±1.19% and standard deviation of ±2.87%. Larger variations have been noticed in oblique, wedge and exit measurements. This investigation revealed that clinical dosimetry using diodes is simple, provides immediate results and is a useful quality assurance tool for dose delivery. It has enhanced the quality of radiation dose delivery and increased/improved the reliability of the radiation therapy practice in BINO. PMID:26753835

  19. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    SciTech Connect

    Supe, Sanjay S. Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M.

    2009-04-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome

  20. SU-E-I-85: Absorbed Dose Estimation for a Commercially Available MicroCT Scanner

    SciTech Connect

    Lau, A; Ahmad, S; Chen, Y; Ren, L; Liu, H; Yang, K

    2015-06-15

    Purpose: To quantify the simulated absorbed dose delivered for a typical scan from a commercially available microCT scanner in order to aid in the dose estimation. Methods: The simulations were conducted using the Geant4 Monte Carlo Toolkit (version 10) with the standard electromagnetic classes. The Quantum FX microCT scanner (PerkinElmer, Waltham, MA) was modeled incorporating the energy fluence and angular distributions of generated photons, spatial dimensions of nominal source-to-object and source-to-detector distances. The energy distribution was measured using a spectrometer (X-123CdTe, Amptek Inc., Bedford, USA) with a 300 angular spread from the source for the 90 kVp X-ray beams with no additional filtration. The nominal distances from the source to object consisted of three setups: 154.0 mm, 104.0 mm, and 51.96 mm. Our simulations recorded the dose absorbed in a cylindrical phantom of PMMA with a fixed length of 2 cm and varying radii (10, 20, 30 and 40 mm) using 100 million incident photons. The averaged absorbed dose in the object was then quantified for all setups. An exposure measurement of 417 mR was taken using a Radcal 9095 system utilizing 10×9–180 ion chamber with the given technique of 90 kVp, 63 μA, and 12 s. The exposure rate was also simulated with same setup to calculate the conversion factor of the beam current and the number of incident photons. Results: For a typical cone-beam scan with non-filtered 90kVp, the dose coefficients (the absorbed dose per mAs) were 2.614, 2.549 and 2.467 μGy/mAs under source to object distance of 104 mm for the object diameters of 10 mm, 20 mm and 30 mm, respectively. Conclusion: A look-up table was developed where an investigator can estimate the delivered dose using this particular microCT given the scanning protocol (kVp and mAs) as well as the size of the scanned object.

  1. Fine-Resolution Voxel S Values for Constructing Absorbed Dose Distributions at Variable Voxel Size

    PubMed Central

    Dieudonné, Arnaud; Hobbs, Robert F.; Bolch, Wesley E.; Sgouros, George; Gardin, Isabelle

    2010-01-01

    This article presents a revised voxel S values (VSVs) approach for dosimetry in targeted radiotherapy, allowing dose calculation for any voxel size and shape of a given SPECT or PET dataset. This approach represents an update to the methodology presented in MIRD pamphlet no. 17. Methods VSVs were generated in soft tissue with a fine spatial sampling using the Monte Carlo (MC) code MCNPX for particle emissions of 9 radionuclides: 18F, 90Y, 99mTc, 111In, 123I, 131I, 177Lu, 186Re, and 201Tl. A specific resampling algorithm was developed to compute VSVs for desired voxel dimensions. The dose calculation was performed by convolution via a fast Hartley transform. The fine VSVs were calculated for cubic voxels of 0.5 mm for electrons and 1.0 mm for photons. Validation studies were done for 90Y and 131I VSV sets by comparing the revised VSV approach to direct MC simulations. The first comparison included 20 spheres with different voxel sizes (3.8–7.7 mm) and radii (4–64 voxels) and the second comparison a hepatic tumor with cubic voxels of 3.8 mm. MC simulations were done with MCNPX for both. The third comparison was performed on 2 clinical patients with the 3D-RD (3-Dimensional Radiobiologic Dosimetry) software using the EGSnrc (Electron Gamma Shower National Research Council Canada)-based MC implementation, assuming a homogeneous tissue-density distribution. Results For the sphere model study, the mean relative difference in the average absorbed dose was 0.20% ± 0.41% for 90Y and −0.36% ± 0.51% for 131I (n = 20). For the hepatic tumor, the difference in the average absorbed dose to tumor was 0.33% for 90Y and −0.61% for 131I and the difference in average absorbed dose to the liver was 0.25% for 90Y and −1.35% for 131I. The comparison with the 3D-RD software showed an average voxel-to-voxel dose ratio between 0.991 and 0.996. The calculation time was below 10 s with the VSV approach and 50 and 15 h with 3D-RD for the 2 clinical patients. Conclusion This new

  2. The estimation of absorbed dose rates for non-human biota: an extended intercomparison.

    PubMed

    Vives i Batlle, J; Beaugelin-Seiller, K; Beresford, N A; Copplestone, D; Horyna, J; Hosseini, A; Johansen, M; Kamboj, S; Keum, D-K; Kurosawa, N; Newsome, L; Olyslaegers, G; Vandenhove, H; Ryufuku, S; Vives Lynch, S; Wood, M D; Yu, C

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota. PMID:21113609

  3. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    SciTech Connect

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.; Copplestone, D.; Horyna, J.; Hosseini, A.; Johansen, M.; Kamboj, S.; Keum, D.-K.; Kurosawa, N.; Newsome, L.; Olyslaegers, G.; Vandenhove, H.; Ryufuku, S.; Lynch, S. V.; Wood, M. D.; Yu, C.

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.

  4. Estimation of radiation absorbed doses to the red marrow in radioimmunotherapy

    SciTech Connect

    Macey, D.J.; DeNardo, S.J.; DeNardo, G.L.; DeNardo, D.A.; Sui Shen

    1995-02-01

    Myelotoxicity is the dose-limiting factor in radioimmunotherapy. Traditional methods most commonly used to estimate the radiation adsorbed dose to the bone marrow of patients consider contribution from radionuclide in the blood and/or total body. Targeted therapies, such as radioimmunotherapy, add a third potential source for radiation to the bone marrow because the radiolabeled targeting molecules can accumulate specifically on malignant target cells infiltrating the bone marrow. A non-invasive method for estimating the radiation absorbed dose to the red marrow of patients who have received radiolabeled monoclonal antibodies (MoAb) has been developed and explored. The method depends on determining the cumulated activity in three contributing sources: (1) marrow; (2) blood; and (3) total body. The novel aspect of this method for estimating marrow radiation dose is derivation of the radiation dose for the entire red marrow from radiation dose estimates obtained by detection of cumulated activity in three lumbar vertebrae using a gamma camera. Contributions to the marrow radiation dose form marrow, blood, and total body cumulated activity were determined for patients who received an I-131 labeled MoAb, Lym-1, that reacts with malignant B-lymphocytes of chronic lymphocytic leukemia and nonHodgkin`s lymphoma. Six patients were selected for illustrative purposes because their vertebrae were readily visualized on lumbar images. 32 refs., 6 figs., 1 tab.

  5. Assessment of indoor absorbed gamma dose rate from natural radionuclides in concrete by the method of build-up factors.

    PubMed

    Manić, Vesna; Nikezic, Dragoslav; Krstic, Dragana; Manić, Goran

    2014-12-01

    The specific absorbed gamma dose rates, originating from natural radionuclides in concrete, were calculated at different positions of a detection point inside the standard room, as well as inside an example room. The specific absorbed dose rates corresponding to a wall with arbitrary dimensions and thickness were also evaluated, and appropriate fitting functions were developed, enabling dose rate calculation for most realistic rooms. In order to make calculation simpler, the expressions fitting the exposure build-up factors for whole (238)U and (232)Th radionuclide series and (40)K were derived in this work, as well as the specific absorbed dose rates from a point source in concrete. Calculated values of the specific absorbed dose rates at the centre point of the standard room for (238)U, (232)Th and (40)K are in the ranges of previously obtained data. PMID:24421381

  6. Estimation of dose absorbed fraction for 131I-beta rays in rat thyroid.

    PubMed

    Endo, S; Nitta, Y; Ohtaki, M; Takada, J; Stepanenko, V; Komatsu, K; Tauchi, H; Matsuura, S; Iaskova, E; Hoshi, M

    1998-09-01

    The dose absorbed fraction of rat thyroid by internal deposit of 131I has been calculated as a function of effective diameter of thyroid. The calculations were done using two types of Monte Carlo simulations: one was by a simple energy-loss calculation in spherical volume according to the electron stopping power, and another by a more realistic simulation using Monte Carlo N-Particle Transport code system Version 4A (MCNP). These two calculations were consistent with each other within a deviation of 5%. The absorbed fractions in spherical thyroid were drastically changed up to 5 mm diameter, and then almost all energy was deposited within 10 mm diameter. For the practical application to the animal experiment, the absorbed fractions of ellipsoid-shaped thyroids were also calculated for 1-, 4- and 9-week-old rats, where the fractions were estimated to be 0.61, 0.67 and 0.68, respectively. It was also found that the absorbed fraction of the ellipsoid with various dimensions can be simulated by a calculation for spherical volume with a comparable effective diameter. PMID:9868871

  7. Measurement of absorbed dose-to-water for an HDR {sup 192}Ir source with ionization chambers in a sandwich setup

    SciTech Connect

    Araki, Fujio; Kouno, Tomohiro; Ohno, Takeshi; Kakei, Kiyotaka; Yoshiyama, Fumiaki; Kawamura, Shinji

    2013-09-15

    Purpose: In this study, a dedicated device for ion chamber measurements of absorbed dose-to-water for a Nucletron microSelectron-v2 HDR {sup 192}Ir brachytherapy source is presented. The device uses two ionization chambers in a so-called sandwich assembly. Using this setup and by taking the average reading of the two chambers, any dose error due to difficulties in absolute positioning (centering) of the source in between the chambers is cancelled to first order. The method's accuracy was examined by comparing measurements with absorbed dose-to-water determination based on the AAPM TG-43 protocol.Methods: The optimal source-to-chamber distance (SCD) for {sup 192}Ir dosimetry was determined from ion chamber measurements in a water phantom. The {sup 192}Ir source was sandwiched between two Exradin A1SL chambers (0.057 cm{sup 3}) at the optimal SCD separation. The measured ionization was converted to the absorbed dose-to-water using a {sup 60}Co calibration factor and a Monte Carlo-calculated beam quality conversion factor, k{sub Q}, for {sup 60}Co to {sup 192}Ir. An uncertainty estimate of the proposed method was determined based on reproducibility of measurements at different institutions for the same type of source.Results: The optimal distance for the A1SL chamber measurements was determined to be 5 cm from the {sup 192}Ir source center, considering the depth dependency of k{sub Q} for {sup 60}Co to {sup 192}Ir and the chamber positioning. The absorbed dose to water measured at (5 cm, 90°) on the transverse axis was 1.3% lower than TG-43 values and its reproducibility and overall uncertainty were 0.8% and 1.7%, respectively. The measurement doses at anisotropic points agreed within 1.5% with TG-43 values.Conclusions: The ion chamber measurement of absorbed dose-to-water with a sandwich method for the {sup 192}Ir source provides a more accurate, direct, and reference dose compared to the dose-to-water determination based on air-kerma strength in the TG-43 protocol

  8. Effect of gamma ray absorbed dose on the FET transistor parameters

    NASA Astrophysics Data System (ADS)

    Eslami, Baharak; Ashrafi, Saleh

    This article tries to explain a modified method on dosimetry, based on electronic solid state including MOSFET (metal oxide semiconductor field effect) transistors. For this purpose, behavior of two models of MOSFETs has been studied as a function of the absorbed dose. The MOSFETs were irradiated at room temperature by 137Cs gamma ray source in the dose range of 1-5 Gy. Threshold voltage variation of investigated samples has been studied based on their transfer characteristic curves (TF) and also using the readout circuit (RC). For evaluation of laboratory samples sensitivity at different operating conditions, different biases were applied on the gate. In practical applications of radiation dosimetry, a significant change occurs in the threshold voltage of irradiated MOSFETs. And sensitivity of these MOSFETs is increased with increasing the bias values. Therefore, these transistors can be excellent candidates as low-cost sensors for systems that are capable of measuring gamma radiation dose.

  9. Relative Efficiency of TLD-100 to Linear Energy Transfer Radiation: Correction to Astronaut Absorbed Dose

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.

    1999-01-01

    Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to (137)Cs dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.

  10. Relative Efficiency of TLD-100 to High Linear Energy Transfer Radiation: Correction to Astronaut Absorbed Dose

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.

    1999-01-01

    Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to 137Cs) dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.

  11. [Estimation of absorbed dose of beta radiation into the critical tissues by a single injection of tritiated water].

    PubMed

    Tsuchiya, T; Norimura, T; Yamamoto, H; Hatakeyama, S; Dohi, S; Kunugita, N

    1988-12-01

    The biological effects of tritium in humans need to be clarified, because the chances of humans becoming exposed to tritium beta radiation may increase with the development of the nuclear fusion reactor. To evaluate the biological effects of tritium, it is necessary to estimate exactly the absorbed dose from the tritium beta rays in the tissue. In many reports, the absorbed dose of HTO in the tissues is estimated from the tritium content in body fluid and dose calculations are customarily based upon the water content of soft tissues, which is taken to be 0.7 to 0.8. However, these methods may not show the exact absorbed dose in the organs. In the present study, the radioactivity of the critical tissues was measured directly using a sample oxidizer and the absorbed dose was calculated from the radioactivity of tritium in the tissues. Details on the method for calculation of the absorbed dose in tissues of the mouse is shown in this report. The results suggest that the absorbed dose should be obtained from the radioactivity in the tissues. PMID:3212298

  12. The effect of systematic set-up deviations on the absorbed dose distribution for left-sided breast cancer treated with respiratory gating

    NASA Astrophysics Data System (ADS)

    Edvardsson, A.; Ceberg, S.

    2013-06-01

    The aim of this study was 1) to investigate interfraction set-up uncertainties for patients treated with respiratory gating for left-sided breast cancer, 2) to investigate the effect of the inter-fraction set-up on the absorbed dose-distribution for the target and organs at risk (OARs) and 3) optimize the set-up correction strategy. By acquiring multiple set-up images the systematic set-up deviation was evaluated. The effect of the systematic set-up deviation on the absorbed dose distribution was evaluated by 1) simulation in the treatment planning system and 2) measurements with a biplanar diode array. The set-up deviations could be decreased using a no action level correction strategy. Not using the clinically implemented adaptive maximum likelihood factor for the gating patients resulted in better set-up. When the uncorrected set-up deviations were simulated the average mean absorbed dose was increased from 1.38 to 2.21 Gy for the heart, 4.17 to 8.86 Gy to the left anterior descending coronary artery and 5.80 to 7.64 Gy to the left lung. Respiratory gating can induce systematic set-up deviations which would result in increased mean absorbed dose to the OARs if not corrected for and should therefore be corrected for by an appropriate correction strategy.

  13. Technique-dependent decrease in thyroid absorbed dose for dental radiography

    SciTech Connect

    Wood, R.E.; Bristow, R.G.; Clark, G.M.; Nussbaum, C.; Taylor, K.W.

    1989-06-01

    A LiF thermoluminescent dosimetry (TLD) system, calibrated in the tissue of interest with the beam used for experimentation, was employed to investigate dosages (muGy) to the thyroid region of an anthropomorphic phantom resultant from two dental complete-mouth radiographic procedures. Both techniques were compared in terms of dosages associated with combinations of lead apron and thyroid collar shielding while using a 70-kVp or 90-kVp x-ray beam for a 20-film complete-mouth series. Lead shielding significantly decreased the dose to the thyroid using both techniques (p less than 0.05). The use of the 90-kVp beam resulted in a significant reduction in the thyroid absorbed dose when using the bisecting angle technique (p less than 0.05) but caused a significant increase in the thyroid absorbed dose when the paralleling technique was used (p less than 0.05). The implementation of higher kilovoltage techniques in dental offices must therefore be dependent on the radiographic technique employed.

  14. Selective fallopian tube catheterisation in female infertility: clinical results and absorbed radiation dose.

    PubMed

    Nakamura, K; Ishiguchi, T; Maekoshi, H; Ando, Y; Tsuzaka, M; Tamiya, T; Suganuma, N; Ishigaki, T

    1996-01-01

    Clinical results of fluoroscopic fallopian tube catheterisation and absorbed radiation doses during the procedure were evaluated in 30 infertility patients with unilateral or bilateral tubal obstruction documented on hysterosalpingography. The staged technique consisted of contrast injection through an intrauterine catheter with a vacuum cup device, ostial salpingography with the wedged catheter, and selective salpingography with a coaxial microcatheter. Of 45 fallopian tubes examined, 35 (78%) were demonstrated by the procedure, and at least one tube was newly demonstrated in 26 patients (87%). Six of these patients conceived spontaneously in the follow-up period of 1-11 months. Four pregnancies were intrauterine and 2 were ectopic. This technique provided accurate and detailed information in the diagnosis and treatment of tubal obstruction in infertility patients. The absorbed radiation dose to the ovary in the average standardised procedure was estimated to be 0.9 cGy. Further improvement in the X-ray equipment and technique is required to reduce the radiation dose. PMID:8798025

  15. SU-FF-T-390: In-Vivo Prostate Brachytherapy Absorbed Dose Measurements

    SciTech Connect

    Gueye, Paul; Velasco, Carlos; Keppel, Cynthia; Murphy, B; Sinesi, C

    2009-06-01

    Purpose: In-vivo prostate brachytherapy absorbed dosimetrydetector using scintillating fibers. Method and Materials: Five pairs of 85.5 {+-} 0.05 cm long blue shifted scintillating fibers (model BCF-10) with 1 mm{sup 2} cross sectional area were placed in a mixture of gelatin (368.6 {+-} 0.5 grams) and water (3.78 {+-} 0.025 liters) to measured the absorbed dose delivered by a 12 Ci {sup 192}Ir HDR source. The fibers were held by a 7 x 7 cm{sup 2} template grid and optically connected to a 16-channel multianode photomultiplier tube (Hamamatsu, model H6568). Each pair consisted of one fiber 4 mm shorter than the other one to extract the dose by the subtraction method. A dose atlas was used for radiation delivered to the phantom. The plans followed delivered 5 and 7 Gy to a point located 2.0 centimeters away from the central dwelling positions. A total of 32 data points were acquired in a plan to assess the linearity and reproducibility of the measurements.Results: Reproducibility of the data was found to be within 5% and the overall accuracy of the system estimated to be {+-}5.5%. The linearity of the data for all 7 measureddose values (ranging from 0.6 to 7 Gy), gives a slope of 312 counts/Gy with a 1.4% relative deviation. Conclusion: This work indicates the possibility of measuring in real-time the dose effectively delivered to a biological system during prostate brachytherapy treatments. The availability of commercially thin (150 {micro}m) scintillating fibers opens the capability of using such system during clinical treatments (by embedding the fibers within the catheters) with the advantage of performing real-time adjustment of the dose delivery.

  16. Uncertainties in electron-absorbed fractions and lung doses from inhaled beta-emitters.

    PubMed

    Farfán, Eduardo B; Bolch, Wesley E; Huston, Thomas E; Rajon, Didier A; Huh, Chulhaeng; Bolch, W Emmett

    2005-01-01

    The computer code LUDUC (Lung Dose Uncertainty Code), developed at the University of Florida, was originally used to investigate the range of potential doses from the inhalation of either plutonium or uranium oxides. The code employs the ICRP Publication 66 Human Respiratory Tract model; however, rather than using simple point estimates for each of the model parameters associated with particle deposition, clearance, and lung-tissue dosimetry, probability density functions are ascribed to these parameters based upon detailed literature review. These distributions are subsequently sampled within LUDUC using Latin hypercube sampling techniques to generate multiple (e.g., approximately 1,000) sets of input vectors (i.e., trials), each yielding a unique estimate of lung dose. In the present study, the dosimetry component of the ICRP-66 model within LUDUC has been extended to explicitly consider variations in the beta particle absorbed fraction due to corresponding uncertainties and biological variabilities in both source and target tissue depths and thicknesses within the bronchi and bronchioles of the thoracic airways. Example dose distributions are given for the inhalation of absorption Type S compounds of 90Sr (Tmax = 546 keV) and 90Y (Tmax = 2,284 keV) as a function of particle size. Over the particle size range of 0.001 to 1 microm, estimates of total lung dose vary by a factor of 10 for 90Sr particles and by a factor of 4 to 10 for 90Y particles. As the particle size increases to 10 microm, dose uncertainties reach a factor of 100 for both radionuclides. In comparisons to identical exposures scenarios run by the LUDEP 2.0 code, Reference Man doses for inhaled beta-emitters were shown to provide slightly conservative estimates of lung dose compared to those in this study where uncertainties in lung airway histology are considered. PMID:15596988

  17. Estimation of the absorbed dose in radiation-processed food. 4. EPR measurements on eggshell

    SciTech Connect

    Desrosiers, M.F.; Le, F.G. ); Harewood, P.M.; Josephson, E.S. ); Montesalvo, M. )

    1993-09-01

    Fresh whole eggs treated with ionizing radiation for Salmonellae control testing. The eggshell was then removed and examined by electron paramagnetic resonance (EPR) spectroscopy to determine if EPR could be used to (1) distinguish irradiated from unirradiated eggs and (2) assess the absorbed dose. No EPR signals were detected in unirradiated eggs, while strong signals were measurable for more than 200 days after irradiation. Although a number of EPR signals were measured, the most intense resonance (g = 2.0019) was used for dosimetry throughout the study. This signal was observed to increase linearly with dose (up to [approximately]6 kGy), which decayed [approximately]20% within the first 5 days after irradiation and remained relatively constant thereafter. The standard added-dose method was used to assess, retrospectively, the dose to eggs processed at 0.2, 0.7, and 1.4 kGy. Relatively good results were obtained when measurement was made on the day the shell was reirradiated; with this procedure estimates were better for shell processed at the lower doses.

  18. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  19. Simulation of the upper gastrointestinal fluoroscopic examination for calculation of absorbed dose in tissue.

    PubMed

    Stern, S H; Dennis, M J; Williams, G; Rosenstein, M

    1995-09-01

    In order to simulate the upper gastrointestinal fluoroscopic examination, modifications were made to the Monte Carlo radiation-transport code that uses the anthropomorphic, mathematical reference phantoms ADAM and EVA. A set of discrete x-ray field projections of the principal anatomy of clinical interest has been previously defined. This note describes the new features incorporated in the simulations--divergent beams in oblique irradiation geometries, an esophagus and a duodenum, a double contrast medium consisting of a BaSO4-H2O mixture and air in the esophagus, stomach, and duodenum, and clinically representative beam qualities. The absorbed doses in tissues per unit entrance exposure (free-in-air) computed with the modified code appeared in Department of Health and Human Services Publication FDA 92-8282, Handbook of Selected Tissue Doses for the Upper Gastrointestinal Fluoroscopic Examination. A minor correction is described for the previously reported results for the esophagus. PMID:7635736

  20. Thyroid absorbed dose for people at Rongelap, Utirik, and Sifo on March 1, 1954

    SciTech Connect

    Lessard, E.T.; Miltenberger, R.P.; Conrad, R.A.; Musoline, S.V.; Naidu, J.R.; Moorthy, A.; Schopfer, C.J.

    1985-03-01

    A study was undertaken to reexamine thyroid absorbed dose estimates for people accidentally exposed to fallout at Rongelap, Sifo, and Utirik Islands from the Pacific weapon test known as Operation Castle BRAVO. The study included: (1) reevaluation of radiochemical analysis, to relate results from pooled urine to intake, retention, and excretion functions; (2) analysis of neutron-irradiation studies of archival soil samples, to estimate areal activities of the iodine isotopes; (3) analysis of source term, weather data, and meteorological functions used in predicting atmospheric diffusion and fallout deposition, to estimate airborne concentrations of the iodine isotopes; and (4) reevaluation of radioactive fallout, which contaminated a Japanese fishing vessel in the vicinity of Rongelap Island on March 1, 1954, to determine fallout components. The conclusions of the acute exposure study were that the population mean thyroid absorbed doses were 21 gray (2100 rad) at Rongelap, 6.7 gray (670 rad) at Sifo, and 2.8 gray (280 rad) at Utirik. The overall thyroid cancer risk we estimated was in agreement with results published on the Japanese exposed at Nagasaki and Hiroshima. We now postulate that the major route for intake of fallout was by direct ingestion of food prepared and consumed outdoors. 66 refs., 13 figs., 25 tabs.

  1. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    NASA Astrophysics Data System (ADS)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients ( R2) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables ( chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated.

  2. A Comparison of Model Calculation and Measurement of Absorbed Dose for Proton Irradiation. Chapter 5

    NASA Technical Reports Server (NTRS)

    Zapp, N.; Semones, E.; Saganti, P.; Cucinotta, F.

    2003-01-01

    With the increase in the amount of time spent EVA that is necessary to complete the construction and subsequent maintenance of ISS, it will become increasingly important for ground support personnel to accurately characterize the radiation exposures incurred by EVA crewmembers. Since exposure measurements cannot be taken within the organs of interest, it is necessary to estimate these exposures by calculation. To validate the methods and tools used to develop these estimates, it is necessary to model experiments performed in a controlled environment. This work is such an effort. A human phantom was outfitted with detector equipment and then placed in American EMU and Orlan-M EVA space suits. The suited phantom was irradiated at the LLUPTF with proton beams of known energies. Absorbed dose measurements were made by the spaceflight operational dosimetrist from JSC at multiple sites in the skin, eye, brain, stomach, and small intestine locations in the phantom. These exposures are then modeled using the BRYNTRN radiation transport code developed at the NASA Langley Research Center, and the CAM (computerized anatomical male) human geometry model of Billings and Yucker. Comparisons of absorbed dose calculations with measurements show excellent agreement. This suggests that there is reason to be confident in the ability of both the transport code and the human body model to estimate proton exposure in ground-based laboratory experiments.

  3. Annual dose of noise absorbed by machine drivers in wine and cereal growing.

    PubMed

    Franzinelli, A; Maiorano, M; De Capua, B; Masini, M; Vieri, M; Cipolla, G

    1988-05-01

    We calculated the annual noise dose absorbed by machine drivers engaged in wine and cereal growing. In order to do that it has been measured the average daily noise dose in the various mechanized operations and then calculated in respect of its duration in a working year. The days spent in manual works were also taken in account. The annual dose of noise became somewhat higher than 90 dB(A) in wine growing, while in cereal growing it was a bit higher than 95 dB(A). The reliability of these data was confirmed by an epidemiological study of hearing damage. In 106 tractor-drivers, employed in farms where wine and cereal growings are done, it was found that the hearing threshold shift due to noise (average 1000-2000-4000 Hz) in relation to the years of employment, had a similar course to that forecasted by the Normative ISO-DIS 1999 in those exposed to a noise dose of 95 dB(A). PMID:3154753

  4. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates.

    PubMed

    Fournier, P; Crosbie, J C; Cornelius, I; Berkvens, P; Donzelli, M; Clavel, A H; Rosenfeld, A B; Petasecca, M; Lerch, M L F; Bräuer-Krisch, E

    2016-07-21

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency's TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called 'current ramping' method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials. PMID:27366861

  5. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  6. An Absorbed-Dose/Dose-Rate Dependence for the Alanine-EPR Dosimetry System and Its Implications in High-Dose Ionizing Radiation Metrology

    PubMed Central

    Desrosiers, M. F.; Puhl, J. M.; Cooper, S. L.

    2008-01-01

    NIST developed the alanine dosimetry system in the early 1990s to replace radiochromic dye film dosimeters. Later in the decade the alanine system was firmly established as a transfer service for high-dose radiation dosimetry and an integral part of the internal calibration scheme supporting these services. Over the course of the last decade, routine monitoring of the system revealed a small but significant observation that, after examination, led to the characterization of a previously unknown absorbed-dose-dependent, dose-rate effect for the alanine system. Though the potential impact of this effect is anticipated to be extremely limited for NIST’s customer-based transfer dosimetry service, much greater implications may be realized for international measurement comparisons between National Measurement Institutes. PMID:27096113

  7. Reduction of absorbed dose in radiography of the breast. Experience with a new screen-film combination.

    PubMed

    Andersson, I; Andrén, L; Nilsson, M; Pettersson, C

    1977-03-01

    The mean absorbed dose in radiography of the breast with industrial film (Mamoray T3, Agfa-Gevaert), the Lo-dose system (Du Pont) and a new screen-film combination (MR 50-Mamoray RP 3, Agfa-Gevaert) was determined. The mean values were 17,2 and 1 mGy, respectively. Thus, the absorbed dose was considerably reduced by using the screen-film combination. This is of utmost importance as the potential risk of inducing malignancy is remarkably reduced, probably negligible. PMID:860660

  8. Dose-mass inverse optimization for minimally moving thoracic lesions

    NASA Astrophysics Data System (ADS)

    Mihaylov, I. B.; Moros, E. G.

    2015-05-01

    In the past decade, several different radiotherapy treatment plan evaluation and optimization schemes have been proposed as viable approaches, aiming for dose escalation or an increase of healthy tissue sparing. In particular, it has been argued that dose-mass plan evaluation and treatment plan optimization might be viable alternatives to the standard of care, which is realized through dose-volume evaluation and optimization. The purpose of this investigation is to apply dose-mass optimization to a cohort of lung cancer patients and compare the achievable healthy tissue sparing to that one achievable through dose-volume optimization. Fourteen non-small cell lung cancer (NSCLC) patient plans were studied retrospectively. The range of tumor motion was less than 0.5 cm and motion management in the treatment planning process was not considered. For each case, dose-volume (DV)-based and dose-mass (DM)-based optimization was performed. Nine-field step-and-shoot IMRT was used, with all of the optimization parameters kept the same between DV and DM optimizations. Commonly used dosimetric indices (DIs) such as dose to 1% the spinal cord volume, dose to 50% of the esophageal volume, and doses to 20 and 30% of healthy lung volumes were used for cross-comparison. Similarly, mass-based indices (MIs), such as doses to 20 and 30% of healthy lung masses, 1% of spinal cord mass, and 33% of heart mass, were also tallied. Statistical equivalence tests were performed to quantify the findings for the entire patient cohort. Both DV and DM plans for each case were normalized such that 95% of the planning target volume received the prescribed dose. DM optimization resulted in more organs at risk (OAR) sparing than DV optimization. The average sparing of cord, heart, and esophagus was 23, 4, and 6%, respectively. For the majority of the DIs, DM optimization resulted in lower lung doses. On average, the doses to 20 and 30% of healthy lung were lower by approximately 3 and 4%, whereas lung

  9. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark.

    PubMed

    Renner, F; Wulff, J; Kapsch, R-P; Zink, K

    2015-10-01

    There is a need to verify the accuracy of general purpose Monte Carlo codes like EGSnrc, which are commonly employed for investigations of dosimetric problems in radiation therapy. A number of experimental benchmarks have been published to compare calculated values of absorbed dose to experimentally determined values. However, there is a lack of absolute benchmarks, i.e. benchmarks without involved normalization which may cause some quantities to be cancelled. Therefore, at the Physikalisch-Technische Bundesanstalt a benchmark experiment was performed, which aimed at the absolute verification of radiation transport calculations for dosimetry in radiation therapy. A thimble-type ionization chamber in a solid phantom was irradiated by high-energy bremsstrahlung and the mean absorbed dose in the sensitive volume was measured per incident electron of the target. The characteristics of the accelerator and experimental setup were precisely determined and the results of a corresponding Monte Carlo simulation with EGSnrc are presented within this study. For a meaningful comparison, an analysis of the uncertainty of the Monte Carlo simulation is necessary. In this study uncertainties with regard to the simulation geometry, the radiation source, transport options of the Monte Carlo code and specific interaction cross sections are investigated, applying the general methodology of the Guide to the expression of uncertainty in measurement. Besides studying the general influence of changes in transport options of the EGSnrc code, uncertainties are analyzed by estimating the sensitivity coefficients of various input quantities in a first step. Secondly, standard uncertainties are assigned to each quantity which are known from the experiment, e.g. uncertainties for geometric dimensions. Data for more fundamental quantities such as photon cross sections and the I-value of electron stopping powers are taken from literature. The significant uncertainty contributions are identified as

  10. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark

    NASA Astrophysics Data System (ADS)

    Renner, F.; Wulff, J.; Kapsch, R.-P.; Zink, K.

    2015-10-01

    There is a need to verify the accuracy of general purpose Monte Carlo codes like EGSnrc, which are commonly employed for investigations of dosimetric problems in radiation therapy. A number of experimental benchmarks have been published to compare calculated values of absorbed dose to experimentally determined values. However, there is a lack of absolute benchmarks, i.e. benchmarks without involved normalization which may cause some quantities to be cancelled. Therefore, at the Physikalisch-Technische Bundesanstalt a benchmark experiment was performed, which aimed at the absolute verification of radiation transport calculations for dosimetry in radiation therapy. A thimble-type ionization chamber in a solid phantom was irradiated by high-energy bremsstrahlung and the mean absorbed dose in the sensitive volume was measured per incident electron of the target. The characteristics of the accelerator and experimental setup were precisely determined and the results of a corresponding Monte Carlo simulation with EGSnrc are presented within this study. For a meaningful comparison, an analysis of the uncertainty of the Monte Carlo simulation is necessary. In this study uncertainties with regard to the simulation geometry, the radiation source, transport options of the Monte Carlo code and specific interaction cross sections are investigated, applying the general methodology of the Guide to the expression of uncertainty in measurement. Besides studying the general influence of changes in transport options of the EGSnrc code, uncertainties are analyzed by estimating the sensitivity coefficients of various input quantities in a first step. Secondly, standard uncertainties are assigned to each quantity which are known from the experiment, e.g. uncertainties for geometric dimensions. Data for more fundamental quantities such as photon cross sections and the I-value of electron stopping powers are taken from literature. The significant uncertainty contributions are identified as

  11. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    NASA Astrophysics Data System (ADS)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  12. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    PubMed

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies <60 and >80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. PMID:25213263

  13. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from γ-ray and neutron absorbed doses with hierarchical partitioning.

    PubMed

    Walsh, Linda

    2013-03-01

    colon absorbed dose covariables, is 65 (95 %CI: 11; 170). Therefore, although the 95 % CI is quite wide, reference to the colon doses with a neutron weighting of 10 may not be optimal as the basis for the determination of all solid cancer risks. Further investigations into the neutron RBE are required, ideally based on the LSS data with organ-specific neutron and γ-ray absorbed doses for all organs rather than the RBE weighted absorbed doses currently provided. The HP method is also suggested for use in other epidemiological cohort analyses that involve correlated explanatory covariables. PMID:23161400

  14. Absorbed dose measurements for kV-cone beam computed tomography in image-guided radiation therapy.

    PubMed

    Hioki, Kazunari; Araki, Fujio; Ohno, Takeshi; Nakaguchi, Yuji; Tomiyama, Yuuki

    2014-12-01

    In this study, we develope a novel method to directly evaluate an absorbed dose-to-water for kilovoltage-cone beam computed tomography (kV-CBCT) in image-guided radiation therapy (IGRT). Absorbed doses for the kV-CBCT systems of the Varian On-Board Imager (OBI) and the Elekta X-ray Volumetric Imager (XVI) were measured by a Farmer ionization chamber with a (60)Co calibration factor. The chamber measurements were performed at the center and four peripheral points in body-type (30 cm diameter and 51 cm length) and head-type (16 cm diameter and 33 cm length) cylindrical water phantoms. The measured ionization was converted to the absorbed dose-to-water by using a (60)Co calibration factor and a Monte Carlo (MC)-calculated beam quality conversion factor, kQ, for (60)Co to kV-CBCT. The irradiation for OBI and XVI was performed with pelvis and head modes for the body- and the head-type phantoms, respectively. In addition, the dose distributions in the phantom for both kV-CBCT systems were calculated with MC method and were compared with measured values. The MC-calculated doses were calibrated at the center in the water phantom and compared with measured doses at four peripheral points. The measured absorbed doses at the center in the body-type phantom were 1.96 cGy for OBI and 0.83 cGy for XVI. The peripheral doses were 2.36-2.90 cGy for OBI and 0.83-1.06 cGy for XVI. The doses for XVI were lower up to approximately one-third of those for OBI. Similarly, the measured doses at the center in the head-type phantom were 0.48 cGy for OBI and 0.21 cGy for XVI. The peripheral doses were 0.26-0.66 cGy for OBI and 0.16-0.30 cGy for XVI. The calculated peripheral doses agreed within 3% in the pelvis mode and within 4% in the head mode with measured doses for both kV-CBCT systems. In addition, the absorbed dose determined in this study was approximately 4% lower than that in TG-61 but the absorbed dose by both methods was in agreement within their combined uncertainty. This method

  15. A Feasibility Study of Fricke Dosimetry as an Absorbed Dose to Water Standard for 192Ir HDR Sources

    PubMed Central

    deAlmeida, Carlos Eduardo; Ochoa, Ricardo; de Lima, Marilene Coelho; David, Mariano Gazineu; Pires, Evandro Jesus; Peixoto, José Guilherme; Salata, Camila; Bernal, Mario Antônio

    2014-01-01

    High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future. PMID:25521914

  16. Estimation of Organ Absorbed Doses in Patients from 99mTc-diphosphonate Using the Data of MIRDose Software

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Cheki, Mohsen; Moslehi, Masoud

    2012-01-01

    The purpose of this study was to compare estimation of radiation absorbed doses to patients following bone scans with technetium-99m-labeled methylene diphosphonate (MDP) with the estimates given in MIRDose software. In this study, each patient was injected 25 mCi of 99mTc-MDP. Whole-body images from thirty patients were acquired by gamma camera at 10, 60, 90, 180 minutes after 99mTc-MDP injection. To determine the amount of activity in each organ, conjugate view method was applied on images. MIRD equation was then used to estimate absorbed doses in different organs of patients. At the end, absorbed dose values obtained in this study were compared with the data of MIRDose software. The absorbed doses per unit of injected activity (mGy/MBq × 10–4) for liver, kidneys, bladder wall and spleen were 3.86 ± 1.1, 38.73 ± 4.7, 4.16 ± 1.8 and 3.91 ± 1.3, respectively. The results of this study may be useful to estimate the amount of activity that can be administered to the patient and also showed that methods used in the study for absorbed dose calculation is in good agreement with the data of MIRDose software and it is possible to use by a clinician. PMID:23724374

  17. Direct reading measurement of absorbed dose with plastic scintillators--the general concept and applications to ophthalmic plaque dosimetry.

    PubMed

    Flühs, D; Heintz, M; Indenkämpen, F; Wieczorek, C

    1996-03-01

    We have developed dosemeters based on plastic scintillators for a variety of applications in radiation therapy. The dosemeters consist basically of a tissue-substituting scintillator probe, an optical fiber light guide, and a photomultiplier tube. The background light generated in the light guide can be compensated by a simultaneous measurement of the light from a blind fiber. Plastic scintillator dosemeters combine several advantageous properties which render them superior to other dosemeter types for many applications: minimal disturbance of the radiation field because of the homogeneous detector volume and the approximate water equivalence; no dependence on temperature and pressure (under standard clinical conditions) and angle of radiation incidence; no high voltage in the probe; high spatial resolution due to small detector volumes; direct reading of absorbed doses; and a large dynamical range. The high spatial resolution together with direct reading make these detectors suitable for real-time 3-D dosimetry using multi-channel detector systems. Such a system has been developed for eye plaque dosimetry and successfully employed for dosimetric treatment optimization. The plaque optimization can be performed by dosimetric measurements for the individual patient ("dosimetric treatment planning"). The time consumption for this procedure is less than for a physically correct computer-based therapy planning, e.g., by means of a Monte Carlo simulation. PMID:8815386

  18. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation.

    PubMed

    Bahadori, Amir A; Johnson, Perry; Jokisch, Derek W; Eckerman, Keith F; Bolch, Wesley E

    2011-11-01

    Spongiosa in the adult human skeleton consists of three tissues-active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM(50)), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM(50) targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM(50) and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM(50) DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 Me

  19. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation

    NASA Astrophysics Data System (ADS)

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2011-11-01

    Spongiosa in the adult human skeleton consists of three tissues—active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM50 and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 Me

  20. Study of natural radionuclide and absorbed gamma dose in Ukhimath area of Garhwal Himalaya, India.

    PubMed

    Rautela, B S; Yadav, M; Bourai, A A; Joshi, V; Gusain, G S; Ramola, R C

    2012-11-01

    Natural radiation is the largest contributor to the collective radiation dose of the world population. It is widely distributed in different geological formations such as soil, rocks, air and groundwater. In the present investigation, (226)Ra, (232)Th and (40)K were measured in soil samples of the Ukhimath region of Garhwal Himalaya, India using NaI(Tl) gamma-ray spectrometry. The activity concentrations of naturally occurring radionuclides (226)Ra, (232)Th and (40)K were found to vary from 38.4 ± 6.1 to 141.7 ± 11.9 Bq kg(-1) with an average of 80.5 Bq kg(-1), 57.0 ± 7.5 to 155.9 ± 12.4 Bq kg(-1) with an average of 118.9 Bq kg(-1) and 9.0 ± 3.0 to 672.8 ± 25.9 Bq kg(-1) with an average of 341 Bq kg(-1), respectively. The total absorbed gamma dose rate varies from 70.4 to 169.1 nGy h(-1) with an average of 123.4 nGy h(-1). This study is important to generate a baseline data of radiation exposure in the area. Health hazard effects due to natural radiation exposure are discussed in details. PMID:22908360

  1. Dependence of TLD thermoluminescence yield on absorbed dose in a thermal neutron field.

    PubMed

    Gambarini, G; Roy, M S

    1997-01-01

    The emission from 6LiF and 7LiF thermoluminescence dosimeters (TLDs) exposed to the mixed field of thermal neutrons and gamma-rays of the thermal facility of a TRIGA MARK II nuclear reactor has been investigated for various thermal neutron fluences of the order of magnitude of those utilised in radiotherapy, with the purpose of investigating the reliability of TLD readouts in such radiation fields and of giving some information for better obtainment of the absorbed dose values. The emission after exposure in this mixed field is compared with the emission after gamma-rays only. The glow curves have been deconvoluted into gaussian peaks, and the differences in the characteristics of the peaks observed for the two radiation fields, having different linear energy transfers, and for different doses are shown. Irreversible radiation damage in dosimeters having high sensitivity to thermal neutrons is also reported, showing a memory effect of the previous thermal neutron irradiation history which is not restored by anneal treatment. PMID:9463872

  2. Monte Carlo Analysis of Pion Contribution to Absorbed Dose from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Aghara, S.K.; Battnig, S.R.; Norbury, J.W.; Singleterry, R.C.

    2009-01-01

    Accurate knowledge of the physics of interaction, particle production and transport is necessary to estimate the radiation damage to equipment used on spacecraft and the biological effects of space radiation. For long duration astronaut missions, both on the International Space Station and the planned manned missions to Moon and Mars, the shielding strategy must include a comprehensive knowledge of the secondary radiation environment. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. Galactic cosmic rays (GCR) comprised of protons and heavier nuclei have energies from a few MeV per nucleon to the ZeV region, with the spectra reaching flux maxima in the hundreds of MeV range. Therefore, the MeV - GeV region is most important for space radiation. Coincidentally, the pion production energy threshold is about 280 MeV. The question naturally arises as to how important these particles are with respect to space radiation problems. The space radiation transport code, HZETRN (High charge (Z) and Energy TRaNsport), currently used by NASA, performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. In this paper, we present results from the Monte Carlo code MCNPX (Monte Carlo N-Particle eXtended), showing the effect of leptons and mesons when they are produced and transported in a GCR environment.

  3. Long-term stability of liquid ionization chambers with regard to their qualification as local reference dosimeters for low dose-rate absorbed dose measurements in water.

    PubMed

    Bahar-Gogani, J; Grindborg, J E; Johansson, B E; Wickman, G

    2001-03-01

    The long-term sensitivity and calibration stability of liquid ionization chambers (LICs) has been studied at a local and a secondary standards dosimetry laboratory over a period of 3 years. The chambers were transported several times by mail between the two laboratories for measurements. The LICs used in this work are designed for absorbed dose measurements in the dose rate region of 0.1-100 mGy min(-1) and have a liquid layer thickness of 1 mm and a sensitive volume of 16.2 mm3. The liquids used as sensitive media in the chambers are mixtures of isooctane (C8H18) and tetramethylsilane (Si(CH3)4) in different proportions (about 2 to 1). Operating at a polarizing voltage of 300 V the leakage current of the chambers was stable and never exceeded 3% of the observable current at a dose rate of about 1 mGy min(-1). The volume sensitivity of the chambers was measured to be of the order of 10(-9) C Gy(-1) mm3. No systematic changes in the absorbed dose to water calibration was observed for any of the chambers during the test period (sigma < 0.2%). Variations in chamber dose response with small changes in the polarizing voltage as well as sensitivity changes with accumulated absorbed dose were also investigated. Measurements showed that the LIC response varies by 0.15% per 1% change in applied voltage around 300 V. No significant change could be observed in the LIC sensitivity after a single absorbed dose of 15 kGy. The results indicate that the LIC can be made to serve as a calibration transfer instrument and a reference detector for absorbed dose to water determinations providing good precision and long-term reproducibility. PMID:11277221

  4. An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems

    NASA Astrophysics Data System (ADS)

    Bermúdez, A.; Hervella-Nieto, L.; Prieto, A.; Rodríguez, R.

    2007-05-01

    We introduce an optimal bounded perfectly matched layer (PML) technique by choosing a particular absorbing function with unbounded integral. With this choice, spurious reflections are avoided, even though the thickness of the layer is finite. We show that such choice is easy to implement in a finite element method and overcomes the dependency of parameters for the discrete problem. Finally, its efficiency and accuracy are illustrated with some numerical tests.

  5. Computation and Optimization of Dose Distributions for Rotational Stereotactic Radiosurgery

    NASA Astrophysics Data System (ADS)

    Fox, Timothy Harold

    1994-01-01

    The stereotactic radiosurgery technique presented in this work is the patient rotator method which rotates the patient in a sitting position with a stereotactic head frame attached to the skull while collimated non-coplanar radiation beams from a 6 MV medical linear accelerator are delivered to the target point. The hypothesis of this dissertation is that accurate, three-dimensional dose distributions can be computed and optimized for the patient rotator method used in stereotactic radiosurgery. This dissertation presents research results in three areas related to computing and optimizing dose distributions for the patient rotator method. A three-dimensional dose model was developed to calculate the dose at any point in the cerebral cortex using a circular and adjustable collimator system and the geometry of the radiation beam with respect to the target point. The computed dose distributions compared to experimental measurements had an average maximum deviation of <0.7 mm for the relative isodose distributions greater than 50%. A system was developed to qualitatively and quantitatively visualize the computed dose distributions with patient anatomy. A registration method was presented for transforming each dataset to a common reference system. A method for computing the intersections of anatomical contour's boundaries was developed to calculate dose-volume information. The system efficiently and accurately reduced the large computed, volumetric sets of dose data, medical images, and anatomical contours to manageable images and graphs. A computer-aided optimization method was developed for rigorously selecting beam angles and weights for minimizing the dose to normal tissue. Linear programming was applied as the optimization method. The computed optimal beam angles and weights for a defined objective function and dose constraints exhibited a superior dose distribution compared to a standard plan. The developed dose model, qualitative and quantitative visualization

  6. Analysis of the Body Distribution of Absorbed Dose in the Organs of Three Species of Fish from Sepetiba Bay

    SciTech Connect

    Pereira, Wagner de S; Kelecom, Alphonse; Santos Gouvea, Rita de Cassia dos; Azevedo Py Junior, Delcy de

    2008-08-07

    The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5x10{sup 3} {mu}Gy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 ExNxC, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the body distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.

  7. Computational Modeling of Cellular Effects Post-Irradiation with Low- and High-Let Particles and Different Absorbed Doses

    PubMed Central

    Tavares, Adriana Alexandre S.; Tavares, João Manuel R. S.

    2013-01-01

    The use of computational methods to improve the understanding of biological responses to various types of radiation is an approach where multiple parameters can be modelled and a variety of data is generated. This study compares cellular effects modelled for low absorbed doses against high absorbed doses. The authors hypothesized that low and high absorbed doses would contribute to cell killing via different mechanisms, potentially impacting on targeted tumour radiotherapy outcomes. Cellular kinetics following irradiation with selective low- and high-linear energy transfer (LET) particles were investigated using the Virtual Cell (VC) radiobiology algorithm. Two different cell types were assessed using the VC radiobiology algorithm: human fibroblasts and human crypt cells. The results showed that at lower doses (0.01 to 0.2 Gy), all radiation sources used were equally able to induce cell death (p>0.05, ANOVA). On the other hand, at higher doses (1.0 to 8.0 Gy), the radiation response was LET and dose dependent (p<0.05, ANOVA). The data obtained suggests that the computational methods used might provide some insight into the cellular effects following irradiation. The results also suggest that it may be necessary to re-evaluate cellular radiation-induced effects, particularly at low doses that could affect therapeutic effectiveness. PMID:23930101

  8. H∞ optimization of dynamic vibration absorber variant for vibration control of damped linear systems

    NASA Astrophysics Data System (ADS)

    Chun, Semin; Lee, Youngil; Kim, Tae-Hyoung

    2015-01-01

    This study focuses on the H∞ optimal design of a dynamic vibration absorber (DVA) variant for suppressing high-amplitude vibrations of damped primary systems. Unlike traditional DVA configurations, the damping element in this type of DVA is connected directly to the ground instead of the primary mass. First, a thorough graphical analysis of the variations in the maximum amplitude magnification factor depending on two design parameters, natural frequency and absorber damping ratios, is performed. The results of this analysis clearly show that any fixed-points-theory-based conventional method could provide, at best, only locally but not globally optimal parameters. Second, for directly handling the H∞ optimization for its optimal design, a novel meta-heuristic search engine, called the diversity-guided cyclic-network-topology-based constrained particle swarm optimization (Div-CNT-CPSO), is developed. The variant DVA system developed using the proposed Div-CNT-CPSO scheme is compared with those reported in the literature. The results of this comparison verified that the proposed system is better than the existing methods for suppressing the steady-state vibration amplitude of a controlled primary system.

