Science.gov

Sample records for absorbent glass mat

  1. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  2. Nonwoven glass fiber mat reinforces polyurethane adhesive

    NASA Technical Reports Server (NTRS)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  3. A field operational test on valve-regulated lead-acid absorbent-glass-mat batteries in micro-hybrid electric vehicles. Part II. Results based on multiple regression analysis and tear-down analysis

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Karspeck, T.; Ott, C.; Weirather-Koestner, D.; Stoermer, A. O.

    2011-03-01

    In the first part of this work [1] a field operational test (FOT) on micro-HEVs (hybrid electric vehicles) and conventional vehicles was introduced. Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology and flooded batteries were applied. The FOT data were analyzed by kernel density estimation. In this publication multiple regression analysis is applied to the same data. Square regression models without interdependencies are used. Hereby, capacity loss serves as dependent parameter and several battery-related and vehicle-related parameters as independent variables. Battery temperature is found to be the most critical parameter. It is proven that flooded batteries operated in the conventional power system (CPS) degrade faster than VRLA-AGM batteries in the micro-hybrid power system (MHPS). A smaller number of FOT batteries were applied in a vehicle-assigned test design where the test battery is repeatedly mounted in a unique test vehicle. Thus, vehicle category and specific driving profiles can be taken into account in multiple regression. Both parameters have only secondary influence on battery degradation, instead, extended vehicle rest time linked to low mileage performance is more serious. A tear-down analysis was accomplished for selected VRLA-AGM batteries operated in the MHPS. Clear indications are found that pSoC-operation with periodically fully charging the battery (refresh charging) does not result in sulphation of the negative electrode. Instead, the batteries show corrosion of the positive grids and weak adhesion of the positive active mass.

  4. A field operational test on valve-regulated lead-acid absorbent-glass-mat batteries in micro-hybrid electric vehicles. Part I. Results based on kernel density estimation

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Karspeck, T.; Ott, C.; Weckler, M.; Stoermer, A. O.

    2011-03-01

    In March 2007 the BMW Group has launched the micro-hybrid functions brake energy regeneration (BER) and automatic start and stop function (ASSF). Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology are applied in vehicles with micro-hybrid power system (MHPS). In both part I and part II of this publication vehicles with MHPS and AGM batteries are subject to a field operational test (FOT). Test vehicles with conventional power system (CPS) and flooded batteries were used as a reference. In the FOT sample batteries were mounted several times and electrically tested in the laboratory intermediately. Vehicle- and battery-related diagnosis data were read out for each test run and were matched with laboratory data in a data base. The FOT data were analyzed by the use of two-dimensional, nonparametric kernel estimation for clear data presentation. The data show that capacity loss in the MHPS is comparable to the CPS. However, the influence of mileage performance, which cannot be separated, suggests that battery stress is enhanced in the MHPS although a battery refresh function is applied. Anyway, the FOT demonstrates the unsuitability of flooded batteries for the MHPS because of high early capacity loss due to acid stratification and because of vanishing cranking performance due to increasing internal resistance. Furthermore, the lack of dynamic charge acceptance for high energy regeneration efficiency is illustrated. Under the presented FOT conditions charge acceptance of lead-acid (LA) batteries decreases to less than one third for about half of the sample batteries compared to new battery condition. In part II of this publication FOT data are presented by multiple regression analysis (Schaeck et al., submitted for publication [1]).

  5. Solar-energy absorber: Active infrared (IR) trap without glass

    NASA Technical Reports Server (NTRS)

    Brantley, L. W., Jr.

    1974-01-01

    Absorber efficiency can be improved to 90% by removing glass plates and using infrared traps. Absorber configuration may be of interest to manufacturers of solar absorbers and to engineers and scientists developing new sources of energy.

  6. Erbium concentration dependent absorbance in tellurite glass

    SciTech Connect

    Sazali, E. S. Rohani, M. S. Sahar, M. R. Arifin, R. Ghoshal, S. K. Hamzah, K.

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  7. Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen

    An alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte with high ionic conductivity (10 -2 S cm -1) at room temperature has been prepared and applied to solid-state primary Zn-air batteries. The electrolyte shows excellent mechanical strength. The electrochemical characteristics of the batteries were experimentally investigated by means of ac impedance spectroscopy and galvanostatic discharge. The results indicate that the PEO-PVA-glass-fibre-mat composite polymer electrolyte is a promising candidate for application in alkaline primary Zn-air batteries.

  8. Training traditional birth attendants to use misoprostol and an absorbent delivery mat in home births.

    PubMed

    Prata, Ndola; Quaiyum, Md Abdul; Passano, Paige; Bell, Suzanne; Bohl, Daniel D; Hossain, Shahed; Azmi, Ashrafi Jahan; Begum, Mohsina

    2012-12-01

    A 50-fold disparity in maternal mortality exists between high- and low-income countries, and in most contexts, the single most common cause of maternal death is postpartum hemorrhage (PPH). In Bangladesh, as in many other low-income countries, the majority of deliveries are conducted at home by traditional birth attendants (TBAs) or family members. In the absence of skilled birth attendants, training TBAs in the use of misoprostol and an absorbent delivery mat to measure postpartum blood loss may strengthen the ability of TBAs to manage PPH. These complementary interventions were tested in operations research among 77,337 home births in rural Bangladesh. The purpose of this study was to evaluate TBAs' knowledge acquisition, knowledge retention, and changes in attitudes and practices related to PPH management in home births after undergoing training on the use of misoprostol and the blood collection delivery mat. We conclude that the training was highly effective and that the two interventions were safely and correctly used by TBAs at home births. Data on TBA practices indicate adherence to protocol, and 18 months after the interventions were implemented, TBA knowledge retention remained high. This program strengthens the case for community-based use of misoprostol and warrants consideration of this intervention as a potential model for scale-up in settings where complete coverage of skilled birth attendants (SBAs) remains a distant goal. PMID:22921713

  9. Waste glass as absorbent for thin layer chromatography (TLC).

    PubMed

    Pant, Deepak

    2009-07-01

    This study shows that glass powder of 200-300 mesh size range can be used as an absorbent for thin layer chromatography without adding any binder provided its uniformity is improved by a suitable thermal treatment. For this purpose TLC plates of the said mesh size range glass powder are heated thermally in a muffle furnace at a temperature of 650 degrees C for a period of 3 h. PMID:19375296

  10. Application of glass-fiber reinforced plastic (GRP) mud-mats for Daria-A platform

    SciTech Connect

    Bertorelli, D.; Spessa, A.

    1994-12-31

    A review of the experience gained with glass-fiber reinforced plastic (GRP) mud-mat materials used for the Garibaldi-C jacket, in the Adriatic sea, has shown that this solution can result in substantial cost savings. Therefore, Agip has investigated a further use of GRP mud-mats for the Daria-A platform as a means of reducing the lifting weight of the jacket and, moreover, to negate the requirement for additional buoyancy tanks during the free flotation and upending phases. Two possible solutions, the ``pultrusion`` and the ``lamination`` techniques, have been investigated to fabricate sandwich panels for the mud-mats. In this paper these two technologies are discussed with respect to their application to the construction and they are compared on a performance and cost basis.

  11. Quick, stable, safe and economical preheating of glass mat reinforced thermoplastics in a contact heating oven

    SciTech Connect

    Michaeli, W.; Starke, J.

    1993-12-31

    Glass mat reinforced thermoplastics (GMT) which belong to the group of sheet thermoplastic composites (STC) are processed in compression moulding for structural parts. Before moulding the material, it has to be preheated currently by IR-radiation or by air convection. Using a contact heating oven, preheating can be speeded up combined with a significant higher energetic efficiency. But up to now, operation using the contact heating method failed due to the tackiness of the matrix material in solid state. IKV has recently created a solution for the problem of tackiness by transporting the glass mat reinforced material between two belts coated with PTFE through a contact oven. This preheating line includes a shock-cooler to quickly cool down a thin layer of the GMT`s surface. By this, separating the GMT from the PTFE without leaving particles on the belt is possible. The contact heating method not only includes the advantage of a significant higher energetic efficiency, but also benefits in processing. The risk of matrix degradation is distinctly reduced in comparison to other preheating methods, since the material does not expand in thickness for more than 200% and therefore air cannot come intensively into contact with the material. Consequently, the contact preheating is well qualified for matrix materials susceptible for oxidation. In this paper the physical coherence, the adhesion and the cohesion of GMT, are, described. Furthermore experimental results with a contact preheating line are presented.

  12. Replacement of asphalt in glass-mat roofing shingles. Final report, March 1980-March 1982

    SciTech Connect

    Bastian, E.J. Jr.; McCandlish, E.F.K.; Sieling, F.W.

    1982-05-01

    Up to 50% of the asphalt now used in glass-mat shingles may be replaceable by increasing the mineral filler content and/or extending the asphalt with elemental sulfur. Highly filled, lab-made shingles containing asphalt flux perform acceptably in fire tests, slide tests, blister tests, granule adhesion, and freeze-thaw cracking tests. They have high stain and scuff potential and are too limp for convenient application around 110/sup 0/F. Lab-made shingles containing asphalt saturant are satisfactory in most respects, but they are still too limp for high temperature application. Various methods to stiffen highly filled shingles were tried. The most promising method is the use of two lightweight glass mats, laminated together with asphalt. Shingles made in this way have handling properties superior to conventional shingles and are economically feasible. In the area of replacement of asphalt with sulfur, five small-scale plant trials produced shingles which, after a year of outdoor exposure, are satisfactory. On the basis of preliminary measurements, no important difference in tensile or flexural properties between asphalt and sulfur/asphalt shingles is expected. In Weather-Ometer tests, sulfur/asphalt tends to have lower durability than conventional coating. This is confirmed by outside weathering of sulfur/asphalt films. By choosing the correct asphalt softening point and correct filler level, sulfur/asphalt/filler can have equal durability to conventional asphalt/filler combinations.

  13. Pressure influence on the structural characteristics of modified absorptive glass mat separators: A standard contact porosimetry study

    NASA Astrophysics Data System (ADS)

    Burashnikova, M. M.; Khramkova, T. S.; Kazarinov, I. A.; Shmakov, S. L.

    2015-09-01

    The article presents a comparative analysis of the structural characteristics of absorptive glass mats manufactured by "Hollingsworth & Vose" (a 2.8 mm thickness) and "Bernard Dumas" (a 3.0 mm thickness) modified by impregnation with polymeric emulsions based on polyvinylidene fluoride, a polyvinylpyrrolidone styrene copolymer, and polytetrafluoroethylene, by means of standard contact porosimetry. The key study is influence of features of the porous structure on the compression properties, the rate of wicking, and the oxygen cycle efficiency in lead-acid battery mock-ups under several plate-group compression pressures. It is found that the treatment of the absorptive glass mat separators with polymeric emulsions leads to redistribution of their pores by size. An increased pressure in the electrode unit insignificantly changes the pore structure of the modified absorptive glass mat separators, and the oxygen cycle efficiency rises in comparison with unmodified separators.

  14. Developments in absorptive glass mat separators for cycling applications and 36 V lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Toniazzo, V.; Lambert, U.

    The major markets for valve-regulated lead-acid (VRLA) batteries are undergoing a radical upheaval. In particular, the telecommunications industry requires more reliable power supplies, and the familiar 12 V electrical system in cars will probably be soon replaced by a 36/42 V system, or by other electrical systems if part of the automotive market is taken over by hybrid electrical vehicles (HEVs). In order to meet these new challenges and enable VRLA batteries to provide a satisfactory life in float and cycling applications in the telecommunication field, or in the high-rate-partial-state-of-charge service required by both 36/42 V automobiles and HEVs, the lead-acid battery industry has to improve substantially the quality of present VRLA batteries based on absorptive glass mat (AGM) technology. Therefore, manufacturing steps and cell components have to be optimized, especially AGM separators as these are key components for better production yields and battery performance. This paper shows how the optimal segregation of the coarse and fine fibres in an AGM separator structure can improve greatly the properties of the material. The superior capillarity, springiness and mechanical properties of the 100% glass Amerglass multilayer separator compared with commercial monolayer counterparts with the same specific surface-area is highlighted.

  15. A multi-layered approach for absorptive glass-mat separators

    NASA Astrophysics Data System (ADS)

    Ferreira, A. L.

    The traditional method of manufacturing absorptive glass mats (AGMs) for valve-regulated lead-acid (VRLA) batteries is to blend two or more types of fibres together in an aqueous acidic solution and deposit this blend on to either a moving endless wire or a roto-former (another version of an endless wire). The sheet acquires consistency as the water is withdrawn; it is then pressed and dried against heated drums. The methods of fibre dispersion and deposition can be changed so that the different constituent fibre types of an AGM separator are processed separately in distinct and separate layers. This fibre segregation results in the enhancement of some key characteristics of the separator and thus brings some very definite advantages to the performance of VRLA batteries, e.g., the ability to deliver higher currents at higher discharge rates. Also, important AGM characteristics, such as wicking, porosity/pore-size and stratification, are radically modified by adoption of the multi-layered AGM design. As a consequence, the high-rate and cycling performances of VRLA batteries are equally affected.

  16. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-11-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm-1), high Li+ ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost.

  17. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries

    PubMed Central

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-01-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm−1), high Li+ ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost. PMID:24216756

  18. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries.

    PubMed

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-01-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm(-1)), high Li(+) ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost. PMID:24216756

  19. Constitutive modelling of creep in a long fiber random glass mat thermoplastic composite

    NASA Astrophysics Data System (ADS)

    Dasappa, Prasad

    The primary objective of this proposed research is to characterize and model the creep behaviour of Glass Mat Thermoplastic (GMT) composites under thermo-mechanical loads. In addition, tensile testing has been performed to study the variability in mechanical properties. The thermo-physical properties of the polypropylene matrix including crystallinity level, transitions and the variation of the stiffness with temperature have also been determined. In this work, the creep of a long fibre GMT composite has been investigated for a relatively wide range of stresses from 5 to 80 MPa and temperatures from 25 to 90°C. The higher limit for stress is approximately 90% of the nominal tensile strength of the material. A Design of Experiments (ANOVA) statistical method was applied to determine the effects of stress and temperature in the random mat material which is known for wild experimental scatter. Two sets of creep tests were conducted. First, preliminary short-term creep tests consisting of 30 minutes creep followed by recovery were carried out over a wide range of stresses and temperatures. These tests were carried out to determine the linear viscoelastic region of the material. From these tests, the material was found to be linear viscoelastic up-to 20 MPa at room temperature and considerable non-linearities were observed with both stress and temperature. Using Time-Temperature superposition (TTS) a long term master curve for creep compliance for up-to 185 years at room temperature has been obtained. Further, viscoplastic strains were developed in these tests indicating the need for a non-linear viscoelastic viscoplastic constitutive model. The second set of creep tests was performed to develop a general non-linear viscoelastic viscoplastic constitutive model. Long term creep-recovery tests consisting of 1 day creep followed by recovery has been conducted over the stress range between 20 and 70 MPa at four temperatures: 25°C, 40°C, 60°C and 80°C. Findley's model

  20. Progress In The Commercialization Of A Carbonaceous Solar Selective Absorber On A Glass Substrate

    NASA Astrophysics Data System (ADS)

    Garrison, John D.; Haiad, J. Carlos; Averett, Anthony J.

    1987-11-01

    A carbonaceous solar selective absorber is formed on a glass substrate by coating the glass with a silver infrared reflecting layer, electroplating a thin nickel catalyst coating on the silver using very special plating conditions, and then exposing the nickel coated, silvered glass substrate to acetylene at a temperature of about 400 - 500°C for about five minutes. A fairly large plater and conveyor oven have been constructed and operated for the formation of these solar selective absorbers in order to study the formation of this absorber by a process which might be used commercially. Samples of this selective absorber on a glass substrate have been formed using the plater and conveyor oven. The samples, which have the best optical properties, have an absorptance of about 0.9 and an emittance of about 0.03. Excessive decomposition of the acetylene by the walls of the oven at higher temperatures with certain wall materials and oven geometries can prevent the formation of good selective absorbers. Procedures for preventing excessive decomposition of the acetylene and the knowledge gained so far by these studies is discussed.

  1. Absorbed dose measurements on external surface of Kosmos-satellites with glass thermoluminescent detectors.

    PubMed

    Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I

    1989-01-01

    In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation. PMID:11537297

  2. Fundamental-frequency-absorbed oxyfluoride glass in a high-power laser.

    PubMed

    Hou, Chaoqi; Li, Weinan; Wang, Pengfei; Lu, Min; Peng, Bo; Guo, Haitao; Gao, Fei; Cui, Xiaoxia

    2016-04-01

    A high-power third-harmonic laser faces challenges in the filtering remnant unconverted fundamental frequency, which is from the frequency converting crystal. In this work, a novel fundamental-frequency-absorbed oxyfluoride glass has been prepared, which provides a possible option to solve the problem. By being doped with Fe2+ ion, the glass shows strong absorption property at 1053 nm, and the glass's transmittances at 351 and 1053 nm are stable with changing the laser power or increasing the irradiation times under high-power laser irradiation. Meanwhile, the laser-induced damage threshold of the glass is 12.5  J/cm2 at 351 nm, which is two times higher than that of fused silica whose threshold is 6.2  J/cm2 in the same testing condition. The glass also exhibits a higher laser-induced damage threshold as well as 36.6  J/cm2 at its absorption wavelength of 1053 nm. The results indicate that this glass is promising as a color-separation optic, thus allowing a novel design for the final optics assembly in an inertial confinement fusion laser system. PMID:27139668

  3. Three-layered absorptive glass mat separator with membrane for application in valve-regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Naidenov, V.; Pavlov, D.; Cherneva, M.

    During charge and discharge of the lead-acid cell equal amounts of H 2SO 4 participate in the reactions at the two types of plates (electrodes). However, the charge and discharge reactions at the positive plates involve also 2 mol of water per every mole of reacted PbO 2. Consequently, a concentration difference appears in the electrolyte between the two electrodes (horizontal stratification), which affects the reversibility of the processes at the two electrodes and thus the cycle life of the battery. The present paper proposes the use of a three-layered absorptive glass mat (AGM) separator, the middle layer playing the role of a membrane that divides (separates) the anodic and cathodic electrolyte spaces, and controls the exchange rates of H 2SO 4, H + ions, O 2 and H 2O flows between the two electrode spaces. To be able to perform this membrane function, the thinner middle AGM layer (0.2 mm) is processed with an appropriate polymeric emulsion to acquire balanced hydrophobic/hydrophilic properties, which sustain constant H 2SO 4 concentration in the two electrode spaces during cycling. Three types of polymeric emulsions have been used for treatment of the membrane: (a) polyvinylpyrollidonestyrene (MPVS), (b) polyvinylpyrrolidone "Luviskol" (MPVP), or (c) polytetrafluorethylene modified with Luviskol (MMAGM). It is established experimentally that the MMAGM membrane maintains equal acid concentration in the anodic and cathodic spaces (no horizontal stratification) during battery cycling and hence ensures longer cycle life performance.

  4. New Co-containing glass ceramics saturable absorbers for 1.5-μm solid state lasers

    NASA Astrophysics Data System (ADS)

    Malyarevich, Alexander M.; Denisov, Igor A.; Yumashev, Konstantin V.; Chuvaeva, Tamara I.; Dymshits, Olga S.; Onushchenko, Alexei A.; Zhilin, Alexander A.

    2001-03-01

    New saturable absorber Q-switch for 1.54 %mum Er: glass laser is present. The saturable absorber is transparent glass ceramic containing magnesium-aluminum spinel nanocrystallites doped with tetrahedrally coordinated Co2+ ions. Q-switched pulses of up to 5.5 mJ in energy and 80 ns in duration at 1.54 micrometers were achieved. Relaxation time of the 4A2 to 4T1(4F) transition bleaching was measured to be (450+/- 150)ns. Ground-state absorption cross-sections at 1.54 micrometers wavelength were estimated to be (3.2+/- 0.4)*10-19 cm2 and (5.0+/- 0.6)X10-20 cm2, respectively. Results of study absorption and luminescence spectra of different glass ceramics on the base of magnesium-aluminum, zinc-aluminum, lithium-aluminum spinel nanocrystallites doped with tetrahedrally coordinated Co2+ ions are also analyzed.

  5. Micro-structural design and function of an improved absorptive glass mat (AGM) separator for valve-regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Kishimoto, K.; Sugiyama, S.; Sakaguchi, S.

    Two important properties of absorptive glass mat (AGM) separators are examined in order to design optimum separators for advanced valve-regulated lead-acid (VRLA) batteries. Acid stratification in the separator depends on its micro-glass-fibre diameter, and it is found that the extent of stratification can be estimated based on hydrodynamics theory. Decreasing the plate-group pressure of the separator in the wetted state is also investigated, and it is considered that the phenomenon is caused by the balance between the fibre strength and the surface tension of acid solution. Given these results, the way to design AGM separators according to purpose has been identified. Accordingly, a new AGM separator has been developed and this functions both to suppress stratification and to maintain plate-group pressure.

  6. Experimental evidence for an absorbing phase transition underlying yielding of a soft glass

    NASA Astrophysics Data System (ADS)

    Nagamanasa, K. Hima; Gokhale, Shreyas; Sood, A. K.; Ganapathy, Rajesh

    2014-03-01

    A characteristic feature of solids ranging from foams to atomic crystals is the existence of a yield point, which marks the threshold stress beyond which a material undergoes plastic deformation. In hard materials, it is well-known that local yield events occur collectively in the form of intermittent avalanches. The avalanche size distributions exhibit power-law scaling indicating the presence of self-organized criticality. These observations led to predictions of a non-equilibrium phase transition at the yield point. By contrast, for soft solids like gels and dense suspensions, no such predictions exist. In the present work, by combining particle scale imaging with bulk rheology, we provide a direct evidence for a non-equilibrium phase transition governing yielding of an archetypal soft solid - a colloidal glass. The order parameter and the relaxation time exponents revealed that yielding is an absorbing phase transition that belongs to the conserved directed percolation universality class. We also identified a growing length scale associated with clusters of particles with high Debye-Waller factor. Our findings highlight the importance of correlations between local yield events and may well stimulate the development of a unified description of yielding of soft solids.

  7. In-situ Curing Strain Monitoring of a Flat Plate Residual Stress Specimen Using a Chopped Stand Mat Glass/Epoxy Composite as Test Material

    NASA Astrophysics Data System (ADS)

    Jakobsen, J.; Skordos, A.; James, S.; Correia, R. G.; Jensen, M.

    2015-12-01

    The curing stresses in a newly proposed bi-axial residual stress testing configuration are studied using a chopped strand mat glass/epoxy specimen. In-situ monitoring of the curing is conducted using dielectric and fibre Bragg grating sensors. It is confirmed that a bi-axial residual stress state can be introduced in the specimens during curing and a quantification of its magnitude is presented. An alternative decomposition method used for converting the dielectric signal into a material state variable is proposed and good agreement with models found in the literature is obtained. From the cure cycles chosen it is suggested that any stress build up in the un-vitrified state is relaxed immediately and only stress build up in the vitrified state contributes to the residual stress state in the specimen.

  8. Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box-Behnken design.

    PubMed

    Gönen, Seza Özge; Erol Taygun, Melek; Aktürk, Ayşen; Küçükbayrak, Sadriye

    2016-10-01

    The current research was conducted to propose a nanocomposite material, which could be suitable to be used as a scaffold for bone tissue engineering applications. For this purpose, nanocomposite fibers of gelatin, poly(ε-caprolactone) (PCL), and bioactive glass were successfully fabricated via electrospinning process. In this context, response surface methodology based on a three-level, four-variable Box-Behnken design was adopted as an optimization tool to choose the most appropriate parameter settings to obtain the desired fiber diameter. The investigation, based on a second order polynomial model, focused on the analysis of the effect of both solution and processing parameters on the fiber diameter and its standard deviation. In optimum conditions (bioactive glass content of 7.5% (w/v), applied voltage of 25kV, tip-to-collector distance of 12.5cm, and flow rate of 1mL/h), the fiber diameter was found to be 584±337nm which was in good agreement with the predicted value by the developed models (523±290nm). Analytical tools such as scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and differential thermal analyzer were used for further evaluation of the optimized nanocomposite mat. The overall results showed that nanocomposite scaffolds could be promising candidates for tissue engineering applications. PMID:27287168

  9. Characterization of porous glass-ceramic material as absorber of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Kazmina, O.; Suslyaev, V.; Dushkina, M.; Semukhin, B.

    2015-04-01

    Investigations of a foam glass-ceramic material synthesized from raw siliceous earth material by the two-stage method at temperatures below 950°C have demonstrated the improvement of its physic mechanical properties in comparison with foam glass synthesized from glass cullet. This material actively interacts with microwaves and can be used for the development of protective screens reducing the adverse effect of microwaves on biological objects, anechoic chambers, and rooms with low level of electromagnetic background noise. Spectra of the transmission and absorption coefficients and of the complex dielectric permittivity for frequencies in the range 26-260 GHz are presented. The observed effects demonstrate the existence of regions with partial and total reflection arising on the glass-pore boundary and of the microwave interaction with ultradisperse carbon particles that remain after foaming with incomplete frothier transition from the soot to the gas phase.

  10. Absorptive glass mat separator surface modification and its influence on the heat generation in valve-regulated lead-acid battery

    NASA Astrophysics Data System (ADS)

    Drenchev, Boris; Dimitrov, Mitko; Boev, Victor; Aleksandrova, Albena

    2015-04-01

    This paper presents the results from a comparative study between two types of valve-regulated lead-acid battery cells, with uncoated and polymer composite coated absorptive glass mat (AGM) separators. The volt-ampere characteristics of the studied cells, recorded at different ambient temperatures, show that the cells with polymer coated separators have significantly lower overcharge (recombinant) current than the cells with conventional untreated AGM separator. During overcharge, the higher recombinant current in the cells with plain separator leads to higher cell temperature than that of the cells with polymer coated AGM separator. The possibility to avoid thermal runaway (TR) is also illustrated during polarization of the cells at 2.65 V. After 320 h, a conventional cell has C/4 current (trend to TR), while the cells with composite coating sustain low (C/26) constant current for long period of time (at least 650 h). The cycle life test indicates stable operation of the cells with coated separator, while the conventional cell reaches high recombinant current and thus, it is susceptible to thermal runaway phenomena.

  11. Gelled electrolytes for use in absorptive glass mat valve-regulated lead-acid (AGM VRLA) batteries working under 100% depth of discharge conditions

    NASA Astrophysics Data System (ADS)

    Tantichanakul, Titiporn; Chailapakul, Orawon; Tantavichet, Nisit

    2011-10-01

    Gelled electrolytes prepared from fumed silica for use in absorptive glass mat valve-regulated lead-acid (AGM VRLA) batteries and the effect of veratraldehyde addition on the electrochemical behavior and performance of AGM VRLA batteries are investigated. Cyclic voltammetry is used to investigate differences in the electrochemical behaviors of nongelled and gelled electrolytes and between gelled electrolytes with and without veratraldehyde. Battery performance is tested under 100% depth of discharge (100% DoD) conditions at both low- (0.1 C) and high- (1 C) rate discharges. The addition of silica or veratraldehyde does not affect the main reaction of the lead-acid batteries but tends to suppress the hydrogen evolution reaction. AGM VRLA batteries with gelled electrolytes have a higher discharge capacity and longer cycle life than the conventional nongel AGM VRLA batteries. The addition of 0.005% (w/v) veratraldehyde further improves battery performance, but higher (0.01%, w/v) veratraldehyde concentrations reduce it and correlate with the enhanced growth of lead sulfate crystals. The AGM VRLA battery prepared from a gelled electrolyte containing 0.005% (w/v) veratraldehyde provides the best battery performance in every operating temperature studied (0-60 °C).

  12. Effect of laser shock peening without absorbent coating on the mechanical properties of Zr-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong

    2015-12-01

    In this work, laser shock peening without absorbent coating (LSPwC) was employed to Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass in order to improve its mechanical properties. The phase structure and thermal properties of the as-cast and LSPwC treated samples were characterized by X-ray diffraction, transmission electron microscope and differential scanning calorimeter. Three-point bending fracture tests of vit1 were performed on universal testing machine at room temperature with loading rate of 0.1 mm/min. The results showed that LSPwC enhanced the plasticity of vit1, and the plastic deflection increased by 23%. This enhancement could be attributed to the generation of crystalline phase and more free volume as well as the complex residual stresses induced by LSPwC. The optical profiling test showed that the LSPwC increased the surface roughness of vit1. Scanning electron microscope measurements on the fracture surface of vit1 revealed that high dense vein patterns were formed on cross section of the LSPwC treated sample.

  13. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  14. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  15. Fabrication Of Ceramic Mats

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1991-01-01

    Process to make mats of fine zirconia filaments proposed. Ceramic mats formed by sintering mats of partially dried filaments extruded from slurry of ceramic powder, binder, and solvent. Mats of fine zirconia fibers easier to ball-mill than commercially available zirconia powder.

  16. Archean Microbial Mat Communities

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Thornton, Daniel C. O.; Pope, Michael C.; Olszewski, Thomas D.; Gong, Jian

    2011-05-01

    Much of the Archean record of microbial communities consists of fossil mats and stromatolites. Critical physical emergent properties governing the evolution of large-scale (centimeters to meters) topographic relief on the mat landscape are (a) mat surface roughness relative to the laminar sublayer and (b) cohesion. These properties can be estimated for fossil samples under many circumstances. A preliminary analysis of Archean mat cohesion suggests that mats growing in shallow marine environments from throughout this time had cohesions similar to those of modern shallow marine mats. There may have been a significant increase in mat strength at the end of the Archean.

  17. Effect of weight fraction of carbon black and number of plies of E-glass fiber to reflection loss of E-glass/ripoxy composite for radar absorbing structure (RAS)

    NASA Astrophysics Data System (ADS)

    Widyastuti, Ramadhan, Rizal; Ardhyananta, Hosta; Zainuri, Mochamad

    2013-09-01

    Nowadays, studies on investigating radar absorbing structure (RAS) using fiber reinforced polymeric (FRP) composite materials are becoming popular research field because the electromagnetic properties of FRP composites can be tailored effectively by just adding some electromagnetic powders, such as carbon black, ferrite, carbonyl iron, and etc., to the matrix of composites. The RAS works not only as a load bearing structure to hold the antenna system, but also has the important function of absorbing the in-band electromagnetic wave coming from the electromagnetic energy of tracking systems. In this study, E-glass fiber reinforced ripoxy resin composite was fabricated by blending the conductive carbon black (Ketjenblack EC300J) with the binder matrix of the composite material and maximizing the coefficient of absorption more than 90% (more than -10 dB) within the X-band frequency (8 - 12 GHz). It was measured by electrical conductivity (LCR meter) and vector network analyzer (VNA). Finally, the composite RAS with 0.02 weight fraction of carbon black and 4 plies of E-glass fiber showed thickness of 2.1 mm, electrical conductivity of 8.33 × 10-6 S/m, and maximum reflection loss of -27.123 dB, which can absorb more than 90% of incident EM wave throughout the entire X-band frequency range, has been developed.

  18. Mat2exo

    Energy Science and Technology Software Center (ESTSC)

    2012-09-11

    MAT2EXO is a program which translates mesh data from Matlab mat-file format to Exodus II format. This tool is the inverse of the commonly used tool exo2mat which translates Exodus II data to the Matlab mat-file format. These tools provide a means for preprocessing an Exodus II model file or postprocessing an Exodus II results file using Matlab

  19. Measurement of absorbed doses from X-ray baggage examinations to tooth enamel by means of ESR and glass dosimetry.

    PubMed

    Zhumadilov, Kassym; Stepanenko, Valeriy; Ivannikov, Alexander; Zhumadilov, Zhaxybay; Zharlyganova, Dinara; Toyoda, Shin; Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2008-11-01

    The contribution of radiation from X-ray baggage scans at airports on dose formation in tooth samples was investigated by electron spin resonance (ESR) dosimetry and by glass dosimetry. This was considered important, because tooth samples from population around the Semipalatinsk Nuclear Test Site (SNTS), Kazakhstan, had been transported in the past to Hiroshima University for retrospective dose assessment of these residents. Enamel samples and glass dosimeters were therefore examined at check-in time at Kansai airport (Osaka, Japan), Dubai airport (Dubai, United Arab Emirates) and Domodedovo airport (Moscow, Russia). These airports are on the route from Kazakhstan to Japan. Three different potential locations of the samples were investigated: in pocket (without X-ray scans), in a small bag (with four X-ray scans) and in large luggage (with two X-ray scans). The doses obtained by glass and ESR dosimetry methods were cross-compared. As expected, doses from X-ray examinations measured by glass dosimetry were in the microGy range, well below the ESR detection limit and also below the doses measured in enamel samples from residents of the SNTS. PMID:18648837

  20. Enhanced microwave absorption performance of lightweight absorber based on reduced graphene oxide and Ag-coated hollow glass spheres/epoxy composite

    NASA Astrophysics Data System (ADS)

    Wang, Junpeng; Sun, Yu; Chen, Wei; Wang, Tao; Xu, Renxin; Wang, Jun

    2015-04-01

    Using a combination of Ag-coated hollow glass spheres (HGS@Ag) and a small quantity of graphene sheets within the epoxy matrix, we have prepared a novel lightweight high efficiency microwave absorption composite. Compared with pure HGS@Ag and graphene composite, the -10 dB absorption bandwidth and the minimum reflection loss of the novel composite are improved. Reflection loss exceeding -20 dB is obtained for composites in a wide frequency range and the minimum reflection loss reaches -46 dB while bandwidth less than -10 dB can reach up to 4.1 GHz when an appropriate absorber thickness between 2 and 3.5 mm is chosen. The enhanced microwave absorption performance of the novel composite is due to the enhanced dielectric response, enhanced conductivity, and the trap of electromagnetic radiation with increased propagation paths by multiple reflections.

  1. Enhanced microwave absorption performance of lightweight absorber based on reduced graphene oxide and Ag-coated hollow glass spheres/epoxy composite

    SciTech Connect

    Wang, Junpeng; Sun, Yu; Chen, Wei; Wang, Tao; Xu, Renxin; Wang, Jun

    2015-04-21

    Using a combination of Ag-coated hollow glass spheres (HGS@Ag) and a small quantity of graphene sheets within the epoxy matrix, we have prepared a novel lightweight high efficiency microwave absorption composite. Compared with pure HGS@Ag and graphene composite, the −10 dB absorption bandwidth and the minimum reflection loss of the novel composite are improved. Reflection loss exceeding −20 dB is obtained for composites in a wide frequency range and the minimum reflection loss reaches −46 dB while bandwidth less than −10 dB can reach up to 4.1 GHz when an appropriate absorber thickness between 2 and 3.5 mm is chosen. The enhanced microwave absorption performance of the novel composite is due to the enhanced dielectric response, enhanced conductivity, and the trap of electromagnetic radiation with increased propagation paths by multiple reflections.

  2. 10  GHz pulse repetition rate Er:Yb:glass laser modelocked with quantum dot semiconductor saturable absorber mirror.

    PubMed

    Resan, B; Kurmulis, S; Zhang, Z Y; Oehler, A E H; Markovic, V; Mangold, M; Südmeyer, T; Keller, U; Hogg, R A; Weingarten, K J

    2016-05-10

    Semiconductor saturable absorber mirror (SESAM) modelocked high pulse repetition rate (≥10  GHz) diode-pumped solid-state lasers are proven as an enabling technology for high data rate coherent communication systems owing to their low noise and high pulse-to-pulse optical phase-coherence. Compared to quantum well, quantum dot (QD)-based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the first 10 GHz pulse repetition rate QD-SESAM modelocked laser at 1.55 μm, exhibiting 2 ps pulse width from an Er-doped glass oscillator (ERGO). The 10 GHz ERGO laser is modelocked with InAs/GaAs QD-SESAM with saturation fluence as low as 9  μJ/cm2. PMID:27168291

  3. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  4. ProMat

    Energy Science and Technology Software Center (ESTSC)

    2008-06-12

    ProMAT is a software tool for statistically analyzing data from enzyme-linked immunosorbent assay microarray experiments. The software estimates standard curves, sample protein concentrations and their uncertainties for multiple assays. ProMAT generates a set of comprehensive figures for assessing results and diagnosing process quality. The tool is available for Windows or Mac, and is distributed as open-source Java and R code

  5. Investigation of VEGGIE Root Mat

    NASA Technical Reports Server (NTRS)

    Subbiah, Arun M.

    2013-01-01

    VEGGIE is a plant growth facility that utilizes the phenomenon of capillary action as its primary watering system. A cloth made of Meta Aramid fiber, known as Nomex is used to wick water up from a reservoir to the bottom of the plants roots. This root mat system is intended to be low maintenance with no moving parts and requires minimal crew interface time. Unfortunately, the water wicking rates are inconsistent throughout the plant life cycle, thus causing plants to die. Over-wicking of water occurs toward the beginning of the cycle, while under-wicking occurs toward the middle. This inconsistency of wicking has become a major issue, drastically inhibiting plant growth. The primary objective is to determine the root cause of the inconsistent wicking through experimental testing. Suspect causes for the capillary water column to break include: a vacuum effect due to a negative pressure gradient in the water reservoir, contamination of material due to minerals in water and back wash from plant fertilizer, induced air bubbles while using syringe refill method, and material limitations of Nomex's ability to absorb and retain water. Experimental testing will be conducted to systematically determine the cause of under and over-wicking. Pressure gages will be used to determine pressure drop during the course of the plant life cycle and during the water refill process. A debubbler device will be connected to a root mat in order to equalize pressure inside the reservoir. Moisture and evaporation tests will simultaneously be implemented to observe moisture content and wicking rates over the course of a plant cycle. Water retention tests will be performed using strips of Nomex to determine materials wicking rates, porosity, and absorptivity. Through these experimental tests, we will have a better understanding of material properties of Nomex, as well as determine the root cause of water column breakage. With consistent test results, a forward plan can be achieved to resolve

  6. Biogeochemistry of Microbial Mats

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenizi, D. (Technical Monitor)

    2002-01-01

    The hierarchical organization of microbial ecosystems determines the rates of processes that shape Earth's environment, define the stage upon which major evolutionary events occurred, and create biosignatures in sediments and atmospheres. In cyanobacterial mats, oxygenic photosynthesis provides energy, organic substrates and oxygen to the ecosystem. Incident light changes with depth in the mat, both in intensity and spectral composition, and counteracting gradients of oxygen and sulfide shape the chemical microenvironment. A combination of benefits and hazards of light, oxygen and sulfide promotes the allocation of the various essential mat processes between light and dark periods and to various depths in the mat. Microliters produce hydrogen, small organic acids, nitrogen and sulfur species. Such compounds fuel a flow of energy and electrons in these ecosystems and thus shape interactions between groups of microorganisms. Coordinated observations of population distribution, abundance, and activity for an entire community are making fundamental questions in ecology accessible. These questions address those factors that sustain the remarkable diversity of microorganisms that are now being revealed by molecular techniques. These questions also target the processes that shape the various kinds of biosignatures that we will seek, both in ancient rocks from Earth and Mars, and in atmospheres of distant planets beyond our Solar System.

  7. BIOGEOCHEMICAL STUDIES OF PHOTOSYNTHETIC MICROBIAL MATS AND THEIR BIOTA

    NASA Technical Reports Server (NTRS)

    DesMarais, David; Discipulo, M.; Turk, K.; Londry, K. L.

    2005-01-01

    Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time. their biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self- sustaining, complete ecosystems in which light energy absorbed over a dial (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen, sulfur, and a host of other elements.