  9. CT radiation dose optimization and estimation: an update for radiologists.

    PubMed

    Goo, Hyun Woo

    2012-01-01

    In keeping with the increasing utilization of CT examinations, the greater concern about radiation hazards from examinations has been addressed. In this regard, CT radiation dose optimization has been given a great deal of attention by radiologists, referring physicians, technologists, and physicists. Dose-saving strategies are continuously evolving in terms of imaging techniques as well as dose management. Consequently, regular updates of this issue are necessary especially for radiologists who play a pivotal role in this activity. This review article will provide an update on how we can optimize CT dose in order to maximize the benefit-to-risk ratio of this clinically useful diagnostic imaging method. PMID:22247630

  10. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration

    PubMed Central

    Rudqvist, Nils; Spetz, Johan; Schüler, Emil; Parris, Toshima Z.; Langen, Britta; Helou, Khalil; Forssell-Aronsson, Eva

    2015-01-01

    Background 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland. Methods BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value <0.01 and fold change >1.5, and p-value <0.05, respectively. Results In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy). PMID:26177204

  11. Leaf venation, as a resistor, to optimize a switchable IR absorber

    PubMed Central

    Alston, M. E.; Barber, R.

    2016-01-01

    Leaf vascular patterns are the mechanisms and mechanical support for the transportation of fluidics for photosynthesis and leaf development properties. Vascular hierarchical networks in leaves have far-reaching functions in optimal transport efficiency of functional fluidics. Embedding leaf morphogenesis as a resistor network is significant in the optimization of a translucent thermally functional material. This will enable regulation through pressure equalization by diminishing flow pressure variation. This paper investigates nature’s vasculature networks that exhibit hierarchical branching scaling applied to microfluidics. To enable optimum potential for pressure drop regulation by algorithm design. This code analysis of circuit conduit optimization for transport fluidic flow resistance is validated against CFD simulation, within a closed loop network. The paper will propose this self-optimization, characterization by resistance seeking targeting to determine a microfluidic network as a resistor. To advance a thermally function material as a switchable IR absorber. PMID:27554786

  12. Leaf venation, as a resistor, to optimize a switchable IR absorber.

    PubMed

    Alston, M E; Barber, R

    2016-01-01

    Leaf vascular patterns are the mechanisms and mechanical support for the transportation of fluidics for photosynthesis and leaf development properties. Vascular hierarchical networks in leaves have far-reaching functions in optimal transport efficiency of functional fluidics. Embedding leaf morphogenesis as a resistor network is significant in the optimization of a translucent thermally functional material. This will enable regulation through pressure equalization by diminishing flow pressure variation. This paper investigates nature's vasculature networks that exhibit hierarchical branching scaling applied to microfluidics. To enable optimum potential for pressure drop regulation by algorithm design. This code analysis of circuit conduit optimization for transport fluidic flow resistance is validated against CFD simulation, within a closed loop network. The paper will propose this self-optimization, characterization by resistance seeking targeting to determine a microfluidic network as a resistor. To advance a thermally function material as a switchable IR absorber. PMID:27554786

  13. Radiation-absorbed doses and energy imparted from panoramic tomography, cephalometric radiography, and occlusal film radiography in children

    SciTech Connect

    Bankvall, G.; Hakansson, H.A.

    1982-05-01

    The absorbed doses and energy imparted from radiographic examinations of children, using panoramic tomography (PTG), cephalometric radiography (CPR), and maxillary frontal occlusal overview (FOO), were examined. The absorbed dose at various sites of the head were measured with TL dosimeters in a phantom and in patients. The energy imparted was calculated from measurements of areal exposure using a planparallel ionization chamber. The maximum absorbed doses for panoramic tomography were located around the lateral rotation center, for cephalometric radiography in the left (tube side) parotid region, and for frontal occlusal radiography in the nose. The absorbed doses in the eyes, thyroid gland, and skin are discussed and compared with previous reports and, for the most part, are found to be in agreement. The mean energy imparted from all three examination methods is 5 mJ with about 57 percent from panoramic, 33 percent from cephalometric, and 10 percent from frontal occlusal examinations. The energy imparted from cephalometric radiography can be reduced to about 10 percent with the use of an improved examination technique, leaving panoramic tomography responsible for contributing about 80 percent of the total energy imparted.

  14. Detector photon response and absorbed dose and their applications to rapid triage techniques

    NASA Astrophysics Data System (ADS)

    Voss, Shannon Prentice

    As radiation specialists, one of our primary objectives in the Navy is protecting people and the environment from the effects of ionizing and non-ionizing radiation. Focusing on radiological dispersal devices (RDD) will provide increased personnel protection as well as optimize emergency response assets for the general public. An attack involving an RDD has been of particular concern because it is intended to spread contamination over a wide area and cause massive panic within the general population. A rapid method of triage will be necessary to segregate the unexposed and slightly exposed from those needing immediate medical treatment. Because of the aerosol dispersal of the radioactive material, inhalation of the radioactive material may be the primary exposure route. The primary radionuclides likely to be used in a RDD attack are Co-60, Cs-137, Ir-192, Sr-90 and Am-241. Through the use of a MAX phantom along with a few Simulink MATLAB programs, a good anthropomorphic phantom was created for use in MCNPX simulations that would provide organ doses from internally deposited radionuclides. Ludlum model 44-9 and 44-2 detectors were used to verify the simulated dose from the MCNPX code. Based on the results, acute dose rate limits were developed for emergency response personnel that would assist in patient triage.

  15. Optimizing Guideline-Recommended Antibiotic Doses for Pediatric Infective Endocarditis.

    PubMed

    Nichols, Kristen R; Israel, Emily N; Thomas, Christopher A; Knoderer, Chad A

    2016-05-01

    The American Heart Association recently published an updated scientific statement on the management of infective endocarditis in childhood. The recommendations included for vancomycin, aminoglycoside, and β-lactam dosing and monitoring are based primarily on expert opinion and do not consider available evidence for dose optimization based on pharmacokinetic and pharmacodynamic principles in pediatric patients. This is concerning because even when clinically necessary, some practitioners may be hesitant to deviate from guideline-recommended doses. In this perspective, we highlight potential areas for improvement in the statement-recommended doses and summarize evidence supporting antibiotic dosing optimization. The addition of a pediatric clinical pharmacist with expertise in antibiotic dosing to the panel would be beneficial for future updates. PMID:26917819

  16. Optimized aperiodic multilayer structures for use as narrow-angular absorbers

    SciTech Connect

    Granier, Christopher H. Dowling, Jonathan P.; Afzal, Francis O.; Lorenzo, Simón G.; Reyes, Mario; Veronis, Georgios

    2014-12-28

    In this paper, we investigate aperiodic multilayer structures for use as narrow-angular absorbers. The layer thicknesses and materials are optimized using a genetic global optimization algorithm coupled to a transfer matrix code to maximize the angular selectivity in the absorptance at a single or multiple wavelengths. We first consider structures composed of alternating layers of tungsten and silicon or silica, and find that it is not possible to achieve angular selectivity in the absorptance with such structures. We next consider structures composed of alternating layers of silicon and silica, and show that when optimized they exhibit high angular selectivity in absorptance. In addition, as the angular selectivity in absorptance increases, the wavelength range of high angular selectivity also decreases. Optimizing the material composition of the multilayer structures, in addition to optimizing the layer thicknesses, leads to marginal improvement in angular selectivity. Finally, we show that by optimizing the absorptance of the multilayer structures at multiple wavelengths, we can obtain structures exhibiting almost perfect absorptance at normal incidence and narrow angular width in absorptance at these wavelengths. Similar to the structures optimized at a single wavelength, the wavelength range of high angularly selective absorptance is narrow.

  17. Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane.

    PubMed

    Meister, H; Eich, T; Endstrasser, N; Giannone, L; Kannamüller, M; Kling, A; Koll, J; Trautmann, T; Detemple, P; Schmitt, S

    2010-10-01

    Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 °C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 μm thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 °C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch. PMID:21061487

  18. Optimal operating regime of saturable absorbers in mode-locked lasers

    SciTech Connect

    Narovlyanskaya, N.M.; Tikhonov, E.A.

    1982-01-01

    An investigation was made of ultrashort pulse generation by passive mode locking in a rhodamine 6G jet laser with pulsed laser pumping of up to 300 nsec duration. In order to obtain single ultrashort pulses per axial period in these systems, it was essential to reduce their time of formation to several loop passes. It was shown experimentally that the rate of formation of ultrashort pulses is influenced appreciably by the nonlinear absorber dye and, for a given intracavity intensity, the best dyes are those having a purely electronic transition near the lasing frequency. In this case, the critical bleaching intensity and relaxation time are minimized as a result of the increased role of stimulated resonance transitions in the dye modulator. Optimal types of polymethine dyes are suggested for nonlinear absorbers of tunable ultrashort-pulse rhodamine 6G lasers.

  19. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry. PMID:19889800

  20. Comparisons of Monte Carlo calculations with absorbed dose determinations in flat materials using high-current, energetic electron beams

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.; Galloway, Richard A.; Heiss, Arthur H.; Logar, John R.

    2007-08-01

    International standards and guidelines for calibrating high-dose dosimetry systems to be used in industrial radiation processing recommend that dose-rate effects on dosimeters be evaluated under conditions of use. This is important when the irradiation relies on high-current electron accelerators, which usually provide very high dose-rates. However, most dosimeter calibration facilities use low-intensity gamma radiation or low-current electron accelerators, which deliver comparatively low dose-rates. Because of issues of thermal conductivity and response, portable calorimeters cannot be practically used with high-current accelerators, where product conveyor speeds under an electron beam can exceed several meters per second and the calorimeter is not suitable for use with product handling systems. As an alternative, Monte Carlo calculations can give theoretical estimates of the absorbed dose in materials with flat or complex configurations such that the results are independent of dose-rate. Monte Carlo results can then be compared to experimental dose determinations to see whether dose-rate effects in the dosimeters are significant. A Monte Carlo code has been used in this study to calculate the absorbed doses in alanine film dosimeters supported by flat sheets of plywood irradiated with electrons using incident energies extending from 1.0 MeV to 10 MeV with beam currents up to 30 mA. The same process conditions have been used for dose determinations with high-current electron beams using low dose-rate gamma calibrated alanine film dosimeters. The close agreement between these calculations and the dosimeter determinations indicates that the response of this type of dosimeter system is independent of the dose-rate, and provides assurance that Monte Carlo calculations can yield results with sufficient accuracy for many industrial applications.

  1. Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post-Radioembolization 90Y PET

    PubMed Central

    Srinivas, Shyam M.; Natarajan, Navin; Kuroiwa, Joshua; Gallagher, Sean; Nasr, Elie; Shah, Shetal N.; DiFilippo, Frank P.; Obuchowski, Nancy; Bazerbashi, Bana; Yu, Naichang; McLennan, Gordon

    2014-01-01

    Background: Radioembolization with Yttrium-90 (90 Y) microspheres is becoming a more widely used transcatheter treatment for unresectable hepatocellular carcinoma (HCC). Using post-treatment 90 Y positron emission tomography/computerized tomography (PET/CT) scans, the distribution of microspheres within the liver can be determined and quantitatively assessed. We studied the radiation dose of 90 Y delivered to liver and treated tumors. Methods: This retrospective study of 56 patients with HCC, including analysis of 98 liver tumors, measured and correlated the dose of radiation delivered to liver tumors and normal liver tissue using glass microspheres (TheraSpheres®) to the frequency of complications with modified response evaluation criteria in solid tumors (mRECIST). 90 Y PET/CT and triphasic liver CT scans were used to contour treated tumor and normal liver regions and determine their respective activity concentrations. An absorbed dose factor was used to convert the measured activity concentration (Bq/mL) to an absorbed dose (Gy). Results: The 98 studied tumors received a mean dose of 169 Gy (mode 90–120 Gy; range 0–570 Gy). Tumor response by mRECIST criteria was performed for 48 tumors that had follow-up scans. There were 21 responders (mean dose 215 Gy) and 27 non-responders (mean dose 167 Gy). The association between mean tumor absorbed dose and response suggests a trend but did not reach statistical significance (p = 0.099). Normal liver tissue received a mean dose of 67 Gy (mode 60–70 Gy; range 10–120 Gy). There was a statistically significant association between absorbed dose to normal liver and the presence of two or more severe complications (p = 0.036). Conclusion: Our cohort of patients showed a possible dose–response trend for the tumors. Collateral dose to normal liver is non-trivial and can have clinical implications. These methods help us understand whether patient adverse events, treatment success, or

  2. An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several northern Marshall Islands

    SciTech Connect

    Musolino, S.V.; Hull, A.P.; Greenhouse, N.A.

    1997-10-01

    Estimates of the thyroid absorbed doses due to fallout originating from the 1 March 1954 BRAVO thermonuclear test on Bikini Atoll have been made for several inhabited locations in the Northern Marshall Islands. Rongelap, Utirik, Rongerik and Ailinginae Atolls were also inhabited on 1 March 1954, where retrospective thyroid absorbed doses have previously been reconstructed. Current estimates are based primarily on external exposure data, which were recorded shortly after each nuclear test in the Castle Series, and secondarily on soil concentrations of {sup 137}Cs in samples collected in 1978 and 1988, along with aerial monitoring done in 1978. External exposures and {sup 137}Cs Soil concentrations were representative of the atmospheric transport and deposition patterns of the entire Castle Series tests and show that the BRAVO test was the major contributor to fallout exposure during the Castle series and other test series which were carried out in the Marshall Islands. These data have been used as surrogates for fission product radioiodines and telluriums in order to estimate the range of thyroid absorbed doses that may have occurred throughout the Marshall Islands. Dosimetry based on these two sets of estimates agreed within a factor of 4 at the locations where BRAVO was the dominant contributor to the total exposure and deposition. Both methods indicate that thyroid absorbed doses in the range of 1 Gy (100 rad) may have been incurred in some of the northern locations, whereas the doses at southern locations did not significantly exceed levels comparable to those from worldwide fallout. The results of these estimates indicate that a systematic medical survey for thyroid disease should be conducted, and that a more definitive dose reconstruction should be made for all the populated atolls and islands in the Northern Marshall Islands beyond Rongelap, Utirik, Rongerik and Ailinginae, which were significantly contaminated by BRAVO fallout. 30 refs., 2 figs., 10 tabs.

  3. An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several Northern Marshall Islands.

    PubMed

    Musolino, S V; Greenhouse, N A; Hull, A P

    1997-10-01

    Estimates of the thyroid absorbed doses due to fallout originating from the 1 March 1954 BRAVO thermonuclear test on Bikini Atoll have been made for several inhabited locations in the Northern Marshall Islands. Rongelap, Utirik, Rongerik and Ailinginae Atolls were also inhabited on 1 March 1954, where retrospective thyroid absorbed doses have previously been reconstructed. The current estimates are based primarily on external exposure data, which were recorded shortly after each nuclear test in the Castle Series, and secondarily on soil concentrations of 137Cs in samples collected in 1978 and 1988, along with aerial monitoring done in 1978. The external exposures and 137Cs soil concentrations were representative of the atmospheric transport and deposition patterns of the entire Castle Series tests and show that the BRAVO test was the major contributor to fallout exposure during the Castle series and other test series which were carried out in the Marshall Islands. These data have been used as surrogates for fission product radioiodines and telluriums in order to estimate the range of thyroid absorbed doses that may have occurred throughout the Marshall Islands. Dosimetry based on these two sets of estimates agreed within a factor of 4 at the locations where BRAVO was the dominant contributor to the total exposure and deposition. Both methods indicate that thyroid absorbed doses in the range of 1 Gy (100 rad) may have been incurred in some of the northern locations, whereas the doses at southern locations did not significantly exceed levels comparable to those from worldwide fallout. The results of these estimates indicate that a systematic medical survey for thyroid disease should be conducted, and that a more definitive dose reconstruction should be made for all the populated atolls and islands in the Northern Marshall Islands beyond Rongelap, Utirik, Rongerik and Ailinginae, which were significantly contaminated by BRAVO fallout. PMID:9314227

  4. Determination of the Absorbed Dose Rate to Water for the 18-mm Helmet of a Gamma Knife

    SciTech Connect

    Chung, Hyun-Tai; Park, Youngho; Hyun, Sangil; Choi, Yongsoo; Kim, Gi Hong; Kim, Dong Gyu; Chun, Kook Jin

    2011-04-01

    Purpose: To measure the absorbed dose rate to water of {sup 60}Co gamma rays of a Gamma Knife Model C using water-filled phantoms (WFP). Methods and Materials: Spherical WFP with an equivalent water depth of 5, 7, 8, and 9 cm were constructed. The dose rates at the center of an 18-mm helmet were measured in an 8-cm WFP (WFP-3) and two plastic phantoms. Two independent measurement systems were used: one was calibrated to an air kerma (Set I) and the other was calibrated to the absorbed dose to water (Set II). The dose rates of WFP-3 and the plastic phantoms were converted to dose rates for an 8-cm water depth using the attenuation coefficient and the equivalent water depths. Results: The dose rate measured at the center of WFP-3 using Set II was 2.2% and 1.0% higher than dose rates measured at the center of the two plastic phantoms. The measured effective attenuation coefficient of Gamma Knife photon beam in WFPs was 0.0621 cm{sup -1}. After attenuation correction, the difference between the dose rate at an 8-cm water depth measured in WFP-3 and dose rates in the plastic phantoms was smaller than the uncertainty of the measurements. Conclusions: Systematic errors related to the characteristics of the phantom materials in the dose rate measurement of a Gamma Knife need to be corrected for. Correction of the dose rate using an equivalent water depth and attenuation provided results that were more consistent.

  5. Influence of thyroid volume reduction on absorbed dose in 131I therapy studied by using Geant4 Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Ziaur, Rahman; Sikander, M. Mirza; Waheed, Arshed; Nasir, M. Mirza; Waheed, Ahmed

    2014-05-01

    A simulation study has been performed to quantify the effect of volume reduction on the thyroid absorbed dose per decay and to investigate the variation of energy deposition per decay due to β- and γ-activity of 131I with volume/mass of thyroid, for water, ICRP- and ICRU-soft tissue taken as thyroid material. A Monte Carlo model of the thyroid, in the Geant4 radiation transport simulation toolkit was constructed to compute the β- and γ-absorbed dose in the simulated thyroid phantom for various values of its volume. The effect of the size and shape of the thyroid on energy deposition per decay has also been studied by using spherical, ellipsoidal and cylindrical models for the thyroid and varying its volume in 1-25 cm3 range. The relative differences of Geant4 results for different models with each other and MCNP results lie well below 1.870%. The maximum relative difference among the Geant4 estimated results for water with ICRP and ICRU soft tissues is not more than 0.225%. S-values for ellipsoidal, spherical and cylindrical thyroid models were estimated and the relative difference with published results lies within 3.095%. The absorbed fraction values for beta particles show a good agreement with published values within 2.105% deviation. The Geant4 based simulation results of absorbed fractions for gammas again show a good agreement with the corresponding MCNP and EGS4 results (±6.667%) but have 29.032% higher values than that of MIRD calculated values. Consistent with previous studies, the reduction of the thyroid volume is found to have a substantial effect on the absorbed dose. Geant4 simulations confirm dose dependence on the volume/mass of thyroid in agreement with MCNP and EGS4 computed values but are substantially different from MIRD8 data. Therefore, inclusion of size/mass dependence is indicated for 131I radiotherapy of the thyroid.

  6. Absorbed dose measurements for kV-cone beam computed tomography in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Hioki, Kazunari; Araki, Fujio; Ohno, Takeshi; Nakaguchi, Yuji; Tomiyama, Yuuki

    2014-12-01

    In this study, we develope a novel method to directly evaluate an absorbed dose-to-water for kilovoltage-cone beam computed tomography (kV-CBCT) in image-guided radiation therapy (IGRT). Absorbed doses for the kV-CBCT systems of the Varian On-Board Imager (OBI) and the Elekta X-ray Volumetric Imager (XVI) were measured by a Farmer ionization chamber with a 60Co calibration factor. The chamber measurements were performed at the center and four peripheral points in body-type (30 cm diameter and 51 cm length) and head-type (16 cm diameter and 33 cm length) cylindrical water phantoms. The measured ionization was converted to the absorbed dose-to-water by using a 60Co calibration factor and a Monte Carlo (MC)-calculated beam quality conversion factor, kQ, for 60Co to kV-CBCT. The irradiation for OBI and XVI was performed with pelvis and head modes for the body- and the head-type phantoms, respectively. In addition, the dose distributions in the phantom for both kV-CBCT systems were calculated with MC method and were compared with measured values. The MC-calculated doses were calibrated at the center in the water phantom and compared with measured doses at four peripheral points. The measured absorbed doses at the center in the body-type phantom were 1.96 cGy for OBI and 0.83 cGy for XVI. The peripheral doses were 2.36-2.90 cGy for OBI and 0.83-1.06 cGy for XVI. The doses for XVI were lower up to approximately one-third of those for OBI. Similarly, the measured doses at the center in the head-type phantom were 0.48 cGy for OBI and 0.21 cGy for XVI. The peripheral doses were 0.26-0.66 cGy for OBI and 0.16-0.30 cGy for XVI. The calculated peripheral doses agreed within 3% in the pelvis mode and within 4% in the head mode with measured doses for both kV-CBCT systems. In addition, the absorbed dose determined in this study was approximately 4% lower than that in TG-61 but the absorbed dose by both methods was in agreement within their combined

  7. Influence of lead apron shielding on absorbed doses from panoramic radiography

    PubMed Central

    Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D

    2013-01-01

    Objectives: This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. Methods: A RANDO® full body phantom (Alderson Research Laboratories Inc., Stamford, CT) was equipped with 110 thermoluminescent dosemeters at 55 different sites and set up in two different panoramic radiography devices [SCANORA® three-dimensional (3D) (SOREDEX, Tuusula, Finland) and ProMax® 3D (Planmeca, Helsinki, Finland)] and exposed. Two different protocols were performed in the two devices. The first protocol was performed without any lead shielding, whereas the phantom was equipped with a standard adult lead apron for the second protocol. Results: A two-tailed paired samples t-test for the SCANORA 3D revealed that there is no difference between the protocol using lead apron shielding (m = 87.99, s = 102.98) and the protocol without shielding (m = 87.34, s = 107.49), t(54) = −0.313, p > 0.05. The same test for the ProMax 3D showed that there is also no difference between the protocol using shielding (m = 106.48, s = 117.38) and the protocol without shielding (m = 107.75, s = 114,36), t(54) = 0.938, p > 0.05. Conclusions: In conclusion, the results of this study showed no statistically significant differences between a panoramic radiography with or without the use of lead apron shielding. PMID:24174012

  8. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT

    PubMed Central

    Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg

    2012-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512

  9. Radiation absorbed dose estimates for oxygen-15 radiopharmaceuticals (H2( V)O, C VO, O VO) in newborn infants

    SciTech Connect

    Powers, W.J.; Stabin, M.; Howse, D.; Eichling, J.O.; Herscovitch, P.

    1988-12-01

    In preparation for measurement of regional cerebral oxygen metabolism by positron emission tomography, radiation absorbed dose estimates for 19 internal organs, blood, and total body were calculated for newborn infants following bolus intravenous administration of H2( V)O and brief inhalation of C VO and O VO. Cumulated activity for each radiopharmaceutical was calculated from a compartmental model based on the known biologic behavior of the compound. Values for mean absorbed dose/unit cumulated activity (S) for internal organs and total body were based on a newborn phantom. S was separately calculated for blood. Total radiopharmaceutical absorbed dose estimates necessary to measure cerebral oxygen metabolism in a 3.51-kg infant based on 0.7 mCi/kg H2( V)O and 1 mCi/kg C VO and O VO were determined to be 1.6 rad to the lung (maximum organ dose), 0.28 rad to the marrow, 0.46 rad to the gonads, and 0.22 rad to total body. These values are similar to those for current clinical nuclear medicine procedures employing /sup 99m/Tc in newborn infants.

  10. Development of a water calorimetry-based standard for absorbed dose to water in HDR {sup 192}Ir brachytherapy

    SciTech Connect

    Sarfehnia, Arman; Seuntjens, Jan

    2010-04-15

    Purpose: The aim of this article is to develop and evaluate a primary standard for HDR {sup 192}Ir brachytherapy based on 4 deg. C stagnant water calorimetry. Methods: The absolute absorbed dose to water was directly measured for several different Nucletron microSelectron {sup 192}Ir sources of air kerma strength ranging between 21 000 and 38 000 U and for source-to-detector separations ranging between 25 and 70 mm. The COMSOL MULTIPHYSICS software was used to accurately calculate the heat transport in a detailed model geometry. Through a coupling of the ''conduction and convection'' module with the ''Navier-Stokes incompressible fluid'' module in the software, both the conductive and convective effects were modeled. Results: A detailed uncertainty analysis resulted in an overall uncertainty in the absorbed dose of 1.90%(1{sigma}). However, this includes a 1.5% uncertainty associated with a nonlinear predrift correction which can be substantially reduced if sufficient time is provided for the system to come to a new equilibrium in between successive calorimetric runs, an opportunity not available to the authors in their clinical setting due to time constraints on the machine. An average normalized dose rate of 361{+-}7 {mu}Gy/(h U) at a source-to-detector separation of 55 mm was measured for the microSelectron {sup 192}Ir source based on water calorimetry. The measured absorbed dose per air kerma strength agreed to better than 0.8%(1{sigma}) with independent ionization chamber and EBT-1 Gafchromic film reference dosimetry as well as with the currently accepted AAPM TG-43 protocol measurements. Conclusions: This work paves the way toward a primary absorbed dose to water standard in {sup 192}Ir brachytherapy.

  11. Experimental imaging and profiling of absorbed dose in phantoms exposed to epithermal neutron beams for neutron capture therapy

    SciTech Connect

    Gambarini, G.; Colombi, C.

    2003-08-26

    Absorbed-dose images and depth-dose profiles have been measured in a tissue-equivalent phantom exposed to an epithermal neutron beam designed for neutron capture therapy. The spatial distribution of absorbed dose has been measured by means of gel dosimeters, imaged with optical analysis. From differential measurements with gels having different isotopic composition, the contributions of all the components of the neutron field have been separated. This separation is important, owing to the different biological effectiveness of the various kinds of emitted radiation. The doses coming from the reactions 1H(n,{gamma})2H and 14N(n,p)14C and the fast-neutron dose have been imaged. Moreover, a volume simulating a tumour with accumulation of 10B and/or 157Gd has been incorporated in the phantom and the doses due to the reactions with such isotopes have been imaged and profiled too. The results have been compared with those obtained with other experimental techniques and the agreement is very satisfactory.

  12. Direct determination of the absorbed dose to water from 125I low dose-rate brachytherapy seeds using the new absorbed dose primary standard developed at ENEA-INMRI

    NASA Astrophysics Data System (ADS)

    Toni, M. P.; Pimpinella, M.; Pinto, M.; Quini, M.; Cappadozzi, G.; Silvestri, C.; Bottauscio, O.

    2012-10-01

    Low-intensity radioactive sources emitting low-energy photons are used in the clinic for low dose-rate brachytherapy treatments of tumours. The dosimetry of these sources is based on reference air kerma rate measurements. The absorbed dose rate to water at the reference depth d0 = 1 cm, \\dot {D}_{w,1\\,cm} , is then obtained by a conversion procedure with a large relative standard uncertainty of about 5%. This paper describes a primary standard developed at ENEA-INMRI to directly measure \\dot {D}_{w,1\\,cm} due to LDR sources. The standard is based on a large-angle and variable-volume ionization chamber, embedded in a graphite phantom and operating under ‘wall-less air chamber’ conditions. A set of correction and conversion factors, based on experiments and Monte Carlo simulations, are determined to obtain the value of Dw,1 cm from measurements of increment of ionization current with increasing chamber volume. The relative standard uncertainty on \\dot {D}_{w,1\\,cm} is 2.6%, which is appreciably lower than the current uncertainty. Characteristics of the standard, its associated uncertainty budget, and some experimental results are given for 125I BEBIG I25.S16.C brachytherapy seeds. Finally, results of the experimental determination of the dose-rate constant Λ1 cm, traceable to the Dw,1 cm and the low-energy air kerma ENEA-INMRI standards, are given. The relative standard uncertainty on Λ1 cm is 2.9%, appreciably lower than the typical uncertainty (4.8%) of the values available in the literature.

  13. Approaches for Informing Optimal Dose of Behavioral Interventions

    PubMed Central

    King, Heather A.; Maciejewski, Matthew L.; Allen, Kelli D.; Yancy, William S.; Shaffer, Jonathan A.

    2015-01-01

    Background There is little guidance about to how select dose parameter values when designing behavioral interventions. Purpose The purpose of this study is to present approaches to inform intervention duration, frequency, and amount when (1) the investigator has no a priori expectation and is seeking a descriptive approach for identifying and narrowing the universe of dose values or (2) the investigator has an a priori expectation and is seeking validation of this expectation using an inferential approach. Methods Strengths and weaknesses of various approaches are described and illustrated with examples. Results Descriptive approaches include retrospective analysis of data from randomized trials, assessment of perceived optimal dose via prospective surveys or interviews of key stakeholders, and assessment of target patient behavior via prospective, longitudinal, observational studies. Inferential approaches include nonrandomized, early-phase trials and randomized designs. Conclusions By utilizing these approaches, researchers may more efficiently apply resources to identify the optimal values of dose parameters for behavioral interventions. PMID:24722964

  14. Mean Absorbed Dose to the Anal-Sphincter Region and Fecal Leakage among Irradiated Prostate Cancer Survivors

    SciTech Connect

    Alsadius, David; Hedelin, Maria; Lundstedt, Dan; Pettersson, Niclas; Wilderaeng, Ulrica; Steineck, Gunnar

    2012-10-01

    Purpose: To supplement previous findings that the absorbed dose of ionizing radiation to the anal sphincter or lower rectum affects the occurrence of fecal leakage among irradiated prostate-cancer survivors. We also wanted to determine whether anatomically defining the anal-sphincter region as the organ at risk could increase the degree of evidence underlying clinical guidelines for restriction doses to eliminate this excess risk. Methods and Materials: We identified 985 men irradiated for prostate cancer between 1993 and 2006. In 2008, we assessed long-term gastrointestinal symptoms among these men using a study-specific questionnaire. We restrict the analysis to the 414 men who had been treated with external beam radiation therapy only (no brachytherapy) to a total dose of 70 Gy in 2-Gy daily fractions to the prostate or postoperative prostatic region. On reconstructed original radiation therapy dose plans, we delineated the anal-sphincter region as an organ at risk. Results: We found that the prevalence of long-term fecal leakage at least once per month was strongly correlated with the mean dose to the anal-sphincter region. Examining different dose intervals, we found a large increase at 40 Gy; {>=}40 Gy compared with <40 Gy gave a prevalence ratio of 3.8 (95% confidence interval 1.6-8.6). Conclusions: This long-term study shows that mean absorbed dose to the anal-sphincter region is associated with the occurrence of long-term fecal leakage among irradiated prostate-cancer survivors; delineating the anal-sphincter region separately from the rectum and applying a restriction of a mean dose <40 Gy will, according to our data, reduce the risk considerably.

  15. Fluence field optimization for noise and dose objectives in CT

    SciTech Connect

    Bartolac, Steven; Graham, Sean; Siewerdsen, Jeff; Jaffray, David

    2011-05-15

    Purpose: Selecting the appropriate imaging technique in computed tomography (CT) inherently involves balancing the tradeoff between image quality and imaging dose. Modulation of the x-ray fluence field, laterally across the beam, and independently for each projection, may potentially meet user-prescribed, regional image quality objectives, while reducing radiation to the patient. The proposed approach, called fluence field modulated CT (FFMCT), parallels the approach commonly used in intensity-modulated radiation therapy (IMRT), except ''image quality plans'' replace the ''dose plans'' of IMRT. This work studies the potential noise and dose benefits of FFMCT via objective driven optimization of fluence fields. Methods: Experiments were carried out in simulation. Image quality plans were defined by specifying signal-to-noise ratio (SNR) criteria for regions of interest (ROIs) in simulated cylindrical and oblong water phantoms, and an anthropomorphic phantom with bone, air, and water equivalent regions. X-ray fluence field patterns were generated using a simulated annealing optimization method that attempts to achieve the spatially-dependent prescribed SNR criteria in the phantoms while limiting dose (to the volume or subvolumes). The resulting SNR and dose distributions were analyzed and compared to results using a bowtie filtered fluence field. Results: Compared to using a fixed bowtie filtered fluence, FFMCT achieved superior agreement with the target image quality objectives, and resulted in integral dose reductions ranging from 39 to 52%. Prioritizing dose constraints for specific regions of interest resulted in a preferential reduction of dose to those regions with some tradeoff in SNR, particularly where the target low dose regions overlapped with regions where high SNR was prescribed. The method appeared fairly robust under increased complexity and heterogeneity of the object structure. Conclusions: These results support that FFMCT has the potential to meet

  16. Dose optimization in cardiac x-ray imaging

    SciTech Connect

    Gislason-Lee, Amber J.; McMillan, Catherine; Cowen, Arnold R.; Davies, Andrew G.

    2013-09-15

    Purpose: The aim of this research was to optimize x-ray image quality to dose ratios in the cardiac catheterization laboratory. This study examined independently the effects of peak x-ray tube voltage (kVp), copper (Cu), and gadolinium (Gd) x-ray beam filtration on the image quality to radiation dose balance for adult patient sizes.Methods: Image sequences of polymethyl methacrylate (PMMA) phantoms representing two adult patient sizes were captured using a modern flat panel detector based x-ray imaging system. Tin and copper test details were used to simulate iodine-based contrast medium and stents/guide wires respectively, which are used in clinical procedures. Noise measurement for a flat field image and test detail contrast were used to calculate the contrast to noise ratio (CNR). Entrance surface dose (ESD) and effective dose measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose. This FOM determined the dose efficiency of x-ray spectra investigated. Images were captured with 0.0, 0.1, 0.25, 0.4, and 0.9 mm Cu filtration and with a range of gadolinium oxysulphide (Gd{sub 2}O{sub 2}S) filtration.Results: Optimum x-ray spectra were the same for the tin and copper test details. Lower peak tube voltages were generally favored. For the 20 cm phantom, using 2 Lanex Fast Back Gd{sub 2}O{sub 2}S screens as x-ray filtration at 65 kVp provided the highest FOM considering ESD and effective dose. Considering ESD, this FOM was only marginally larger than that from using 0.4 mm Cu at 65 kVp. For the 30 cm phantom, using 0.25 mm copper filtration at 80 kVp was most optimal; considering effective dose the FOM was highest with no filtration at 65 kVp.Conclusions: These settings, adjusted for x-ray tube loading limits and clinically acceptable image quality, should provide a useful option for optimizing patient dose to image quality in cardiac x-ray imaging. The same optimal x-ray beam spectra were found for both the tin and copper details, suggesting

  17. Reconstruction of Absorbed Doses to Fibroglandular Tissue of the Breast of Women undergoing Mammography (1960 to the Present)

    PubMed Central

    Thierry-Chef, Isabelle; Simon, Steven L.; Weinstock, Robert M.; Kwon, Deukwoo; Linet, Martha S.

    2013-01-01

    The assessment of potential benefits versus harms from mammographic examinations as described in the controversial breast cancer screening recommendations of the U.S. Preventive Task Force included limited consideration of absorbed dose to the fibroglandular tissue of the breast (glandular tissue dose), the tissue at risk for breast cancer. Epidemiological studies on cancer risks associated with diagnostic radiological examinations often lack accurate information on glandular tissue dose, and there is a clear need for better estimates of these doses. Our objective was to develop a quantitative summary of glandular tissue doses from mammography by considering sources of variation over time in key parameters including imaging protocols, x-ray target materials, voltage, filtration, incident air kerma, compressed breast thickness, and breast composition. We estimated the minimum, maximum, and mean values for glandular tissue dose for populations of exposed women within 5-year periods from 1960 to the present, with the minimum to maximum range likely including 90% to 95% of the entirety of the dose range from mammography in North America and Europe. Glandular tissue dose from a single view in mammography is presently about 2 mGy, about one-sixth the dose in the 1960s. The ratio of our estimates of maximum to minimum glandular tissue doses for average-size breasts was about 100 in the 1960s compared to a ratio of about 5 in recent years. Findings from our analysis provide quantitative information on glandular tissue doses from mammographic examinations which can be used in epidemiologic studies of breast cancer. PMID:21988547

  18. Estimation of absorbed dose in clinical radiotherapy linear accelerator beams: Effect of ion chamber calibration and long-term stability

    PubMed Central

    Ravichandran, Ramamoorthy; Binukumar, Johnson Pichy; Davis, Cheriyathmanjiyil Antony

    2013-01-01

    The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL “dose intercomparison” for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy, and uncertainties are within reported values. PMID:24672156

  19. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  20. Optimized source selection for intracavitary low dose rate brachytherapy

    SciTech Connect

    Nurushev, T.; Kim, Jinkoo

    2005-05-01

    A procedure has been developed for automating optimal selection of sources from an available inventory for the low dose rate brachytherapy, as a replacement for the conventional trial-and-error approach. The method of optimized constrained ratios was applied for clinical source selection for intracavitary Cs-137 implants using Varian BRACHYVISION software as initial interface. However, this method can be easily extended to another system with isodose scaling and shaping capabilities. Our procedure provides optimal source selection results independent of the user experience and in a short amount of time. This method also generates statistics on frequently requested ideal source strengths aiding in ordering of clinically relevant sources.

  1. Depth dependence of absorbed dose, dose equivalent and linear energy transfer spectra of galactic and trapped particles in polyethylene and comparison with calculations of models

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1998-01-01

    A matched set of five tissue-equivalent proportional counters (TEPCs), embedded at the centers of 0 (bare), 3, 5, 8 and 12-inch-diameter polyethylene spheres, were flown on the Shuttle flight STS-81 (inclination 51.65 degrees, altitude approximately 400 km). The data obtained were separated into contributions from trapped protons and galactic cosmic radiation (GCR). From the measured linear energy transfer (LET) spectra, the absorbed dose and dose-equivalent rates were calculated. The results were compared to calculations made with the radiation transport model HZETRN/NUCFRG2, using the GCR free-space spectra, orbit-averaged geomagnetic transmission function and Shuttle shielding distributions. The comparison shows that the model fits the dose rates to a root mean square (rms) error of 5%, and dose-equivalent rates to an rms error of 10%. Fairly good agreement between the LET spectra was found; however, differences are seen at both low and high LET. These differences can be understood as due to the combined effects of chord-length variation and detector response function. These results rule out a number of radiation transport/nuclear fragmentation models. Similar comparisons of trapped-proton dose rates were made between calculations made with the proton transport model BRYNTRN using the AP-8 MIN trapped-proton model and Shuttle shielding distributions. The predictions of absorbed dose and dose-equivalent rates are fairly good. However, the prediction of the LET spectra below approximately 30 keV/microm shows the need to improve the AP-8 model. These results have strong implications for shielding requirements for an interplanetary manned mission.

  2. Comparison of mathematical models for red marrow and blood absorbed dose estimation in the radioiodine treatment of advanced differentiated thyroid carcinoma

    NASA Astrophysics Data System (ADS)

    Miranti, A.; Giostra, A.; Richetta, E.; Gino, E.; Pellerito, R. E.; Stasi, M.

    2015-02-01

    Metastatic and recurrent differentiated thyroid carcinoma is preferably treated with 131I, whose administered activity is limited by red marrow (RM) toxicity, originally correlated by Benua to a blood absorbed dose higher than 2 Gy. Afterward a variety of dosimetric approaches has been proposed. The aim of this work is to compare the results of the Benua formula with the ones of other three blood and RM absorbed dose formulae. Materials and methods have been borrowed by the dosimetric protocol of the Italian Internal Dosimetry group and adapted to the routine of our centre. Wilcoxon t-tests and percentage differences have been applied for comparison purposes. Results are significantly different (p < 0.05) from each other, with an average percentage difference between Benua versus other results of -22%. The dosimetric formula applied to determine blood or RM absorbed dose may contribute significantly to increase heterogeneity in absorbed dose and dose-response results. Standardization should be a major objective.

  3. Early phase clinical trials to identify optimal dosing and safety

    PubMed Central

    Cook, Natalie; Hansen, Aaron R.; Siu, Lillian L.; Abdul Razak, Albiruni R.

    2014-01-01

    The purpose of early stage clinical trials is to determine the recommended dose and toxicity profile of an investigational agent or multi-drug combination. Molecularly targeted agents (MTAs) and immunotherapies have distinct toxicities from chemotherapies that are often not dose dependent and can lead to chronic and sometimes unpredictable side effects. Therefore utilizing a dose escalation method that has toxicity based endpoints may not be as appropriate for determination of recommended dose, and alternative parameters such as pharmacokinetic or pharmacodynamic outcomes are potentially appealing options. Approaches to enhance safety and optimize dosing include improved preclinical models and assessment, innovative model based design and dose escalation strategies, patient selection, the use of expansion cohorts and extended toxicity assessments. Tailoring the design of phase I trials by adopting new strategies to address the different properties of MTAs is required to enhance the development of these agents. This review will focus on the limitations to safety and dose determination that have occurred in the development of MTAs and immunotherapies. In addition, strategies are proposed to overcome these challenges to develop phase I trials that can more accurately define the recommended dose and identify adverse events. PMID:25160636

  4. Optimal iodine-131 dose for eliminating hyperthyroidism in Graves' disease

    SciTech Connect

    Nordyke, R.A.; Gilbert, F.I. Jr. )

    1991-03-01

    Since hypothyroidism is commonplace after treatment of Graves' disease with radioiodine, the goal should be cure of hyperthyroidism rather than avoidance of hypothyroidism. To find the optimal dose to accomplish cure, we treated 605 patients with stepwise increasing doses of 3, 4, 5, 6, 8, and 10 mCi, analyzing the relationship of dose, age, sex, gland weight, and thyroidal uptake to cure. Estimates of cure at doses above 10 mCi were made from the literature. Cure was directly related to dose between 5 and 10 mCi. There was no significant relationship between cure and age (chi-square, p = 0.74), sex (chi-square, p = 0.12), and 24-hr uptake if over 30% (chi-square for slope, p greater than 0.10). Cure and gland weight had an inverse relationship (chi-square for slope, 0.01 less than p less than 0.02). We concluded that the optimal 131I dose for curing hyperthyroidism is approximated by starting with 10 mCi and increasing it for unusually large glands or for special patient circumstances.

  5. Individualization of piperacillin dosing for critically ill patients: dosing software to optimize antimicrobial therapy.

    PubMed

    Felton, T W; Roberts, J A; Lodise, T P; Van Guilder, M; Boselli, E; Neely, M N; Hope, W W

    2014-07-01

    Piperacillin-tazobactam is frequently used for empirical and targeted therapy of infections in critically ill patients. Considerable pharmacokinetic (PK) variability is observed in critically ill patients. By estimating an individual's PK, dosage optimization Bayesian estimation techniques can be used to calculate the appropriate piperacillin regimen to achieve desired drug exposure targets. The aim of this study was to establish a population PK model for piperacillin in critically ill patients and then analyze the performance of the model in the dose optimization software program BestDose. Linear, with estimated creatinine clearance and weight as covariates, Michaelis-Menten (MM) and parallel linear/MM structural models were fitted to the data from 146 critically ill patients with nosocomial infection. Piperacillin concentrations measured in the first dosing interval, from each of 8 additional individuals, combined with the population model were embedded into the dose optimization software. The impact of the number of observations was assessed. Precision was assessed by (i) the predicted piperacillin dosage and by (ii) linear regression of the observed-versus-predicted piperacillin concentrations from the second 24 h of treatment. We found that a linear clearance model with creatinine clearance and weight as covariates for drug clearance and volume of distribution, respectively, best described the observed data. When there were at least two observed piperacillin concentrations, the dose optimization software predicted a mean piperacillin dosage of 4.02 g in the 8 patients administered piperacillin doses of 4.00 g. Linear regression of the observed-versus-predicted piperacillin concentrations for 8 individuals after 24 h of piperacillin dosing demonstrated an r(2) of >0.89. In conclusion, for most critically ill patients, individualized piperacillin regimens delivering a target serum piperacillin concentration is achievable. Further validation of the dosage

  6. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities

    SciTech Connect

    Bueno, M. Duch, M. A.; Carrasco, P.; Jornet, N.; Muñoz-Montplet, C.

    2014-08-15

    Purpose: The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Methods: Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)—two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a{sup 7}Li-enriched LiF:Mg,Ti-based (MTS-7s)—as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5×5 cm{sup 2} to 20×20 cm{sup 2}. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs’ response was evaluated. Results: TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%–5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a50 μm thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT’s active layer material. Conclusions: TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  7. Human absorbed dose estimation for a new (175)Yb-phosphonate based on rats data: Comparison with similar bone pain palliation agents.

    PubMed

    Vaez-Tehrani, Mahdokht; Zolghadri, Samaneh; Yousefnia, Hassan; Afarideh, Hossein

    2016-09-01

    In this work, the absorbed dose to human organs for (175)Yb-BPAMD was evaluated based on the biodistribution studies in rats. The results showed that the bone surface would receive the highest absorbed dose after injection of (175)Yb-BPAMD with 13.32mGy/MBq, while the other organs receive insignificant absorbed dose. Also, the comparison of (175)Yb-BPAMD with other therapeutic phosphonate complexes demonstrated noticeable characteristics for this new agent. Generally, based on the obtained results, (175)Yb-BPAMD can be considered as a promising agent for bone pain palliative therapy in near future. PMID:27337650

  8. Monte Carlo calculations and measurements of absorbed dose per monitor unit for the treatment of uveal melanoma with proton therapy

    PubMed Central

    Koch, Nicholas; Newhauser, Wayne D; Titt, Uwe; Gombos, Dan; Coombes, Kevin; Starkschall, George

    2014-01-01

    The treatment of uveal melanoma with proton radiotherapy has provided excellent clinical outcomes. However, contemporary treatment planning systems use simplistic dose algorithms that limit the accuracy of relative dose distributions. Further, absolute predictions of absorbed dose per monitor unit are not yet available in these systems. The purpose of this study was to determine if Monte Carlo methods could predict dose per monitor unit (D/MU) value at the center of a proton spread-out Bragg peak (SOBP) to within 1% on measured values for a variety of treatment fields relevant to ocular proton therapy. The MCNPX Monte Carlo transport code, in combination with realistic models for the ocular beam delivery apparatus and a water phantom, was used to calculate dose distributions and D/MU values, which were verified by the measurements. Measured proton beam data included central-axis depth dose profiles, relative cross-field profiles and absolute D/MU measurements under several combinations of beam penetration ranges and range-modulation widths. The Monte Carlo method predicted D/MU values that agreed with measurement to within 1% and dose profiles that agreed with measurement to within 3% of peak dose or within 0.5 mm distance-to-agreement. Lastly, a demonstration of the clinical utility of this technique included calculations of dose distributions and D/MU values in a realistic model of the human eye. It is possible to predict D/MU values accurately for clinical relevant range-modulated proton beams for ocular therapy using the Monte Carlo method. It is thus feasible to use the Monte Carlo method as a routine absolute dose algorithm for ocular proton therapy. PMID:18367789

  9. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization

    NASA Astrophysics Data System (ADS)

    Deufel, Christopher L.; Furutani, Keith M.

    2014-02-01

    As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions.

  10. Calculation of. beta. -ray absorbed dose rate for /sup 131/I applied to the inflorescence of Tradescantia

    SciTech Connect

    Bingo, K.; Tano, S.; Numakunai, T.; Yoshida, Y.; Yamaguchi, H.

    1981-03-01

    Effects of /sup 131/I applied to the inflorescence on the induction of somatic mutations in Tradescantia stamen hairs were previously investigated, and the doubling dose (activity) was estimated to be 4 nCi. In the present paper, the absorbed dose rate in stamen hairs of Tradescantia for ..beta.. rays from the applied /sup 131/I was calculated. The doubling dose for the /sup 131/I (4 nCi) applied to the inflorescence was estimated to be higher than 0.3 rad (assuming uniform distribution of /sup 131/I on the surface of the buds and assuming that the shape of the buds was a sphere) and lower than 1.0 rad.

  11. Multiple myeloma among atomic bomb survivors in Hiroshima and Nagasaki, 1950-76: relationship to radiation dose absorbed by marrow

    SciTech Connect

    Ichimaru, M.; Ishimaru, T.; Mikami, M.; Matsunaga, M.

    1982-08-01

    The relationship between atomic bomb exposure and the incidence of multiple myeloma has been examined in a fixed cohort of atomic bomb survivors and controls in the life-span study sample for Hiroshima and Nagasaki. From October 1950 to December 1976, 29 cases of multiple myeloma were confirmed in this sample. Our analysis shows that the standardized relative risk (RR) adjusted for city, sex, and age at the time of bombings (ATB) increased with marrow-absorbed radiation dose. The increased RR does not appear to differ between cities or sexes and is demonstrable only for those survivors whose age ATB was between 20 and 59 years. The estimated risk in these individuals is approximately 0.48 cases/million person-years/rad for bone marrow total dose. This excess risk did not become apparent in individuals receiving 50 rad or more in marrow total dose until 20 years or more after exposure.

  12. Multiple myeloma among atomic bomb survivors in Hiroshima and Nagasaki, 1950-76: relationship to radiation dose absorbed by marrow

    SciTech Connect

    Ichimaru, M.; Ishimaru, T.; Mikami, M.; Matsunaga, M.

    1982-08-01

    The relationship between atomic bomb exposure and the incidence of multiple myeloma has been examined in a fixed cohort of atomic bomb survivors and controls in the life-span study sample for Hiroshima and Nagasaki. From October 1950 to December 1976, 29 cases of multiple myeloma were confirmed in this sample. Our analysis shows that the standardized relative risk (RR) adjusted for city, sex, and age at the time of bombings (ATB) increased with marrow-absorbed radiation dose. The increased RR does not appear to differ between cities or sexes and is demonstrable only for those survivors whose age ATB was between 20 and 59 years. The estimaged risk in these individuals is approximately 0.48 cases/million person-years/rad for bone marrow total dose. This excess risk did not become apparent in individuals receiving 50 rad or more in marrow total dose until 20 years or more after exposure.

  13. Evaluation of the absorbed dose to the breast using radiochromic film in a dedicated CT mammotomography system employing a quasi-monochromatic x-ray beam

    PubMed Central

    Crotty, Dominic J.; Brady, Samuel L.; Jackson, D’Vone C.; Toncheva, Greta I.; Anderson, Colin E.; Yoshizumi, Terry T.; Tornai, Martin P.

    2011-01-01

    Purpose: A dual modality SPECT-CT prototype system dedicated to uncompressed breast imaging (mammotomography) has been developed. The computed tomography subsystem incorporates an ultrathick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam that optimizes the dose efficiency of the system for lesion imaging in an uncompressed breast. Here, the absorbed dose in various geometric phantoms and in an uncompressed and pendant cadaveric breast using a normal tomographic cone beam imaging protocol is characterized using both thermoluminescent dosimeter (TLD) measurements and ionization chamber-calibrated radiochromic film. Methods: Initially, two geometric phantoms and an anthropomorphic breast phantom are filled in turn with oil and water to simulate the dose to objects that mimic various breast shapes having effective density bounds of 100% fatty and glandular breast compositions, respectively. Ultimately, an excised human cadaver breast is tomographically scanned using the normal tomographic imaging protocol, and the dose to the breast tissue is evaluated and compared to the earlier phantom-based measurements. Results: Measured trends in dose distribution across all breast geometric and anthropomorphic phantom volumes indicate lower doses in the medial breast and more proximal to the chest wall, with consequently higher doses near the lateral peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes due to the reduced mass energy-absorption coefficient of oil relative to water. The mean measured dose to the breast cadaver, composed of adipose and glandular tissues, was measured to be 4.2 mGy compared to a mean whole-breast dose of 3.8 and 4.5 mGy for the oil- and water-filled anthropomorphic breast phantoms, respectively. Conclusions: Assuming rotational symmetry due to the tomographic acquisition exposures, these results characterize the 3D dose distributions in an uncompressed

  14. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Puchalska, Monika; Sihver, Lembit

    2015-06-01

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  15. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator.

    PubMed

    Puchalska, Monika; Sihver, Lembit

    2015-06-21

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature. PMID:26057186

  16. Study of the spatial distribution of the absorbed dose in blood volumes irradiated using a teletherapy unit

    NASA Astrophysics Data System (ADS)

    Góes, E. G.; Nicolucci, P.; Nali, I. C.; Pelá, C. A.; Bruço, J. L.; Borges, J. C.; Covas, D. T.

    2010-06-01

    Blood irradiation can be performed using a dedicated blood irradiator or a teletherapy unit. A thermal device providing appropriate storage conditions during blood components irradiation with a teletherapy unit has been recently proposed. However, the most appropriated volume of the thermal device was not indicated. The goal of this study was to indicate the most appropriated blood volume for irradiation using a teletherapy unit in order to minimize both the dose heterogeneity in the volume and the blood irradiation time using these equipments. Theoretical and experimental methods were used to study the dose distribution in the blood volume irradiated using a linear accelerator and a cobalt-60 therapy machine. The calculation of absorbed doses in the middle plane of cylindrical acrylic volumes was accomplished by a treatment planning system. Experimentally, we also used cylindrical acrylic phantoms and thermoluminescent dosimeters to confirm the calculated doses. The data obtained were represented by isodose curves. We observed that an irradiation volume should have a height of 28 cm and a diameter of 28 cm and a height of 35 cm and a diameter of 35 cm, when the irradiation is to be performed by a linear accelerator and a cobalt-60 teletherapy unit, respectively. Calculated values of relative doses varied from 93% to 100% in the smaller volume, and from 66% to 100% in the largest one. A difference of 5.0%, approximately, was observed between calculated and experimental data. The size of these volumes permits the irradiation of blood bags in only one bath without compromising the homogeneity of the absorbed dose over the irradiated volume. Thus, these irradiation volumes can be recommend to minimize the irradiation time when a teletherapy unit is used to irradiate blood.

  17. Optimal dose-response relationships in voice therapy.

    PubMed

    Roy, Nelson

    2012-10-01

    Like other areas of speech-language pathology, the behavioural management of voice disorders lacks precision regarding optimal dose-response relationships. In voice therapy, dosing can presumably vary from no measurable effect (i.e., no observable benefit or adverse effect), to ideal dose (maximum benefit with no adverse effects), to doses that produce toxic or harmful effects on voice production. Practicing specific vocal exercises will inevitably increase vocal load. At ideal doses, these exercises may be non-toxic and beneficial, while at intermediate or high doses, the same exercises may actually be toxic or damaging to vocal fold tissues. In pharmacology, toxicity is a critical concept, yet it is rarely considered in voice therapy, with little known regarding "effective" concentrations of specific voice therapies vs "toxic" concentrations. The potential for vocal fold tissue damage related to overdosing on specific vocal exercises has been under-studied. In this commentary, the issue of dosing will be explored within the context of voice therapy, with particular emphasis placed on possible "overdosing". PMID:22574765

  18. Experimental validation of a magnetorheological energy absorber design optimized for shock and impact loads

    NASA Astrophysics Data System (ADS)

    Singh, Harinder J.; Hu, Wei; Wereley, Norman M.; Glass, William

    2014-12-01

    A linear stroke adaptive magnetorheological energy absorber (MREA) was designed, fabricated and tested for intense impact conditions with piston velocities up to 8 m s-1. The performance of the MREA was characterized using dynamic range, which is defined as the ratio of maximum on-state MREA force to the off-state MREA force. Design optimization techniques were employed in order to maximize the dynamic range at high impact velocities such that MREA maintained good control authority. Geometrical parameters of the MREA were optimized by evaluating MREA performance on the basis of a Bingham-plastic analysis incorporating minor losses (BPM analysis). Computational fluid dynamics and magnetic FE analysis were conducted to verify the performance of passive and controllable MREA force, respectively. Subsequently, high-speed drop testing (0-4.5 m s-1 at 0 A) was conducted for quantitative comparison with the numerical simulations. Refinements to the nonlinear BPM analysis were carried out to improve prediction of MREA performance.

  19. A Novel, Real-Valued Genetic Algorithm for Optimizing Radar Absorbing Materials

    NASA Technical Reports Server (NTRS)

    Hall, John Michael

    2004-01-01

    A novel, real-valued Genetic Algorithm (GA) was designed and implemented to minimize the reflectivity and/or transmissivity of an arbitrary number of homogeneous, lossy dielectric or magnetic layers of arbitrary thickness positioned at either the center of an infinitely long rectangular waveguide, or adjacent to the perfectly conducting backplate of a semi-infinite, shorted-out rectangular waveguide. Evolutionary processes extract the optimal physioelectric constants falling within specified constraints which minimize reflection and/or transmission over the frequency band of interest. This GA extracted the unphysical dielectric and magnetic constants of three layers of fictitious material placed adjacent to the conducting backplate of a shorted-out waveguide such that the reflectivity of the configuration was 55 dB or less over the entire X-band. Examples of the optimization of realistic multi-layer absorbers are also presented. Although typical Genetic Algorithms require populations of many thousands in order to function properly and obtain correct results, verified correct results were obtained for all test cases using this GA with a population of only four.

  20. CT dose minimization using personalized protocol optimization and aggressive bowtie

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yin, Zhye; Jin, Yannan; Wu, Mingye; Yao, Yangyang; Tao, Kun; Kalra, Mannudeep K.; De Man, Bruno

    2016-03-01

    In this study, we propose to use patient-specific x-ray fluence control to reduce the radiation dose to sensitive organs while still achieving the desired image quality (IQ) in the region of interest (ROI). The mA modulation profile is optimized view by view, based on the sensitive organs and the ROI, which are obtained from an ultra-low-dose volumetric CT scout scan [1]. We use a clinical chest CT scan to demonstrate the feasibility of the proposed concept: the breast region is selected as the sensitive organ region while the cardiac region is selected as IQ ROI. Two groups of simulations are performed based on the clinical CT dataset: (1) a constant mA scan adjusted based on the patient attenuation (120 kVp, 300 mA), which serves as baseline; (2) an optimized scan with aggressive bowtie and ROI centering combined with patient-specific mA modulation. The results shows that the combination of the aggressive bowtie and the optimized mA modulation can result in 40% dose reduction in the breast region, while the IQ in the cardiac region is maintained. More generally, this paper demonstrates the general concept of using a 3D scout scan for optimal scan planning.

  1. Creation of ORNL NURBS-based phantoms: evaluation of the voxel effect on absorbed doses from radiopharmaceuticals.

    PubMed

    Gardumi, Anna; Farah, Jad; Desbrée, Aurélie

    2013-03-01

    Doses from radiopharmaceuticals absorbed by organs can be assessed using Monte Carlo simulations and computational phantoms. Patient-based voxel phantoms improve the realism of organ topology but present unrealistic stair-stepped surfaces. The goal of this research was to study the voxel effect on the basis of creation and voxelisation of a series of non-uniform rational B-spline (NURBS) reference phantoms issued from the publication of the Oak Ridge National Laboratory (ORNL). Absorbed doses from various radiopharmaceuticals were calculated and compared with the values obtained for the corresponding analytical phantoms for models of an adult male and a 5-y-old child. Dose differences lower than 12.5 % were observed when the critical structure of the skin was excluded. Moreover, the highest differences were noted for small organs and walls. Finally, all NURBS phantoms of the ORNL series, their voxelised version and the corresponding Monte Carlo N-Particle eXtended input files were programmed and are available for further simulations. PMID:22719045

  2. Measurement of absorbed doses in organs of medical staff at (18)F-FDG pet examination.

    PubMed

    Fujibuchi, Toshioh; Iimori, Takashi; Isobe, Tomonori; Masuda, Yoshitada; Uchida, Yoshitaka; Matsubayashi, Fumiyasu; Sakae, Takeji

    2010-01-01

    In this study, the organ doses were measured using a human- body phantom simulating a medical staff member, and we considered an effective method for decreasing exposure to staff in positron emission tomography examinations. A fluorescence glass dosimeter was arranged for measurements in various organs. Regarding exposure, the average ratio of the dose at 100 cm from the source to the dose at 30 cm was 0.35. The ratio of the dose at 100 cm with a 3 cm lead shield to the dose at 100 cm with no shielding device was 0.01. To reduce the radiation exposure effectively, medical staff members should inform the patient of the details of the examination in advance, reduce the contact time with the patient during the examination, and maximize their distance from the patient when contact is necessary. PMID:20821099

  3. Determination of absorbed dose by single photon emission computerized tomography in the radioiodine treatment of distant metastases from thyroid carcinoma

    SciTech Connect

    Kusakabe, K.; Kanaya, S.; Ohta, T.; Kawasaki, Y.; Maki, M.; Hiroe, M.; Obara, T.; Fujimoto, Y.; Yamasaki, T.

    1985-05-01

    The purpose of this paper is to present the results of preliminary experience in the dosimetry of I-131 to metastatic tumors from thyroid cancer, utilizing SPECT for calculation of the absorbed dose. SPECT was performed with a scintillation camera, 1-20 days after the administration of a treatment dose of I-131 78-150 mCi in 15 cases. All patients were performed total thyroidectomy and/or ablation with radioiodine. All had been off thyroid-suppression medication for 2 weeks before I-131 scanning. The study population included 3 men and 12 women, with ages ranging from 20-74 years. Thirteen had had follicular carcinoma and two papillary, including mixed papillary-follicular. A SPECT system with high energy collimater, was calibrated with cylindrical volume sources containing I-131, within a 16-25 cm diameter water filled cylinder. The attenuation coefficient for the 360keV photons of I-131 in water was ..mu..=0.05 cm, resulting in a uniform radioactivity distribution in the reconstructed image. And this value is used for attenuation correction. Half-life data and activities of I-131 have been compiled in which the isotope assumed to be concentrated in tumors. Weight of tumors was estimated by TCT images. Radiation absorbed doses were calculated using the Medical Internal Radiaton Dose (MIRD). The weight of tumors ranged from 2-80 gram and the tumor radiation dose ranged from 500-25,000 rads. These results indicate that dosimetry with SPECT correlate well with clinical course and have the added advantage of I-131 treatment.

  4. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Mikell, Justin; Cheenu Kappadath, S.; Wareing, Todd; Erwin, William D.; Titt, Uwe; Mourtada, Firas

    2016-06-01

    To evaluate the 3D Grid-based Boltzmann Solver (GBBS) code ATTILA ® for coupled electron and photon transport in the nuclear medicine energy regime for electron (beta, Auger and internal conversion electrons) and photon (gamma, x-ray) sources. Codes rewritten based on ATTILA are used clinically for both high-energy photon teletherapy and 192Ir sealed source brachytherapy; little information exists for using the GBBS to calculate voxel-level absorbed doses in nuclear medicine. We compared DOSXYZnrc Monte Carlo (MC) with published voxel-S-values to establish MC as truth. GBBS was investigated for mono-energetic 1.0, 0.1, and 0.01 MeV electron and photon sources as well as 131I and 90Y radionuclides. We investigated convergence of GBBS by analyzing different meshes ({{M}0},{{M}1},{{M}2} ), energy group structures ({{E}0},{{E}1},{{E}2} ) for each radionuclide component, angular quadrature orders (≤ft. {{S}4},{{S}8},{{S}16}\\right) , and scattering order expansions ({{P}0} –{{P}6} ); higher indices imply finer discretization. We compared GBBS to MC in (1) voxel-S-value geometry for soft tissue, lung, and bone, and (2) a source at the interface between combinations of lung, soft tissue, and bone. Excluding Auger and conversion electrons, MC agreed within  ≈5% of published source voxel absorbed doses. For the finest discretization, most GBBS absorbed doses in the source voxel changed by less than 1% compared to the next finest discretization along each phase space variable indicating sufficient convergence. For the finest discretization, agreement with MC in the source voxel ranged from  ‑3% to  ‑20% with larger differences at lower energies (‑3% for 1 MeV electron in lung to  ‑20% for 0.01 MeV photon in bone); similar agreement was found for the interface geometries. Differences between GBBS and MC in the source voxel for 90Y and 131I were  ‑6%. The GBBS ATTILA was benchmarked against MC in the nuclear medicine regime. GBBS can be a

  5. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine.

    PubMed

    Mikell, Justin; Cheenu Kappadath, S; Wareing, Todd; Erwin, William D; Titt, Uwe; Mourtada, Firas

    2016-06-21

    To evaluate the 3D Grid-based Boltzmann Solver (GBBS) code ATTILA (®) for coupled electron and photon transport in the nuclear medicine energy regime for electron (beta, Auger and internal conversion electrons) and photon (gamma, x-ray) sources. Codes rewritten based on ATTILA are used clinically for both high-energy photon teletherapy and (192)Ir sealed source brachytherapy; little information exists for using the GBBS to calculate voxel-level absorbed doses in nuclear medicine. We compared DOSXYZnrc Monte Carlo (MC) with published voxel-S-values to establish MC as truth. GBBS was investigated for mono-energetic 1.0, 0.1, and 0.01 MeV electron and photon sources as well as (131)I and (90)Y radionuclides. We investigated convergence of GBBS by analyzing different meshes ([Formula: see text]), energy group structures ([Formula: see text]) for each radionuclide component, angular quadrature orders ([Formula: see text], and scattering order expansions ([Formula: see text]-[Formula: see text]); higher indices imply finer discretization. We compared GBBS to MC in (1) voxel-S-value geometry for soft tissue, lung, and bone, and (2) a source at the interface between combinations of lung, soft tissue, and bone. Excluding Auger and conversion electrons, MC agreed within  ≈5% of published source voxel absorbed doses. For the finest discretization, most GBBS absorbed doses in the source voxel changed by less than 1% compared to the next finest discretization along each phase space variable indicating sufficient convergence. For the finest discretization, agreement with MC in the source voxel ranged from  -3% to  -20% with larger differences at lower energies (-3% for 1 MeV electron in lung to  -20% for 0.01 MeV photon in bone); similar agreement was found for the interface geometries. Differences between GBBS and MC in the source voxel for (90)Y and (131)I were  -6%. The GBBS ATTILA was benchmarked against MC in the nuclear medicine regime. GBBS can be a

  6. Accidental embryo irradiation during barium enema examinations: An estimation of absorbed dose

    SciTech Connect

    Damilakis, J.; Perisinakis, K.; Grammatikakis, J.

    1996-04-01

    The purpose of this report is to investigate the possibility of an embryo to receive a dose of more than 10 cGy, the threshold of malformation induction in embryos reported by the International Commission on Radiological Protection, during barium enema examinations. Thermoluminescent dosimeters were place in a phantom to calculate the depth-to-skin conversion coefficient needed for dose estimation at the average embryo depth in patients. Barium enema examinations were performed in 20 women of childbearing age with diagnostic problems demanding longer fluoroscopy times. Doses at 6 cm, the average embryo depth, were determined by measurements at the patients` skin followed by dose calculation at the site of interest. The range of doses estimated at embryo depth for patients was 1.9 to 8.2 cGy. The dose always exceeded 5 cGy when fluoroscopy time was longer than 7 minutes. The dose at the embryo depth never exceeded 10 cGy. This study indicates that fluoroscopy time should not exceed 7 minutes in childbearing-age female patients undergoing barium enema examinations. 6 refs., 1 fig., 2 tabs.

  7. Absorbed Gamma-Ray Doses due to Natural Radionuclides in Building Materials

    SciTech Connect

    Aguiar, Vitor A. P.; Medina, Nilberto H.; Moreira, Ramon H.; Silveira, Marcilei A. G.

    2010-05-21

    This work is devoted to the application of high-resolution gamma-ray spectrometry in the study of the effective dose coming from naturally occurring radionuclides, namely {sup 40}K, {sup 232}Th and {sup 238}U, present in building materials such as sand, cement, and granitic gravel. Four models were applied to estimate the effective dose and the hazard indices. The maximum estimated effective dose coming from the three reference rooms considered is 0.90(45) mSv/yr, and maximum internal hazard index is 0.77(24), both for the compact clay brick reference room. The principal gamma radiation sources are cement, sand and bricks.

  8. Experimental determination of the absorbed dose to water in a scanned proton beam using a water calorimeter and an ionization chamber

    NASA Astrophysics Data System (ADS)

    Gagnebin, Solange; Twerenbold, Damian; Pedroni, Eros; Meer, David; Zenklusen, Silvan; Bula, Christian

    2010-03-01

    The absorbed dose to water is the reference physical quantity for the energy absorbed in tissue when exposed to beams of ionizing radiation in radiotherapy. The SI unit of absorbed dose to water is the gray (Gy = 1 J/kg). Ionization chambers are used as the dosimeters of choice in the clinical environment because they show a high reproducibility and are easy to use. However, ionization chambers have to be calibrated in order to convert the measured electrical charge into absorbed dose to water. In addition, protocols require these conversion factors to be SI traceable to a primary standard of absorbed dose to water. We present experimental results where the ionization chamber used for the dosimetry for the scanned proton beam facility at PSI is compared with the direct determination of absorbed dose to water from the METAS primary standard water calorimeter. The agreement of 3.2% of the dose values measured by the two techniques are within their respective statistical uncertainties.

  9. Emerging Techniques for Dose Optimization in Abdominal CT

    PubMed Central

    Platt, Joel F.; Goodsitt, Mitchell M.; Al-Hawary, Mahmoud M.; Maturen, Katherine E.; Wasnik, Ashish P.; Pandya, Amit

    2014-01-01

    Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose. © RSNA, 2014 PMID:24428277

  10. The fourth-order absorbing boundary condition with optimized coefficients for the simulation of the acoustic equation

    NASA Astrophysics Data System (ADS)

    Song, Peng; Liu, Zhaolun; Zhang, Xiaobo; Tan, Jun; Xia, Dongming; Li, Jing; Zhu, Bo

    2015-12-01

    This paper introduces the fourth-order absorbing boundary condition (ABC) into staggered-grid finite difference forward modeling of the first-order stress-velocity acoustic equation, and develops a new method to optimize coefficients of the fourth-order ABC to further improve its overall absorbing effect. Theoretical analysis and the results of numerical tests demonstrate that the fourth-order ABC with optimized coefficients has much higher absorbing efficiency than both the conventional second-order and fourth-order ABCs without optimized coefficients, for waves with large incident angles. Compared with the perfectly matched layer (PML) with 40 layers, the fourth-order ABC not only has a much better absorbing effect, but also uses far less computer memory for calculation. We present the fourth-order ABC with optimized coefficients as an ideal artificial boundary for the simulation of the acoustic equation based on extensive and complex structure models. Supported by the Fundamental Research Funds for the Central Universities (201513005).

  11. Choosing the optimal dose in sublingual immunotherapy: Rationale for the 300 index of reactivity dose.

    PubMed

    Demoly, Pascal; Passalacqua, Gianni; Calderon, Moises A; Yalaoui, Tarik

    2015-01-01

    Sublingual immunotherapy (SLIT) is an effective and well-tolerated method of treating allergic respiratory diseases associated with seasonal and perennial allergens. In contrast to the subcutaneous route, SLIT requires a much greater amount of antigen to achieve a clinical effect. Many studies have shown that SLIT involves a dose-response relationship, and therefore it is important to use a proven clinically effective dose from the onset of treatment, because low doses are ineffective and very high doses may increase the risk of side effects. A well-defined standardization of allergen content is also crucial to ensure consistent quality, potency and appropriate immunomodulatory action of the SLIT product. Several methods of measuring antigenicity are used by manufacturers of SLIT products, including the index of reactivity (IR), standardized quality tablet unit, and bioequivalent allergy unit. A large body of evidence has established the 300 IR dose of SLIT as offering optimal efficacy and tolerability for allergic rhinitis due to grass and birch pollen and HDM, and HDM-induced moderate, persistent allergic asthma. The 300 IR dose also offers consistency of dosing across a variety of different allergens, and is associated with higher rates of adherence and patient satisfaction. Studies in patients with grass pollen allergies showed that the 300 IR dose has a rapid onset of action, is effective in both adults and children in the short term and, when administered pre-coseasonally in the long term, and maintains the clinical benefit, even after cessation of treatment. In patients with HDM-associated AR and/or asthma, the 300 IR dose also demonstrated significant improvements in symptoms and quality of life, and significantly decreased use of symptomatic medication. The 300 IR dose is well tolerated, with adverse events generally being of mild or moderate severity, declining in frequency and severity over time and in the subsequent courses. We discuss herein the most

  12. High-Dose 131I-Tositumomab (Anti-CD20) Radioimmunotherapy for Non-Hodgkin's Lymphoma: Adjusting Radiation Absorbed Dose to Actual Organ Volumes

    SciTech Connect

    Rajendran, Joseph G.; Fisher, Darrell R.; Gopal, A K.; Durack, L. D.; Press, O. W.; Eary, Janet F.

    2004-06-01

    Radioimmunotherapy (RIT) using 131I-tositumomab has been used successfully to treat relapsed or refractory B-cell non-Hodgin's lymphoma (NHL). Our approach to treatment planning has been to determine limits on radiation absorbed close to critical nonhematopoietic organs. This study demonstrates the feasibility of using CT to adjust for actual organ volumes in calculating organ-specific absorbed dose estimates. Methods: Records of 84 patients who underwent biodistribution studies after a trace-labeled infusion of 131I-tositumomab for RIT (January 1990 and April 2003) were reviewed. Serial planar -camera images and whole-body Nal probe counts were obtained to estimate 131I-antibody source-organ residence times as recommended by the MIRD Committee. The source-organ residence times for standard man or woman were adjusted by the ratio of the MIRD phantom organ mass to the CT-derived organ mass. Results: The mean radiation absorbed doses (in mGy/MBq) for our data using the MIRD model were lungs= 1.67; liver= 1.03; kidneys= 1.08; spleen= 2.67; and whole body= 0.3; and for CT volume-adjusted organ volumes (in mGy/MBq) were lungs= 1.30; liver= 0.92; kidneys= 0.76; spleen= 1.40; and whole body= 0.22. We determined the following correlation coefficients between the 2 methods for the various organs; lungs, 0.49; (P= 0.0001); liver, 0.64 (P= 0.004); kidneys, 0.45 (P= 0.0001), for the residence times. For therapy, patients received mean 131I administered activities of 19.2 GBq (520 mCi) after adjustment for CT-derived organ mass compared with 16.0 GBq (433 mCi) that would otherwise have been given had therapy been based only using standard MIRD organ volumes--a statistically significant difference (P= 0.0001). Conclusion: We observed large variations in organ masses among our patients. Our treatments were planned to deliver the maximally tolerated radiation dose to the dose-limiting normal organ. This work provides a simplified method for calculating patient-specific radiation

  13. Evaluation of the breast absorbed dose distribution using the Fricke Xylenol Gel

    NASA Astrophysics Data System (ADS)

    Czelusniak, C.; Del Lama, L. S.; Moreira, M. V.; De Almeida, A.

    2010-11-01

    During a breast cancer radiotherapy treatment, several issues have to be taken into account, among them, hot spots, gradient of doses delivered over the breast, as well as in the lungs and the heart. The present work aims to apply the Fricke Xylenol Gel (FXG) dosimeter in the study of these issues, using a CCD camera to analyse the dose deposited distribution. Thus, the CCD was used to capture the images of different cuvettes that were filled with FXG and irradiated considering analogous setups employed in breast cancer radiotherapy treatments. Thereafter, these pictures where processed in a MatLab routine and the spatial dose distributions could be evaluated. These distributions were compared with the ones that were obtained from dedicated treatment planning's softwares. According to the results obtained, the FXG, allied with the CCD system, has shown to be a complementary tool in dosimetry, helping to prevent possible complications during breast cancer treatments.

  14. Optimized computational method for determining the beta dose distribution using a multiple-element thermoluminescent dosimeter system

    SciTech Connect

    Shen, L.; Levine, S.H.; Catchen, G.L.

    1987-07-01

    This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.

  15. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors.

    PubMed

    Garnica-Garza, H M

    2009-09-21

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360 degrees arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution. PMID:19700816

  16. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    NASA Astrophysics Data System (ADS)

    Garnica-Garza, H. M.

    2009-09-01

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360° arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  17. Optimization of radiation dosing schedules for proneural glioblastoma.

    PubMed

    Badri, H; Pitter, K; Holland, E C; Michor, F; Leder, K

    2016-04-01

    Glioblastomas are the most aggressive primary brain tumor. Despite treatment with surgery, radiation and chemotherapy, these tumors remain uncurable and few significant increases in survival have been observed over the last half-century. We recently employed a combined theoretical and experimental approach to predict the effectiveness of radiation administration schedules, identifying two schedules that led to superior survival in a mouse model of the disease (Leder et al., Cell 156(3):603-616, 2014). Here we extended this approach to consider fractionated schedules to best minimize toxicity arising in early- and late-responding tissues. To this end, we decomposed the problem into two separate solvable optimization tasks: (i) optimization of the amount of radiation per dose, and (ii) optimization of the amount of time that passes between radiation doses. To ensure clinical applicability, we then considered the impact of clinical operating hours by incorporating time constraints consistent with operational schedules of the radiology clinic. We found that there was no significant loss incurred by restricting dosage to an 8:00 a.m. to 5:00 p.m. window. Our flexible approach is also applicable to other tumor types treated with radiotherapy. PMID:26094055

  18. Reducing absorbed dose to eye lenses in head CT examinations: the effect of bismuth shielding.

    PubMed

    Ciarmatori, Alberto; Nocetti, L; Mistretta, G; Zambelli, G; Costi, T

    2016-06-01

    The eye lens is considered to be among the most radiosensitive human tissues. Brain CT scans may unnecessarily expose it to radiation even if the area of clinical interest is far from the eyes. The aim of this study is to implement a bismuth eye lens shielding system for Head-CT acquisitions in these cases. The study is focused on the assessment of the dosimetric characteristics of the shielding system as well as on its effect on image quality. The shielding system was tested in two set-ups which differ for distance ("contact" and "4 cm" Set up respectively). Scans were performed on a CTDI phantom and an anthropomorphic phantom. A reference set up without shielding system was acquired to establish a baseline. Image quality was assessed by signal (not HU converted), noise and contrast-to-noise ratio (CNR) evaluation. The overall dose reduction was evaluated by measuring the CTDIvol while the eye lens dose reduction was assessed by placing thermoluminescent dosimeters (TLDs) on an anthropomorphic phantom. The image quality analysis exhibits the presence of an artefact that mildly increases the CT number up to 3 cm below the shielding system. Below the artefact, the difference of the Signal and the CNR are negligible between the three different set-ups. Regarding the CTDI, the analysis demonstrates a decrease by almost 12 % (in the "contact" set-up) and 9 % (in the "4 cm" set-up). TLD measurements exhibit an eye lens dose reduction by 28.5 ± 5 and 21.1 ± 5 % respectively at the "contact" and the "4 cm" distance. No relevant artefact was found and image quality was not affected by the shielding system. Significant dose reductions were measured. These features make the shielding set-up useful for clinical implementation in both studied positions. PMID:27098155

  19. Online monitoring of absorbed dose in undulator magnets with RADFET dosimeters at FERMI@Elettra

    NASA Astrophysics Data System (ADS)

    Fröhlich, L.; Casarin, K.; Quai, E.; Holmes-Siedle, A.; Severgnini, M.; Vidimari, R.

    2013-03-01

    The FERMI@Elettra free-electron laser, based on a 1.3 GeV electron linac, requires the monitoring of radiation doses up to a few kGy for the protection of sensitive equipment such as permanent magnet undulators. A new dosimetry system DOSFET-L01, employing an array of RADFETs spread throughout the accelerator, was developed. So far, the system has performed flawlessly for almost two years, taking one dose reading per minute around the clock. The REM RFT-300 sensors were set in zero-bias mode, i.e. with all electrodes grounded during exposure. This choice of mode allows the measurement of a high range of integrated doses - up to a few kGy. The paper describes the new read-out system and its application, calibration measurements in cobalt-60 and 6 MeV bremsstrahlung radiation sources giving rise to a novel response function, and new data on "fade" under the zero-bias mode of use for over 300 days at room temperature. Regular readings from 28 RADFETs placed within seven undulators over the first 20 months of operation of the accelerator demonstrate how the system tracks and locates periods of high and low dose rate and thereby contributes to the protection from beam loss. The readings from the RADFET system are found to be in good agreement with Gafchromic EBT2 film dosimeters. Based on the results reported, the choice of bias mode may be revised so as to reduce fade and improve the accuracy conferred by a positive-bias mode.

  20. Tumoral fibrosis effect on the radiation absorbed dose of (177)Lu-Tyr(3)-octreotate and (177)Lu-Tyr(3)-octreotate conjugated to gold nanoparticles.

    PubMed

    Azorín-Vega, E P; Zambrano-Ramírez, O D; Rojas-Calderón, E L; Ocampo-García, B E; Ferro-Flores, G

    2015-06-01

    The aim of this work was to evaluate the tumoral fibrosis effect on the radiation absorbed dose of the radiopharmaceuticals (177)Lu-Tyr(3)-octreotate (monomeric) and (177)Lu-Tyr(3)-octreotate-gold nanoparticles (multimeric) using an experimental HeLa cells tumoral model and the Monte Carlo PENELOPE code. Experimental and computer micro-environment models with or without fibrosis were constructed. Results showed that fibrosis increases up to 33% the tumor radiation absorbed dose, although the major effect on the dose was produced by the type of radiopharmaceutical (112Gy-multimeric vs. 43Gy-monomeric). PMID:25305748

  1. Optimizing radioimmunotherapy by matching dose distribution with tumor structure using 3D reconstructions of serial images.

    PubMed

    Flynn, A A; Pedley, R B; Green, A J; Boxer, G M; Boden, R; Begent, R H

    2001-10-01

    The biological effect of radioimmunotherapy (RIT) is most commonly assessed in terms of the absorbed radiation dose. In tumor, conventional dosimetry methods assume a uniform radionuclide and calculate a mean dose throughout the tumor. However, the vasculature of solid tumors tends to be highly irregular and the systemic delivery of antibodies is therefore heterogeneous. Tumor-specific antibodies preferentially localize in the viable, radiosensitive parts of the tumor whereas non-specific antibodies can penetrate into the necrosis where the dose is wasted. As a result, the observed biological effect can be very different to the predicted effect from conventional dose estimates. The purpose of this study is to assess the potential for optimizing the biological effect of RIT by matching the dose-distribution with tumor structure through the selection of appropriate antibodies and radionuclides. Storage phosphor plate technology was used to acquire images of the antibody distribution in serial tumor sections. Images of the distributions of a trivalent (TFM), bivalent (A5B7-IgG), monovalent (MFE-23) and a non-specific antibody (MOPC) were obtained. These images were registered with corresponding images showing tumor morphology. Serial images were reconstructed to form 3D maps of the antibody distribution and tumor structure. Convolution of the image of antibody distribution with beta dose point kernals generated dose-rate distributions for 14C, 131I and 90Y. These were statistically compared with the tumor structure. The highest correlation was obtained for the multivalent antibodies combined with 131I, due to specific retention in viable areas of tumor coupled with the fact that much of the dose was deposted locally. With decreasing avidity the correlation also decreased and with the non-specific antibody this correlation was negative, indicating higher concentrations in the necrotic regions. In conclusion, the dose distribution can be optimized in tumor by selecting

  2. Dose optimization in pediatric cardiac x-ray imaging

    SciTech Connect

    Gislason, Amber J.; Davies, Andrew G.; Cowen, Arnold R.

    2010-10-15

    Purpose: The aim of this research was to explore x-ray beam parameters with intent to optimize pediatric x-ray settings in the cardiac catheterization laboratory. This study examined the effects of peak x-ray tube voltage (kVp) and of copper (Cu) x-ray beam filtration independently on the image quality to dose balance for pediatric patient sizes. The impact of antiscatter grid removal on the image quality to dose balance was also investigated. Methods: Image sequences of polymethyl methacrylate phantoms approximating chest sizes typical of pediatric patients were captured using a modern flat-panel receptor based x-ray imaging system. Tin was used to simulate iodine-based contrast medium used in clinical procedures. Measurements of tin detail contrast and flat field image noise provided the contrast to noise ratio. Entrance surface dose (ESD) and effective dose (E) measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose, which evaluated the dose efficiency of the x-ray parameters investigated. The kVp, tube current (mA), and pulse duration were set manually by overriding the system's automatic dose control mechanisms. Images were captured with 0, 0.1, 0.25, 0.4, and 0.9 mm added Cu filtration, for 50, 55, 60, 65, and 70 kVp with the antiscatter grid in place, and then with it removed. Results: For a given phantom thickness, as the Cu filter thickness was increased, lower kVp was favored. Examining kVp alone, lower values were generally favored, more so for thinner phantoms. Considering ESD, the 8.5 cm phantom had the highest FOM at 50 kVp using 0.4 mm of Cu filtration. The 12 cm phantom had the highest FOM at 55 kVp using 0.9 mm Cu, and the 16 cm phantom had highest FOM at 55 kVp using 0.4 mm Cu. With regard to E, the 8.5 and 12 cm phantoms had the highest FOM at 50 kVp using 0.4 mm of Cu filtration, and the 16 cm phantom had the highest FOM at 50 kVp using 0.25 mm Cu. Antiscatter grid removal improved the FOM for a given set of x

  3. Absorbed Radiation Dose in Radiosensitive Organs Using 64- and 320-Row Multidetector Computed Tomography: A Comparative Study

    PubMed Central

    Khan, Atif N.; Nikolic, Boris; Khan, Mohammad K.; Kang, Jian; Khosa, Faisal

    2014-01-01

    Aim. To determine absorbed radiation dose (ARD) in radiosensitive organs during prospective and full phase dose modulation using ECG-gated MDCTA scanner under 64- and 320-row detector modes. Methods. Female phantom was used to measure organ radiation dose. Five DP-3 radiation detectors were used to measure ARD to lungs, breast, and thyroid using the Aquilion ONE scanner in 64- and 320-row modes using both prospective and dose modulation in full phase acquisition. Five measurements were made using three tube voltages: 100, 120, and 135 kVp at 400 mA at heart rate (HR) of 60 and 75 bpm for each protocol. Mean acquisition was recorded in milligrays (mGy). Results. Mean ARD was less for 320-row versus 64-row mode for each imaging protocol. Prospective EKG-gated imaging protocol resulted in a statistically lower ARD using 320-row versus 64-row modes for midbreast (6.728 versus 19.687 mGy, P < 0.001), lung (6.102 versus 21.841 mGy, P < 0.001), and thyroid gland (0.208 versus 0.913 mGy; P < 0.001). Retrospective imaging using 320- versus 64-row modes showed lower ARD for midbreast (10.839 versus 43.169 mGy, P < 0.001), lung (8.848 versus 47.877 mGy, P < 0.001), and thyroid gland (0.057 versus 2.091 mGy; P < 0.001). ARD reduction was observed at lower kVp and heart rate. Conclusions. Dose reduction to radiosensitive organs is achieved using 320-row compared to 64-row modes for both prospective and retrospective gating, whereas 64-row mode is equivalent to the same model 64-row MDCT scanner. PMID:25170427

  4. Inverse modeling of FIB milling by dose profile optimization

    NASA Astrophysics Data System (ADS)

    Lindsey, S.; Waid, S.; Hobler, G.; Wanzenböck, H. D.; Bertagnolli, E.

    2014-12-01

    FIB technologies possess a unique ability to form topographies that are difficult or impossible to generate with binary etching through typical photo-lithography. The ability to arbitrarily vary the spatial dose distribution and therefore the amount of milling opens possibilities for the production of a wide range of functional structures with applications in biology, chemistry, and optics. However in practice, the realization of these goals is made difficult by the angular dependence of the sputtering yield and redeposition effects that vary as the topography evolves. An inverse modeling algorithm that optimizes dose profiles, defined as the superposition of time invariant pixel dose profiles (determined from the beam parameters and pixel dwell times), is presented. The response of the target to a set of pixel dwell times in modeled by numerical continuum simulations utilizing 1st and 2nd order sputtering and redeposition, the resulting surfaces are evaluated with respect to a target topography in an error minimization routine. Two algorithms for the parameterization of pixel dwell times are presented, a direct pixel dwell time method, and an abstracted method that uses a refineable piecewise linear cage function to generate pixel dwell times from a minimal number of parameters. The cage function method demonstrates great flexibility and efficiency as compared to the direct fitting method with performance enhancements exceeding ∼10× as compared to direct fitting for medium to large simulation sets. Furthermore, the refineable nature of the cage function enables solutions to adapt to the desired target function. The optimization algorithm, although working with stationary dose profiles, is demonstrated to be applicable also outside the quasi-static approximation. Experimental data confirms the viability of the solutions for 5 × 7 μm deep lens like structures defined by 90 pixel dwell times.

  5. [Evaluation of absorbed dose from kilovoltage cone-beam computed tomography by radiotherapy planning system: influence on the radiation therapy for prostate cancer].

    PubMed

    Kawamura, Tetsuro; Murakami, Naoki; Okamura, Yoshiaki; Nishimura, Hideki; Miyawaki, Daisuke; Kimura, Kunihiko; Hase, Mamoru; Sasaki, Ryohei

    2013-05-01

    Image-guided radiation therapy (IGRT) is increasingly being used in modern radiation therapy, and it is now possible to verify a patient's position using kilo-voltage cone-beam computed tomography (kV-CBCT). However, if kV-CBCT is used frequently, the dose absorbed by the body cannot be disregarded. A number of studies have been made on the absorbed dose of kV-CBCT, in which absorbed dose measurements were made using a computed tomography dose index (CTDI) or a thermoluminescent dosimeter (TLD). Other methods include comparison of the absorbed dose between a kV-CBCT and other modalities. These techniques are now in common use. However, dose distribution within the patient varies with the patient's size, posture and the part of the body to which radiation therapy is applied. The chief purpose of this study was to evaluate the dose distribution of kV-CBCT by employing a radiotherapy planning system (RTPS); a secondary aim was to examine the influence of a dose of kV-CBCT radiation when used to treat prostate cancer. The beam data of an on-board imager (OBI) was registered in the RTPS, after which modeling was performed. The radiation dosimetry was arranged by the dosimeter in an elliptical phantom. Rotational radiation treatment was used to obtain the dose distribution of the kV-CBCT within the patient, and the patient dose was evaluated based on the simulation of the dose distribution. In radiation therapy for prostate cancer, if kV-CBCT was applied daily, the dose increment within the planning target volume (PTV) and the organ in question was about 1 Gy. PMID:23964528

  6. The distribution of absorbed dose from x-rays as a function of depth

    NASA Astrophysics Data System (ADS)

    Cummings, Frederick

    2000-08-01

    Organizations responsible for monitoring the occupational exposure to radiation workers in the U.S. are directed to measure the dose to specific depths in tissue. The knowledge of the depth distribution of energy deposited by radiation in materials is essential to the interpretation of devices used to measure occupational exposure In this work, the quantities used to convert the reference transfer quantity for x-ray fields, air kerma, to the regulatory quantity, dose equivalent, for mono- energetic x-ray fields and poly-energetic x-ray fields specified by the National Institute of Standards and Technology are cogenerated for European x-ray fields are indicated and consistent conversion factors for use in the U.S. are recommended. For the mono-energetic x-ray beams conversion factors ranged from 0.9 to 1.7 at the 7 mg/cm2 depth and from 0.03 to 1.9 at the 1000 mg/cm2 depth in tissue specified by the International Commission of Radiation Units and Measurements. The conversion factors for the NIST x-ray fields were reasonably consistent with values in an unpublished draft standard by the American National Standards Institute, but exhibited sufficient disagreement to warrant a re-evaluation of the factors in that document prior to publication.

  7. The development of early pediatric models and their application to radiation absorbed dose calculations

    SciTech Connect

    Poston, J.W.

    1989-01-01

    This presentation will review and describe the development of pediatric phantoms for use in radiation dose calculations . The development of pediatric models for dose calculations essentially paralleled that of the adult. In fact, Snyder and Fisher at the Oak Ridge National Laboratory reported on a series of phantoms for such calculations in 1966 about two years before the first MIRD publication on the adult human phantom. These phantoms, for a newborn, one-, five-, ten-, and fifteen-year old, were derived from the adult phantom. The pediatric'' models were obtained through a series of transformations applied to the major dimensions of the adult, which were specified in a Cartesian coordinate system. These phantoms suffered from the fact that no real consideration was given to the influence of these mathematical transformations on the actual organ sizes in the other models nor to the relation of the resulting organ masses to those in humans of the particular age. Later, an extensive effort was invested in designing individual'' pediatric phantoms for each age based upon a careful review of the literature. Unfortunately, the phantoms had limited use and only a small number of calculations were made available to the user community. Examples of the phantoms, their typical dimensions, common weaknesses, etc. will be discussed.

  8. The development of early pediatric models and their application to radiation absorbed dose calculations

    SciTech Connect

    Poston, J.W.

    1989-12-31

    This presentation will review and describe the development of pediatric phantoms for use in radiation dose calculations . The development of pediatric models for dose calculations essentially paralleled that of the adult. In fact, Snyder and Fisher at the Oak Ridge National Laboratory reported on a series of phantoms for such calculations in 1966 about two years before the first MIRD publication on the adult human phantom. These phantoms, for a newborn, one-, five-, ten-, and fifteen-year old, were derived from the adult phantom. The ``pediatric`` models were obtained through a series of transformations applied to the major dimensions of the adult, which were specified in a Cartesian coordinate system. These phantoms suffered from the fact that no real consideration was given to the influence of these mathematical transformations on the actual organ sizes in the other models nor to the relation of the resulting organ masses to those in humans of the particular age. Later, an extensive effort was invested in designing ``individual`` pediatric phantoms for each age based upon a careful review of the literature. Unfortunately, the phantoms had limited use and only a small number of calculations were made available to the user community. Examples of the phantoms, their typical dimensions, common weaknesses, etc. will be discussed.

  9. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Pimpinella, M.; Quini, M.; D'Arienzo, M.; Astefanoaei, I.; Loreti, S.; Guerra, A. S.

    2016-02-01

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm-2, and at a dose rate of about 0.15 Gy min-1, results of calorimetric measurements of absorbed dose to water, D w, were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D w and D wK were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D w uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D w, it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  10. ATR LEU Fuel and Burnable Absorber Neutronics Performance Optimization by Fuel Meat Thickness Variation

    SciTech Connect

    G. S. Chang

    2007-09-01

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuel cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.508 mm and the same U-235 enrichment (15.5 wt%) can be used to optimize the radial heat flux profile by varying the fuel plate thickness from 0.254 to 0.457 mm at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, a 0.7g of burnable absorber Boron-10 was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat

  11. ATR LEU fuel and burnable absorber neutronics performance optimization by fuel meat thickness variation

    SciTech Connect

    Chang, G.S.

    2008-07-15

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuel cycle burnup comparison analysis. Using the current HEU U-235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core th and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.381 mm and the same U-235 enrichment (19.7 wt%) can be used to optimize the radial heat flux profile by varying the fuel meat thickness from 0.191 mm (7.5 mil) to 0.343 mm (13.5 mil) at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, 0.8g of a burnable absorber, Boron-10, was added in the inner and outer plates to reduce the initial excess

  12. A model study on the absorbed dose of radiation following respiratory intake of 238U3O8 aerosols.

    PubMed

    Canepa, Carlo

    2014-12-01

    Aerosols of depleted uranium oxides, formed upon high-energy impact of shells on hard targets during military operations, are able to disperse, reach the alveolar region of the lungs and be absorbed and distributed throughout various parts of the body. The absorbed particles are subjected to clearance in the upper respiratory tract, distribution to other body districts, dissolution and excretion. While the soluble forms of uranium are known to deliver a small dose of radiation to the body due to their homogeneous distribution and the low specific activity of (238)U, ceramic particles exhibit a low dissolution rate and irradiate a limited volume of tissue for a long time with alpha particles with an energy of 4.267 MeV. The extent of the irradiated tissues depends on the radius of the particles and the total intake of uranium oxides. For the measured intake of U3O8 of a war veteran (15.51 μg) the number of particles ranges from 5.56×10(4) to 6.95×10(6) for sizes of 0.4-2.0 μm. Modelling the distribution of the particles between two compartments of the body, the averaged dose absorbed in 20 y by tissues surrounding the particles and within the range of the alpha particles varies from 6.8 mGy to 0.85 Gy for lungs and 8.1 mGy to 1.0 Gy for the lymph nodes, respectively. Correspondingly, due to the clearance and redistribution, the mass irradiated by 2.0-μm particles falls in 20 y from 6.06 mg to 0.94 μg in the lungs and grows from 0 to 1.0 mg in the lymph nodes. The estimated rate of formation of hydroxyl radicals upon radiolysis of water in the lungs and lymph nodes is 5.17×10(4) d(-1) per cell after 1 y. PMID:24578528

  13. A mathematical approach to optimal selection of dose values in the additive dose method of ERP dosimetry

    SciTech Connect

    Hayes, R.B.; Haskell, E.H.; Kenner, G.H.

    1996-01-01

    Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput.

  14. Assessment of absorbed dose to thyroid, parotid and ovaries in patients undergoing Gamma Knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Hasanzadeh, H.; Sharafi, A.; Allah Verdi, M.; Nikoofar, A.

    2006-09-01

    Stereotactic radiosurgery was originally introduced by Lars Leksell in 1951. This treatment refers to the noninvasive destruction of an intracranial target localized stereotactically. The purpose of this study was to identify the dose delivered to the parotid, ovaries, testis and thyroid glands during the Gamma Knife radiosurgery procedure. A three-dimensional, anthropomorphic phantom was developed using natural human bone, paraffin and sodium chloride as the equivalent tissue. The phantom consisted of a thorax, head and neck and hip. In the natural places of the thyroid, parotid (bilateral sides) and ovaries (midline), some cavities were made to place TLDs. Three TLDs were inserted in a batch with 1 cm space between the TLDs and each batch was inserted into a single cavity. The final depth of TLDs was 3 cm from the surface for parotid and thyroid and was 15 cm for the ovaries. Similar batches were placed superficially on the phantom. The phantom was gamma irradiated using a Leksell model C Gamma Knife unit. Subsequently, the same batches were placed superficially over the thyroid, parotid, testis and ovaries in 30 patients (15 men and 15 women) who were undergoing radiosurgery treatment for brain tumours. The mean dosage for treating these patients was 14.48 ± 3.06 Gy (10.5-24 Gy) to a mean tumour volume of 12.30 ± 9.66 cc (0.27-42.4 cc) in the 50% isodose curve. There was no significant difference between the superficial and deep batches in the phantom studies (P-value < 0.05). The mean delivered doses to the parotid, thyroid, ovaries and testis in human subjects were 21.6 ± 15.1 cGy, 9.15 ± 3.89 cGy, 0.47 ± 0.3 cGy and 0.53 ± 0.31 cGy, respectively. The data can be used in making decisions for special clinical situations such as treating pregnant patients or young patients with benign lesions who need radiosurgery for eradication of brain tumours.

  15. Optimization of Dose Distribution for the System of Linear Accelerator-Based Stereotactic Radiosurgery.

    NASA Astrophysics Data System (ADS)

    Suh, Tae-Suk

    The work suggested in this paper addresses a method for obtaining an optimal dose distribution for stereotactic radiosurgery. Since stereotactic radiosurgery utilizes multiple noncoplanar arcs and a three-dimensional dose evaluation technique, many beam parameters and complex optimization criteria are included in the dose optimization. Consequently, a lengthy computation time is required to optimize even the simplest case by a trial and error method. The basic approach presented here is to use both an analytical and an experimental optimization to minimize the dose to critical organs while maintaining a dose shaped to the target. The experimental approach is based on shaping the target volumes using multiple isocenters from dose experience, or on field shaping using a beam's eye view technique. The analytical approach is to adapt computer -aided design optimization to find optimum parameters automatically. Three-dimensional approximate dose models are developed to simulate the exact dose model using a spherical or cylindrical coordinate system. Optimum parameters are found much faster with the use of computer-aided design optimization techniques. The implementation of computer-aided design algorithms with the approximate dose model and the application of the algorithms to several cases are discussed. It is shown that the approximate dose model gives dose distributions similar to those of the exact dose model, which makes the approximate dose model an attractive alternative to the exact dose model, and much more efficient in terms of computer -aided design and visual optimization.

  16. Toward the development of transcriptional biodosimetry for the identification of irradiated individuals and assessment of absorbed radiation dose.