  8. Saturable absorber: transparent glass-ceramics based on a mixture of Co:β-Zn2SiO4 and Co:ZnO nanocrystals.

    PubMed

    Loiko, P; Dymshits, O S; Vitkin, V V; Skoptsov, N A; Zhilin, A A; Shemchuk, D V; Tsenter, M Ya; Bogdanov, K; Malyarevich, A M; Glazunov, I V; Mateos, X; Yumashev, K V

    2016-07-20

    We report on the development of novel saturable absorbers for erbium lasers based on transparent glass-ceramics (GCs) containing a mixture of cobalt-doped β-willemite, Co2+:β-Zn2SiO4, and zinc oxide, Co2+:ZnO, nanosized (10-14 nm) crystals. The structure of the parent glass and GCs is studied by x-ray diffraction, differential scanning calorimetry, transmission electron microscopy, and Raman spectroscopy. Variations of absorption spectra with heat-treatment reveal that Co2+ ions from the parent glass enter the crystals of ZnO and β-willemite. GCs are characterized by a broad absorption band due to the A24(F4)→T14(F4) transition of Co2+ ions in tetrahedral sites spanning up to ∼1.74  μm, relatively low saturation fluence, FS=0.75  J/cm2 at 1.54 μm, short recovery time, τ=830  ns, and high laser damage threshold, ∼14  J/cm2. By using the developed GCs in a diode-side-pumped Er, Yb:glass laser, 0.77 mJ/45 ns pulses are generated. PMID:27463897

  9. Annealing polymer nanofibrous nanocomposite mats via photothermal heating: effects on overall crystallinity, morphology, and mechanical properties

    NASA Astrophysics Data System (ADS)

    Gorga, Russell; Clarke, Laura; Bochinski, Jason; Viswanath, Vidya; Maity, Somsubhra

    2014-03-01

    Metal nanoparticles embedded within polymeric systems can be made to act as localized heat sources thereby aiding in-situ polymer processing. This is made possible by the surface plasmon resonance mediated photothermal effect of metal nanoparticles, wherein incident light absorbed by the nanoparticle generates a non-equilibrium electron distribution which subsequently transfers this energy into the surrounding medium, resulting in a temperature increase in the immediate region around the particle. Here we demonstrate this effect in polyethylene oxide-gold nanoparticle electrospun nanofibrous mats, which have been annealed at temperatures above the glass transition. A non-contact temperature measurement technique utilizing embedded fluorophores (perylene) has been used to monitor the average temperature within samples. The effect of annealing methods (conventional and photothermal) and annealing conditions (temperature and time) on the fiber morphology, overall crystallinity, and mechanical properties is discussed. In conclusion we demonstrate that the specificity of plasmonic heating coupled with the inside-outside approach of annealing presents a unique tool to improve crystallinity, and therefore mechanical properties, of the polymer mats while maintaining the unique nanofibrous morphologies. Supported by the National Science Foundation (CMMI-1069108).

  10. PLLA/Flax Mat/Balsa Bio-Sandwich—Environmental Impact and Simplified Life Cycle Analysis

    NASA Astrophysics Data System (ADS)

    Le Duigou, Antoine; Deux, Jean-Marc; Davies, Peter; Baley, Christophe

    2012-06-01

    In the present paper the environmental impact of biocomposites and bio-sandwich materials production are evaluated, using simplified Life Cycle Analysis (LCA) following the procedure recommended in the ISO 14044 standard. The materials are dimensioned and evaluated by comparing with reference materials, glass mat reinforced unsatured polyester and glass mat/unsatured polyester/balsa sandwich. The results indicate that bio-sandwich materials are very attractive in terms environmental impact. However further improvements in biocomposite and bio-sandwich mechanical strength are necessary if they are to be used in transport application compared to glass/polyester and glass/polyester/balsa sandwich.

  11. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  12. Compositions of constructed microbial mats

    DOEpatents

    Bender, Judith A.; Phillips, Peter C.

    1999-01-01

    Compositions and methods of use of constructed microbial mats, comprising cyanobacteria and purple autotrophic bacteria and an organic nutrient source, in a laminated structure, are described. The constructed microbial mat is used for bioremediation of different individual contaminants and for mixed or multiple contaminants, and for production of beneficial compositions and molecules.

  13. M.A.T. Programs.

    ERIC Educational Resources Information Center

    Wildman, Louis

    A proposal is presented for developing a Master of Arts in Teaching (MAT) program at California State University, Bakersfield. The criteria for a MAT program are examined by outlining existing programs at: (1) Harvard Graduate School; (2) University of California, Berkeley; (3) Portland State University; (4) Stanford University; (5) University of…

  14. MueMat Multicrid Toolbox

    SciTech Connect

    2010-11-23

    MueMat is intended for the research and development of multigrid algorithms used in the solution of sparse linear systems arising from systems of partial differential equations. The software can generate example linear systems and provides short programs to demonstrate the various interfaces for creating, accessing, and applying the solvers. MueMat currently includes two types of algebraic multigrid methods and many commonly used smoothers. However, the software is intended to be extensible, and new methods can be incorporated easily. MueMat also allows for advanced usage, such as combining multiple methods and segregated solves. The library supports point and block access to matrix data. MueMat has been designed for use within the programming environment of the Mathworks program MATLAB®. All algorithms and methods in MueMat have been or will be published in the open scientific literature.

  15. MueMat Multicrid Toolbox

    Energy Science and Technology Software Center (ESTSC)

    2010-11-23

    MueMat is intended for the research and development of multigrid algorithms used in the solution of sparse linear systems arising from systems of partial differential equations. The software can generate example linear systems and provides short programs to demonstrate the various interfaces for creating, accessing, and applying the solvers. MueMat currently includes two types of algebraic multigrid methods and many commonly used smoothers. However, the software is intended to be extensible, and new methods canmore » be incorporated easily. MueMat also allows for advanced usage, such as combining multiple methods and segregated solves. The library supports point and block access to matrix data. MueMat has been designed for use within the programming environment of the Mathworks program MATLAB®. All algorithms and methods in MueMat have been or will be published in the open scientific literature.« less

  16. Method for making glass nonfogging

    DOEpatents

    Lord, David E.; Carter, Gary W.; Petrini, Richard R.

    1979-01-01

    A method for rendering glass nonfogging (to condensation fog) by sandwiching the glass between two electrodes such that the glass functions as the dielectric of a capacitor, a large alternating current (AC) voltage is applied across the electrodes for a selected time period causing the glass to absorb a charge, and the electrodes are removed. The glass absorbs a charge from the electrodes rendering it nonfogging. The glass surface is undamaged by application of the AC voltage, and normal optical properties are unaffected. This method can be applied to optical surfaces such as lenses, auto windshields, mirrors, etc., wherever condensation fog on glass is a problem.

  17. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber

    PubMed Central

    2014-01-01

    Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte. PMID:25411566

  18. Diel Migrations of Microorganisms within a Benthic, Hypersaline Mat Community

    PubMed Central

    Garcia-Pichel, Ferran; Mechling, Margaret; Castenholz, Richard W.

    1994-01-01

    We studied the diel migrations of several species of microorganisms in a hypersaline, layered microbial mat. The migrations were quantified by repeated coring of the mat with glass capillary tubes. The resulting minicores were microscopically analyzed by using bright-field and epifluorescence (visible and infrared) microscopy to determine depths of coherent layers and were later dissected to determine direct microscopic counts of microorganisms. Microelectrode measurements of oxygen concentration, fiber optic microprobe measurements of light penetration within the mat, and incident irradiance measurements accompanied the minicore sampling. In addition, pigment content, photosynthesis and irradiance responses, the capacity for anoxygenic photosynthesis, and gliding speeds were determined for the migrating cyanobacteria. Heavily pigmented Oscillatoria sp. and Spirulina cf. subsalsa migrated downward into the mat during the early morning and remained deep until dusk, when upward migration occurred. The mean depth of the migration (not more than 0.4 to 0.5 mm) was directly correlated with the incident irradiance over the mat surface. We estimated that light intensity at the upper boundary of the migrating cyanobacteria was attenuated to such an extent that photoinhibition was effectively avoided but that intensities which saturated photosynthesis were maintained through most of the daylight hours. Light was a cue of paramount importance in triggering and modulating the migration of the cyanobacteria, even though the migrating phenomenon could not be explained solely in terms of a light response. We failed to detect diel migration patterns for other cyanobacterial species and filamentous anoxyphotobacteria. The sulfide-oxidizing bacterium Beggiatoa sp. migrated as a band that followed low oxygen concentrations within the mat during daylight hours. During the nighttime, part of this population migrated toward the mat surface, but a significant proportion remained deep

  19. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  20. Solar-energy absorber: Active infrared (IR) trap

    NASA Technical Reports Server (NTRS)

    Brantley, L. W., Jr.

    1974-01-01

    Efficiency of solar-energy absorbers may be improved to 95% by actively cooling their intermediate glass plates. This approach may be of interest to manufacturers of solar absorbers and to engineers and scientists developing new sources of energy.

  1. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  2. Capillography of Mats of Nanofibers

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Sansom, Elijah; Zhou, Jijie; Gharib, Mory

    2008-01-01

    Capillography (from the Latin capillus, 'hair', and the Greek graphein, to write ) is a recently conceived technique for forming mats of nanofibers into useful patterns. The concept was inspired by experiments on carpetlike mats of multiwalled carbon nanotubes. Capillography may have the potential to be a less-expensive, less-time-consuming alternative to electron-beam lithography as a means of nanoscale patterning for the fabrication of small devices and instruments. In capillography, one exploits the lateral capillary forces exerted on small objects that pierce the surface of a liquid. If the small objects are identical, then the forces are always attractive. Two examples of the effects of such forces are the agglomeration of small particles floating on the surface of a pond and the drawing together of hairs of a wet paintbrush upon removal of the brush from water. Because nanoscale objects brought into contact remain stuck together indefinitely due to Van der Waals forces, patterns formed by capillography remain even upon removal of the liquid. For the experiments on the mats of carbon nanotubes, a surfactant solution capable of wetting carbon nanotubes (which are ultra-hydrophobic) was prepared. The mats were wetted with the solution, then dried. Once the mats were dry, it was found that the nanotubes had become ordered into various patterns, including nestlike indentations, trenches, and various combinations thereof. It may be possible to exploit such ordering effects through controlled wetting and drying of designated portions of mats of carbon nanotubes (and, perhaps, mats of nanofibers of other materials) to obtain patterns similar to those heretofore formed by use of electron-beam lithography. For making patterns that include nestlike indentations, it has been conjectured that it could be possible to control the nesting processes by use of electrostatic fields. Further research is needed to understand the physics of the patterning processes in order to

  3. ON TEACHING ARCELLANA'S "THE MATS".

    ERIC Educational Resources Information Center

    ANDERSON, TOMMY R.

    FRANCISCO ARCELLANA'S "THE MATS," LIKE ANY WELL-CONSTRUCTED SHORT STORY, CAN SERVE AS AN IMPORTANT TEACHING DEVICE IN GUIDING STUDENTS, ESPECIALLY THOSE LEARNING ENGLISH AS A SECOND LANGUAGE, TO READ WITH UNDERSTANDING AND APPRECIATION, THE TECHNIQUES OF CONVERTING VERBALS BACK INTO VERBS, REPLACING ALL PRONOUNS WITH THEIR ANTECEDENTS IN PARALLEL…

  4. Sparse Coding for Alpha Matting

    NASA Astrophysics Data System (ADS)

    Johnson, Jubin; Varnousfaderani, Ehsan Shahrian; Cholakkal, Hisham; Rajan, Deepu

    2016-07-01

    Existing color sampling based alpha matting methods use the compositing equation to estimate alpha at a pixel from pairs of foreground (F) and background (B) samples. The quality of the matte depends on the selected (F,B) pairs. In this paper, the matting problem is reinterpreted as a sparse coding of pixel features, wherein the sum of the codes gives the estimate of the alpha matte from a set of unpaired F and B samples. A non-parametric probabilistic segmentation provides a certainty measure on the pixel belonging to foreground or background, based on which a dictionary is formed for use in sparse coding. By removing the restriction to conform to (F,B) pairs, this method allows for better alpha estimation from multiple F and B samples. The same framework is extended to videos, where the requirement of temporal coherence is handled effectively. Here, the dictionary is formed by samples from multiple frames. A multi-frame graph model, as opposed to a single image as for image matting, is proposed that can be solved efficiently in closed form. Quantitative and qualitative evaluations on a benchmark dataset are provided to show that the proposed method outperforms current state-of-the-art in image and video matting.

  5. ProMAT: protein microarray analysis tool

    SciTech Connect

    White, Amanda M.; Daly, Don S.; Varnum, Susan M.; Anderson, Kevin K.; Bollinger, Nikki; Zangar, Richard C.

    2006-04-04

    Summary: ProMAT is a software tool for statistically analyzing data from ELISA microarray experiments. The software estimates standard curves, sample protein concentrations and their uncertainties for multiple assays. ProMAT generates a set of comprehensive figures for assessing results and diagnosing process quality. The tool is available for Windows or Mac, and is distributed as open-source Java and R code. Availability: ProMAT is available at http://www.pnl.gov/statistics/ProMAT. ProMAT requires Java version 1.5.0 and R version 1.9.1 (or more recent versions) which are distributed with the tool.

  6. Hypersaline Microbial Mat Lipid Biomarkers

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsegereda; Turk, Kendra A.; Summons, Roger E.

    2002-01-01

    Lipid biomarkers and compound specific isotopic abundances are powerful tools for studies of contemporary microbial ecosystems. Knowledge of the relationship of biomarkers to microbial physiology and community structure creates important links for understanding the nature of early organisms and paleoenvironments. Our recent work has focused on the hypersaline microbial mats in evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, sulfur oxidizing and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface. The delta C-13 of cyanobacterial biomarkers such as the monomethylalkanes and hopanoids are consistent with the delta C-13 measured for bulk mat (-10%o), while a GNS biomarker, wax esters (WXE), suggests a more depleted delta C-13 for GNS biomass (-16%o). This isotopic relationship is different than that observed in mats at Octopus Spring, Yellowstone National Park (YSNP) where GNS appear to grow photoheterotrophic ally. WXE abundance, while relatively low, is most pronounced in an anaerobic zone just below the cyanobacterial layer. The WXE isotope composition at GN suggests that these bacteria utilize photoautotrophy incorporating dissolved inorganic carbon (DIC) via the 3-hydroxypropionate pathway using H2S or H2.

  7. Tensile and compressive behavior of a swirl mat composite

    SciTech Connect

    Ruggles, M.B.

    1998-07-01

    The Durability of Lightweight Composite Structures Project was established at Oak Ridge National Laboratory (ORNL) by the US Department of Energy to provide the experimentally-based, durability-driven design guidelines necessary to assure long-term structural integrity of automotive composite components. The initial focus of the ORNL Durability Project was on one representative reference material--an isocyanurate (polyurethane) reinforced with continuous strand, swirl-mat E-glass. The present report describes tensile and compressive testing and results for the reference composite. Behavior trends and proportional limit are established for both tension and compression. Damage development due to tensile loading and strain rate effects are discussed.

  8. Ceramic fiber reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  9. Bacterial contamination control mats: a comparative study.

    PubMed Central

    Meddick, H. M.

    1977-01-01

    The ability of six different types of contamination control mats currently in use at the entrances to theatre suites and other clean areas to remove bacteria-carrying particles from theatre trolley wheeels was compared. Marked differences in the effectiveness of this property were obtained; and all mats showed some disadvantages. Modification of one of the mats has resulted in improved efficiency under working conditions. Images Plate 1 PMID:267665

  10. MatLab Script and Functional Programming

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  11. Bentonite mat demonstration. Final report

    SciTech Connect

    Serrato, M.G.

    1994-12-30

    The Bentonite Mat Demonstration was developed to provide the Environmental Restoration Department with field performance characteristics and engineering data for an alternative closure cover system configuration. The demonstration was initiated in response to regulatory concerns regarding the use of an alternative cover system for future design configurations. These design considerations are in lieu of the US Environmental Protection Agency (EPA) Recommended Design for Closure Cover Systems and specifically a single compacted kaolin clay layer with a hydraulic conductivity of 1 {times} 10{sup {minus}7} cm/sec. This alternative configuration is a composite geosynthetic material hydraulic barrier consisting from bottom to top: 2 ft compacted sandy clay layer (typical local Savannah River Site soil type) that is covered by a bentonite mat--geosynthetic clay liner (GCL) and is overlaid by a 40 mil High Density Polyethylene (HDPE) geomembrane--flexible membrane liner. This effort was undertaken to obtain and document the necessary field performance/engineering data for future designs and meet regulatory technical requirements for an alternative cover system configuration. The composite geosynthetic materials hydraulic barrier is the recommended alternative cover system configuration for containment of hazardous and low level radiological waste layers that have a high potential of subsidence to be used at the Savannah River Site (SRS). This alternative configuration mitigates subsidence effects in providing a flexible, lightweight cover system to maintain the integrity of the closure. The composite geosynthetic materials hydraulic barrier is recommended for the Sanitary Landfill and Low Level Radiological Waste Disposal Facility (LLRWDF) Closures.

  12. Effects of mat characteristics on plantar pressure patterns and perceived mat properties during landing in gymnastics.

    PubMed

    Pérez-Soriano, Pedro; Llana-Belloch, Salvador; Morey-Klapsing, Gaspar; Perez-Turpin, Jose Antonio; Cortell-Tormo, Juan Manuel; van den Tillaar, Roland

    2010-11-01

    Shock absorption and stability during landings is provided by both, gymnast ability and mat properties. The aims of this study were to determine the influence of different mat constructions on their energy absorption and stability capabilities, and to analyse how these properties affect gymnast's plantar pressures as well as subjective mat perception during landing. Six mats were tested using a standard mechanical drop test. In addition, plantar pressures and subjective perception during landing were obtained from 15 expert gymnasts. The different mats influenced plantar pressures and gymnasts' subjective perception during landing of gymnasts. Significant correlations between plantar pressures at the medial metatarsal and lateral metatarsal zones of the gymnasts' feet with the different shock absorption characteristics of the mats were found. However, subjective perception tests were not able to discriminate mat functionality between the six mats as no significant correlations between the mechanical mat properties with the subjective perception of these properties were found. This study demonstrated that plantar pressures are a useful tool for discriminating different landing mats. Using similar approaches, ideally including kinematics as well, could help us in our understanding about the influences of different mats upon gymnast-mat interaction. PMID:21309299

  13. Mechanical behavior of polyester-based woven jute/glass hybrid composites

    NASA Astrophysics Data System (ADS)

    Ahsan, Q.; Tanju, S.

    2012-06-01

    In polymer composite fabrication system, hybridization of jute fibers with synthetic fibers is one of the techniques adopted to overcome some of the limitations (poor mechanical properties and moisture resistance) that have been identified for jute fiber reinforced composites. In the present study, the effect of hybridization on mechanical properties of jute and glass mat reinforced polyester composites has been evaluated experimentally. The composites were made of glass mat, jute mat and varying layers of jute and glass mat in the polyester matrix by applying hand lay-up technique at room temperature (250C). The values of mechanical properties obtained from tensile, flexural and interlaminar shear strength (ILSS) tests show significant improvement with the increase of glass fiber content in hybrid composites. But the positive contribution from glass mat in increasing of ILSS of composite is limited to some extent and the optimum ILSS is achieved when glass-jute incorporated in composite as 50-50 weight basis. SEM images were used to study the modes of fracture, fiber-matrix adhesion, and jute-glass layer adhesion. The fracture surfaces resulted from different tests clearly show that cracks propagate throughout the polyester matrix by tearing the jute mat and delaminating the glass mat.

  14. thin films as absorber

    NASA Astrophysics Data System (ADS)

    González, J. O.; Shaji, S.; Avellaneda, D.; Castillo, G. A.; Das Roy, T. K.; Krishnan, B.

    2014-09-01

    Photovoltaic structures were prepared using AgSb(S x Se1- x )2 as absorber and CdS as window layer at various conditions via a hybrid technique of chemical bath deposition and thermal evaporation followed by heat treatments. Silver antimony sulfo selenide thin films [AgSb(S x Se1- x )2] were prepared by heating multilayers of sequentially deposited Sb2S3/Ag dipped in Na2SeSO3 solution, glass/Sb2S3/Ag/Se. For this, Sb2S3 thin films were deposited from a chemical bath containing SbCl3 and Na2S2O3. Then, Ag thin films were thermally evaporated on glass/Sb2S3, followed by selenization by dipping in an acidic solution of Na2SeSO3. The duration of dipping was varied as 3, 4 and 5 h. Two different heat treatments, one at 350 °C for 20 min in vacuum followed by a post-heat treatment at 325 °C for 2 h in Ar, and the other at 350 °C for 1 h in Ar, were applied to the multilayers of different configurations. X-ray diffraction results showed the formation of AgSb(S x Se1- x )2 thin films as the primary phase and AgSb(S,Se)2 and Sb2S3 as secondary phases. Morphology and elemental detection were done by scanning electron microscopy and energy dispersive X-ray analysis. X-ray photoelectron spectroscopic studies showed the depthwise composition of the films. Optical properties were determined by UV-vis-IR transmittance and reflection spectral analysis. AgSb(S x Se1- x )2 formed at different conditions was incorporated in PV structures glass/FTO/CdS/AgSb(S x Se1- x )2/C/Ag. Chemically deposited post-annealed CdS thin films of various thicknesses were used as window layer. J- V characteristics of the cells were measured under dark and AM1.5 illumination. Analysis of the J- V characteristics resulted in the best solar cell parameters of V oc = 520 mV, J sc = 9.70 mA cm-2, FF = 0.50 and η = 2.7 %.

  15. Flat laminated microbial mat communities

    NASA Astrophysics Data System (ADS)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  16. Microbial communities and exopolysaccharides from Polynesian mats.

    PubMed

    Rougeaux, H; Guezennec, M; Che, L M; Payri, C; Deslandes, E; Guezennec, J

    2001-03-01

    Microbial mats present in two shallow atolls of French Polynesia were characterized by high amounts of exopolysaccharides associated with cyanobacteria as the predominating species. Cyanobacteria were found in the first centimeters of the gelatinous mats, whereas deeper layers showing the occurrence of the sulfate reducers Desulfovibrio and Desulfobacter species as determined by the presence of specific biomarkers. Exopolysaccharides were extracted from these mats and partially characterized. All fractions contained both neutral sugars and uronic acids with a predominance of the former. The large diversity in monosaccharides can be interpreted as the result of exopolymer biosynthesis by either different or unidentified cyanobacterial species. PMID:14961381

  17. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs.

    PubMed

    Beam, Jacob P; Bernstein, Hans C; Jay, Zackary J; Kozubal, Mark A; Jennings, Ryan deM; Tringe, Susannah G; Inskeep, William P

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day(-1), and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems. PMID:26913020

  18. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    PubMed Central

    Beam, Jacob P.; Bernstein, Hans C.; Jay, Zackary J.; Kozubal, Mark A.; Jennings, Ryan deM.; Tringe, Susannah G.; Inskeep, William P.

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3–3.5; temperature = 68–75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4–40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14–30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1–2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day−1, and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems. PMID:26913020

  19. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  20. Cyanobacterial mats: Microanalysis of community metabolism

    NASA Technical Reports Server (NTRS)

    Cohen, Y.; Bermudes, D.; Fischer, U.; Haddad, R.; Prufert, L.; Scheulderman-Suylen, T.; Shaw, T.

    1985-01-01

    The microbial communities in two sites were studied using several approaches: (1) light microscopy; (2) the measurement of microprofiles of oxygen and sulfide at the surface of the microbial mat; (3) the study of diurnal variation of oxygen and sulfides; (4) in situ measurement of photosynthesis and sulfate reduction and study of the coupling of these two processes; (5) measurement of glutathione in the upper layers of the microbial mat as a possible oxygen quencher; (6) measurement of reduced iron as a possible intermediate electron donor along the established redoxcline in the mats; (7) measurement of dissolved phosphate as an indicator of processes of break down of organic matter in these systems; and (8) measurement of carbon dioxide in the interstitial water and its delta C-13 in an attempt to understand the flow of CO2 through the systems. Microbial processes of primary production and initial degradation at the most active zone of the microbial mat were analyzed.

  1. Nonwoven filtration mat production by electrospinning method

    NASA Astrophysics Data System (ADS)

    Lackowski, M.; Krupa, A.; Jaworek, A.

    2011-06-01

    The filtration of nanoparticles and submicron particles is an important problem in industry and health protection. One of the methods which can be used to solve this problem is to use nonwoven nanofibrous filters. The process of producing filtration mats of different thickness by electrospinning is presented in the paper. The experimental results on filtration properties of nanofibrous filter mat, including the efficiency of removal of cigarette smoke particles from a gas are also presented.

  2. Mattingly and Hartsfield Salute President Regan

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Columbia Space Shuttle astronauts Commander Thomas K. Mattingly, foreground, and Pilot Henry W. Hartsfield salute President Ronald Reagan and his wife, Nancy, as the astronauts begin the customary walk-around inspection of the orbiter after landing. Mattingly and Hartsfield were the first to land the Shuttle on a concrete runway. The landing proved that the shuttle could return safely to a precisely targeted location on Earth.

  3. Exploring defocus matting: nonparametric acceleration, super-resolution, and off-center matting.

    PubMed

    Joshi, Neel; Matusik, Wojciech; Avidan, Shai; Pfister, Hanspeter; Freeman, William T

    2007-01-01

    Defocus matting is a fully automatic and passive method for pulling mattes from video captured with coaxial cameras that have different depths of field and planes of focus. Nonparametric sampling can accelerate the video-matting process from minutes to seconds per frame. In addition a super-resolution technique efficiently bridges the gap between mattes from high-resolution video cameras and those from low-resolution cameras. Off-center matting pulls mattes for an external high-resolution camera that doesn't share the same center of projection as the low-resolution cameras used to capture the defocus matting data. PMID:17388202

  4. Eukaryotes in Arctic and Antarctic cyanobacterial mats.

    PubMed

    Jungblut, Anne D; Vincent, Warwick F; Lovejoy, Connie

    2012-11-01

    Cyanobacterial mats are commonly found in freshwater ecosystems throughout the polar regions. Most mats are multilayered three-dimensional structures with the filamentous cyanobacteria embedded in a gel-like matrix. Although early descriptions mentioned the presence of larger organisms including metazoans living in the mats, there have been few studies specifically focused on the microbial eukaryotes, which are often small cells with few morphological features suitable for identification by microscopy. Here, we applied 18S rRNA gene clone library analysis to identify eukaryotes in cyanobacterial mat communities from both the Antarctic and the extreme High Arctic. We identified 39 ribotypes at the level of 99% sequence similarity. These consisted of taxa within algal and other protist groups including Chlorophyceae, Prasinophyceae, Ulvophyceae, Trebouxiophyceae, Bacillariophyceae, Chrysophyceae, Ciliophora, and Cercozoa. Fungi were also recovered, as were 21 metazoan ribotypes. The eukaryotic taxa appeared habitat-specific with little overlap between lake, pond, and ice shelf communities. Some ribotypes were common to both Arctic and Antarctic mats, suggesting global dispersal of these taxa and similarity in the environmental filters acting on protist communities. Many of these eukaryotic taxa likely benefit from protected, nutrient-rich microhabitats within the cyanobacterial mat environment. PMID:22630054

  5. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C.; Milbourne, M.

    2005-11-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.

  6. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  7. Welding/sealing glass-enclosed space in a vacuum

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1996-01-01

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbant material, such as FeO, VO.sub.2, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbant material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbant material melts glass in the portions of both glass sheets that are adjacent the absorbant material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbant material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbant material to source energy power and welding heat needed, the process can be made self-stopping.

  8. Welding/sealing glass-enclosed space in a vacuum

    DOEpatents

    Tracy, C.E.; Benson, D.K.

    1996-02-06

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbent material, such as FeO, VO{sub 2}, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbent material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbent material melts glass in the portions of both glass sheets that are adjacent the absorbent material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbent material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbent material to source energy power and welding heat needed, the process can be made self-stopping. 8 figs.

  9. Modelling Absorbent Phenomena of Absorbent Structure

    NASA Astrophysics Data System (ADS)

    Sayeb, S.; Ladhari, N.; Ben Hassen, M.; Sakli, F.

    Absorption, retention and strike through time, as evaluating criteria of absorbent structures quality were studied. Determination of influent parameters on these criteria were realized by using the design method of experimental sets. In this study, the studied parameters are: Super absorbent polymer (SAP)/fluff ratio, compression and the porosity of the non woven used as a cover stock. Absorption capacity and retention are mostly influenced by SAP/fluff ratio. However, strike through time is affected by compression. Thus, a modelling of these characteristics in function of the important parameter was established.

  10. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  11. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  12. Carbon and Oxygen Budgets of Subtidal and Intertidal Cyanobacterial Mats

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Discipulo, Mykell; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Intertidal cyanobacterial mats (Lyngbya-dominated) are contrasted with mats (Microcoleus-dominated) that grow in subtidal (0.7m water depth) hypersaline (90-110 permil) environments. In benthic chamber experiments conducted in Oct., 1999, mats exhibited greater net uptake of dissolved inorganic carbon (DIC) from overlying water during the daylight period than Microcoleus mats (e.g., 200 vs 120 mmol C/m. at 26 deg C, respectively). Net DIC release at night was similar for both mats (approx. 80 mmol C/m). Daytime net O2 release by Lyngby mats exceeded that by Microcoleus mats (150 vs 100 mmol O2/m), and O2 uptake at night was comparable for both mats (60-80 mmol O2/m). Nonphotosynthetic populations are more prominent within the subtidal versus intertidal mats, and accordingly exhibited greater internal 02 uptake and DIC production during the day. Over 24 hours, Lyngby-dominated mats exhibited greater net uptake of DIC than subtidal Microcoleus mats, consistent with these intertidal mats being "pioneer" communities that constantly recover from periodic physical disruption in energetic environments. The Microcoleus-dominated mats achieve steady-state mat thicknesses by balancing primary production against diagenetic decomposition of cellular and extracellular organic constituents.

  13. Reactive composite compositions and mat barriers

    DOEpatents

    Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  14. Qualification of HiMAT flight systems

    NASA Technical Reports Server (NTRS)

    Myers, A. F.; Sheets, S. G.

    1980-01-01

    The highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle is discussed with emphasis on the advanced composite and metallic structures, digital fly-by-wire controls, and digitally implemented integrated propulsion control systems. Techniques used to qualify the systems for flight are examined. Computation and simulation of the HiMAT system are investigated in relation to Cyber-Varian simulation. The techniques used in flight qualification are complicated by ground based flight critical systems and severe onboard volume constraints imposed by the scale design.

  15. Nitrogen cycle in microbial mats: completely unknown?

    NASA Astrophysics Data System (ADS)

    Coban, O.; Bebout, B.

    2015-12-01

    Microbial mats are thought to have originated around 3.7 billion years ago, most likely in the areas around submarine hydrothermal vents, which supplied a source of energy in the form of reduced chemical species from the Earth's interior. Active hydrothermal vents are also believed to exist on Jupiter's moon Europa, Saturn's moon Enceladus, and on Mars, earlier in that planet's history. Microbial mats have been an important force in the maintenance of Earth's ecosystems and the first photosynthesis was also originated there. Microbial mats are believed to exhibit most, if not all, biogeochemical processes that exist in aquatic ecosystems, due to the presence of different physiological groups of microorganisms therein. While most microbially mediated biogeochemical transformations have been shown to occur within microbial mats, the nitrogen cycle in the microbial mats has received very little study in spite of the fact that nitrogen usually limits growth in marine environments. We will present the first results in the determination of a complete nitrogen budget for a photosynthetic microbial mat. Both in situ sources and sinks of nitrogen in photosynthetic microbial mats are being measured using stable isotope techniques. Our work has a particular focus on recently described, but poorly understood, processes, e.g., anammox and dissimilatory nitrate reduction, and an emphasis on understanding the role that nitrogen cycling may play in generating biogenic nitrogen isotopic signatures and biomarker molecules. Measurements of environmental controls on nitrogen cycling should offer insight into the nature of co-evolution of these microbial communities and their planets of origin. Identifying the spatial (microscale) as well as temporal (diel and seasonal) distribution of nitrogen transformations, e.g., rates of nitrification and denitrification, within mats, particularly with respect to the distribution of photosynthetically-produced oxygen, is anticipated. The results

  16. RPRV research focus on HiMAT

    NASA Technical Reports Server (NTRS)

    Lockenour, J. L.; Layton, G. P.

    1976-01-01

    A review is presented of the F-15 Remotely Piloted Research Vehicle (RPRV) project. The F-15 RPRV is air-launched from a B-52 at 50,000 ft. Following launch a series of research maneuvers are performed during an unpowered descent to a recovery altitude. Another RPRV program considered is the Highly Maneuverable Aircraft Technology (HiMAT) program. This program is designed to use RPRVs to speed the technology transition from wind tunnel to flight and to reduce the cost of aeronautical experiments. It is pointed out that HiMAT will make extensive use of composite materials.

  17. Multispectral metamaterial absorber.

    PubMed

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging. PMID:24690713

  18. Glass sealing

    SciTech Connect

    Brow, R.K.; Kovacic, L.; Chambers, R.S.

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  19. Metal shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P. (Inventor)

    1973-01-01

    A metal shearing energy absorber is described. The absorber is composed of a flat thin strip of metal which is pulled through a slot in a cutter member of a metal, harder than the metal of the strip. The slot's length, in the direction perpendicular to the pull direction, is less than the strip's width so that as the strip is pulled through the slot, its edges are sheared off, thereby absorbing some of the pulling energy. In one embodiment the cutter member is a flat plate of steel, while in another embodiment the cutter member is U-shaped with the slot at its base.

  20. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  1. Method for production of carbon nanofiber mat or carbon paper

    SciTech Connect

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  2. Prominent reinforcing effect of chitin nanocrystals on electrospun polydioxanone nanocomposite fiber mats.

    PubMed

    Zhu, Lei; Liang, Kai; Ji, Yali

    2015-04-01

    The ultra-strong nanocomposite fiber mats based on biodegradable polydioxanone (PDO) and chitin nanocrystals (ChiNCs) were successfully prepared by means of electrospinning. The ChiNCs are uniformly dispersed in the PDO matrix and mostly oriented along fiber long axis, resulting in a significant improvement in mechanical property. Moreover, the introduction of ChiNCs led to the increase of the glass-transition temperature (Tg) and thermal decomposition temperature (Td) of PDO elucidated by thermal analyses. In addition, the loading of ChiNCs caused very different In vitro degradation behavior compared to neat PDO fiber mat. Furthermore, in vitro cell culture results indicated that the addition of ChiNCs improved the cellular adhesion and proliferation. PMID:25598072

  3. Sun characteristics of flashed photochromic glass

    SciTech Connect

    Zyabnev, A.M.; Mashir, Yu.I.; Kraevskii, S.L.

    1995-07-01

    The energy coefficients of attenuation of solar radiation were calculated for several types of windows, including for flashed photochromic heat-absorbing glass, which has the highest efficiency of protection from intense solar radiation. The dynamics of the change in the characteristics of flashed photochromic glass in different conditions of use were calculated with specially developed programs.

  4. 30 CFR 77.513 - Insulating mats at power switches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden platforms, insulating mats, or other electrically nonconductive material shall be kept in place at...

  5. 30 CFR 77.513 - Insulating mats at power switches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden platforms, insulating mats, or other electrically nonconductive material shall be kept in place at...

  6. 30 CFR 77.513 - Insulating mats at power switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden platforms, insulating mats, or other electrically nonconductive material shall be kept in place at...

  7. 30 CFR 77.513 - Insulating mats at power switches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden platforms, insulating mats, or other electrically nonconductive material shall be kept in place at...

  8. High-Density, Scintillating, Fluoride Glass Calorimeters

    NASA Astrophysics Data System (ADS)

    Akgun, Ugur; Xie, Qiuchen

    2014-03-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Here, we propose to use high density, scintillating, fluoride glasses as active media in calorimeters. CHG3 is a special example of this glass family, which has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. In this presentation, the results from a computational study on the performances of the two different designs of CHG3 glass calorimeters are reported. First design reads the signal directly from the edge of the glass plate; the second design utilizes wavelength-shifting fibers to carry the signal out of the glass plate. Each simulation model is a sampling calorimeter with 20 alternating layers of glass and iron absorber. By changing the absorber thickness we tested hadronic as well as electromagnetic capabilities of the calorimeter models.

  9. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  10. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect

    Yu, Liping; Lany, Stephan; Kykyneshi, Robert; Jieratum, Vorranutch; Ravichandran, Ram; Pelatt, Brian; Altschul, Emmeline; Platt, Heather A. S.; Wager, John F.; Keszler, Douglas A.; Zunger, Alex

    2011-08-10

    An integrated computational and experimental study of FeS₂ pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe₂SiS₄ and Fe₂GeS₄, which also exhibit higher band gaps than FeS₂. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  11. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    NASA Astrophysics Data System (ADS)

    Mannarino, Matthew Marchand

    . Post-spin thermal annealing was used to modify the fiber morphology, inter-fiber welding, and crystallinity within the fibers. Morphological changes, in-plane tensile response, friction coefficient, and wear rate were characterized as functions of the annealing temperature. The Young's moduli, yield stresses and toughnesses of the PA 6(3)T nonwoven mats improved by two- to ten-fold when annealed slightly above the glass transition temperature, but at the expense of mat porosity. The mechanical and tribological properties of the thermally annealed P A 6,6 fiber mats exhibited significant improvements through the Brill transition temperature, comparable to the improvements observed for amorphous P A 6(3)T electrospun mats annealed near the glass transition temperature. The wear rates for both polymer systems correlate with the yield properties of the mat, in accordance with a modified Ratner-Lancaster model. The variation in mechanical and tribological properties of the mats with increasing annealing temperature is consistent with the formation of fiber-to-fiber junctions and a mechanism of abrasive wear that involves the breakage of these junctions between fibers. A mechanically robust proton exchange membrane with high ionic conductivity and selectivity is an important component in many electrochemical energy devices such as fuel cells, batteries, and photovoltaics. The ability to control and improve independently the mechanical response, ionic conductivity, and selectivity properties of a membrane is highly desirable in the development of next generation electrochemical devices. In this thesis, the use of layer-by-layer (LbL) assembly of polyelectrolytes is used to generate three different polymer film morphologies on highly porous electrospun fiber mats: webbed, conformal coating, and pore-bridging films. Specifically, depending on whether a vacuum is applied to the backside of the mat or not, the spray-LbL assembly either fills the voids of the mat with the proton

  12. Ecophysiological Changes in Microbial Mats Incubated in a Greenhouse Collaboratory

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; DesMarais, David J.; GarciaPichel, Ferran; Hogan, Mary; Jahnke, Linda; Keller, Richard M.; Miller, Scott R.