    PubMed

    Brzóska, Kamil; Kruszewski, Marcin

    2015-08-01

    The most frequently used and the best established method of biological dosimetry at present is the dicentric chromosome assay, which is poorly suitable for a mass casualties scenario. This gives rise to the need for the development of new, high-throughput assays for rapid identification of the subjects exposed to ionizing radiation. In the present study, we tested the usefulness of gene expression analysis in blood cells for biological dosimetry. Human peripheral blood from three healthy donors was X-irradiated with doses of 0 (control), 0.6, and 2 Gy. The mRNA level of 16 genes (ATF3, BAX, BBC3, BCL2, CDKN1A, DDB2, FDXR, GADD45A, GDF15, MDM2, PLK3, SERPINE1, SESN2, TNFRSF10B, TNFSF4, and VWCE) was assessed by reverse transcription quantitative PCR 6, 12, 24, and 48 h after exposure with ITFG1 and DPM1 used as a reference genes. The panel of radiation-responsive genes was selected comprising GADD45A, CDKN1A, BAX, BBC3, DDB2, TNFSF4, GDF15, and FDXR. Cluster analysis showed that ΔC t values of the selected genes contained sufficient information to allow discrimination between irradiated and non-irradiated blood samples. The samples were clearly grouped according to the absorbed doses of radiation and not to the time interval after irradiation or to the blood donor. PMID:25972268

  17. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    SciTech Connect

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah; Ahmad, Pauzi

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

  18. Application of in vitro transmucosal permeability, dose number, and maximum absorbable dose for biopharmaceutics assessment during early drug development for intraoral delivery.

    PubMed

    Yang, Zhen; Sotthivirat, Sutthilug; Wu, Yunhui; Lalloo, Anita; Nissley, Becky; Manser, Kimberly; Li, Hankun

    2016-04-30

    Intraoral (IO) administration is a unique route that takes advantage of transmucosal absorption in the oral cavity to deliver a drug substance locally or systemically. IO delivery can also enhance or enable oral administration, providing a better therapeutic benefit/safety risk profile for patient compliance. However, there are relatively few systematic biopharmaceutics assessments for IO delivery to date. Therefore, the goals of this study were to i) identify the most relevant in vitro permeability models as alternatives to porcine oral tissues (gold standard) for predicting human IO absorption and ii) establish guidelines for biopharmaceutics assessment during early drug development for IO delivery. Porcine kidney LLC-PK1 cells provided the strongest correlation of transmucosal permeability with porcine oral tissues followed by human Caco-2 cells. Furthermore, cultured human buccal tissues predicted high/low permeability classification and correlated well with porcine oral tissues, which are used for predicting clinical IO absorption. In the meantime, we introduced maximum absorbable dose and dose number in the oral cavity for IO delivery assessment as well as a decision tree to provide guidance for biopharmaceutics assessment during early drug development for IO delivery. PMID:26906458

  19. Estimated human absorbed dose of ¹⁷⁷Lu-BPAMD based on mice data: Comparison with ¹⁷⁷Lu-EDTMP.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh; Shanehsazzadeh, Saeed

    2015-10-01

    In this work, the absorbed dose of human organs for (177)Lu-BPAMD was evaluated based on biodistribution studies into the Syrian mice by RADAR method and was compared with (177)Lu-EDTMP as the only clinically used Lu-177 bone-seeking agent. The highest absorbed dose for both (177)Lu-BPAMD and (177)Lu-EDTMP is observed on the bone surface with 8.007 and 4.802 mSv/MBq. Generally, (177)Lu-BPAMD has considerable characteristics compared with (177)Lu-EDTMP and can be considered as a promising agent for the bone pain palliation therapy. PMID:26163291

  20. Preconditioning is hormesis part II: How the conditioning dose mediates protection: Dose optimization within temporal and mechanistic frameworks.

    PubMed

    Calabrese, Edward J

    2016-08-01

    In Part I, hormetic doses of a variety of agents stimulated adaptive responses that conditioned and protected cells against the subsequent toxicity resulting from a second, higher dose (called a challenging dose) of the same or different agents. Herein (Part II), the optimal conditioning (hormetic) doses of many agents are documented, cellular mechanisms and temporal profiles are examined from which the conditioning (hormetic) responses are elicited, and the optimal conditioning doses are compared to the levels at which optimal protection occurs in response to the toxic challenge dose. Entry criteria for study evaluation required a conditioning mechanism-induced endpoint response, an hormetic/biphasic dose response for the protective response following the challenging dose, and a mechanistic assessment of how the conditioning dose afforded protection against a toxic challenging dose. The conditioning dose that demonstrated the largest increase in a mechanism-related conditioning (hormetic) response (i.e., prior to administration of the challenging dose) was the same dose that was optimally protective following the challenging dose. Specific receptor antagonists and/or inhibitors of cell signaling pathways which blocked the induction of conditioning (hormetic) effects during the conditioning period abolished the protective effects following the application of a challenge dose, thus identifying a specific and essential component of the hormetic mechanism. Conditioning responses often had sufficient doses to assess the nature of the dose response. In each of the cases these mechanism-based endpoints displayed an hormetic dose response. The present analysis reveals that hormetic biphasic dose responses were associated with both the conditioning process and the protective effects elicited following the challenging dose. Furthermore, based on optimal dosage, temporal relationships and the known mediating actions of receptor-based and/or cell signaling-based mechanisms

  1. [Development of the 60Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water (N(D,w))].

    PubMed

    Fukumura, Akifumi; Mizuno, Hideyuki; Fukahori, Mai; Sakata, Suoh

    2012-01-01

    A primary standard for the absorbed dose rate to water in a 60Co gamma-ray field was established at National Metrology Institute of Japan (NMIJ) in fiscal year 2011. Then, a 60Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water was developed at National Institute of Radiological Sciences (NIRS) as a secondary standard dosimetry laboratory (SSDL). The results of an IAEA/WHO TLD SSDL audit demonstrated that there was good agreement between NIRS stated absorbed dose to water and IAEA measurements. The IAEA guide based on the ISO standard was used to estimate the relative expanded uncertainty of the calibration factor for a therapy-level Farmer type ionization chamber in terms of absorbed dose to water (N(D,w)) with the new field. The uncertainty of N(D,w) was estimated to be 1.1% (k = 2), which corresponds to approximately one third of the value determined in the existing air kerma field. The dissemination of traceability of the calibration factor determined in the new field is expected to diminish the uncertainty of dose delivered to patients significantly. PMID:24568023

  2. SU-E-CAMPUS-I-06: Y90 PET/CT for the Instantaneous Determination of Both Target and Non-Target Absorbed Doses Following Hepatic Radioembolization

    SciTech Connect

    Pasciak, A; Kao, J

    2014-06-15

    Purpose The process of converting Yttrium-90 (Y90) PET/CT images into 3D absorbed dose maps will be explained. The simple methods presented will allow the medical physicst to analyze Y90 PET images following radioembolization and determine the absorbed dose to tumor, normal liver parenchyma and other areas of interest, without application of Monte-Carlo radiation transport or dose-point-kernel (DPK) convolution. Methods Absorbed dose can be computed from Y90 PET/CT images based on the premise that radioembolization is a permanent implant with a constant relative activity distribution after infusion. Many Y90 PET/CT publications have used DPK convolution to obtain 3D absorbed dose maps. However, this method requires specialized software limiting clinical utility. The Local Deposition method, an alternative to DPK convolution, can be used to obtain absorbed dose and requires no additional computer processing. Pixel values from regions of interest drawn on Y90 PET/CT images can be converted to absorbed dose (Gy) by multiplication with a scalar constant. Results There is evidence that suggests the Local Deposition method may actually be more accurate than DPK convolution and it has been successfully used in a recent Y90 PET/CT publication. We have analytically compared dose-volume-histograms (DVH) for phantom hot-spheres to determine the difference between the DPK and Local Deposition methods, as a function of PET scanner point-spread-function for Y90. We have found that for PET/CT systems with a FWHM greater than 3.0 mm when imaging Y90, the Local Deposition Method provides a more accurate representation of DVH, regardless of target size than DPK convolution. Conclusion Using the Local Deposition Method, post-radioembolization Y90 PET/CT images can be transformed into 3D absorbed dose maps of the liver. An interventional radiologist or a Medical Physicist can perform this transformation in a clinical setting, allowing for rapid prediction of treatment efficacy by

  3. Implementation of a dose gradient method into optimization of dose distribution in prostate cancer 3D-CRT plans

    PubMed Central

    Giżyńska, Marta K.; Kukołowicz, Paweł F.; Kordowski, Paweł

    2014-01-01

    Aim The aim of this work is to present a method of beam weight and wedge angle optimization for patients with prostate cancer. Background 3D-CRT is usually realized with forward planning based on a trial and error method. Several authors have published a few methods of beam weight optimization applicable to the 3D-CRT. Still, none on these methods is in common use. Materials and methods Optimization is based on the assumption that the best plan is achieved if dose gradient at ICRU point is equal to zero. Our optimization algorithm requires beam quality index, depth of maximum dose, profiles of wedged fields and maximum dose to femoral heads. The method was tested for 10 patients with prostate cancer, treated with the 3-field technique. Optimized plans were compared with plans prepared by 12 experienced planners. Dose standard deviation in target volume, and minimum and maximum doses were analyzed. Results The quality of plans obtained with the proposed optimization algorithms was comparable to that prepared by experienced planners. Mean difference in target dose standard deviation was 0.1% in favor of the plans prepared by planners for optimization of beam weights and wedge angles. Introducing a correction factor for patient body outline for dose gradient at ICRU point improved dose distribution homogeneity. On average, a 0.1% lower standard deviation was achieved with the optimization algorithm. No significant difference in mean dose–volume histogram for the rectum was observed. Conclusions Optimization shortens very much time planning. The average planning time was 5 min and less than a minute for forward and computer optimization, respectively. PMID:25337411

  4. First international comparison of primary absorbed dose to water standards in the medium-energy X-ray range

    NASA Astrophysics Data System (ADS)

    Büermann, Ludwig; Guerra, Antonio Stefano; Pimpinella, Maria; Pinto, Massimo; de Pooter, Jacco; de Prez, Leon; Jansen, Bartel; Denoziere, Marc; Rapp, Benjamin

    2016-01-01

    This report presents the results of the first international comparison of primary measurement standards of absorbed dose to water for the medium-energy X-ray range. Three of the participants (VSL, PTB, LNE-LNHB) used their existing water calorimeter based standards and one participant (ENEA) recently developed a new standard based on a water-graphite calorimeter. The participants calibrated three transfer chambers of the same type in terms of absorbed dose to water (NDw) and in addition in terms of air kerma (NK) using the CCRI radiation qualities in the range 100 kV to 250 kV. The additional NK values were intended to be used for a physical analysis of the ratios NDw/NK. All participants had previously participated in the BIPM.RI(I)-K3 key comparison of air kerma standards. Ratios of pairs of NMI's NK results of the current comparison were found to be consistent with the corresponding key comparison results within the expanded uncertainties of 0.6 % - 1 %. The NDw results were analysed in terms of the degrees of equivalence with the comparison reference values which were calculated for each beam quality as the weighted means of all results. The participant's results were consistent with the reference value within the expanded uncertainties. However, these expanded uncertainties varied significantly and ranged between about 1-1.8 % for the water calorimeter based standards and were estimated at 3.7 % for the water-graphite calorimeter. It was shown previously that the ratios NDw/NK for the type of ionization chamber used as transfer chamber in this comparison were very close (within less than 1 %) to the calculated values of (bar muen/ρ)w,ad, the mean values of the water-to-air ratio of the mass-energy-absorption coefficients at the depth d in water. Some of the participant's results deviated significantly from the expected behavior. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of

  5. SU-E-T-516: Measurement of the Absorbed Dose Rate in Water Under Reference Conditions in a CyberKnife Unit

    SciTech Connect

    Aragon-Martinez, N; Hernandez-Guzman, A; Gomez-Munoz, A; Massillon-JL, G

    2014-06-01

    Purpose: This paper aims to measure the absorbed-dose-rate in a CyberKnife unit reference-field (6cm diameter) using three ionization chambers (IC) following the new IAEA/AAPM formalism and Gafchromic film (MD-V3-55 and EBT3) protocol according to our work reported previously. Methods: The absorbed-dose-rates were measured at 90cm and 70cm SSD in a 10cmx10cm field and at 70cm SSD in a 5.4cmx5.4cm equivalent to 6cm diameter field using a linac Varian iX. All measurements were performed at 10cm depth in water. The correction factors that account for the difference between the IC response on the reference field and the CyberKnife reference field, k-(Q-msr,Q)^(f-msr,f-ref), were evaluated and Gafchromic film were calibrated using the results obtained above. Under the CyberKnife reference conditions, the factors were used to measure the absorbed-dose-rate with IC according to the new formalism and the calibrated film was irradiated in water. The film calibration curve was used to evaluate the absorbed-dose-rate in the CyberKnife unit. Results: Difference up to 2.56% is observed between dose-rate measured with IC in the reference 10cmx10cm field, depending where the chamber was calibrated, which was not reflected in the correction factor k-(Q-msr,Q)^(f-msr,f-ref ) where variations of ~0.15%-0.5% were obtained. Within measurements uncertainties, maximum difference of 1.8% on the absorbed-dose-rate in the CyberKnife reference field is observed between all IC and the films Conclusion: Absorbed-dose-rate to water was measured in a CyberKnife reference field with acceptable accuracy (combined uncertainties ~1.32%-1.73%, k=1) using three IC and films. The MD-V3-55 film as well as the new IAEA/AAPM formalism can be considered as a suitable dosimetric method to measure absorbed-dose-rate to water in small and non-standard CyberKnife fields used in clinical treatments However, the EBT3 film is not appropriated due to the high uncertainty provided (combined uncertainty ~9%, k=1

  6. Dose selection for optimal treatment results and avoidance of complications.

    PubMed

    Nagano, Hisato; Nakayama, Satoshi; Shuto, Takashi; Asada, Hiroyuki; Inomori, Shigeo

    2009-01-01

    What is the optimal treatment for metastatic brain tumors (MBTs)? We present our experience with gamma knife (GK) treatments for patients with five or more MBTs. Our new formula for predicting patient survival time (ST), which was derived by combining tumor control probability (TCP) calculated by Colombo's formula and normal tissue complication probability (NTCP) estimated by Flickinger's integrated logistic formula, was also evaluated. ST=a*[(C-NTCP)*TCP]+b; a, b, C: const. Forty-one patients (23 male, 18 female) with more than five MBTs were treated between March 1992 and February 2000. The tumors originated in the lung in 15 cases, in the breast in 8. Four patients had previously undergone whole brain irradiation (WBI). Ten patients were given concomitant WBI. Thirteen patients had additional extracranial metastatic lesions. TCP and NTCP were calculated using Excel add-in software. Cox's proportional hazards model was used to evaluate correlations between certain variables and ST. The independent variables evaluated were patient factors (age in years and performance status), tumor factors (total volume and number of tumors in each patient), treatment factors (TCP, NTCP and marginal dose) and the values of (C-NTCP)*TCP. Total tumor number was 403 (median 7, range 5-56). The median total tumor volume was 9.8 cm3 (range 0.8-111.8 cm3). The marginal dose ranged from 8 to 22 Gy (median 16.0Gy), TCP from 0.0% to 83% (median 15%) and NTCP from 0.0% to 31% (median 6.0%). (0.39-NTCP)*TCP ranged from 0.0 to 0.21 (median 0.055). Follow-up was 0.2 to 26.2 months, with a median of 5.4 months. Multiple-sample tests revealed no differences in STs among patients with MBTs of different origins (p=0.50). The 50% STs of patients with MBTs originating from the breast, lung and other sites were 5.9, 7.8 and 3.5 months, respectively. Only TCP and (0.39-NTCP)*TCP were statistically significant covariates (p=0.014, 0.001, respectively), and the latter was a more important predictor of

  7. Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber

    NASA Astrophysics Data System (ADS)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Qu, Shaobo

    2015-06-01

    In this paper, the topology design of a lightweight ultra-broadband polarization-independent frequency selective surface absorber is proposed. The absorption over a wide frequency range of 6.68-26.08 GHz with reflection below -10 dB can be achieved by optimizing the topology and dimensions of the resistive frequency selective surface by virtue of genetic algorithm. This ultra-broadband absorption can be kept when the incident angle is less than 55 degrees and is independent of the incident wave polarization. The experimental results agree well with the numerical simulations. The density of our ultra-broadband absorber is only 0.35 g cm  -  3 and thus may find potential applications in microwave engineering, such as electromagnetic interference and stealth technology.

  8. Relative Importance of Hip and Sacral Pain Among Long-Term Gynecological Cancer Survivors Treated With Pelvic Radiotherapy and Their Relationships to Mean Absorbed Doses

    SciTech Connect

    Waldenstroem, Ann-Charlotte; Olsson, Caroline; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Alevronta, Eleftheria; Al-Abany, Massoud; Tucker, Susan; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2012-10-01

    Purpose: To investigate the relative importance of patient-reported hip and sacral pain after pelvic radiotherapy (RT) for gynecological cancer and its relationship to the absorbed doses in these organs. Methods and Materials: We used data from a population-based study that included 650 long-term gynecological cancer survivors treated with pelvic RT in the Gothenburg and Stockholm areas in Sweden with a median follow-up of 6 years (range, 2-15) and 344 population controls. Symptoms were assessed through a study-specific postal questionnaire. We also analyzed the hip and sacral dose-volume histogram data for 358 of the survivors. Results: Of the survivors, one in three reported having or having had hip pain after completing RT. Daily pain when walking was four times as common among the survivors compared to controls. Symptoms increased in frequency with a mean absorbed dose >37.5 Gy. Also, two in five survivors reported pain in the sacrum. Sacral pain also affected their walking ability and tended to increase with a mean absorbed dose >42.5 Gy. Conclusions: Long-term survivors of gynecological cancer treated with pelvic RT experience hip and sacral pain when walking. The mean absorbed dose was significantly related to hip pain and was borderline significantly related to sacral pain. Keeping the total mean absorbed hip dose below 37.5 Gy during treatment might lower the occurrence of long-lasting pain. In relation to the controls, the survivors had a lower occurrence of pain and pain-related symptoms from the hips and sacrum compared with what has previously been reported for the pubic bone.

  9. Comparison of Accuracy in Calculation of Absorbed Dose to Patients Following Bone Scan with (99m)Tc-Marked Diphosphonates by Two Different Background Correction Methods.

    PubMed

    Shahbazi-Gahrouei, Daryoush; Damoori, Mehri; Tavakoli, Mohammad Bagher; Moslehi, Masoud

    2016-01-01

    To improve the accuracy of the activity quantification and the image quality in scintigraphy, scatter correction is a vital procedure. The aim of this study is to compare the accuracy in calculation of absorbed dose to patients following bone scan with (99m)Tc-marked diphosphonates ((99m)Tc-MDP) by two different methods of background correction in conjugate view method. This study involved 22 patients referring to the Nuclear Medicine Center of Shahid Chamran Hospital, Isfahan, Iran. After the injection of (99m)Tc-MDP, whole-body images from patients were acquired at 10, 60, 90, and 180 min. Organ activities were calculated using the conjugate view method by Buijs and conventional background correction. Finally, the absorbed dose was calculated using the Medical Internal Radiation Dosimetry (MIRD) technique. The results of this study showed that the absorbed dose per unit of injected activity (rad/mCi) ± standard deviation for pelvis bone, bladder, and kidneys by Buijs method was 0.19 ± 0.05, 0.08 ± 0.01, and 0.03 ± 0.01 and by conventional method was 0.13 ± 0.04, 0.08 ± 0.01, and 0.024 ± 0.01, respectively. This showed that Buijs background correction method had a high accuracy compared to conventional method for the estimated absorbed dose of bone and kidneys whereas, for the bladder, its accuracy was low. PMID:27014610

  10. Transfer of the UK absorbed dose primary standard for photon beams from the research linac to the clinical linac at NPL

    NASA Astrophysics Data System (ADS)

    Pearce, J. A. D.; Shipley, D. R.; Duane, S.

    2011-10-01

    An Elekta Synergy clinical linac facility is now in routine use at the National Physical Laboratory (NPL). For the purpose of therapy-level dosimetry, this has replaced the NPL research linac, which is over 40 years old, and in which the NPL absorbed dose primary standard for high-energy photons was established. This standard has been disseminated to clinical beams by interpolation of the calibration factor as a function of tissue phantom ratio TPR20/10. In this work the absorbed dose standard has been commissioned in all the beams produced by the Elekta Synergy linac. Reference standard ionization chambers have been calibrated in terms of absorbed dose to graphite and this calibration has been converted to one in terms of absorbed dose to water. The results have been combined with the calibration in 60Co γ-rays to obtain measured values for the quality-dependent correction, kQ, for these reference standard chambers used in the Elekta beams. The resulting data are consistent with the interpolated kQ to within 0.4%, which is less than the combined standard uncertainty of kQ, 0.56%.

  11. A 3-Dimensional Absorbed Dose Calculation Method Based on Quantitative SPECT for Radionuclide Therapy: Evaluation for 131I Using Monte Carlo Simulation

    PubMed Central

    Ljungberg, Michael; Sjögreen, Katarina; Liu, Xiaowei; Frey, Eric; Dewaraja, Yuni; Strand, Sven-Erik

    2009-01-01

    A general method is presented for patient-specific 3-dimensional absorbed dose calculations based on quantitative SPECT activity measurements. Methods The computational scheme includes a method for registration of the CT image to the SPECT image and position-dependent compensation for attenuation, scatter, and collimator detector response performed as part of an iterative reconstruction method. A method for conversion of the measured activity distribution to a 3-dimensional absorbed dose distribution, based on the EGS4 (electron-gamma shower, version 4) Monte Carlo code, is also included. The accuracy of the activity quantification and the absorbed dose calculation is evaluated on the basis of realistic Monte Carlo–simulated SPECT data, using the SIMIND (simulation of imaging nuclear detectors) program and a voxel-based computer phantom. CT images are obtained from the computer phantom, and realistic patient movements are added relative to the SPECT image. The SPECT-based activity concentration and absorbed dose distributions are compared with the true ones. Results Correction could be made for object scatter, photon attenuation, and scatter penetration in the collimator. However, inaccuracies were imposed by the limited spatial resolution of the SPECT system, for which the collimator response correction did not fully compensate. Conclusion The presented method includes compensation for most parameters degrading the quantitative image information. The compensation methods are based on physical models and therefore are generally applicable to other radionuclides. The proposed evaluation methodology may be used as a basis for future intercomparison of different methods. PMID:12163637

  12. Comparison of Accuracy in Calculation of Absorbed Dose to Patients Following Bone Scan with 99mTc-Marked Diphosphonates by Two Different Background Correction Methods

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Damoori, Mehri; Tavakoli, Mohammad Bagher; Moslehi, Masoud

    2016-01-01

    To improve the accuracy of the activity quantification and the image quality in scintigraphy, scatter correction is a vital procedure. The aim of this study is to compare the accuracy in calculation of absorbed dose to patients following bone scan with 99mTc-marked diphosphonates (99mTc-MDP) by two different methods of background correction in conjugate view method. This study involved 22 patients referring to the Nuclear Medicine Center of Shahid Chamran Hospital, Isfahan, Iran. After the injection of 99mTc-MDP, whole-body images from patients were acquired at 10, 60, 90, and 180 min. Organ activities were calculated using the conjugate view method by Buijs and conventional background correction. Finally, the absorbed dose was calculated using the Medical Internal Radiation Dosimetry (MIRD) technique. The results of this study showed that the absorbed dose per unit of injected activity (rad/mCi) ± standard deviation for pelvis bone, bladder, and kidneys by Buijs method was 0.19 ± 0.05, 0.08 ± 0.01, and 0.03 ± 0.01 and by conventional method was 0.13 ± 0.04, 0.08 ± 0.01, and 0.024 ± 0.01, respectively. This showed that Buijs background correction method had a high accuracy compared to conventional method for the estimated absorbed dose of bone and kidneys whereas, for the bladder, its accuracy was low. PMID:27014610

  13. Data on biodistribution and radiation absorbed dose profile of a novel (64)Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature.

    PubMed

    Merrill, Joseph R; Krajewski, Krzysztof; Yuan, Hong; Frank, Jonathan E; Lalush, David S; Patterson, Cam; Veleva, Anka N

    2016-06-01

    New peptide-based diagnostic and therapeutic approaches hold promise for highly selective targeting of cancer leading to more precise and effective diagnostic and therapeutic modalities. An important feature of these approaches is to reach the tumor tissue while limiting or minimizing the dose to normal organs. In this context, efforts to design and engineer materials with optimal in vivo targeting and clearance properties are important. This Data In Brief article reports on biodistribution and radiation absorbed dose profile of a novel high affinity radiopeptide specific for bone marrow-derived tumor vasculature. Background information on the design, preparation, and in vivo characterization of this peptide-based targeted radiodiagnostic is described in the article "Synthesis and comparative evaluation of novel 64Cu-labeled high affinity cell-specific peptides for positron emission tomography of tumor vasculature" (Merrill et al., 2016) [1]. Here we report biodistribution measurements in mice and calculate the radiation absorbed doses to normal organs using a modified Medical Internal Radiation Dosimetry (MIRD) methodology that accounts for physical and geometric factors and cross-organ beta doses. PMID:27014735

  14. Data on biodistribution and radiation absorbed dose profile of a novel 64Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature

    PubMed Central

    Merrill, Joseph R.; Krajewski, Krzysztof; Yuan, Hong; Frank, Jonathan E.; Lalush, David S.; Patterson, Cam; Veleva, Anka N.

    2016-01-01

    New peptide-based diagnostic and therapeutic approaches hold promise for highly selective targeting of cancer leading to more precise and effective diagnostic and therapeutic modalities. An important feature of these approaches is to reach the tumor tissue while limiting or minimizing the dose to normal organs. In this context, efforts to design and engineer materials with optimal in vivo targeting and clearance properties are important. This Data In Brief article reports on biodistribution and radiation absorbed dose profile of a novel high affinity radiopeptide specific for bone marrow-derived tumor vasculature. Background information on the design, preparation, and in vivo characterization of this peptide-based targeted radiodiagnostic is described in the article “Synthesis and comparative evaluation of novel 64Cu-labeled high affinity cell-specific peptides for positron emission tomography of tumor vasculature” (Merrill et al., 2016) [1]. Here we report biodistribution measurements in mice and calculate the radiation absorbed doses to normal organs using a modified Medical Internal Radiation Dosimetry (MIRD) methodology that accounts for physical and geometric factors and cross-organ beta doses. PMID:27014735

  15. Relation between absorbed dose, charged particle equilibrium and nuclear transformations: a non-equilibrium thermodynamics point of view.

    PubMed

    Alvarez-Romero, J T

    2006-01-01

    We present a discussion to show that the absorbed dose D is a time-dependent function. This time dependence is demonstrated based on the concepts of charged particle equilibrium and on radiation equilibrium within the context of thermodynamic non-equilibrium. In the latter, the time dependence is due to changes of the rest mass energy of the nuclei and elementary particles involved in the terms summation operator Q and Q that appear in the definitions of energy imparted epsilon and energy deposit epsilon(i), respectively. In fact, nothing is said about the averaging operation of the non-stochastic quantity mean energy imparted epsilon, which is used in the definition of D according to ICRU 60. It is shown in this research that the averaging operation necessary to define the epsilon employed to get D cannot be performed with an equilibrium statistical operator rho(r) as could be expected. Rather, the operation has to be defined with a time-dependent non-equilibrium statistical operator rho(r, t); therefore, D is a time-dependent function D(r,t). PMID:16731692

  16. Evaluation of absorbed dose in irradiated sugar-containing plant material (peony roots) by an ESR method

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2015-12-01

    The relationship between electron spin resonance (ESR) signal intensity of irradiated plant materials and sugar content was investigated by spectral analysis using peony roots. A weak background signal near g=2.005 was observed in the roots. After a 10 kGy irradiation, the ESR line broadened and the intensity increased, and the spectral characteristics were similar to a typical spectrum of irradiated food containing crystalline sugars. The free radical concentration was nearly stable 30 days after irradiation. The spectrum of peony root 30 days after irradiation was simulated using the summation of the intensities of six assumed components: radical signals derived from (a) sucrose, (b) glucose, (c) fructose, (d) cellulose, (e) the background signal near g=2.005 and (f) unidentified component. The simulated spectra using the six components were in agreement with the observed sample spectra. The intensity of sucrose radical signal in irradiated samples increased proportionally up to 20 kGy. In addition, the intensity of sucrose radical signals was strongly correlated with the sucrose contents of the samples. The results showed that the radiation sensitivity of sucrose in peony roots was influenced little by other plant constituents. There was also a good correlation between the total area of the spectra and the sucrose content, because the sucrose content was higher than that of other sugars in the samples. In peony roots, estimation of the absorbed dose from the ESR signal intensity may be possible by a calibration method based on the sucrose content.

  17. Dependence of Yb-169 absorbed dose energy correction factors on self-attenuation in source material and photon buildup in water

    SciTech Connect

    Medich, David C.; Munro, John J. III

    2010-05-15

    Purpose: Absorbed dose energy correction factors, used to convert the absorbed dose deposited in a LiF thermoluminescent dosimeter (TLD) into the clinically relevant absorbed dose to water, were obtained for both spherical volumetric sources and for the model 4140 HDR Yb-169 source. These correction factors have a strong energy dependence below 200 keV; therefore, spectral changes were quantified as Yb-169 photons traveled through both source material (Yb{sub 2}O{sub 3}) and water with the corresponding absorbed dose energy correction factors, f(r,{theta}), calculated as a function of location in a phantom. Methods: Using the MCNP5 Monte Carlo radiation transport simulation program, the Yb-169 spectrum emerging from spherical Yb{sub 2}O{sub 3} sources (density 6.9 g/cm{sup 3}) with radii between 0.2 and 0.9 mm were analyzed and their behavior compared against those for a point-source. The absorbed dose deposited to both LiF and H{sub 2}O materials was analyzed at phantom depths of 0.1-10 cm for each source radius and the absorbed dose energy correction factor calculated as the ratio of the absorbed dose to water to that of LiF. Absorbed dose energy correction factors for the Model 4140 Yb-169 HDR brachytherapy source similarly were obtained and compared against those calculated for the Model M-19 Ir-192 HDR source. Results: The Yb-169 average spectral energy, emerging from Yb{sub 2}O{sub 3} spherical sources 0.2-0.9 mm in radius, was observed to harden from 7% to 29%; as these photons traveled through the water phantom, the photon average energy softened by as much as 28% at a depth of 10 cm. Spectral softening was dependent on the measurement depth in the phantom. Energy correction factors were found to vary both as a function of source radius and phantom depth by as much as 10% for spherical Yb{sub 2}O{sub 3} sources. The Model 4140 Yb-169 energy correction factors depended on both phantom depth and reference angle and were found to vary by more than 10% between

  18. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.

    PubMed

    Brede, H J; Greif, K-D; Hecker, O; Heeg, P; Heese, J; Jones, D T L; Kluge, H; Schardt, D

    2006-08-01

    Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison. PMID:16861773

  19. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams. PMID:26841127

  20. Direct measurement of absorbed dose to water in HDR {sup 192}Ir brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43

    SciTech Connect

    Sarfehnia, Arman; Kawrakow, Iwan; Seuntjens, Jan

    2010-04-15

    Purpose: Gafchromic film and ionometric calibration procedures for HDR {sup 192}Ir brachytherapy sources in terms of dose rate to water are presented and the experimental results are compared to the TG-43 protocol as well as with the absolute dose measurement results from a water calorimetry-based primary standard. Methods: EBT-1 Gafchromic films, an A1SL Exradin miniature Shonka thimble type chamber, and an SI HDR 1000 Plus well-type chamber (Standard Imaging, Inc., Middleton, WI) with an ADCL traceable S{sub k} calibration coefficient (following the AAPM TG-43 protocol) were used. The Farmer chamber and Gafchromic film measurements were performed directly in water. All results were compared to direct and absolute absorbed dose to water measurements from a 4 deg. C stagnant water calorimeter. Results: Based on water calorimetry, the authors measured the dose rate to water to be 361{+-}7 {mu}Gy/(h U) at a 55 mm source-to-detector separation. The dose rate normalized to air-kerma strength for all the techniques agree with the water calorimetry results to within 0.83%. The overall 1-sigma uncertainty on water calorimetry, ionization chamber, Gafchromic film, and TG-43 dose rate measurement amounts to 1.90%, 1.44%, 1.78%, and 2.50%, respectively. Conclusions: This work allows us to build a more realistic uncertainty estimate for absorbed dose to water determination using the TG-43 protocol. Furthermore, it provides the framework necessary for a shift from indirect HDR {sup 192}Ir brachytherapy dosimetry to a more accurate, direct, and absolute measurement of absorbed dose to water.

  1. A linear programming model for optimizing HDR brachytherapy dose distributions with respect to mean dose in the DVH-tail

    SciTech Connect

    Holm, Åsa; Larsson, Torbjörn; Tedgren, Åsa Carlsson

    2013-08-15

    Purpose: Recent research has shown that the optimization model hitherto used in high-dose-rate (HDR) brachytherapy corresponds weakly to the dosimetric indices used to evaluate the quality of a dose distribution. Although alternative models that explicitly include such dosimetric indices have been presented, the inclusion of the dosimetric indices explicitly yields intractable models. The purpose of this paper is to develop a model for optimizing dosimetric indices that is easier to solve than those proposed earlier.Methods: In this paper, the authors present an alternative approach for optimizing dose distributions for HDR brachytherapy where dosimetric indices are taken into account through surrogates based on the conditional value-at-risk concept. This yields a linear optimization model that is easy to solve, and has the advantage that the constraints are easy to interpret and modify to obtain satisfactory dose distributions.Results: The authors show by experimental comparisons, carried out retrospectively for a set of prostate cancer patients, that their proposed model corresponds well with constraining dosimetric indices. All modifications of the parameters in the authors' model yield the expected result. The dose distributions generated are also comparable to those generated by the standard model with respect to the dosimetric indices that are used for evaluating quality.Conclusions: The authors' new model is a viable surrogate to optimizing dosimetric indices and quickly and easily yields high quality dose distributions.

  2. Determination of absorbed dose to water around a clinical HDR {sup 192}Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response

    SciTech Connect

    Carlsson Tedgren, Aasa; Elia, Rouba; Hedtjaern, Haakan; Olsson, Sara; Alm Carlsson, Gudrun

    2012-02-15

    Purpose: Experimental radiation dosimetry with thermoluminescent dosimeters (TLDs), calibrated in a {sup 60}Co or megavoltage (MV) photon beam, is recommended by AAPM TG-43U1for verification of Monte Carlo calculated absorbed doses around brachytherapy sources. However, it has been shown by Carlsson Tedgren et al.[Med. Phys. 38, 5539-5550 (2011)] that for TLDs of LiF:Mg,Ti, detector response was 4% higher in a {sup 137}Cs beam than in a {sup 60}Co one. The aim of this work was to investigate if similar over-response exists when measuring absorbed dose to water around {sup 192}Ir sources, using LiF:Mg,Ti dosimeters calibrated in a 6 MV photon beam. Methods: LiF dosimeters were calibrated to measure absorbed dose to water in a 6 MV photon beam and used to measure absorbed dose to water at distances of 3, 5, and 7 cm from a clinical high dose rate (HDR) {sup 192}Ir source in a polymethylmethacrylate (PMMA) phantom. Measured values were compared to values of absorbed dose to water calculated using a treatment planning system (TPS) including corrections for the difference in energy absorption properties between calibration quality and the quality in the users'{sup 192}Ir beam and for the use of a PMMA phantom instead of the water phantom underlying dose calculations in the TPS. Results: Measured absorbed doses to water around the {sup 192}Ir source were overestimated by 5% compared to those calculated by the TPS. Corresponding absorbed doses to water measured in a previous work with lithium formate electron paramagnetic resonance (EPR) dosimeters by Antonovic et al. [Med. Phys. 36, 2236-2247 (2009)], using the same irradiation setup and calibration procedure as in this work, were 2% lower than those calculated by the TPS. The results obtained in the measurements in this work and those obtained using the EPR lithium formate dosimeters were, within the expanded (k = 2) uncertainty, in agreement with the values derived by the TPS. The discrepancy between the results using

  3. Comparison of the Absorbed Dose for 99mTc-Diethylenetriaminepentaacetic Acid and 99mTc-Ethylenedicysteine Radiopharmaceuticals using Medical Internal Radiation Dosimetry

    PubMed Central

    Pirdamooie, Shokufeh; Shanei, Ahmad; Moslehi, Masoud

    2015-01-01

    The aim of this study was the investigation of absorbed dose to the kidneys, spleen, and liver during technetium-99 m ethylene dicysteine and technetium-99 m diethylenetriaminepentaacetic acid (99mTc-EC and 99mTc-DTPA) kidney scan. Patients who had been prepared for the kidney scan, were divided into two groups (Groups 1 and 2). The first group (Group 1) and the second group (Group 2) received intravenous injection of 99mTc-EC and 99mTc-DTP, respectively. A certain amount of radiopharmaceuticals was injected into each patient and was immediately imaged with dual-head gamma camera to calculate the activity through the conjugated view method. Then, the doses of kidney, liver, and spleen were measured using medical internal radiation dosimetry method. Finally, absorbed dose of these organs was compared. Based on these different results (P < 0.05), organs absorbed dose was significantly less with radiopharmaceutical 99mTc-EC as compared with 99mTc-DTPA. PMID:26284173

  4. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetite, Bahia, Brazil

    SciTech Connect

    Pereira, Wagner de S; Kelecom, Alphonse

    2008-08-07

    The uranium mining at Caetite (Uranium Concentrate Unit--URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5x10{sup 3} {mu}Gy y{sup -1} has been used. The derived absorbed dose rate calculated for Tilapia was 2.51x10{sup 0} {mu}Gy y{sup -1}, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.

  5. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetité, Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Pereira, Wagner de S.; Kelecom, Alphonse; Py Júnior, Delcy de Azevedo

    2008-08-01

    The uranium mining at Caetité (Uranium Concentrate Unit—URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5×103 μGy y-1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51×100 μGy y-1, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.

  6. Prediction of Therapy Tumor-Absorbed Dose Estimates in I-131 Radioimmunotherapy Using Tracer Data Via a Mixed-Model Fit to Time Activity

    PubMed Central

    Koral, Kenneth F.; Avram, Anca M.; Kaminski, Mark S.; Dewaraja, Yuni K.

    2012-01-01

    Abstract Background For individualized treatment planning in radioimmunotherapy (RIT), correlations must be established between tracer-predicted and therapy-delivered absorbed doses. The focus of this work was to investigate this correlation for tumors. Methods The study analyzed 57 tumors in 19 follicular lymphoma patients treated with I-131 tositumomab and imaged with SPECT/CT multiple times after tracer and therapy administrations. Instead of the typical least-squares fit to a single tumor's measured time-activity data, estimation was accomplished via a biexponential mixed model in which the curves from multiple subjects were jointly estimated. The tumor-absorbed dose estimates were determined by patient-specific Monte Carlo calculation. Results The mixed model gave realistic tumor time-activity fits that showed the expected uptake and clearance phases even with noisy data or missing time points. Correlation between tracer and therapy tumor-residence times (r=0.98; p<0.0001) and correlation between tracer-predicted and therapy-delivered mean tumor-absorbed doses (r=0.86; p<0.0001) were very high. The predicted and delivered absorbed doses were within±25% (or within±75 cGy) for 80% of tumors. Conclusions The mixed-model approach is feasible for fitting tumor time-activity data in RIT treatment planning when individual least-squares fitting is not possible due to inadequate sampling points. The good correlation between predicted and delivered tumor doses demonstrates the potential of using a pretherapy tracer study for tumor dosimetry-based treatment planning in RIT. PMID:22947086

  7. Measurement of absorbed dose to water around an electronic brachytherapy source. Comparison of two dosimetry systems: lithium formate EPR dosimeters and radiochromic EBT2 film

    NASA Astrophysics Data System (ADS)

    Adolfsson, Emelie; White, Shane; Landry, Guillaume; Lund, Eva; Gustafsson, Håkan; Verhaegen, Frank; Reniers, Brigitte; Carlsson Tedgren, Åsa; Alm Carlsson, Gudrun

    2015-05-01

    Interest in high dose rate (HDR) electronic brachytherapy operating at 50 kV is increasing. For quality assurance it is important to identify dosimetry systems that can measure the absorbed doses in absolute terms which is difficult in this energy region. In this work a comparison is made between two dosimetry systems, EPR lithium formate dosimeters and radiochromic EBT2 film. Both types of dosimeters were irradiated simultaneously in a PMMA phantom using the Axxent EBS. Absorbed dose to water was determined at distances of 10 mm, 30 mm and 50 mm from the EBS. Results were traceable to different primary standards as regards to absorbed dose to water (EPR) and air kerma (EBT2). Monte Carlo simulations were used in absolute terms as a third estimate of absorbed dose to water. Agreement within the estimated expanded (k = 2) uncertainties (5% (EPR), 7% (EBT2)) was found between the results at 30 mm and 50 mm from the x-ray source. The same result was obtained in 4 repetitions of irradiation, indicating high precision in the measurements with both systems. At all distances, agreement between EPR and Monte Carlo simulations was shown as was also the case for the film measurements at 30mm and 50mm. At 10mm the geometry for the film measurements caused too large uncertainty in measured values depending on the exact position (within sub-mm distances) of the EBS and the 10 mm film results were exculded from comparison. This work has demonstrated good performance of the lithium formate EPR dosimetry system in accordance with earlier experiments at higher photon energies (192Ir HDR brachytherapy). It was also highlighted that there might be issues regarding the energy dependence and intrinsic efficiency of the EBT2 film that need to be considered for measurements using low energy sources.

  8. A 3D Monte Carlo Method for Estimation of Patient-specific Internal Organs Absorbed Dose for (99m)Tc-hynic-Tyr(3)-octreotide Imaging.

    PubMed

    Momennezhad, Mehdi; Nasseri, Shahrokh; Zakavi, Seyed Rasoul; Parach, Ali Asghar; Ghorbani, Mahdi; Asl, Ruhollah Ghahraman

    2016-01-01

    Single-photon emission computed tomography (SPECT)-based tracers are easily available and more widely used than positron emission tomography (PET)-based tracers, and SPECT imaging still remains the most prevalent nuclear medicine imaging modality worldwide. The aim of this study is to implement an image-based Monte Carlo method for patient-specific three-dimensional (3D) absorbed dose calculation in patients after injection of (99m)Tc-hydrazinonicotinamide (hynic)-Tyr(3)-octreotide as a SPECT radiotracer. (99m)Tc patient-specific S values and the absorbed doses were calculated with GATE code for each source-target organ pair in four patients who were imaged for suspected neuroendocrine tumors. Each patient underwent multiple whole-body planar scans as well as SPECT imaging over a period of 1-24 h after intravenous injection of (99m)hynic-Tyr(3)-octreotide. The patient-specific S values calculated by GATE Monte Carlo code and the corresponding S values obtained by MIRDOSE program differed within 4.3% on an average for self-irradiation, and differed within 69.6% on an average for cross-irradiation. However, the agreement between total organ doses calculated by GATE code and MIRDOSE program for all patients was reasonably well (percentage difference was about 4.6% on an average). Normal and tumor absorbed doses calculated with GATE were slightly higher than those calculated with MIRDOSE program. The average ratio of GATE absorbed doses to MIRDOSE was 1.07 ± 0.11 (ranging from 0.94 to 1.36). According to the results, it is proposed that when cross-organ irradiation is dominant, a comprehensive approach such as GATE Monte Carlo dosimetry be used since it provides more reliable dosimetric results. PMID:27134562

  9. A 3D Monte Carlo Method for Estimation of Patient-specific Internal Organs Absorbed Dose for 99mTc-hynic-Tyr3-octreotide Imaging

    PubMed Central

    Momennezhad, Mehdi; Nasseri, Shahrokh; Zakavi, Seyed Rasoul; Parach, Ali Asghar; Ghorbani, Mahdi; Asl, Ruhollah Ghahraman

    2016-01-01

    Single-photon emission computed tomography (SPECT)-based tracers are easily available and more widely used than positron emission tomography (PET)-based tracers, and SPECT imaging still remains the most prevalent nuclear medicine imaging modality worldwide. The aim of this study is to implement an image-based Monte Carlo method for patient-specific three-dimensional (3D) absorbed dose calculation in patients after injection of 99mTc-hydrazinonicotinamide (hynic)-Tyr3-octreotide as a SPECT radiotracer. 99mTc patient-specific S values and the absorbed doses were calculated with GATE code for each source-target organ pair in four patients who were imaged for suspected neuroendocrine tumors. Each patient underwent multiple whole-body planar scans as well as SPECT imaging over a period of 1-24 h after intravenous injection of 99mhynic-Tyr3-octreotide. The patient-specific S values calculated by GATE Monte Carlo code and the corresponding S values obtained by MIRDOSE program differed within 4.3% on an average for self-irradiation, and differed within 69.6% on an average for cross-irradiation. However, the agreement between total organ doses calculated by GATE code and MIRDOSE program for all patients was reasonably well (percentage difference was about 4.6% on an average). Normal and tumor absorbed doses calculated with GATE were slightly higher than those calculated with MIRDOSE program. The average ratio of GATE absorbed doses to MIRDOSE was 1.07 ± 0.11 (ranging from 0.94 to 1.36). According to the results, it is proposed that when cross-organ irradiation is dominant, a comprehensive approach such as GATE Monte Carlo dosimetry be used since it provides more reliable dosimetric results. PMID:27134562

  10. An absorbed dose to water standard for HDR 192Ir brachytherapy sources based on water calorimetry: numerical and experimental proof-of-principle.

    PubMed

    Sarfehnia, Arman; Stewart, Kristin; Seuntjens, Jan

    2007-12-01

    Water calorimetry is an established technique for absorbed dose to water measurements in external beams. In this paper, the feasibility of direct absorbed dose measurements for high dose rate (HDR) iridium-192 (192Ir) sources using water calorimetry is established. Feasibility is determined primarily by a balance between the need to obtain sufficient signal to perform a reproducible measurement, the effect of heat loss on the measured signal, and the positioning uncertainty affecting the source-detector distance. The heat conduction pattern generated in water by the Nucletron microSelectron-HDR 192Ir brachytherapy source was simulated using COMSOL MULTIPHYSICS software. Source heating due to radiation self-absorption was calculated using EGSnrcMP. A heat-loss correction k(c) was calculated as the ratio of the temperature rise under ideal conditions to temperature rise under realistic conditions. The calorimeter setup used a parallel-plate calorimeter vessel of 79 mm diameter and 1.12 mm thick front and rear glass windows located 24 mm apart. Absorbed dose was measured with two sources with nominal air kerma strengths of 38 000 and 21 000 U, at source-detector separations ranging from 24.7 to 27.6 mm and irradiation times of 36.0 to 80.0 s. The preliminary measured dose rate per unit air kerma strength of (0.502 +/- 0.007) microGy/(s U) compares well with the TG-43 derived 0.505 microGy/(s U). This work shows that combined dose uncertainties of significantly less than 5% can be achieved with only modest modifications of current water calorimetry techniques and instruments. This work forms the basis of a potential future absolute dose to water standard for HDR 192Ir brachytherapy. PMID:18196821

  11. An absorbed dose to water standard for HDR {sup 192}Ir brachytherapy sources based on water calorimetry: Numerical and experimental proof-of-principle

    SciTech Connect

    Sarfehnia, Arman; Stewart, Kristin; Seuntjens, Jan

    2007-12-15

    Water calorimetry is an established technique for absorbed dose to water measurements in external beams. In this paper, the feasibility of direct absorbed dose measurements for high dose rate (HDR) iridium-192 ({sup 192}Ir) sources using water calorimetry is established. Feasibility is determined primarily by a balance between the need to obtain sufficient signal to perform a reproducible measurement, the effect of heat loss on the measured signal, and the positioning uncertainty affecting the source-detector distance. The heat conduction pattern generated in water by the Nucletron microSelectron-HDR {sup 192}Ir brachytherapy source was simulated using COMSOL MULTIPHYSICSTM software. Source heating due to radiation self-absorption was calculated using EGSnrcMP. A heat-loss correction k{sub c} was calculated as the ratio of the temperature rise under ideal conditions to temperature rise under realistic conditions. The calorimeter setup used a parallel-plate calorimeter vessel of 79 mm diameter and 1.12 mm thick front and rear glass windows located 24 mm apart. Absorbed dose was measured with two sources with nominal air kerma strengths of 38 000 and 21 000 U, at source-detector separations ranging from 24.7 to 27.6 mm and irradiation times of 36.0 to 80.0 s. The preliminary measured dose rate per unit air kerma strength of (0.502{+-}0.007) {mu}Gy/(s U) compares well with the TG-43 derived 0.505 {mu}Gy/(s U). This work shows that combined dose uncertainties of significantly less than 5% can be achieved with only modest modifications of current water calorimetry techniques and instruments. This work forms the basis of a potential future absolute dose to water standard for HDR {sup 192}Ir brachytherapy.

  12. Absorbed Radiation Dose in Radiosensitive Organs During Coronary CT Angiography Using 320-MDCT: Effect of Maximum Tube Voltage and Heart Rate Variations

    PubMed Central

    Nikolic, Boris; Khosa, Faisal; Lin, Pei-Jan Paul; Khan, Atif N.; Sarwar, Sheryar; Yam, Chun-Shan; Court, Laurence E.; Raptopoulos, Vassilios; Clouse, Melvin E.