    2001-01-01

    Microbial mats are modern examples of the earliest microbial communities known. Among the best studied are microbial mats growing in hypersaline ponds managed for the production of salt by Exportadora de Sal, S.A. de C.V., Guerrero Negro, Baja California Sur, Mexico. In May, 2001, we collected mats from Ponds 4 and 5 in this system and returned them to Ames Research Center, where they have been maintained for a period of over nine months. We report here on both the ecophysiological changes occurring in the mats over that period of time as well as the facility in which they were incubated. Mats (approximately 1 sq. meter total area) were incubated in a greenhouse facility modified to provide the mats with natural levels of visible and ultraviolet radiation as well as constantly flowing, temperature-controlled water. Two replicated treatments were maintained, a 'high salinity' treatment (about 120 ppt) and a 'low salinity' treatment (about 90 ppt). Rates of net biological activity (e.g., photosynthesis, respiration, trace gas production) in the mats were relatively constant over the several months, and were similar to rates of activity measured in the field. However, over the course of the incubation, mats in both treatments changed in physical appearance. The most obvious change was that mats in the higher salinity treatments developed a higher proportion of carotenoid pigments (relative to chlorophyll), resulting in a noticeably orange color in the high salinity mats. This trend is also seen in the natural salinity gradient present at the field site. Changes in the community composition of the mats, as assayed by denaturing gradient gel electrophoresis (DGGE), as well as biomarker compounds produced in the mats were also monitored. The degree to which the mats kept in the greenhouse changed from the originally collected mats, as well as differences between high and low salinity mats will be discussed. Additional information is contained in the original extended

  13. Blowable glass fiber thermal insulation product

    SciTech Connect

    Spittle, K.S.

    1984-10-09

    A process and apparatus for manufacturing a blowable glass fiber insulation product is disclosed. The product resulting from the process and apparatus is also disclosed. This process includes the steps of cutting unbonded glass fiber matting and lengths of twisted glass fiber yarn raw material into predetermined relatively large size pieces. The pieces are mixed together and the mixture is fluffed to decrease its density. The mixture is then hammermilled into relatively smaller size pieces suitable for use as blowable insulation. In accordance with the apparatus according to this invention, a cutter cuts glass fiber matting and lengths of twisted glass fiber yarn into relatively large size pieces which are mixed and then fluffed and further cut in a fluffer. A hammermill is used for reducing the mixture into relatively smaller size pieces suitable for use as blowable insulation. The blowable insulation product comprises loose, irregularly formed and separate clumps of glass fiber material approximately one inch (215 cm.) in diameter and having a density of 1 lb./cu./ft. (16 kg./cu./m.) and has a thermal resistance value of 3.3 per inch (2.5 cm.) of thickness.

  14. Astronaut Thomas Mattingly performs EVA during Apollo 16 transearth coast

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, performs extravehicular activity (EVA) during the Apollo 16 transearth coast. mattingly is assisted by Astronaut Charles M. Duke Jr., lunar module pilot. Mattingly inspected the SIM bay of the Service Module, and retrieved film from the Mapping and Panoramic cameras. Mattingly is wearing the helmet of Astronaut John W. Young, commander. The helmet's lunar extravehicular visor assembly helped protect Mattingly's eyes frmo the bright sun. This view is a frame from motion picture film exposed by a 16mm Maurer camera.

  15. Lava Cave Microbial Communities Within Mats and Secondary Mineral Deposits: Implications for Life Detection on Other Planets

    PubMed Central

    Melim, L.A.; Spilde, M.N.; Hathaway, J.J.M.; Garcia, M.G.; Moya, M.; Stone, F.D.; Boston, P.J.; Dapkevicius, M.L.N.E.; Riquelme, C.

    2011-01-01

    Abstract Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai‘i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai‘i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai‘i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies. Key Words: Biosignatures—Astrobiology—Bacteria—Caves—Life detection—Microbial mats. Astrobiology 11, 601–618. PMID:21879833

  16. ChemMatCARS Data Archive

    DOE Data Explorer

    ChemMatCARS is a high-brilliance national synchrotron x-ray facility dedicated primarily to static and dynamic condensed matter chemistry and materials science. The scientific focus of the facility includes the study of surface and interfacial properties of liquids and solids as well as their bulk structure at atomic, molecular and mesoscopic length scales with high spatial and energy resolution. Experimental techniques supported by the facility include: 1) Liquid Surface X-ray Scattering; 2) Solid Surface X-ray Scattering; 3) Time-Resolved Crystallography; 4) Micro-Crystal Diffraction; 5) Small and Wide-angle X-ray Scattering. The data archive referenced here contains data for various components along the beamline within the First Optics Enclosure and is intended to be input or parameter data. See the Science Nuggets at http://cars9.uchicago.edu/chemmat/pages/nuggets.html for leads to some of the research conducted at the ChemMatCARS beamline.

  17. Microbial mats: an ecological niche for fungi

    PubMed Central

    Cantrell, Sharon A.; Duval-Pérez, Lisabeth

    2013-01-01

    Fungi were documented in tropical hypersaline microbial mats and their role in the degradation of complex carbohydrates (exopolymeric substance – EPS) was explored. Fungal diversity is higher during the wet season with Acremonium, Aspergillus, Cladosporium, and Penicillium among the more common genera. Diversity is also higher in the oxic layer and in young and transient mats. Enrichments with xanthan (a model EPS) show that without antibiotics (full community) degradation is faster than enrichments with antibacterial (fungal community) and antifungal (bacterial community) agents, suggesting that degradation is performed by a consortium of organisms (bacteria and fungi). The combined evidence from all experiments indicates that bacteria carried out approximately two-third of the xanthan degradation. The pattern of degradation is similar between seasons and layers but degradation is faster in enrichments from the wet season. The research suggests that fungi thrive in these hypersaline consortia and may participate in the carbon cycle through the degradation of complex carbohydrates. PMID:23577004

  18. Bioflumology: Microbial mat growth in flumes

    NASA Astrophysics Data System (ADS)

    Airo, A.; Weigert, S.; Beck, C.

    2014-04-01

    The emergence of oxygenic photosynthesis resulted in a transformational change of Earth's geochemical cycles and the subsequent evolution of life. However, it remains vigorously debated when this metabolic ability had evolved in cyanobacteria. This is largely because studies of Archean microfossil morphology, molecular biomarkers, and isotopic characteristics are frequently ambiguous. However, the high degree of morphological similarities between modern photosynthetic and Archean fossil mats has been interpreted to indicate phototactic microbial behavior or oxygenic photosynthesis. In order to better evaluate the relationship between mat morphology and metabolism, we here present a laboratory set-up for conducting month-long experiments in several sterilizable circular flumes designed to allow single-species cyanobacterial growth under adjustable fluid-flow conditions and protected from contamination.

  19. The effects of mats on back and leg fatigue.

    PubMed

    Kim, J Y; Stuart-Buttle, C; Marras, W S

    1994-02-01

    Prolonged standing is common in many industrial workplaces. It is also quite common for workers to complain of discomfort in the back and legs as a result of prolonged standing. Mats are often provided for the worker to relieve this fatigue. However, there is no quantitative evidence that these mats relieve leg and back fatigue. Five subjects were asked to stand on a concrete surface and two mat surfaces for prolonged periods of time. Spectral electromyographic analyses indicated that mats reduced localized muscle fatigue in the erector spinae muscle only. Furthermore, this fatigue reduction occurred only with the more compressible of the two mats tested. These results imply that localized muscular fatigue in the leg may not be relieved with 'anti-fatigue' mats, and some of these mats only benefit the back. PMID:15676945

  20. Chemical compatibility study of Cooley L18KU, Herculite, and Elephant Mat with Hanford tank waste

    SciTech Connect

    Mercado, J.E.

    1998-06-23

    An independent chemical compatibility review of various wrapping and absorbent/padding materials was conducted to evaluate resistance to chemicals and constituents present in liquid waste from the Hanford underground tanks. These materials will be used to wrap long-length contaminated equipment when such equipment is removed from the tanks and prepared for transportation and subsequent disposal or storage. The materials studied were Cooley L18KU, Herculite, and Elephant Mat. The study concludes that these materials are appropriate for use in this application.

  1. The Archaea of a Hypersaline Microbial Mat

    NASA Astrophysics Data System (ADS)

    Robertson, C.; Spear, J. R.; Pace, N. R.

    2006-12-01

    The overarching goal of this work is to describe and understand the organismal composition within the domain Archaea for the microbial ecosystem of a hypersaline microbial mat. Sea salt is crystallized by solar evaporation at North America's largest saltworks, the Exportadora de Sal, in Guerrero Negro, Baja California Sur. Sea water flows through a series of evaporative basins with an increase in salinity until saturation is reached and halite crystallization begins. Several of these ponds are underlined with thick microbial mats. To date, it has not been known what kinds of organisms comprise these complex microbial ecosystems. Here, we report a survey of the stratified microbial communities for the distribution of representatives of Archaea in layers of the mats. This survey uses molecular approaches, based on cloning and sequencing of SSU rRNA genes for phylogenetic analyses, to determine the nature and extent of archaeal diversity that constitute these ecosystems. We compiled an altogether new phylogenetic backbone for the domain Archaea and placed representative sequences from this hypersaline analysis onto that framework. Analyses to date indicate the ubiquitous dominance of uncultured organisms of phylogenetic kinds not generally thought to be associated with hypersaline environments. Collectively, the results indicate that the diversity of life is extensive even in this seemingly inhospitable "extreme" environment.

  2. Chalcogenide glasses

    SciTech Connect

    Taylor, P.C.

    1987-08-15

    Although there are some significant exceptions, most important glass-forming systems contain elements from the sixth, or chalcogenide, column of the periodic table (oxygen, sulfur, selenium, or tellurium). The glasses that contain oxygen are typically insulators, while those that contain the heavier chalcogen elements are usually semiconductors. Even though oxygen is technically a chalcogen element, the term chalcogenide glass is commonly used to denote those largely covalent, semiconducting glasses contain sulfur, selenium, or tellurium as one of the constituents.

  3. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  4. Structural color from colloidal glasses

    NASA Astrophysics Data System (ADS)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and

  5. Multiple-layer Radiation Absorber

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Baker, Bonnie Sue

    A structure is discussed for absorbing incident radiation, either electromagnetic (EM) or sound. Such a surface structure is needed, for example, in a highly sensitive high-frequency gravitational wave or HFGW detector such as the Li-Baker. The multi-layer absorber, which is discussed, is constructed with metamaterial [MM] layer or layers on top. This MM is configured for a specific EM or sound radiation frequency band, which absorbs incident EM or sound radiation without reflection. Below these top MM layers is a substrate of conventional EM-radiation absorbing or acoustical absorbing reflective material, such as an array of pyramidal foam absorbers. Incident radiation is partially absorbed by the MM layer or layers, and then it is more absorbed by the lower absorbing and reflecting substrate. The remaining reflected radiation is even further absorbed by the MM layers on its "way out_ so that essentially all of the incident radiation is absorbed _ a nearly perfect black-body absorber. In a HFGW detector a substrate, such as foam absorbers, may outgas into a high vacuum and reduce the capability of the vacuum-producing equipment, however, the layers above this lowest substrate will seal the absorbing and reflecting substrate from any external vacuum. The layers also serve to seal the absorbing material against air or water flow past the surfaces of aircraft, watercraft or submarines. Other applications for such a multiple-level radiation absorber include stealth aircraft, missiles and submarines.

  6. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  7. Glass heat pipe evacuated tube solar collector

    DOEpatents

    McConnell, Robert D.; Vansant, James H.

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  8. Glass heat pipe evacuated tube solar collector

    SciTech Connect

    McConnell, R.D.; Vansant, J.H.

    1984-10-02

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  9. Flow-induced Development of Unicellular Cyanobacterial Mats

    NASA Astrophysics Data System (ADS)

    Gong, J.; Tice, M. M.

    2011-12-01

    Microbial mats/biofilms are abundant microbial growth structures throughout the history of life on Earth. Understanding the mechanisms for their morphogenesis and interactions with physical sedimentary forces are important topics that allow deeper understanding of related records. When subjected to hydrodynamic influences, mats are known to vary in morphology and structure in response to fluid shear, yet mechanistically, the underlying cellular architecture due to interactions with flow remain unexplained. Moreover, mats are found to emerge larger scale roughness elements and modified cohesive strength growing under flow. It is a mystery how and why these mat-community-level features are linked in association with modified boundary layers at the mats surface. We examined unicellular cyanobacterium Synechocystis sp. PCC 6803 in a circular flow bioreactor designed to maintain a fixed set of hydrodynamic conditions. The use of monoculture strains and unidirectional currents, while not replicating natural mat systems (almost certainly multi-species and often multi-directional currents under complex wind or tidal wave actions), helps to simplify these systems and allows for specific testing of hypotheses regarding how mats evolve distinctive morphologies induced by flow. The unique design of the reactor also makes measurements such as critical erosional shear stress of the mats possible, in addition to microscopic, macroscopic imaging and weeks of continuous mats growth monitoring. We report the finding that linear chains, filament-like cell groups were present from unicellular cyanobacterial mats growing under flow (~1-5 cm/s) and these structures are organized within ~1-3mm size streamers and ~0.5-1mm size nodular macrostructures. Ultra-small, sub-micron thick EPS strings are observed under TEM and are likely the cohesive architectural elements in mats across different fluid regimes. Mat cohesion generally grows with and adapts to increasing flow shear stress within

  10. Reduced Gas Cycling in Microbial Mats: Implications for Early Earth

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Bebout, Brad M.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    For more than half the history of life on Earth, biological productivity was dominated by photosynthetic microbial mats. During this time, mats served as the preeminent biological influence on earth's surface and atmospheric chemistry and also as the primary crucible for microbial evolution. We find that modern analogs of these ancient mat communities generate substantial quantities of hydrogen, carbon monoxide, and methane. Escape of these gases from the biosphere would contribute strongly to atmospheric evolution and potentially to the net oxidation of earth's surface; sequestration within the biosphere carries equally important implications for the structure, function, and evolution of anaerobic microbial communities within the context of mat biology.

  11. Metasurface Broadband Solar Absorber

    DOE PAGESBeta

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  12. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  13. Metasurface Broadband Solar Absorber

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  14. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  15. Ionized Absorbers in AGN

    NASA Astrophysics Data System (ADS)

    Mathur, S.

    1999-08-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  16. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  17. Framboidal iron oxide: Chondrite-like material from the black mat, Murray Springs, Arizona

    SciTech Connect

    Fayek, Mostafa; Anovitz, Lawrence {Larry} M; Allard Jr, Lawrence Frederick; Hull, Sharon

    2011-01-01

    At the end of the Pleistocene a Younger Dryas black mat was deposited on top of the Pleistocene sediments inmany parts of North America. A study of themagnetic fraction ({approx}10,900 50 B.P.) fromthe basal section of the black mat at Murray Springs, AZ revealed the presence of amorphous iron oxide framboids in a glassy iron-silica matrix. These framboids are very similar in appearance and chemistry to those reported from several types of carbonaceous chondrites. The glass contains iron, silicon, oxygen, vanadium and minor titanium, while the framboidal particles contain calcium as well. The major element chemistry of both the spherules and the glass matrix are consistent with the chemistry of material associated with meteorite impact sites and meteorites. Electron microscopy confirms that the glassy material is indeed amorphous, and also shows that what appear to be individual oxide particles are amorphous as well. The latter appears consistent with their overall morphology that, while euhedral, typically shows significant fracture. Based on these data, we argue that these particles are the product of a hypervelocity impact.

  18. Framboidal iron oxide: Chondrite-like material from the black mat, Murray Springs, Arizona

    SciTech Connect

    Fayek, Mostafa; Anovitz, Lawrence {Larry} M; Allard Jr, Lawrence Frederick; Hull, Sharon

    2012-01-01

    At the end of the Pleistocene a Younger Dryas black mat was deposited on top of the Pleistocene sediments in many parts of North America. A study of the magnetic fraction (~10,900 50 B.P.) from the basal section of the black mat at Murray Springs, AZ revealed the presence of amorphous iron xide framboids in a glassy iron-silica matrix. These framboids are very similar in appearance and chemistry to those reported from several types of carbonaceous chondrites. The glass contains iron, silicon, oxygen, vanadium and minor titanium, while the framboidal particles contain calcium as well. The major element chemistry of both the spherules and the glass matrix are consistent with the chemistry of material associated with meteorite impact sites and meteorites. Electron microscopy confirms that the glassy material is indeed amorphous, and also shows that what appear to be individual oxide particles are amorphous as well. The latter appears consistent with their overall morphology that, while euhedral, typically shows significant fracture. Based on these data, we argue that these particles are the product of a hypervelocity impact.

  19. Framboidal iron oxide: Chondrite-like material from the black mat, Murray Springs, Arizona

    NASA Astrophysics Data System (ADS)

    Fayek, Mostafa; Anovitz, Lawrence M.; Allard, Lawrence F.; Hull, Sharon

    2012-02-01

    At the end of the Pleistocene a Younger Dryas "black mat" was deposited on top of the Pleistocene sediments in many parts of North America. A study of the magnetic fraction (~ 10,900 ± 50 B.P.) from the basal section of the black mat at Murray Springs, AZ revealed the presence of amorphous iron oxide framboids in a glassy iron-silica matrix. These framboids are very similar in appearance and chemistry to those reported from several types of carbonaceous chondrites. The glass contains iron, silicon, oxygen, vanadium and minor titanium, while the framboidal particles contain calcium as well. The major element chemistry of both the spherules and the glass matrix are consistent with the chemistry of material associated with meteorite impact sites and meteorites. Electron microscopy confirms that the glassy material is indeed amorphous, and also shows that what appear to be individual oxide particles are amorphous as well. The latter appears consistent with their overall morphology that, while euhedral, typically shows significant fracture. Based on these data, we argue that these particles are the product of a hypervelocity impact.

  20. Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite

    SciTech Connect

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-11-01

    This report provides recommended durability-based design criteria for a chopped-glass-fiber reinforced polymeric composite for automotive structural applications. The criteria closely follow the framework of an earlier criteria document for a continuous-strand-mat (CSM) glass-fiber reference composite. Together these design criteria demonstrate a framework that can be adapted for future random-glass-fiber composites for automotive structural applications.

  1. Stromatolites, Metals, Statistics and Microbial Mats: A Complex Interplay

    NASA Astrophysics Data System (ADS)

    Spear, J. R.

    2014-12-01

    Initially thought to be relatively 'simple' ecosystems for study, microbial mats have long been considered ideal for any number of research questions. Microbial mats can be found in any number of environments, both natural and manmade, and are typically dependent upon the physiochemical environment for their structure, maintenance and longevity. Ultimately, these and other parameters govern community whereby a microbial mat provides overall ecosystem services to their environment. On the edge of a hotspring in Yellowstone National Park we have found an active microbial mat community that can form a laminated, lithified, accretionary structure that is likely the best example of a living and growing stromatolite. In the outfall channel of the sulfidic Stinking Spring, Utah, we have found examples of both naturally occurring laminated and floating mats where the carbon flux is controlled by abiotic degassing of CO2 rather than metabolism. δ13C-bicarbonate uptake experiments reveal an autotrophic growth rate of 0 - 0.16%/day while δ13C-acetate reveals a higher heterotrophic growth rate of 0.03 - 0.65%/day, which highlights the role of heterotrophs in these mats. Similar growth experiments on Little Hot Creek, California laminated microbial mats reveal a trend for top-down microbial growth with similar microbial taxonomy and diversity to other mat-types. Of a curious note is that incubation experiments with Little Hot Creek mats reveals the importance of particular metals in mat structure and function. Statistically, alpha- and beta-diversity metrics are often used to characterize microbial communities in such systems, but from an analysis of a wastewater treatment system, Hill diversities can better interpret the effective number of species to produce an ecologically intuitive quantity to better understand a microbial mat ecosystem.

  2. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  3. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets.

    PubMed

    Northup, D E; Melim, L A; Spilde, M N; Hathaway, J J M; Garcia, M G; Moya, M; Stone, F D; Boston, P J; Dapkevicius, M L N E; Riquelme, C

    2011-09-01

    Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai'i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai'i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai'i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies. PMID:21879833

  4. Corrosion resistant neutron absorbing coatings

    SciTech Connect

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  5. Corrosion resistant neutron absorbing coatings

    SciTech Connect

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  6. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  7. Absorber for solar power.

    PubMed

    Powell, W R

    1974-10-01

    A simple, economical absorber utilizing a new principle of operation to achieve very low reradiation losses while generating temperatures limited by material properties of quartz is described. Its performance is analyzed and indicates approximately 90% thermal efficiency and 73% conversion efficiency for an earth based unit with moderately concentrated (~tenfold) sunlight incident. It is consequently compatible with the most economic of concentrator mirrors (stamped) or mirrors deployable in space. Space applications are particularly attractive, as temperatures significantly below 300 K are possible and permit even higher conversion efficiency. PMID:20134700

  8. Magnetoacoustic tomography with magnetic induction (MAT-MI).

    PubMed

    Xu, Yuan; He, Bin

    2005-11-01

    We report our theoretical and experimental investigations on a new imaging modality, magnetoacoustic tomography with magnetic induction (MAT-MI). In MAT-MI, the sample is located in a static magnetic field and a time-varying (micros) magnetic field. The time-varying magnetic field induces an eddy current in the sample. Consequently, the sample will emit ultrasonic waves by the Lorentz force. The ultrasonic signals are collected around the object to reconstruct images related to the electrical impedance distribution in the sample. MAT-MI combines the good contrast of electrical impedance tomography with the good spatial resolution of sonography. MAT-MI has two unique features due to the solenoid nature of the induced electrical field. Firstly, MAT-MI could provide an explicit or simple quantitative reconstruction algorithm for the electrical impedance distribution. Secondly, it promises to eliminate the shielding effects of other imaging modalities in which the current is applied directly with electrodes. In the theoretical part, we provide formulae for both the forward and inverse problems of MAT-MI and estimate the signal amplitude in biological tissues. In the experimental part, the experimental setup and methods are introduced and the signals and the image of a metal object by means of MAT-MI are presented. The promising pilot experimental results suggest the feasibility of the proposed MAT-MI approach. PMID:16237248

  9. Compositions and method of use of constructed microbial mats

    DOEpatents

    Bender, Judith A.; Phillips, Peter C.

    1997-01-01

    Compositions and methods of use of constructed microbial mats, comprising cyanobacteria and purple autotrophic bacteria and an organic nutrient source, in a laminated structure, are described. The constructed microbial mat is used for bioremediation of different individual contaminants and for mixed or multiple contaminants, and for production of beneficial compositions and molecules.

  10. Pilot Bill Dana in HiMAT cockpit

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The HiMAT (Highly Maneuverable Aircraft Technology) simulator was used from 1978 to 1983. The HiMAT was a remotely piloted research vehicle built to develop high-performance fighter technology that included advanced structures, and integrated controls and propulsion systems. The simulator was used in support of the flight program.

  11. Magnetoacoustic Tomography with Magnetic Induction (MAT-MI)

    PubMed Central

    Xu, Yuan; He, Bin

    2007-01-01

    We report our theoretical and experimental investigations on a new imaging modality, magnetoacoustic tomography with magnetic induction (MAT-MI). In MAT-MI, the sample is located in a static magnetic field and a time-varying (μs ) magnetic field. The time-varying magnetic field induces eddy current in the sample. Consequently, the sample will emit ultrasonic waves by the Lorentz force. The ultrasonic signals are collected around the object to reconstruct images related with the electrical impedance distribution in the sample. MAT-MI combines the good contrast of electrical impedance tomography with the good spatial resolution of sonography. In principle, MAT-MI mainly has two unique features due to the solenoid nature of the induced electrical field. Firstly, MAT-MI could provide explicit or simple quantitative reconstruction algorithm for the electrical impedance distribution. Secondly, it promises to eliminate the shielding effects of other imaging modalities in which the current is applied directly with electrodes. In the theoretical part, we provide the formulas for both the forward and inverse problems of MAT-MI and estimate the signal amplitude in biological tissues. In the experimental part, the experiment setup and methods are introduced and the signals and the image of a metal object by means of MAT-MI are presented. The promising pilot experimental results suggest the feasibility of the proposed MAT-MI approach. PMID:16237248

  12. MAT@USC Candidates and Latino English Language Learners

    ERIC Educational Resources Information Center

    Lomeli, Cynthia Leticia

    2012-01-01

    The purpose of this study was to further understand the perceptions of MAT@USC teacher candidates and how their perceptions and previous experiences affect the educational experiences of Latino English language learners. Three questions were developed to guide this study: (1) What are the perceptions of MAT@USC candidates in selected courses…

  13. DEMONSTRATION OF INPUFF WITH THE MATS DATA BASE

    EPA Science Inventory

    An integrated puff model, INPUFF, is evaluated using the MATS data base. A description of the model is provided outlining the salient characteristics. A brief description of the MATS data base, which consists of 14 SF6 tracer releases with associated meteorology, is also provided...

  14. Composite polymer: Glass edge cladding for laser disks

    DOEpatents

    Powell, H.T.; Wolfe, C.A.; Campbell, J.H.; Murray, J.E.; Riley, M.O.; Lyon, R.E.; Jessop, E.S.

    1987-11-02

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation. 18 figs.

  15. Composite polymer-glass edge cladding for laser disks

    DOEpatents

    Powell, Howard T.; Riley, Michael O.; Wolfe, Charles R.; Lyon, Richard E.; Campbell, John H.; Jessop, Edward S.; Murray, James E.

    1989-01-01

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.

  16. Research on Bayes matting algorithm based on Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Jiang, Shan; Han, Cheng; Zhang, Chao; Jiang, Zhengang

    2015-12-01

    The digital matting problem is a classical problem of imaging. It aims at separating non-rectangular foreground objects from a background image, and compositing with a new background image. Accurate matting determines the quality of the compositing image. A Bayesian matting Algorithm Based on Gaussian Mixture Model is proposed to solve this matting problem. Firstly, the traditional Bayesian framework is improved by introducing Gaussian mixture model. Then, a weighting factor is added in order to suppress the noises of the compositing images. Finally, the effect is further improved by regulating the user's input. This algorithm is applied to matting jobs of classical images. The results are compared to the traditional Bayesian method. It is shown that our algorithm has better performance in detail such as hair. Our algorithm eliminates the noise well. And it is very effectively in dealing with the kind of work, such as interested objects with intricate boundaries.

  17. Benthic Marine Cyanobacterial Mat Ecosystems: Biogeochemistry and Biomarkers

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Cyanobacterial mats are complete ecosystems that can include processes of primary production, diagenesis and lithification. Light sustains oxygenic photosynthesis, which in turn provides energy, organic matter and oxygen to the community. Due to both absorption and scattering phenomena, incident light is transformed with depth in the mat, both in intensity and spectral composition. Mobile photo synthesizers optimize their position with respect to this light gradient. When photosynthesis ceases at night, the upper layers of the mat become reduced and sulfidic. Counteracting gradients of oxygen and sulfide combine to provide daily-contrasting environments separated on a scale of a few mm. The functional complexity of mats, coupled with the highly proximal and ordered spatial arrangement of biota, offers the potential for a staggering number of interactions. At a minimum, the products of each functional group of microorganisms affect the other groups both positively and negatively. For example, cyanobacteria generate organic matter (potential substrates) but also oxygen (a toxin for many anaerobes). Anaerobic activity recycles nutrients to the photosynthesizers but also generates potentially toxic sulfide. The combination of benefits and hazards of light, oxygen and sulfide promotes the allocation of the various essential mat processes between light and dark periods, and to various depths in the mat. Observations of mats have produced numerous surprises. For example, obligately anaerobic processes can occur in the presence of abundant oxygen, highly reduced gases are produced in the presence of abundant sulfate, meiofauna thrive at high sulfide concentrations, and the mats' constituent populations respond to environmental changes in complex ways. While photosynthetic bacteria dominate the biomass and productivity of the mat, nonphotosynthetic, anaerobic processes constitute the ultimate biological filter on the ecosystem's emergent biosignatures, including those

  18. Chlorophyll and carotenoid pigments in solar saltern microbial mats

    NASA Astrophysics Data System (ADS)

    Villanueva, Joan; Grimalt, Joan O.; de Wit, Rutger; Keely, Brendan J.; Maxwell, James R.

    1994-11-01

    The distributions of carotenoids, chlorophylls, and their degradation products have been studied in two microbial mat systems developed in the calcite and calcite/gypsum evaporite domains of a solar saltern system. Phormidium valderianum and Microcoleus chthonoplastes are the dominant cyanobacterial species, respectively, and large amounts of Chloroflexus-like bacteria occur in the carbonate/gypsum mat. In both systems, the major pigments are chlorophyll a, zeaxanthin, β-carotene and myxoxanthophyll, which originate from these mat-building cyanobacteria. This common feature contrasts with differences in other pigments that are specific for each mat community. Thus, chlorophyll c and fucoxanthin, reflecting diatom inputs, are only found in the calcite mat, whereas the calcite/gypsum mat contains high concentrations of bacteriochlorophylls c produced by the multicellular green filamentous bacteria. In both cases, the depth concentration profiles (0-30 and 0-40 mm) show a relatively good preservation of the cyanobacterial carotenoids, zeaxanthin, β-carotene, myxoxanthophyll, and echinenone. This contrasts with the extensive biodegradation of cyanobacterial remains observed microscopically. Fucoxanthin in the calcite mat is also transformed at a faster rate than the cyanobacterial carotenoids. Chlorophyll a, the major pigment in both mats, exhibits different transformation pathways. In the calcite/gypsum mat, it is transformed via C-13 2 carbomethoxy defunctionalization prior to loss of the phytyl chain, leading to the formation of pyrophaeophytin a and, subsequently, pyrophaeophorbide a. On the other hand, the occurrence of the enzyme chlorophyllase, attributed to diatoms in the calcite mat, gives rise to extensive phytyl hydrolysis, with the formation of chlorophyllide a, pyrophaeophorbide a and, in minor proportion, phaeophorbide a. Studies of the sources of the photosynthetic pigments and of their transformation pathways in such simplified ecosystems provide a

  19. Elastic-plastic behavior of non-woven fibrous mats

    NASA Astrophysics Data System (ADS)

    Silberstein, Meredith N.; Pai, Chia-Ling; Rutledge, Gregory C.; Boyce, Mary C.

    2012-02-01

    Electrospinning is a novel method for creating non-woven polymer mats that have high surface area and high porosity. These attributes make them ideal candidates for multifunctional composites. Understanding the mechanical properties as a function of fiber properties and mat microstructure can aid in designing these composites. Further, a constitutive model which captures the membrane stress-strain behavior as a function of fiber properties and the geometry of the fibrous network would be a powerful design tool. Here, mats electrospun from amorphous polyamide are used as a model system. The elastic-plastic behavior of single fibers are obtained in tensile tests. Uniaxial monotonic and cyclic tensile tests are conducted on non-woven mats. The mat exhibits elastic-plastic stress-strain behavior. The transverse strain behavior provides important complementary data, showing a negligible initial Poisson's ratio followed by a transverse:axial strain ratio greater than -1:1 after an axial strain of 0.02. A triangulated framework has been developed to emulate the fibrous network structure of the mat. The micromechanically based model incorporates the elastic-plastic behavior of single fibers into a macroscopic membrane model of the mat. This representative volume element based model is shown to capture the uniaxial elastic-plastic response of the mat under monotonic and cyclic loading. The initial modulus and yield stress of the mat are governed by the fiber properties, the network geometry, and the network density. The transverse strain behavior is linked to discrete deformation mechanisms of the fibrous mat structure including fiber alignment, fiber bending, and network consolidation. The model is further validated in comparison to experiments under different constrained axial loading conditions and found to capture the constraint effect on stiffness, yield, post-yield hardening, and post-yield transverse strain behavior. Due to the direct connection between

  20. Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: Comparison with organic UV absorbers

    NASA Astrophysics Data System (ADS)

    Aloui, F.; Ahajji, A.; Irmouli, Y.; George, B.; Charrier, B.; Merlin, A.

    2007-02-01

    Inorganic UV absorbers which are widely used today were originally designed neither as a UV blocker in coatings applications, nor for wood protection. In recent years however, there has been extensive interest in these compounds, especially with regard to their properties as a UV blocker in coating applications. In this work, we carried out a comparative study to look into some inorganic and organic UV absorbers used in wood coating applications. The aim of this study is to determine the photostabilisation performances of each type of UV absorbers, to seek possible synergies and the influences of different wood species. We have also searched to find eventual correlation between these performances and the influence of UV absorbers on the film properties. Our study has compared the performances of the following UV absorbers: hombitec RM 300, hombitec RM 400 from the Sachtleben Company; transparent yellow and red iron oxides from Sayerlack as inorganic UV absorbers; organic UV absorbers Tinuvin 1130 and Tinuvin 5151 from Ciba Company. The study was carried out on three wood species: Abies grandis, tauari and European oak. The environmental constraints (in particular the limitation of the emission of volatile organic compounds VOCs) directed our choice towards aqueous formulations marketed by the Sayerlack Arch Coatings Company. The results obtained after 800 h of dry ageing showed that the Tinuvins and the hombitecs present better wood photostabilisations. On the other hand in wet ageing, with the hombitec, there are appearances of some cracks and an increase in the roughness of the surface. This phenomenon is absent when the Tinuvins are used. With regard to these results, the thermomechanical analyses relating to the follow-up of the change of the glass transition temperature ( Tg) of the various coating systems, show a different behaviour between the two types of absorbers. However, contrary to organic UV absorbers, inorganic ones tend to increase Tg during ageing

  1. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  2. Glass-fibre separators for valve-regulated batteries

    NASA Astrophysics Data System (ADS)

    Miura, H.; Hosono, H.

    1994-02-01

    Recombining battery mat separators for valve-regulated lead/acid batteries must: (1) prevent shedding of active material from positive plates; (2) retain the whole of the electrolyte for flexibility of battery positioning; (3) have fine pores to eliminate the need for maintenance. The relationships between these requirements and the diameter of glass microfibers are discussed with respect to the design of a new cost-effective recombinant battery mat separator, brand name: M Sepa. M Sepa products have been introduced to the market to meet the special requirements of valve-regulated lead/acid batteries.

  3. Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1994-01-01

    A fiber-reinforced composite composed of a BaO-Al2O3-2SiO2 (BAS) glass ceramic matrix is reinforced with CVD silicon carbide continuous fibers. A slurry of BAS glass powders is prepared and celsian seeds are added during ball melting. The slurry is cast into tapes which are cut to the proper size. Continuous CVD-SiC fibers are formed into mats of the desired size. The matrix tapes and the fiber mats are alternately stacked in the proper orientation. This tape-mat stack is warm pressed to produce a 'green' composite. The 'green' composite is then heated to an elevated temperature to burn out organic constituents. The remaining interim material is then hot pressed to form a silicon carbide fiber-reinforced celsian (BAS) glass-ceramic matrix composite which may be machined to size.

  4. Athermal photofluidization of glasses.

    PubMed

    Fang, G J; Maclennan, J E; Yi, Y; Glaser, M A; Farrow, M; Korblova, E; Walba, D M; Furtak, T E; Clark, N A

    2013-01-01

    Azobenzene and its derivatives are among the most important organic photonic materials, with their photo-induced trans-cis isomerization leading to applications ranging from holographic data storage and photoalignment to photoactuation and nanorobotics. A key element and enduring mystery in the photophysics of azobenzenes, central to all such applications, is athermal photofluidization: illumination that produces only a sub-Kelvin increase in average temperature can reduce, by many orders of magnitude, the viscosity of an organic glassy host at temperatures more than 100 K below its thermal glass transition. Here we analyse the relaxation dynamics of a dense monolayer glass of azobenzene-based molecules to obtain a measurement of the transient local effective temperature at which a photo-isomerizing molecule attacks its orientationally confining barriers. This high temperature (T(loc)~800 K) leads directly to photofluidization, as each absorbed photon generates an event in which a local glass transition temperature is exceeded, enabling collective confining barriers to be attacked with near 100% quantum efficiency. PMID:23443549

  5. A Recombinationally Repressed Region between Mat2 and Mat3 Loci Shares Homology to Centromeric Repeats and Regulates Directionality of Mating-Type Switching in Fission Yeast

    PubMed Central

    Grewal, SIS.; Klar, AJS.

    1997-01-01

    Cells of the fission yeast Schizosaccharomyces pombe switch mating type by replacing genetic information at the transcriptionally active mat1 locus with sequences copied from one of two closely linked silent loci, mat2-P or mat3-M. By a process referred to as directionality of switching, cells predominantly switch to the opposite mat1 allele; the mat1-P allele preferentially recombines with mat3, while mat1-M selects the mat2. In contrast to efficient recombination at mat1, recombination within the adjoining mat2-mat3 interval is undetectable. We defined the role of sequences between mat2 and mat3, designated the K-region, in directionality as well as recombinational suppression. Cloning and sequencing analysis revealed that a part of the K-region is homologous to repeat sequences present at centromeres, which also display transcriptional and recombinational suppression. Replacement of 7.5 kb of the K-region with the ura4(+) gene affected directionality in a variegated manner. Analysis of the swi6-mod locus, which was previously shown to affect directionality, in KΔ::ura4(+) strains suggested the existence of at least two overlapping directionality mechanisms. Our work furthers the model that directionality is regulated by cell-type-specific organization of the heterochromatin-like structure in the mating-type region and provides evidence that the K-region contributes to silencing of the mat2-mat3 interval. PMID:9258669

  6. Metamaterial electromagnetic wave absorbers.

    PubMed

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. PMID:22627995

  7. Absorber coatings' degradation

    SciTech Connect

    Moore, S.W.

    1984-01-01

    This report is intended to document some of the Los Alamos efforts that have been carried out under the Department of Energy (DOE) Active Heating and Cooling Materials Reliability, Maintainability, and Exposure Testing program. Funding for these activities is obtained directly from DOE although they represent a variety of projects and coordination with other agencies. Major limitations to the use of solar energy are the uncertain reliability and lifetimes of solar systems. This program is aimed at determining material operating limitations, durabilities, and failure modes such that materials improvements can be made and lifetimes can be extended. Although many active and passive materials and systems are being studied at Los Alamos, this paper will concentrate on absorber coatings and degradation of these coatings.

  8. Glass lasers.

    PubMed

    Snitzer, E

    1966-10-01

    After a general discussion of the merits of glass vs. crystals as host materials for laser ions, a summary is given of the various glass lasers. Because of its importance as an efficient, room temperature laser the properties of neodymium are considered in greater detail. This includes the nonlaser properties of Nd(3+) in glass, the spectral and temporal emission characteristics of Nd(3+) lasers, and Nd(3+) laser configurations. Separate sections deal with the other two room temperature lasers which use Yb(3+) or Er(3+). The problem of thermal stability of laser cavities is also discussed. Finally, a survey is given of the glasses that are useful as Faraday rotators. PMID:20057584

  9. Photochromic glass

    SciTech Connect

    Hoffmann, H.J.

    1990-12-31

    This article deals with the general properties of photochromic inorganic glasses and the darkening and regeneration dynamics as well as the main photochemical and photophysical reactions occurring in the glasses. It concludes with applications of photochromic systems to self-adjusting window panes. This controlled flow of radiant energy could lead to important energy savings by decreasing the cooling and heating loads in buildings and automobiles.

  10. The MAT Locus Genes Play Different Roles in Sexual Reproduction and Pathogenesis in Fusarium graminearum

    PubMed Central

    Juanyu; Zhang; Ma, Jiwen; Wu, Zhongshou; Wang, Guanghui; Wang, Chenfang; Xu, Jin-Rong

    2013-01-01

    Sexual reproduction plays a critical role in the infection cycle of Fusarium graminearum because ascospores are the primary inoculum. As a homothallic ascomycete, F. graminearum contains both the MAT1-1 and MAT1-2-1 loci in the genome. To better understand their functions and regulations in sexual reproduction and pathogenesis, in this study we assayed the expression, interactions, and mutant phenotypes of individual MAT locus genes. Whereas the expression of MAT1-1-1 and MAT12-1 rapidly increased after perithecial induction and began to decline after 1 day post-perithecial induction (dpi), the expression of MAT1-1-2 and MAT1-1-3 peaked at 4 dpi. MAT1-1-2 and MAT1-1-3 had a similar expression profile and likely are controlled by a bidirectional promoter. Although none of the MAT locus genes were essential for perithecium formation, all of them were required for ascosporogenesis in self-crosses. In outcrosses, the mat11-1-2 and mat11-1-3 mutants were fertile but the mat1-1-1 and mat1-2-1 mutants displayed male- and female-specific defects, respectively. The mat1-2-1 mutant was reduced in FgSO expression and hyphal fusion. Mat1-1-2 interacted with all other MAT locus transcription factors, suggesting that they may form a protein complex during sexual reproduction. Mat1-1-1 also interacted with FgMcm1, which may play a role in controlling cell identity and sexual development. Interestingly, the mat1-1-1 and mat1-2-1 mutants were reduced in virulence in corn stalk rot assays although none of the MAT locus genes was important for wheat infection. The MAT1-1-1 and MAT1-2-1 genes may play a host-specific role in colonization of corn stalks. PMID:23826182

  11. The MAT locus genes play different roles in sexual reproduction and pathogenesis in Fusarium graminearum.

    PubMed

    Zheng, Qian; Hou, Rui; Juanyu; Zhang; Ma, Jiwen; Wu, Zhongshou; Wang, Guanghui; Wang, Chenfang; Xu, Jin-Rong

    2013-01-01

    Sexual reproduction plays a critical role in the infection cycle of Fusarium graminearum because ascospores are the primary inoculum. As a homothallic ascomycete, F. graminearum contains both the MAT1-1 and MAT1-2-1 loci in the genome. To better understand their functions and regulations in sexual reproduction and pathogenesis, in this study we assayed the expression, interactions, and mutant phenotypes of individual MAT locus genes. Whereas the expression of MAT1-1-1 and MAT12-1 rapidly increased after perithecial induction and began to decline after 1 day post-perithecial induction (dpi), the expression of MAT1-1-2 and MAT1-1-3 peaked at 4 dpi. MAT1-1-2 and MAT1-1-3 had a similar expression profile and likely are controlled by a bidirectional promoter. Although none of the MAT locus genes were essential for perithecium formation, all of them were required for ascosporogenesis in self-crosses. In outcrosses, the mat11-1-2 and mat11-1-3 mutants were fertile but the mat1-1-1 and mat1-2-1 mutants displayed male- and female-specific defects, respectively. The mat1-2-1 mutant was reduced in FgSO expression and hyphal fusion. Mat1-1-2 interacted with all other MAT locus transcription factors, suggesting that they may form a protein complex during sexual reproduction. Mat1-1-1 also interacted with FgMcm1, which may play a role in controlling cell identity and sexual development. Interestingly, the mat1-1-1 and mat1-2-1 mutants were reduced in virulence in corn stalk rot assays although none of the MAT locus genes was important for wheat infection. The MAT1-1-1 and MAT1-2-1 genes may play a host-specific role in colonization of corn stalks. PMID:23826182

  12. Using Intact Iron Microbial Mats to Gain Insights Into Mat Ecology and Geochemical Niche at the Microbial Scale

    NASA Astrophysics Data System (ADS)

    Glazer, B. T.; Chan, C. S. Y.; Mcallister, S.; Leavitt, A.; Emerson, D.

    2015-12-01

    Microbial mats are formed by microorganisms working in coordinated symbiosis, often benefitting the community by controlling the local geochemical or physical environment. Thus, the ecology of the mat depends on the individual roles of microbes organized into niches within a larger architecture. Chemolithotrophic Fe-oxidizing bacteria (FeOB) form distinctive Fe oxyhydroxide biominerals which constitute the building blocks of the mat. However, the majority of our progress has been in understanding the overall community structure. Understanding the physical mat structure on the microbial scale is important to unraveling FeOB evolution, the biogeochemistry and ecology of Fe-rich habitats, and ultimately interpreting FeOB biosignatures in the rock record. Mats in freshwater and marine environments contain strikingly similar biomineral morphologies, yet they are formed by phylogenetically distinct microorganisms. This suggests that the overall architecture and underlying genetics of freshwater and marine mats has evolved to serve particular roles specific to Fe oxidation. Thus, we conducted a comparative study of Fe seep freshwater mats and marine hydrothermal mats. We have developed a new approach to sampling Fe mats in order to preserve the delicate structure for analysis by confocal and scanning electron microscopy. Our analyses of these intact mats show that freshwater and marine mats are similarly initiated by a single type of structure-former. These ecosystem engineers form either a hollow sheath or a twisted stalk biomineral during mat formation, with a highly directional structure. These microbes appear to be the vanguard organisms that anchor the community within oxygen/Fe(II) gradients, further allowing for community succession in the mat interior as evidenced by other mineralized morphologies. Patterns in biomineral thickness and directionality were indicative of redox gradients and temporal changes in the geochemical environment. These observations show that

  13. Manganese Influences Carbonate Precipitation in a Laminated Microbial Mat

    NASA Astrophysics Data System (ADS)

    Krusor, M.; Grim, S. L.; Wilmeth, D.; Johnson, H.; Berelson, W.; Stevenson, B. S.; Stamps, B. W.; Corsetti, F. A.; Spear, J. R.

    2015-12-01

    Investigating mineralization within modern microbial mats informs our interpretation of ancient microbialites and the mineralization process. Microbial mats in Little Hot Creek (LHC), California contain 4 distinct layers with different microbiota. Each layer of the mat is supersaturated with regard to calcium carbonate (CaCO3), which increases with depth. Total organic carbon decreases with depth through the mat. We used 13C-labeled bicarbonate incubations of each mat layer to calculate growth rates of organic carbon and CaCO3 within the mat. Incubations were also amended with Mn or Mg to test their effect on rates of CaCO3 and organic carbon formation. The Mn-amended top layer increased CaCO3 precipitation and organic carbon growth. Mn increased organic carbon production in the lowest layer to a lesser extent, but not growth of CaCO3. Mn addition had no effect on growth rates in the two intervening layers. Mg amendment stimulated only organic carbon formation in the top layer, with little to no effect on the lower layers or overall CaCO3 formation. We attribute the elevated CaCO3 precipitation noted after Mn addition to increased oxygenic photosynthetic activity. Oxygenic photosynthesis requires Mn as an enzyme cofactor and promotes carbonate precipitation. We propose that the phototrophic community was responsible for most of the CaCO3 precipitation in the upper layer. Phototrophs gradually moved upwards for optimal access to sunlight, and as the mat grew, "tenant" microorganisms inhabited the lower carbonate layers while the "builders" remained on top. The relatively constant percentages of inorganic carbon below the top layer combined with observed minimal CaCO3 precipitation under laboratory conditions suggest that additional research into potential metabolisms that impact carbonate formation would be informative. These results improve our understanding of the linkages between microbial metabolisms, carbonate precipitation in microbial mats, and the potential

  14. Monitoring Survival and Preservation of Recent Cyanobacterial Mats

    NASA Astrophysics Data System (ADS)

    Chacon, Elizabeth; Negron-Mendoza, Alicia; Camargo, Claudia

    2010-05-01

    Through geobiological evolution cyanobacterial mats have played a fundamental role through the development of early microbial carbonate ecosystems and through the sustainment of major biogeochemical cycling in the biosphere; nonetheless their sedimentary record is relatively modest in comparison with their biological impact; this apparent under-representation in the fossil record may be due to their intrinsic poor preservation potential but also to our inability to recognize some subtle microbial signatures. Modern studies on cyanobacterial mats involve high-tech molecular approaches to identify, analyze and even quantify the genetic diversity of ancient and modern microbial mats, yet the physical changes of mats, their survival and preservation potential, remain almost unknown and experimentally poorly explored. If we are going to succeed in the astrobiological quest for traces of life we should develop integrated methods and diagnostic features to address biosignatures at both, the phenotypic and genotypic levels when possible. The correct recognition and interpretation of biosignatures in this emerging field needs, aside these fine molecular tools, plain experimental approaches to test microbial resistance, survival and preservation potential of microbial mats after exposure to diagenetic changes. In this work we study some effects on fresh slices of cyanobacterial mats and cultures of specific external simulated agents that normally occur during diagenesis such as dehydratation, heat, abrasion or pressure among others. Samples from different cyanobacterial communities associated to carbonates collected from different rivers and falls around Mexico were subjected to same lab procedures. Physical and textural changes were monitored through microscopic analysis where cell integrity and mat cohesiveness were analyzed before and after treatment. Preliminary results show that mats enriched in halite and clay sediments were preferentially preserved; however those mats

  15. Water flow and solute transport in floating fen root mats

    NASA Astrophysics Data System (ADS)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    Floating fens are valuable wetlands, found in North-Western Europe, that are formed by floating root mats when old turf ponds are colonized by plants. These terrestrialization ecosystems are known for their biodiversity and the presence of rare plant species, and the root mats reveal different vegetation zones at a small scale. The vegetation zones are a result of strong gradients in abiotic conditions, including groundwater dynamics, nutrients and pH. To prevent irreversible drought effects such as land subsidence and mineralization of peat, water management involves import of water from elsewhere to maintain constant surface water levels. Imported water may have elevated levels of salinity during dry summers, and salt exposure may threaten the vegetation. To assess the risk of exposure of the rare plant species to salinity, the hydrology of such root mats must be understood. Physical properties of root mats have scarcely been investigated. We have measured soil characteristics, hydraulic conductivity, vertical root mat movement and groundwater dynamics in a floating root mat in the nature reserve Nieuwkoopse Plassen, in the Netherlands. The root mat mostly consists of roots and organic material, in which the soil has a high saturated water content, and strongly varies in its stage of decomposition. We have found a distinct negative correlation between degree of decomposition and hydraulic conductivity, similar to observations for bogs in the literature. Our results show that the relatively young, thin edge of the root mat that colonizes the surface water has a high hydraulic conductivity and floats in the surface water, resulting in very small groundwater fluctuations within the root mat. The older part of the root mat, that is connected to the deeper peat layers is hydrologically more isolated and the material has a lower conductivity. Here, the groundwater fluctuates strongly with atmospheric forcing. The zones of hydraulic properties and vegetation, appear to

  16. Electrospun graphene-ZnO nanofiber mats for photocatalysis applications

    NASA Astrophysics Data System (ADS)

    An, Seongpil; Joshi, Bhavana N.; Lee, Min Wook; Kim, Na Young; Yoon, Sam S.

    2014-03-01

    Graphene-decorated zinc oxide (G-ZnO) nanofibers were fabricated, for the first time, by electrospinning. The effect of graphene concentration on the properties of G-ZnO mats were investigated by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and thermo gravimetric analysis. The G-ZnO mats decorated with 0.5 wt.% of graphene showed excellent photocatalytic activity through degradation of methylene blue under UV irradiation. The highest photocatalytic activity (80% degradation) was observed for 0.5 wt.% G-ZnO mats annealed at 400 °C after 4 h of UV irradiation.

  17. Protocyanobacteria: Oxygenic and Anoxygenic photosynthesis in mat-forming bacteria

    NASA Technical Reports Server (NTRS)

    Cohen, Y.

    1985-01-01

    The oldest record of life is preserved in prePhanerozoic stromatolites dated 3500 million years old and is most likely of filamentous mat-forming cyanobacteria. The sedimentary records of cyanobacterial mats in stromatolites are the most abundant record of life throughout the prePhanerozoic. Stromatolites persisted into the Phanerozoic Eon, yet they become much less pronounced relative to earlier ones. The abundance and persistence of cyanobacterial mats throughout most of geological time point to the evolutionary success of these kinds of microbial communities and their possible role in the evolution of the earth and atmosphere.

  18. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  19. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  20. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  1. Method of producing a silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1995-01-01

    A SrO-Al2O3-2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.

  2. Silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam (Inventor)

    1992-01-01

    A SrO-Al2O3 - 2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.

  3. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.

  4. Microbial mats and the early evolution of life

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1990-01-01

    Microbial mats have descended from perhaps the oldest and most widespread biological communities known. Mats harbor microbes that are crucial for studies of bacterial phylogeny and physiology. They illustrate how several oxygen-sensitive biochemical processes have adapted to oxygen, and they show how life adapted to dry land long before the rise of plants. The search for the earliest grazing protists and metazoa in stromatolites is aided by observations of mats: in them, organic compounds characteristic of ancient photosynthetic protists can be identified. Recent mat studies suggest that the 13C/12C increase observed over geological time in stromatolitic organic matter was driven at least in part by a long-term decline in atmospheric carbon dioxide levels.

  5. A Modular Sensorized Mat for Monitoring Infant Posture

    PubMed Central

    Donati, Marco; Cecchi, Francesca; Bonaccorso, Filippo; Branciforte, Marco; Dario, Paolo; Vitiello, Nicola

    2014-01-01

    We present a novel sensorized mat for monitoring infant's posture through the measure of pressure maps. The pressure-sensitive mat is based on an optoelectronic technology developed in the last few years at Scuola Superiore Sant'Anna: a soft silicone skin cover, which constitutes the mat, participates in the transduction principle and provides the mat with compliance. The device has a modular structure (with a minimum of one and a maximum of six sub-modules, and a total surface area of about 1 m2) that enables dimensional adaptation of the pressure-sensitive area to different specific applications. The system consists of on-board electronics for data collection, pre-elaboration, and transmission to a remote computing unit for analysis and posture classification. In this work we present a complete description of the sensing apparatus along with its experimental characterization and validation with five healthy infants. PMID:24385029

  6. Microbial mats and modern stromatolites in Shark Bay, Western Australia

    NASA Technical Reports Server (NTRS)

    Golubic, S.

    1985-01-01

    Distribution, external morphology, texture, and microbial composition of microbial mats in Hamelin Pool, Shark Bay, Western Australia, have been studied and reviewed along a composite representative profile starting from the permanently submerged zone, across the zones of periodic flooding, toward permanently emerged land and coastal dunes. The following nine types of algal mats have been recognized: colloform, gelatinous, smooth, pincushion, tufted, mamillate, film, reticulate, and blister. Solar ponds represent a particular environment. The mat types represent microbial communities that are characterized by one or more dominant microorganisms. The colonization and stabilization of loose sediment is carried out by a microbial assemblage of generalists that prepare the ground for later replacement and succession by specialized microflora. Lithification of microbial mats takes place periodically, mainly during the austral summer. This process is destructive for the microbial community but increases the preservation potential of the stromatolitic structures.

  7. The biogeochemistry of microbial mats, stromatolites and the ancient biosphere

    NASA Technical Reports Server (NTRS)

    Desmarais, D. J.; Canfield, D. E.

    1991-01-01

    Stromatolites offer an unparalleled geologic record of early life, because they constitute the oldest and most abundant recognizable remains of microbial ecosystems. Microbial mats are living homologs of stromatolites; thus, the physiology of the microbiota as well as the processes which create those features of mats (e.g., biomarker organic compounds, elemental and stable isotopic compositions) which are preserved in the ancient record. Observations of the carbon isotopic composition (delta C-13) of stromatolites and microbial mats were made and are consistent with the hypothesis that atmospheric CO2 concentrations have declined by at least one to two orders of magnitude during the past 2.5 Ga. Whereas delta C-13 values of carbonate carbon average about 0 permil during both the early and mid-Proterozoic, the delta C-13 values of stromatolitic organic matter increase from an average of -35 between 2.0 and 2.6 Ga ago to an average of about -28 about 1.0 Ga ago. Modern microbial mats in hypersaline environments have delta C-13 values typically in the range of -5 to -9, relative to an inorganic bicarbonate source at 0 permil. Both microbial mats and pur cultures of cyanobacteria grown in waters in near equilibrium with current atmospheric CO2 levels exhibit minimal discrimination against C-13. In contrast, hot spring cyanobacterial mats or cyanobacterial cultures grown under higher CO2 levels exhibit substantially greater discrimination. If care is taken to compare modern mats with stromatolites from comparable environments, it might be possible to estimate ancient levels of atmospheric CO2. In modern microbial mats, a tight coupling exists between photosynthetic organic carbon production and subsequent carbon oxidation, mostly by sulfate reduction. The rate of one process fuels a high rate of the other, with much of the sulfate reduction occurring within the same depth interval as oxygenic photosynthesis. Other aspects of this study are presented.

  8. Nitrification and Nitrifying Bacteria in a Coastal Microbial Mat.

    PubMed

    Fan, Haoxin; Bolhuis, Henk; Stal, Lucas J

    2015-01-01

    The first step of nitrification, the oxidation of ammonia to nitrite, can be performed by ammonia-oxidizing archaea (AOA) or ammonium-oxidizing bacteria (AOB). We investigated the presence of these two groups in three structurally different types of coastal microbial mats that develop along the tidal gradient on the North Sea beach of the Dutch barrier island Schiermonnikoog. The abundance and transcription of amoA, a gene encoding for the alpha subunit of ammonia monooxygenase that is present in both AOA and AOB, were assessed and the potential nitrification rates in these mats were measured. The potential nitrification rates in the three mat types were highest in autumn and lowest in summer. AOB and AOA amoA genes were present in all three mat types. The composition of the AOA and AOB communities in the mats of the tidal and intertidal stations, based on the diversity of amoA, were similar and clustered separately from the supratidal microbial mat. In all three mats AOB amoA genes were significantly more abundant than AOA amoA genes. The abundance of neither AOB nor AOA amoA genes correlated with the potential nitrification rates, but AOB amoA transcripts were positively correlated with the potential nitrification rate. The composition and abundance of amoA genes seemed to be partly driven by salinity, ammonium, temperature, and the nitrate/nitrite concentration. We conclude that AOB are responsible for the bulk of the ammonium oxidation in these coastal microbial mats. PMID:26648931

  9. Nitrification and Nitrifying Bacteria in a Coastal Microbial Mat

    PubMed Central

    Fan, Haoxin; Bolhuis, Henk; Stal, Lucas J.

    2015-01-01

    The first step of nitrification, the oxidation of ammonia to nitrite, can be performed by ammonia-oxidizing archaea (AOA) or ammonium-oxidizing bacteria (AOB). We investigated the presence of these two groups in three structurally different types of coastal microbial mats that develop along the tidal gradient on the North Sea beach of the Dutch barrier island Schiermonnikoog. The abundance and transcription of amoA, a gene encoding for the alpha subunit of ammonia monooxygenase that is present in both AOA and AOB, were assessed and the potential nitrification rates in these mats were measured. The potential nitrification rates in the three mat types were highest in autumn and lowest in summer. AOB and AOA amoA genes were present in all three mat types. The composition of the AOA and AOB communities in the mats of the tidal and intertidal stations, based on the diversity of amoA, were similar and clustered separately from the supratidal microbial mat. In all three mats AOB amoA genes were significantly more abundant than AOA amoA genes. The abundance of neither AOB nor AOA amoA genes correlated with the potential nitrification rates, but AOB amoA transcripts were positively correlated with the potential nitrification rate. The composition and abundance of amoA genes seemed to be partly driven by salinity, ammonium, temperature, and the nitrate/nitrite concentration. We conclude that AOB are responsible for the bulk of the ammonium oxidation in these coastal microbial mats. PMID:26648931

  10. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  11. Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments

    SciTech Connect

    Ren, W.; Brinkman, C.R.

    1998-12-31

    Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

  12. Regulation of electron transfer processes affects phototrophic mat structure and activity.

    PubMed

    Ha, Phuc T; Renslow, Ryan S; Atci, Erhan; Reardon, Patrick N; Lindemann, Stephen R; Fredrickson, James K; Call, Douglas R; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  13. Regulation of electron transfer processes affects phototrophic mat structure and activity

    PubMed Central

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  14. Disruption of photoautotrophic intertidal mats by filamentous fungi.

    PubMed

    Carreira, Cátia; Staal, Marc; Falkoski, Daniel; de Vries, Ronald P; Middelboe, Mathias; Brussaard, Corina P D

    2015-08-01

    Ring-like structures, 2.0-4.8 cm in diameter, observed in photosynthetic microbial mats on the Wadden Sea island Schiermonnikoog (the Netherlands) showed to be the result of the fungus Emericellopsis sp. degrading the photoautotrophic top layer of the mat. The mats were predominantly composed of cyanobacteria and diatoms, with large densities of bacteria and viruses both in the top photosynthetic layer and in the underlying sediment. The fungal attack cleared the photosynthetic layer; however, no significant effect of the fungal lysis on the bacterial and viral abundances could be detected. Fungal-mediated degradation of the major photoautotrophs could be reproduced by inoculation of non-infected mat with isolated Emericellopsis sp., and with an infected ring sector. Diatoms were the first re-colonizers followed closely by cyanobacteria that after about 5 days dominated the space. The study demonstrated that the fungus Emericellopsis sp. efficiently degraded a photoautotrophic microbial mat, with potential implications for mat community composition, spatial structure and productivity. PMID:25728280

  15. Cyanobacterial reuse of extracellular organic carbon in microbial mats.

    PubMed

    Stuart, Rhona K; Mayali, Xavier; Lee, Jackson Z; Craig Everroad, R; Hwang, Mona; Bebout, Brad M; Weber, Peter K; Pett-Ridge, Jennifer; Thelen, Michael P

    2016-05-01

    Cyanobacterial organic matter excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of this C depend on unknown physiological functions. Cyanobacteria-dominated hypersaline laminated mats are a useful model ecosystem for the study of C flow in complex communities, as they use photosynthesis to sustain a more or less closed system. Although such mats have a large C reservoir in the extracellular polymeric substances (EPSs), the production and degradation of organic carbon is not well defined. To identify extracellular processes in cyanobacterial mats, we examined mats collected from Elkhorn Slough (ES) at Monterey Bay, California, for glycosyl and protein composition of the EPS. We found a prevalence of simple glucose polysaccharides containing either α or β (1,4) linkages, indicating distinct sources of glucose with differing enzymatic accessibility. Using proteomics, we identified cyanobacterial extracellular enzymes, and also detected activities that indicate a capacity for EPS degradation. In a less complex system, we characterized the EPS of a cyanobacterial isolate from ES, ESFC-1, and found the extracellular composition of biofilms produced by this unicyanobacterial culture were similar to that of natural mats. By tracing isotopically labeled EPS into single cells of ESFC-1, we demonstrated rapid incorporation of extracellular-derived carbon. Taken together, these results indicate cyanobacteria reuse excess organic carbon, constituting a dynamic pool of extracellular resources in these mats. PMID:26495994

  16. Methane Production by Microbial Mats Under Low Sulfate Concentrations

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.; Hoehler, Tori M.; Thamdrup, Bo; Albert, Dan; Carpenter, Steven P.; Hogan, Mary; Turk, Kendra; DesMarais, David J.

    2003-01-01

    Cyanobacterial mats collected in hypersaline salterns were incubated in a greenhouse under low sulfate concentrations ([SO4]) and examined for their primary productivity and emissions of methane and other major carbon species. Atmospheric greenhouse warming by gases such as carbon dioxide and methane must have been greater during the Archean than today in order to account for a record of moderate to warm paleoclemates, despite a less luminous early sun. It has been suggested that decreased levels of oxygen and sulfate in Archean oceans could have significantly stimulated microbial methanogenesis relative to present marine rates, with a resultant increase in the relative importance of methane in maintaining the early greenhouse. We maintained modern microbial mats, models of ancient coastal marine communities, in artificial brine mixtures containing both modern [SO4=] (ca. 70 mM) and "Archean" [SO4] (less than 0.2 mM). At low [SO4], primary production in the mats was essentially unaffected, while rates of sulfate reduction decreased by a factor of three, and methane fluxes increased by up to ten-fold. However, remineralization by methanogenesis still amounted to less than 0.4 % of the total carbon released by the mats. The relatively low efficiency of conversion of photosynthate to methane is suggested to reflect the particular geometry and chemical microenvironment of hypersaline cyanobacterial mats. Therefore, such mats w-ere probably relatively weak net sources of methane throughout their 3.5 Ga history, even during periods of low- environmental levels oxygen and sulfate.

  17. Pinhole Glasses

    NASA Astrophysics Data System (ADS)

    Colicchia, Giuseppe; Hopf, Martin; Wiesner, Hartmut; Zollman, Dean

    2008-01-01

    Eye aberrations are commonly corrected by lenses that restore vision by altering rays before they pass through the cornea. Some modern promoters claim that pinhole glasses are better than conventional lenses in correcting all kinds of refractive defects such as myopia (nearsighted), hyperopia (farsighted), astigmatisms, and presbyopia. Do pinhole glasses really give better vision? Some ways to use this question for motivation in teaching optics have been discussed. For this column we include a series of experiments that students can complete using a model of the eye and demonstrate issues related to pinhole vision correction.

  18. Fused Silica Surface Coating for a Flexible Silica Mat Insulation System

    NASA Technical Reports Server (NTRS)

    Rhodes, W. H.

    1973-01-01

    Fused silica insulation coatings have been developed for application to a flexible mat insulation system. Based on crystalline phase nucleation and growth kinetics, a 99+% SiO2 glass was selected as the base composition. A coating was developed that incorporated the high emissivity phase NiCr2O4 as a two phase coating with goals of high emittance and minimum change in thermal expansion. A second major coating classification has a plasma sprayed emittance coating over a sealed pure amorphous SiO2 layer. A third area of development centered on extremely thin amorphous SiO2 coatings deposited by chemical vapor deposition. The coating characterization studies presented are mechanical testing of thin specimens extracted from the coatings, cyclic arc exposures, and emittance measurements before and after arc exposures.

  19. Durability of a continuous strand mat polymeric composite for automotive structural applications

    SciTech Connect

    Corum, J.M.; McCoy, H.E. Jr.; Ruggles, M.B.; Simpson, W.A. Jr.

    1995-12-31

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their durability. Major durability issues are the effects of cyclic loadings, creep, automotive environments, and low-energy impacts on dimensional stability, strength, and stiffness. The U.S. Department of Energy is sponsoring a project at Oak Ridge National Laboratory to address these issues and to develop, in cooperation with the Automotive Composites Consortium, experimentally based, durability driven, design guidelines. The initial reference material is an isocyanurate reinforced with a continuous strand, swirl glass mat. This paper describes the basic deformation and failure behavior of the reference material, and it presents test results illustrating the property degradations caused by loading, time, and environmental effects. The importance of characterizing and understanding damage and how it leads to failure is also discussed. The results presented are from the initial phases of an ongoing project. The ongoing effort and plans are briefly described.

  20. Some Aspects of the Deformation Response of Swirl-Mat Composites

    SciTech Connect

    Elahi, M.; Weitsman, Y.J.

    1999-10-01

    This report concerns the mechanical response of random glass fiber strand swirl-mat/urethane matrix composite under static and cyclic loads as well as under elevated temperatures and exposure to distilled water. The article presents an extensive amount of experimental data as well as predictions based on a couple damage/viscoelastic constitutive formulation generated to model the specific behavior of the material at hand. Damage evolution relations are derived from an empirical relationship. This work extends previously published results. It is shown that the current model has the capability to predict long-term response on the basis of short-term data and account for time-varying stresses and temperatures.

  1. PLLA/Flax Mat/Balsa Bio-Sandwich Manufacture and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Le Duigou, Antoine; Deux, Jean-Marc; Davies, Peter; Baley, Christophe

    2011-10-01

    This paper describes the manufacture and mechanical characterization of a sandwich material which is 100% bio-sourced. The flax mat/PLLA facings and balsa core can also be composted at end of service life. Manufacture is by vacuum bag moulding. The optimum moulding time and temperature are a compromise between ensuring good impregnation and avoiding degradation, and holding for 60 min at 180°C was found to be satisfactory. The mechanical properties of the bio-sandwich obtained are compared to those of a traditional glass reinforced polyester balsa sandwich. The flexural strength is 30% lower, as predicted based on the facing properties. Skin/core adhesion is also measured using debonding tests. Crack propagation occurs at the skin/core interface in the traditional sandwich but within the facing in the bio-sandwich. The impregnation of the core in the two materials is examined using X-ray micro-tomography.

  2. Energy absorber for the CETA

    NASA Astrophysics Data System (ADS)

    Wesselski, Clarence J.

    1994-05-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  3. Energy absorber for the CETA

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1994-01-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  4. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  5. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  6. Swi6, a Gene Required for Mating-Type Switching, Prohibits Meiotic Recombination in the Mat2-Mat3 ``cold Spot'' of Fission Yeast

    PubMed Central

    Klar, AJS.; Bonaduce, M. J.

    1991-01-01

    Mitotic interconversion of the mating-type locus (mat1) of the fission yeast Schizosaccharomyces pombe is initiated by a double-strand break at mat1. The mat2 and mat3 loci act as nonrandom donors of genetic information for mat1 switching such that switches occur primarily (or only) to the opposite mat1 allele. Location of the mat1 ``hot spot'' for transposition should be contrasted with the ``cold spot'' of meiotic recombination located within the adjoining mat2-mat3 interval. That is, meiotic interchromosomal recombination in mat2, mat3 and the intervening 15-kilobase region does not occur at all. swi2 and swi6 switching-deficient mutants possess the normal level of double-strand break at mat1, yet they fail to switch efficiently. By testing for meiotic recombination in the cold spot, we found the usual lack of recombination in a swi2 mutant but a significant level of recombination in a swi6 mutant. Therefore, the swi6 gene function is required to keep the donor loci inert for interchromosomal recombination. This finding, combined with the additional result that switching primarily occurs intrachromosomally, suggests that the donor loci are made accessible for switching by folding them onto mat1, thus causing the cold spot of recombination. PMID:1783290

  7. Visible light broadband perfect absorbers

    NASA Astrophysics Data System (ADS)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O.

    2016-03-01

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  8. Development of a carbonaceous selective absorber for solar thermal energy collection and process for its formation

    NASA Astrophysics Data System (ADS)

    Garrison, John D.

    1989-02-01

    The main goal of the US Department of Energy supported part of this project is to develop information about controlling the complicated chemical processes involved in the formation of a carbonaceous selective absorber and learn what equipment will allow production of this absorber commercially. The work necessary to accomplish this goal is not yet complete. Formation of the carbonaceous selective absorber in the conveyor oven tried so far has been unsatisfactory, because the proper conditions for applying the carbonaceous coating in each conveyor oven fabricated, either have been difficult to obtain, or have been difficult to maintain over an extended period of time. A new conveyor oven is nearing completion which is expected to allow formation of the carbonaceous selective absorber on absorber tubes in a continuous operation over many days without the necessity of cleaning the conveyor oven or changing the thickness of the electroplated nickel catalyst to compensate for changes in the coating environment in the oven. Work under this project concerned with forming and sealing glass panels to test ideas on evacuated glass solar collector designs and production have been generally quite satisfactory. Delays in completion of the selective absorber work, has caused postponement of the fabrication of a small prototype evacuated glass solar collector panel. Preliminary cost estimates of the selective absorber and solar collector panel indicate that this collector system should be lower in cost than evacuated solar collectors now on the market.

  9. ERB master archival tape specification no. T 134081 ERB MAT, revision 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Earth radiation budget (ERB)MAT tapes are generated by the ERB MATGEN software using the IBM 3081 computer system operated by the Science and Applications Computer Center at Goddard Space Flight Center. All MAT's are 9-track and MAT data are in ascending time order. The gross tape format for NIMBUS year-1 and year-2 MAT's is different from the format of MAT's starting with year-3. The MATs from the first two years are to contain one day's worth of data while all other MATs are to contain multiple day's worth of data stacked onto the tapes.

  10. Pinhole Glasses

    ERIC Educational Resources Information Center

    Colicchia, Giuseppe; Hopf, Martin; Wiesner, Hartmut; Zollman, Dean

    2008-01-01

    Eye aberrations are commonly corrected by lenses that restore vision by altering rays before they pass through the cornea. Some modern promoters claim that pinhole glasses are better than conventional lenses in correcting all kinds of refractive defects such as myopia (nearsighted), hyperopia (farsighted), astigmatisms, and presbyopia. Do pinhole…

  11. MatMRI and MatHIFU: Matlab{trade mark, serif} toolboxes for real-time monitoring and control of MR-HIFU

    NASA Astrophysics Data System (ADS)

    Sinclair, Tony; Mougenot, Charles; Kivinen, Jon; Pichardo, Samuel

    2012-11-01

    Background. Availability of open tools is a key feature to facilitate the development of pre-clinical research of Magnetic Resonance-guided High Intensity Focused Ultrasound (MR-HIFU). MatMRI is a toolbox that allows direct communication with a Philips{trade mark, serif} MRI scanner in a Matlab{trade mark, serif} environment, which is well-known in many laboratories. MatMRI performs real-time acquisition of magnitude and phase images that can be processed to estimate changes of temperature. Available functionality of MatMRI includes acquisition of individual slices and volumetric data. Analogously to MatMRI, MatHIFU is a toolbox for the control of the Philips Sonalleve MR-HIFU system. MatHIFU allows the execution of user-defined treatment protocols such as thermal ablation, hyperthermia or drug delivery. MatMRI and MatHIFU can be used independently or in combination. Methods. MatMRI was based on the official tool for MRI data-dumping made by Philips Healthcare. Multi-threading capabilities were added to maximize real-time processing performance. Basic use of MatMRI involves four basic steps: initiate communication, subscribe to MRI data, query for new images and unsubscribe. If required, MatMRI can also pause/resume the scanning and update on real-time the location and orientation of the images. MatHIFU performs the execution of sonication protocols and allows real-time monitoring. Basic use of MatHIFU requires also four steps: preparation of sonication protocol, initiate communication, execute sonication protocol and monitor the state of execution. Results. MatMRI was integrated into existing software used to control a table designed for animal experimentation (FUS Instruments, Canada). The integration in the existing software was seamless and delivered real-time estimation of changes of temperature in a mouse model. Using MatHIFU and MatMRI, a complete new interface to control the Sonalleve system was developed to perform in vivo experiments allowing adapted

  12. Photosynthetic Microbial Mats are Exemplary Sources of Diverse Biosignatures (Invited)

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.; Jahnke, L. L.

    2013-12-01

    Marine cyanobacterial microbial mats are widespread, compact, self-contained ecosystems that create diverse biosignatures and have an ancient fossil record. Within the mats, oxygenic photosynthesis provides organic substrates and O2 to the community. Both the absorption and scattering of light change the intensity and spectral composition of incident radiation as it penetrates a mat. Some phototrophs utilize infrared light near the base of the photic zone. A mat's upper layers can become highly reduced and sulfidic at night. Counteracting gradients of O2 and sulfide shape the chemical environment and provide daily-contrasting microenvironments separated on a scale of a few mm. Radiation hazards (UV, etc.), O2 and sulfide toxicity elicit motility and other physiological responses. This combination of benefits and hazards of light, O2 and sulfide promotes the allocation of various essential mat processes between light and dark periods and to various depths in the mat. Associated nonphotosynthetic communities, including anaerobes, strongly influence many of the ecosystem's overall characteristics, and their processes affect any biosignatures that enter the fossil record. A biosignature is an object, substance and/or pattern whose origin specifically requires a biological agent. The value of a biosignature depends not only on the probability of life creating it, but also on the improbability of nonbiological processes producing it. Microbial mats create biosignatures that identify particular groups of organisms and also reveal attributes of the mat ecosystem. For example, branched hydrocarbons and pigments can be diagnostic of cyanobacteria and other phototrophic bacteria, and isoprenoids can indicate particular groups of archea. Assemblages of lipid biosignatures change with depth due to changes in microbial populations and diagenetic transformations of organic matter. The 13C/12C values of organic matter and carbonates reflect isotopic discrimination by particular

  13. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  14. Extraction of high molecular weight DNA from microbial mats.

    PubMed

    Bey, Benjamin S; Fichot, Erin B; Norman, R Sean

    2011-01-01

    Successful and accurate analysis and interpretation of metagenomic data is dependent upon the efficient extraction of high-quality, high molecular weight (HMW) community DNA. However, environmental mat samples often pose difficulties to obtaining large concentrations of high-quality, HMW DNA. Hypersaline microbial mats contain high amounts of extracellular polymeric substances (EPS)1 and salts that may inhibit downstream applications of extracted DNA. Direct and harsh methods are often used in DNA extraction from refractory samples. These methods are typically used because the EPS in mats, an adhesive matrix, binds DNA during direct lysis. As a result of harsher extraction methods, DNA becomes fragmented into small sizes. The DNA thus becomes inappropriate for large-insert vector cloning. In order to circumvent these limitations, we report an improved methodology to extract HMW DNA of good quality and quantity from hypersaline microbial mats. We employed an indirect method involving the separation of microbial cells from the background mat matrix through blending and differential centrifugation. A combination of mechanical and chemical procedures was used to extract and purify DNA from the extracted microbial cells. Our protocol yields approximately 2 μg of HMW DNA (35-50 kb) per gram of mat sample, with an A(260/280) ratio of 1.6. Furthermore, amplification of 16S rRNA genes suggests that the protocol is able to minimize or eliminate any inhibitory effects of contaminants. Our results provide an appropriate methodology for the extraction of HMW DNA from microbial mats for functional metagenomic studies and may be applicable to other environmental samples from which DNA extraction is challenging. PMID:21775955

  15. Physiological and Metagenomic Analyses of Microbial Mats Involved in Self-Purification of Mine Waters Contaminated with Heavy Metals.

    PubMed

    Drewniak, Lukasz; Krawczyk, Pawel S; Mielnicki, Sebastian; Adamska, Dorota; Sobczak, Adam; Lipinski, Leszek; Burec-Drewniak, Weronika; Sklodowska, Aleksandra

    2016-01-01

    Two microbial mats found inside two old (gold and uranium) mines in Zloty Stok and Kowary located in SW Poland seem to form a natural barrier that traps heavy metals leaking from dewatering systems. We performed complex physiological and metagenomic analyses to determine which microorganisms are the main driving agents responsible for self-purification of the mine waters and identify metabolic processes responsible for the observed features. SEM and energy dispersive X-ray microanalysis showed accumulation of heavy metals on the mat surface, whereas, sorption experiments showed that neither microbial mats were completely saturated with heavy metals present in the mine waters, indicating that they have a large potential to absorb significant quantities of metal. The metagenomic analysis revealed that Methylococcaceae and Methylophilaceae families were the most abundant in both communities, moreover, it strongly suggest that backbones of both mats were formed by filamentous bacteria, such as Leptothrix, Thiothrix, and Beggiatoa. The Kowary bacterial community was enriched with the Helicobacteraceae family, whereas the Zloty Stok community consist mainly of Sphingomonadaceae, Rhodobacteraceae, and Caulobacteraceae families. Functional (culture-based) and metagenome (sequence-based) analyses showed that bacteria involved in immobilization of heavy metals, rather than those engaged in mobilization, were the main driving force within the analyzed communities. In turn, a comparison of functional genes revealed that the biofilm formation and heavy metal resistance (HMR) functions are more desirable in microorganisms engaged in water purification than the ability to utilize heavy metals in the respiratory process (oxidation-reduction). These findings provide insight on the activity of bacteria leading, from biofilm formation to self-purification, of mine waters contaminated with heavy metals. PMID:27559332

  16. Physiological and Metagenomic Analyses of Microbial Mats Involved in Self-Purification of Mine Waters Contaminated with Heavy Metals

    PubMed Central

    Drewniak, Lukasz; Krawczyk, Pawel S.; Mielnicki, Sebastian; Adamska, Dorota; Sobczak, Adam; Lipinski, Leszek; Burec-Drewniak, Weronika; Sklodowska, Aleksandra

    2016-01-01

    Two microbial mats found inside two old (gold and uranium) mines in Zloty Stok and Kowary located in SW Poland seem to form a natural barrier that traps heavy metals leaking from dewatering systems. We performed complex physiological and metagenomic analyses to determine which microorganisms are the main driving agents responsible for self-purification of the mine waters and identify metabolic processes responsible for the observed features. SEM and energy dispersive X-ray microanalysis showed accumulation of heavy metals on the mat surface, whereas, sorption experiments showed that neither microbial mats were completely saturated with heavy metals present in the mine waters, indicating that they have a large potential to absorb significant quantities of metal. The metagenomic analysis revealed that Methylococcaceae and Methylophilaceae families were the most abundant in both communities, moreover, it strongly suggest that backbones of both mats were formed by filamentous bacteria, such as Leptothrix, Thiothrix, and Beggiatoa. The Kowary bacterial community was enriched with the Helicobacteraceae family, whereas the Zloty Stok community consist mainly of Sphingomonadaceae, Rhodobacteraceae, and Caulobacteraceae families. Functional (culture-based) and metagenome (sequence-based) analyses showed that bacteria involved in immobilization of heavy metals, rather than those engaged in mobilization, were the main driving force within the analyzed communities. In turn, a comparison of functional genes revealed that the biofilm formation and heavy metal resistance (HMR) functions are more desirable in microorganisms engaged in water purification than the ability to utilize heavy metals in the respiratory process (oxidation-reduction). These findings provide insight on the activity of bacteria leading, from biofilm formation to self-purification, of mine waters contaminated with heavy metals. PMID:27559332

  17. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    NASA Astrophysics Data System (ADS)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak

    2015-09-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  18. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    PubMed

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891

  19. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    PubMed Central

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891

  20. Glass-heat-pipe evacuated-tube solar collector

    SciTech Connect

    McConnell, R.D.; VanSant, J.H.