    2012-01-01

    OBJECTIVE The purpose of this article is to estimate the absorbed radiation dose in radiosensitive organs during coronary MDCT angiography using 320-MDCT and to determine the effects of tube voltage variation and heart rate (HR) control on absorbed radiation dose. MATERIALS AND METHODS Semiconductor field effect transistor detectors were used to measure absorbed radiation doses for the thyroid, midbreast, breast, and midlung in an anthropomorphic phantom at 100, 120, and 135 kVp at two different HRs of 60 and 75 beats per minute (bpm) with a scan field of view of 320 mm, 400 mA, 320 × 0.5 mm detectors, and 160 mm collimator width (160 mm range). The paired Student’s t test was used for data evaluation. RESULTS At 60 bpm, absorbed radiation doses for 100, 120, and 135 kVp were 13.41 ± 3.59, 21.7 ± 4.12, and 29.28 ± 5.17 mGy, respectively, for midbreast; 11.76 ± 0.58, 18.86 ± 1.06, and 24.82 ± 1.45 mGy, respectively, for breast; 12.19 ± 2.59, 19.09 ± 3.12, and 26.48 ± 5.0 mGy, respectively, for lung; and 0.37 ± 0.14, 0.69 ± 0.14, and 0.92 ± 0.2 mGy, respectively, for thyroid. Corresponding absorbed radiation doses for 75 bpm were 38.34 ± 2.02, 59.72 ± 3.13, and 77.8 ± 3.67 mGy for midbreast; 26.2 ± 1.74, 44 ± 1.11, and 52.84 ± 4.07 mGy for breast; 38.02 ± 1.58, 58.89 ± 1.68, and 78 ± 2.93 mGy for lung; and 0.79 ± 0.233, 1.04 ± 0.18, and 2.24 ± 0.52 mGy for thyroid. Absorbed radiation dose changes were significant for all organs for both tube voltage reductions as well as for HR control from 75 to 60 bpm at all tube voltage settings (p < 0.05). The absorbed radiation doses for the calcium score protocol were 11.2 ± 1.4 mGy for midbreast, 9.12 ± 0.48 mGy for breast, 10.36 ± 1.3 mGy for lung, and 0.4 ± 0.05 mGy for thyroid. CONCLUSION CT angiography with 320-MDCT scanners results in absorbed radiation doses in radiosensitive organs that compare favorably to those previously reported. Significant dose reductions can be achieved by tube

  13. Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water.

    PubMed

    Chen, Ren Zhuo; Craik, Stephen A; Bolton, James R

    2009-12-01

    The action spectra of Bacillus subtilis spores (ATCC6633) and Salmonella typhimurium LT2 were characterized using physical radiometry for irradiance measurements and a multiple target model to interpret the inactivation kinetics. The observed action spectrum of B. subtilis spores deviated significantly from the relative absorbance spectrum of the DNA purified from the spores, but matched quite well with the relative absorbance spectrum of decoated spores. The action spectrum of B. subtilis spores determined in this study was statistically different from those reported in previous studies. On the other hand, the action spectrum of S. typhimurium bacteria matched quite well with the relative absorbance spectrum of DNA extracted from vegetative cells, except in the region below 240nm. It is concluded that the common use of the relative DNA absorbance spectrum as a surrogate for the germicidal action spectrum can result in systematic errors when evaluating the performance of a polychromatic UV light reactors using bioassays. For example, if the weighted germicidal fluence (UV dose) calculated using the relative DNA absorbance spectrum as the germicidal weighting factor is found to be 40mJcm(-2) for a medium pressure lamp UV reactor, that calculated using the relative action spectrum of B. subtilis spores, as determined in this study, would be 66mJcm(-2). PMID:19762061

  14. A technique for multi-dimensional optimization of radiation dose, contrast dose, and image quality in CT imaging

    NASA Astrophysics Data System (ADS)

    Sahbaee, Pooyan; Abadi, Ehsan; Sanders, Jeremiah; Becchetti, Marc; Zhang, Yakun; Agasthya, Greeshma; Segars, Paul; Samei, Ehsan

    2016-03-01

    The purpose of this study was to substantiate the interdependency of image quality, radiation dose, and contrast material dose in CT towards the patient-specific optimization of the imaging protocols. The study deployed two phantom platforms. First, a variable sized phantom containing an iodinated insert was imaged on a representative CT scanner at multiple CTDI values. The contrast and noise were measured from the reconstructed images for each phantom diameter. Linearly related to iodine-concentration, contrast to noise ratio (CNR), was calculated for different iodine-concentration levels. Second, the analysis was extended to a recently developed suit of 58 virtual human models (5D-XCAT) with added contrast dynamics. Emulating a contrast-enhanced abdominal image procedure and targeting a peak-enhancement in aorta, each XCAT phantom was "imaged" using a CT simulation platform. 3D surfaces for each patient/size established the relationship between iodine-concentration, dose, and CNR. The Sensitivity of Ratio (SR), defined as ratio of change in iodine-concentration versus dose to yield a constant change in CNR was calculated and compared at high and low radiation dose for both phantom platforms. The results show that sensitivity of CNR to iodine concentration is larger at high radiation dose (up to 73%). The SR results were highly affected by radiation dose metric; CTDI or organ dose. Furthermore, results showed that the presence of contrast material could have a profound impact on optimization results (up to 45%).

  15. Optimization of UV absorptivity of layered double hydroxide by intercalating organic UV-absorbent molecules.

    PubMed

    Mohsin, Sumaiyah Megat Nabil; Hussein, Mohd Zobir; Sarijo, Siti Halimah; Fakurazi, Sharida; Arulselvan, Palanisamy; Taufiq-Yap, Yun Hin

    2014-08-01

    Intercalation of Zn/Al layered double hydroxide (LDH) with benzophenone 9 (B9), a strong ultraviolet (UV) absorber, had been carried out by two different routes; co-precipitation and ion exchange method. Powder X-ray diffraction (PXRD) patterns of co-precipitated (ZB9C) and ion exchanged product (ZB91) showed basal spacing of 15.9 angstrom and 16.6 angstrom, respectively, as a result of the intercalation of B9 anions into the lamellae spaces of LDH. Intercalation was further confirmed by Fourier transform infrared spectra (FTIR), carbon, hydrogen, nitrogen and sulfur (CHNS) and thermogravimetric and differential thermogravimetric (TGA/DTG) studies. UV-vis absorption properties of the nanocomposite was investigated with diffuse reflectance UV-visible spectrometer and showed broader UV absorption range. Furthermore, stability of sunscreen molecules in LDH interlayer space was tested in deionized water, artificial sea water and skin pH condition to show slow deintercalation and high retention in host. Cytotoxicity study of the synthesized nanocomposites on human dermal fibroblast (HDF) cells shows no significant cytotoxicity after 24 h exposure for test concentrations up to 25 microg/mL. PMID:25016649

  16. Optimization of temporal dose modulation: Comparison of theory and experiment

    SciTech Connect

    Bewes, J. M.; Suchowerska, N.; Cartwright, L.; Ebert, M. A.; McKenzie, D. R.

    2012-06-15

    Purpose: To compare theoretical predictions and experimental measurements of cell survival after exposure to two different temporally modulated radiation dose patterns that deliver the same dose in the same overall time. Methods: The authors derived an analytic expression for the dose protraction factor G in the Lea-Catcheside formalism for cell survival for 'triangle' and 'V' temporal modulation of dose. These temporal dose patterns were used in experimental clonogenic studies of a melanoma cell line (MM576) and a nonsmall-cell lung cancer line (NCI-H460) that have different alpha, beta, and repair parameters. The overall treatment time and total dose were kept constant. Results: The analytic expressions for G for the two temporal modulations are presented as a function of a single variable, the product of the exposure time, and the repair constant, enabling G to be evaluated for any exposure time and for any cell line. G for the triangle delivery pattern is always the larger. For the MM576 cell line, following a large dose of 6 Gy, a larger survival fraction was found for the V delivery pattern. No difference in survival was observed for lower doses or for the NCI-H460 cell line at any dose. These results are predicted by our theory, using published values of alpha, beta, and repair time within the limits of experimental uncertainty. Conclusions: The study provides evidence to confirm that cell lines having large beta values exhibit a response that is sensitive to the pattern of dose delivery when the delivery time is comparable with the repair time. It is recommended that the dose delivery pattern be considered in hypofractionated treatments.

  17. Estimation of absorbed radiation dose rates in wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Kubota, Yoshihisa; Takahashi, Hiroyuki; Watanabe, Yoshito; Fuma, Shoichi; Kawaguchi, Isao; Aoki, Masanari; Kubota, Masahide; Furuhata, Yoshiaki; Shigemura, Yusaku; Yamada, Fumio; Ishikawa, Takahiro; Obara, Satoshi; Yoshida, Satoshi

    2015-04-01

    The dose rates of radiation absorbed by wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident were estimated. The large Japanese field mouse (Apodemus speciosus), also called the wood mouse, was the major rodent species captured in the sampling area, although other species of rodents, such as small field mice (Apodemus argenteus) and Japanese grass voles (Microtus montebelli), were also collected. The external exposure of rodents calculated from the activity concentrations of radiocesium ((134)Cs and (137)Cs) in litter and soil samples using the ERICA (Environmental Risk from Ionizing Contaminants: Assessment and Management) tool under the assumption that radionuclides existed as the infinite plane isotropic source was almost the same as those measured directly with glass dosimeters embedded in rodent abdomens. Our findings suggest that the ERICA tool is useful for estimating external dose rates to small animals inhabiting forest floors; however, the estimated dose rates showed large standard deviations. This could be an indication of the inhomogeneous distribution of radionuclides in the sampled litter and soil. There was a 50-fold difference between minimum and maximum whole-body activity concentrations measured in rodents at the time of capture. The radionuclides retained in rodents after capture decreased exponentially over time. Regression equations indicated that the biological half-life of radiocesium after capture was 3.31 d. At the time of capture, the lowest activity concentration was measured in the lung and was approximately half of the highest concentration measured in the mixture of muscle and bone. The average internal absorbed dose rate was markedly smaller than the average external dose rate (<10% of the total absorbed dose rate). The average total absorbed dose rate to wild rodents inhabiting the sampling area was estimated to be approximately 52 μGy h(-1) (1.2 mGy d(-1)), even 3 years after

  18. Ion chamber absorbed dose calibration coefficients, N{sub D,w}, measured at ADCLs: Distribution analysis and stability

    SciTech Connect

    Muir, B. R.

    2015-04-15

    Purpose: To analyze absorbed dose calibration coefficients, N{sub D,w}, measured at accredited dosimetry calibration laboratories (ADCLs) for client ionization chambers to study (i) variability among N{sub D,w} coefficients for chambers of the same type calibrated at each ADCL to investigate ion chamber volume fluctuations and chamber manufacturing tolerances; (ii) equivalency of ion chamber calibration coefficients measured at different ADCLs by intercomparing N{sub D,w} coefficients for chambers of the same type; and (iii) the long-term stability of N{sub D,w} coefficients for different chamber types by investigating repeated chamber calibrations. Methods: Large samples of N{sub D,w} coefficients for several chamber types measured over the time period between 1998 and 2014 were obtained from the three ADCLs operating in the United States. These are analyzed using various graphical and numerical statistical tests for the four chamber types with the largest samples of calibration coefficients to investigate (i) and (ii) above. Ratios of calibration coefficients for the same chamber, typically obtained two years apart, are calculated to investigate (iii) above and chambers with standard deviations of old/new ratios less than 0.3% meet stability requirements for accurate reference dosimetry recommended in dosimetry protocols. Results: It is found that N{sub D,w} coefficients for a given chamber type compared among different ADCLs may arise from differing probability distributions potentially due to slight differences in calibration procedures and/or the transfer of the primary standard. However, average N{sub D,w} coefficients from different ADCLs for given chamber types are very close with percent differences generally less than 0.2% for Farmer-type chambers and are well within reported uncertainties. Conclusions: The close agreement among calibrations performed at different ADCLs reaffirms the Calibration Laboratory Accreditation Subcommittee process of ensuring

  19. Comparison of MCNPX and GEANT4 to Predict the Contribution of Non-elastic Nuclear Interactions to Absorbed Dose in Water, PMMA and A150

    NASA Astrophysics Data System (ADS)

    Shtejer, K.; Arruda-Neto, J. D. T.; Schulte, R.; Wroe, A.; Rodrigues, T. E.; de Menezes, M. O.; Moralles, M.; Guzmán, F.; Manso, M. V.

    2008-08-01

    Proton induced non-elastic nuclear reactions play an important role in the dose distribution of clinically used proton beams as they deposit dose of high biological effectiveness both within the primary beam path as well as outside the beam to untargeted tissues. Non-elastic nuclear reactions can be evaluated using transport codes based on the Monte Carlo method. In this work, we have utilized the Los Alamos code MCNPX and the CERN GEANT4 toolkit, which are currently the most widely used Monte Carlo programs for proton radiation transport simulations in medical physics, to study the contribution of non-elastic nuclear interactions to the absorbed dose of proton beams in the therapeutic energy range. The impact of different available theoretical models to address the nuclear reaction process was investigated. The contribution of secondary particles from non-elastic nuclear reactions was calculated in three materials relevant in radiotherapy applications: water, PMMA and A150. The results evidence that there are differences in the calculated contribution of the secondary particles heavier than protons to the absorbed dose, with different approaches to model the nuclear reactions. The MCNPX calculation give rise to a larger contribution of d, t, α3He to the total dose compared to the GEANT4 physical models chosen in this work.

  20. Comparison of MCNPX and GEANT4 to Predict the Contribution of Non-elastic Nuclear Interactions to Absorbed Dose in Water, PMMA and A150

    SciTech Connect

    Shtejer, K.; Arruda-Neto, J. D. T.; Rodrigues, T. E.; Schulte, R.; Wroe, A.; Menezes, M. O. de; Moralles, M.

    2008-08-11

    Proton induced non-elastic nuclear reactions play an important role in the dose distribution of clinically used proton beams as they deposit dose of high biological effectiveness both within the primary beam path as well as outside the beam to untargeted tissues. Non-elastic nuclear reactions can be evaluated using transport codes based on the Monte Carlo method. In this work, we have utilized the Los Alamos code MCNPX and the CERN GEANT4 toolkit, which are currently the most widely used Monte Carlo programs for proton radiation transport simulations in medical physics, to study the contribution of non-elastic nuclear interactions to the absorbed dose of proton beams in the therapeutic energy range. The impact of different available theoretical models to address the nuclear reaction process was investigated. The contribution of secondary particles from non-elastic nuclear reactions was calculated in three materials relevant in radiotherapy applications: water, PMMA and A150. The results evidence that there are differences in the calculated contribution of the secondary particles heavier than protons to the absorbed dose, with different approaches to model the nuclear reactions. The MCNPX calculation give rise to a larger contribution of d, t, {alpha}{sup 3}He to the total dose compared to the GEANT4 physical models chosen in this work.

  1. KEY COMPARISON: Comparison of the standards for absorbed dose to water of the ENEA-INMRI (Italy) and the BIPM for 60Co γ rays

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Allisy-Roberts, P. J.; Burns, D. T.; Guerra, A. S.; Laitano, R. F.; Pimpinella, M.

    2010-01-01

    A comparison of the standards for absorbed dose to water of the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti of the Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Italy (ENEA-INMRI), and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation under the auspices of the key comparison BIPM.RI(I)-K4. The comparison result, based on the calibration coefficients for three transfer standards and expressed as a ratio of the ENEA and the BIPM standards for absorbed dose to water, is 0.9999 (0.0044). The present 2007 result replaces the earlier ENEA value in this key comparison. The degrees of equivalence between the ENEA and the other participants in this comparison have been calculated and the results are given in the form of a matrix for the ten national metrology institutes (NMIs) that have published results in this ongoing comparison for absorbed dose to water. A graphical presentation is also given. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  2. Optimal dynamic vibration absorber design for minimizing the band-averaged input power using the residue theorem

    NASA Astrophysics Data System (ADS)

    D`Amico, R.; Koo, K.; Claeys, C. C.; Pluymers, B.; Desmet, W.

    2015-03-01

    This paper deals with an efficient strategy to improve the vibro-acoustic behavior of a structure over frequency bands. Genetic Algorithms are used to identify the optimal resonance frequency and location of Dynamic Vibration Absorbers (DVAs) which minimize the band-averaged input power into a plate, leading to an indirect reduction of the radiated acoustic power and global vibration. Instead of classic numerical quadrature schemes, the residue theorem is used to evaluate the band-averaged input power. This results into a considerable reduction of computational effort, as it requires only few function evaluations at complex frequencies, regardless of the analyzed bandwidth. The structural response is simulated by using the Wave Based Method (WBM). Besides an increased convergence rate as compared to classical element-based techniques, the WBM is also free in determining the optimal position of the DVAs, not restricting it to nodal grid locations. Moreover, when point connections are taken into account, only a small part of the WB matrices needs to be recomputed at each iteration, resulting in a strong reduction of the computation time. Numerical examples illustrate the benefits and the efficiency of the proposed optimization strategy.

  3. Efficacy of a Radiation Absorbing Shield in Reducing Dose to the Interventionalist During Peripheral Endovascular Procedures: A Single Centre Pilot Study

    SciTech Connect

    Power, S.; Mirza, M.; Thakorlal, A.; Ganai, B.; Gavagan, L. D.; Given, M. F.; Lee, M. J.

    2015-06-15

    PurposeThis prospective pilot study was undertaken to evaluate the feasibility and effectiveness of using a radiation absorbing shield to reduce operator dose from scatter during lower limb endovascular procedures.Materials and MethodsA commercially available bismuth shield system (RADPAD) was used. Sixty consecutive patients undergoing lower limb angioplasty were included. Thirty procedures were performed without the RADPAD (control group) and thirty with the RADPAD (study group). Two separate methods were used to measure dose to a single operator. Thermoluminescent dosimeter (TLD) badges were used to measure hand, eye, and unshielded body dose. A direct dosimeter with digital readout was also used to measure eye and unshielded body dose. To allow for variation between control and study groups, dose per unit time was calculated.ResultsTLD results demonstrated a significant reduction in median body dose per unit time for the study group compared with controls (p = 0.001), corresponding to a mean dose reduction rate of 65 %. Median eye and hand dose per unit time were also reduced in the study group compared with control group, however, this was not statistically significant (p = 0.081 for eye, p = 0.628 for hand). Direct dosimeter readings also showed statistically significant reduction in median unshielded body dose rate for the study group compared with controls (p = 0.037). Eye dose rate was reduced for the study group but this was not statistically significant (p = 0.142).ConclusionInitial results are encouraging. Use of the shield resulted in a statistically significant reduction in unshielded dose to the operator’s body. Measured dose to the eye and hand of operator were also reduced but did not reach statistical significance in this pilot study.

  4. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    SciTech Connect

    Zaugg, C. A. Mangold, M.; Pallmann, W. P.; Golling, M.; Tilma, B. W.; Keller, U.; Gronenborn, S.; Moench, H.; Weichmann, U.; Miller, M.

    2014-03-24

    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM{sub 00} mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiN{sub x} and SiO{sub 2}) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm{sup 2} to 1.1 μJ/cm{sup 2}, respectively.

  5. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    NASA Astrophysics Data System (ADS)

    Zaugg, C. A.; Gronenborn, S.; Moench, H.; Mangold, M.; Miller, M.; Weichmann, U.; Pallmann, W. P.; Golling, M.; Tilma, B. W.; Keller, U.

    2014-03-01

    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM00 mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiNx and SiO2) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm2 to 1.1 μJ/cm2, respectively.

  6. Evaluation of absorbed and effective doses to patients from radiopharmaceuticals using the ICRP 110 reference computational phantoms and ICRP 103 formulation.

    PubMed

    Hadid, Lama; Gardumi, Anna; Desbrée, Aurélie

    2013-09-01

    In diagnostic nuclear medicine, mean absorbed doses to patients' organs and effective doses are published for standard stylised anatomic models. To provide more realistic and detailed geometries of the human morphology, the International Commission on Radiological Protection (ICRP) has recently adopted male and female voxel phantoms to represent the reference adult. This work investigates the impact of the use of these new computational phantoms. The absorbed doses were calculated for 11 different radiopharmaceuticals currently used in diagnostic nuclear medicine. They were calculated for the ICRP 110 reference computational phantoms using the OEDIPE software and the MCNP extended Monte Carlo code. The biokinetic models were issued from ICRP Publications 53, 80 and 106. The results were then compared with published values given in these ICRP Publications. To discriminate the effect of anatomical differences on organ doses from the effect of the calculation method, the Monte Carlo calculations were repeated for the reference adult stylised phantom. The voxel effect, the influence of the use of different densities and nuclear decay data were also investigated. Effective doses were determined for the ICRP 110 adult reference computational phantom with the tissue weighting factor of ICRP Publication 60 and the tissue weighting factors of ICRP Publication 103. The calculation method and, in particular, the simulation of the electron transport have a significant influence on the calculated doses, especially, for small and walled organs. Overestimates of >200 % were observed for the urinary bladder wall of the stylised phantom compared with the computational phantoms. The unrealistic organ topology of the stylised phantom leads to important dose differences, sometimes by an order of magnitude. The effective doses calculated using the new computational phantoms and the new tissue weighting factors are globally lower than the published ones, except for some

  7. Optimized grating as an ultra-narrow band absorber or plasmonic sensor.

    PubMed

    Meng, Lijun; Zhao, Ding; Ruan, Zhichao; Li, Qiang; Yang, Yuanqing; Qiu, Min

    2014-03-01

    Lamellar gratings are investigated via temporal coupled-mode theory and numerical simulations. Total absorption can be achieved by an optimized grating with shallow grooves under normal incidence and the full width at half-maximum (FWHM) is only 0.4 nm. For certain wavelengths, the structure shows high absorption only within an ultra-narrow angle, which suggests that it can be used as a highly directional thermal emitter according to Kirchhoff's law. Besides, the resonant wavelength is sensitive to the refractive index of the environmental dielectric. The large sensitivity (1400  nm/RIU) and simultaneous small FWHM result in a huge figure-of-merit of 2300/RIU, which enables the structure to have great potential in plasmonic sensing. PMID:24690690

  8. Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality.

    PubMed

    Geleijns, J; Salvadó Artells, M; Veldkamp, W J H; López Tortosa, M; Calzado Cantera, A

    2006-10-01

    This study aimed at assessment of efficacy of selective in-plane shielding in adults by quantitative evaluation of the achieved dose reduction and image quality. Commercially available accessories for in-plane shielding of the eye lens, thyroid and breast, and an anthropomorphic phantom were used for the evaluation of absorbed dose and image quality. Organ dose and total energy imparted were assessed by means of a Monte Carlo technique taking into account tube voltage, tube current, and scanner type. Image quality was quantified as noise in soft tissue. Application of the lens shield reduced dose to the lens by 27% and to the brain by 1%. The thyroid shield reduced thyroid dose by 26%; the breast shield reduced dose to the breasts by 30% and to the lungs by 15%. Total energy imparted (unshielded/shielded) was 88/86 mJ for computed tomography (CT) brain, 64/60 mJ for CT cervical spine, and 289/260 mJ for CT chest scanning. An increase in image noise could be observed in the ranges were bismuth shielding was applied. The observed reduction of organ dose and total energy imparted could be achieved more efficiently by a reduction of tube current. The application of in-plane selective shielding is therefore discouraged. PMID:16604323

  9. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations

    SciTech Connect

    Pacilio, M.; Lanconelli, N.; Lo Meo, S.; Betti, M.; Montani, L.; Torres Aroche, L. A.; Coca Perez, M. A.

    2009-05-15

    Several updated Monte Carlo (MC) codes are available to perform calculations of voxel S values for radionuclide targeted therapy. The aim of this work is to analyze the differences in the calculations obtained by different MC codes and their impact on absorbed dose evaluations performed by voxel dosimetry. Voxel S values for monoenergetic sources (electrons and photons) and different radionuclides ({sup 90}Y, {sup 131}I, and {sup 188}Re) were calculated. Simulations were performed in soft tissue. Three general-purpose MC codes were employed for simulating radiation transport: MCNP4C, EGSnrc, and GEANT4. The data published by the MIRD Committee in Pamphlet No. 17, obtained with the EGS4 MC code, were also included in the comparisons. The impact of the differences (in terms of voxel S values) among the MC codes was also studied by convolution calculations of the absorbed dose in a volume of interest. For uniform activity distribution of a given radionuclide, dose calculations were performed on spherical and elliptical volumes, varying the mass from 1 to 500 g. For simulations with monochromatic sources, differences for self-irradiation voxel S values were mostly confined within 10% for both photons and electrons, but with electron energy less than 500 keV, the voxel S values referred to the first neighbor voxels showed large differences (up to 130%, with respect to EGSnrc) among the updated MC codes. For radionuclide simulations, noticeable differences arose in voxel S values, especially in the bremsstrahlung tails, or when a high contribution from electrons with energy of less than 500 keV is involved. In particular, for {sup 90}Y the updated codes showed a remarkable divergence in the bremsstrahlung region (up to about 90% in terms of voxel S values) with respect to the EGS4 code. Further, variations were observed up to about 30%, for small source-target voxel distances, when low-energy electrons cover an important part of the emission spectrum of the radionuclide

  10. Pharmacokinetic and Pharmacodynamic Considerations in Antimalarial Dose Optimization

    PubMed Central

    2013-01-01

    Antimalarial drugs have usually been first deployed in areas of malaria endemicity at doses which were too low, particularly for high-risk groups such as young children and pregnant women. This may accelerate the emergence and spread of resistance, thereby shortening the useful life of the drug, but it is an inevitable consequence of the current imprecise method of dose finding. An alternative approach to dose finding is suggested in which phase 2 studies concentrate initially on pharmacokinetic-pharmacodynamic (PK-PD) characterization and in vivo calibration of in vitro susceptibility information. PD assessment is facilitated in malaria because serial parasite densities are readily assessed by microscopy, and at low densities by quantitative PCR, so that initial therapeutic responses can be quantitated accurately. If the in vivo MIC could be characterized early in phase 2 studies, it would provide a sound basis for the choice of dose in all target populations in subsequent combination treatments. Population PK assessments in phase 2b and phase 3 studies which characterize PK differences between different age groups, clinical disease states, and human populations can then be combined with the PK-PD observations to provide a sound evidence base for dose recommendations in different target groups. PMID:24002099

  11. Deformable Dose Reconstruction to Optimize the Planning and Delivery of Liver Cancer Radiotherapy

    NASA Astrophysics Data System (ADS)

    Velec, Michael

    The precise delivery of radiation to liver cancer patients results in improved control with higher tumor doses and minimized normal tissues doses. A margin of normal tissue around the tumor requires irradiation however to account for treatment delivery uncertainties. Daily image-guidance allows targeting of the liver, a surrogate for the tumor, to reduce geometric errors. However poor direct tumor visualization, anatomical deformation and breathing motion introduce uncertainties between the planned dose, calculated on a single pre-treatment computed tomography image, and the dose that is delivered. A novel deformable image registration algorithm based on tissue biomechanics was applied to previous liver cancer patients to track targets and surrounding organs during radiotherapy. Modeling these daily anatomic variations permitted dose accumulation, thereby improving calculations of the delivered doses. The accuracy of the algorithm to track dose was validated using imaging from a deformable, 3-dimensional dosimeter able to optically track absorbed dose. Reconstructing the delivered dose revealed that 70% of patients had substantial deviations from the initial planned dose. An alternative image-guidance technique using respiratory-correlated imaging was simulated, which reduced both the residual tumor targeting errors and the magnitude of the delivered dose deviations. A planning and delivery strategy for liver radiotherapy was then developed that minimizes the impact of breathing motion, and applied a margin to account for the impact of liver deformation during treatment. This margin is 38% smaller on average than the margin used clinically, and permitted an average dose-escalation to liver tumors of 9% for the same risk of toxicity. Simulating the delivered dose with deformable dose reconstruction demonstrated the plans with smaller margins were robust as 90% of patients' tumors received the intended dose. This strategy can be readily implemented with widely

  12. Dose Finding of Small-Molecule Oncology Drugs: Optimization throughout the Development Life Cycle.

    PubMed

    Jänne, Pasi A; Kim, Geoffrey; Shaw, Alice T; Sridhara, Rajeshwari; Pazdur, Richard; McKee, Amy E

    2016-06-01

    In the current era of rapid marketing approval for promising new products in oncology, dose finding and optimization for small-molecule oncology drugs occurs throughout the development cycle and into the postmarketing setting. Many trials that support a regulatory application have high rates of dose reductions and discontinuations, which may result in postmarketing requirements (PMR) to study alternate doses or dosing schedules. Kinase inhibitors particularly have been susceptible to this problem, and among the 31 approved drugs of this class, the approvals of eight have included such PMRs and/or commitments. Thus, the current paradigm for dose finding and optimization could be improved. Newer strategies for dose finding rather than traditional 3 + 3 designs should be considered where feasible, and dose optimization should be continued after phase I and throughout development. Such strategies will increase the likelihood of a right dose for the right drug at the time of regulatory approval. Clin Cancer Res; 22(11); 2613-7. ©2016 AACR SEE ALL ARTICLES IN THIS CCR FOCUS SECTION, "NEW APPROACHES FOR OPTIMIZING DOSING OF ANTICANCER AGENTS". PMID:27250931

  13. Optimizing Pediatric Esmolol Dosing Using Computerized Practitioner Order Entry

    PubMed Central

    Perry, James C.; Romanowski, Gale L.; Tremoulet, Adriana H.; Capparelli, Edmund V.

    2014-01-01

    OBJECTIVES: The aims of this study were to 1) describe the cardiovascular dose-response of esmolol and dose-limiting adverse effects in pediatric patients; 2) assess an institutional guideline for protocol adherence, efficacy, and achievement of therapeutic targets for pediatric patients with tachyarrhythmias or systemic hypertension; and 3) revise the protocol accordingly. METHODS: In this prospective study, pediatric/neonatal subjects were identified using a medication utilization report in the electronic medical record and treated with esmolol for blood pressure or rhythm control at Rady Children's Hospital San Diego between November 1, 2012, and February 28, 2013. Inclusion criteria required subjects to be under intensive care and have bedside telemetry monitoring. Data collection consisted of patient demographic information, administration history of esmolol, concurrent administration of other cardiovascular medications, patient cardiovascular goals, and vital signs. RESULTS: A total of 8 subjects representing 10 administrations of esmolol were included in the study. Whereas esmolol was found to be safe and effective overall for control of hypertension and tachyarrhythmia, protocol adherence was poor, leading to subtherapeutic dosing schemes, dose changes prior to achievement of presumed steady-state pharmacokinetics, and erratic dosing to target effect. CONCLUSIONS: After the review, the data were revealed at a program-wide conference and consensus was reached on a new, data-driven protocol. As a result of this quality improvement initiative, the new protocol provides more precise dosing and clearly delineated therapeutic targets and is designed to reflect specific esmolol pharmacokinetics. The effort emphasizes the need to construct foundations for follow-up quality improvement efforts in intensive care pharmacology. PMID:25762876

  14. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an {sup 192}Ir brachytherapy source

    SciTech Connect

    Lucas, P. Avilés Aubineau-Lanièce, I.; Lourenço, V.; Vermesse, D.; Cutarella, D.

    2014-01-15

    Purpose: The absorbed dose to water is the fundamental reference quantity for brachytherapy treatment planning systems and thermoluminescence dosimeters (TLDs) have been recognized as the most validated detectors for measurement of such a dosimetric descriptor. The detector response in a wide energy spectrum as that of an{sup 192}Ir brachytherapy source as well as the specific measurement medium which surrounds the TLD need to be accounted for when estimating the absorbed dose. This paper develops a methodology based on highly sensitive LiF:Mg,Cu,P TLDs to directly estimate the absorbed dose to water in liquid water around a high dose rate {sup 192}Ir brachytherapy source. Methods: Different experimental designs in liquid water and air were constructed to study the response of LiF:Mg,Cu,P TLDs when irradiated in several standard photon beams of the LNE-LNHB (French national metrology laboratory for ionizing radiation). Measurement strategies and Monte Carlo techniques were developed to calibrate the LiF:Mg,Cu,P detectors in the energy interval characteristic of that found when TLDs are immersed in water around an{sup 192}Ir source. Finally, an experimental system was designed to irradiate TLDs at different angles between 1 and 11 cm away from an {sup 192}Ir source in liquid water. Monte Carlo simulations were performed to correct measured results to provide estimates of the absorbed dose to water in water around the {sup 192}Ir source. Results: The dose response dependence of LiF:Mg,Cu,P TLDs with the linear energy transfer of secondary electrons followed the same variations as those of published results. The calibration strategy which used TLDs in air exposed to a standard N-250 ISO x-ray beam and TLDs in water irradiated with a standard{sup 137}Cs beam provided an estimated mean uncertainty of 2.8% (k = 1) in the TLD calibration coefficient for irradiations by the {sup 192}Ir source in water. The 3D TLD measurements performed in liquid water were obtained with a

  15. Selecting radiotherapy dose distributions by means of constrained optimization problems.

    PubMed

    Alfonso, J C L; Buttazzo, G; García-Archilla, B; Herrero, M A; Núñez, L

    2014-05-01

    The main steps in planning radiotherapy consist in selecting for any patient diagnosed with a solid tumor (i) a prescribed radiation dose on the tumor, (ii) bounds on the radiation side effects on nearby organs at risk and (iii) a fractionation scheme specifying the number and frequency of therapeutic sessions during treatment. The goal of any radiotherapy treatment is to deliver on the tumor a radiation dose as close as possible to that selected in (i), while at the same time conforming to the constraints prescribed in (ii). To this day, considerable uncertainties remain concerning the best manner in which such issues should be addressed. In particular, the choice of a prescription radiation dose is mostly based on clinical experience accumulated on the particular type of tumor considered, without any direct reference to quantitative radiobiological assessment. Interestingly, mathematical models for the effect of radiation on biological matter have existed for quite some time, and are widely acknowledged by clinicians. However, the difficulty to obtain accurate in vivo measurements of the radiobiological parameters involved has severely restricted their direct application in current clinical practice.In this work, we first propose a mathematical model to select radiation dose distributions as solutions (minimizers) of suitable variational problems, under the assumption that key radiobiological parameters for tumors and organs at risk involved are known. Second, by analyzing the dependence of such solutions on the parameters involved, we then discuss the manner in which the use of those minimizers can improve current decision-making processes to select clinical dosimetries when (as is generally the case) only partial information on model radiosensitivity parameters is available. A comparison of the proposed radiation dose distributions with those actually delivered in a number of clinical cases strongly suggests that solutions of our mathematical model can be

  16. SU-F-18C-08: A Validation Study of a Commercially Available Software Package's Absorbed Dose Estimates in a Physical Phantom

    SciTech Connect

    Supanich, M; Siegelman, J

    2014-06-15

    Purpose: This study assesses the accuracy of the absorbed dose estimates from CT scans generated by Monte Carlo (MC) simulation using a commercially available radiation dose monitoring software program. Methods: Axial CT studies of an anthropomorphic abdomen phantom with dose bores at a central location and 4 peripheral locations were conducted using a fixed tube current at 120 kV. A 100 mm ion chamber and a 0.6 cc ion chamber calibrated at diagnostic energy levels were used to measure dose in the phantom at each of the 5 dose bore locations. Simulations using the software program's Monte Carlo engine were run using a mathematical model of the anthropomorphic phantom to determine conversion coefficients between the CTDIvol used for the study and the dose at the location of the dose bores. Simulations were conducted using both the software's generic CT beam model and a refined model generated using HVL and bow tie filter profile measurements made on the scanner used for the study. Results: Monte Carlo simulations completed using the generalized beam model differed from the measured conversion factors by an absolute value average of 13.0% and 13.8% for the 100 mm and 0.6 cc ion chamber studies, respectively. The MC simulations using the scanner specific beam model generated conversion coefficients that differed from the CTDIvol to measured dose conversion coefficients by an absolute value average of 7.3% and 7.8% for the 100 mm and 0.6 cc ion chamber cases, respectively. Conclusion: A scanner specific beam model used in MC simulations generates more accurate dose conversion coefficients in an anthropomorphic phantom than those generated with a generalized beam model. Agreement between measured conversion coefficients and simulated values were less than 20% for all positions using the universal beam model.

  17. SU-E-T-30: Absorbed Doses Determined by Texture Analysis of Gafchromic EBT3 Films Using Scanning Electron Microscopy: A Feasibility Study

    SciTech Connect

    Park, S; Kim, H; Ye, S

    2014-06-01

    Purpose: The texture analysis method is useful to estimate structural features of images as color, size, and shape. The study aims to determine a dose-response curve by texture analysis of Gafchromic EBT3 film images using scanning electron microscopy (SEM). Methods: The uncoated Gafchromic EBT3 films were prepared to directly scan over the active surface layer of EBT3 film using SEM. The EBT3 films were exposed at a dose range of 0 to 10 Gy using a 6 MV photon beam. The exposed film samples were SEM-scanned at 100X, 1000X, and 3000X magnifications. The four texture features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) derived from the SEM images at each dose. To validate a correlation between delivered doses and texture features, an R-squared value in linear regression was tested. Results: The results showed that the Correlation index was more suitable as dose indices than the other three texture features due to higher linearity and sensitivity of the dose response curves. Further the Correlation index of 3000X magnified SEM images with 9 pixel offsets had an R-squared value of 0.964. The differences between the delivered doses and the doses measured by this method were 0.9, 1.2, 0.2, and 0.2 Gy at 5, 10, 15, and 20 Gy, respectively. Conclusion: It seems to be feasible to convert micro-scale structural features of {sub χ}t{sub χχχ}he EBT3 films to absorbed doses using the texture analysis method.

  18. Fluence to local skin absorbed dose and dose equivalent conversion coefficients for monoenergetic positrons using Monte-Carlo code MCNP6.

    PubMed

    Bourgois, L; Antoni, R

    2016-01-01

    Conversion coefficients fluence to local skin equivalent dose, as introduced in ICRP Publication 116, 2010, are calculated for positrons of energies ranging from 10 keV to 10 MeV using the code MCNP6. Fluence to dose equivalent conversion coefficients H'(0.07,0°)/Φ are calculated for positrons of energy ranging between 20 keV and 10 MeV. A comparison between operational dose quantity H'(0.07,0°) and the Local-Skin equivalent Dose shows an overall good agreement between these two quantities, except between 60 keV and 100 keV. PMID:26623930

  19. Prospective optimization of CT under tube current modulation: I. organ dose

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald; Samei, Ehsan

    2014-03-01

    In an environment in which computed tomography (CT) has become an indispensable diagnostic tool employed with great frequency, dose concerns at the population level have become a subject of public attention. In that regard, optimizing radiation dose has become a core problem to the CT community. As a fundamental step to optimize radiation dose, it is crucial to effectively quantify radiation dose for a given CT exam. Such dose estimates need to be patient-specific to reflect individual radiation burden. It further needs to be prospective so that the scanning parameters can be dynamically adjusted before the scan is performed. The purpose of this study was to prospectively estimate organ dose in abdominopelvic CT exams under tube current modulation (TCM). CTDIvol-normalized-organ dose coefficients ( hfixed ) for fixed tube current were first estimated using a validated Monte Carlo simulation program and 58 computational phantoms. To account for the effect of TCM scheme, a weighted CTDIvol was computed for each organ based on the tube current modulation profile. The organ dose was predicted by multiplying the weighted CTDIvol with the organ dose coefficients ( hfixed ). To quantify prediction accuracy, each predicted organ dose was compared with organ dose simulated from Monte Carlo program with TCM profile explicitly modeled. The predicted organ dose showed good agreement with simulated organ dose across all organs and modulation strengths. For an average CTDIvol of a CT exam of 10 mGy, the absolute median error across all organs were 0.64 mGy (-0.21 and 0.97 for 25th and 75th percentiles, respectively). The percentage differences (normalized by CTDIvol of the exam) were within 15%. This study developed a quantitative model to predict organ dose under clinical abdominopelvic scans. Such information may aid in the optimization of CT protocols.

  20. A two-stage sequential linear programming approach to IMRT dose optimization

    PubMed Central

    Zhang, Hao H; Meyer, Robert R; Wu, Jianzhou; Naqvi, Shahid A; Shi, Leyuan; D’Souza, Warren D

    2010-01-01

    The conventional IMRT planning process involves two stages in which the first stage consists of fast but approximate idealized pencil beam dose calculations and dose optimization and the second stage consists of discretization of the intensity maps followed by intensity map segmentation and a more accurate final dose calculation corresponding to physical beam apertures. Consequently, there can be differences between the presumed dose distribution corresponding to pencil beam calculations and optimization and a more accurately computed dose distribution corresponding to beam segments that takes into account collimator-specific effects. IMRT optimization is computationally expensive and has therefore led to the use of heuristic (e.g., simulated annealing and genetic algorithms) approaches that do not encompass a global view of the solution space. We modify the traditional two-stage IMRT optimization process by augmenting the second stage via an accurate Monte-Carlo based kernel-superposition dose calculations corresponding to beam apertures combined with an exact mathematical programming based sequential optimization approach that uses linear programming (SLP). Our approach was tested on three challenging clinical test cases with multileaf collimator constraints corresponding to two vendors. We compared our approach to the conventional IMRT planning approach, a direct-aperture approach and a segment weight optimization approach. Our results in all three cases indicate that the SLP approach outperformed the other approaches, achieving superior critical structure sparing. Convergence of our approach is also demonstrated. Finally, our approach has also been integrated with a commercial treatment planning system and may be utilized clinically. PMID:20071764

  1. Treatment of small-cell lung cancer xenografts with iodine-313-anti-neural cell adhesion molecule monoclonal antibody and evaluation of absorbed dose in tissue

    SciTech Connect

    Hosono, Makoto; Endo, Keigo; Hosono, Masako N.

    1994-02-01

    Human small-cell lung cancer (SCLC) is considered a feasible target for immunotherapy using a radiolabeled monoclonal antibody (Mab). A murine Mab, NE150 (IgG1), reacts with the neural cell adhesion molecule, which is identical to cluster 1 antigen of SCLC. To estimate their therapeutic effects, NE150 and an isotype-matched control Mab were labeled with {sup 131}I and administered intravenously as a single dose into athymic mice inoculated with a NCI-H69 SCLC xenograft. The absorbed dose in organs was also examined based upon a long-term biodistribution study of {sup 131}I-NE150. Tumors initial volume 563.4 {plus_minus} 223.5 mm{sup 3} treated with 11.1 MBq (300 {mu}Ci) of {sup 131}I-NE150 diminished and became invisible at days 30-33, demonstrating a 60-day mean growth delay to reach a tripled initial volume compared with sham-treated tumors. Cumulative absorbed doses were estimated to be 2310, 410, 500, 330, and 790 cGy for the tumor, liver, kidney, spleen and lung, respectively. Iodine-131-NE150 had potent therapeutic effects against SCLC transplants in athymic mice, however, careful assessment of the side effects, improvement of radioiodination and chimerization of the Mab might be necessary to achieve efficient targeting in clinical therapeutic applications. 25 refs., 2 figs., 3 tabs.

  2. A Minute Dose of 14C-b-Carotene is Absorbed and Converted to Retinoids in Humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We dosed 8 adults with 14C-all-trans [10,10',11,11'-14C]-B-carotene (1.01 nmol) to quantify its absorption and metabolism. We used accelerator mass spectrometry (AMS) to measure 14C eliminated in feces over 14 days, in urine over 30 days, and that was retained in plasma over 166 days since dose. We...

  3. Key comparison BIPM.RI(I)-K6 of the standards for absorbed dose to water of the ARPANSA, Australia and the BIPM in accelerator photon beams

    NASA Astrophysics Data System (ADS)

    Picard, S.; Burns, D. T.; Roger, P.; Harty, P. D.; Ramanathan, G.; Lye, J. E.; Wright, T.; Butler, D. J.; Cole, A.; Oliver, C.; Webb, D. V.

    2014-01-01

    A comparison of the dosimetry for accelerator photon beams was carried out between the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) and the Bureau International des Poids et Mesures (BIPM) in September and October 2012. The comparison was based on the determination of absorbed dose to water for three radiation qualities at the ARPANSA. Following receipt of the provisional comparison results, the ARPANSA decided to verify the geometry of the jacket and calorimeter core. This resulted in a change in the conversion factors applied by the ARPANSA to convert from absorbed dose to graphite to absorbed dose to water which was implemented after the comparison. The results for the revised standard, reported as a ratio of the ARPANSA and the BIPM evaluations, are 0.9965 at 6 MV, 0.9924 at 10 MV and 0.9932 at 18 MV, with a combined standard uncertainty of 5.5 parts in 103, 6.0 parts in 103 and 5.9 parts in 103, respectively. This result is the fifth in the on-going BIPM.RI(I)-K6 series of comparisons, and the first to be based solely on graphite calorimetry. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Technical Reports Server (NTRS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.; Townsend, L. W. (Principal Investigator)

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the

  5. SU-F-19A-02: Comparison of Absorbed Dose to Water Standards for HDR Ir-192 Brachytherapy Between the LCR, Brazil and NRC, Canada

    SciTech Connect

    Salata, C; David, M; Almeida, C de; El Gamal, I; Cojocaru, C; Mainegra-Hing, E; McEwen, M

    2014-06-15

    Purpose: To compare absorbed dose to water standards for HDR brachytherapy dosimetry developed by the Radiological Science Laboratory of Rio de Janeiro State University (LCR) and the National Research Council, Canada (NRC). Methods: The two institutions have separately developed absorbed dose standards based on the Fricke dosimetry system. There are important differences between the two standards, including: preparation and read-out of the Fricke solution, irradiation geometry of the Fricke holder in relation to the Ir-192 source, and determination of the G-value to be used at Ir-192 energies. All measurements for both standards were made directly at the NRC laboratory (i.e., no transfer instrument was used) using a single Ir-192 source (microSelectron v2). In addition, the NRC group has established a self-consistent method to determine the G-value for Ir-192, based on an interpolation between G-values obtained at Co-60 and 250kVp X-rays, and this measurement was repeated using the LCR Fricke solution to investigate possible systematic uncertainties. Results: G-values for Co-60 and 250 kVp x-rays, obtained using the LCR Fricke system, agreed with the NRC values within 0.5 % and 1 % respectively, indicating that the general assumption of universal G-values is appropriate in this case. The standard uncertainty in the determination of G for Ir-192 is estimated to be 0.6 %. For the comparison of absorbed dose measurements at the reference point for Ir-192 (1 cm depth in water, perpendicular to the seed long-axis), the ratio Dw(NRC)/Dw(LCR) was found to be 1.011 with a combined standard uncertainty of 1.7 %, k=1. Conclusion: The agreement in the absorbed dose to water values for the LCR and NRC systems is very encouraging. Combined with the lower uncertainty in this approach compared to the present air-kerma approach, these results reaffirm the use of Fricke solution as a potential primary standard for HDR Ir-192 brachytherapy.

  6. Production and in vivo imaging of (203)Pb as a surrogate isotope for in vivo (212)Pb internal absorbed dose studies.

    PubMed

    Máthé, Domokos; Szigeti, Krisztián; Hegedűs, Nikolett; Horváth, Ildikó; Veres, Dániel S; Kovács, Béla; Szűcs, Zoltán

    2016-08-01

    (212)Pb is a clinically relevant therapeutic alpha emitter isotope. A surrogate, (203)Pb, if prepared with sufficiently high specific activity could be used to estimate (212)Pb in vivo absorbed doses. An improved production procedure of (203)Pb with a simple, new separation method and high specific radioactivity for imaging is reported. We determined the in-vivo biodistribution of (203)Pb in mice by SPECT/CT. This highlights application possibilities of (203)Pb for further in vivo and clinical uses (radiolabeled (212)Pb-peptide co-injection, dosimetry calculation). PMID:27156049

  7. Decoloration and mineralization of reactive dyes using electron beam irradiation, Part I: Effect of the dye structure, concentration and absorbed dose (single, binary and ternary systems)

    NASA Astrophysics Data System (ADS)

    Vahdat, Ali; Bahrami, S. Hajir; Arami, M.; Bahjat, A.; Tabakh, F.; Khairkhah, M.

    2012-07-01

    In this study, three different reactive dyes (C.I. Reactive Red 4, C.I. Reactive Blue 2 and C.I. Reactive Yellow 4) and their blend solutions were irradiated with 10 MeV electron beam. Effect of absorbed dose, dye structure and primary solution concentrations on the pH value changes, degree of decoloration and chemical oxygen demand (COD) removal of solutions were investigated. Results show that this method is effective in decomposition and decoloration of the dyes solutions. This method can be applied in mineralization of wastewater containing different dyes.

  8. Estimation of the effects of normal tissue sparing using equivalent uniform dose-based optimization.

    PubMed

    Senthilkumar, K; Maria Das, K J; Balasubramanian, K; Deka, A C; Patil, B R

    2016-01-01

    In this study, we intend to estimate the effects of normal tissue sparing between intensity modulated radiotherapy (IMRT) treatment plans generated with and without a dose volume (DV)-based physical cost function using equivalent uniform dose (EUD). Twenty prostate cancer patients were retrospectively selected for this study. For each patient, two IMRT plans were generated (i) EUD-based optimization with a DV-based physical cost function to control inhomogeneity (EUDWith DV) and (ii) EUD-based optimization without a DV-based physical cost function to allow inhomogeneity (EUDWithout DV). The generated plans were prescribed a dose of 72 Gy in 36 fractions to planning target volume (PTV). Mean dose, D30%, and D5% were evaluated for all organ at risk (OAR). Normal tissue complication probability was also calculated for all OARs using BioSuite software. The average volume of PTV for all patients was 103.02 ± 27 cm(3). The PTV mean dose for EUDWith DV plans was 73.67 ± 1.7 Gy, whereas for EUDWithout DV plans was 80.42 ± 2.7 Gy. It was found that PTV volume receiving dose more than 115% of prescription dose was negligible in EUDWith DV plans, whereas it was 28% in EUDWithout DV plans. In almost all dosimetric parameters evaluated, dose to OARs in EUDWith DV plans was higher than in EUDWithout DV plans. Allowing inhomogeneous dose (EUDWithout DV) inside the target would achieve better normal tissue sparing compared to homogenous dose distribution (EUDWith DV). Hence, this inhomogeneous dose could be intentionally dumped on the high-risk volume to achieve high local control. Therefore, it was concluded that EUD optimized plans offer added advantage of less OAR dose as well as selectively boosting dose to gross tumor volume. PMID:27217624

  9. Estimation of the effects of normal tissue sparing using equivalent uniform dose-based optimization

    PubMed Central

    Senthilkumar, K.; Maria Das, K. J.; Balasubramanian, K.; Deka, A. C.; Patil, B. R.