    1981-08-06

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  1. Documentation generator application for MatLab source codes

    NASA Astrophysics Data System (ADS)

    Niton, B.; Pozniak, K. T.; Romaniuk, R. S.

    2011-06-01

    The UML, which is a complex system modeling and description technology, has recently been expanding its uses in the field of formalization and algorithmic approach to such systems like multiprocessor photonic, optoelectronic and advanced electronics carriers; distributed, multichannel measurement systems; optical networks, industrial electronics, novel R&D solutions. The paper describes a realization of an application for documenting MatLab source codes. There are presented own novel solution based on Doxygen program which is available on the free license, with accessible source code. The used supporting tools for parser building were Bison and Flex. There are presented the practical results of the documentation generator. The program was applied for exemplary MatLab codes. The documentation generator application is used for design of large optoelectronic and electronic measurement and control systems. The paper consists of three parts which describe the following components of the documentation generator for photonic and electronic systems: concept, MatLab application and VHDL application. This is part two which describes the MatLab application. MatLab is used for description of the measured phenomena.

  2. Microcosm experiments of oil degradation by microbial mats.

    PubMed

    de Oteyza, Tirso García; Grimalt, Joan O; Llirós, Marc; Esteve, Isabel

    2006-03-15

    Several microcosm experiments were run in parallel to evaluate the efficiency of microbial mats for crude oil degradation as compared with physico-chemical weathering. The oils used in the experiments constituted representative examples of those currently used for commercial purposes. One was aliphatic and of low viscosity (33.4 American Petroleum Institute degrees, degrees API) and the other was predominantly aromatic, with high sulphur content (ca. 2.7%) and viscosity (16.6 degrees API). After crude oil introduction, the microcosms were kept under cyclic changes in water level to mimic coastal tidal movements. The transformations observed showed that water weathering leads to more effective and rapid elimination of low molecular weight hydrocarbons than microbial mat metabolism, e.g. n-alkanes with chain length shorter than n-pentadecane or n-heptadecane, regular isoprenoid hydrocarbons with chain length lower than C16 or C18 or lower molecular weight naphthalenes. Microbial mats preserved these hydrocarbons from volatilization and water washing. However, hydrocarbons of lower volatility such as the C24-C30 n-alkanes or containing nitrogen atoms, e.g. carbazoles, were eliminated in higher proportion by microbial mats than by water weathering. The strong differences in composition between the two oils used for the experiments were also reflected in significant differences between water weathering and microbial mat biodegradation. Higher oil viscosity seemed to hinder the former but not the later. PMID:15935450

  3. Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing.

    PubMed

    Charernsriwilaiwat, Natthan; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2014-04-01

    Chitosan (CS) aqueous salt blended with polyvinyl alcohol (PVA) nanofibre mats was prepared by electrospinning. CS was dissolved with hydroxybenzotriazole (HOBt), thiamine pyrophosphate (TPP) and ethylenediaminetetraacetic acid (EDTA) in distilled water without the use of toxic or hazardous solvents. The CS aqueous salts were blended with PVA at different weight ratios, and the effect of the solution ratios was investigated. The morphologies and mechanical and swelling properties of the generated fibres were analysed. Indirect cytotoxicity studies indicated that the CS/PVA nanofibre mats were non-toxic to normal human fibroblast cells. The CS-HOBt/PVA and CS-EDTA/PVA nanofibre mats demonstrated satisfactory antibacterial activity against both gram-positive and gram-negative bacteria, and an in vivo wound healing test showed that the CS-EDTA/PVA nanofibre mats performed better than gauze in decreasing acute wound size during the first week after tissue damage. In conclusion, the biodegradable, biocompatible and antibacterial CS-EDTA/PVA nanofibre mats have potential for use as wound dressing materials. PMID:22925275

  4. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    PubMed Central

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  5. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  6. Hyperuniformity of critical absorbing states.

    PubMed

    Hexner, Daniel; Levine, Dov

    2015-03-20

    The properties of the absorbing states of nonequilibrium models belonging to the conserved directed percolation universality class are studied. We find that, at the critical point, the absorbing states are hyperuniform, exhibiting anomalously small density fluctuations. The exponent characterizing the fluctuations is measured numerically, a scaling relation to other known exponents is suggested, and a new correlation length relating to this ordering is proposed. These results may have relevance to photonic band-gap materials. PMID:25839254

  7. Hyperuniformity of Critical Absorbing States

    NASA Astrophysics Data System (ADS)

    Hexner, Daniel; Levine, Dov

    2015-03-01

    The properties of the absorbing states of nonequilibrium models belonging to the conserved directed percolation universality class are studied. We find that, at the critical point, the absorbing states are hyperuniform, exhibiting anomalously small density fluctuations. The exponent characterizing the fluctuations is measured numerically, a scaling relation to other known exponents is suggested, and a new correlation length relating to this ordering is proposed. These results may have relevance to photonic band-gap materials.

  8. Packed Alumina Absorbs Hypergolic Vapors

    NASA Technical Reports Server (NTRS)

    Thomas, J. J.; Mauro, D. M.

    1984-01-01

    Beds of activated alumina effective as filters to remove hypergolic vapors from gas streams. Beds absorb such substances as nitrogen oxides and hydrazines and may also absorb acetylene, ethylene, hydrogen sulfide, benzene, butadiene, butene, styrene, toluene, and xoylene. Bed has no moving parts such as pumps, blowers and mixers. Reliable and energy-conservative. Bed readily adapted to any size from small portable units for use where little vapor release is expected to large stationary units for extensive transfer operations.

  9. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  10. The possibility of E-glass woven roving as reinforcement of GFRP composite sheet roof

    NASA Astrophysics Data System (ADS)

    Setyanto, Djoko

    2016-03-01

    The 1.25 mm thickness of opaque glass fiber reinforced polymer (GFRP) composite sheet roof that is produced by an Indonesia company at Tangerang, consists of two layers of 300 g/m2 E-glass chopped strand mat as reinforcement and unsaturated polyester resin as matrix. A layer of 300 g/m2 E-glass chopped strand mat is replaced by a layer of 400 g/m2 E-glass woven roving as reinforcement to study the possibility use as sheet roof material. The properties of the two samples of GFRP composite materials were compared. Barcol hardness and flexure strength of the two samples relatively not significance change. Tensile strength and elastic modulus of the new sample which contains a layer of woven roving reinforcement is greater than the other one. On the other hand the waviness of the new sample is greater, but cheaper. In general, a layer of E-glass woven roving and a layer of E-glass chopped strand mat can be considered as an alternative reinforcement of two layers reinforcement of GFRP composite material of sheet roof.

  11. Community structure of a microbial mat: the phylogenetic dimension.

    PubMed Central

    Risatti, J B; Capman, W C; Stahl, D A

    1994-01-01

    Traditional studies of microbial communities are incomplete because of the inability to identify and quantify all contributing populations. In the present study, we directly determine the abundance and distribution of sulfate-reducing bacterial populations in a microbial mat community by using hybridization probes complementary to the 16S-like rRNAs of major phylogenetic groups. Most of the major groups were found in this single community, distributed for the most part in nonoverlapping depth intervals of the mat. The reflection of the phylogenetic structure in the community structure suggests that those species making up the major phylogenetic groups perform specific interrelated metabolic functions in the community. Comparison of population profiles to previously observed rates of sulfate reduction suggests there are additional populations of sulfate-reducing bacteria both within the photooxic zone and deeper in the mat. Images PMID:7937858

  12. Controlled release of dual drugs from emulsion electrospun nanofibrous mats.

    PubMed

    Yan, Su; Xiaoqiang, Li; Shuiping, Liu; Xiumei, Mo; Ramakrishna, Seeram

    2009-10-15

    The purpose of this work is to develop a novel type of tissue engineering scaffold or drugs delivery carrier with the capability of encapsulation and controlled release drugs. In this study, Rhodamine B and Bovine Serum Albumin (BSA) were successfully incorporated into nanofibers by means of emulsion electrospinning. The morphology of composite nanofibers was studied by Scanning Electron Microscopy (SEM). The composite nanofibrous mats made from emulsion electrospinning were characterized by water contact angle measurement and X-ray diffraction. In vitro dual drugs release behaviors from composite nanofibrous mats were investigated. The results indicated that the incorporated drug and/or proteins in composite fibrous mats made from electrospinning could be control released by adjusting the processes of emulsions preparation. PMID:19586756

  13. Community structure of a microbial mat: The phylogenetic dimension

    USGS Publications Warehouse

    Risatti, J.B.; Capman, W.C.; Stahl, D.A.

    1994-01-01

    Traditional studies of microbial communities are incomplete because of the inability to identify and quantify all contributing populations. In the present study, we directly determine the abundance and distribution of sulfate-reducing bacterial populations in a microbial mat community by using hybridization probes complementary to the 16S-like rRNAs of major phylogenetic groups. Most of the major groups were found in this single community, distributed for the most part in nonoverlapping depth intervals of the mat. The reflection of the phylogenetic structure in the community structure suggests that those species making up the major phylogenetic groups perform specific interrelated metabolic functions in the community. Comparison of population profiles to previously observed rates of sulfate reduction suggests there are additional populations of sulfate-reducing bacteria both within the photooxic zone and deeper in the mat.

  14. The MATS Satellite Mission - Tomographic Perspectives on the Mesosphere

    NASA Astrophysics Data System (ADS)

    Karlsson, B.; Gumbel, J.

    2015-12-01

    Tomography in combination with space-borne limb imaging opens exciting new ways of probing atmospheric structures. MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is a new Swedish satellite mission that applies these ideas to the mesosphere. MATS science questions focus on mesospheric wave activity and noctilucent clouds. Primary measurement targets are O2 Atmospheric band dayglow and nightglow in the near infrared (759-767 nm) and sunlight scattered from noctilucent clouds in the ultraviolet (270-300 nm). While tomography provides horizontally and vertically resolved data, spectroscopy allows analysis in terms of mesospheric composition, temperature and cloud properties. This poster introduces instrument and analysis ideas, and discusses scientific perspectives and connections to other missions. MATS is being prepared for a launch in 2018.

  15. Pressure Mapping Mat for Tele-Home Care Applications

    PubMed Central

    Saenz-Cogollo, Jose Francisco; Pau, Massimiliano; Fraboni, Beatrice; Bonfiglio, Annalisa

    2016-01-01

    In this paper we present the development of a mat-like pressure mapping system based on a single layer textile sensor and intended to be used in home environments for monitoring the physical condition of persons with limited mobility. The sensor is fabricated by embroidering silver-coated yarns on a light cotton fabric and creating pressure-sensitive resistive elements by stamping the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) at the crossing points of conductive stitches. A battery-operated mat prototype was developed and includes the scanning circuitry and a wireless communication module. A functional description of the system is presented together with a preliminary experimental evaluation of the mat prototype in the extraction of plantar pressure parameters. PMID:26978369

  16. Community structure of a microbial mat: the phylogenetic dimension.

    PubMed

    Risatti, J B; Capman, W C; Stahl, D A

    1994-10-11

    Traditional studies of microbial communities are incomplete because of the inability to identify and quantify all contributing populations. In the present study, we directly determine the abundance and distribution of sulfate-reducing bacterial populations in a microbial mat community by using hybridization probes complementary to the 16S-like rRNAs of major phylogenetic groups. Most of the major groups were found in this single community, distributed for the most part in nonoverlapping depth intervals of the mat. The reflection of the phylogenetic structure in the community structure suggests that those species making up the major phylogenetic groups perform specific interrelated metabolic functions in the community. Comparison of population profiles to previously observed rates of sulfate reduction suggests there are additional populations of sulfate-reducing bacteria both within the photooxic zone and deeper in the mat. PMID:7937858

  17. [Laboratory analogs of cyanobacterial mats of the alkaline geochemical barrier].

    PubMed

    Zavarzin, G A; Orleanskiĭ, V K; Gerasimenko, L M; Pushko, S N; Ushatinskaia, G T

    2003-01-01

    The goal of this work was to illustrate a possible interaction between the "soda continent" and the ocean. A laboratory simulation was undertaken of the development of alkaliphilic mat with calcium carbonate and calcium phosphate interlayers in the zone where ocean waters, containing calcium and manganese, come into contact with carbonate- and phosphate-rich alkaline waters. The macrostructure of the layered cyanobacterial mat turned out to little dependent on the chemical conditions causing sediment formation. The chemical composition of freshly formed mineral interlayers of the mat was found to vary with the medium composition. The mineralogical composition of the sediment is determined by diagenesis conditions in its depth, which can cause mineral phase conversions. PMID:12698798

  18. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat

    PubMed Central

    Kirk Harris, J; Gregory Caporaso, J; Walker, Jeffrey J; Spear, John R; Gold, Nicholas J; Robertson, Charles E; Hugenholtz, Philip; Goodrich, Julia; McDonald, Daniel; Knights, Dan; Marshall, Paul; Tufo, Henry; Knight, Rob; Pace, Norman R

    2013-01-01

    The microbial mats of Guerrero Negro (GN), Baja California Sur, Mexico historically were considered a simple environment, dominated by cyanobacteria and sulfate-reducing bacteria. Culture-independent rRNA community profiling instead revealed these microbial mats as among the most phylogenetically diverse environments known. A preliminary molecular survey of the GN mat based on only ∼1500 small subunit rRNA gene sequences discovered several new phylum-level groups in the bacterial phylogenetic domain and many previously undetected lower-level taxa. We determined an additional ∼119 000 nearly full-length sequences and 28 000 >200 nucleotide 454 reads from a 10-layer depth profile of the GN mat. With this unprecedented coverage of long sequences from one environment, we confirm the mat is phylogenetically stratified, presumably corresponding to light and geochemical gradients throughout the depth of the mat. Previous shotgun metagenomic data from the same depth profile show the same stratified pattern and suggest that metagenome properties may be predictable from rRNA gene sequences. We verify previously identified novel lineages and identify new phylogenetic diversity at lower taxonomic levels, for example, thousands of operational taxonomic units at the family-genus levels differ considerably from known sequences. The new sequences populate parts of the bacterial phylogenetic tree that previously were poorly described, but indicate that any comprehensive survey of GN diversity has only begun. Finally, we show that taxonomic conclusions are generally congruent between Sanger and 454 sequencing technologies, with the taxonomic resolution achieved dependent on the abundance of reference sequences in the relevant region of the rRNA tree of life. PMID:22832344

  19. Microsensor measurements of hydrogen gas dynamics in cyanobacterial microbial mats

    PubMed Central

    Nielsen, Michael; Revsbech, Niels P.; Kühl, Michael

    2015-01-01

    We used a novel amperometric microsensor for measuring hydrogen gas production and consumption at high spatio-temporal resolution in cyanobacterial biofilms and mats dominated by non-heterocystous filamentous cyanobacteria (Microcoleus chtonoplastes and Oscillatoria sp.). The new microsensor is based on the use of an organic electrolyte and a stable internal reference system and can be equipped with a chemical sulfide trap in the measuring tip; it exhibits very stable and sulfide-insensitive measuring signals and a high sensitivity (1.5–5 pA per μmol L-1 H2). Hydrogen gas measurements were done in combination with microsensor measurements of scalar irradiance, O2, pH, and H2S and showed a pronounced H2 accumulation (of up to 8–10% H2 saturation) within the upper mm of cyanobacterial mats after onset of darkness and O2 depletion. The peak concentration of H2 increased with the irradiance level prior to darkening. After an initial build-up over the first 1–2 h in darkness, H2 was depleted over several hours due to efflux to the overlaying water, and due to biogeochemical processes in the uppermost oxic layers and the anoxic layers of the mats. Depletion could be prevented by addition of molybdate pointing to sulfate reduction as a major sink for H2. Immediately after onset of illumination, a short burst of presumably photo-produced H2 due to direct biophotolysis was observed in the illuminated but anoxic mat layers. As soon as O2 from photosynthesis started to accumulate, the H2 was consumed rapidly and production ceased. Our data give detailed insights into the microscale distribution and dynamics of H2 in cyanobacterial biofilms and mats, and further support that cyanobacterial H2 production can play a significant role in fueling anaerobic processes like e.g., sulfate reduction or anoxygenic photosynthesis in microbial mats. PMID:26257714

  20. The Extracellular Matrix in Photosynthetic Mats: A Cyanobacterial Gingerbread House

    NASA Astrophysics Data System (ADS)

    Stuart, R.; Stannard, W.; Bebout, B.; Pett-Ridge, J.; Mayali, X.; Weber, P. K.; Lipton, M. S.; Lee, J.; Everroad, R. C.; Thelen, M.

    2014-12-01

    Hypersaline laminated cyanobacterial mats are excellent model systems for investigating photoautotrophic contributions to biogeochemical cycling on a millimeter scale. These self-sustaining ecosystems are characterized by steep physiochemical gradients that fluctuate dramatically on hour timescales, providing a dynamic environment to study microbial response. However, elucidating the distribution of energy from light absorption into biomass requires a complete understanding of the various constituents of the mat. Extracellular polymeric substances (EPS), which can be composed of proteins, polysaccharides, lipids and DNA are a major component of these mats and may function in the redistribution of nutrients and metabolites within the community. To test this notion, we established a model mat-building culture for comparison with the phylogenetically diverse natural mat communities. In these two systems we determined how proteins and glycans in the matrix changed as a function of light and tracked nutrient flow from the matrix. Using mass spectrometry metaproteomics analysis, we found homologous proteins in both field and culture extracellular matrix that point to cyanobacterial turnover of amino acids, inorganic nutrients, carbohydrates and nucleic acids from the EPS. Other abundant functions identified included oxidative stress response from both the cyanobacteria and heterotrophs and cyanobacterial structural proteins that may play a role in mat cohesion. Several degradative enzymes also varied in abundance in the EPS in response to light availability, suggesting active secretion. To further test cyanobacterial EPS turnover, we generated isotopically-labeled EPS and used NanoSIMS to trace uptake of this labeled EPS. Our findings suggest Cyanobacteria may facilitate nutrient transfer to other groups, as well as uptake of their own products through degradation of EPS components. This work provides evidence for the essential roles of EPS for storage, structural

  1. The Thermal Collector With Varied Glass Covers

    SciTech Connect

    Luminosu, I.; Pop, N.

    2010-08-04

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  2. The Thermal Collector With Varied Glass Covers

    NASA Astrophysics Data System (ADS)

    Luminosu, I.; Pop, N.

    2010-08-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  3. Neurospora crassa mat A-2 and mat A-3 proteins weakly interact in the yeast two-hybrid system and affect yeast growth

    PubMed Central

    2009-01-01

    Mating-type genes control the entry into the sexual cycle, mating identity and sexual development in fungi. The mat A-2 and mat A-3 genes, present in the mat A idiomorph of the filamentous fungus Neurospora crassa, are required for post-fertilization functions but are not essential for mating identity. Their putative roles as transcription factors are based on the similarity of mat A-2 with the Podospora anserina SMR1 gene and an HMG motif present in the mat A-3 gene. In this work the yeast two-hybrid system was used to identify transcriptional activity and protein-protein interaction of N. crassamat A-2 and mat A-3 genes. We observed that the mat A-3 protein alone is capable of weakly activating transcription of yeast reporter genes; it also binds with low specificity to the GAL1 promoter sequence, possibly due to its HMG domain. Our results also indicate that mat A-3 is capable to form homodimers, and interact with mat A-2. Interference on yeast growth was observed on some transformants suggesting a toxic action of the mat A-2 protein. Our data on pattern of interactions of mat proteins contributes towards understanding the control of vegetative and sexual cycles in filamentous fungi. PMID:21637691

  4. The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1, MAT1-1-1 or MAT1-2-1, and only isol...

  5. Radon and thoron anomalies along Mat fault in Mizoram, India

    NASA Astrophysics Data System (ADS)

    Jaishi, Hari Prasad; Singh, Sanjay; Tiwari, Raghavendra Prasad; Tiwari, Ramesh Chandra

    2013-12-01

    In this study, radon and thoron concentrations in soil gas has been monitored using LR-115(II) solid state nuclear track detectors since 15th July 2011 to February 2012. The study was carried out along Mat fault in Serchip district, Mizoram, India at two different sites - Mat Bridge (23°18'N, 92°48'E) and Tuichang (23°13'N, 92°56'E). The results obtained have been correlated to the seismic events that occurred within 800 km from the measuring sites over the mentioned period of time. Anomalous behaviour in radon concentrations have been observed prior to some earthquakes. Interestingly, some thoron anomalies were also recorded.

  6. MatMRI and MatHIFU: software toolboxes for real-time monitoring and control of MR-guided HIFU

    PubMed Central

    2013-01-01

    Background The availability of open and versatile software tools is a key feature to facilitate pre-clinical research for magnetic resonance imaging (MRI) and magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) and expedite clinical translation of diagnostic and therapeutic medical applications. In the present study, two customizable software tools that were developed at the Thunder Bay Regional Research Institute are presented for use with both MRI and MR-HIFU. Both tools operate in a MATLAB®; environment. The first tool is named MatMRI and enables real-time, dynamic acquisition of MR images with a Philips MRI scanner. The second tool is named MatHIFU and enables the execution and dynamic modification of user-defined treatment protocols with the Philips Sonalleve MR-HIFU therapy system to perform ultrasound exposures in MR-HIFU therapy applications. Methods MatMRI requires four basic steps: initiate communication, subscribe to MRI data, query for new images, and unsubscribe. MatMRI can also pause/resume the imaging and perform real-time updates of the location and orientation of images. MatHIFU requires four basic steps: initiate communication, prepare treatment protocol, and execute treatment protocol. MatHIFU can monitor the state of execution and, if required, modify the protocol in real time. Results Four applications were developed to showcase the capabilities of MatMRI and MatHIFU to perform pre-clinical research. Firstly, MatMRI was integrated with an existing small animal MR-HIFU system (FUS Instruments, Toronto, Ontario, Canada) to provide real-time temperature measurements. Secondly, MatMRI was used to perform T2-based MR thermometry in the bone marrow. Thirdly, MatHIFU was used to automate acoustic hydrophone measurements on a per-element basis of the 256-element transducer of the Sonalleve system. Finally, MatMRI and MatHIFU were combined to produce and image a heating pattern that recreates the word ‘HIFU’ in a tissue

  7. Angiogenic effects of borate glass microfibers in a rodent model.

    PubMed

    Lin, Yinan; Brown, Roger F; Jung, Steven B; Day, Delbert E

    2014-12-01

    The primary objective of this research was to evaluate the use of bioactive borate-based glass microfibers for angiogenesis in soft tissue repair applications. The effect of these fibers on growth of capillaries and small blood vessels was compared to that of 45S5 silica glass microfibers and sham implant controls. Compressed mats of three types of glass microfibers were implanted subcutaneously in rats and tissues surrounding the implant sites histologically evaluated 2-4 weeks post surgery. Bioactive borate glass 13-93B3 supplemented with 0.4 wt % copper promoted extensive angiogenesis as compared to silica glass microfibers and sham control tissues. The angiogenic responses suggest the copper-containing 13-93B3 microfibers may be effective for treating chronic soft tissue wounds. A second objective was to assess the possible systemic cytotoxicity of dissolved borate ions and other materials released from implanted borate glass microfibers. Cytotoxicity was assessed via histological evaluation of kidney tissue collected from animals 4 weeks after subcutaneously implanting high amounts of the borate glass microfibers. The evaluation of the kidney tissue from these animals showed no evidence of chronic histopathological changes in the kidney. The overall results indicate the borate glass microfibers are safe and effective for soft tissue applications. PMID:24677635

  8. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  9. Mushroom plasmonic metamaterial infrared absorbers

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  10. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  11. Mushroom plasmonic metamaterial infrared absorbers

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  12. Nonventing, Regenerable, Lightweight Heat Absorber

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    A lightweight, regenerable heat absorber (RHA), developed for rejecting metabolic heat from a space suit, may also be useful on Earth for short-term cooling of heavy protective garments. Unlike prior space-suit-cooling systems, a system that includes this RHA does not vent water. The closed system contains water reservoirs, tubes through which water is circulated to absorb heat, an evaporator, and an absorber/radiator. The radiator includes a solution of LiCl contained in a porous material in titanium tubes. The evaporator cools water that circulates through a liquid-cooled garment. Water vapor produced in the evaporator enters the radiator tubes where it is absorbed into the LiCl solution, releasing heat. Much of the heat of absorption is rejected to the environment via the radiator. After use, the RHA is regenerated by heating it to a temperature of 100 C for about 2 hours to drive the absorbed water back to the evaporator. A system including a prototype of the RHA was found to be capable of maintaining a temperature of 20 C while removing heat at a rate of 200 W for 6 hours.

  13. An Hybrid Glass/hemp Fibers Solution Frp Pipes: Technical and Economic Advantages of Hand Lay up VS Light Rtm

    NASA Astrophysics Data System (ADS)

    Cicala, G.; Cristaldi, G.; Recca, G.; Ziegmann, G.; ElSabbagh, A.; Dickert, M.

    2008-08-01

    The aim of the present research was to investigate the replacement of glass fibers with hemp fibers for applications in the piping industry. The choice of hemp fibers was mainly related to the needs, expressed by some companies operating in this sector, for cost reduction without adversely reducing the performances of the pipes. Two processing techniques, namely hand lay up and light RTM, were evaluated. The pipe selected for the study was a curved fitting (90°) flanged at both ends. The fitting must withstand an internal pressure of 10 bar and the presence of acid aqueous solutions. The original lay-up used to build the pipe is a sequence of C-glass, glass mats and glass fabric. Commercial epoxy vinyl ester resin was used as thermoset matrix. Hemp fibers mats were selected as potential substitute of glass fibers mats because of their low cost and ready availability from different commercial sources. The data obtained from the mechanical characterization were used to define a favorable design of the pipe using hemp mats as internal layer. The proposed design for the fittings allowed for a cost reduction of about 24% and a weight saving of about 23% without any drawback in terms of the final performances. The light RTM techniques was developed on purpose for the manufacturing of the curved pipe. The comparison between hand lay up and light RTM evidenced a substantial cost reduction when light RTM was used.

  14. AN HYBRID GLASS/HEMP FIBERS SOLUTION FRP PIPES: TECHNICAL AND ECONOMIC ADVANTAGES OF HAND LAY UP VS LIGHT RTM

    SciTech Connect

    Cicala, G.; Cristaldi, G.; Recca, G.; Ziegmann, G.; ElSabbagh, A.; Dickert, M.

    2008-08-28

    The aim of the present research was to investigate the replacement of glass fibers with hemp fibers for applications in the piping industry. The choice of hemp fibers was mainly related to the needs, expressed by some companies operating in this sector, for cost reduction without adversely reducing the performances of the pipes. Two processing techniques, namely hand lay up and light RTM, were evaluated. The pipe selected for the study was a curved fitting (90 deg.) flanged at both ends. The fitting must withstand an internal pressure of 10 bar and the presence of acid aqueous solutions. The original lay-up used to build the pipe is a sequence of C-glass, glass mats and glass fabric. Commercial epoxy vinyl ester resin was used as thermoset matrix.Hemp fibers mats were selected as potential substitute of glass fibers mats because of their low cost and ready availability from different commercial sources. The data obtained from the mechanical characterization were used to define a favorable design of the pipe using hemp mats as internal layer. The proposed design for the fittings allowed for a cost reduction of about 24% and a weight saving of about 23% without any drawback in terms of the final performances.The light RTM techniques was developed on purpose for the manufacturing of the curved pipe. The comparison between hand lay up and light RTM evidenced a substantial cost reduction when light RTM was used.

  15. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  16. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  17. Adaptive inertial shock-absorber

    NASA Astrophysics Data System (ADS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-03-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated.

  18. Growth of a mat-forming photograph in the presence of UV radiation

    NASA Technical Reports Server (NTRS)

    Pierson, Beverly K.; Ruff, A. L.

    1989-01-01

    Knowledge of the survival and growth of microorganisms in the presence of ultraviolet radiation is important for understanding the potential for life to exist in environments exposed to high fluxes of UV radiation. The growth of a mat-forming phototrophic prokaryote, Chloroflexus aurantiacus, was examined in the presence of continuous high UV irradiation under otherwise optimal growth conditions. Evidence was sought for an intrinsic ability to grow in the presence of UV radiation in a carefully chosen organism known to be unusually resistant to UV radiation, of ancient lineage among the phototrophs, to resemble ancient microfossils from the Precambrian, and to be a mat-former. It was assumed that even a high intrinsic UV resistance would be inadequate for survival and growth in the presence of very high UV fluxes, and iron (Fe3+) was selected as a common, abundant UV-absorbing substance that might protest microorganisms growing in or under iron-bearing sediments. The effectiveness of Fe(3+) was tested as a UV protective agent at low concentrations in thin layers. It was concluded that intrinsic UV resistance in some organisms may account for growth, not just survival, of these organisms when exposed to high UV fluxes under otherwise optimal growth conditions in an anoxic environment. It was also concluded that Fe(3+) bearing sediments of 1 mm or less in thickness may provide an adequate shield against high UV fluxes permitting the growth of microorganisms just below their surface. As long as growth conditions were met, then the evolution and development of microorganisms would not be hampered by high UV fluxes impinging upon the surface of iron-bearing sediments.

  19. Bioremediation of hexavalent chromium by a cyanobacterial mat

    NASA Astrophysics Data System (ADS)

    Shukla, Dhara; Vankar, Padma S.; Srivastava, Sarvesh Kumar

    2012-12-01

    The study comprises the use of cyanobacterial mat (collected from tannery effluent site) to remove hexavalent chromium. This mat was consortium of cyanobacteria/blue-green algae such as Chlorella sp., Phormidium sp. and Oscillatoria sp. The adsorption experiments were carried out in batches using chromium concentrations 2-10, 15-30 and 300 ppm at pH 5.5-6.2. The adsorption started within 15 min; however, 96 % reduction in metal concentration was observed within 210 min. The adsorption phenomenon was confirmed by Fourier transform-infrared spectroscopy and energy dispersive X-ray analysis. This biosorption fitted Freundlich adsorption isotherm very well. It was observed that the best adsorption was at 4 ppm, and at 25 ppm in the chosen concentration ranges. Scanning electron micrograph showed the physiology of mat, indicating sites for metal uptake. The main focus was collection of the cyanobacterial mat from local environments and its chromium removal potential at pH 5.5-6.2.

  20. Electrospinning of caseinates to create protective fibrous mats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    JUSTIFICATION Electrospinning is a nonthermal process that produces fibers with diameters on the micron- or nano-scales from a polymer solution. If produced by electrospinning of biopolymer solutions, fibrous mats may be created for protecting foods, improving food quality and allowing for the prese...

  1. Direct piezoelectric responses of soft composite fiber mats

    NASA Astrophysics Data System (ADS)

    Varga, M.; Morvan, J.; Diorio, N.; Buyuktanir, E.; Harden, J.; West, J. L.; Jákli, A.

    2013-04-01

    Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and polylactic acid (PLA) were found to have large (d33 ˜ 1 nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here, we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at several BT concentrations. A homemade testing apparatus provided AC stresses in the 50 Hz-1.5 kHz-frequency range. The piezoelectric constant d33 ˜ 0.5 nC/N and the compression modulus Y ˜ 104-105 Pa found are in agreement with the prior converse piezoelectric and compressibility measurements. Importantly, the direct piezoelectric signal is large enough to power a small LCD by simple finger tapping of a 0.15 mm thick 2-cm2 area mat. We propose using these mats in active Braille cells and in liquid crystal writing tablets.

  2. Weighted color and texture sample selection for image matting.

    PubMed

    Varnousfaderani, Ehsan Shahrian; Rajan, Deepu

    2013-11-01

    Color sampling based matting methods find the best known samples for foreground and background colors of unknown pixels. Such methods do not perform well if there is an overlap in the color distribution of foreground and background regions because color cannot distinguish between these regions and hence, the selected samples cannot reliably estimate the matte. Furthermore, current sampling based matting methods choose samples that are located around the boundaries of foreground and background regions. In this paper, we overcome these two problems. First, we propose texture as a feature that can complement color to improve matting by discriminating between known regions with similar colors. The contribution of texture and color is automatically estimated by analyzing the content of the image. Second, we combine local sampling with a global sampling scheme that prevents true foreground or background samples to be missed during the sample collection stage. An objective function containing color and texture components is optimized to choose the best foreground and background pair among a set of candidate pairs. Experiments are carried out on a benchmark data set and an independent evaluation of the results shows that the proposed method is ranked first among all other image matting methods. PMID:23807448

  3. Detail of the underground wire net mat and cable at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of the underground wire net mat and cable at the base of a 94' low-band reflector screen pole, view facing north - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  4. Altering sexual reproductive mode by interspecific exchange of MAT loci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sexual fungi can be self-sterile (heterothallic, requiring genetically distinct partners) or selffertile (homothallic, no partner required). In most ascomycetes, a single mating type locus (MAT) controls the ability to reproduce sexually. In the genus Cochliobolus, all heterothallic species have eit...

  5. Myocardial Cell Pattern on Piezoelectric Nanofiber Mats for Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Liu, X.; Wang, X.; Zhao, H.; Du, Y.

    2014-11-01

    The paper presents in vitro contractile myocardial cell pattern on piezoelectric nanofiber mats with applications in energy harvesting. The cell-based energy harvester consists of myocardial cell sheet and a PDMS substrate with a PVDF nanofiber mat on. Experimentally, cultured on specifically distributed nanofiber mats, neonatal rat ventricular cardiomyocytes are characterized with the related morphology and contraction. Previously, we have come up with the concept of energy harvesting from heart beating using piezoelectric material. A bio-hybrid energy harvester combined living cardiomyocytes, PDMS polymer substrate and piezoelectric PVDF film with the electrical output of peak current 87.5nA and peak voltage 92.3mV. However, the thickness of the cardiomyocyte cultured on a two-dimensional substrate is much less than that of the piezoelectric film. The Micro Contact Printing (μCP) method used in cell pattern on the PDMS thin film has tough requirement for the film surface. As such, in this paper we fabricated nanofiber-constructed PDMS thin film to realize cell pattern due to PVDF nanofibers with better piezoelectricity and microstructures of nanofiber mats guiding cell distribution. Living cardiomyocytes patterned on those distributed piezoelectric nanofibers with the result of the same distribution as the nanofiber pattern.

  6. Performance of ballast mats on passenger railroads: Measurement vs. projections

    NASA Astrophysics Data System (ADS)

    Hanson, C. E.; Singleton, H. L.

    2006-06-01

    Ballast mats have been installed on urban railway systems throughout the world to provide isolation of ground-borne vibrations from trains. In general, the performance has been found to be satisfactory. However, often there is a variance between the claims of the suppliers of ballast mats and the actual performance of the product in the real world. The classic case involves an infinite terminal impedance applicable to a tunnel configuration. However, a ballast mat installation outdoors on surface track with sub-grade slabs may not have the same performance as a tunnel base where sides are stiffened by walls. In order to represent this situation, Kimura developed a simplified prediction procedure based on an original Wettschureck/Kurze model, with a finite termination impedance based on a flat beam model. This prediction procedure has been tested against measurements on at-grade installations on light rail transit and commuter railway installations in Baltimore and Boston. In both cases, the model showed good agreement with measured values for the resonant frequency dip and the mid-frequency insertion loss. At higher frequencies, however, the model over-predicted the insertion loss, as do many of the models used by ballast mat suppliers. Suggestions are made to account for the discrepancies between predicted and measured values.

  7. A Serious Look at the 4MAT Model.

    ERIC Educational Resources Information Center

    Scott, Harry V.

    4MAT is an 8-step, sequential instructional model based on two theoretical constructs: Kolb's model of learning styles and the concept of brain hemisphericity. The model, developed by B. McCarthy (1987), is derived by interacting each of Kolb's four quadrants with both left and right brain. Kolb outlined four learning styles based on the four…

  8. Electrospinning of caseinates to create protective fibrous mats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrospinning is a nonthermal process that produces fibers on the micron- or nano-scale from a polymer solution. If produced by electrospinning of biopolymer solutions, fibrous mats may be created for protecting foods and allowing for the preservation and controlled release of bioactives for healt...

  9. Method and system of culturing an algal mat

    SciTech Connect

    Das, Keshav C; Cannon, Benjamin R; Bhatnagar, Ashish; Chinnasamy, Senthil

    2014-05-13

    A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO.sub.2 to promote growth of algal cells contained in the generator.

  10. HiMAT highly maneuverable aircraft technology, flight report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Flight verification of a primary flight control system, designed to control the unstable HiMAT aircraft is presented. The initial flight demonstration of a maneuver autopilot in the level cruise mode and the gathering of a limited amount of airspeed calibration data.

  11. Extraction of high molecular weight DNA from microbial mats.

    PubMed

    Bey, Benjamin S; Fichot, Erin B; Dayama, Gargi; Decho, Alan W; Norman, R Sean

    2010-09-01

    Due to the presence of inhibitors such as extracellular polymeric substances (EPSs) and salts, most microbial mat studies have relied on harsh methods of direct DNA extraction that result in DNA fragments too small for large-insert vector cloning. High molecular weight (HMW) DNA is crucial in functional metagenomic studies, because large fragments present greater access to genes of interest. Here we report improved methodologies for extracting HMW DNA from EPS-rich hypersaline microbial mats. The protocol uses a combination of microbial cell separation with mechanical and chemical methods for DNA extraction and purification followed by precipitation with polyethylene glycol (PEG). The protocol yields >2 µg HMW DNA (>48 kb) per gram of mat sample, with A260:280 ratios >1.7. In addition, 16S rRNA gene analysis using denaturing gradient gel electrophoresis and pyrosequencing showed that this protocol extracts representative DNA from microbial mat communities and results in higher overall calculated diversity indices compared with three other standard methods of DNA extraction. Our results show the importance of validating the DNA extraction methods used in metagenomic studies to ensure optimal recovery of microbial richness. PMID:20854264

  12. Compositions and methods of use of constructed microbial mats

    DOEpatents

    Bender, Judith A.; Phillips, Peter C.

    2000-01-01

    Compositions, methods and devices for bioremediation that comprise components of constructed microbial mats with organic and inorganic materials are described. The compositions, methods and devices can be used for bioremediation of different individual contaminants and for mixed or multiple contaminants, and for production of beneficial compositions and molecules.

  13. Test of lead glass shower counters

    SciTech Connect

    Kawabata, S.; Ogawa, K.; Sugahara, R.; Sumiyoshi, T.; Takahashi, K.; Awaji, N.; Hayashii, H.; Iwata, S.; Gearhart, R.A.; Miyamoto, A.

    1983-10-01

    Lead glass counters made of wedge shaped blocks of SF6 were tested with positrons at SLAC. The beam energy ranged from 2 to 17.5 GeV. Energy dependence and beam position dependence of pulse height and energy resolution were studied with lead glass blocks of various lengths. The effect of a BK-7 light guide on pulse height was clearly observed. Degradation of the energy resolution due to aluminum absorbers of various lengths was investigated. A mesh type photomultiplier was also tested.

  14. Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis.

    PubMed

    Doughan, Benjamin; Rollins, Jeffrey A

    2016-09-01

    Sclerotinia sclerotiorum (Lib.) de Bary is a phytopathogenic fungus that relies on the completion of the sexual cycle to initiate aerial infections. The sexual cycle produces apothecia required for inoculum dispersal. In this study, insight into the regulation of apothecial multicellular development was pursued through functional characterization of mating-type genes. These genes are hypothesized to encode master regulatory proteins required for aspects of sexual development ranging from fertilization through fertile fruiting body development. Experimentally, loss-of-function mutants were created for the conserved core mating-type genes (MAT1-1-1, and MAT1-2-1), and the lineage-specific genes found only in S. sclerotiorum and closely related fungi (MAT1-1-5, and MAT1-2-4). The MAT1-1-1, MAT1-1-5, and MAT1-2-1 mutants are able to form ascogonia but are blocked in all aspects of apothecium development. These mutants also exhibit defects in secondary sexual characters including lower numbers of spermatia. The MAT1-2-4 mutants are delayed in carpogenic germination accompanied with altered disc morphogenesis and ascospore production. They too produce lower numbers of spermatia. All four MAT gene mutants showed alterations in the expression of putative pheromone precursor (Ppg-1) and pheromone receptor (PreA, PreB) genes. Our findings support the involvement of MAT genes in sexual fertility, gene regulation, meiosis, and morphogenesis in S. sclerotiorum. PMID:27567717

  15. What's the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health

    PubMed Central

    Scheller, Erica L; Rosen, Clifford J

    2014-01-01

    Marrow adipose tissue (MAT) is functionally distinct from both white and brown adipose tissue and can contribute to systemic and skeletal metabolism. MAT formation is a spatially and temporally defined developmental event, suggesting that MAT is an organ that serves important functions and, like other organs, can undergo pathologic change. The well-documented inverse relationship between MAT and bone mineral density has been interpreted to mean that MAT removal is a possible therapeutic target for osteoporosis. However, the bone and metabolic phenotypes of patients with lipodystrophy argues that retention of MAT may actually be beneficial in some circumstances. Furthermore, MAT may exist in two forms, regulated and constitutive, with divergent responses to hematopoietic and nutritional demands. In this review, we discuss the role of MAT in lipodystrophy, bone loss, and metabolism, and highlight our current understanding of this unique adipose tissue depot. PMID:24650218

  16. Antimony sulphide, an absorber layer for solar cell application

    NASA Astrophysics Data System (ADS)

    Ali, N.; Hussain, Arshad; Ahmed, R.; Shamsuri, W. N. Wan; Shaari, A.; Ahmad, N.; Abbas, S. M.

    2016-01-01

    Replacement of the toxic, expensive and scarce materials with nontoxic, cheap and earth-abundant one, in solar cell absorber layer, is immensely needed to realize the vision of green and sustainable energy. Two-micrometre-thin antimony sulphide film is considered to be adequate as an absorbing layer in solar cell applications. In this paper, we synthesize antimony sulphide thin films on glass substrate by physical vapour deposition technique, and the obtained films were then annealed at different temperatures (150-250 °C). The as-deposited and annealed samples were investigated for structural and optoelectronic properties using different characterization techniques. The X-ray diffraction analysis showed that the annealed samples were polycrystalline with Sb2S3 phase, while the as-deposited sample was amorphous in nature. The optical properties are measured via optical ellipsometric techniques. The measured absorbance of the film is adequately high, and every photon is found to be absorbed in visible and NIR range. The conductivity type of the films measured by hot-point probe technique is determined to be p-type. The optical band gap of the resulted samples was in the range (2.4-1.3 eV) for the as-deposited and annealed films.

  17. SRNL POROUS WALL GLASS MICROSPHERES

    SciTech Connect

    Wicks, G; Leung Heung, L; Ray Schumacher, R

    2008-04-15

    The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.

  18. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  19. Oil and fat absorbing polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  20. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  1. Strength of inorganic glass

    SciTech Connect

    Kurkjian, C.R.

    1985-01-01

    This book presents information on the following topics: a look at the history of glass strength; atomistic theory of fracture; surface chemistry in relation to the strength and fracture of silicate glasses; high-speed photographic investigations of the dynamic localized loading of some oxide glasses; a correction for measurements of contact area using Newton's rings; envionmentally enhanced crack growth; fatigue in glass; behavior of flaws in fused silica fibers; fracture toughness of chalcogenide glasses and glass-ceramics; fracture analysis of glass surfaces; and fracture mechanics parameters for glasses - a compilation and correlation.

  2. IMPACT STRENGTH OF GLASS AND GLASS CERAMIC

    SciTech Connect

    Bless, S.; Tolman, J.

    2009-12-28

    Strength of glass and glass ceramic was measured with a bar impact technique. High-speed movies show regions of tensile and compressive failure. The borosilicate glass had a compressive strength of at least 2.2 GPa, and the glass ceramic at least 4 GPa. However, the BSG was much stronger in tension than GC. In ballistic tests, the BSG was the superior armor.

  3. The Effects of Low Sulfate Concentrations on Modern Microbial Mat Communities: A Long Term Manipulation

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; Carpenter, Steve; DesMarais, David J.; Discipulo, Mykell; Hogan, Mary; Turk, Kendra

    2002-01-01

    Microbial mats were widespread during the first ca. 2 Ga. of our biosphere's history. To better understand microbial ecosystems and their biomarkers under the low sulfate levels present in early oceans, we attempted a long-term (ca. 1 year) manipulation of sulfate in modem mats. Mats collected from salt ponds at Guerrero Negro, Baja Calif. Sur were incubated in a Greenhouse "Collaboratory" at Ames. Mats were maintained in artificial seawater brine containing either: 1) sulfate levels normal for these mats (70 mM), or 2) brine in which sulfate was replaced by chloride. Sulfate concentrations in the "low sulfate" brine gradually approached their lowest (to date) value of 0. 1 mM as sulfate was consumed and/or diffused out of the mat over a period of ca. 4 months. During that period of time, a number of differences between the treatments emerged. Relative to the "low sulfate" mats, "normal sulfate" mats had: 1) lower consumption of oxygen in the lower levels of the mat, 2) higher efficiencies of oxygenic photosynthesis, and 3) higher rates of nitrogen fixation. Rates of methane production by the mats increased greatly as sulfate concentrations fell below ca. 0.2 mM. In contrast, "low" and "normal" sulfate mats had similar net rates of exchange of O2 and dissolved inorganic C between the mats and overlying water. Reduced sulfate levels have diverse impacts upon these ecosystems.

  4. Users guide for ERB 7 MAT (including the first year quality control)

    NASA Technical Reports Server (NTRS)

    Groveman, B.

    1984-01-01

    In the first section of this report background information for the use of the ERB-7 Master Archival Tapes (MAT) is provided. The second section gives details regarding the scientific validity and quality of the MAT. The MAT data analyzed covers the period from November 16, 1978 to October 31, 1979.

  5. Regulation of electron transfer processes affects phototrophic mat structure and activity

    SciTech Connect

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-09-03

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested

  6. Regulation of electron transfer processes affects phototrophic mat structure and activity

    DOE PAGESBeta

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-09-03

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system]more » and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that

  7. [Study of new blended chemical absorbents to absorb CO2].

    PubMed

    Wang, Jin-Lian; Fang, Meng-Xiang; Yan, Shui-Ping; Luo, Zhong-Yang; Cen, Ke-Fa

    2007-11-01

    Three kinds of blended absorbents were investigated on bench-scale experimental bench according to absorption rate and regeneration grade to select a reasonable additive concentration. The results show that, among methyldiethanolamine (MDEA) and piperazine (PZ) mixtures, comparing MDEA : PZ = 1 : 0.4 (m : m) with MDEA : PZ = 1 : 0.2 (m : m), the absorption rate is increased by about 70% at 0.2 mol x mol(-1). When regeneration lasting for 40 min, regeneration grade of blended absorbents with PZ concentration of 0.2, 0.4, and 0.8 is decreased to 83.06%, 77.77% and 76.67% respectively while 91.04% for PZ concentration of 0. MDEA : PZ = 1 : 0.4(m : m) is a suitable ratio for MDEA/PZ mixtures as absorption and regeneration properties of the blended absorbents are all improved. The aqueous blends with 10% primary amines and 2% tertiary amines could keep high CO2 absorption rate, and lower regeneration energy consumption. Adding 2% 2-Amino-2-methyl-1-propanol (AMP) to 10% diethanolamine (DEA), the blended amine solvents have an advantage in absorption and regeneration properties over other DEA/AMP mixtures. Blended solvents, which consist of a mixture of primary amines with a small amount of tertiary amines, have the highest absorption rate among the three. And mixed absorbents of secondary amines and a small amount of sterically hindered amines have the best regeneration property. To combine absorption and regeneration properties, blends with medium activator addition to tertiary amines are competitive. PMID:18290495

  8. Carbon pools and isotopic trends in a hypersaline cyanobacterial mat.

    PubMed

    Wieland, A; Pape, T; Möbius, J; Klock, J-H; Michaelis, W

    2008-03-01

    The fine-scale depth distribution of major carbon pools and their stable carbon isotopic signatures (delta(13)C) were determined in a cyanobacterial mat (Salin-de-Giraud, Camargue, France) to study early diagenetic alterations and the carbon preservation potential in hypersaline mat ecosystems. Particular emphasis was placed on the geochemical role of extracellular polymeric substances (EPS). Total carbon (C(tot)), organic carbon (C(org)), total nitrogen (N(tot)), total hydrolysable amino acids (THAA), carbohydrates, cyanobacteria-derived hydrocarbons (8-methylhexadecane, n-heptadec-5-ene, n-heptadecane) and EPS showed highest concentrations in the top millimetre of the mat and decreased with depth. The hydrocarbons attributed to cyanobacteria showed the strongest decrease in concentration with depth. This correlated well with the depth profiles of oxygenic photosynthesis and oxygen, which were detected in the top 0.6 and 1.05 mm, respectively, at a high down-welling irradiance (1441 micromol photons m(-2) s(-1)). At depths beneath the surface layer, the C(org) was composed mainly of amino acids and carbohydrates. A resistance towards microbial degradation could have resulted from interactions with diverse functional groups present in biopolymers (EPS) and with minerals deposited in the mat. A (13)C enrichment with depth for the total carbon pool (C(tot)) was observed, with delta(13)C values ranging from -16.3 per thousand at the surface to -11.3 per thousand at 9-10 mm depth. Total lipids depicted a delta(13)C value of -17.2 per thousand in the top millimetre and then became depleted in (13)C with depth (-21.7 to -23.3 per thousand). The delta(13)C value of EPS varied only slightly with depth (-16.1 to -17.3 per thousand) and closely followed the delta(13)C value of C(org) at depths beneath 4 mm. The EPS represents an organic carbon pool of preservation potential during early stages of diagenesis in recent cyanobacterial mats as a result of a variety of possible

  9. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Orphan, Victoria; Embaye, Tsegereda; Turk, Kendra; Kubo, Mike; Summons, Roger

    2004-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. Various lipids associated with specific microbial groups can serve as biomarkers for establishing organism source and function in contemporary microbial ecosystems (membrane lipids), and by analogy, potential relevance to ancient organic-rich sedimentary rocks (geolipids). As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments. Our recent work has focused on lipid biomarker analysis of a potential analogue for such ancient mats growing in a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. The aerobic, surface layer of this mat (0 to 1 mm) contained a variety of ester-bound fatty acids (FA) representing a diverse bacterial population including cyanobacteria, sulphate reducers (SRB) and heterotrophs. Biomarkers for microeukaryotes detected in this layer included sterols, C-20 polyunsaturated FA and a highly branched isoprenoid, diagnostic for diatoms. Cyanobacteria were also indicated by the presence of a diagnostic set of mid-chain methylalkanes. C-28, to C-34 wax esters (WXE) present in relatively small amounts in the upper 3 mm of the mat are considered biomarkers for green non-sulphur bacteria. Ether-bound isoprenoids were also identified although in considerably lower abundance than ester-bound FA (approx. 1:l0). These complex ether lipids included archatol, hydroxyarchaeol and a C-40 tetraether, all in small amounts. After ether cleavage with boron tribromide, the major recovered isoprenyl was a C-30:1. This C(sub 30;1) yelded squalane after hydrogenation, a known geobiomarker for hypersaline environments in ancient oils and sediments. In this mat, it represents the dominant Archaeal population. The carbon isotopic composition of biomarker lipids were generally depleted relative to the bulk organic material (delta C-13 TOC -10%). Most

  10. Chemical Principles Revisited: The Chemistry of Glass.

    ERIC Educational Resources Information Center

    Kolb, Doris; Kolb, Kenneth E.

    1979-01-01

    Presents a detailed discussion on the chemistry of glass. Topics discussed include: natural glass, early history, modern glass composition, raw materials for glass melting, chemically modified glasses, modern glass forming, glass ceramics, and new developments in glass research. (BT)

  11. Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam.

    PubMed

    Samprasit, Wipada; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-06-20

    Fast release and taste masking of meloxicam (MX)-loaded polyvinylpyrrolidone (PVP)/cyclodextrin (CD) nanofiber mats were developed using an electrospinning process. CDs were blended to improve the stability of the mats. The morphology and diameter of the mats were determined using scanning electron microscopy (SEM); physical and mechanical properties were also studied. The MX content, disintegration time, MX release and cytotoxicity of the mats were investigated. In vivo studies were also performed in healthy human volunteers. The results indicated that the mats were successfully prepared with fiber in the nanometer range. MX was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength. CDs improved the physical stability by their cage-like supramolecular structure to protect from humidity and moisture, and create bead free nanofiber mats. The nanofiber mats with CDs were physically stable without any hygroscopicity and fusion. A fast disintegration and release of MX was achieved. Moreover, this mat released MX faster than the MX powder and commercial tablets. The cytotoxicity test revealed that mats were safe for a 5-min incubation. The disintegration studies indicated that in vivo disintegration agreed with the in vitro studies; the mat rapidly disintegrated in the mouth. The less bitter of MX was occurred in the mats that incorporated CD, menthol and aspartame. In addition, this mat was physical stable for 6 months. The results suggest that these mats may be a good candidate for fast dissolving drug delivery systems of bitter drugs to increase the palatability of dosage forms. PMID:25899284

  12. Optimization of the contents of hollow glass microsphere and sodium hexametaphosphate for glass fiber vacuum insulation panel

    NASA Astrophysics Data System (ADS)

    Li, C. D.; Chen, Z. F.; Zhou, J. M.

    2016-07-01

    In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.

  13. Repairing cracked glass

    NASA Technical Reports Server (NTRS)

    Helman, D. D.; Holt, J. W.; Smiser, L. V.

    1979-01-01

    Filing procedure consisting of machined lightweight fused-silica tiles coated with thin-layer of borosilicate glass produces homogeneous seal in thin glass. Procedure is useful in repairing glass envelopes, X-ray tub windows, Dewar flasks, and similar thin glass objects.

  14. Discrete wavelet transform FPGA design using MatLab/Simulink

    NASA Astrophysics Data System (ADS)

    Meyer-Baese, Uwe; Vera, A.; Meyer-Baese, A.; Pattichis, M.; Perry, R.

    2006-04-01

    Design of current DSP applications using state-of-the art multi-million gates devices requires a broad foundation of the engineering shlls ranging from knowledge of hardware-efficient DSP algorithms to CAD design tools. The requirement of short time-to-market, however, requires to replace the traditional HDL based designs by a MatLab/Simulink based design flow. This not only allows the over 1 million MatLab users to design FPGAs but also to by-pass the hardware design engineer leading to a significant reduction in development time. Critical however with this design flow are: (1) quality-of-results, (2) sophistication of Simulink block library, (3) compile time, (4) cost and availability of development boards, and (5) cost, functionality, and ease-of-use of the FPGA vendor provided design tools.

  15. MatSeis: A Seismic toolbox for MATLAB

    SciTech Connect

    Harris, J.M.; Young, C.J.

    1996-08-01

    To support the signal processing and data visualization needs of CTBT related projects at SNL, a MATLAB based GUI was developed. This program is known as MatSeis. MatSeis was developed quickly using the available MATLAB functionality. It provides a time-distance profile plot integrating origin, waveform, travel-time, and arrival data. Graphical plot controls, data manipulation, and signal processing functions provide a user friendly seismic analysis package. In addition, the full power of MATLAB (the premier tool for general numeric processing and visualization) is available for prototyping new functions by end users. This package is being made available to the seismic community in the hope that it will aid CTBT research and will facilitate cooperative signal processing development. 2 refs., 5 figs.

  16. Ecosystem function decays by fungal outbreaks in Antarctic microbial mats

    PubMed Central

    Velázquez, David; López-Bueno, Alberto; Aguirre de Cárcer, Daniel; de los Ríos, Asunción; Alcamí, Antonio; Quesada, Antonio

    2016-01-01

    Antarctica harbours a remarkably diverse range of freshwater bodies and terrestrial ecosystems, where microbial mats are considered the most important systems in terms of biomass and metabolic capabilities. We describe the presence of lysis plaque-like macroscopic blighted patches within the predominant microbial mats on Livingston Island (Antarctic Peninsula). Those blighting circles are associated with decay in physiological traits as well as nitrogen depletion and changes in the spatial microstructure; these alterations were likely related to disruption of the biogeochemical gradients within the microbial ecosystem caused by an unusually high fungal abundance and consequent physical alterations. This phenomenon has been evidenced at a time of unprecedented rates of local warming in the Antarctic Peninsula area, and decay of these ecosystems is potentially stimulated by warmer temperatures. PMID:26972923

  17. MatSeis developer's guide:version 1.0.

    SciTech Connect

    McConnell, Lane Christopher; Young, Christopher John

    2007-05-01

    This guide is intended to enable researchers working with seismic data, but lacking backgrounds in computer science and programming, to develop seismic algorithms using the MATLAB-based MatSeis software. Specifically, it presents a series of step-by-step instructions to write four specific functions of increasing complexity, while simultaneously explaining the notation, syntax, and general program design of the functions being written. The ultimate goal is that that the user can use this guide as a jumping off point from which he or she can write new functions that are compatible with and expand the capabilities of the current MatSeis software that has been developed as part of the Ground-based Nuclear Explosion Monitoring Research and Engineering (GNEMRE) program at Sandia National Laboratories.

  18. HiMAT onboard flight computer system architecture and qualification

    NASA Technical Reports Server (NTRS)

    Myers, A. F.; Earls, M. R.; Callizo, L. A.

    1981-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicles (RPRV's) are being flight tested at NASA Dryden Flight Research Center, Edwards, California, to demonstrate and evaluate a number of technological advances applicable to future fighter aircraft. Closed-loop primary flight control is performed from a ground-based cockpit utilizing a digital computer and up/down telemetry links. A backup flight control system for emergency operation resides in one of two onboard computers. Other functions of the onboard computer system are uplink processing, downlink processing, engine control, failure detection, and redundancy management. This paper describes the architecture, functions, and flight qualification of the HiMAT onboard flight computer systems.

  19. Ecosystem function decays by fungal outbreaks in Antarctic microbial mats.

    PubMed

    Velázquez, David; López-Bueno, Alberto; Aguirre de Cárcer, Daniel; de Los Ríos, Asunción; Alcamí, Antonio; Quesada, Antonio

    2016-01-01

    Antarctica harbours a remarkably diverse range of freshwater bodies and terrestrial ecosystems, where microbial mats are considered the most important systems in terms of biomass and metabolic capabilities. We describe the presence of lysis plaque-like macroscopic blighted patches within the predominant microbial mats on Livingston Island (Antarctic Peninsula). Those blighting circles are associated with decay in physiological traits as well as nitrogen depletion and changes in the spatial microstructure; these alterations were likely related to disruption of the biogeochemical gradients within the microbial ecosystem caused by an unusually high fungal abundance and consequent physical alterations. This phenomenon has been evidenced at a time of unprecedented rates of local warming in the Antarctic Peninsula area, and decay of these ecosystems is potentially stimulated by warmer temperatures. PMID:26972923

  20. Application of materials database (MAT.DB.) to materials education

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    Finding the right material for the job is an important aspect of engineering. Sometimes the choice is as fundamental as selecting between steel and aluminum. Other times, the choice may be between different compositions in an alloy. Discovering and compiling materials data is a demanding task, but it leads to accurate models for analysis and successful materials application. Mat. DB. is a database management system designed for maintaining information on the properties and processing of engineered materials, including metals, plastics, composites, and ceramics. It was developed by the Center for Materials Data of American Society for Metals (ASM) International. The ASM Center for Materials Data collects and reviews material property data for publication in books, reports, and electronic database. Mat. DB was developed to aid the data management and material applications.

  1. Energy-Absorbing, Lightweight Wheels

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.

  2. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.

    2012-01-01

    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.

  3. Inverted glass harp.

    PubMed

    Quinn, Daniel B; Rosenberg, Brian J

    2015-08-01

    We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions. PMID:26382336

  4. Inverted glass harp

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel B.; Rosenberg, Brian J.

    2015-08-01

    We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions.

  5. Molecular cloning and expression analysis of MAT1 gene in black tiger shrimp (Penaeus monodon).

    PubMed

    Wang, Y; Fu, M J; Zhao, C; Bao, W Y; Zhou, F L; Yang, Q B; Jiang, S G; Qiu, L H

    2016-01-01

    MAT1 (ménage à trois 1), an assembly factor and targeting subunit of the CDK-dependent kinase (CAK), can regulate the cell cycle, transcription, and DNA repair. This study was intended to investigate the role of MAT1 in the reproductive maturation of black tiger shrimp (Penaeus monodon). In this study, the P. monodon MAT1 (PmMAT1) gene was identified and characterized. The full-length cDNA of PmMAT1 was 1490 bp in length with an open-reading frame of 993 bp corresponding to 330 amino acids. The temporal expression of PmMAT1 in various tissues was measured by quantitative real-time PCR with the highest expression observed in ovaries. In the ovaries, the PmMAT1 gene was continuously but differentially expressed during the maturation stages. Comparative analyses of MAT1, CDK7, and cyclin H in the CAK complex of P. monodon indicated that the expression of CDK7 and cyclin H coincided with that of MAT1 during the ovary maturation stages. Serotonin (5-HT) injection promoted the expression level of PmMAT1 in the ovaries of shrimp at 6-48 h post-injection. These results indicate that PmMat1 plays a prominent role in the process of ovarian maturation. PMID:26909956

  6. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat

    NASA Technical Reports Server (NTRS)

    Canfield, Donald E.; Des Marais, David J.

    1993-01-01

    Complete budgets for carbon and oxygen have been constructed for cyanobacterial mats dominated by Microcoleus chthonoplastes from the evaporating ponds of a salt works. We infer from the data the various sinks for O2 as well as the sources of carbon for primary production. Although seasonal variability exists, a major percentage of the O2 produced during the day did not diffuse out of the mat but was used within the mat to oxidize both organic carbon and the sulfide produced by sulfate reduction. At night, most of the O2 that diffused into the mat was used to oxidize sulfide, with O2 respiration of minor importance. During the day, the internal mat processes of sulfate reduction and O2 respiration generated as much or more inorganic carbon (DIC) for primary production as diffusion into the mat. Oxygenic photosynthesis was the most important process of carbon fixation. At night, the DIC lost from the mat was mostly from sulfate reduction. Elemental fluxes across the mat/brine interface indicated that carbon with an oxidation state of greater than zero was taken up by the mat during the day and liberated from the mat at night. Overall, carbon with an average oxidation state of near zero accumulated in the mat. Both carbon fixation and carbon oxidation rates varied with temperature by a similar amount.

  7. Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts.

    PubMed

    Charernsriwilaiwat, Natthan; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Sukma, Monrudee; Opanasopit, Praneet

    2013-08-16

    The aim of this study was to prepare electrospun chitosan-based nanofiber mats and to incorporate the fruit hull of Garcinia mangostana (GM) extracts into the mats. Chitosan-ethylenediaminetetraacetic acid/polyvinyl alcohol (CS-EDTA/PVA) was selected as the polymers. The GM extracts with 1, 2 and 3 wt% α-mangostin were incorporated into the CS-EDTA/PVA solution and electrospun to obtain nanofibers. The morphology and diameters of the mats were analyzed using scanning electron microscopy (SEM). The mechanical and swelling properties were investigated. The amount of GM extracts was determined using high-performance liquid chromatography (HPLC). The antioxidative activity, antibacterial activity, extract release and stability of the mats were evaluated. In vivo wound healing tests were also performed in Wistar rats. The results indicated that the diameters of the fibers were on the nanoscale and that no crystals of the extract were observed in the mats at any concentration. The mats provided suitable tensile strength and swelling properties. All of the mats exhibited antioxidant and antibacterial activity. During the wound healing test, the mats accelerated the rate of healing when compared to the control (gauze-covered). The mats maintained 90% of their content of α-mangostin for 3 months. In conclusion, the chitosan-based nanofiber mats loaded with GM extracts were successfully prepared using the electrospinning method. These nanofiber mats loaded with GM extracts may provide a good alternative for accelerating wound healing. PMID:23680732

  8. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  9. Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention.

    PubMed

    Samprasit, Wipada; Kaomongkolgit, Ruchadaporn; Sukma, Monrudee; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2015-03-01

    The mucoadhesive electrospun nanofibre mats were developed using chitosan (CS) and thiolated chitosan (CS-SH) as mucoadhesive polymers. Garcinia mangostana (GM) extract was incorporated into nanofibre mats. The antibacterial activity in the single and combined agents was evaluated against dental caries pathogens. The morphology of mats was observed using SEM. The mats were evaluated for GM extract amount, mucoadhesion, in vitro release, antibacterial activity and cytotoxicity. The mucoadhesion and antibacterial activity were determined in healthy human volunteers. The prepared mats were in nanoscale with good physical and mucoadhesive properties. The CS-SH caused the higher mucoadhesion. All mats rapidly released active substances, which had the synergistic antibacterial activity. In addition, the reduction of bacteria and good mucoadhesion in the oral cavity occurred without cytotoxicity. The results suggest that mats have the potential to be mucoadhesive dosage forms to maintain oral hygiene by reducing the bacterial growth that causes the dental caries. PMID:25498719

  10. Microbial Species Richness and Metabolic Activities in Hypersaline Microbial Mats: Insight into Biosignature Formation Through Lithification

    NASA Astrophysics Data System (ADS)

    Baumgartner, Laura K.; Dupraz, Christophe; Buckley, Daniel H.; Spear, John R.; Pace, Norman R.; Visscher, Pieter T.

    2009-11-01

    Microbial mats in the hypersaline lake of Salt Pan, Eleuthera, Bahamas, display a gradient of lithification along a transect from the center to the shore of the lake. These mats exist under similar geochemical conditions, with light quantity and quality as the sole major environmental difference. Therefore, we hypothesized that the microbial community may be driving the differences in lithification and, by extension, mineral biosignature formation. The lithifying and non-lithifying mat communities were compared (via 16S rRNA gene sequencing, 485 and 464 sequences, respectively) over both temporal and spatial scales. Seven bacterial groups dominated in all the microbial mat libraries: bacteriodetes, alphaproteobacteria, deltaproetobacteria, chloroflexi, spirochaetes, cyanobacteria, and planctomycetes. The mat communities were all significantly different over space, time, and lithification state. Species richness is significantly higher in the non-lithifying mats, potentially due to differences in mat structure and activity. This increased richness may impact lithification and, hence, biosignature production.

  11. Mineralogy of Iron Microbial Mats from Loihi Seamount

    PubMed Central

    Toner, Brandy M.; Berquó, Thelma S.; Michel, F. Marc; Sorensen, Jeffry V.; Templeton, Alexis S.; Edwards, Katrina J.

    2011-01-01

    Extensive mats of Fe oxyhydroxides and associated Fe-oxidizing microbial organisms form in diverse geochemical settings – freshwater seeps to deep-sea vents – where ever opposing Fe(II)-oxygen gradients prevail. The mineralogy, reactivity, and structural transformations of Fe oxyhydroxides precipitated from submarine hydrothermal fluids within microbial mats remains elusive in active and fossil systems. In response, a study of Fe microbial mat formation at the Loihi Seamount was conducted to describe the physical and chemical characteristics of Fe-phases using extended X-ray absorption fine structure spectroscopy, powder X-ray diffraction, synchrotron radiation X-ray total scattering, low-temperature magnetic measurements, and Mössbauer spectroscopy. Particle sizes of 3.5–4.6 nm were estimated from magnetism data, and coherent scattering domain (CSD) sizes as small as 1.6 nm are indicated by pair distribution function (PDF) analysis. Disorder in the nanostructured Fe-bearing phases results in limited intermediate-range structural order: less than that of standard two-line ferrihydrite (Fh), except for the Pohaku site. The short-range ordered natural Fh (FhSRO) phases were stable at 4°C in the presence of oxygen for at least 1 year and during 400°C treatment. The observed stability of the FhSRO is consistent with magnetic observations that point to non-interacting nanoparticles. PDF analyses of total scattering data provide further evidence for FhSRO particles with a poorly ordered silica coating. The presence of coated particles explains the small CSD for the mat minerals, as well as the stability of the minerals over time and against heating. The mineral properties observed here provide a starting point from which progressively older and more extensively altered Fe deposits may be examined, with the ultimate goal of improved interpretation of past biogeochemical conditions and diagenetic processes. PMID:22485113

  12. Mineralogy of iron microbial mats from loihi seamount.

    PubMed

    Toner, Brandy M; Berquó, Thelma S; Michel, F Marc; Sorensen, Jeffry V; Templeton, Alexis S; Edwards, Katrina J

    2012-01-01

    Extensive mats of Fe oxyhydroxides and associated Fe-oxidizing microbial organisms form in diverse geochemical settings - freshwater seeps to deep-sea vents - where ever opposing Fe(II)-oxygen gradients prevail. The mineralogy, reactivity, and structural transformations of Fe oxyhydroxides precipitated from submarine hydrothermal fluids within microbial mats remains elusive in active and fossil systems. In response, a study of Fe microbial mat formation at the Loihi Seamount was conducted to describe the physical and chemical characteristics of Fe-phases using extended X-ray absorption fine structure spectroscopy, powder X-ray diffraction, synchrotron radiation X-ray total scattering, low-temperature magnetic measurements, and Mössbauer spectroscopy. Particle sizes of 3.5-4.6 nm were estimated from magnetism data, and coherent scattering domain (CSD) sizes as small as 1.6 nm are indicated by pair distribution function (PDF) analysis. Disorder in the nanostructured Fe-bearing phases results in limited intermediate-range structural order: less than that of standard two-line ferrihydrite (Fh), except for the Pohaku site. The short-range ordered natural Fh (Fh(SRO)) phases were stable at 4°C in the presence of oxygen for at least 1 year and during 400°C treatment. The observed stability of the Fh(SRO) is consistent with magnetic observations that point to non-interacting nanoparticles. PDF analyses of total scattering data provide further evidence for Fh(SRO) particles with a poorly ordered silica coating. The presence of coated particles explains the small CSD for the mat minerals, as well as the stability of the minerals over time and against heating. The mineral properties observed here provide a starting point from which progressively older and more extensively altered Fe deposits may be examined, with the ultimate goal of improved interpretation of past biogeochemical conditions and diagenetic processes. PMID:22485113

  13. Integrated foreground segmentation and boundary matting for live videos.

    PubMed

    Minglun Gong; Yiming Qian; Li Cheng

    2015-04-01

    The objective of foreground segmentation is to extract the desired foreground object from input videos. Over the years, there have been significant amount of efforts on this topic. Nevertheless, there still lacks a simple yet effective algorithm that can process live videos of objects with fuzzy boundaries (e.g., hair) captured by freely moving cameras. This paper presents an algorithm toward this goal. The key idea is to train and maintain two competing one-class support vector machines at each pixel location, which model local color distributions for both foreground and background, respectively. The usage of two competing local classifiers, as we have advocated, provides higher discriminative power while allowing better handling of ambiguities. By exploiting this proposed machine learning technique, and by addressing both foreground segmentation and boundary matting problems in an integrated manner, our algorithm is shown to be particularly competent at processing a wide range of videos with complex backgrounds from freely moving cameras. This is usually achieved with minimum user interactions. Furthermore, by introducing novel acceleration techniques and by exploiting the parallel structure of the algorithm, near real-time processing speed (14 frames/s without matting and 8 frames/s with matting on a midrange PC & GPU) is achieved for VGA-sized videos. PMID:25675459

  14. Simulated Carbon Cycling in a Model Microbial Mat.

    NASA Astrophysics Data System (ADS)

    Decker, K. L.; Potter, C. S.

    2006-12-01

    We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.

  15. Hydroponic root mats for wastewater treatment-a review.

    PubMed

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs. PMID:27164889

  16. Nitrogen Fixation (Acetylene Reduction) Associated with Duckweed (Lemnaceae) Mats

    PubMed Central

    Zuberer, D. A.

    1982-01-01

    Duckweed (Lemnaceae) mats in Texas and Florida were investigated, using the acetylene reduction assay, to determine whether nitrogen fixation occurred in these floating aquatic macrophyte communities. N2-fixing microorganisms were enumerated by plating or most-probable-number techniques, using appropriate N-free media. Results of the investigations indicated that substantial N2-fixation (C2H2) was associated with duckweed mats in Texas and Florida. Acetylene reduction values ranged from 1 to 18 μmol of C2H4 g (dry weight)−1 day−1 for samples incubated aerobically in light. Dark N2 fixation was always two- to fivefold lower. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (7 to 10 μM) reduced acetylene reduction to levels intermediate between light and dark incubation. Acetylene reduction was generally greatest for samples incubated anaerobically in the light. It was estimated that 15 to 20% of the N requirement of the duckweed could be supplied through biological nitrogen fixation. N2-fixing heterotrophic bacteria (105 cells g [wet weight]−1 and cyanobacteria (105 propagules g [wet weight]−1 were associated with the duckweed mats. Azotobacter sp. was not detected in these investigations. One diazotrophic isolate was classified as Klebsiella. PMID:16345992

  17. Interlocking mats support drilling rig on frozen swamp

    SciTech Connect

    Not Available

    1991-04-15

    This paper discusses how a company employed a unique mat system to reduce environmental impact and to support the drilling rig on its Astosch No. 1 exploratory well at Granite Point in the Trading Bay Wildlife Refuge. The site is on the west side of Cook Inlet. During winter, the travel time from Anchorage to the base camp near the Tyonek Indian village was 5 hr by ice road or 45 min by fixed wing aircraft. Eighteen miles of existing gravel roads were used from this base camp to the edge of the frozen muskeg swamp, and from there, they constructed 7 miles of ice road to the well site. They constructed a snow and ice pad with two impermeable liners and then installed Uni-Mat International Inc.'s patented interlocking mats for the final foundation. After moving in the rig, a snow berm was built around the perimeter of the location and an impermeable liner was then draped and secured over the berm.

  18. Flow visualization study of the HiMAT RPRV

    NASA Technical Reports Server (NTRS)

    Lorincz, D. J.

    1980-01-01

    Water tunnel studies were performed to qualitatively define the flow field of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT RPRV). Particular emphasis was placed on defining the vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop water tunnel using a 1/15 scale model of the HiMAT RPRV. Flow visualization photographs were obtained for angles of attack up to 40 deg and sideslip angles up to 5 deg. The HiMAT model was investigated in detail to determine the canard and wing vortex flow field development, vortex paths, and vortex breakdown characteristics as a function of angle of attack and sideslip. The presence of the canard caused the wing vortex to form further outboard and delayed the breakdown of the wing vortex to higher angles of attack. An increase in leading edge camber of the maneuver configuration delayed both the formation and the breakdown of the wing and canard vortices. Additional tests showed that the canard vortex was sensitive to variations in inlet mass flow ratio and canard flap deflection angle.

  19. Studying Microbial Mat Functioning Amidst "Unexpected Diversity": Methodological Approaches and Initial Results from Metatranscriptomes of Mats Over Diel cycles, iTags from Long Term Manipulations, and Biogeochemical Cycling in Simplified Microbial Mats Constructed from Cultures

    NASA Astrophysics Data System (ADS)

    Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Everroad, R. C.; Lee, J.; Pett-Ridge, J.; Weber, P. K.

    2014-12-01

    Microbial mats are famously amongst the most diverse microbial ecosystems on Earth, inhabiting some of the most inclement environments known, including hypersaline, dry, hot, cold, nutrient poor, and high UV environments. The high microbial diversity of microbial mats makes studies of microbial ecology notably difficult. To address this challenge, we have been using a combination of metagenomics, metatranscriptomics, iTags and culture-based simplified microbial mats to study biogeochemical cycling (H2 production, N2 fixation, and fermentation) in microbial mats collected from Elkhorn Slough, Monterey Bay, California. Metatranscriptomes of microbial mats incubated over a diel cycle have revealed that a number of gene systems activate only during the day in Cyanobacteria, while the remaining appear to be constitutive. The dominant cyanobacterium in the mat (Microcoleus chthonoplastes) expresses several pathways for nitrogen scavenging undocumented in cultured strains, as well as the expression of two starch storage and utilization cycles. Community composition shifts in response to long term manipulations of mats were assessed using iTags. Changes in community diversity were observed as hydrogen fluxes increased in response to a lowering of sulfate concentrations. To produce simplified microbial mats, we have isolated members of 13 of the 15 top taxa from our iTag libraries into culture. Simplified microbial mats and simple co-cultures and consortia constructed from these isolates reproduce many of the natural patterns of biogeochemical cycling in the parent natural microbial mats, but against a background of far lower overall diversity, simplifying studies of changes in gene expression (over the short term), interactions between community members, and community composition changes (over the longer term), in response to environmental forcing.

  20. Surface Wave Simulation and Processing with MatSeis

    SciTech Connect

    THOMPSON,BEVERLY D.; CHAEL,ERIC P.; YOUNG,CHRISTOPHER J.; WALTER,WILLIAM R.; PASYANOS,MICHAEL E.