    2016-01-01

    In this study, we intend to estimate the effects of normal tissue sparing between intensity modulated radiotherapy (IMRT) treatment plans generated with and without a dose volume (DV)-based physical cost function using equivalent uniform dose (EUD). Twenty prostate cancer patients were retrospectively selected for this study. For each patient, two IMRT plans were generated (i) EUD-based optimization with a DV-based physical cost function to control inhomogeneity (EUDWith DV) and (ii) EUD-based optimization without a DV-based physical cost function to allow inhomogeneity (EUDWithout DV). The generated plans were prescribed a dose of 72 Gy in 36 fractions to planning target volume (PTV). Mean dose, D30%, and D5% were evaluated for all organ at risk (OAR). Normal tissue complication probability was also calculated for all OARs using BioSuite software. The average volume of PTV for all patients was 103.02 ± 27 cm3. The PTV mean dose for EUDWith DV plans was 73.67 ± 1.7 Gy, whereas for EUDWithout DV plans was 80.42 ± 2.7 Gy. It was found that PTV volume receiving dose more than 115% of prescription dose was negligible in EUDWith DV plans, whereas it was 28% in EUDWithout DV plans. In almost all dosimetric parameters evaluated, dose to OARs in EUDWith DV plans was higher than in EUDWithout DV plans. Allowing inhomogeneous dose (EUDWithout DV) inside the target would achieve better normal tissue sparing compared to homogenous dose distribution (EUDWith DV). Hence, this inhomogeneous dose could be intentionally dumped on the high-risk volume to achieve high local control. Therefore, it was concluded that EUD optimized plans offer added advantage of less OAR dose as well as selectively boosting dose to gross tumor volume. PMID:27217624

  10. SU-E-T-498: Energy Minimization and Dose-Volume Inverse Optimization in Prostate Cancer

    SciTech Connect

    Mihaylov, I; Moros, E

    2014-06-01

    Purpose: To compare dose-volume (DVH) and energy minimization-based (EM) optimization for prostate cancer cases. Methods: A dozen of prostate plans were retrospectively studied. For each case two IMRT plans were generated, one with DVH and the other with EM objective cost function. Those different objective functions were used only for the organs at risk (OARs), while target objectives were achieved through DVH cost functions. The plans used the same beam angles, maximum number of segments per plan, minimum segment area and MUs per segment. Both plans were normalized such that 95% of the PTV was covered by the same prescription dose. After prescription was achieved, doses to the OARs were iteratively lowered until the standard deviation of the dose across the PTV was ~3.5%. Plan quality was evaluated by several dose indices (DIs). A DI represents the dose delivered to certain volume of a structure. Tallied DIs were for rectum and bladder 10%, 40%, 60% volumes, and 1% volumes of the femoral heads as surrogate for maximum doses. Statistical significance in the differences among DIs was quantified with two-tailed paired t-tests. Results: On average EM plans performed better than DVH plans. Statistically significant dose reduction in rectum DI10, DI40, and DI60, were 2.6%, 25.7%, and 35.9%, respectively. For bladder DI10, DI40, and DI60 the differences were 1.1%, 20.8%, and 29.7%. Left and right femoral head DI1s were better by 33.8% and 27.8% in EM plans. The quoted dose reduction is with respect to EM absolute doses for the DIs. Conclusion: The performance of EM optimization with respect to DVH optimization is patient and DI dependent. While in some cases specific DIs were better with DVH optimization, on average the energy minimization allows better (ranging from 1% to ~40%) OAR sparing than DVH optimization. NIH-NCI.

  11. Dose optimization in 125I permanent prostate seed implants using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Reis, Juraci P.; Menezes, Artur F.; Souza, Edmilson M.; Facure, Alessandro; Medeiros, Jose A. C. C.; Silva, Ademir X.

    2012-04-01

    The aim of this work consisted in using the Monte Carlo code MCNP and computational phantoms to assess the absorbed dose distributions in the prostate, due to a radiotherapy treatment using 125I radioactive seeds. The intention was to develop a tool that can serve as a complement of the treatment planning system of radiotherapy procedures, reproducing accurately the exact geometry of the sources and the composition of the media where the seeds are inserted. The radiation activities of the simulated seeds varied from 0.27 mCi to 0.38 mCi, for hypothetical treatments employing 80, 88 or 100 125I sources, typical parameters for this technique. The prostate volumes where the seeds were virtually inserted were simulated with spherical or voxel computational phantoms. The configuration containing 88 seeds with initial radiation activity of 0.27 mCi resulted in a final absorbed dose near 144 Gy, in accordance with the recommendations of the American Association of Physicists in Medicine (AAPM). Based on this configuration, it was possible to obtain the radiation absorbed dose distributions for the voxel phantom, which allowed the determination of treatment quality indicators. The obtained results are in good agreement with experimental data presented by other authors.

  12. Impact of dose calculation accuracy during optimization on lung IMRT plan quality.

    PubMed

    Li, Ying; Rodrigues, Anna; Li, Taoran; Yuan, Lulin; Yin, Fang-Fang; Wu, Q Jackie

    2015-01-01

    The purpose of this study was to evaluate the effect of dose calculation accuracy and the use of an intermediate dose calculation step during the optimization of intensity-modulated radiation therapy (IMRT) planning on the final plan quality for lung cancer patients. This study included replanning for 11 randomly selected free-breathing lung IMRT plans. The original plans were optimized using a fast pencil beam convolution algorithm. After optimization, the final dose calculation was performed using the analytical anisotropic algorithm (AAA). The Varian Treatment Planning System (TPS) Eclipse v11, includes an option to perform intermediate dose calculation during optimization using the AAA. The new plans were created using this intermediate dose calculation during optimization with the same planning objectives and dose constraints as in the original plan. Differences in dosimetric parameters for the planning target volume (PTV) dose coverage, organs-at-risk (OARs) dose sparing, and the number of monitor units (MU) between the original and new plans were analyzed. Statistical significance was determined with a p-value of less than 0.05. All plans were normalized to cover 95% of the PTV with the prescription dose. Compared with the original plans, the PTV in the new plans had on average a lower maximum dose (69.45 vs. 71.96Gy, p = 0.005), a better homogeneity index (HI) (0.08 vs. 0.12, p = 0.002), and a better conformity index (CI) (0.69 vs. 0.59, p = 0.003). In the new plans, lung sparing was increased as the volumes receiving 5, 10, and 30 Gy were reduced when compared to the original plans (40.39% vs. 42.73%, p = 0.005; 28.93% vs. 30.40%, p = 0.001; 14.11%vs. 14.84%, p = 0.031). The volume receiving 20 Gy was not significantly lower (19.60% vs. 20.38%, p = 0.052). Further, the mean dose to the lung was reduced in the new plans (11.55 vs. 12.12 Gy, p = 0.024). For the esophagus, the mean dose, the maximum dose, and the volumes receiving 20 and 60 Gy were lower in

  13. Role of cardiac ultrafast cameras with CZT solid-state detectors and software developments on radiation absorbed dose reduction to the patients.

    PubMed

    Gunalp, Bengul

    2015-07-01

    Myocardial perfusion imaging (MPI) is one the most contributing nuclear medicine technique to the annual population dose. The purpose of this study is to compare radiation-absorbed doses to the patients examined by conventional cardiac SPECT (CSPECT) camera and ultrafast cardiac (UFC) camera with cadmium-zinc-telluride (CZT) solid-state detectors. Total injected activity was reduced by 50 % when both stress and rest images were acquired and by 75 % when only stress images were taken with UFC camera. As a result of this, the mean total effective dose was found significantly lower with UFC camera (2.2 ± 1.2 mSv) than CSPECT (7.7 ± 3.8 mSv) (p < 0.001). Further dose reduction was obtained by reducing equivocal test results and unnecessary additional examinations with UFC camera. Using UFC camera, MPI can be conveniently used for the detection of coronary artery disease (CAD) much less increasing annual population radiation dose as it had been before. PMID:25848109

  14. The Use of Collective Dose for Optimization of a Low-Level Waste Site Closure Cover

    SciTech Connect

    Greg Shott, Vefa Yucel

    2010-03-07

    Low-level radioactive waste management regulations require that releases to the environment be as low as reasonably achievable. Collective dose’s use in quantitative cost benefit analysis is well accepted for optimization of operational radiation safety, but seldom applied to routine environmental releases. One concern is that collective dose for large areas and long time periods may obscure the spatial and temporal distribution of risk and the magnitude of individual doses. Use of collective dose for optimization also requires that the decision maker justify subjective inputs including truncation limits for the summation of collective dose in space and time, a monetary value for collective dose, and a discount rate for future health detriment. In this study, a probabilistic collective dose model is developed and used to optimize the closure of the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site. Collective dose’s shortcomings are addressed by preparing a dose matrix that disaggregates the collective dose in space and time and by reporting individual doses for exposed subgroups. Important subjective inputs are assigned discrete values reflecting differing opinions, and the consequence of the differences on the final decision is described. The resulting optimization process remains subjective, but clearly identifies subjective inputs, the values selected, and their impact on the decision. For the Area 5 RWMS, the value of the collective dose is small compared to closure cover cost options over a broad range of subjective values for the spatial and temporal limits for truncation of collective dose, monetary value of collective dose, and discount rates for future dose. The collective dose matrix and individual doses indicate that the societal and individual risks are greatest for future residents within the disposal site boundary, suggesting that options deterring intrusion have the greatest potential for cost-effectiveness. The cost of

  15. Optimization of radiation doses received by personnel in PET uptake rooms.

    PubMed

    Perez, Maria E; Verde, José M; Montes, Carlos; Ramos, Julio A; García, Sofía; Hernandez, Jorge

    2014-11-01

    Reduction of dose to exposed personnel during positron emission tomography (PET) installation usually relies on physical shielding. While the major contribution of shielding is unquestioned, it is usually the only method applied. Other methods of reduction, such as working procedure optimization, the position of the furniture, and rooms are usually disregarded in these installations. This paper presents a design and work optimization procedure used in a particular institution. The influence on the dose received by personnel due to the positioning of injection chairs, injection room configuration, and working procedures is studied. Using this optimization strategy, it is possible to reduce the technician dose due to patients by a factor of 0.59. Injection room design is much more important for optimizing the received dose than is work-flow management. The influence of the order of patient entrance on received dose was the aspect that produced the smallest variation in received doses. It is recommended that the optimization be carried out for the installation proposed in the design phase, when no additional cost is required, because the position of the doors of the injection rooms depends on the where the injection chairs are situated. PMID:25272030

  16. CT Radiation Dose Management: A Comprehensive Optimization Process for Improving Patient Safety.

    PubMed

    Parakh, Anushri; Kortesniemi, Mika; Schindera, Sebastian T

    2016-09-01

    Rising concerns of radiation exposure from computed tomography have caused various advances in dose reduction technologies. While proper justification and optimization of scans has been the main focus to address increasing doses, the value of dose management has been largely overlooked. The purpose of this article is to explain the importance of dose management, provide an overview of the available options for dose tracking, and discuss the importance of a dedicated dose team. The authors also describe how a digital radiation tracking software can be used for analyzing the big data on doses for auditing patient safety, scanner utilization, and productivity, all of which have enormous personal and institutional implications. (©) RSNA, 2016. PMID:27533027

  17. Multiple local minima in radiotherapy optimization problems with dose-volume constraints.

    PubMed

    Deasy, J O

    1997-07-01

    The cause of multiple local minima in beam weight optimization problems subject to dose-volume constraints is analyzed. Three objective functions were considered: (a) maximization of tumor control probability (TCP), (b) maximization of the minimum target dose, and (c) minimization of the mean-squared-deviation of the target dose from the prescription dose. It is shown that: (a) TCP models generally result in strongly quasiconvex objective functions; (b) maximization of the minimum target dose results in a strongly quasiconvex objective function; and (c) minimizing the root-mean-square dose deviation results in a convex objective function. Dose-volume constraints are considered such that, for each region at risk (RAR), the volume of tissue whose dose exceeds a certain tolerance dose (DTol) is kept equal to or below a given fractional level (VTol). If all RARs lack a "volume effect" (i.e., VTol = 0 for all RARs) then there is a single local minimum. But if volume effects are present, then the feasible space is possibly nonconvex and therefore possibly leads to multiple local minima. These conclusions hold for all three objective functions. Hence, possible local minima come not from the nonlinear nature of the objective functions considered, but from the "either this volume or that volume but not both" nature of the volume effect. These observations imply that optimization algorithms for dose-volume constraint types of problems should have effective strategies for dealing with multiple local minima. PMID:9243478

  18. Collimator angle influence on dose distribution optimization for vertebral metastases using volumetric modulated arc therapy

    SciTech Connect

    Mancosu, Pietro; Cozzi, Luca; Fogliata, Antonella; Lattuada, Paola; Reggiori, Giacomo; Cantone, Marie Claire; Navarria, Pierina; Scorsetti, Marta

    2010-08-15

    Purpose: The cylindrical symmetry of vertebrae favors the use of volumetric modulated arc therapy in generating a dose ''hole'' on the center of the vertebrae limiting the dose to the spinal cord. The authors have evaluated if collimator angle is a significant parameter for dose distribution optimization in vertebral metastases. Methods: Three patients with one-three vertebrae involved were considered. Twenty-one differently optimized plans (nine single-arc and 12 double-arc plans) were performed, testing various collimator angle positions. Clinical target volume was defined as the whole vertebrae, excluding the spinal cord canal. The planning target volume (PTV) was defined as CTV+5 mm. Dose prescription was 5x4 Gy{sup 2} with normalization to PTV mean dose. The dose at 1 cm{sup 3} of spinal cord was limited to 11.5Gy. Results: The best plans in terms of target coverage and spinal cord sparing were achieved by two arcs and Arc1-80 deg. and Arc2-280 deg. collimator angles for all the cases considered (i.e., leaf travel parallel to the spinal cord primary orientation). If one arc is used, only 80 deg. reached the objectives. Conclusions: This study demonstrated the role of collimation rotation for the vertebrae metastasis irradiation, with the leaf travel parallel to the spinal cord primary orientation to be better than other solutions. Thus, optimal choice of collimator angle increases the optimization freedom to shape a desired dose distribution.

  19. Real-time fast inverse dose optimization for image guided adaptive radiation therapy-Enhancements to fast inverse dose optimization (FIDO)

    NASA Astrophysics Data System (ADS)

    Goldman, S. P.; Turnbull, D.; Johnson, C.; Chen, J. Z.; Battista, J. J.

    2009-05-01

    A fast, accurate and stable optimization algorithm is very important for inverse planning of intensity-modulated radiation therapy (IMRT), and for implementing dose-adaptive radiotherapy in the future. Conventional numerical search algorithms with positive beam weight constraints generally require numerous iterations and may produce suboptimal dose results due to trapping in local minima regions of the objective function landscape. A direct solution of the inverse problem using conventional quadratic objective functions without positive beam constraints is more efficient but it will result in unrealistic negative beam weights. We review here a direct solution of the inverse problem that is efficient and does not yield unphysical negative beam weights. In fast inverse dose optimization (FIDO) method the objective function for the optimization of a large number of beamlets is reformulated such that the optimization problem is reducible to a linear set of equations. The optimal set of intensities is then found through a matrix inversion, and negative beamlet intensities are avoided without the need for externally imposed ad hoc conditions. In its original version [S. P. Goldman, J. Z. Chen, and J. J. Battista, in Proceedings of the XIVth International Conference on the Use of Computers in Radiation Therapy, 2004, pp. 112-115; S. P. Goldman, J. Z. Chen, and J. J. Battista, Med. Phys. 32, 3007 (2005)], FIDO was tested on single two-dimensional computed tomography (CT) slices with sharp KERMA beams without scatter, in order to establish a proof of concept which demonstrated that FIDO could be a viable method for the optimization of cancer treatment plans. In this paper we introduce the latest advancements in FIDO that now include not only its application to three-dimensional volumes irradiated by beams with full scatter but include as well a complete implementation of clinical dose-volume constraints including maximum and minimum dose as well as equivalent uniform dose

  20. Optimal experimental designs for dose-response studies with continuous endpoints.

    PubMed

    Holland-Letz, Tim; Kopp-Schneider, Annette

    2015-11-01

    In most areas of clinical and preclinical research, the required sample size determines the costs and effort for any project, and thus, optimizing sample size is of primary importance. An experimental design of dose-response studies is determined by the number and choice of dose levels as well as the allocation of sample size to each level. The experimental design of toxicological studies tends to be motivated by convention. Statistical optimal design theory, however, allows the setting of experimental conditions (dose levels, measurement times, etc.) in a way which minimizes the number of required measurements and subjects to obtain the desired precision of the results. While the general theory is well established, the mathematical complexity of the problem so far prevents widespread use of these techniques in practical studies. The paper explains the concepts of statistical optimal design theory with a minimum of mathematical terminology and uses these concepts to generate concrete usable D-optimal experimental designs for dose-response studies on the basis of three common dose-response functions in toxicology: log-logistic, log-normal and Weibull functions with four parameters each. The resulting designs usually require control plus only three dose levels and are quite intuitively plausible. The optimal designs are compared to traditional designs such as the typical setup of cytotoxicity studies for 96-well plates. As the optimal design depends on prior estimates of the dose-response function parameters, it is shown what loss of efficiency occurs if the parameters for design determination are misspecified, and how Bayes optimal designs can improve the situation. PMID:25155192

  1. Efficacy and Immunogenicity of Single-Dose AdVAV Intranasal Anthrax Vaccine Compared to Anthrax Vaccine Absorbed in an Aerosolized Spore Rabbit Challenge Model

    PubMed Central

    Krishnan, Vyjayanthi; Andersen, Bo H.; Shoemaker, Christine; Sivko, Gloria S.; Tordoff, Kevin P.; Stark, Gregory V.; Zhang, Jianfeng; Feng, Tsungwei; Duchars, Matthew

    2015-01-01

    AdVAV is a replication-deficient adenovirus type 5-vectored vaccine expressing the 83-kDa protective antigen (PA83) from Bacillus anthracis that is being developed for the prevention of disease caused by inhalation of aerosolized B. anthracis spores. A noninferiority study comparing the efficacy of AdVAV to the currently licensed Anthrax Vaccine Absorbed (AVA; BioThrax) was performed in New Zealand White rabbits using postchallenge survival as the study endpoint (20% noninferiority margin for survival). Three groups of 32 rabbits were vaccinated with a single intranasal dose of AdVAV (7.5 × 107, 1.5 × 109, or 3.5 × 1010 viral particles). Three additional groups of 32 animals received two doses of either intranasal AdVAV (3.5 × 1010 viral particles) or intramuscular AVA (diluted 1:16 or 1:64) 28 days apart. The placebo group of 16 rabbits received a single intranasal dose of AdVAV formulation buffer. All animals were challenged via the inhalation route with a targeted dose of 200 times the 50% lethal dose (LD50) of aerosolized B. anthracis Ames spores 70 days after the initial vaccination and were followed for 3 weeks. PA83 immunogenicity was evaluated by validated toxin neutralizing antibody and serum anti-PA83 IgG enzyme-linked immunosorbent assays (ELISAs). All animals in the placebo cohort died from the challenge. Three of the four AdVAV dose cohorts tested, including two single-dose cohorts, achieved statistical noninferiority relative to the AVA comparator group, with survival rates between 97% and 100%. Vaccination with AdVAV also produced antibody titers with earlier onset and greater persistence than vaccination with AVA. PMID:25673303

  2. Efficacy and immunogenicity of single-dose AdVAV intranasal anthrax vaccine compared to anthrax vaccine absorbed in an aerosolized spore rabbit challenge model.

    PubMed

    Krishnan, Vyjayanthi; Andersen, Bo H; Shoemaker, Christine; Sivko, Gloria S; Tordoff, Kevin P; Stark, Gregory V; Zhang, Jianfeng; Feng, Tsungwei; Duchars, Matthew; Roberts, M Scot

    2015-04-01

    AdVAV is a replication-deficient adenovirus type 5-vectored vaccine expressing the 83-kDa protective antigen (PA83) from Bacillus anthracis that is being developed for the prevention of disease caused by inhalation of aerosolized B. anthracis spores. A noninferiority study comparing the efficacy of AdVAV to the currently licensed Anthrax Vaccine Absorbed (AVA; BioThrax) was performed in New Zealand White rabbits using postchallenge survival as the study endpoint (20% noninferiority margin for survival). Three groups of 32 rabbits were vaccinated with a single intranasal dose of AdVAV (7.5 × 10(7), 1.5 × 10(9), or 3.5 × 10(10) viral particles). Three additional groups of 32 animals received two doses of either intranasal AdVAV (3.5 × 10(10) viral particles) or intramuscular AVA (diluted 1:16 or 1:64) 28 days apart. The placebo group of 16 rabbits received a single intranasal dose of AdVAV formulation buffer. All animals were challenged via the inhalation route with a targeted dose of 200 times the 50% lethal dose (LD50) of aerosolized B. anthracis Ames spores 70 days after the initial vaccination and were followed for 3 weeks. PA83 immunogenicity was evaluated by validated toxin neutralizing antibody and serum anti-PA83 IgG enzyme-linked immunosorbent assays (ELISAs). All animals in the placebo cohort died from the challenge. Three of the four AdVAV dose cohorts tested, including two single-dose cohorts, achieved statistical noninferiority relative to the AVA comparator group, with survival rates between 97% and 100%. Vaccination with AdVAV also produced antibody titers with earlier onset and greater persistence than vaccination with AVA. PMID:25673303

  3. Measurement of absorbed doses from X-ray baggage examinations to tooth enamel by means of ESR and glass dosimetry.

    PubMed

    Zhumadilov, Kassym; Stepanenko, Valeriy; Ivannikov, Alexander; Zhumadilov, Zhaxybay; Zharlyganova, Dinara; Toyoda, Shin; Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2008-11-01

    The contribution of radiation from X-ray baggage scans at airports on dose formation in tooth samples was investigated by electron spin resonance (ESR) dosimetry and by glass dosimetry. This was considered important, because tooth samples from population around the Semipalatinsk Nuclear Test Site (SNTS), Kazakhstan, had been transported in the past to Hiroshima University for retrospective dose assessment of these residents. Enamel samples and glass dosimeters were therefore examined at check-in time at Kansai airport (Osaka, Japan), Dubai airport (Dubai, United Arab Emirates) and Domodedovo airport (Moscow, Russia). These airports are on the route from Kazakhstan to Japan. Three different potential locations of the samples were investigated: in pocket (without X-ray scans), in a small bag (with four X-ray scans) and in large luggage (with two X-ray scans). The doses obtained by glass and ESR dosimetry methods were cross-compared. As expected, doses from X-ray examinations measured by glass dosimetry were in the microGy range, well below the ESR detection limit and also below the doses measured in enamel samples from residents of the SNTS. PMID:18648837

  4. Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Koch, Nicholas C.; Newhauser, Wayne D.

    2010-02-01

    Proton beam radiotherapy is an effective and non-invasive treatment for uveal melanoma. Recent research efforts have focused on improving the dosimetric accuracy of treatment planning and overcoming the present limitation of relative analytical dose calculations. Monte Carlo algorithms have been shown to accurately predict dose per monitor unit (D/MU) values, but this has yet to be shown for analytical algorithms dedicated to ocular proton therapy, which are typically less computationally expensive than Monte Carlo algorithms. The objective of this study was to determine if an analytical method could predict absolute dose distributions and D/MU values for a variety of treatment fields like those used in ocular proton therapy. To accomplish this objective, we used a previously validated Monte Carlo model of an ocular nozzle to develop an analytical algorithm to predict three-dimensional distributions of D/MU values from pristine Bragg peaks and therapeutically useful spread-out Bragg peaks (SOBPs). Results demonstrated generally good agreement between the analytical and Monte Carlo absolute dose calculations. While agreement in the proximal region decreased for beams with less penetrating Bragg peaks compared with the open-beam condition, the difference was shown to be largely attributable to edge-scattered protons. A method for including this effect in any future analytical algorithm was proposed. Comparisons of D/MU values showed typical agreement to within 0.5%. We conclude that analytical algorithms can be employed to accurately predict absolute proton dose distributions delivered by an ocular nozzle.

  5. Calculation of the absorbed dose for the overexposed patients at the JCO criticality accident in Tokai-mura.

    PubMed

    Ishigure, N; Endo, A; Yamaguchi, Y; Kawachi, K

    2001-09-01

    The doses for the overexposed patients were estimated by the measurement result of specific activity of 24Na in blood. The present method is almost based on documents of the International Atomic Energy Agency (IAEA) and the Oak Ridge National Laboratory. The neutron energy spectrum obtained using the ANISN code (Multigroup One-Dimensional Discrete Ordinates Transport Code System with Anisotropic Scattering) was assumed. The values in ICRP Publication 74 were applied for the doses in each organ per unit neutron fluence. Gamma-ray dose was indirectly estimated based on (a) the result of environmental monitoring around the accident site and (b) a graph in IAEA manual, which gives the kerma ratio of neutrons and gamma-rays as a function of the critical volume or the atomic ratio of hydrogen to 235U. The estimated neutron doses were 5.4 Gy for patient A. 2.9 Gy for patient B and 0.81 Gy for patient C. The estimated gamma-ray doses were 8.5 or 13 Gy for patient A, 4.5 or 6.9 Gy for patient B, and 1.3 or 2.0 Gy for patient C. PMID:11791747

  6. Comparison of the calculated absorbed dose using the Cadplan™ treatment planning software and Tld-100 measurements in an Alderson-Rando phantom for a bronchogenic treatment

    SciTech Connect

    Gutiérrez Castillo, J. G.; Álvarez Romero, J. T. E-mail: fisarmandotorres@gmail.com Calderón, A. Torres E-mail: fisarmandotorres@gmail.com M, V. Tovar E-mail: fisarmandotorres@gmail.com

    2014-11-07

    To verify the accuracy of the absorbed doses D calculated by a TPS Cadplan for a bronchogenic treatment (in an Alderson-Rando phantom) are chosen ten points with the following D's and localizations. Point 1, posterior position on the left edge with 136.4 Gy. Points: 2, 3 and 4 in the left lung with 104.9, 104.3 and 105.8 Gy, respectively; points 5 and 6 at the mediastinum with 192.4 and 173.5 Gy; points 7, 8 and 9 in the right lung with 105.8, 104.2 and 104.7 Gy, and 10 at posterior position on right edge with 143.7 Gy. IAEA type capsules with TLD 100 powder are placed, planned and irradiated. The evaluation of the absorbed dose is carried out a curve of calibration for the LiF response (nC) {sup vs} {sup DW}, to several cavity theories. The traceability for the DW is obtained with a secondary standard calibrated at the NRC (Canada). The dosimetric properties for the materials considered are determined from the Hounsfield numbers reported by the TPS. The stopping power ratios are calculated for nominal spectrum to 6 MV photons. The percent variations among the planned and determined D in all the cases they are < ± 3%.

  7. Comparison of the calculated absorbed dose using the Cadplan™ treatment planning software and Tld-100 measurements in an Alderson-Rando phantom for a bronchogenic treatment

    NASA Astrophysics Data System (ADS)

    Gutiérrez Castillo, J. G.; Álvarez Romero, J. T.; Torres Calderón, A.; Tovar, M. V.

    2014-11-01

    To verify the accuracy of the absorbed doses D calculated by a TPS Cadplan for a bronchogenic treatment (in an Alderson-Rando phantom) are chosen ten points with the following D's and localizations. Point 1, posterior position on the left edge with 136.4 Gy. Points: 2, 3 and 4 in the left lung with 104.9, 104.3 and 105.8 Gy, respectively; points 5 and 6 at the mediastinum with 192.4 and 173.5 Gy; points 7, 8 and 9 in the right lung with 105.8, 104.2 and 104.7 Gy, and 10 at posterior position on right edge with 143.7 Gy. IAEA type capsules with TLD 100 powder are placed, planned and irradiated. The evaluation of the absorbed dose is carried out a curve of calibration for the LiF response (nC) vs DW, to several cavity theories. The traceability for the DW is obtained with a secondary standard calibrated at the NRC (Canada). The dosimetric properties for the materials considered are determined from the Hounsfield numbers reported by the TPS. The stopping power ratios are calculated for nominal spectrum to 6 MV photons. The percent variations among the planned and determined D in all the cases they are < ± 3%.

  8. Key comparison BIPM.RI(I)-K4 of the absorbed dose to water standards of the PTB, Germany and the BIPM in 60Co gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D. T.; Kapsch, R.-P.; Krauss, A.

    2016-01-01

    An indirect comparison has been made of the standards for absorbed dose to water in 60Co radiation of the Physikalisch-Technische Bundesanstalt, (PTB), Germany and of the Bureau International des Poids et Mesures (BIPM). The measurements at the BIPM were carried out in October 2015. The comparison result, based on the calibration coefficients for two transfer standards and evaluated as a ratio of the PTB and the BIPM standards for absorbed dose to water, is 0.9977 with a combined standard uncertainty of 3.8 × 10-3. The results are analysed and presented in terms of degrees of equivalence for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    PubMed Central

    De la Mora, Eugenio; Lovett, Janet E.; Blanford, Christopher F.; Garman, Elspeth F.; Valderrama, Brenda; Rudino-Pinera, Enrique

    2012-01-01

    X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O2. In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-­ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O2 reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account. PMID:22525754

  10. Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Pawlicki, T.; Jiang, S. B.; Li, J. S.; Deng, J.; Mok, E.; Kapur, A.; Xing, L.; Ma, L.; Boyer, A. L.

    2000-09-01

    The purpose of this work was to use Monte Carlo simulations to verify the accuracy of the dose distributions from a commercial treatment planning optimization system (Corvus, Nomos Corp., Sewickley, PA) for intensity-modulated radiotherapy (IMRT). A Monte Carlo treatment planning system has been implemented clinically to improve and verify the accuracy of radiotherapy dose calculations. Further modifications to the system were made to compute the dose in a patient for multiple fixed-gantry IMRT fields. The dose distributions in the experimental phantoms and in the patients were calculated and used to verify the optimized treatment plans generated by the Corvus system. The Monte Carlo calculated IMRT dose distributions agreed with the measurements to within 2% of the maximum dose for all the beam energies and field sizes for both the homogeneous and heterogeneous phantoms. The dose distributions predicted by the Corvus system, which employs a finite-size pencil beam (FSPB) algorithm, agreed with the Monte Carlo simulations and measurements to within 4% in a cylindrical water phantom with various hypothetical target shapes. Discrepancies of more than 5% (relative to the prescribed target dose) in the target region and over 20% in the critical structures were found in some IMRT patient calculations. The FSPB algorithm as implemented in the Corvus system is adequate for homogeneous phantoms (such as prostate) but may result in significant under- or over-estimation of the dose in some cases involving heterogeneities such as the air-tissue, lung-tissue and tissue-bone interfaces.

  11. Simultaneous optimization of dose distributions and fractionation schemes in particle radiotherapy

    SciTech Connect

    Unkelbach, Jan; Zeng, Chuan; Engelsman, Martijn

    2013-09-15

    Purpose: The paper considers the fractionation problem in intensity modulated proton therapy (IMPT). Conventionally, IMPT fields are optimized independently of the fractionation scheme. In this work, we discuss the simultaneous optimization of fractionation scheme and pencil beam intensities.Methods: This is performed by allowing for distinct pencil beam intensities in each fraction, which are optimized using objective and constraint functions based on biologically equivalent dose (BED). The paper presents a model that mimics an IMPT treatment with a single incident beam direction for which the optimal fractionation scheme can be determined despite the nonconvexity of the BED-based treatment planning problem.Results: For this model, it is shown that a small α/β ratio in the tumor gives rise to a hypofractionated treatment, whereas a large α/β ratio gives rise to hyperfractionation. It is further demonstrated that, for intermediate α/β ratios in the tumor, a nonuniform fractionation scheme emerges, in which it is optimal to deliver different dose distributions in subsequent fractions. The intuitive explanation for this phenomenon is as follows: By varying the dose distribution in the tumor between fractions, the same total BED can be achieved with a lower physical dose. If it is possible to achieve this dose variation in the tumor without varying the dose in the normal tissue (which would have an adverse effect), the reduction in physical dose may lead to a net reduction of the normal tissue BED. For proton therapy, this is indeed possible to some degree because the entrance dose is mostly independent of the range of the proton pencil beam.Conclusions: The paper provides conceptual insight into the interdependence of optimal fractionation schemes and the spatial optimization of dose distributions. It demonstrates the emergence of nonuniform fractionation schemes that arise from the standard BED model when IMPT fields and fractionation scheme are optimized

  12. Anatomy-Based Inverse Planning Simulated Annealing Optimization in High-Dose-Rate Prostate Brachytherapy: Significant Dosimetric Advantage Over Other Optimization Techniques

    SciTech Connect

    Jacob, Dayee Raben, Adam; Sarkar, Abhirup; Grimm, Jimm; Simpson, Larry

    2008-11-01

    Purpose: To perform an independent validation of an anatomy-based inverse planning simulated annealing (IPSA) algorithm in obtaining superior target coverage and reducing the dose to the organs at risk. Method and Materials: In a recent prostate high-dose-rate brachytherapy protocol study by the Radiation Therapy Oncology Group (0321), our institution treated 20 patients between June 1, 2005 and November 30, 2006. These patients had received a high-dose-rate boost dose of 19 Gy to the prostate, in addition to an external beam radiotherapy dose of 45 Gy with intensity-modulated radiotherapy. Three-dimensional dosimetry was obtained for the following optimization schemes in the Plato Brachytherapy Planning System, version 14.3.2, using the same dose constraints for all the patients treated during this period: anatomy-based IPSA optimization, geometric optimization, and dose point optimization. Dose-volume histograms were generated for the planning target volume and organs at risk for each optimization method, from which the volume receiving at least 75% of the dose (V{sub 75%}) for the rectum and bladder, volume receiving at least 125% of the dose (V{sub 125%}) for the urethra, and total volume receiving the reference dose (V{sub 100%}) and volume receiving 150% of the dose (V{sub 150%}) for the planning target volume were determined. The dose homogeneity index and conformal index for the planning target volume for each optimization technique were compared. Results: Despite suboptimal needle position in some implants, the IPSA algorithm was able to comply with the tight Radiation Therapy Oncology Group dose constraints for 90% of the patients in this study. In contrast, the compliance was only 30% for dose point optimization and only 5% for geometric optimization. Conclusions: Anatomy-based IPSA optimization proved to be the superior technique and also the fastest for reducing the dose to the organs at risk without compromising the target coverage.

  13. Three-Dimensional Dose Optimization for Noncoplanar Treatment Planning with Conformal Fields.

    NASA Astrophysics Data System (ADS)

    Ma, Ying-Chang L.

    1990-01-01

    Recent advances in imaging techniques, especially three dimensional reconstruction of CT images, have made precision tumor localization feasible. These imaging techniques along with developments in computer controlled radiation treatment machines have provided an important thrust in developing better techniques for cancer treatment. This often requires a complex noncoplanar beam arrangements and elaborate treatment planning, which, unfortunately, are time consuming, costly and dependent on operator expertise and experience. A reliable operator-independent dose optimization tool is therefore desirable, especially for 3D treatment planning. In this dissertation, several approaches (linear programming, quadratic programming, and direct search methods) of computer optimization using various criteria including least sire fitting on the 90% isodose to target periphery, dose uniformity, and integral dose are presented. All of these methods are subject to restrictions on the upper limit of the dose to critical organs. In the quadratic programming approach, Kuhn-Tucker theory was employed to convert the quadratic problem into one which permits application of the very powerful, revised simplex method. Several examples are used to analyze the effectiveness of these dose optimization approaches. The studies show that the quadratic programming approach with the criteria of least square fitting and critical organ constraints is superior in efficiency for dose optimization in 3D treatment planning, particularly for cases with a large number of beams. Use of least square fitting allows one to deduce optimized plans for irregularly shaped targets by employing a multi-isocentric technique. Our studies also illustrate the advantages of using irregular conformal fields, optimized beam energy, and noncoplanar beam arrangements in contrast to the conventional treatment which uses a symmetrical rectangular collimator, fixed beam energy, and coplanar beam arrangements. Optimized plans can

  14. MO-PIS-Exhibit Hall-01: Imaging: CT Dose Optimization Technologies I

    SciTech Connect

    Denison, K; Smith, S

    2014-06-15

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Dose Optimization Capabilities of GE Computed Tomography Scanners Presentation Time: 11:15 – 11:45 AM GE Healthcare is dedicated to the delivery of high quality clinical images through the development of technologies, which optimize the application of ionizing radiation. In computed tomography, dose management solutions fall into four categories: employs projection data and statistical modeling to decrease noise in the reconstructed image - creating an opportunity for mA reduction in the acquisition of diagnostic images. Veo represents true Model Based Iterative Reconstruction (MBiR). Using high-level algorithms in tandem with advanced computing power, Veo enables lower pixel noise standard deviation and improved spatial resolution within a single image. Advanced Adaptive Image Filters allow for maintenance of spatial resolution while reducing image noise. Examples of adaptive image space filters include Neuro 3-D filters and Cardiac Noise Reduction Filters. AutomA adjusts mA along the z-axis and is the CT equivalent of auto exposure control in conventional x-ray systems. Dynamic Z-axis Tracking offers an additional opportunity for dose reduction in helical acquisitions while SmartTrack Z-axis Tracking serves to ensure beam, collimator and detector alignment during tube rotation. SmartmA provides angular mA modulation. ECG Helical Modulation reduces mA during the systolic phase of the heart cycle. SmartBeam optimization uses bowtie beam-shaping hardware and software to filter off-axis x-rays - minimizing dose and reducing x-ray scatter. The

  15. An ICRP-based Chinese adult male voxel model and its absorbed dose for idealized photon exposures--the skeleton.

    PubMed

    Liu, Liye; Zeng, Zhi; Li, Junli; Zhang, Binquan; Qiu, Rui; Ma, Jizeng

    2009-11-01

    A site-specific skeleton voxel model for a Chinese adult male was constructed in this paper upon a previous Chinese individual voxel model. The whole skeleton was divided into 19 site-specific bones and bone groups; the mass of various skeleton tissues at each bone site, e.g. red bone marrow, was specified according to Asian reference data and the distribution data from ICRP Publication 70. The resultant voxel model (called CAM) has a resolution of 1.741 mm x 1.741 mm in plane, and the total bone mass is 8397.8 g which is almost equal to the Asian reference value. Dose coefficients for the red bone marrow and bone surface in CAM were calculated, and then compared with those from Rex, CMP and ICRP 74. It shows that the dose to RBM in Rex is generally 12% lower than that to CAM in low-energy range (30-150 keV) for AP, LAT, ROT and ISO geometries. It is also found that the RBM dose from mathematical models, i.e. CMP and ICRP 74, is underestimated by -30% in AP geometry and overestimated by 30% in PA geometry for low-energy photons. Meanwhile, the bone surface dose in the low-energy range is overestimated by 150% and 75% in CMP and ICRP 74, respectively, if compared with that from CAM. PMID:19841519

  16. An ICRP-based Chinese adult male voxel model and its absorbed dose for idealized photon exposures—the skeleton

    NASA Astrophysics Data System (ADS)

    Liu, Liye; Zeng, Zhi; Li, Junli; Zhang, Binquan; Qiu, Rui; Ma, Jizeng

    2009-11-01

    A site-specific skeleton voxel model for a Chinese adult male was constructed in this paper upon a previous Chinese individual voxel model. The whole skeleton was divided into 19 site-specific bones and bone groups; the mass of various skeleton tissues at each bone site, e.g. red bone marrow, was specified according to Asian reference data and the distribution data from ICRP Publication 70. The resultant voxel model (called CAM) has a resolution of 1.741 mm × 1.741 mm in plane, and the total bone mass is 8397.8 g which is almost equal to the Asian reference value. Dose coefficients for the red bone marrow and bone surface in CAM were calculated, and then compared with those from Rex, CMP and ICRP 74. It shows that the dose to RBM in Rex is generally 12% lower than that to CAM in low-energy range (30-150 keV) for AP, LAT, ROT and ISO geometries. It is also found that the RBM dose from mathematical models, i.e. CMP and ICRP 74, is underestimated by -30% in AP geometry and overestimated by 30% in PA geometry for low-energy photons. Meanwhile, the bone surface dose in the low-energy range is overestimated by 150% and 75% in CMP and ICRP 74, respectively, if compared with that from CAM.

  17. Population Pharmacokinetics of Gentamicin and Dosing Optimization for Infants

    PubMed Central

    Rueda-Naharro, Aída; Peña-Cabia, Silvia; García, Benito; Romano-Moreno, Silvia; Barcia, Emilia

    2014-01-01

    The aim of this study was to characterize and validate the population pharmacokinetics of gentamicin in infants and to determine the influences of clinically relevant covariates to explain the inter- and intraindividual variabilities associated with this drug. Infants receiving intravenous gentamicin and with routine therapeutic drug monitoring were consecutively enrolled in the study. Plasma concentration and time data were retrospectively collected from 208 infants (1 to 24 months old) of the Hospital Universitario Severo Ochoa (Spain), of whom 44% were males (mean age [± standard deviation], 5.8 ± 4.8 months; mean body weight, 6.4 ± 2.2 kg). Data analysis was performed with NONMEM 7.2. One- and two-compartment open models were analyzed to estimate the gentamicin population parameters and the influences of several covariates. External validation was carried out in another population of 55 infants. The behavior of gentamicin in infants exhibits two-compartment pharmacokinetics, with total body weight being the covariate that mainly influences central volume (Vc) and clearance (CL); this parameter was also related to creatinine clearance. Both parameters are age related and different from those reported for neonatal populations. On the basis of clinical presentation and diagnosis, a once-daily dosage regimen of 7 mg/kg of body weight every 24 h is proposed for intravenous gentamicin, followed by therapeutic drug monitoring in order to avoid toxicity and ensure efficacy with minimal blood sampling. Gentamicin pharmacokinetics and disposition were accurately characterized in this pediatric population (infants), with the parameters obtained being different from those reported for neonates and children. These differences should be considered in the dosing and therapeutic monitoring of this antibiotic. PMID:25385111

  18. Backscattering measuring system for optimization of intravenous laser irradiation dose

    NASA Astrophysics Data System (ADS)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  19. Whole-body biodistribution, radiation absorbed dose and brain SPECT imaging with iodine-123-{beta}-CIT in healthy human subjects

    SciTech Connect

    Seibyl, J.P.; Wallace, E.; Smith, E.O.; Stabin, M.; Baldwin, R.M.; Zoghbi, S.; Zea-Ponce, Y.; Gao, Y.; Zhang, W.Y.; Neumeyer, J.L. ||

    1994-05-01

    SPECT imaging with {sup 123}I-labeled methyl 3{beta}-(4-iodophenyl)tropane-2{beta}-carboxylate ([{sup 123}I]{beta}-CIT) in nonhuman primates has shown brain striatal activity, which primarily reflects binding to the dopamine transporter. The biodistribution and calculated radiation-absorbed doses of [{sup 123}]{beta}-CIT administered to eight healthy subjects were measured with attention to the accurate determination of organ time-activity data. Whole-body transmission images were obtained with a scanning line source for attenuation correction of the emission images. Following administration of 92.5 {+-} 22.2 MBq (2.5 {+-} 0.6 mCi) of [{sup 123}I]{beta}-CIT, subjects were imaged with a whole-body imager every 30 min for 3 hr, every 60 min for the next 3 hr and at 12, 24 and 38 hr postinjection. Regional body conjugate counts were converted to microcuries of activity, with a calibration factor determined in a separate experiment using a distributed source of {sup 123}I. The peak brain uptake represented 14% of the injected dose, with 2% of the activity approximately overlying the striatal region. Highest radiation-absorbed doses were to the lung (0.1 mGy/MBq, 0.38 rads/mCi), liver (0.087 mGy/MBq, 0.32 rads/mCi) and lower large intestine (0.053 mGy/MBq, 0.20 rads/mCi). Iodine-123-{beta}-CIT is a promising SPECT agent for imaging of the dopamine transporter in humans with favorable dosimetry and high brain uptake. 18 refs., 4 figs., 5 tabs.

  20. TU-PIS-Exhibit Hall-01: CT Dose Optimization Technologies II

    SciTech Connect

    Driesser, I; Angel, E

    2014-06-15

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Siemens‘ Commitment to the Right Dose in Computed Tomography Presentation Time: 11:15 - 11:45 AM Providing sustainable clinical results at highest patient safety: This is the challenge in medical imaging. Especially for Computed Tomography this means applying not simply the lowest, but the right dose for sound diagnostic imaging. Consequently, Siemens is committed to deliver the right dose in CT. In order to reduce radiation to the right dose, the first step is to provide the right dose technology. Through decades of research and development in CT imaging, Siemens CT has constantly introduced new ideas leading to a comprehensive portfolio of unique CARE technologies to deliver the right dose. For example automated kV adjustment based on patient size and the clinical question with CARE kV and three generations of iterative reconstruction. Based on the right dose technology, the next step is to actually scan at the right dose. For this, it is key to know the right dose targets for every examination. Siemens continuously involves CT experts to push developments further and outline how users can best adapt their procedures to the right dose. For users to know whether they met the right dose targets, it is therefore important to understand and monitor the actual absolute dose values. All scanners are delivered with defined default protocols which automatically use the available right dose technologies. Finally, to deliver the right dose not just in singular cases, but ideally to patients everywhere, organizations need then to manage dose across

  1. Cancer risk assessment: Optimizing human health through linear dose-response models.

    PubMed

    Calabrese, Edward J; Shamoun, Dima Yazji; Hanekamp, Jaap C

    2015-07-01

    This paper proposes that generic cancer risk assessments be based on the integration of the Linear Non-Threshold (LNT) and hormetic dose-responses since optimal hormetic beneficial responses are estimated to occur at the dose associated with a 10(-4) risk level based on the use of a LNT model as applied to animal cancer studies. The adoption of the 10(-4) risk estimate provides a theoretical and practical integration of two competing risk assessment models whose predictions cannot be validated in human population studies or with standard chronic animal bioassay data. This model-integration reveals both substantial protection of the population from cancer effects (i.e. functional utility of the LNT model) while offering the possibility of significant reductions in cancer incidence should the hormetic dose-response model predictions be correct. The dose yielding the 10(-4) cancer risk therefore yields the optimized toxicologically based "regulatory sweet spot". PMID:25916915

  2. PHITS simulations of the Protective curtain experiment onboard the Service module of ISS: Comparison with absorbed doses measured with TLDs

    NASA Astrophysics Data System (ADS)

    Ploc, Ondřej; Sihver, Lembit; Kartashov, Dmitry; Shurshakov, Vyacheslav; Tolochek, Raisa

    2013-12-01

    "Protective curtain" was the physical experiment onboard the International Space Station (ISS) aimed on radiation measurement of the dose - reducing effect of the additional shielding made of hygienic water-soaked wipes and towels placed on the wall in the crew cabin of the Service module Zvezda. The measurements were performed with 12 detector packages composed of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs) placed at the Protective curtain, so that they created pairs of shielded and unshielded detectors.

  3. Target point correction optimized based on the dose distribution of each fraction in daily IGRT

    NASA Astrophysics Data System (ADS)

    Stoll, Markus; Giske, Kristina; Stoiber, Eva M.; Schwarz, Michael; Bendl, Rolf

    2014-03-01

    Purpose: To use daily re-calculated dose distributions for optimization of target point corrections (TPCs) in image guided radiation therapy (IGRT). This aims to adapt fractioned intensity modulated radiation therapy (IMRT) to changes in the dose distribution induced by anatomical changes. Methods: Daily control images from an in-room on-rail spiral CT-Scanner of three head-and-neck cancer patients were analyzed. The dose distribution was re-calculated on each control CT after an initial TPC, found by a rigid image registration method. The clinical target volumes (CTVs) were transformed from the planning CT to the rigidly aligned control CTs using a deformable image registration method. If at least 95% of each transformed CTV was covered by the initially planned D95 value, the TPC was considered acceptable. Otherwise the TPC was iteratively altered to maximize the dose coverage of the CTVs. Results: In 14 (out of 59) fractions the criterion was already fulfilled after the initial TPC. In 10 fractions the TPC can be optimized to fulfill the coverage criterion. In 31 fractions the coverage can be increased but the criterion is not fulfilled. In another 4 fractions the coverage cannot be increased by the TPC optimization. Conclusions: The dose coverage criterion allows selection of patients who would benefit from replanning. Using the criterion to include daily re-calculated dose distributions in the TPC reduces the replanning rate in the analysed three patients from 76% to 59% compared to the rigid image registration TPC.

  4. Analytic characterization of linear accelerator radiosurgery dose distributions for fast optimization

    NASA Astrophysics Data System (ADS)

    Meeks, Sanford L.; Bova, Frank J.; Buatti, John M.; Friedman, William A.; Eyster, Brian; Kendrick, Lance A.

    1999-11-01

    Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations.

  5. Monte Carlo estimation of radiation dose in organs of female and male adult phantoms due to FDG-F18 absorbed in the lungs

    NASA Astrophysics Data System (ADS)

    Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.

    2014-03-01

    The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.

  6. Monte Carlo evaluation of the relationship between absorbed dose and contrast-to-noise ratio in coherent scatter breast CT

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Popescu, L. M.; Badal, A.

    2015-03-01

    The objective of this work was to evaluate the advantages and shortcomings associated with Coherent Scatter Computed Tomography (CSCT) systems for breast imaging and study possible alternative configurations. The relationship between dose in a breast phantom and a simple surrogate of image quality in pencil-beam and fan-beam CSCT geometries was evaluated via Monte Carlo simulation, and an improved pencil-beam setup was proposed for faster CSCT data acquisition. CSCT projection datasets of a simple breast phantom have been simulated using a new version of the MC-GPU code that includes an improved model of x-ray coherent scattering using experimentally measured molecular interference functions. The breast phantom was composed of an 8 cm diameter cylinder of 50/50 glandular/adipose material and nine rods with different diameters of cancerous, adipose and glandular tissues. The system performance has been assessed in terms of the contrast-to-noise ratio (CNR) in multiple regions of interest within the reconstructed images, for a range of exposure levels. The enhanced pencil-beam setup consisted of multiplexed pencil beams and specific post-processing of the projection data to calculate the scatter intensity coming from each beam separately. At reconstruction spatial resolution of 1×1×1 mm3 and from 1 to 10 mGy of received breast dose, fan-beam geometry showed higher statistical noise and lower CNR than pencil-beam geometry. Conventional CT acquisition had the highest CNR per dose. However, the CNR figure of merit did not combine yet all the information available at different scattering angles in the CSCT, which has potential for increased discrimination of materials with similar attenuation properties. Preliminary evaluation of the multiplexed pencil-beam geometry showed that the scattering profiles simulated with the new approach are similar to those of the single pencil-beam geometry. Conclusion: It has been shown that the GPU-accelerated MC-GPU code is a practical

  7. Parsimonious Determination of the Optimal Infectious Dose of a Pathogen for Nonhuman Primate Models

    PubMed Central

    Roederer, Mario

    2015-01-01

    The nonhuman primate (NHP) model is often the best experimental model for testing interventions designed to block infection by human pathogens, such as HIV, tuberculosis, and malaria. A physiological model may require the use of a limiting dose of the infectious agent, where only a fraction of animals become infected upon any given challenge. Determining the challenge dose of the pathogen in such experiments is critical to the success of the experiment: using too-high or too-low a challenge dose may lead to false negative results and an excessive use of animals. Here I define an optimized protocol for defining the dose of pathogen that infects 50% of the time (AID50); other challenge doses, e.g. AID80, can be easily calculated from the same data. This protocol minimizes the number of animals, as well as resources and procedures, while providing an estimate of the AID50 within 1.5-fold of the true value. PMID:26285041

  8. Dose optimization for the MRI-accelerator: IMRT in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Raaijmakers, A. J. E.; Hårdemark, B.; Raaymakers, B. W.; Raaijmakers, C. P. J.; Lagendijk, J. J. W.

    2007-12-01

    A combined system of a 6 MV linear accelerator and a 1.5 T MRI scanner is currently being developed. In this system, the patient will be irradiated in the presence of a 1.5 T magnetic field. This causes a strong dose increase at tissue-air interfaces. Around air cavities in the patient, these effects may become problematic. Homogeneous dose distributions can be obtained around regularly shaped symmetrical cavities using opposing beams. However, for more irregularly shaped cavities this approach may not be sufficient. This study will investigate whether IMRT can be used to cope with magnetic field dose effects, in particular for target volumes adjacent to irregularly shaped air cavities. Therefore, an inverse treatment planning approach has been designed based on pre-calculated beamlet dose distribution kernels. Using this approach, optimized dose distributions were calculated for B = 1.5 T and for B = 0 T. Investigated target sites include a prostate cancer, a laryngeal cancer and an oropharyngeal cancer. Differences in the dose distribution between B = 0 and 1.5 T were minimal; only the skin dose increased for B = 1.5 T. Homogeneous dose distributions were obtained for target structures adjacent to air cavities without the use of opposing beams. These results show that a 1.5 T magnetic field does not compromise the ability to achieve desired dose distributions with IMRT.

  9. Calculation of absorbed dose around a facility for disposing of low activity natural radioactive waste (C3-dump).

    PubMed

    Jansen, J T M; Zoetelief, J

    2005-01-01

    A C3-dump is a facility for disposing of low activity natural radioactive waste containing the uranium series 238U, the thorium series 232Th and 40K. Only the external radiation owing to gamma rays, X-rays and annihilation photons is considered in this study. For two situations--the semi-infinite slab and the tourist geometry--the conversion coefficients from specific activity to air kerma rate at 1 m above the relevant level are calculated. In the first situation the waste material is in contact with the air but in the tourist geometry it is covered with a 1.35 m thick layer. For the calculations, the Monte Carlo radiation transport code MCNP is used. The yield and photon energy for each radionuclide are according to the database of Oak Ridge National Laboratory. For the tourist situation, the depth-dose distribution through the covering layer is calculated and extrapolated to determine the exit dose. PMID:16604673

  10. Dosimetric optimization of a conical breast brachytherapy applicator for improved skin dose sparing

    SciTech Connect

    Yang Yun; Rivard, Mark J.

    2010-11-15

    Purpose: Both the AccuBoost D-shaped and round applicators have been dosimetrically characterized and clinically used to treat patients with breast cancer. While the round applicators provide conformal dose coverage, under certain clinical circumstances the breast skin dose may be higher than preferred. The purpose of this study was to modify the round applicators to minimize skin dose while not substantially affecting dose uniformity within the target volume and reducing the treatment time. Methods: In order to irradiate the intended volume while sparing critical structures such as the skin, the current round applicator design has been augmented through the addition of an internal truncated cone (i.e., frustum) shield. Monte Carlo methods and clinical constraints were used to design the optimal cone applicator. With the cone applicator now defined as the entire assembly including the surrounding tungsten-alloy shell holding the HDR {sup 192}Ir source catheter, the applicator height was reduced to diminish the treatment time while minimizing skin dose. Monte Carlo simulation results were validated using both radiochromic film and ionization chamber measurements based on established techniques. Results: The optimal cone applicators diminished the maximum skin dose by 15%-32% (based on the applicator diameter and breast separation) with the tumor dose reduced by less than 3% for a constant exposure time. Furthermore, reduction in applicator height diminished the treatment time by up to 30%. Radiochromic film and ionization chamber dosimetric results in phantom agreed with Monte Carlo simulation results typically within 3%. Larger differences were outside the treatment volume in low dose regions or associated with differences between the measurement and Monte Carlo simulation environments. Conclusions: A new radiotherapy treatment device was developed and dosimetrically characterized. This set of applicators significantly reduces the skin dose and treatment time while

  11. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints

    NASA Astrophysics Data System (ADS)

    Llacer, Jorge; Deasy, Joseph O.; Bortfeld, Thomas R.; Solberg, Timothy D.; Promberger, Claus

    2003-01-01

    This paper reports on the analysis of intensity modulated radiation treatment optimization problems in the presence of non-convex feasible parameter spaces caused by the specification of dose-volume constraints for the organs-at-risk (OARs). The main aim was to determine whether the presence of those non-convex spaces affects the optimization of clinical cases in any significant way. This was done in two phases: (1) Using a carefully designed two-dimensional mathematical phantom that exhibits two controllable minima and with randomly initialized beamlet weights, we developed a methodology for exploring the nature of the convergence characteristics of quadratic cost function optimizations (deterministic or stochastic). The methodology is based on observing the statistical behaviour of the residual cost at the end of optimizations in which the stopping criterion is progressively more demanding and carrying out those optimizations to very small error changes per iteration. (2) Seven clinical cases were then analysed with dose-volume constraints that are stronger than originally used in the clinic. The clinical cases are two prostate cases differently posed, a meningioma case, two head-and-neck cases, a spleen case and a spine case. Of the 14 different sets of optimizations (with and without the specification of maximum doses allowed for the OARs), 12 fail to show any effect due to the existence of non-convex feasible spaces. The remaining two sets of optimizations show evidence of multiple minima in the solutions, but those minima are very close to each other in cost and the resulting treatment plans are practically identical, as measured by the quality of the dose-volume histograms (DVHs). We discuss the differences between fluence maps resulting from those similar treatment plans. We provide a possible reason for the observed results and conclude that, although the study is necessarily limited, the annealing characteristics of a simulated annealing method may not be

  12. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints.

    PubMed

    Llacer, Jorge; Deasy, Joseph O; Portfeld, Thomas R; Solberg, Timothy D; Promberger, Claus

    2003-01-21

    This paper reports on the analysis of intensity modulated radiation treatment optimization problems in the presence of non-convex feasible parameter spaces caused by the specification of dose-volume constraints for the organs-at-risk (OARs). The main aim was to determine whether the presence of those non-convex spaces affects the optimization of clinical cases in any significant way. This was done in two phases: (1) Using a carefully designed two-dimensional mathematical phantom that exhibits two controllable minima and with randomly initialized beamlet weights, we developed a methodology for exploring the nature of the convergence characteristics of quadratic cost function optimizations (deterministic or stochastic). The methodology is based on observing the statistical behaviour of the residual cost at the end of optimizations in which the stopping criterion is progressively more demanding and carrying out those optimizations to very small error changes per iteration. (2) Seven clinical cases were then analysed with dose-volume constraints that are stronger than originally used in the clinic. The clinical cases are two prostate cases differently posed, a meningioma case, two head-and-neck cases, a spleen case and a spine case. Of the 14 different sets of optimizations (with and without the specification of maximum doses allowed for the OARs), 12 fail to show any effect due to the existence of non-convex feasible spaces. The remaining two sets of optimizations show evidence of multiple minima in the solutions, but those minima are very close to each other in cost and the resulting treatment plans are practically identical, as measured by the quality of the dose-volume histograms (DVHs). We discuss the differences between fluence maps resulting from those similar treatment plans. We provide a possible reason for the observed results and conclude that, although the study is necessarily limited, the annealing characteristics of a simulated annealing method may not be

  13. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    SciTech Connect

    De la Mora, Eugenio; Lovett, Janet E.; Blanford, Christopher F.; Garman, Elspeth F.; Valderrama, Brenda; Rudino-Pinera, Enrique

    2012-05-01

    Radiation-induced reduction, radiolysis of copper sites and the effect of pH value together with the concomitant geometrical distortions of the active centres were analysed in several fungal (C. gallica) laccase structures collected at cryotemperature. This study emphasizes the importance of careful interpretation when the crystallographic structure of a metalloprotein is described. X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O{sub 2}. In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O{sub 2} reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.

  14. A novel parameter, cell-cycle progression index, for radiation dose absorbed estimation in the premature chromosome condensation assay.

    PubMed

    Miura, Tomisato; Nakata, Akifumi; Kasai, Kosuke; Nakano, Manabu; Abe, Yu; Tsushima, Eiki; Ossetrova, Natalia I; Yoshida, Mitsuaki A; Blakely, William F

    2014-06-01

    The calyculin A-induced premature chromosome condensation (PCC) assay is a simple and useful method for assessing the cell-cycle distribution in cells, since calyculin A induces chromosome condensation in various phases of the cell cycle. In this study, a novel parameter, the cell-cycle progression index (CPI), in the PCC assay was validated as a novel biomarker for biodosimetry. Peripheral blood was drawn from healthy donors after informed consent was obtained. CPI was investigated using a human peripheral blood lymphocyte (PBL) ex vivo irradiation ((60)Co-gamma rays: ∼0.6 Gy min(-1), or X ray: 1.0 Gy min(-1); 0-10 Gy) model. The calyculin A-induced PCC assay was performed for chromosome preparation. PCC cells were divided into the following five categories according to cell-cycle stage: non-PCC, G1-PCC, S-PCC, G2/M-PCC and M/A-PCC cells. CPI was calculated as the ratio of G2/M-PCC cells to G1-PCC cells. The PCC-stage distribution varied markedly with irradiation doses. The G1-PCC cell fraction was significantly reduced, and the G2/M-PCC cell fraction increased, in 10-Gy-irradiated PBL after 48 h of culture. CPI levels were fitted to an exponential dose-response curve with gamma-ray irradiation [y = 0.6729 + 0.3934 exp(0.5685D), r = 1.0000, p < 0.0001] and X-ray irradiation [y = -0.3743 + 0.9744 exp(0.3321D), r = 0.9999, p < 0.0001]. There were no significant individual (p = 0.853) or gender effects (p = 0.951) on the CPI in the human peripheral blood ex vivo irradiation model. Furthermore, CPI measurements are rapid (< 15 min per case). These results suggest that the CPI is a useful screening tool for the assessment of radiation doses received ranging from 0 to 10 Gy in radiation exposure early after a radiation event, especially after a mass-casualty radiological incident. PMID:24743756

  15. Translating bed total body irradiation lung shielding and dose optimization using asymmetric MLC apertures.

    PubMed

    Ahmed, Shahbaz; Brown, Derek; Ahmed, Saad B S; Kakakhel, Muhammad B; Muhammad, Wazir; Hussain, Amjad

    2016-01-01

    A revised translating bed total body irradiation (TBI) technique is developed for shielding organs at risk (lungs) to tolerance dose limits, and optimizing dose distribution in three dimensions (3D) using an asymmetrically-adjusted, dynamic multileaf collimator. We present a dosimetric comparison of this technique with a previously developed symmetric MLC-based TBI technique. An anthropomor-phic RANDO phantom is CT scanned with 3 mm slice thickness. Radiological depths (RD) are calculated on individual CT slices along the divergent ray lines. Asymmetric MLC apertures are defined every 9 mm over the phantom length in the craniocaudal direction. Individual asymmetric MLC leaf positions are optimized based on RD values of all slices for uniform dose distributions. Dose calculations are performed in the Eclipse treatment planning system over these optimized MLC apertures. Dose uniformity along midline of the RANDO phantom is within the confidence limit (CL) of 2.1% (with a confidence probability p = 0.065). The issue of over- and underdose at the interfaces that is observed when symmetric MLC apertures are used is reduced from more than ± 4% to less than ± 1.5% with asymmetric MLC apertures. Lungs are shielded by 20%, 30%, and 40% of the prescribed dose by adjusting the MLC apertures. Dose-volume histogram analysis confirms that the revised technique provides effective lung shielding, as well as a homogeneous dose coverage to the whole body. The asymmetric technique also reduces hot and cold spots at lung-tissue interfaces compared to previous symmetric MLC-based TBI technique. MLC-based shielding of OARs eliminates the need to fabricate and setup cumbersome patient-specific physical blocks. PMID:27074477

  16. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern.

    PubMed

    Borot de Battisti, M; Maenhout, M; Denis de Senneville, B; Hautvast, G; Binnekamp, D; Lagendijk, J J W; van Vulpen, M; Moerland, M A

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm(3)to 23.3 cm(3)) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions. PMID:26378657

  17. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    NASA Astrophysics Data System (ADS)

    Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.

  18. Impact of using linear optimization models in dose planning for HDR brachytherapy

    SciTech Connect

    Holm, Aasa; Larsson, Torbjoern; Carlsson Tedgren, Aasa

    2012-02-15

    Purpose: Dose plans generated with optimization models hitherto used in high-dose-rate (HDR) brachytherapy have shown a tendency to yield longer dwell times than manually optimized plans. Concern has been raised for the corresponding undesired hot spots, and various methods to mitigate these have been developed. The hypotheses upon this work is based are (a) that one cause for the long dwell times is the use of objective functions comprising simple linear penalties and (b) that alternative penalties, as these are piecewise linear, would lead to reduced length of individual dwell times. Methods: The characteristics of the linear penalties and the piecewise linear penalties are analyzed mathematically. Experimental comparisons between the two types of penalties are carried out retrospectively for a set of prostate cancer patients. Results: When the two types of penalties are compared, significant changes can be seen in the dwell times, while most dose-volume parameters do not differ significantly. On average, total dwell times were reduced by 4.2%, with a reduction of maximum dwell times by 25%, when the alternative penalties were used. Conclusions: The use of linear penalties in optimization models for HDR brachytherapy is one cause for the undesired long dwell times that arise in mathematically optimized plans. By introducing alternative penalties, a significant reduction in dwell times can be achieved for HDR brachytherapy dose plans. Although various measures for mitigating the long dwell times are already available, the observation that linear penalties contribute to their appearance is of fundamental interest.

  19. The impact of different dose response parameters on biologically optimized IMRT in breast cancer

    NASA Astrophysics Data System (ADS)

    Costa Ferreira, Brigida; Mavroidis, Panayiotis; Adamus-Górka, Magdalena; Svensson, Roger; Lind, Bengt K.

    2008-05-01

    The full potential of biologically optimized radiation therapy can only be maximized with the prediction of individual patient radiosensitivity prior to treatment. Unfortunately, the available biological parameters, derived from clinical trials, reflect an average radiosensitivity of the examined populations. In the present study, a breast cancer patient of stage I II with positive lymph nodes was chosen in order to analyse the effect of the variation of individual radiosensitivity on the optimal dose distribution. Thus, deviations from the average biological parameters, describing tumour, heart and lung response, were introduced covering the range of patient radiosensitivity reported in the literature. Two treatment configurations of three and seven biologically optimized intensity-modulated beams were employed. The different dose distributions were analysed using biological and physical parameters such as the complication-free tumour control probability (P+), the biologically effective uniform dose (\\bar{\\bar{D}} ), dose volume histograms, mean doses, standard deviations, maximum and minimum doses. In the three-beam plan, the difference in P+ between the optimal dose distribution (when the individual patient radiosensitivity is known) and the reference dose distribution, which is optimal for the average patient biology, ranges up to 13.9% when varying the radiosensitivity of the target volume, up to 0.9% when varying the radiosensitivity of the heart and up to 1.3% when varying the radiosensitivity of the lung. Similarly, in the seven-beam plan, the differences in P+ are up to 13.1% for the target, up to 1.6% for the heart and up to 0.9% for the left lung. When the radiosensitivity of the most important tissues in breast cancer radiation therapy was simultaneously changed, the maximum gain in outcome was as high as 7.7%. The impact of the dose response uncertainties on the treatment outcome was clinically insignificant for the majority of the simulated patients

  20. Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies

    NASA Astrophysics Data System (ADS)

    Jeon, P.-H.; Lee, C.-L.; Kim, D.-H.; Lee, Y.-J.; Jeon, S.-S.; Kim, H.-J.

    2014-03-01

    Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose

  1. Fluence-to-Absorbed Dose Conversion Coefficients for Use in Radiological Protection of Embryo and Foetus Against External Exposure to Muons from 20MeV to 50GeV

    NASA Astrophysics Data System (ADS)

    Chen, Jing

    2008-08-01

    This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients are yet unknown, the results presented here fill a data gap.

  2. Fluence-to-Absorbed Dose Conversion Coefficients for Use in Radiological Protection of Embryo and Foetus Against External Exposure to Muons from 20MeV to 50GeV

    SciTech Connect

    Chen Jing

    2008-08-07

    This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients are yet unknown, the results presented here fill a data gap.

  3. The biodistribution and dosimetry of {sup 117m}Sn DTPA with special emphasis on active marrow absorbed doses

    SciTech Connect

    Stubbs, J.; Atkins, H.

    1999-01-01

    {sup 117m}Sn(4+) DTPA is a new radiopharmaceutical for the palliation of pain associated with metastatic bone cancer. Recently, the Phase 2 clinical trials involving 47 patients were completed. These patients received administered activities in the range 6.7--10.6 MBq/kg of body mass. Frequent collections of urine were acquired over the first several hours postadministration and daily cumulative collections were obtained for the next 4--10 days. Anterior/posterior gamma camera images were obtained frequently over the initial 10 days. Radiation dose estimates were calculated for 8 of these patients. Each patient`s biodistribution data were mathematically simulated using a multicompartmental model. The model consisted of the following compartments: central, bone, kidney, other tissues, and cumulative urine. The measured cumulative urine data were used as references for the cumulative urine excretion compartment. The total-body compartment (sum of the bone surfaces, central, kidney, and other tissues compartments) was reference to all activity not excreted in the urine.

  4. Generation of a novel phase-space-based cylindrical dose kernel for IMRT optimization

    SciTech Connect

    Zhong Hualiang; Chetty, Indrin J.

    2012-05-15

    Purpose: Improving dose calculation accuracy is crucial in intensity-modulated radiation therapy (IMRT). We have developed a method for generating a phase-space-based dose kernel for IMRT planning of lung cancer patients. Methods: Particle transport in the linear accelerator treatment head of a 21EX, 6 MV photon beam (Varian Medical Systems, Palo Alto, CA) was simulated using the EGSnrc/BEAMnrc code system. The phase space information was recorded under the secondary jaws. Each particle in the phase space file was associated with a beamlet whose index was calculated and saved in the particle's LATCH variable. The DOSXYZnrc code was modified to accumulate the energy deposited by each particle based on its beamlet index. Furthermore, the central axis of each beamlet was calculated from the orientation of all the particles in this beamlet. A cylinder was then defined around the central axis so that only the energy deposited within the cylinder was counted. A look-up table was established for each cylinder during the tallying process. The efficiency and accuracy of the cylindrical beamlet energy deposition approach was evaluated using a treatment plan developed on a simulated lung phantom. Results: Profile and percentage depth doses computed in a water phantom for an open, square field size were within 1.5% of measurements. Dose optimized with the cylindrical dose kernel was found to be within 0.6% of that computed with the nontruncated 3D kernel. The cylindrical truncation reduced optimization time by approximately 80%. Conclusions: A method for generating a phase-space-based dose kernel, using a truncated cylinder for scoring dose, in beamlet-based optimization of lung treatment planning was developed and found to be in good agreement with the standard, nontruncated scoring approach. Compared to previous techniques, our method significantly reduces computational time and memory requirements, which may be useful for Monte-Carlo-based 4D IMRT or IMAT treatment planning.

  5. High-dose simultaneously integrated breast boost using intensity-modulated radiotherapy and inverse optimization

    SciTech Connect

    Hurkmans, Coen W. . E-mail: coen.hurkmans@cze.nl; Meijer, Gert J.; Vliet-Vroegindeweij, Corine van; Cassee, Jorien

    2006-11-01

    Purpose: Recently a Phase III randomized trial has started comparing a boost of 16 Gy as part of whole-breast irradiation to a high boost of 26 Gy in young women. Our main aim was to develop an efficient simultaneously integrated boost (SIB) technique for the high-dose arm of the trial. Methods and Materials: Treatment planning was performed for 5 left-sided and 5 right-sided tumors. A tangential field intensity-modulated radiotherapy technique added to a sequentially planned 3-field boost (SEQ) was compared with a simultaneously planned technique (SIB) using inverse optimization. Normalized total dose (NTD)-corrected dose volume histogram parameters were calculated and compared. Results: The intended NTD was produced by 31 fractions of 1.66 Gy to the whole breast and 2.38 Gy to the boost volume. The average volume of the PTV-breast and PTV-boost receiving more than 95% of the prescribed dose was 97% or more for both techniques. Also, the mean lung dose and mean heart dose did not differ much between the techniques, with on average 3.5 Gy and 2.6 Gy for the SEQ and 3.8 Gy and 2.6 Gy for the SIB, respectively. However, the SIB resulted in a significantly more conformal irradiation of the PTV-boost. The volume of the PTV-breast, excluding the PTV-boost, receiving a dose higher than 95% of the boost dose could be reduced considerably using the SIB as compared with the SEQ from 129 cc (range, 48-262 cc) to 58 cc (range, 30-102 cc). Conclusions: A high-dose simultaneously integrated breast boost technique has been developed. The unwanted excessive dose to the breast was significantly reduced.

  6. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    NASA Astrophysics Data System (ADS)

    Gay, H. A.; Allison, R. R.; Downie, G. H.; Mota, H. C.; Austerlitz, C.; Jenkins, T.; Sibata, C. H.

    2007-06-01

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed.

  7. Real-time inverse high-dose-rate brachytherapy planning with catheter optimization by compressed sensing-inspired optimization strategies

    NASA Astrophysics Data System (ADS)

    Guthier, C. V.; Aschenbrenner, K. P.; Müller, R.; Polster, L.; Cormack, R. A.; Hesser, J. W.

    2016-08-01

    This paper demonstrates that optimization strategies derived from the field of compressed sensing (CS) improve computational performance in inverse treatment planning (ITP) for high-dose-rate (HDR) brachytherapy. Following an approach applied to low-dose-rate brachytherapy, we developed a reformulation of the ITP problem with the same mathematical structure as standard CS problems. Two greedy methods, derived from hard thresholding and subspace pursuit are presented and their performance is compared to state-of-the-art ITP solvers. Applied to clinical prostate brachytherapy plans speed-up by a factor of 56–350 compared to state-of-the-art methods. Based on a Wilcoxon signed rank-test the novel method statistically significantly decreases the final objective function value (p  <  0.01). The optimization times were below one second and thus planing can be considered as real-time capable. The novel CS inspired strategy enables real-time ITP for HDR brachytherapy including catheter optimization. The generated plans are either clinically equivalent or show a better performance with respect to dosimetric measures.

  8. Real-time inverse high-dose-rate brachytherapy planning with catheter optimization by compressed sensing-inspired optimization strategies.

    PubMed

    Guthier, C V; Aschenbrenner, K P; Müller, R; Polster, L; Cormack, R A; Hesser, J W

    2016-08-21

    This paper demonstrates that optimization strategies derived from the field of compressed sensing (CS) improve computational performance in inverse treatment planning (ITP) for high-dose-rate (HDR) brachytherapy. Following an approach applied to low-dose-rate brachytherapy, we developed a reformulation of the ITP problem with the same mathematical structure as standard CS problems. Two greedy methods, derived from hard thresholding and subspace pursuit are presented and their performance is compared to state-of-the-art ITP solvers. Applied to clinical prostate brachytherapy plans speed-up by a factor of 56-350 compared to state-of-the-art methods. Based on a Wilcoxon signed rank-test the novel method statistically significantly decreases the final objective function value (p  <  0.01). The optimization times were below one second and thus planing can be considered as real-time capable. The novel CS inspired strategy enables real-time ITP for HDR brachytherapy including catheter optimization. The generated plans are either clinically equivalent or show a better performance with respect to dosimetric measures. PMID:27435044

  9. SU-E-I-43: Pediatric CT Dose and Image Quality Optimization

    SciTech Connect

    Stevens, G; Singh, R

    2014-06-01

    Purpose: To design an approach to optimize radiation dose and image quality for pediatric CT imaging, and to evaluate expected performance. Methods: A methodology was designed to quantify relative image quality as a function of CT image acquisition parameters. Image contrast and image noise were used to indicate expected conspicuity of objects, and a wide-cone system was used to minimize scan time for motion avoidance. A decision framework was designed to select acquisition parameters as a weighted combination of image quality and dose. Phantom tests were used to acquire images at multiple techniques to demonstrate expected contrast, noise and dose. Anthropomorphic phantoms with contrast inserts were imaged on a 160mm CT system with tube voltage capabilities as low as 70kVp. Previously acquired clinical images were used in conjunction with simulation tools to emulate images at different tube voltages and currents to assess human observer preferences. Results: Examination of image contrast, noise, dose and tube/generator capabilities indicates a clinical task and object-size dependent optimization. Phantom experiments confirm that system modeling can be used to achieve the desired image quality and noise performance. Observer studies indicate that clinical utilization of this optimization requires a modified approach to achieve the desired performance. Conclusion: This work indicates the potential to optimize radiation dose and image quality for pediatric CT imaging. In addition, the methodology can be used in an automated parameter selection feature that can suggest techniques given a limited number of user inputs. G Stevens and R Singh are employees of GE Healthcare.

  10. Development and Optimization of a Novel Prolonged Release Formulation to Resist Alcohol-Induced Dose Dumping.

    PubMed

    Gujjar, Chaitanya Yogananda; Rallabandi, Balaramesha Chary; Gannu, Ramesh; Deulkar, Vallabh Subashrao

    2016-04-01

    Alcohol-induced dose dumping is a serious concern for the orally administered prolonged release dosage forms. The study was designed to optimize the independent variables, propylene glycol alginate (PGA), Eudragit RS PO (ERS) and coating in mucoadhesive quetiapine prolonged release tablets 200 mg required for preventing the alcohol-induced dose dumping. Optimal design based on response surface methodology was employed for the optimization of the composition. The formulations are evaluated for in vitro drug release in hydrochloric acid alone and with 40% v/v ethanol. The responses, dissolution at 120 min without alcohol (R1) and dissolution at 120 min with alcohol (R2), were statistically evaluated and regression equations are generated. PGA as a hydrophilic polymeric matrix was dumping the dose when dissolutions are carried in 0.1 N hydrochloric acid containing 40% v/v ethanol. ERS addition was giving structural support to the swelling and gelling property of PGA, and thus, was reducing the PGA erosion in dissolution media containing ethanol. Among the formulations, four formulations with diverse composition were meeting the target dissolution (30-40%) in both the conditions. The statistical validity of the mathematical equations was established, and the optimum concentration of the factors was established. Validation of the study with six confirmatory runs indicated high degree of prognostic ability of response surface methodology. Further coating with ReadiLycoat was providing an additional resistance to the alcohol-induced dose dumping. Optimized compositions showed resistance to dose dumping in the presence of alcohol. PMID:26162975

  11. Comparison between absorbed dose to water standards established by water calorimetry at the LNE-LNHB and by application of international air-kerma based protocols for kilovoltage medium energy x-rays

    NASA Astrophysics Data System (ADS)

    Perichon, N.; Rapp, B.; Denoziere, M.; Daures, J.; Ostrowsky, A.; Bordy, J.-M.

    2013-05-01

    Nowadays, the absorbed dose to water for kilovoltage x-ray beams is determined from standards in terms of air-kerma by application of international dosimetry protocols. New standards in terms of absorbed dose to water has just been established for these beams at the LNE-LNHB, using water calorimetry, at a depth of 2 cm in water in accordance with protocols. The aim of this study is to compare these new standards in terms of absorbed dose to water, to the dose values calculated from the application of four international protocols based on air-kerma standards (IAEA TRS-277, AAPM TG-61, IPEMB and NCS-10). The acceleration potentials of the six beams studied are between 80 and 300 kV with half-value layers between 3.01 mm of aluminum and 3.40 mm of copper. A difference between the two methods smaller than 2.1% was reported. The standard uncertainty of water calorimetry being below 0.8%, and the one associated with the values from protocols being around 2.5%, the results are in good agreement. The calibration coefficients of some ionization chambers in terms of absorbed dose to water, established by application of calorimetry and air-kerma based dosimetry protocols, were also compared. The best agreement with the calibration coefficients established by water calorimetry was found for those established with the AAPM TG-61 protocol.

  12. Influence of robust optimization in intensity-modulated proton therapy with different dose delivery techniques

    SciTech Connect

    Liu Wei; Li Yupeng; Li Xiaoqiang; Cao Wenhua; Zhang Xiaodong

    2012-06-15

    Purpose: The distal edge tracking (DET) technique in intensity-modulated proton therapy (IMPT) allows for high energy efficiency, fast and simple delivery, and simple inverse treatment planning; however, it is highly sensitive to uncertainties. In this study, the authors explored the application of DET in IMPT (IMPT-DET) and conducted robust optimization of IMPT-DET to see if the planning technique's sensitivity to uncertainties was reduced. They also compared conventional and robust optimization of IMPT-DET with three-dimensional IMPT (IMPT-3D) to gain understanding about how plan robustness is achieved. Methods: They compared the robustness of IMPT-DET and IMPT-3D plans to uncertainties by analyzing plans created for a typical prostate cancer case and a base of skull (BOS) cancer case (using data for patients who had undergone proton therapy at our institution). Spots with the highest and second highest energy layers were chosen so that the Bragg peak would be at the distal edge of the targets in IMPT-DET using 36 equally spaced angle beams; in IMPT-3D, 3 beams with angles chosen by a beam angle optimization algorithm were planned. Dose contributions for a number of range and setup uncertainties were calculated, and a worst-case robust optimization was performed. A robust quantification technique was used to evaluate the plans' sensitivity to uncertainties. Results: With no uncertainties considered, the DET is less robust to uncertainties than is the 3D method but offers better normal tissue protection. With robust optimization to account for range and setup uncertainties, robust optimization can improve the robustness of IMPT plans to uncertainties; however, our findings show the extent of improvement varies. Conclusions: IMPT's sensitivity to uncertainties can be improved by using robust optimization. They found two possible mechanisms that made improvements possible: (1) a localized single-field uniform dose distribution (LSFUD) mechanism, in which the

  13. Influence of robust optimization in intensity-modulated proton therapy with different dose delivery techniques

    PubMed Central

    Liu, Wei; Li, Yupeng; Li, Xiaoqiang; Cao, Wenhua; Zhang, Xiaodong

    2012-01-01

    Purpose: The distal edge tracking (DET) technique in intensity-modulated proton therapy (IMPT) allows for high energy efficiency, fast and simple delivery, and simple inverse treatment planning; however, it is highly sensitive to uncertainties. In this study, the authors explored the application of DET in IMPT (IMPT-DET) and conducted robust optimization of IMPT-DET to see if the planning technique’s sensitivity to uncertainties was reduced. They also compared conventional and robust optimization of IMPT-DET with three-dimensional IMPT (IMPT-3D) to gain understanding about how plan robustness is achieved. Methods: They compared the robustness of IMPT-DET and IMPT-3D plans to uncertainties by analyzing plans created for a typical prostate cancer case and a base of skull (BOS) cancer case (using data for patients who had undergone proton therapy at our institution). Spots with the highest and second highest energy layers were chosen so that the Bragg peak would be at the distal edge of the targets in IMPT-DET using 36 equally spaced angle beams; in IMPT-3D, 3 beams with angles chosen by a beam angle optimization algorithm were planned. Dose contributions for a number of range and setup uncertainties were calculated, and a worst-case robust optimization was performed. A robust quantification technique was used to evaluate the plans’ sensitivity to uncertainties. Results: With no uncertainties considered, the DET is less robust to uncertainties than is the 3D method but offers better normal tissue protection. With robust optimization to account for range and setup uncertainties, robust optimization can improve the robustness of IMPT plans to uncertainties; however, our findings show the extent of improvement varies. Conclusions: IMPT’s sensitivity to uncertainties can be improved by using robust optimization. They found two possible mechanisms that made improvements possible: (1) a localized single-field uniform dose distribution (LSFUD) mechanism, in which the

  14. Analysis of RapidArc optimization strategies using objective function values and dose-volume histograms.

    PubMed

    Oliver, Michael; Gagne, Isabelle; Popescu, Carmen; Ansbacher, Will; Beckham, Wayne A

    2010-01-01

    RapidArc is a novel treatment planning and delivery system that has recently been made available for clinical use. Included within the Eclipse treatment planning system are a number of different optimization strategies that can be employed to improve the quality of the final treatment plan. The purpose of this study is to systematically assess three categories of strategies for four phantoms, and then apply proven strategies to clinical head and neck cases. Four phantoms were created within Eclipse with varying shapes and locations for the planning target volumes and organs at risk. A baseline optimization consisting of a single 359.8 degrees arc with collimator at 45 degrees was applied to all phantoms. Three categories of strategies were assessed and compared to the baseline strategy. They include changing the initialization parameters, increasing the total number of control points, and increasing the total optimization time. Optimization log files were extracted from the treatment planning system along with final dose-volume histograms for plan assessment. Treatment plans were also generated for four head and neck patients to determine whether the results for phantom plans can be extended to clinical plans. The strategies that resulted in a significant difference from baseline were: changing the maximum leaf speed prior to optimization ( p < 0.05), increasing the total number of segments by adding an arc ( p < 0.05), and increasing the total optimization time by either continuing the optimization ( p < 0.01) or adding time to the optimization by pausing the optimization ( p < 0.01). The reductions in objective function values correlated with improvements in the dose-volume histogram (DVH). The addition of arcs and pausing strategies were applied to head and neck cancer cases, which demonstrated similar benefits with respect to the final objective function value and DVH. Analysis of the optimization log files is a useful way to intercompare treatment plans that

  15. Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Jie; Zhao, Zhen-Guo; Zhao, Yi; Zhou, Hai-Jing; Fu, Ce-Ji

    2015-09-01

    Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this paper, we present numerical simulation results of the thermal radiative properties of a silicon carbide (SiC) thermal emitter/absorber composed of periodic microstructures. We illustrate different electromagnetic resonant modes which can be excited with the structure, such as surface phonon polaritons, magnetic polaritons and photonic crystal modes, and the process of radiation spectrum optimization based on a non-linear optimization algorithm. We show that the spectral and directional control of thermal emission/absorption can be efficiently achieved by adjusting the geometrical parameters of the structure. Moreover, the optimized spectrum is insensitive to 3% dimension modification. Project supported by the National Natural Science Foundation of China (Grant No. 51076002), the National Basis Research Program of China (Grant No. 2013CA328900), and the Key Project of Complicated Electromagnetic Environment Laboratory of CAEP, China (Grant No. 2015E0-01-1).

  16. Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency

    PubMed Central

    Titt, Uwe; Mirkovic, Dragan; Sawakuchi, Gabriel O; Perles, Luis A; Newhauser, Wayne D; Taddei, Phillip J; Mohan, Radhe

    2010-01-01

    In scanned-beam proton therapy, the beam spot properties, such as the lateral and longitudinal size and the minimum achievable range, are influenced by beam optics, scattering media and drift spaces in the treatment unit. Currently available spot scanning systems offer few options for adjusting these properties. We investigated a method for adjusting the lateral and longitudinal spot size that utilizes downstream plastic pre-absorbers located near a water phantom. The spot size adjustment was characterized using Monte Carlo simulations of a modified commercial scanned-beam treatment head. Our results revealed that the pre-absorbers can be used to reduce the lateral full width at half maximum (FWHM) of dose spots in water by up to 14 mm, and to increase the longitudinal extent from about 1 mm to 5 mm at residual ranges of 4 cm and less. A large factor in manipulating the lateral spot sizes is the drift space between the pre-absorber and the water phantom. Increasing the drift space from 0 cm to 15 cm leads to an increase in the lateral FWHM from 2.15 cm to 2.87 cm, at a water-equivalent depth of 1 cm. These findings suggest that this spot adjustment method may improve the quality of spot-scanned proton treatments. PMID:21076194

  17. Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency

    NASA Astrophysics Data System (ADS)

    Titt, Uwe; Mirkovic, Dragan; Sawakuchi, Gabriel O.; Perles, Luis A.; Newhauser, Wayne D.; Taddei, Phillip J.; Mohan, Radhe

    2010-12-01

    In scanned-beam proton therapy, the beam spot properties, such as the lateral and longitudinal size and the minimum achievable range, are influenced by beam optics, scattering media and drift spaces in the treatment unit. Currently available spot scanning systems offer few options for adjusting these properties. We investigated a method for adjusting the lateral and longitudinal spot size that utilizes downstream plastic pre-absorbers located near a water phantom. The spot size adjustment was characterized using Monte Carlo simulations of a modified commercial scanned-beam treatment head. Our results revealed that the pre-absorbers can be used to reduce the lateral full width at half maximum (FWHM) of dose spots in water by up to 14 mm, and to increase the longitudinal extent from about 1 mm to 5 mm at residual ranges of 4 cm and less. A large factor in manipulating the lateral spot sizes is the drift space between the pre-absorber and the water phantom. Increasing the drift space from 0 cm to 15 cm leads to an increase in the lateral FWHM from 2.15 cm to 2.87 cm, at a water-equivalent depth of 1 cm. These findings suggest that this spot adjustment method may improve the quality of spot-scanned proton treatments.

  18. Optimal medication dosing in patients with diabetes mellitus and chronic kidney disease.

    PubMed

    MacCallum, Lori

    2014-10-01

    Diabetes mellitus is the leading cause of chronic kidney disease (CKD) in Canada. As rates of diabetes rise, so does the prevalence of CKD. Diabetes and CKD are chronic diseases that require multiple medications for their management. Many of the anticipated effects of these medications are altered by the physiologic changes that occur in CKD. Failure to individualize drug dosing in this population may lead to toxicity or decreased therapeutic response, leading to treatment failure. At times this can be challenging for a multitude of reasons, including the limitations of available calculations for estimating renal function, inconsistent dosing recommendations and the lack of dosing recommendations for some medications. Clinicians caring for these patients need to consider an approach of individualized drug therapy that will ensure optimal outcomes. The better understanding that clinicians have of these challenges, the more effective they will be at using the available information as a guide together with their own professional judgement to make appropriate dosing changes. This article discusses the following: 1) physiologic changes that occur in CKD and its impact on drug dosing; 2) advantages and disadvantages of various calculations used for estimating renal function; 3) pharmacokinetic and pharmacodynamic changes of some commonly used medications in diabetes, and finally, 4) an approach to individualized drug dosing for this patient population. PMID:25284697

  19. Model-Based Individualized Treatment of Chemotherapeutics: Bayesian Population Modeling and Dose Optimization.

    PubMed

    Jayachandran, Devaraj; Laínez-Aguirre, José; Rundell, Ann; Vik, Terry; Hannemann, Robert; Reklaitis, Gintaras; Ramkrishna, Doraiswami

    2015-01-01

    6-Mercaptopurine (6-MP) is one of the key drugs in the treatment of many pediatric cancers, auto immune diseases and inflammatory bowel disease. 6-MP is a prodrug, converted to an active metabolite 6-thioguanine nucleotide (6-TGN) through enzymatic reaction involving thiopurine methyltransferase (TPMT). Pharmacogenomic variation observed in the TPMT enzyme produces a significant variation in drug response among the patient population. Despite 6-MP's widespread use and observed variation in treatment response, efforts at quantitative optimization of dose regimens for individual patients are limited. In addition, research efforts devoted on pharmacogenomics to predict clinical responses are proving far from ideal. In this work, we present a Bayesian population modeling approach to develop a pharmacological model for 6-MP metabolism in humans. In the face of scarcity of data in clinical settings, a global sensitivity analysis based model reduction approach is used to minimize the parameter space. For accurate estimation of sensitive parameters, robust optimal experimental design based on D-optimality criteria was exploited. With the patient-specific model, a model predictive control algorithm is used to optimize the dose scheduling with the objective of maintaining the 6-TGN concentration within its therapeutic window. More importantly, for the first time, we show how the incorporation of information from different levels of biological chain-of response (i.e. gene expression-enzyme phenotype-drug phenotype) plays a critical role in determining the uncertainty in predicting therapeutic target. The model and the control approach can be utilized in the clinical setting to individualize 6-MP dosing based on the patient's ability to metabolize the drug instead of the traditional standard-dose-for-all approach. PMID:26226448

  20. Model-Based Individualized Treatment of Chemotherapeutics: Bayesian Population Modeling and Dose Optimization

    PubMed Central

    Jayachandran, Devaraj; Laínez-Aguirre, José; Rundell, Ann; Vik, Terry; Hannemann, Robert; Reklaitis, Gintaras; Ramkrishna, Doraiswami

    2015-01-01

    6-Mercaptopurine (6-MP) is one of the key drugs in the treatment of many pediatric cancers, auto immune diseases and inflammatory bowel disease. 6-MP is a prodrug, converted to an active metabolite 6-thioguanine nucleotide (6-TGN) through enzymatic reaction involving thiopurine methyltransferase (TPMT). Pharmacogenomic variation observed in the TPMT enzyme produces a significant variation in drug response among the patient population. Despite 6-MP’s widespread use and observed variation in treatment response, efforts at quantitative optimization of dose regimens for individual patients are limited. In addition, research efforts devoted on pharmacogenomics to predict clinical responses are proving far from ideal. In this work, we present a Bayesian population modeling approach to develop a pharmacological model for 6-MP metabolism in humans. In the face of scarcity of data in clinical settings, a global sensitivity analysis based model reduction approach is used to minimize the parameter space. For accurate estimation of sensitive parameters, robust optimal experimental design based on D-optimality criteria was exploited. With the patient-specific model, a model predictive control algorithm is used to optimize the dose scheduling with the objective of maintaining the 6-TGN concentration within its therapeutic window. More importantly, for the first time, we show how the incorporation of information from different levels of biological chain-of response (i.e. gene expression-enzyme phenotype-drug phenotype) plays a critical role in determining the uncertainty in predicting therapeutic target. The model and the control approach can be utilized in the clinical setting to individualize 6-MP dosing based on the patient’s ability to metabolize the drug instead of the traditional standard-dose-for-all approach. PMID:26226448

  1. Optimization of exposure parameters in digital tomosynthesis considering effective dose and image quality

    NASA Astrophysics Data System (ADS)

    Choi, Seungyeon; Choi, Sunghoon; Kim, Ye-seul; Lee, Haenghwa; Lee, Donghoon; Jeon, Pil-Hyun; Jang, Dong-Hyuk; Kim, Hee-Joung

    2016-03-01

    Digital tomosynthesis system (DTS), which scans an object in a limited angle, has been considered as an innovative imaging modality which can present lower patient dose than computed tomography and solve the problem of poor depth resolution in conventional digital radiography. Although it has many powerful advantages, only breast tomosynthesis system has been adopted in many hospitals. In order to reduce the patient dose while maintaining image quality, the acquisition conditions need to be studied. In this study, we analyzed effective dose and image qualities of chest phantom using commercialized universal chest digital tomosynthesis (CDT) R/F system to study the optimized exposure parameters. We set 10 different acquisition conditions including the default acquisition condition by user manual of Shimadzu (100 kVp with 0.5 mAs). The effective dose was calculated from PCXMC software version 1.5.1 by utilizing the total X-ray exposure measured by ion chamber. The image quality was evaluated by signal difference to noise ratio (SDNR) in the regions of interest (ROIs) pulmonary arteries at different axial in-plane. We analyzed a figure of merit (FOM) which considers both the effective dose and the SDNR in order to determine the optimal acquisition condition. The results indicated that the most suitable acquisition parameters among 10 conditions were condition 7 and 8 (120 kVp with 0.04 mAs and 0.1 mAs, respectively), which indicated lower effective dose while maintaining reasonable SDNRs and FOMs for three specified regions. Further studies are needed to be conducted for detailed outcomes in CDT acquisition conditions.

  2. A technique optimization protocol and the potential for dose reduction in digital mammography

    SciTech Connect

    Ranger, Nicole T.; Lo, Joseph Y.; Samei, Ehsan

    2010-03-15

    Digital mammography requires revisiting techniques that have been optimized for prior screen/film mammography systems. The objective of the study was to determine optimized radiographic technique for a digital mammography system and demonstrate the potential for dose reduction in comparison to the clinically established techniques based on screen- film. An objective figure of merit (FOM) was employed to evaluate a direct-conversion amorphous selenium (a-Se) FFDM system (Siemens Mammomat Novation{sup DR}, Siemens AG Medical Solutions, Erlangen, Germany) and was derived from the quotient of the squared signal-difference-to-noise ratio to mean glandular dose, for various combinations of technique factors and breast phantom configurations including kilovoltage settings (23-35 kVp), target/filter combinations (Mo-Mo and W-Rh), breast-equivalent plastic in various thicknesses (2-8 cm) and densities (100% adipose, 50% adipose/50% glandular, and 100% glandular), and simulated mass and calcification lesions. When using a W-Rh spectrum, the optimized FOM results for the simulated mass and calcification lesions showed highly consistent trends with kVp for each combination of breast density and thickness. The optimized kVp ranged from 26 kVp for 2 cm 100% adipose breasts to 30 kVp for 8 cm 100% glandular breasts. The use of the optimized W-Rh technique compared to standard Mo-Mo techniques provided dose savings ranging from 9% for 2 cm thick, 100% adipose breasts, to 63% for 6 cm thick, 100% glandular breasts, and for breasts with a 50% adipose/50% glandular composition, from 12% for 2 cm thick breasts up to 57% for 8 cm thick breasts.

  3. A technique optimization protocol and the potential for dose reduction in digital mammography

    PubMed Central

    Ranger, Nicole T.; Lo, Joseph Y.; Samei, Ehsan

    2010-01-01

    Digital mammography requires revisiting techniques that have been optimized for prior screen∕film mammography systems. The objective of the study was to determine optimized radiographic technique for a digital mammography system and demonstrate the potential for dose reduction in comparison to the clinically established techniques based on screen- film. An objective figure of merit (FOM) was employed to evaluate a direct-conversion amorphous selenium (a-Se) FFDM system (Siemens Mammomat NovationDR, Siemens AG Medical Solutions, Erlangen, Germany) and was derived from the quotient of the squared signal-difference-to-noise ratio to mean glandular dose, for various combinations of technique factors and breast phantom configurations including kilovoltage settings (23–35 kVp), target∕filter combinations (Mo–Mo and W–Rh), breast-equivalent plastic in various thicknesses (2–8 cm) and densities (100% adipose, 50% adipose∕50% glandular, and 100% glandular), and simulated mass and calcification lesions. When using a W–Rh spectrum, the optimized FOM results for the simulated mass and calcification lesions showed highly consistent trends with kVp for each combination of breast density and thickness. The optimized kVp ranged from 26 kVp for 2 cm 100% adipose breasts to 30 kVp for 8 cm 100% glandular breasts. The use of the optimized W–Rh technique compared to standard Mo–Mo techniques provided dose savings ranging from 9% for 2 cm thick, 100% adipose breasts, to 63% for 6 cm thick, 100% glandular breasts, and for breasts with a 50% adipose∕50% glandular composition, from 12% for 2 cm thick breasts up to 57% for 8 cm thick breasts. PMID:20384232

  4. Framework to predict optimal buffer layer pairing for thin film solar cell absorbers: A case study for tin sulfide/zinc oxysulfide

    SciTech Connect

    Mangan, Niall M.; Brandt, Riley E.; Steinmann, Vera; Jaramillo, R.; Poindexter, Jeremy R.; Chakraborty, Rupak; Buonassisi, Tonio; Yang, Chuanxi; Park, Helen Hejin; Zhao, Xizhu; Gordon, Roy G.

    2015-09-21

    present-day devices suggest that record efficiency SnS devices are optimized for the second local maximum, due to low absorber lifetime and relatively well passivated interfaces. By employing contact layers with higher carrier concentrations and lower electron affinities, a higher efficiency ceiling can be enabled.

  5. Computer-aided design optimization with the use of a fast dose model for linear-accelerator-based stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Suh, Tae S.; Bova, Frank J.; Yoon, Sei C.; Choe, Bo Y.; Kim, Moon C.; Shinn, Kyung S.; Bahk, Yong W.; Ha, Sung W.; Park, Charn I.

    1996-04-01

    In order to efficiently plan non-spherical radiosurgical targets we have used computer-aided design optimization techniques with a fast dose model. A study of the spatial dose distribution for single or multiple non-coplanar arcs was carried out using a 18 cm diameter spherical head model. The dose distribution generated from the 3D dose computation algorithm can be represented by a simple analytic form. Two analytic dose models were developed to represent the dose for preset multiple non-coplanar arcs or a single arc: spherical and cylindrical. The spherical and cylindrical dose models compute dose quickly for each isocentre and single arc. Our approach then utilizes a computer-aided design optimization (CAD) with the use of two fast approximate dose models to determine the positions of isocentres and arcs. The implementation of CAD with fast dose models was demonstrated. While the fast dose models are only approximations of the true dose distribution, it is shown that this approximate model is sufficient to optimize isocentric position, collimator size and arc positions with CAD.

  6. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  7. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters.