    2000-08-07

    In order to exploit the information on surface wave propagation that is stored in large seismic event datasets, Sandia and Lawrence Livermore National Laboratories have developed a MatSeis interface for performing phase-matched filtering of Rayleigh arrivals. MatSeis is a Matlab-based seismic processing toolkit which provides graphical tools for analyzing seismic data from a network of stations. Tools are available for spectral and polarization measurements, as well as beam forming and f-k analysis with array data, to name just a few. Additionally, one has full access to the Matlab environment and any functions available there. Previously the authors reported the development of new MatSeis tools for calculating regional discrimination measurements. The first of these performs Lg coda analysis as developed by Mayeda and coworkers at Lawrence Livermore National Laboratory. A second tool measures regional phase amplitude ratios for an event and compares the results to ratios from known earthquakes and explosions. Release 1.5 of MatSeis includes the new interface for the analysis of surface wave arrivals. This effort involves the use of regionalized dispersion models from a repository of surface wave data and the construction of phase-matched filters to improve surface wave identification, detection, and magnitude calculation. The tool works as follows. First, a ray is traced from source to receiver through a user-defined grid containing different group velocity versus period values to determine the composite group velocity curve for the path. This curve is shown along with the upper and lower group velocity bounds for reference. Next, the curve is used to create a phase-matched filter, apply the filter, and show the resultant waveform. The application of the filter allows obscured Rayleigh arrivals to be more easily identified. Finally, after screening information outside the range of the phase-matched filter, an inverse version of the filter is applied to obtain a

  1. Shock absorber operates over wide range

    NASA Technical Reports Server (NTRS)

    Creasy, W. K.; Jones, J. C.

    1965-01-01

    Piston-type hydraulic shock absorber, with a metered damping system, operates over a wide range of kinetic energy loading rates. It is used for absorbing shock and vibration on mounted machinery and heavy earth-moving equipment.

  2. Picture Wall (Glass Structures)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Photo shows a subway station in Toronto, Ontario, which is entirely glass-enclosed. The all-glass structure was made possible by a unique glazing concept developed by PPG Industries, Pittsburgh, Pennsylvania, one of the largest U.S. manufacturers of flat glass. In the TVS glazing system, transparent glass "fins" replace conventional vertical support members used to provide support for wind load resistance. For stiffening, silicone sealant bonds the fins to adjacent glass panels. At its glass research center near Pittsburgh, PPG Industries uses the NASTRAN computer program to analyze the stability of enclosures made entirely of glass. The company also uses NASTRAN to simulate stresses on large containers of molten glass and to analyze stress effects of solar heating on flat glass.

  3. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... absorber is a device made of paper or cotton intended to absorb moisture from the oral cavity during...

  4. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... absorber is a device made of paper or cotton intended to absorb moisture from the oral cavity during...

  5. Improving the laboratory monitoring of absorbent oil

    SciTech Connect

    V.S. Shved; S.S. Sychev; I.V. Safina; S.A. Klykov

    2009-05-15

    The performance of absorbent coal tar oil is analyzed as a function of the constituent and group composition. The qualitative and quantitative composition of the oil that ensures the required absorbent properties is determined. Operative monitoring may be based on absorbent characteristics that permit regulation of the beginning and end of regeneration.

  6. Embedded absorbers for helicopter rotor lag damping

    NASA Astrophysics Data System (ADS)

    Byers, Lynn; Gandhi, Farhan

    2009-09-01

    Radial and chordwise damped vibration absorbers embedded in the rotor blade are compared for rotor lag damping augmentation. Results show that the radial absorber is more effective in transferring damping to the rotor blade lag mode. The chordwise absorber needs to be at a more outboard location and have a larger mass to introduce levels of lag damping comparable to that introduced by the radial absorber. The 1/rev amplitude of a chordwise absorber at the blade tip, per degree of blade lead-lag motion in forward flight, is of the order of 35% of the blade chord, and such a stroke might be difficult to accommodate. The 1/rev amplitude of a radial absorber at 70% span (having significantly lower mass than the chordwise absorber and producing comparable lag damping) is of the order of 4% of the rotor blade span. The static displacement of the radial absorber under centrifugal load needs to be limited using a frequency-dependent (high static stiffness, low dynamic stiffness) or nonlinear spring. The chordwise absorber can also undergo a large static displacement under the chordwise component of the centrifugal load if there is an offset from the feather axis, and this would again have to be limited using a strategy such as a frequency-dependent spring. Significant advantages of the radial absorber are—higher lag damping, lower absorber mass, space for absorber mass travel, and no chordwise travel of blade center of gravity reducing susceptibility to aeroelastic instability and dynamic pitch-link loads.

  7. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, Daniel C.

    1990-02-06

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  8. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, D.C.

    1987-11-20

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  9. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, Daniel C.

    1990-01-01

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  10. Reaction cured glass and glass coatings

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Leiser, D. B.; Katvala, V. W. (Inventor)

    1978-01-01

    The invention relates to reaction cured glass and glass coatings prepared by reacting a compound selected from the group consisting of silicon tetraboride, silicon hexaboride, other boron silicides, boron and mixtures with a reactive glass frit composed of a porous high silica borosilicate glass and boron oxide. The glassy composites of the present invention are useful as coatings on low density fibrous porous silica insulations used as heat shields and for articles such as reaction vessels that are subjected to high temperatures with rapid heating and cooling and that require resistance to temperature and repeated thermal shock at temperatures up to about 1482C (2700PF).

  11. Hyperpolarized cesium ions doped in a glass material

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kiyoshi

    2014-12-01

    Hyperpolarized (HP) 133 Cs nuclear magnetic resonance signals were measured from borosilicate glass cell walls during optical pumping of cesium vapor at high magnetic field (9.4 T). Significant signal enhancements were observed when additional heating of the cell wall was provided by intense but non-resonant laser irradiation, with integrated HP 133 Cs NMR signals and line widths varying as a function of heating laser power (and hence glass temperature). Given that virtually no Cs ions would originally be present in the glass, absorbed HP Cs atoms rarely met thermally-polarized Cs ions already at the surface; thus, spin-exchange via nuclear dipole interaction cannot be the primary mechanism for injecting spin polarization into the glass. Instead, it is concluded that the absorption and transport of HP atoms into the glass material itself is the dominant mechanism of nuclear spin injection at high temperatures-the first reported experimental demonstration of such a mechanism.

  12. Thermal lens effects on highly pumped Yb:glass

    NASA Astrophysics Data System (ADS)

    Nishimura, Akihiko; Akaoka, Katsuaki; Ohzu, Akira; Sugiyama, Akira; Usami, Tsutomu; Matoba, Tohru

    2000-04-01

    Thermal lens effects on highly pumped Yb doped phosphate glass was measured by a Shack-Hartmann wavefront sensor for the development of compact chirped pulse amplification systems. High energy pump pulses of 1 - 2 Joules were produced by a flashlamp pumped Ti-sapphire laser. The pumping intensity on the Yb:glass surface exceeded 800 kW/cm2. The pulse energy of 330 mJ from Yb:glass was obtained with 53% slope efficiency with 0.5 Hz reputation. The absorbed pump energy generated the thermal lens effects inside the Yb:glass. The wavefront distortion completely disappeared after 300 ms of pump pulse. Neither heat accumulation nor pumping damage was observed on the Yb:glass.

  13. Thermoluminescence dosimetric properties and effective atomic numbers of window glass

    NASA Astrophysics Data System (ADS)

    Bootjomchai, Cherdsak; Laopaiboon, Raewat

    2014-03-01

    This work presents the main thermoluminescence (TL) dosimetric characteristics of commercial Thai transparent window glass. The amorphous structure of window glass was investigated by XRD. The glow curve revealed a peak (Tm) at 235 °C. The thermoluminescence response of window glass was studied after irradiation with photons in the absorb dose range of 0-14.05 mGy, which is of interest for the personal protection level of dosimetry. A linear response was obtained after both the first irradiation and the second irradiation. The minimum detectable dose of window glass was 0.15 mGy. The effective atomic number of window glass as a function of photon energy was calculated. The obtained results for the effective atomic number showed that it is very close to that of human biological tissues (Zeff = 6.7-8.4 at studied energy).

  14. 1/f Noise in a Coulomb Glass.

    NASA Astrophysics Data System (ADS)

    Yu, Clare C.; Shtengel, Kirill

    2002-03-01

    Low frequency 1/f noise is found in Coulomb glasses, among other systems with slow relaxation. It has been recently studied in detail in Si:B in the experimental work of Massey and Lee [1]. They concluded that their findings were inconsistent with the single-particle mechanisms proposed earlier. We show that the observed noise can be produced by charge fluctuations due to electrons hopping between isolated sites and a percolating network at low temperatures [2]. Coulomb interactions are included through the Coulomb gap in the density of states. The low frequency noise spectrum goes as ω^-α with α slightly larger than 1. This result, together with the temperature dependence of α and the noise amplitude are in good agreement with the experiments of Massey and Lee. [1] J. G. Massey and Mark Lee, Phys. Rev. Lett. 79, 3986 (1997). [2] Kirill Shtengel and Clare C. Yu (2001), cond-mat/0111302.

  15. GlassForm

    Energy Science and Technology Software Center (ESTSC)

    2011-09-16

    GlassForm is a software tool for generating preliminary waste glass formulas for a given waste stream. The software is useful because it reduces the number of verification melts required to develop a suitable additive composition. The software includes property models that calculate glass properties of interest from the chemical composition of the waste glass. The software includes property models for glass viscosity, electrical conductivity, glass transition temperature, and leach resistance as measured by the 7-daymore » product consistency test (PCT).« less

  16. The Double Absorbing Boundary method

    NASA Astrophysics Data System (ADS)

    Hagstrom, Thomas; Givoli, Dan; Rabinovich, Daniel; Bielak, Jacobo

    2014-02-01

    A new approach is devised for solving wave problems in unbounded domains. It has common features to each of two types of existing techniques: local high-order Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML). However, it is different from both and enjoys relative advantages with respect to both. The new method, called the Double Absorbing Boundary (DAB) method, is based on truncating the unbounded domain to produce a finite computational domain Ω, and on applying a local high-order ABC on two parallel artificial boundaries, which are a small distance apart, and thus form a thin non-reflecting layer. Auxiliary variables are defined on the two boundaries and inside the layer bounded by them, and participate in the numerical scheme. The DAB method is first introduced in general terms, using the 2D scalar time-dependent wave equation as a model. Then it is applied to the 1D Klein-Gordon equation, using finite difference discretization in space and time, and to the 2D wave equation in a wave guide, using finite element discretization in space and dissipative time stepping. The computational aspects of the method are discussed, and numerical experiments demonstrate its performance.

  17. 6. Looking glass aircraft in the project looking glass historic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Looking glass aircraft in the project looking glass historic district. View to north. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Avenue between Comstat Drive & Nightwatch Avenue, Offutt Air Force Base, Bellevue, Sarpy County, NE

  18. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  19. Molecular Ecological and Stable Isotopic Studies of Nitrogen Fixation in Modern Microbial Mats

    NASA Technical Reports Server (NTRS)

    Bebout, B. M.; Crumbliss, L. L.; DesMarais, D. J.; Hogan, M. E.; Omoregie, E.; Turk, K. A.; Zehr, J. P.

    2003-01-01

    Nitrogen is usually the element limiting biological productivity in the marine environment. Microbial mats, laminated microbial communities analogous to some of the oldest forms of life on Earth, are often the sites of high rates of N fixation (the energetically expensive conversion of atmospheric dinitrogen into a biologically useful form). The N fixing enzyme nitrogenase is generally considered to be of ancient origin, and is widely distributed throughout the Bacterial and Archaeal domains of life, indicating an important role for this process over evolutionary time. The stable isotopic signature of N fixation is purportedly recognizable in organic matter (ancient kerogens as well as present-day microbial mats) as a delta (15)N(sub organic) near zero. We studied two microbial mats exhibiting different rates of N fixation in order to better understand the impact of N fixation on the delta (15)N (sub organic) of the mats, as well as what organisms are important in this process. Mats dominated by the cyanobacterium Microcoleus chthonoplastes grow in permanently submerged hypersaline salterns, and exhibit low rates of N fixation, whereas mats dominated by the cyanobacterium Lyngbya spp grow in an intertidal area, and exhibit rates of N fixation an order of magnitude higher. To examine successional stages in mat growth, both developing and established mats at each location were sampled. PCR and RT-PCR based approaches were used to identify, respectively, the organisms containing nifH (one of the genes that encode nitrogenase) as well as those expressing nifH in these mats. Both mats exhibited a distinct diel cycle of N fixation, with highest rates occurring at night. The delta (15)N(sub organic) of the subtidal Microcoleus mats is near zero whereas the delta (15)N(sub organic) is slightly more positive (+ 2-3%), in the intertidal Lyngbya mats, an interesting difference in view of the fact that overall rates of activity in the intertidal mats are much higher that those

  20. Characterization and measurement results of fluorescence in absorption optical filter glass

    NASA Astrophysics Data System (ADS)

    Reichel, S.; Biertümpfel, R.; Engel, A.

    2015-09-01

    Optical filter glasses (absorption filters) are for example used for spectroscopy. The filter glass absorbs the unwanted light and has a nearly angle independent spectral characteristic. The absorbed light can lead to (self-) fluorescence, i. e. the filter glass itself re-emits fluorescence light at a different wavelength - compared to the incident (excitation) light. This fluorescence light can disturb the measurement signal. In order to obtain an optimized optical design the fluorescence properties of the glasses must be known. By knowing fluorescence properties one can design a system with a good signal-to-noise ratio. We will present our measurement set-up for fluorescence measurements of optical filter glass. This set-up was used to obtain fluorescence measurement results for different optical filter glasses. For the first time we present results on the fluorescence level for different optical filter glasses. In addition the effect of excitation wavelength on the fluorescence level will be studied. Besides other factors, fluorescence depends on impurities of the raw material of the glass melt. Due to small fluctuations of the raw material used for the glass production the fluorescence of the same filter glass type can fluctuate from melt-to-melt. Thus, results from different melts will be shown for the same filter glass type.

  1. Diel Metagenomics and Metatranscriptomics of Elkhorn Slough Hypersaline Microbial Mat

    NASA Astrophysics Data System (ADS)

    Lee, J.; Detweiler, A. M.; Everroad, R. C.; Bebout, L. E.; Weber, P. K.; Pett-Ridge, J.; Bebout, B.

    2014-12-01

    To understand the variation in gene expression associated with the daytime oxygenic phototrophic and nighttime fermentation regimes seen in hypersaline microbial mats, a contiguous mat piece was subjected to sampling at regular intervals over a 24-hour diel period. Additionally, to understand the impact of sulfate reduction on biohydrogen consumption, molybdate was added to a parallel experiment in the same run. 4 metagenome and 12 metatranscriptome Illumina HiSeq lanes were completed over day / night, and control / molybdate experiments. Preliminary comparative examination of noon and midnight metatranscriptomic samples mapped using bowtie2 to reference genomes has revealed several notable results about the dominant mat-building cyanobacterium Microcoleus chthonoplastes PCC 7420. Dominant cyanobacterium M. chthonoplastes PCC 7420 shows expression in several pathways for nitrogen scavenging, including nitrogen fixation. Reads mapped to M. chthonoplastes PCC 7420 shows expression of two starch storage and utilization pathways, one as a starch-trehalose-maltose-glucose pathway, another through UDP-glucose-cellulose-β-1,4 glucan-glucose pathway. The overall trend of gene expression was primarily light driven up-regulation followed by down-regulation in dark, while much of the remaining expression profile appears to be constitutive. Co-assembly of quality-controlled reads from 4 metagenomes was performed using Ray Meta with progressively smaller K-mer sizes, with bins identified and filtered using principal component analysis of coverages from all libraries and a %GC filter, followed by reassembly of the remaining co-assembly reads and binned reads. Despite having relatively similar abundance profiles in each metagenome, this binning approach was able to distinctly resolve bins from dominant taxa, but also sulfate reducing bacteria that are desired for understanding molybdate inhibition. Bins generated from this iterative assembly process will be used for downstream

  2. FOAM GLASS INSULATION FROM WASTE GLASS

    EPA Science Inventory

    Waste glass has proven to be effective for the production of foam glass insulation both in the bulk or rigid board form and pellet form. Problems inherent with the use of water, carbon black and calcium carbonate as the foaming agents, have been identified and many have been solv...

  3. The biosynthesis of cyanobacterial sunscreen scytonemin in intertidal microbial mat communities

    PubMed Central

    Balskus, Emily P.; Case, Rebecca J.; Walsh, Christopher T.

    2011-01-01

    We have examined the biosynthesis and accumulation of cyanobacterial sunscreening pigment scytonemin within intertidal microbial mat communities using a combination of chemical, molecular, and phylogenetic approaches. Both laminated (layered) and non-laminated mats contained scytonemin, with morphologically distinct mats having different cyanobacterial community compositions. Within laminated microbial mats, regions with and without scytonemin had different dominant oxygenic phototrophs, with scytonemin-producing areas consisting primarily of Lyngbya aestuarii and scytonemin-deficient areas dominated by a eukaryotic alga. The non-laminated mat was populated by a diverse group of cyanobacteria and did not contain algae. The amplification and phylogenetic assignment of scytonemin biosynthetic gene scyC from laminated mat samples confirmed that the dominant cyanobacterium in these areas, L. aestuarii, is likely responsible for sunscreen production. This study is the first to utilize an understanding of the molecular basis of scytonemin assembly to explore its synthesis and function within natural microbial communities. PMID:21501195

  4. Electrospun magnetic nanofibre mats - A new bondable biomaterial using remotely activated magnetic heating

    NASA Astrophysics Data System (ADS)

    Zhong, Yi; Leung, Victor; Yuqin Wan, Lynn; Dutz, Silvio; Ko, Frank K.; Häfeli, Urs O.

    2015-04-01

    A solvothermal process was adopted to produce hydrophilic magnetite (Fe3O4) nanoparticles which were subsequently emulsified with a chloroform/methanol (70/30 v/v) solution of poly(caprolactone) (PCL) and then electrospun into a 0.2 mm thick PCL mat. The magnetic heating of the mats at a field amplitude of 25 kA/m and frequency of 400 kHz exhibited promising efficiency for magnetic hyperthermia, with a specific absorption rate of about 40 W/g for the magnetic mat. The produced heat was used to melt the magnetic mat onto the surrounding non-magnetic polymer mat from within, without destroying the nanostructure of the non-magnetic polymer more than 0.5 mm away. Magnetic nanofibre mats might thus be useful for internal heat sealing applications, and potentially also for thermotherapy.

  5. Antimicrobial activity and cytotoxicity of nanofibrous mats immobilized with polysaccharides-rectorite based nanogels.

    PubMed

    Zhang, Jianwei; Li, Xueyong; Tian, Jing; Lu, Yuan; Shi, Xiaowen; Zhan, Yingfei; Du, Yumin; Liu, Huan; Deng, Hongbing

    2015-09-01

    Rectorite (REC)-encapsulated lysozyme (LY)-alginate (ALG) nanogels (NGs) were prepared by adding ALG-REC composites suspensions into LY solutions at the mass ratio of 1:2. The morphology of the NGs and the NGs-assembled nanofibrous mats were studied by transmission electron microscope and field emission scanning electron microscopy, respectively. The composition of NGs-immobilized nanofibrous mats was detected by X-ray photoelectron spectroscopy. The NGs-assembled nanofibrous mats with the addition of REC could enhance the inhibition against Escherichia coli and Staphylococcus aureus. Additionally, NGs-coated mats reduced the toxicity of cellulose mats on mouse lung fibroblasts using MTT assay. Besides, the addition of REC in the NGs improved the cell compatibility of NGs-assembled nanofibrous mats. PMID:25982641

  6. Superhydrophobic silicone fiber mats fabricated by electrospinning from solution

    NASA Astrophysics Data System (ADS)

    Ludwig, Bonnie; Clark, Aneta; Snow, Steven; Hill, Randal; Schmidt, Randall; Fogg, Brad; Lo, Peter

    2007-03-01

    Fine silicone fibers of 1 -- 20 μm diameter were fabricated from solution via electrospinning. These are the first examples of fine fibers prepared from silicone homopolymers. Fiber morphology (beaded, ribbon-like, smooth) and diameter were controlled. The nanoscale surface roughness of nonwoven fiber mats created with silicone fibers produced a superhydrophobic surface that had a water contact angle of ˜160^o. The superhydrophobic surface was made reversibly hydrophilic with exposure to oxygen plasma. The combination of high surface area and superhydrophobicity suggests potential applications in the areas of water-repellent textiles, filtration, adsorption and chemical separations, wound dressings, and fuel cells.

  7. Optical properties of solid-core photonic crystal fibers filled with nonlinear absorbers.

    PubMed

    Butler, James J; Bowcock, Alec S; Sueoka, Stacey R; Montgomery, Steven R; Flom, Steven R; Friebele, E Joseph; Wright, Barbara M; Peele, John R; Pong, Richard G S; Shirk, James S; Hu, Jonathan; Menyuk, Curtis R; Taunay, T F

    2013-09-01

    A theoretical and experimental investigation of the transmission of solid-core photonic crystal fibers (PCFs) filled with nonlinear absorbers shows a sharp change in the threshold for optical limiting and in leakage loss as the refractive index of the material in the holes approaches that of the glass matrix. Theoretical calculations of the mode profiles and leakage loss of the PCF are in agreement with experimental results and indicate that the change in limiting response is due to the interaction of the evanescent field of the guided mode with the nonlinear absorbers in the holes. PMID:24103943

  8. Weakly supervised glasses removal

    NASA Astrophysics Data System (ADS)

    Wang, Zhicheng; Zhou, Yisu; Wen, Lijie

    2015-03-01

    Glasses removal is an important task on face recognition, in this paper, we provide a weakly supervised method to remove eyeglasses from an input face image automatically. We choose sparse coding as face reconstruction method, and optical flow to find exact shape of glasses. We combine the two processes iteratively to remove glasses more accurately. The experimental results reveal that our method works much better than these algorithms alone, and it can remove various glasses to obtain natural looking glassless facial images.

  9. Characterization of arsenic species in microbial mats from an inactive gold mine

    USGS Publications Warehouse

    Foster, A.L.; Ashley, R.P.

    2002-01-01

    Filamentous cyanobacterial mats and Fe oxyhydroxide-rich bacterial mats collected near an inactive gold mine in California are enriched in arsenic (As) approximately 1000-fold relative to the waters in contact with them. The predominant organism in the cyanobacterial mat could not be identified using morphological characteristics, but the unique morphology of the sheath-forming ?? protobacterium Leptothrix ochracea was used to identify this species in Fe oxyhydroxide mat samples from several sites near the gold mine. Leptothrix sheaths commonly exceed 10 ??m in length and have an average diameter of 1 ??m. The Fe-oxyhydroxide mats are dominated by L. ochracea sheaths, but use of fluorescently tagged genetic stains reveals the presence of sheathless bacteria that presumably also promote the formation of Fe oxyhydroxide. X-ray absorption fine structure (XAFS) spectroscopy was used to identify As species in these microbial mats. Mat-associated As is predominantly As(V), even when As(III) is the primary dissolved species in contact with the mats. The species of As(V) associated with the cyanobacterial mat could not be conclusively identified; however, it is not associated with Fe oxyhydroxide or other minerals, based on comparison to XAFS spectra of As adsorbed to various substrates. In addition, the cyanobacterial mat XAFS spectrum is different from that of aqueous As(V), suggesting that As(V) in the mat lacks some or all of the coordinating water molecules present in aqueous solution. We hypothesize that As is associated with the exopolysaccharide (EPS) matrix secreted by the cyanobacteria. In Leptothrix-dominated Fe-oxyhydroxide bacterial mats, XAFS analysis clearly indicates that As(V) is associated with the Fe oxyhydroxide as an adsorbed and/or coprecipitated complex.

  10. MILLIMETER-SCALE GENETIC GRADIENTS AND COMMUNITY-LEVEL MOLECULAR CONVERGENCE IN A HYPERSALINE MICROBIAL MAT

    SciTech Connect

    Fenner, Marsha W; Kunin, Victor; Raes, Jeroen; Harris, J. Kirk; Spear, John R.; Walker, Jeffrey J.; Ivanova, Natalia; Mering, Christian von; Bebout, Brad M.; Pace, Norman R.; Bork, Peer; Hugenholtz, Philip

    2008-04-30

    To investigate the extent of genetic stratification in structured microbial communities, we compared the metagenomes of 10 successive layers of a phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found pronounced millimeter-scale genetic gradients that are consistent with the physicochemical profile of the mat. Despite these gradients, all layers displayed near identical and acid-shifted isoelectric point profiles due to a molecular convergence of amino acid usage indicating that hypersalinity enforces an overriding selective pressure on the mat community.

  11. Glass in Class

    ERIC Educational Resources Information Center

    Greaves, Neville

    2005-01-01

    Glass is reviewed from fabrication to application, laying emphasis on the wide-ranging physics involved. This begins with liquids and solids and the way in which glasses are defined and can be demonstrated in the classroom. At the atomic level the regular structure of crystals and their irregular counterparts in glasses are explained through…

  12. Technique for Machining Glass

    NASA Technical Reports Server (NTRS)

    Rice, S. H.

    1982-01-01

    Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.

  13. Modeling the Absorbing Aerosol Index

    NASA Technical Reports Server (NTRS)

    Penner, Joyce; Zhang, Sophia

    2003-01-01

    We propose a scheme to model the absorbing aerosol index and improve the biomass carbon inventories by optimizing the difference between TOMS aerosol index (AI) and modeled AI with an inverse model. Two absorbing aerosol types are considered, including biomass carbon and mineral dust. A priori biomass carbon source was generated by Liousse et al [1996]. Mineral dust emission is parameterized according to surface wind and soil moisture using the method developed by Ginoux [2000]. In this initial study, the coupled CCM1 and GRANTOUR model was used to determine the aerosol spatial and temporal distribution. With modeled aerosol concentrations and optical properties, we calculate the radiance at the top of the atmosphere at 340 nm and 380 nm with a radiative transfer model. The contrast of radiance at these two wavelengths will be used to calculate AI. Then we compare the modeled AI with TOMS AI. This paper reports our initial modeling for AI and its comparison with TOMS Nimbus 7 AI. For our follow-on project we will model the global AI with aerosol spatial and temporal distribution recomputed from the IMPACT model and DAO GEOS-1 meteorology fields. Then we will build an inverse model, which applies a Bayesian inverse technique to optimize the agreement of between model and observational data. The inverse model will tune the biomass burning source strength to reduce the difference between modelled AI and TOMS AI. Further simulations with a posteriori biomass carbon sources from the inverse model will be carried out. Results will be compared to available observations such as surface concentration and aerosol optical depth.

  14. Aligned Electrospun Polyvinyl Pyrrolidone/Poly ɛ-Caprolactone Blend Nanofiber Mats for Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Charernsriwilaiwat, Natthan; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2016-02-01

    Electrospun nanofibrous materials are widely used in medical applications such as tissue engineering scaffolds, wound dressing material and drug delivery carriers. For tissue engineering scaffolds, the structure of the nanofiber is similar to extracellular matrix (ECM) which promotes the cell growth and proliferation. In the present study, the aligned nanofiber mats of polyvinyl pyrrolidone (PVP) blended poly ɛ-caprolactone (PCL) was successfully generated using electrospinning technique. The morphology of PVP/PCL nanofiber mats were characterized by scanning electron microspore (SEM). The chemical and crystalline structure of PVP/PCL nanofiber mats were analyzed using Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffactometer (PXRD). The water contact angle of mats was investigated. Cell culture studies using normal human fibroblasts (NHF) were performed to assess cell morphology, cell alignment and cell proliferation. The results indicated that the fiber were in nanometer range. The PVP/PCL was well dispersed in nanofiber mats and was in amorphous form. The water contact angle of PVP/PCL nanofiber mats was lower than PCL nanofiber mats. The PVP/PCL nanofiber mats exhibited good biocompatibility with NHF cells. In summary, the PVP/PCL nanofiber mats had potential to be used in tissue engineering and regenerative medicine.

  15. Fabrication of robust Antheraea assama fibroin nanofibrous mat using ionic liquid for skin tissue engineering.

    PubMed

    Srivastava, Chandra Mohan; Purwar, Roli

    2016-11-01

    Electrospinning is an emerging technique used for fabrication of nanofibrous mats for skin tissue engineering applications. The aim of this study centered on fabrication of muga fibroin electrospun mats by using ionic liquid and its characterizations. The muga fibroin extracted from cocoon of Antheraea assama is dissolved in 1-butyl, 3-methyl imidazolium acetate (BMIMAc), a green solvent, to prepare a dope solution for electrospinning. The molecular weight, rheology and structural properties of dope solution are characterized. The process parameters of electrospinning machine such as voltage and concentration of dope solution are varied to obtain nanofibrous mats. The nanofibrous mat having average fiber diameter of 160nm are obtained from 10% w/v concentration of muga fibroin in BMIMAc with an applied voltage of 20KV. The mechanical, structural, physical and thermal properties of muga nanofibrous mat (MNF) are analyzed and compare with muga cast film. The cytocompatibility test is performed using L929 fibroblast cells. It is observed that muga nanofibrous mat support higher growth of fibroblast cells (p<0.05) as compared to muga cast film (MCF). Muga nanofibrous mat and cast film are loaded with gentamycin sulphate. The release rate and antimicrobial efficiency of gentamycin sulphate loaded muga nanofibrous mat are found to be significantly higher (p<0.05) as compared to muga cast film. All these results indicate that muga nanofibrous mat would be a promising material for skin tissue engineering. PMID:27524022

  16. New crosslinkers for electrospun chitosan fibre mats. Part II: mechanical properties

    PubMed Central

    Donius, Amalie E.; Kiechel, Marjorie A.; Schauer, Caroline L.; Wegst, Ulrike G. K.

    2013-01-01

    Few studies exist on the mechanical performance of crosslinked electrospun chitosan (CS) fibre mats. In this study, we show that the mat structure and mechanical performance depend on the different crosslinking agents genipin, epichlorohydrin (ECH), and hexamethylene-1,6-diaminocarboxysulphonate (HDACS), as well as the post-electrospinning heat and base activation treatments. The mat structure was imaged by field emission scanning electron microscopy and the mechanical performance was tested in tension. The elastic modulus, tensile strength, strain at failure and work to failure were found to range from 52 to 592 MPa, 2 to 30 MPa, 2 to 31 per cent and 0.041 to 3.26 MJ m−3, respectively. In general, neat CS mats were found to be the stiffest and the strongest, though least ductile, while CS–ECH mats were the least stiff, weakest, but the most ductile, and CS–HDACS fibre mats exhibited intermediary mechanical properties. The mechanical performance of the mats is shown to reflect differences in the fibre diameter, number of fibre–fibre contacts formed within the mat, as well as varying intermolecular bonding and moisture content. The findings reported here complement the chemical properties of the mats, described in part I of this study. PMID:23349435

  17. Denitrification and the denitrifier community in coastal microbial mats.

    PubMed

    Fan, Haoxin; Bolhuis, Henk; Stal, Lucas J

    2015-03-01

    Denitrification was measured in three structurally different coastal microbial mats by using the stable isotope technique. The composition of the denitrifying community was determined by analyzing the nitrite reductase (nirS and nirK) genes using clone libraries and the GeoChip. The highest potential rate of denitrification (7.0 ± 1.0 mmol N m(-2) d(-1)) was observed during summer at station 1 (supra-littoral). The rates of denitrification were much lower in the stations 2 (marine) and 3 (intermediate) (respectively 0.1 ± 0.05 and 0.7 ± 0.2 mmol N m(-2) d(-1)) and showed less seasonality when compared to station 1. The denitrifying community at station 1 was also more diverse than that at station 2 and 3, which were more similar to each other than either of these stations to station 1. In all three stations, the diversity of both nirS and nirK denitrifiers was higher in summer when compared to winter. The location along the tidal gradient seems to determine the composition, diversity and activity of the denitrifier community, which may be driven by salinity, nitrate/nitrite and organic carbon. Both nirS and nirK denitrifiers are equally present and therefore they are likely to play a role in the denitrification of the microbial mats studied. PMID:25764561

  18. Role of Polyphosphate in Thermophilic Synechococcus sp. from Microbial Mats

    PubMed Central

    Fazeli, Fariba; Grote, Alexandra; Grossman, Arthur R.; Bhaya, Devaki

    2013-01-01

    Synechococcus OS-B′, a thermophilic unicellular cyanobacterium, recently isolated from the microbial mats in Octopus Spring (Yellowstone National Park), induces a suite of genes, including phosphatases and transporters, in response to phosphorus (P) starvation. Here we describe two different approaches to examine the ability of Synechococcus OS-B′ to synthesize and break down polyphosphate (poly P), a key storage compound in many prokaryotes. First, we developed a transformation protocol to create mutants in the polyphosphate kinase (ppk), the major enzyme responsible for the synthesis of poly P. The ppk mutant exhibited a pleiotropic phenotype with defects in poly P accumulation, aberrant levels of Pho regulon transcripts, growth defects, and changes in cell size and exopolysaccharide levels, among others. Second, we measured transcripts of ppk and ppx (encoding the polyphosphatase) directly from mat samples and found that the levels varied dramatically over a diel cycle. We also used Western blot analysis to quantify levels of PPK and PPX and found that these enzymes differentially accumulated during the diel cycle. Levels of polyphosphate kinase peaked at night, while polyphosphatase levels were highest during the early morning hours. We hypothesize that the opposing activities of these two enzymes allow cells to store and utilize poly P to optimize growth over a diel cycle. PMID:23687278

  19. Cell attachment to hydrogel-electrospun fiber mat composite materials.

    PubMed

    Han, Ning; Johnson, Jed K; Bradley, Patrick A; Parikh, Kunal S; Lannutti, John J; Winter, Jessica O

    2012-01-01

    Hydrogels, electrospun fiber mats (EFMs), and their composites have been extensively studied for tissue engineering because of their physical and chemical similarity to native biological systems. However, while chemically similar, hydrogels and electrospun fiber mats display very different topographical features. Here, we examine the influence of surface topography and composition of hydrogels, EFMs, and hydrogel-EFM composites on cell behavior. Materials studied were composed of synthetic poly(ethylene glycol) (PEG) and poly(ethylene glycol)-poly(ε-caprolactone) (PEGPCL) hydrogels and electrospun poly(caprolactone) (PCL) and core/shell PCL/PEGPCL constituent materials. The number of adherent cells and cell circularity were most strongly influenced by the fibrous nature of materials (e.g., topography), whereas cell spreading was more strongly influenced by material composition (e.g., chemistry). These results suggest that cell attachment and proliferation to hydrogel-EFM composites can be tuned by varying these properties to provide important insights for the future design of such composite materials. PMID:24955629

  20. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  1. Reconstruction of hyperspectral image using matting model for classification

    NASA Astrophysics Data System (ADS)

    Xie, Weiying; Li, Yunsong; Ge, Chiru

    2016-05-01

    Although hyperspectral images (HSIs) captured by satellites provide much information in spectral regions, some bands are redundant or have large amounts of noise, which are not suitable for image analysis. To address this problem, we introduce a method for reconstructing the HSI with noise reduction and contrast enhancement using a matting model for the first time. The matting model refers to each spectral band of an HSI that can be decomposed into three components, i.e., alpha channel, spectral foreground, and spectral background. First, one spectral band of an HSI with more refined information than most other bands is selected, and is referred to as an alpha channel of the HSI to estimate the hyperspectral foreground and hyperspectral background. Finally, a combination operation is applied to reconstruct the HSI. In addition, the support vector machine (SVM) classifier and three sparsity-based classifiers, i.e., orthogonal matching pursuit (OMP), simultaneous OMP, and OMP based on first-order neighborhood system weighted classifiers, are utilized on the reconstructed HSI and the original HSI to verify the effectiveness of the proposed method. Specifically, using the reconstructed HSI, the average accuracy of the SVM classifier can be improved by as much as 19%.

  2. Coastal Microbial Mat Diversity along a Natural Salinity Gradient

    PubMed Central

    Bolhuis, Henk; Fillinger, Lucas; Stal, Lucas J.

    2013-01-01

    The North Sea coast of the Dutch barrier island of Schiermonnikoog is covered by microbial mats that initiate a succession of plant communities that eventually results in the development of a densely vegetated salt marsh. The North Sea beach has a natural elevation running from the low water mark to the dunes resulting in gradients of environmental factors perpendicular to the beach. These gradients are due to the input of seawater at the low water mark and of freshwater from upwelling groundwater at the dunes and rainfall. The result is a natural and dynamic salinity gradient depending on the tide, rainfall and wind. We studied the microbial community composition in thirty three samples taken every ten meters along this natural salinity gradient by using denaturing gradient gel electrophoresis (DGGE) of rRNA gene fragments. We looked at representatives from each Domain of life (Bacteria, Archaea and Eukarya) and with a particular emphasis on Cyanobacteria. Analysis of the DGGE fingerprints together with pigment composition revealed three distinct microbial mat communities, a marine community dominated by diatoms as primary producers, an intermediate brackish community dominated by Cyanobacteria as primary producers and a freshwater community with Cyanobacteria and freshwater green algae. PMID:23704895

  3. Deformed microbial mat structures in a semiarid temperate coastal setting

    NASA Astrophysics Data System (ADS)

    Cuadrado, Diana G.; Pan, Jerónimo; Gómez, Eduardo A.; Maisano, Lucía

    2015-07-01

    This study focuses on sedimentary structures formed by microbial consortia, in a particular coastal setting, an ancient tidal channel, separated from the ocean by a sandy spit and connected by a blind tidal channel at the opposite end. Most studies in modern and ancient environments consider water movement as the triggering mechanism acting in the formation and deformation of sedimentary structures. As such, the paper documents the presence of several microbial structures such as shrinkage cracks, flip-over mats, microbial chips, and multidirectional ripples which are related to tidal processes, while bulges and gas domes structures are formed after occasional inundation events. However, the more conspicuous structures covering a great area at the study site are folds and roll-ups, the product of deformation of microbially induced structures by the action of sporadic spring-tidal currents due to strong winds. Therefore, the objective of this research is to document modern sedimentary structures in a coastal area and to provide a mechanistic explanation for their formation, based on the interplaying effects of the moisture variation and high shear stress. Also, several microbial sedimentary structures are distinguished throughout vertical sediment cores, such as microbial chips, detached mat, sponge fabrics, tears, and concentric structures, which are identified in a sedimentary profile. Through the recognition and interpretation of modern sedimentary deformation structures, this study contributes empirical tools for the reconstruction of analogous paleoenvironments in fossil studies.

  4. Single cell visualization of sulfur cycling in intertidal microbial mats

    NASA Astrophysics Data System (ADS)

    Dawson, K.; Green, A.; Orphan, V. J.

    2014-12-01

    Chemoautrophic microbial mats form in shallow intertidal pools adjacent to sulfidic hydrothermal vents in San Pedro, CA. Sulfide is primarily geologically derived. However, microscopy revealed deltaproteobacteria closely associated with Beggiatoa -like filaments, indicating an additional biogenic sulfide source, derived from sulfate reduction or sulfur disproportionation. At small scales the intercellular interaction of sulfide producing and sulfide consuming bacteria may play a important role in biogeochemical sulfur cycling. We explored the intracellular transfer of biologically derived sulfide in this system with triple and quadruple stable isotope labeling experiments: 13C, 15N, 33S, and 34S. Silicon wafers colonized by microbial mats in situ, were then incubated with 34SO42- or 34SO42- and 33S0 as well as 13C-acetate and 15NH4+and analyzed by fluorescent in situ hybridization (FISH) coupled to nanometer-scale secondary ion mass spectrometry (NanoSIMS). We observed enrichment of 34S and 33S in both deltaproteobacteria and sulfide oxidizing gammaproteobacteria. Greater enrichment relative to killed controls occurred in deltaproteobacteria than the sulfide oxidizers during both sulfate reducing (Δ34Sdelta-killed = 240‰, Δ34Sgamma-killed = 40‰) and sulfur disproportionating incubations (Δ33Sdelta-killed = 1730‰, Δ33Sgamma-killed = 1050‰). These results provide a direct visualization of interspecies sulfur transfer and indicate that biogenic sulfide derived from either sulfate or intermediate oxidation state sulfur species plays a role in sulfur cycling in this system.

  5. Prokaryotic diversity of arctic ice shelf microbial mats.

    PubMed

    Bottos, Eric M; Vincent, Warwick F; Greer, Charles W; Whyte, Lyle G

    2008-04-01

    The prokaryotic diversity and respiratory activity of microbial mat communities on the Markham Ice Shelf and Ward Hunt Ice Shelf in the Canadian high Arctic were analysed. All heterotrophic isolates and > 95% of bacterial 16S rRNA gene clone library sequences from both ice shelves grouped within the phyla Bacteroidetes, Proteobacteria and Actinobacteria. Clone library analyses showed that the bacterial communities were diverse and varied significantly between the two ice shelves, with the Markham library having a higher estimated diversity (Chao1 = 243; 105 operational taxonomic units observed in 189 clones) than the Ward Hunt library (Chao1 = 106; 52 operational taxonomic units observed in 128 clones). Archaeal 16S rRNA gene clone libraries from both ice shelves were dominated by a single Euryarchaeota sequence, which appears to represent a novel phylotype. Analyses of community activity by radiorespiration assays detected metabolism in mat samples from both ice shelves at temperatures as low as -10 degrees C. These findings provide the first insight into the prokaryotic biodiversity of Arctic ice shelf communities and underscore the importance of these cryo-ecosystems as a rich source of microbiota that are adapted to extreme cold. PMID:18215157

  6. Oxynitride glass production procedure

    DOEpatents

    Weidner, Jerry R.; Schuetz, Stanley T.; O'Brien, Michael H.

    1991-01-01

    The invention is a process for the preparation of high quality oxynitride glasses without resorting to high pressures. Nitrogen-containing compounds such as Si.sub.3 N.sub.4 are first encapsulated in a low melting temperature glass. Particles of the encapsulated nitrogen-containing compound are mixed with other oxide glass-formers and melted in an atmosphere of flowing nitrogen and in the presence of buffering gas to form the oxynitride glass. Glasses containing up to 15 at % nitrogen have been prepared by this method.

  7. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  8. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  9. Thin films of copper antimony sulfide: A photovoltaic absorber material

    SciTech Connect

    Ornelas-Acosta, R.E.; Shaji, S.; Avellaneda, D.; Castillo, G.A.; Das Roy, T.K.; Krishnan, B.

    2015-01-15

    Highlights: • CuSbS{sub 2} thin films were prepared by heating Sb{sub 2}S{sub 3}/Cu layers. • Analyzed the structure, composition, optical, and electrical properties. • PV structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag were formed at different conditions. • The PV parameters (J{sub sc}, V{sub oc}, and FF) were evaluated from the J–V characteristics. • J{sub sc}: 0.52–3.20 mA/cm{sup 2}, V{sub oc}:187–323 mV, FF: 0.27–0.48 were obtained. - Abstract: In this work, we report preparation and characterization of CuSbS{sub 2} thin films by heating glass/Sb{sub 2}S{sub 3}/Cu layers and their use as absorber material in photovoltaic structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag. The Sb{sub 2}S{sub 3} thin films of 600 nm were prepared by chemical bath deposition on which copper thin films of 50 nm were thermally evaporated, and the glass/Sb{sub 2}S{sub 3}/Cu multilayers were heated in vacuum at different temperatures. X-ray diffraction analysis showed the formation of orthorhombic CuSbS{sub 2} after heating the precursor layers. Studies on identification and chemical state of the elements were done using X-ray photoelectron spectroscopy. The optical band gap of the CuSbS{sub 2} thin films was 1.55 eV and the thin films were photoconductive. The photovoltaic parameters of the devices using CuSbS{sub 2} as absorber and CdS as window layer were evaluated from the J–V curves, yielding J{sub sc}, V{sub oc}, and FF values in the range of 0.52–3.20 mA/cm{sup 2}, 187–323 mV, and 0.27–0.48, respectively, under illumination of AM1.5 radiation.

  10. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  11. Acoustics of glass harmonicas

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.

    2001-05-01

    Glass musical instruments are probably as old as glassmaking. At least as early as the 17th century it was discovered that wine glasses, when rubbed with a wet finger, produced a musical tone. A collection of glasses played in this manner is called a glass harp. Another type of glass harmonica, called the armonica by its inventor Benjamin Franklin, employs glass bowls or cups turned by a horizontal axle, so the performer need only touch the rim of the bowls as they rotate to set them into vibration. We discuss the modes of vibration of both types of glass harmonica, and describe the different sounds that are emitted by rubbing, tapping, or bowing them. Rubbing with a wet finger tends to excite only the (2,0) mode and its harmonics through a ``stick-slip'' process, while tapping excites the other modes as well.

  12. DNA adsorption onto glass surfaces

    NASA Astrophysics Data System (ADS)

    Carlson, Krista Lynn

    Streaming potential measurements were performed on microspheres of silica, lime silicate (SLS) and calcium aluminate (CA) glasses containing silica and iron oxide (CASi and CAFe). The silicate based glasses exhibited acidic surfaces with isoelectric points (IEP) around a pH of 3 while the calcium aluminates displayed more basic surfaces with IEP ranging from 8--9.5. The surface of the calcium aluminate microspheres containing silica reacted with the background electrolyte, altering the measured zeta potential values and inhibiting electrolyte flow past the sample at ˜ pH 4 due to formation of a solid plug. DNA adsorption experiments were performed using the microspheres and a commercially available silicate based DNA isolation filter using a known quantity of DNA suspended in a chaotropic agent free 0.35 wt% Tris(hydroxymethyl)aminomethane (Tris) buffer solution. The microspheres and commercial filter were also used to isolate DNA from macrophage cells in the presence of chaotropic agents. UV absorbance at ˜260 nm and gel electrophoresis were used to quantify the amount and size of the DNA strands that adsorbed to the microsphere surfaces. In both experiments, the 43--106 microm CAFe microspheres adsorbed the largest quantity of DNA. However, the 43--106 microm SLS microspheres isolated more DNA from the cells than the <43 microm CAFe microspheres, indicating that microsphere size contributes to isolation ability. The UV absorbance of DNA at ˜260 nm was slightly altered due to the dissolution of the calcium aluminate glasses during the adsorption process. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) determined that calcium and aluminum ions leached from the CA and CAFe microsphere surfaces during these experiments. Circular dichroism (CD) spectroscopy showed that the leached ions had no effect on the conformation of the DNA, and therefore would not be expected to interfere in downstream applications such as DNA replication. The 0.35 wt

  13. Metagenomic and Metabolic Profiling of Nonlithifying and Lithifying Stromatolitic Mats of Highborne Cay, The Bahamas

    PubMed Central

    Khodadad, Christina L. M.; Foster, Jamie S.

    2012-01-01

    Background Stromatolites are laminated carbonate build-ups formed by the metabolic activity of microbial mats and represent one of the oldest known ecosystems on Earth. In this study, we examined a living stromatolite located within the Exuma Sound, The Bahamas and profiled the metagenome and metabolic potential underlying these complex microbial communities. Methodology/Principal Findings The metagenomes of the two dominant stromatolitic mat types, a nonlithifying (Type 1) and lithifying (Type 3) microbial mat, were partially sequenced and compared. This deep-sequencing approach was complemented by profiling the substrate utilization patterns of the mats using metabolic microarrays. Taxonomic assessment of the protein-encoding genes confirmed previous SSU rRNA analyses that bacteria dominate the metagenome of both mat types. Eukaryotes comprised less than 13% of the metagenomes and were rich in sequences associated with nematodes and heterotrophic protists. Comparative genomic analyses of the functional genes revealed extensive similarities in most of the subsystems between the nonlithifying and lithifying mat types. The one exception was an increase in the relative abundance of certain genes associated with carbohydrate metabolism in the lithifying Type 3 mats. Specifically, genes associated with the degradation of carbohydrates commonly found in exopolymeric substances, such as hexoses, deoxy- and acidic sugars were found. The genetic differences in carbohydrate metabolisms between the two mat types were confirmed using metabolic microarrays. Lithifying mats had a significant increase in diversity and utilization of carbon, nitrogen, phosphorus and sulfur substrates. Conclusion/Significance The two stromatolitic mat types retained similar microbial communities, functional diversity and many genetic components within their metagenomes. However, there were major differences detected in the activity and genetic pathways of organic carbon utilization. These

  14. B-Scan Based Acoustic Source Reconstruction for Magnetoacoustic Tomography with Magnetic Induction (MAT-MI)

    PubMed Central

    Mariappan, Leo; Li, Xu; He, Bin

    2011-01-01

    We present in this study an acoustic source reconstruction method using focused transducer with B mode imaging for magnetoacoustic tomography with magnetic induction (MAT-MI). MAT-MI is an imaging modality proposed for non-invasive conductivity imaging with high spatial resolution. In MAT-MI acoustic sources are generated in a conductive object by placing it in a static and a time-varying magnetic field. The acoustic waves from these sources propagate in all directions and are collected with transducers placed around the object. The collected signal is then usedto reconstruct the acoustic source distribution and to further estimate the electrical conductivity distribution of the object. A flat piston transducer acting as a point receiver has been used in previous MAT-MI systems to collect acoustic signals. In the present study we propose to use B mode scan scheme with a focused transducer that gives a signal gain in its focus region and improves the MAT-MI signal quality. A simulation protocol that can take into account different transducer designs and scan schemes for MAT-MI imaging is developed and used in our evaluation of different MAT-MI system designs. It is shown in our computer simulations that, as compared to the previous approach, the MAT-MI system using B-scan with a focused transducer allows MAT-MI imaging at a closer distance and has improved system sensitivity. In addition, the B scan imaging technique allows reconstruction of the MAT-MI acoustic sources with a discrete number of scanning locations which greatly increases the applicability of the MAT-MI approach especially when a continuous acoustic window is not available in real clinical applications. We have also conducted phantom experiments to evaluate the proposed method and the reconstructed image shows a good agreement with the target phantom. PMID:21097372

  15. Advanced absorber assembly design for breeder reactors

    SciTech Connect

    Pitner, A.L.; Birney, K.R.

    1980-01-01

    An advanced absorber assembly design has been developed for breeder reactor control rod applications that provides for improved in-reactor performance, longer lifetimes, and reduced fabrication costs. The design comprises 19 vented pins arranged in a circular array inside of round duct tubes. The absorber material is boron carbide; cladding and duct components are constructed from the modified Type 316 stainless steel alloy. Analyses indicate that this design will scram 30 to 40% faster than the reference FFTF absorber assembly. The basic design characteristics of this advanced FFTF absorber assembly are applicable to large core breeder reactor design concepts.

  16. Absorbent product and articles made therefrom

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multilayer absorbent product for use in contact with the skin to absorb fluids is described. The product has a water pervious facing layer for contacting the skin, and a first fibrous wicking layer overlaying the water pervious layer. A first container section is defined by inner and outer layers of a water pervious wicking material in between a first absorbent mass and a second container section defined by inner and outer layers of a water pervious wicking material between what is disposed a second absorbent mass, and a liquid impermeable/gas permeable layer overlaying the second fibrous wicking layer.

  17. TPX/TFTR Neutral Beam energy absorbers

    SciTech Connect

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-11-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET.

  18. Advanced Reflector and Absorber Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of advanced reflector and absorber materials: evaluating performance, determining degradation rates and lifetime, and developing new coatings.

  19. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    NASA Astrophysics Data System (ADS)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (<100 °C) [4] or higher temperature (>100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (<10 cm height) solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal

  20. High-temperature glass and glass coatings

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Katvala, V. E.; Leiser, D. B.

    1977-01-01

    Reaction-cured glasses resist thermal shock and maintain properties over range of -100 degrees Centrigrade to +1,480 degrees Centigrade. Stability makes these excellent materials for high-temperature glassware and tubing or as coatings for porous materials.

  1. Device for absorbing mechanical shock

    DOEpatents

    Newlon, C.E.

    1979-08-29

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  2. Device for absorbing mechanical shock

    DOEpatents

    Newlon, Charles E.

    1980-01-01

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  3. Using the 4MAT System to Bring Learning Styles to Schools.

    ERIC Educational Resources Information Center

    McCarthy, Bernice

    1990-01-01

    4MAT is an eight-step instructional cycle that capitalizes on individual learning styles and brain dominance processing preferences. The four major learners (imaginative, analytic, common sense, and dynamic) can use 4MAT to engage their whole brain. Learners use their most comfortable style while being challenged to function in less comfortable…

  4. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats

    NASA Astrophysics Data System (ADS)

    Wong, Hon Lun; Smith, Daniela-Lee; Visscher, Pieter T.; Burns, Brendan P.

    2015-10-01

    Modern microbial mats can provide key insights into early Earth ecosystems, and Shark Bay, Australia, holds one of the best examples of these systems. Identifying the spatial distribution of microorganisms with mat depth facilitates a greater understanding of specific niches and potentially novel microbial interactions. High throughput sequencing coupled with elemental analyses and biogeochemical measurements of two distinct mat types (smooth and pustular) at a millimeter scale were undertaken in the present study. A total of 8,263,982 16S rRNA gene sequences were obtained, which were affiliated to 58 bacterial and candidate phyla. The surface of both mats were dominated by Cyanobacteria, accompanied with known or putative members of Alphaproteobacteria and Bacteroidetes. The deeper anoxic layers of smooth mats were dominated by Chloroflexi, while Alphaproteobacteria dominated the lower layers of pustular mats. In situ microelectrode measurements revealed smooth mats have a steeper profile of O2 and H2S concentrations, as well as higher oxygen production, consumption, and sulfate reduction rates. Specific elements (Mo, Mg, Mn, Fe, V, P) could be correlated with specific mat types and putative phylogenetic groups. Models are proposed for these systems suggesting putative surface anoxic niches, differential nitrogen fixing niches, and those coupled with methane metabolism.

  5. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats.

    PubMed

    Wong, Hon Lun; Smith, Daniela-Lee; Visscher, Pieter T; Burns, Brendan P

    2015-01-01

    Modern microbial mats can provide key insights into early Earth ecosystems, and Shark Bay, Australia, holds one of the best examples of these systems. Identifying the spatial distribution of microorganisms with mat depth facilitates a greater understanding of specific niches and potentially novel microbial interactions. High throughput sequencing coupled with elemental analyses and biogeochemical measurements of two distinct mat types (smooth and pustular) at a millimeter scale were undertaken in the present study. A total of 8,263,982 16S rRNA gene sequences were obtained, which were affiliated to 58 bacterial and candidate phyla. The surface of both mats were dominated by Cyanobacteria, accompanied with known or putative members of Alphaproteobacteria and Bacteroidetes. The deeper anoxic layers of smooth mats were dominated by Chloroflexi, while Alphaproteobacteria dominated the lower layers of pustular mats. In situ microelectrode measurements revealed smooth mats have a steeper profile of O2 and H2S concentrations, as well as higher oxygen production, consumption, and sulfate reduction rates. Specific elements (Mo, Mg, Mn, Fe, V, P) could be correlated with specific mat types and putative phylogenetic groups. Models are proposed for these systems suggesting putative surface anoxic niches, differential nitrogen fixing niches, and those coupled with methane metabolism. PMID:26499760

  6. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats

    PubMed Central

    Wong, Hon Lun; Smith, Daniela-Lee; Visscher, Pieter T.; Burns, Brendan P.

    2015-01-01

    Modern microbial mats can provide key insights into early Earth ecosystems, and Shark Bay, Australia, holds one of the best examples of these systems. Identifying the spatial distribution of microorganisms with mat depth facilitates a greater understanding of specific niches and potentially novel microbial interactions. High throughput sequencing coupled with elemental analyses and biogeochemical measurements of two distinct mat types (smooth and pustular) at a millimeter scale were undertaken in the present study. A total of 8,263,982 16S rRNA gene sequences were obtained, which were affiliated to 58 bacterial and candidate phyla. The surface of both mats were dominated by Cyanobacteria, accompanied with known or putative members of Alphaproteobacteria and Bacteroidetes. The deeper anoxic layers of smooth mats were dominated by Chloroflexi, while Alphaproteobacteria dominated the lower layers of pustular mats. In situ microelectrode measurements revealed smooth mats have a steeper profile of O2 and H2S concentrations, as well as higher oxygen production, consumption, and sulfate reduction rates. Specific elements (Mo, Mg, Mn, Fe, V, P) could be correlated with specific mat types and putative phylogenetic groups. Models are proposed for these systems suggesting putative surface anoxic niches, differential nitrogen fixing niches, and those coupled with methane metabolism. PMID:26499760

  7. Testing the utility of matK and ITS DNA regions for discrimination of Allium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular phylogenetic analysis of the genus Allium L. has been mainly based on the nucleotide sequences of ITS region. In 2009 matK and rbcL were accepted as a two-locus DNA barcode to classify plant species by the Consortium for the Barcode of Life (CBOL) Plant Working Group. MatK region has been ...

  8. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    PubMed Central

    Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram

    2014-01-01

    Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections. PMID:24920895

  9. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Boyd, E.S.; King, S.; Tomberlin, J.K.; Nordstrom, D.K.; Krabbenhoft, D.P.; Barkay, T.; Geesey, G.G.

    2009-01-01

    Summary Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH ??? 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg +), while undetectable or near the detection limit (0.025 ng l -1) in the source water of the springs, was present at concentrations of 4-7 ng g-1 dry weight of mat biomass. Detection of MeHg + in tracheal tissue of larvae grazing the mat suggests that MeHg+ enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg+ was two to five times higher in larval tissue than mat biomass indicating MeHg+ biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg+ to species in the food web whose range extends beyond a particular geothermal feature of YNP. ?? 2008 The Authors. Journal compilation ?? 2008 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Using Talking Mats to Support Communication in Persons with Huntington's Disease

    ERIC Educational Resources Information Center

    Ferm, Ulrika; Sahlin, Anna; Sundin, Linda; Hartelius, Lena

    2010-01-01

    Background: Many individuals with Huntington's disease experience reduced functioning in cognition, language and communication. Talking Mats is a visually based low technological augmentative communication framework that supports communication in people with different cognitive and communicative disabilities. Aims: To evaluate Talking Mats as a…

  11. The Effect of the 4MAT System on Achievement and Attitudes in Science.

    ERIC Educational Resources Information Center

    Bowers, Patricia Shane

    The purpose of this study was to investigate the effects of the 4MAT instructional system on achievement and attitudes in science. Fifty-four academically gifted sixth grade students in three schools in the Chapel Hill-Carrboro (North Carolina) City Schools were randomly assigned to two groups, a 4MAT group and a Restricted-Textbook group that…

  12. Novel layer-by-layer structured nanofibrous mats coated by protein films for dermal regeneration.

    PubMed

    Xin, Shangjing; Li, Xueyong; Wang, Qun; Huang, Rong; Xu, Xiaoli; Lei, Zhanjun; Deng, Hongbing

    2014-05-01

    Layer-by-layer coating technique is effective in modifying the surface of nanofibrous mats, but overmuch film-coating makes the mats less porous to hardly suit the condition for tissue engineering. We developed novel nanofibrous mats layer-by-layer coated by silk fibroin and lysozyme on the cellulose electrospun template via electrostatic interaction. The film-coating assembled on the mats was not excessive because the charge of the proteins varied in the coating process due to different pH value. In addition, pure nature materials made the mats nontoxic, biodegradable and low-cost. The morphology and composition variation during layer-by-layer coating process was investigated and the results showed that the structure and thickness of film-coatings could be well-controlled. The antibacterial assay and in vitro cell experiments indicated that the mats could actively inhibit bacteria and exhibit excellent biocompatibility. In vivo implant assay further verified the mats cultured with human epidermal cells could promote wound healing and avoid wound infection. Therefore, these mats showed promising prospects when performed for dermal reconstruction. PMID:24734533

  13. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming.

    PubMed

    Boyd, Eric S; King, Susan; Tomberlin, Jeffery K; Nordstrom, D Kirk; Krabbenhoft, David P; Barkay, Tamar; Geesey, Gill G

    2009-04-01

    Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH approximately 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg(+)), while undetectable or near the detection limit (0.025 ng l(-1)) in the source water of the springs, was present at concentrations of 4-7 ng g(-1) dry weight of mat biomass. Detection of MeHg(+) in tracheal tissue of larvae grazing the mat suggests that MeHg(+) enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg(+) was two to five times higher in larval tissue than mat biomass indicating MeHg(+) biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg(+) to species in the food web whose range extends beyond a particular geothermal feature of YNP. PMID:19170726

  14. The Architecture of Iron Microbial Mats Reflects the Adaptation of Chemolithotrophic Iron Oxidation in Freshwater and Marine Environments

    PubMed Central

    Chan, Clara S.; McAllister, Sean M.; Leavitt, Anna H.; Glazer, Brian T.; Krepski, Sean T.; Emerson, David

    2016-01-01

    Microbes form mats with architectures that promote efficient metabolism within a particular physicochemical environment, thus studying mat structure helps us understand ecophysiology. Despite much research on chemolithotrophic Fe-oxidizing bacteria, Fe mat architecture has not been visualized because these delicate structures are easily disrupted. There are striking similarities between the biominerals that comprise freshwater and marine Fe mats, made by Beta- and Zetaproteobacteria, respectively. If these biominerals are assembled into mat structures with similar functional morphology, this would suggest that mat architecture is adapted to serve roles specific to Fe oxidation. To evaluate this, we combined light, confocal, and scanning electron microscopy of intact Fe microbial mats with experiments on sheath formation in culture, in order to understand mat developmental history and subsequently evaluate the connection between Fe oxidation and mat morphology. We sampled a freshwater sheath mat from Maine and marine stalk and sheath mats from Loihi Seamount hydrothermal vents, Hawaii. Mat morphology correlated to niche: stalks formed in steeper O2 gradients while sheaths were associated with low to undetectable O2 gradients. Fe-biomineralized filaments, twisted stalks or hollow sheaths, formed the highly porous framework of each mat. The mat-formers are keystone species, with nascent marine stalk-rich mats comprised of novel and uncommon Zetaproteobacteria. For all mats, filaments were locally highly parallel with similar morphologies, indicating that cells were synchronously tracking a chemical or physical cue. In the freshwater mat, cells inhabited sheath ends at the growing edge of the mat. Correspondingly, time lapse culture imaging showed that sheaths are made like stalks, with cells rapidly leaving behind an Fe oxide filament. The distinctive architecture common to all observed Fe mats appears to serve specific functions related to chemolithotrophic Fe

  15. The Architecture of Iron Microbial Mats Reflects the Adaptation of Chemolithotrophic Iron Oxidation in Freshwater and Marine Environments.

    PubMed

    Chan, Clara S; McAllister, Sean M; Leavitt, Anna H; Glazer, Brian T; Krepski, Sean T; Emerson, David

    2016-01-01

    Microbes form mats with architectures that promote efficient metabolism within a particular physicochemical environment, thus studying mat structure helps us understand ecophysiology. Despite much research on chemolithotrophic Fe-oxidizing bacteria, Fe mat architecture has not been visualized because these delicate structures are easily disrupted. There are striking similarities between the biominerals that comprise freshwater and marine Fe mats, made by Beta- and Zetaproteobacteria, respectively. If these biominerals are assembled into mat structures with similar functional morphology, this would suggest that mat architecture is adapted to serve roles specific to Fe oxidation. To evaluate this, we combined light, confocal, and scanning electron microscopy of intact Fe microbial mats with experiments on sheath formation in culture, in order to understand mat developmental history and subsequently evaluate the connection between Fe oxidation and mat morphology. We sampled a freshwater sheath mat from Maine and marine stalk and sheath mats from Loihi Seamount hydrothermal vents, Hawaii. Mat morphology correlated to niche: stalks formed in steeper O2 gradients while sheaths were associated with low to undetectable O2 gradients. Fe-biomineralized filaments, twisted stalks or hollow sheaths, formed the highly porous framework of each mat. The mat-formers are keystone species, with nascent marine stalk-rich mats comprised of novel and uncommon Zetaproteobacteria. For all mats, filaments were locally highly parallel with similar morphologies, indicating that cells were synchronously tracking a chemical or physical cue. In the freshwater mat, cells inhabited sheath ends at the growing edge of the mat. Correspondingly, time lapse culture imaging showed that sheaths are made like stalks, with cells rapidly leaving behind an Fe oxide filament. The distinctive architecture common to all observed Fe mats appears to serve specific functions related to chemolithotrophic Fe

  16. Freezing of water saturated in aluminum wool mats

    NASA Astrophysics Data System (ADS)

    Sugawara, M.; Onodera, T.; Komatsu, Y.; Tago, M.; Beer, H.

    2008-05-01

    This paper is concerned with the freezing of water saturated in aluminum wool mats (AWM) around a cooling pipe. Two arrangements of AWM around the pipe are considered, i.e. a disk-type and a roll-type. Freezing mass M(kg/m2) in the disk type for a porosity ɛ = 0.95, indicates to be two times larger compared with that without AWM (i.e. ɛ = 1) at the freezing time t = 180 min. Even a small AWM volume fraction enhances considerably freezing of water in the disk type. However, freezing enhancement in the roll type is small compared with that of the disk type. Numerical calculation predicts well freezing at the disk type arrangement by using an anisotropy model for the effective thermal conductivity of ice/water saturated AWM, however, poor predictions for the roll type arrangement.

  17. Characterization of microcystin production in an Antarctic cyanobacterial mat community.

    PubMed

    Jungblut, Anne-Dorothee; Hoeger, Stefan J; Mountfort, Doug; Hitzfeld, Bettina C; Dietrich, Daniel R; Neilan, Brett A

    2006-03-01

    Cyanobacteria are well known for their production of non-ribosomal cyclic peptide toxins, including microcystin, in temperate and tropical regions, however, the production of these compounds in extremely cold environments is still largely unexplored. Therefore, we investigated the production of protein phosphatase inhibiting microcystins by Antarctic cyanobacteria. We have identified microcystin-LR and for the first time [D-Asp3] microcystin-LR by mass spectrometric analysis in Antarctic cyanobacteria. The microcystins were extracted from a benthic microbial community that was sampled from a meltwater pond (Fresh Pond, McMurdo Ice Shelf, Antarctica). The extracted cyanobacterial cyclic peptides were equivalent to 11.4 ng MC-LR per mg dry weight by semi-quantitative analyses using HPLC-DAD and the protein phosphatase inhibition assay. Furthermore, we were able to identify the presence of cyanobacterial non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes in total DNA extracts from the mat community. PMID:16386280

  18. Spatially-resolved stable isotope analysis of a hypersaline microbial mat

    NASA Astrophysics Data System (ADS)

    Moran, J.; Cory, A. B.; Lindemann, S. R.; Fredrickson, J. K.

    2012-12-01

    Hot Lake is a hypersaline, meromictic lake located in north-central Washington. High rates of evapotranspiration coupled with its location in an endorrheic basin contribute to the lake's high salinity. The predominant dissolved salt is magnesium sulfate; hypolimnion waters may seasonally exceed 2 M magnesium sulfate concentrations. In addition to extreme salinity, horizons within the lake seasonally exceed 50 °C, in part due to the enhanced light absorption by magnesium sulfate-saturated water. Despite extreme and highly variable seasonal conditions (salinity, temperature, photon flux), dense benthic microbial mats composed of cyanobacteria and bacterial heterotroph populations develop annually at the lake. These mats may exceed 5 mm in thickness and display stratification observable by eye associated with dominant bacterial phototrophic pigments. Typical mat stratification includes an orange surface layer followed by green and purple layers at increasing depth into the mat. Carbonates including aragonite and magnesite are observed within the mat and their formation is likely induced or influenced by microbial activities. While not exclusively limited to the green stratum in the mat, maximum carbonate content is within this layer. We are exploring the role Hot Lake's microbial mats play in carbon cycling within the system. Namely, we seek to understand the rates of carbon accumulation in the mat and associated sediments and the various forms this carbon takes (organic or inorganic species). We are assessing mat development, community composition, and carbon accumulation in pre-cleaned devices installed at the lake as they are colonized by native mat. We are using laser ablation isotope ratio mass spectrometry (LA-IRMS) to provide spatially-resolved stable isotope analysis of mat cross-sections. Currently, this technique permits isotope analysis at the 50 μm scale, and can provide multiple isotope analyses within the thickness of each major layer of the mat. We

  19. Yoga from the Mat up: How Words Alight on Bodies

    ERIC Educational Resources Information Center

    McIlwain, Doris; Sutton, John

    2014-01-01

    Yoga is a unique form of expert movement that promotes an increasingly subtle interpenetration of thought and movement. The mindful nature of its practice, even at expert levels, challenges the idea that thought and mind are inevitably disruptive to absorbed coping. Building on parallel phenomenological and ethnographic studies of skilful…

  20. Community living long before man: fossil and living microbial mats and early life

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lopez Baluja, L.; Awramik, S. M.; Sagan, D.

    1986-01-01

    Microbial mats are layered communities of bacteria that form cohesive structures, some of which are preserved in sedimentary rocks as stromatolites. Certain rocks, approximately three and a half thousand million years old and representing the oldest known fossils, are interpreted to derive from microbial mats and to contain fossils of microorganisms. Modern microbial mats (such as the one described here from Matanzas, Cuba) and their fossil counterparts are of great interest in the interpretation of early life on Earth. Since examination of microbial mats and stromatolites increases our understanding of long-term stability and change, within the global environment, such structures should be protected wherever possible as natural science preserves. Furthermore, since they have existed virtually from the time of life's origin, microbial mats have developed exemplary mechanisms of local community persistence and may even play roles in the larger global environment that we do not understand.

  1. Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics

    PubMed Central

    Burow, Luke C; Woebken, Dagmar; Marshall, Ian PG; Lindquist, Erika A; Bebout, Brad M; Prufert-Bebout, Leslie; Hoehler, Tori M; Tringe, Susannah G; Pett-Ridge, Jennifer; Weber, Peter K; Spormann, Alfred M; Singer, Steven W

    2013-01-01

    Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO2 and H2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS. PMID:23190731

  2. Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics.

    PubMed

    Burow, Luke C; Woebken, Dagmar; Marshall, Ian P G; Lindquist, Erika A; Bebout, Brad M; Prufert-Bebout, Leslie; Hoehler, Tori M; Tringe, Susannah G; Pett-Ridge, Jennifer; Weber, Peter K; Spormann, Alfred M; Singer, Steven W

    2013-04-01

    Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO2 and H2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS. PMID:23190731

  3. MatLab Programming for Engineers Having No Formal Programming Knowledge

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  4. Methyl Halide Production by Periphyton Mats from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Raffel, A.; Jones, R. D.; Rice, A. L.; Scully, N. M.

    2012-12-01

    Methyl chloride and methyl bromide are trace gases with both natural and anthropogenic origins. Once generated these gases transport chlorine and bromine into the stratosphere, where they play an important role in atmospheric chemistry by participating in ozone depleting catalytic cycles. Coastal wetlands are one location where methyl halide emissions have been proposed to be elevated due to high primary production and ionic halogens. This region also provides a unique study environment due to salt water intrusions which occur during storm or low marsh water level-high tide events. The purpose of this research was to determine how varying concentrations of salinity affect methyl halide production originating from periphyton mats within the Florida Everglades. Florida Everglades periphyton (25 g/L) were exposed to continuous 12 hour dark/light cycles in varying concentrations of salt water (0, 0.1, 1.0, and 10‰). All water samples were analyzed to determine the concentration and production rate of methyl chloride and methyl bromide in periphyton samples using a gas chromatograph coupled with an electron capture detector. The concentration of methyl chloride increased by approximately 3.4 and 60 pM over a 0 to 72 hour range for 1‰ and 10 ‰ treatments respectively, and reached a steady state concentration after 24 hours. There was no significant production of methyl bromide for all treatments. These studies will be used to gain a better understanding of methyl halide production from periphyton mats in simulated natural conditions. This research was supported by the National Science Foundation Chemical Oceanography Program Award No. 1029710.

  5. Comments on liquid hydrogen absorbers for MICE

    SciTech Connect

    Green, Michael A.

    2003-02-01

    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  6. Liquid Glass: A Facile Soft Replication Method for Structuring Glass.

    PubMed

    Kotz, Frederik; Plewa, Klaus; Bauer, Werner; Schneider, Norbert; Keller, Nico; Nargang, Tobias; Helmer, Dorothea; Sachsenheimer, Kai; Schäfer, Michael; Worgull, Matthias; Greiner, Christian; Richter, Christiane; Rapp, Bastian E

    2016-06-01

    Liquid glass is a photocurable amorphous silica nanocomposite that can be structured using soft replication molds and turned into glass via thermal debinding and sintering. Simple polymer bonding techniques allow the fabrication of complex microsystems in glass like microfluidic chips. Liquid glass is a step toward prototyping of glass microstructures at low cost without requiring cleanroom facilities or hazardous chemicals. PMID:27060964

  7. [Absorbed doses in dental radiology].

    PubMed

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk. PMID:8966249

  8. Glass Melt Stability

    NASA Astrophysics Data System (ADS)

    Schaeffer, Helmut A.; Müller-Simon, Hayo

    The employment of sensors during glass melting represents a major prerequisite for an improved process control leading to higher production yields. In situ sensoring techniques can be divided into two groups: on the one hand, techniques which extract information of glass melt properties, e.g., oxidation state and concentrations of relevant polyvalent species (such as iron, sulfur, chromium) and on the other hand, techniques which monitor the furnace atmosphere with respect to toxic emissions (e.g., SO2, NO x ) and combustion species (e.g., CO, CO2, H2O). Nowadays it is feasible not only to install early warning systems indicating deviations from target glass properties, but also to implement process control systems which enforce a stable and reproducible glass melting. Examples are given for the redox control of green glass melting utilizing high portions of recycled cullet and the redox control of amber glass melting.

  9. Thermodynamics of Glass Melting

    NASA Astrophysics Data System (ADS)

    Conradt, Reinhard

    First, a model based on linear algebra is described by which the thermodynamic properties of industrial multi-component glasses and glass melts can be accurately predicted from their chemical composition. The model is applied to calculate the heat content of glass melts at high temperatures, the standard heat of formation of glasses from the elements, and the vapor pressures of individual oxides above the melt. An E-fiber glass composition is depicted as an example. Second, the role of individual raw materials in the melting process of E-glass is addressed, with a special focus on the decomposition kinetics and energetic situation of alkaline earth carriers. Finally, the heat of the batch-to-melt conversion is calculated. A simplified reaction path model comprising heat turnover, content of residual solid matter, and an approach to batch viscosity is outlined.

  10. Solar sustained plasma/absorber conceptual design

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.; Krascella, N. L.; Kendall, J. S.

    1979-01-01

    A space power system concept was evaluated which uses concentrated solar energy to heat a working fluid to temperatures as high as 4000 K. The high temperature working fluid could be used for efficient electric power production in advanced thermal or magnetohydrodynamic conversion cycles. Energy absorber configurations utilizing particles or cesium vapor absorber material were investigaed. Results of detailed radiant heat transfer calculations indicated approximately 86 percent of the incident solar energy could be absorbed within a 12-cm-dia flowing stream of gas borne carbon particles. Calculated total energy absorption in the cesium vapor seeded absorber configuration ranged from 34 percent to 64 percent of the incident solar energy. Solar flux concentration ratios of between approximately 3000 and 10,000 will be required to sustain absorber temperatures in the range from 3000 K to 4000 K.

  11. Gold absorbing film for a composite bolometer

    NASA Technical Reports Server (NTRS)

    Dragovan, M.; Moseley, S. H.

    1984-01-01

    The principles governing the design of metal films are reviewed, with attention also given to the choice of metals. A description is then given of the characteristics of a bolometer with a gold absorbing film. It is demonstrated that gold is effective as an absorbing film for a millimeter bolometer operated at 1.5 K. At 1.5 K, gold is significantly better than bismuth since gold has a lower heat capacity for the absorbing film. At 0.3 K, gold and bismuth are both suitable. It is pointed out that at temperatures below 0.3 K, a superconducting absorbing film can have a heat capacity low enough not to dominate the heat capacity of the detector; for this reason, it may give better performance than a nonsuperconducting absorbing film.

  12. Structured Metal Film as Perfect Absorber

    NASA Astrophysics Data System (ADS)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  13. Grain trapping by filamentous cyanobacterial and algal mats: implications for stromatolite microfabrics through time.

    PubMed

    Frantz, C M; Petryshyn, V A; Corsetti, F A

    2015-09-01

    Archean and Proterozoic stromatolites are sparry or fine-grained and finely laminated; coarse-grained stromatolites, such as many found in modern marine systems, do not appear until quite late in the fossil record. The cause of this textural change and its relevance to understanding the evolutionary history of stromatolites is unclear. Cyanobacteria are typically considered the dominant stromatolite builders through time, but studies demonstrating the trapping and binding abilities of cyanobacterial mats are limited. With this in mind, we conducted experiments to test the grain trapping and binding capabilities of filamentous cyanobacterial mats and trapping in larger filamentous algal mats in order to better understand grain size trends in stromatolites. Mats were cut into squares, inclined in saltwater tanks at angles from 0 to 75° (approximating the angle of lamina in typical stromatolites), and grains of various sizes (fine sand, coarse sand, and fine pebbles) were delivered to their surface. Trapping of grains by the cyanobacterial mats depended strongly on (i) how far filaments protruded from the sediment surface, (ii) grain size, and (iii) the mat's incline angle. The cyanobacterial mats were much more effective at trapping fine grains beyond the abiotic slide angle than larger grains. In addition, the cyanobacterial mats actively bound grains of all sizes over time. In contrast, the much larger algal mats trapped medium and coarse grains at all angles. Our experiments suggest that (i) the presence of detrital grains beyond the abiotic slide angle can be considered a biosignature in ancient stromatolites where biogenicity is in question, and, (ii) where coarse grains are present within stromatolite laminae at angles beyond the abiotic angle of slide (e.g., most modern marine stromatolites), typical cyanobacterial-type mats are probably not solely responsible for the construction, giving insight into the evolution of stromatolite microfabrics through time

  14. Changing Microspatial Patterns of Sulfate-Reducing Microorganisms (SRM) during Cycling of Marine Stromatolite Mats

    PubMed Central

    Petrisor, Alexandru I.; Szyjka, Sandra; Kawaguchi, Tomohiro; Visscher, Pieter T.; Norman, Robert Sean; Decho, Alan W.

    2014-01-01

    Microspatial arrangements of sulfate-reducing microorganisms (SRM) in surface microbial mats (~1.5 mm) forming open marine stromatolites were investigated. Previous research revealed three different mat types associated with these stromatolites, each with a unique petrographic signature. Here we focused on comparing “non-lithifying” (Type-1) and “lithifying” (Type-2) mats. Our results revealed three major trends: (1) Molecular typing using the dsrA probe revealed a shift in the SRM community composition between Type-1 and Type-2 mats. Fluorescence in-situ hybridization (FISH) coupled to confocal scanning-laser microscopy (CSLM)-based image analyses, and 35SO4 2−-silver foil patterns showed that SRM were present in surfaces