    PubMed

    Cheng, Lishui; Hobbs, Robert F; Segars, Paul W; Sgouros, George; Frey, Eric C

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  8. Exploring trade-offs between VMAT dose quality and delivery efficiency using a network optimization approach

    NASA Astrophysics Data System (ADS)

    Salari, Ehsan; Wala, Jeremiah; Craft, David

    2012-09-01

    To formulate and solve the fluence-map merging procedure of the recently-published VMAT treatment-plan optimization method, called vmerge, as a bi-criteria optimization problem. Using an exact merging method rather than the previously-used heuristic, we are able to better characterize the trade-off between the delivery efficiency and dose quality. vmerge begins with a solution of the fluence-map optimization problem with 180 equi-spaced beams that yields the ‘ideal’ dose distribution. Neighboring fluence maps are then successively merged, meaning that they are added together and delivered as a single map. The merging process improves the delivery efficiency at the expense of deviating from the initial high-quality dose distribution. We replace the original merging heuristic by considering the merging problem as a discrete bi-criteria optimization problem with the objectives of maximizing the treatment efficiency and minimizing the deviation from the ideal dose. We formulate this using a network-flow model that represents the merging problem. Since the problem is discrete and thus non-convex, we employ a customized box algorithm to characterize the Pareto frontier. The Pareto frontier is then used as a benchmark to evaluate the performance of the standard vmerge algorithm as well as two other similar heuristics. We test the exact and heuristic merging approaches on a pancreas and a prostate cancer case. For both cases, the shape of the Pareto frontier suggests that starting from a high-quality plan, we can obtain efficient VMAT plans through merging neighboring fluence maps without substantially deviating from the initial dose distribution. The trade-off curves obtained by the various heuristics are contrasted and shown to all be equally capable of initial plan simplifications, but to deviate in quality for more drastic efficiency improvements. This work presents a network optimization approach to the merging problem. Contrasting the trade-off curves of the

  9. Large scale optimization of beam weights under dose-volume restrictions.

    PubMed

    Langer, M; Brown, R; Urie, M; Leong, J; Stracher, M; Shapiro, J

    1990-04-01

    The problem of choosing weights for beams in a multifield plan which maximizes tumor dose under conditions that recognize the volume dependence of organ tolerance to radiation is considered, and its solution described. Structures are modelled as collections of discrete points, and the weighting problem described as a combinatorial linear program (LP). The combinatorial LP is solved as a mixed 0/1 integer program with appropriate restrictions on normal tissue dose. The method is illustrated through the assignment of weights to a set of 10 beams incident on a pelvic target. Dose-volume restrictions are placed on surrounding bowel, bladder, and rectum, and a limit placed on tumor dose inhomogeneity. Different tolerance restrictions are examined, so that the sensitivity of the target dose to changes in the normal tissue constraints may be explored. It is shown that the distributions obtained satisfy the posed constraints. The technique permits formal solution of the optimization problem, in a time short enough to meet the needs of treatment planners. PMID:2323977

  10. Optimization of monoclonal antibody delivery via the lymphatics: the dose dependence

    SciTech Connect

    Steller, M.A.; Parker, R.J.; Covell, D.G.; Holton, O.D. 3d.; Keenan, A.M.; Sieber, S.M.; Weinstein, J.N.

    1986-04-01

    After interstitial injection in mice, antibody molecules enter local lymphatic vessels, flow with the lymph to regional lymph nodes, and bind to target antigens there. Compared with i.v. administration, delivery via the lymphatics provides a more efficient means for localizing antibody in lymph nodes. An IgG2a (36-7-5) directed against the murine class I major histocompatibility antigen H-2Kk has proved useful for studying the pharmacology of lymphatic delivery. At very low doses, most of the antibody remains at the injection site in Kk-positive animals. As the dose is progressively increased, most effective labeling occurs first in nodes proximal to the injection site and then in the next group of nodes along the lymphatic chain. At higher doses, antibody overflows the lymphatic system and enters the blood-stream via the thoracic duct and other lymphatic-venous connections. Once in the blood, antibody is rapidly cleared, apparently by binding to Kk-bearing cells. These findings indicate that the single-pass distribution of monoclonal antibodies in the lymphatics can be strongly dose dependent, a principle which may be of clinical significance in the improvement of immunolymphoscintigraphic imaging, especially with antibodies directed against normal and malignant lymphoid cells. Monoclonal antibodies directed against normal cell types in the lymph node may be useful for assessing the integrity of lymphatic chains by immunolymphoscintigraphy or, more speculatively, for altering the status of regional immune function. The results presented here indicate that a low or intermediate antibody dose may optimize the signal:noise ratio for imaging. In Kk-negative animals, the percentage of dose taken up in the major organs was essentially independent of the dose administered; there was no evidence for saturable sites of nonspecific binding.

  11. Determination of Optimal Amikacin Dosing Regimens for Pediatric Patients With Burn Wound Sepsis.

    PubMed

    Yu, Tian; Stockmann, Chris; Healy, Daniel P; Olson, Jared; Wead, Stephanie; Neely, Alice N; Kagan, Richard J; Spigarelli, Michael G; Sherwin, Catherine M T

    2015-01-01

    This study aimed to develop optimal amikacin dosing regimens for the empirical treatment of Gram-negative bacterial sepsis in pediatric patients with burn injuries. A pharmacodynamic (PD) target in which the peak concentration (Cmax) is ≥8 times the minimum inhibitory concentration (MIC) (Cmax/MIC ≥ 8) is reflective of optimal bactericidal activity and has been used to predict clinical outcomes. Population pharmacokinetic modeling was performed in NONMEM 7.2 for pediatric patients with and without burn injuries. Amikacin pharmacokinetic parameters were compared between the two groups and multiple dosing regimens were simulated using MATLAB to achieve the PD target in ≥90% of patients with burn injuries. The pharmacokinetic analysis included 282 amikacin concentrations from 70 pediatric patients with burn injuries and 99 concentrations from 32 pediatric patients without burns. A one-compartment model with first-order elimination described amikacin pharmacokinetics well for both groups. Clearance (CL) was significantly higher in patients with burn injuries than in patients without (7.22 vs 5.36 L/h, P < .001). The volume of distribution (V) was also significantly increased in patients with burn injuries (22.7 vs 18.7 L, P < .01). Weight significantly influenced amikacin CL (P < .001) and V (P < .001) for both groups. Model-based simulations showed that a higher amikacin dose (≥25 mg/kg) achieved a Cmax/MIC ≥8 in ≥90% of patients with assumed infections of organisms with an MIC = 8 mg/L. Amikacin pharmacokinetics are altered in patients with burn injuries, including a significant increase in CL and V. In simulations, increased doses (≥25 mg/kg) led to improved PD target attainment rates. Further clinical evaluation of this proposed dosing regimen is warranted to assess clinical and microbiological outcomes in pediatric patients with burn wound sepsis. PMID:25185930

  12. Dosimetric Effects of Magnetic Resonance Imaging-assisted Radiotherapy Planning: Dose Optimization for Target Volumes at High Risk and Analytic Radiobiological Dose Evaluation.

    PubMed

    Park, Ji-Yeon; Suh, Tae Suk; Lee, Jeong-Woo; Ahn, Kook-Jin; Park, Hae-Jin; Choe, Bo-Young; Hong, Semie

    2015-10-01

    Based on the assumption that apparent diffusion coefficients (ADCs) define high-risk clinical target volume (aCTVHR) in high-grade glioma in a cellularity-dependent manner, the dosimetric effects of aCTVHR-targeted dose optimization were evaluated in two intensity-modulated radiation therapy (IMRT) plans. Diffusion-weighted magnetic resonance (MR) images and ADC maps were analyzed qualitatively and quantitatively to determine aCTVHR in a high-grade glioma with high cellularity. After confirming tumor malignancy using the average and minimum ADCs and ADC ratios, the aCTVHR with double- or triple-restricted water diffusion was defined on computed tomography images through image registration. Doses to the aCTVHR and CTV defined on T1-weighted MR images were optimized using a simultaneous integrated boost technique. The dosimetric benefits for CTVs and organs at risk (OARs) were compared using dose volume histograms and various biophysical indices in an ADC map-based IMRT (IMRTADC) plan and a conventional IMRT (IMRTconv) plan. The IMRTADC plan improved dose conformity up to 15 times, compared to the IMRTconv plan. It reduced the equivalent uniform doses in the visual system and brain stem by more than 10% and 16%, respectively. The ADC-based target differentiation and dose optimization may facilitate conformal dose distribution to the aCTVHR and OAR sparing in an IMRT plan. PMID:26425053

  13. Determining the Lowest Optimally Effective Methotrexate Dose for Individual RA Patients Using Their Dose Response Relation in a Tight Control Treatment Approach

    PubMed Central

    Nair, Sandhya C.; Jacobs, Johannes W. G.; Bakker, Marije F.; Jahangier, Z. Nazira; Bijlsma, Johannes W. J.; van Laar, Jacobs M.; Lafeber, Floris P. J. G.; Welsing, Paco M. J.

    2016-01-01

    Objective To determine the optimal methotrexate dose in individual patients and to explore whether this optimal dose and the level of disease activity at that dose could be predicted. Methods Data from CAMERA II trial comparing MTX and MTX with 10 mg of prednisone both in a tight control treatment strategy in early RA was used. For each patient a curve for disease activity over time was fitted and the MTX dose after which further step-up did not result in relevant improvement in disease activity anymore was determined the 'lowest optimally effective MTX dose (LOED)'. The association of demographic and clinical characteristics at baseline with this LOED and with the level of disease activity reached at LOED was studied. Results In 204 (100 MTX and 104 MTX with prednisone) out of 236 patients LOED could be defined. 10 mg/wk was the most prevalent LOED in patients treated with MTX and prednisone and 10 mg/wk, 20 mg/wk and 30 mg/wk in the MTX strategy. Although the specific LOED could not reliably be predicted, higher baseline disease activity, height and lower weight were associated with higher LOEDs (i.e at least 15 mg/wk). A score was presented to decide on a starting dose of 10 mg/wk or (at least) 15 mg/wk. The level of disease activity at LOED could not be reliably predicted. Conclusion A starting dose of 10 mg/wk might be a good choice for most patients and is frequently already the optimal dose. However, a subgroup of patient can be determined who would require higher MTX doses. PMID:26987073

  14. An optimized colony forming assay for low-dose-radiation cell survival measurement

    SciTech Connect

    Zhu J.; Sutherland B.; Hu W.; Ding N.; Ye C.; Usikalu M.; Li S.; Hu B.; Zhou G.

    2011-11-01

    The aim of this study is to develop a simple and reliable method to quantify the cell survival of low-dose irradiations. Two crucial factors were considered, the same number of cells plated in each flask and an appropriate interval between cell plating and irradiation. For the former, we optimized cell harvest with trypsin, diluted cells in one container, and directly seeded cells on the bottom of flasks in a low density before irradiation. Reproducible plating efficiency was obtained. For the latter, we plated cells on the bottom of flasks and then monitored the processing of attachment, cell cycle variations, and the plating efficiency after exposure to 20 cGy of X-rays. The results showed that a period of 4.5 h to 7.5 h after plating was suitable for further treatment. In order to confirm the reliability and feasibility of our method, we also measured the survival curves of these M059K and M059J glioma cell lines by following the optimized protocol and obtained consistent results reported by others with cell sorting system. In conclusion, we successfully developed a reliable and simple way to measure the survival fractions of human cells exposed to low dose irradiation, which might be helpful for the studies on low-dose radiation biology.

  15. Population Pharmacokinetics and Dose Optimization of Mycophenolic Acid in HCT Recipients Receiving Oral Mycophenolate Mofetil

    PubMed Central

    Li, H; Mager, D E; Sandmaier, B M; Maloney, D G; Bemer, M J; McCune, J S

    2012-01-01

    We sought to create a population pharmacokinetic model for total mycophenolic acid (MPA), to study the effects of different covariates on MPA pharmacokinetics, to create a limited sampling schedule (LSS) to characterize MPA exposure (i.e., area under the curve or AUC) with maximum a posteriori Bayesian estimation, and to simulate an optimized dosing scheme for allogeneic hematopoietic cell transplantation (HCT) recipients. 4,496 MPA concentration-time points from 408 HCT recipients were analyzed retrospectively using a nonlinear mixed effects modeling approach. MPA pharmacokinetics was characterized with a two-compartment model with first-order elimination and a time-lagged first-order absorption process. Concomitant cyclosporine and serum albumin were significant covariates. The median MPA clearance and volume of the central compartment were 24.2 L/hr and 36.4 L, respectively, for a 70 kg patient receiving tacrolimus with a serum albumin of 3.4 g/dL. Dosing simulations indicated that higher oral MMF doses are needed with concomitant cyclosporine, which increases MPA clearance by 33.8%. The optimal LSS was immediately before and at 0.25, 1.25, 2, and 4hr after oral MMF administration. MPA AUC in an individual HCT recipient can be accurately estimated using a five-sample LSS and maximum a posteriori Bayesian estimation. PMID:23382105

  16. Population pharmacokinetics and dose optimization of mycophenolic acid in HCT recipients receiving oral mycophenolate mofetil.

    PubMed

    Li, H; Mager, D E; Sandmaier, B M; Maloney, D G; Bemer, M J; McCune, J S

    2013-04-01

    We sought to create a population pharmacokinetic model for total mycophenolic acid (MPA), to study the effects of different covariates on MPA pharmacokinetics, to create a limited sampling schedule (LSS) to characterize MPA exposure (i.e., area under the curve or AUC) with maximum a posteriori Bayesian estimation, and to simulate an optimized dosing scheme for allogeneic hematopoietic cell transplantation (HCT) recipients. Four thousand four hundred ninety-six MPA concentration-time points from 408 HCT recipients were analyzed retrospectively using a nonlinear mixed effects modeling approach. MPA pharmacokinetics was characterized with a two-compartment model with first-order elimination and a time-lagged first-order absorption process. Concomitant cyclosporine and serum albumin were significant covariates. The median MPA clearance (CL) and volume of the central compartment were 24.2 L/hour and 36.4 L, respectively, for a 70 kg patient receiving tacrolimus with a serum albumin of 3.4 g/dL. Dosing simulations indicated that higher oral MMF doses are needed with concomitant cyclosporine, which increases MPA CL by 33.8%. The optimal LSS was immediately before and at 0.25 hours, 1.25 hours, 2 hours, and 4 hours after oral mycophenolate mofetil administration. MPA AUC in an individual HCT recipient can be accurately estimated using a five-sample LSS and maximum a posteriori Bayesian estimation. PMID:23382105

  17. Optimizing Sedative Dose in Preterm Infants Undergoing Treatment for Respiratory Distress Syndrome

    PubMed Central

    Thall, Peter F.; Nguyen, Hoang Q.; Zohar, Sarah; Maton, Pierre

    2014-01-01

    The Intubation-Surfactant-Extubation (INSURE) procedure is used worldwide to treat pre-term newborn infants suffering from respiratory distress syndrome, which is caused by an insufficient amount of the chemical surfactant in the lungs. With INSURE, the infant is intubated, surfactant is administered via the tube to the trachea, and at completion the infant is extubated. This improves the infant’s ability to breathe and thus decreases the risk of long term neurological or motor disabilities. To perform the intubation safely, the newborn infant first must be sedated. Despite extensive experience with INSURE, there is no consensus on what sedative dose is best. This paper describes a Bayesian sequentially adaptive design for a multi-institution clinical trial to optimize the sedative dose given to pre-term infants undergoing the INSURE procedure. The design is based on three clinical outcomes, two efficacy and one adverse, using elicited numerical utilities of the eight possible elementary outcomes. A flexible Bayesian parametric trivariate dose-outcome model is assumed, with the prior derived from elicited mean outcome probabilities. Doses are chosen adaptively for successive cohorts of infants using posterior mean utilities, subject to safety and efficacy constraints. A computer simulation study of the design is presented. PMID:25368435

  18. Standardization and Optimization of Computed Tomography Protocols to Achieve Low-Dose

    PubMed Central

    Chin, Cynthia; Cody, Dianna D.; Gupta, Rajiv; Hess, Christopher P.; Kalra, Mannudeep K.; Kofler, James M.; Krishnam, Mayil S.; Einstein, Andrew J.

    2014-01-01

    The increase in radiation exposure due to CT scans has been of growing concern in recent years. CT scanners differ in their capabilities and various indications require unique protocols, but there remains room for standardization and optimization. In this paper we summarize approaches to reduce dose, as discussed in lectures comprising the first session of the 2013 UCSF Virtual Symposium on Radiation Safety in Computed Tomography. The experience of scanning at low dose in different body regions, for both diagnostic and interventional CT procedures, is addressed. An essential primary step is justifying the medical need for each scan. General guiding principles for reducing dose include tailoring a scan to a patient, minimizing scan length, use of tube current modulation and minimizing tube current, minimizing-tube potential, iterative reconstruction, and periodic review of CT studies. Organized efforts for standardization have been spearheaded by professional societies such as the American Association of Physicists in Medicine. Finally, all team members should demonstrate an awareness of the importance of minimizing dose. PMID:24589403

  19. A water calorimeter for on-site absorbed dose to water calibrations in (60)Co and MV-photon beams including MRI incorporated treatment equipment.

    PubMed

    de Prez, Leon; de Pooter, Jacco; Jansen, Bartel; Aalbers, Tony

    2016-07-01

    In reference dosimetry the aim is to establish the absorbed dose to water, D w, under reference conditions. However, existing dosimetry protocols are not always applicable for rapidly emerging new treatment modalities. For primary standard dosimetry laboratories it is generally not feasible to acquire such modalities. Therefore it is strongly desired that D w measurements with primary standards can be performed on-site in clinical beams for the new treatment modalities in order to characterize and calibrate detectors. To serve this need, VSL has developed a new transportable water calorimeter serving as a primary D w standard for (60)Co and MV-photons including MRI incorporated treatment equipment. Special attention was paid to its operation in different beam geometries and beam modalities including the application in magnetic fields. The new calorimeter was validated in the VSL (60)Co beam and on-site in clinical MV-photon beams. Excellent agreement of 0.1% was achieved with previous (60)Co field calibrations, i.e. well within the uncertainty of the previous calorimeter, and with measurements performed in horizontal and vertical MV-photon beams. k Q factors, determined for two PTW 30013 ionization chambers, agreed very well with available literature data. The relative combined standard uncertainty (k  =  1) for D w measurements in (60)Co and MV-photons is 0.37%. Calibrations are carried out with a standard uncertainty of 0.42% and k Q -factors are determined with a relative standard uncertainty of 0.40%. PMID:27300589

  20. A water calorimeter for on-site absorbed dose to water calibrations in 60Co and MV-photon beams including MRI incorporated treatment equipment

    NASA Astrophysics Data System (ADS)

    de Prez, Leon; de Pooter, Jacco; Jansen, Bartel; Aalbers, Tony

    2016-07-01

    In reference dosimetry the aim is to establish the absorbed dose to water, D w, under reference conditions. However, existing dosimetry protocols are not always applicable for rapidly emerging new treatment modalities. For primary standard dosimetry laboratories it is generally not feasible to acquire such modalities. Therefore it is strongly desired that D w measurements with primary standards can be performed on-site in clinical beams for the new treatment modalities in order to characterize and calibrate detectors. To serve this need, VSL has developed a new transportable water calorimeter serving as a primary D w standard for 60Co and MV-photons including MRI incorporated treatment equipment. Special attention was paid to its operation in different beam geometries and beam modalities including the application in magnetic fields. The new calorimeter was validated in the VSL 60Co beam and on-site in clinical MV-photon beams. Excellent agreement of 0.1% was achieved with previous 60Co field calibrations, i.e. well within the uncertainty of the previous calorimeter, and with measurements performed in horizontal and vertical MV-photon beams. k Q factors, determined for two PTW 30013 ionization chambers, agreed very well with available literature data. The relative combined standard uncertainty (k  =  1) for D w measurements in 60Co and MV-photons is 0.37%. Calibrations are carried out with a standard uncertainty of 0.42% and k Q -factors are determined with a relative standard uncertainty of 0.40%.

  1. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements

    PubMed Central

    Whitaker, May

    2016-01-01

    Purpose Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. Material and methods This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. Results The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. Conclusions The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected. PMID:27504129

  2. Pediatric stroke and transcranial direct current stimulation: methods for rational individualized dose optimization

    PubMed Central

    Gillick, Bernadette T.; Kirton, Adam; Carmel, Jason B.; Minhas, Preet; Bikson, Marom

    2014-01-01

    Background: Transcranial direct current stimulation (tDCS) has been investigated mainly in adults and doses may not be appropriate in pediatric applications. In perinatal stroke where potential applications are promising, rational adaptation of dosage for children remains under investigation. Objective: Construct child-specific tDCS dosing parameters through case study within a perinatal stroke tDCS safety and feasibility trial. Methods: 10-year-old subject with a diagnosis of presumed perinatal ischemic stroke and hemiparesis was identified. T1 magnetic resonance imaging (MRI) scans used to derive computerized model for current flow and electrode positions. Workflow using modeling results and consideration of dosage in previous clinical trials was incorporated. Prior ad hoc adult montages vs. de novo optimized montages provided distinct risk benefit analysis. Approximating adult dose required consideration of changes in both peak brain current flow and distribution which further tradeoff between maximizing efficacy and adding safety factors. Electrode size, position, current intensity, compliance voltage, and duration were controlled independently in this process. Results: Brain electric fields modeled and compared to values previously predicted models (Datta et al., 2011; Minhas et al., 2012). Approximating conservative brain current flow patterns and intensities used in previous adult trials for comparable indications, the optimal current intensity established was 0.7 mA for 10 min with a tDCS C3/C4 montage. Specifically 0.7 mA produced comparable peak brain current intensity of an average adult receiving 1.0 mA. Electrode size of 5 × 7 cm2 with 1.0 mA and low-voltage tDCS was employed to maximize tolerability. Safety and feasibility confirmed with subject tolerating the session well and no serious adverse events. Conclusion: Rational approaches to dose customization, with steps informed by computational modeling, may improve guidance for pediatric stroke t

  3. Diversification of existing reference phantoms in nuclear medicine: Calculation of specific absorbed fractions for 21 mathematical phantoms and validation through dose estimates resulting from the administration of (18)F-FDG.

    PubMed

    Blaickner, Matthias; Kindl, Peter

    2008-12-01

    Current dose assessment in nuclear medicine patient studies relies on published S-values, which are, in turn, based on calculated specific absorbed fractions (SAFs) available for a limited number of anthro-pomorphic computational phantoms. In order to take the individual physiognomy of patients more into account, this study aimed to broaden the supply of phantoms and their respective SAFs. An ensemble of 21 mathematical phantoms was submitted to the Monte Carlo Code MCNP4c2 for the purpose of calculation of SAFs for annihilation radiation. These values were incorporated into an internal dose assessment following the Medical Internal Radiation Dose (MIRD) schema and relying on published biokinetic data for intravenous administration of (18)F-FDG. The results were compared with data from the ICRP, MIRD reports and concurrent calculations with OLINDA/EXM. A very good agreement with sources relying on the SAFs of Cristy and Eckerman (i.e., the ICRP and OLINDA/EXM) was observed, with the absorbed dose in lung being the only exception. In the case of dose to red marrow, the King Spiers factors were omitted in the three-factor approximation, which led to a precise accordance with the Cristy/Eckerman values. Summarizing, one can say that the coincidence with published data justifies the method chosen and demonstrates successfully the expansion of available reference phantoms for dose assessment in nuclear medicine. PMID:19111050

  4. Optimization of radotinib doses for the treatment of Asian patients with chronic myelogenous leukemia based on dose-response relationship analyses.

    PubMed

    Noh, Hayeon; Park, Min Soo; Kim, Sung-Hyun; Oh, Suk Joong; Zang, Dae Young; Park, Hye Lin; Cho, Dae Jin; Kim, Dong-Wook; Lee, Jangik I

    2016-08-01

    A fixed dose regimen for tyrosine kinase inhibitors (TKIs) is postulated to be responsible for variable safety outcomes in the treatment of chronic myelogenous leukemia (CML). The objective of this study was to explore an optimal dosing regimen for a TKI, radotinib, to improve its safety profile. Clinical data were obtained from a Phase 2 study of fixed-dose radotinib in 77 Asian patients with CML. The magnitude of radotinib dose adjusted for patient's body weight (Dose/BW) and the probability of dose-limiting toxicity (DLT) demonstrated a positive association (Logit[P] = 0.86*[Dose/BW]-4.45, p = 0.001). There was a significant difference in the Kaplan-Meier curves for time to first DLT between the patient subgroups of Dose/BW <6 and ≥6 mg/kg (259 versus 83 days). Consequently, a two-tier weight-based dosing regimen may improve the safety of radotinib: 300 mg or 400 mg twice daily for patients weighing ≤65 or >65 kg, respectively. PMID:26666371

  5. Closed-form exact solution to H(infinity) optimization of dynamic vibration absorbers: II. Application to different performance indexes for vibration isolation

    NASA Astrophysics Data System (ADS)

    Asami, Toshihiko; Nishihara, Osamu

    2000-04-01

    Recently, Nishihara and Matsuhisa have proposed a new theory for attaining the H(infinity) optimization of a dynamic vibration absorber (DVA) in the linear vibratory systems. The H(infinity) optimization of DVA is a classical optimization problem, and already solved more than 50 years ago. All of us know the solution through the textbook written by Den Hartog. The new theory proposed them gives us the exact algebraic solution of the problem. In the first report, we have expounded the theory and showed the procedure of finding the algebraic solution to a typical performance index (compliance transfer function) of the viscous damped system. In this paper, we will apply this theory to another performance indexes: mobility and accelerance transfer functions for force excitation system, and the absolute and relative displacement responses to acceleration, velocity or displacement input to foundation for motion excitation system. We apply this theory not only the viscous damped system but also the hysteretic damped system. As a result, we found the closed-form exact solutions in every performance indexes when the primary system has no damping. The solutions obtained here are compared with the classical ones solved by the fixed-points theory. We further apply this theory to design of DVAs attached to damped primary systems, and found the closed-form exact solutions to some performance indexes of the hysteretic damped system.

  6. Novel iterative reconstruction method for optimal dose usage in redundant CT - acquisitions

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Raupach, R.; Allmendinger, T.; Kappler, S.; Sunnegardh, J.; Stierstorfer, K.; Flohr, T.

    2014-03-01

    In CT imaging, a variety of applications exist where reconstructions are SNR and/or resolution limited. However, if the measured data provide redundant information, composite image data with high SNR can be computed. Generally, these composite image volumes will compromise spectral information and/or spatial resolution and/or temporal resolution. This brings us to the idea of transferring the high SNR of the composite image data to low SNR (but high resolution) `source' image data. It was shown that the SNR of CT image data can be improved using iterative reconstruction [1] .We present a novel iterative reconstruction method enabling optimal dose usage of redundant CT measurements of the same body region. The generalized update equation is formulated in image space without further referring to raw data after initial reconstruction of source and composite image data. The update equation consists of a linear combination of the previous update, a correction term constrained by the source data, and a regularization prior initialized by the composite data. The efficiency of the method is demonstrated for different applications: (i) Spectral imaging: we have analysed material decomposition data from dual energy data of our photon counting prototype scanner: the material images can be significantly improved transferring the good noise statistics of the 20 keV threshold image data to each of the material images. (ii) Multi-phase liver imaging: Reconstructions of multi-phase liver data can be optimized by utilizing the noise statistics of combined data from all measured phases (iii) Helical reconstruction with optimized temporal resolution: splitting up reconstruction of redundant helical acquisition data into a short scan reconstruction with Tam window optimizes the temporal resolution The reconstruction of full helical data is then used to optimize the SNR. (iv) Cardiac imaging: the optimal phase image (`best phase') can be improved by transferring all applied over

  7. Scanning protocol optimization and dose evaluation in coronary stenosis using multi-slices computed tomography

    NASA Astrophysics Data System (ADS)

    Huang, Yung-hui; Chen, Chia-lin; Sheu, Chin-yin; Lee, Jason J. S.

    2007-02-01

    Cardiovascular diseases are the most common incidence for premature death in developed countries. A major fraction is attributable to atherosclerotic coronary artery disease, which may result in sudden cardiac failure. A reduction of mortality caused by myocardial infarction may be achieved if coronary atherosclerosis can be detected and treated at an early stage before symptoms occur. Therefore, there is need for an effective tool that allows identification of patients at increased risk for future cardiac events. The current multi-detector CT has been widely used for detection and quantification of coronary calcifications as a sign of coronary atherosclerosis. The aim of this study is to optimize the diagnostic values and radiation exposure in coronary artery calcium-screening examination using multi-slice CT (MSCT) with different image scan protocols. The radiation exposure for all protocols is evaluated by using computed tomography dose index (CTDI) phantom measurements. We chose an optimal scanning protocol and evaluated patient radiation dose in the MSCT coronary artery screenings and preserved its expecting diagnostic accuracy. These changes make the MSCT have more operation flexibility and provide more diagnostic values in current practice.

  8. Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction.

    PubMed

    Ahmad, Ijaz; Huang, Lingli; Hao, Haihong; Sanders, Pascal; Yuan, Zonghui

    2016-01-01

    Among veterinary drugs, antibiotics are frequently used. The true mean of antibiotic treatment is to administer dose of drug that will have enough high possibility of attaining the preferred curative effect, with adequately low chance of concentration associated toxicity. Rising of antibacterial resistance and lack of novel antibiotic is a global crisis; therefore there is an urgent need to overcome this problem. Inappropriate antibiotic selection, group treatment, and suboptimal dosing are mostly responsible for the mentioned problem. One approach to minimizing the antibacterial resistance is to optimize the dosage regimen. PK/PD model is important realm to be used for that purpose from several years. PK/PD model describes the relationship between drug potency, microorganism exposed to drug, and the effect observed. Proper use of the most modern PK/PD modeling approaches in veterinary medicine can optimize the dosage for patient, which in turn reduce toxicity and reduce the emergence of resistance. The aim of this review is to look at the existing state and application of PK/PD in veterinary medicine based on in vitro, in vivo, healthy, and disease model. PMID:26989688

  9. Design, optimization and evaluation of a "smart" pixel sensor array for low-dose digital radiography

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Xinghui; Ou, Hai; Chen, Jun

    2016-04-01

    Amorphous silicon (a-Si:H) thin-film transistors (TFTs) have been widely used to build flat-panel X-ray detectors for digital radiography (DR). As the demand for low-dose X-ray imaging grows, a detector with high signal-to-noise-ratio (SNR) pixel architecture emerges. "Smart" pixel is intended to use a dual-gate photosensitive TFT for sensing, storage, and switch. It differs from a conventional passive pixel sensor (PPS) and active pixel sensor (APS) in that all these three functions are combined into one device instead of three separate units in a pixel. Thus, it is expected to have high fill factor and high spatial resolution. In addition, it utilizes the amplification effect of the dual-gate photosensitive TFT to form a one-transistor APS that leads to a potentially high SNR. This paper addresses the design, optimization and evaluation of the smart pixel sensor and array for low-dose DR. We will design and optimize the smart pixel from the scintillator to TFT levels and validate it through optical and electrical simulation and experiments of a 4x4 sensor array.

  10. Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction

    PubMed Central

    Ahmad, Ijaz; Huang, Lingli; Hao, Haihong; Sanders, Pascal; Yuan, Zonghui

    2016-01-01

    Among veterinary drugs, antibiotics are frequently used. The true mean of antibiotic treatment is to administer dose of drug that will have enough high possibility of attaining the preferred curative effect, with adequately low chance of concentration associated toxicity. Rising of antibacterial resistance and lack of novel antibiotic is a global crisis; therefore there is an urgent need to overcome this problem. Inappropriate antibiotic selection, group treatment, and suboptimal dosing are mostly responsible for the mentioned problem. One approach to minimizing the antibacterial resistance is to optimize the dosage regimen. PK/PD model is important realm to be used for that purpose from several years. PK/PD model describes the relationship between drug potency, microorganism exposed to drug, and the effect observed. Proper use of the most modern PK/PD modeling approaches in veterinary medicine can optimize the dosage for patient, which in turn reduce toxicity and reduce the emergence of resistance. The aim of this review is to look at the existing state and application of PK/PD in veterinary medicine based on in vitro, in vivo, healthy, and disease model. PMID:26989688

  11. Optimal dose-finding designs with correlated continuous and discrete responses.

    PubMed

    Fedorov, Valerii; Wu, Yuehui; Zhang, Rongmei

    2012-02-10

    In dose-finding clinical studies, it is common that multiple endpoints are of interest. For instance, in phase I/II studies, efficacy and toxicity are often the primary endpoints, which are observed simultaneously and which need to be evaluated together. Motivated by this, we confine ourselves to bivariate responses and focus on the most analytically difficult case: a mixture of continuous and categorical responses. We adopt the bivariate probit dose-response model and quantify our goal by a utility function. We study locally optimal designs, two-stage optimal designs, and fully adaptive designs under different ethical and cost constraints in the experiments. We assess the performance of two-stage designs and fully adaptive designs via simulations. Our simulations suggest that the two-stage designs are as efficient as and may be more efficient than the fully adaptive designs if there is a moderate sample size in the initial stage. In addition, two-stage designs are easier to construct and implement and thus can be a useful approach in practice. PMID:22162014

  12. Modeling Focused Ultrasound Exposure for the Optimal Control of Thermal Dose Distribution

    PubMed Central

    Sassaroli, E.; Li, K. C. P.; O'Neill, B. E.

    2012-01-01

    Preclinical studies indicate that focused ultrasound at exposure conditions close to the threshold for thermal damage can increase drug delivery at the focal region. Although these results are promising, the optimal control of temperature still remains a challenge. To address this issue, computer-simulated ultrasound treatments have been performed. When the treatments are delivered without taking into account the cooling effect exerted by the blood flow, the resulting thermal dose is highly variable with regions of thermal damage, regions of underdosage close to the vessels, and areas in between these two extremes. When the power deposition is adjusted so that the peak thermal dose remains close to the threshold for thermal damage, the thermal dose is more uniformly distributed but under-dosage is still visible around the thermally significant vessels. The results of these simulations suggest that, for focused ultrasound, as for other delivery methods, the only way to control temperature is to adjust the average energy deposition to compensate for the presence of thermally significant vessels in the target area. By doing this, we have shown that it is possible to reduce the temperature heterogeneity observed in focused ultrasound thermal treatments. PMID:22593669

  13. Know your dose: RADDOSE

    PubMed Central

    Paithankar, Karthik S.; Garman, Elspeth F.

    2010-01-01

    The program RADDOSE is widely used to compute the dose absorbed by a macromolecular crystal during an X-ray diffraction experiment. A number of factors affect the absorbed dose, including the incident X-ray flux density, the photon energy and the composition of the macromolecule and of the buffer in the crystal. An experimental dose limit for macromolecular crystallography (MX) of 30 MGy at 100 K has been reported, beyond which the biological information obtained may be compromised. Thus, for the planning of an optimized diffraction experiment the estimation of dose has become an additional tool. A number of approximations were made in the original version of RADDOSE. Recently, the code has been modified in order to take into account fluorescent X-­ray escape from the crystal (version 2) and the inclusion of incoherent (Compton) scattering into the dose calculation is now reported (version 3). The Compton cross-section, although negligible at the energies currently commonly used in MX, should be considered in dose calculations for incident energies above 20 keV. Calculations using version 3 of RADDOSE reinforce previous studies that predict a reduction in the absorbed dose when data are collected at higher energies compared with data collected at 12.4 keV. Hence, a longer irradiation lifetime for the sample can be achieved at these higher energies but this is at the cost of lower diffraction intensities. The parameter ‘diffraction-dose efficiency’, which is the diffracted intensity per absorbed dose, is revisited in an attempt to investigate the benefits and pitfalls of data collection using higher and lower energy radiation, particularly for thin crystals. PMID:20382991

  14. Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy

    SciTech Connect

    Poulin, Eric; Fekete, Charles-Antoine Collins; Beaulieu, Luc; Létourneau, Mélanie; Fenster, Aaron; Pouliot, Jean

    2013-11-15

    Purpose: An innovative, simple, and fast method to optimize the number and position of catheters is presented for prostate and breast high dose rate (HDR) brachytherapy, both for arbitrary templates or template-free implants (such as robotic templates).Methods: Eight clinical cases were chosen randomly from a bank of patients, previously treated in our clinic to test our method. The 2D Centroidal Voronoi Tessellations (CVT) algorithm was adapted to distribute catheters uniformly in space, within the maximum external contour of the planning target volume. The catheters optimization procedure includes the inverse planning simulated annealing algorithm (IPSA). Complete treatment plans can then be generated from the algorithm for different number of catheters. The best plan is chosen from different dosimetry criteria and will automatically provide the number of catheters and their positions. After the CVT algorithm parameters were optimized for speed and dosimetric results, it was validated against prostate clinical cases, using clinically relevant dose parameters. The robustness to implantation error was also evaluated. Finally, the efficiency of the method was tested in breast interstitial HDR brachytherapy cases.Results: The effect of the number and locations of the catheters on prostate cancer patients was studied. Treatment plans with a better or equivalent dose distributions could be obtained with fewer catheters. A better or equal prostate V100 was obtained down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of prostate V100 and D90. Implantation errors up to 3 mm were acceptable since no statistical difference was found when compared to 0 mm error (p > 0.05). No significant difference in dosimetric indices was observed for the different combination of parameters within the CVT algorithm. A linear relation was found between the number of random points and the optimization time of the CVT algorithm. Because the

  15. A simple optimization approach for improving target dose homogeneity in intensity-modulated radiotherapy for sinonasal cancer

    PubMed Central

    Lu, Jia-Yang; Zhang, Ji-Yong; Li, Mei; Cheung, Michael Lok-Man; Li, Yang-Kang; Zheng, Jing; Huang, Bao-Tian; Zhang, Wu-Zhe

    2015-01-01

    Homogeneous target dose distribution in intensity-modulated radiotherapy (IMRT) for sinonasal cancer (SNC) is challenging to achieve. To solve this problem, we established and evaluated a basal-dose-compensation (BDC) optimization approach, in which the treatment plan is further optimized based on the initial plans. Generally acceptable initial IMRT plans for thirteen patients were created and further optimized individually by (1) the BDC approach and (2) a local-dose-control (LDC) approach, in which the initial plan is further optimized by addressing hot and cold spots. We compared the plan qualities, total planning time and monitor units (MUs) among the initial, BDC, LDC IMRT plans and volumetric modulated arc therapy (VMAT) plans. The BDC approach provided significantly superior dose homogeneity/conformity by 23%–48%/6%–9% compared with both the initial and LDC IMRT plans, as well as reduced doses to the organs at risk (OARs) by up to 18%, with acceptable MU numbers. Compared with VMAT, BDC IMRT yielded superior homogeneity, inferior conformity and comparable overall OAR sparing. The planning of BDC, LDC IMRT and VMAT required 30, 59 and 58 minutes on average, respectively. Our results indicated that the BDC optimization approach can achieve significantly better dose distributions with shorter planning time in the IMRT for SNC. PMID:26497620

  16. A case report of image-based dosimetry of bone metastases with Alpharadin ((223)Ra-dichloride) therapy: inter-fraction variability of absorbed dose and follow-up.

    PubMed

    Pacilio, Massimiliano; Ventroni, Guido; Cassano, Bartolomeo; Ialongo, Pasquale; Lorenzon, Leda; Di Castro, Elisabetta; Recine, Federica; Sternberg, Cora N; Mango, Lucio

    2016-02-01

    A 70-year-old man affected by bone metastases from castration resistant prostate cancer underwent Alpharadin ((223)Ra-dichloride) therapy (6 administrations of 50 kBq per kg i.v., once every 4 weeks). The inter-fraction variability of the absorbed dose to lesions was evaluated for four injections. Dosimetric assessments were performed following the MIRD approach and a recently published methodology. The mean absorbed dose and standard deviation for 4 lesions [mean (σ %)] were: 434 mGy (15%) and 516 mGy (21%) for the right and left humeral head, 1205 mGy (14%) and 781 mGy (8%) for the right and left glenoid. The estimated total absorbed dose after the whole treatment, considering also the relative-biological effectiveness of alpha particles (RBE = 5), yielded a D RBE range of 13-36 Gy. A good correlation between (99m)Tc and (223)Ra uptake was obtained (R (2) = 0.7613). The tumour-non-tumour (TNT) ratio of 8 lesions (those above, plus 4 additional), monitored by six (99m)Tc-MDP bone scans over a period of about 10 months, evidenced a TNT reduction in two lesions (-42 and -48 %), but in most lesions the TNT remained fairly constant, evidencing that (223)Ra-dichloride therapy tends to prevent further progression of osseous disease, leading to chronicity of the metastatic status. PMID:26613714

  17. Optimization of pre-sowing magnetic field doses through RSM in pea

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Ahmad, I.; Hussain, S. M.; Khera, R. A.; Bokhari, T. H.; Shehzad, M. A.

    2013-09-01

    Seed pre-sowing magnetic field treatment was reported to induce biochemical and physiological changes. In the present study, response surface methodology was used for deduction of optimal magnetic field doses. Improved growth and yield responses in the pea cultivar were achieved using a rotatable central composite design and multivariate data analysis. The growth parameters such as root and shoot fresh masses and lengths as well as yield were enhanced at a certain magnetic field level. The chlorophyll contents were also enhanced significantly vs. the control. The low magnetic field strength for longer duration of exposure/ high strength for shorter exposure were found to be optimal points for maximum responses in root fresh mass, chlorophyll `a' contents, and green pod yield/plant, respectively and a similar trend was observed for other measured parameters. The results indicate that the magnetic field pre-sowing seed treatment can be used practically to enhance the growth and yield in pea cultivar and response surface methodology was found an efficient experimental tool for optimization of the treatment level to obtain maximum response of interest.

  18. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  19. The optimal intravenous dose of midazolam after intravenous ketamine in healthy awake cats.

    PubMed

    Ilkiw, J E; Suter, C; McNeal, D; Farver, T B; Steffey, E P

    1998-02-01

    The effects of intravenous administration of variable-dose midazolam (0, 0.05, 0.075, 0.1, 0.3 and 0.5 mg/kg) and ketamine (3 mg/kg) were studied in twenty-four healthy unmedicated cats from time of administration until full recovery. End-points were chosen to determine the optimal dose to allow a short period of restraint without noxious stimuli, a short period of restraint with noxious stimuli and endotracheal intubation. Recovery characteristics, as well as undesirable behaviours observed during recovery, were also recorded. The dose of midazolam to achieve lateral recumbency with head down was found to be 0.016 mg/kg in 50% of the population (ED50) and 0.054 mg/kg in 95% (ED95) of the population. A midazolam dose of 0.286 mg/kg was required to prevent conscious perception of a stimulus to the ulnar nerve in 50% of the population and 0.652 mg/kg in 95% of the population. The ED50 and ED95 of midazolam required to prevent swallowing in response to a laryngoscope placed on the back of the tongue were found to be 0.265 mg/kg and 0.583 mg/kg, respectively. The ED50 doses of 0.265 mg/kg for intubation and 0.286 mg/kg for restraint with noxious stimulation were close to the tested dose of 0.3 mg/kg. At that dose, the lack of responses lasted 3.67 +/- 2.27 min for laryngoscope and 2.50 +/- 2.20 min for ulnar nerve stimulation, with recovery to walking with ataxia taking 41.50 +/- 15.18 min and complete recovery taking 3.6 +/- 1.3 h. The predominant behavioural pattern during recovery was found to be normal, but some cats also exhibited abnormal behavioural patterns. Nine of the twelve cats exhibited an abnormal arousal state, with 4 being restless and 5 being sedated. Seven of the twelve cats exhibited an abnormal behaviour when approached, with three of the cats being more difficult to approach and four of the cats being easier to approach. Eight of the twelve cats exhibited an abnormal behavioural pattern when restrained, with the cats equally divided between more

  20. Expected treatment dose construction and adaptive inverse planning optimization: Implementation for offline head and neck cancer adaptive radiotherapy

    SciTech Connect

    Yan Di; Liang Jian

    2013-02-15

    Purpose: To construct expected treatment dose for adaptive inverse planning optimization, and evaluate it on head and neck (h and n) cancer adaptive treatment modification. Methods: Adaptive inverse planning engine was developed and integrated in our in-house adaptive treatment control system. The adaptive inverse planning engine includes an expected treatment dose constructed using the daily cone beam (CB) CT images in its objective and constrains. Feasibility of the adaptive inverse planning optimization was evaluated retrospectively using daily CBCT images obtained from the image guided IMRT treatment of 19 h and n cancer patients. Adaptive treatment modification strategies with respect to the time and the number of adaptive inverse planning optimization during the treatment course were evaluated using the cumulative treatment dose in organs of interest constructed using all daily CBCT images. Results: Expected treatment dose was constructed to include both the delivered dose, to date, and the estimated dose for the remaining treatment during the adaptive treatment course. It was used in treatment evaluation, as well as in constructing the objective and constraints for adaptive inverse planning optimization. The optimization engine is feasible to perform planning optimization based on preassigned treatment modification schedule. Compared to the conventional IMRT, the adaptive treatment for h and n cancer illustrated clear dose-volume improvement for all critical normal organs. The dose-volume reductions of right and left parotid glands, spine cord, brain stem and mandible were (17 {+-} 6)%, (14 {+-} 6)%, (11 {+-} 6)%, (12 {+-} 8)%, and (5 {+-} 3)% respectively with the single adaptive modification performed after the second treatment week; (24 {+-} 6)%, (22 {+-} 8)%, (21 {+-} 5)%, (19 {+-} 8)%, and (10 {+-} 6)% with three weekly modifications; and (28 {+-} 5)%, (25 {+-} 9)%, (26 {+-} 5)%, (24 {+-} 8)%, and (15 {+-} 9)% with five weekly modifications. Conclusions

  1. Green Synthesis of Silver Nanorods and Optimization of Its Therapeutic Cum Toxic Dose.

    PubMed

    Suganya, T R; Devasena, T

    2015-12-01

    Germinated Fenugreek seeds are relatively rich in flavonoids and polyphenols than dry seeds. Therefore, germinated fenugreek seeds possess better pharmacological activities. We have used an aqueous extract of germinated fenugreek seeds to reduce silver nitrate into nanoscale silver rods. The silver nanorods showed Surface Plasmon peak at 450 nm as revealed from UV visible spectrum. Field Emission Scanning Electron Microscopy images revealed the monodispersity and rod morphology. X ray diffraction spectrum revealed the FCC crystal structure of nanorods. Fourier transform infrared spectroscopy peaks revealed the interaction between the phytochemicals of germinated fenugreek seeds and the silver nanorods. Characterization studies reveal the validation of the proposed green synthesis protocol to produce monodispersed silver nanorods with phytochemical capping. The phytosynthesized silver nanorods exhibited anticancer activity in skin cancer cell line, which may be due to its nanoscale dimension and the surface functionalization. For the first time, we have optimized the therapeutic cum toxic dose of phytostabilized silver nanorods using skin cancer cell model. PMID:26682379

  2. Optimal dosing of cancer chemotherapy using model predictive control and moving horizon state/parameter estimation.

    PubMed

    Chen, Tao; Kirkby, Norman F; Jena, Raj

    2012-12-01

    Model predictive control (MPC), originally developed in the community of industrial process control, is a potentially effective approach to optimal scheduling of cancer therapy. The basis of MPC is usually a state-space model (a system of ordinary differential equations), whereby existing studies usually assume that the entire states can be directly measured. This paper aims to demonstrate that when the system states are not fully measurable, in conjunction with model parameter discrepancy, MPC is still a useful method for cancer treatment. This aim is achieved through the application of moving horizon estimation (MHE), an optimisation-based method to jointly estimate the system states and parameters. The effectiveness of the MPC-MHE scheme is illustrated through scheduling the dose of tamoxifen for simulated tumour-bearing patients, and the impact of estimation horizon and magnitude of parameter discrepancy is also investigated. PMID:22739208

  3. Optimal Doses of Methotrexate Combined with Anti-TNF Therapy to Maintain Clinical Remission in Inflammatory Bowel Disease

    PubMed Central

    Rubin, David T

    2015-01-01

    Background and aims: Methotrexate (MTX) is sometimes used as part of combination therapy for the treatment of inflammatory bowel disease [IBD]; however, the optimal MTX dose for combination therapy has not been established. This study compared the efficacy of lower-dose and higher-dose MTX with anti tumor necrosis factor alpha (anti-TNF) therapy among IBD patients. Methods: Retrospective chart review was performed of 88 IBD patients at our center between 2010 and 2013. Low-dose MTX was defined as ≤ 12.5mg/week and high-dose MTX as 15–25mg/week. Patients who met the criteria for clinical remission [Harvey-Bradshaw Index ≤ 4, Simple Clinical Colitis Activity Index ≤ 2] at baseline were followed for up to 42 months. Chart review occurred in 6-month intervals. The primary outcome was consecutive months in remission prior to relapse. Secondary outcomes included other indicators of worsening disease [endoscopic inflammation, steroid use, therapy escalation/addition, or surgery] and adverse events. Regression analysis and Kaplan–Meier survival analysis were completed. Results: We identified 73 [83%] dual-therapy patients, of whom 32 low-dose and 14 high-dose individuals achieved remission. When compared with high-dose patients, low-dose patients were more likely to relapse [log-rank test, p < 0.01]. Secondary indicators of worsening disease occurred during 34.4% of low-dose review periods and 31.4% of high-dose review periods [p = 0.67]; 3/52 [6%] low-dose patients and 3/21 [14%] high-dose patients [p = 0.34] discontinued MTX therapy due to adverse events. Conclusions: When combined with anti-TNF therapy, MTX at doses of >12.5mg/week was more effective at maintaining clinical remission than lower doses. These findings will guide management of combination therapy in IBD patients. PMID:25616487

  4. HOW RELIABLE IS 24 HOUR SERUM LITHIUM LEVEL AFTER A TEST DOSE OF LITHIUM IN PREDICTING OPTIMAL LITHIUM DOSE?

    PubMed Central

    Kuruvilla, K.; Shaji, K.S.

    1989-01-01

    SUMMARY 57% of a group of 35 patients treated with Lithium Carbonate at dosages predicted by the nomogram suggested by Cooper et al (1973) failed to reach therapeutic levels of serum lithium. This finding casts serious doubts on the usefulness of the claim by Cooper et al (1973 & 1976) that 24 hour serum lithium level after a test dose of 600 mg. lithium can predict the daily lithium dose. PMID:21927360

  5. Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models

    NASA Astrophysics Data System (ADS)

    Taranenko, Valery; Xu, X. George

    2008-03-01

    Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry,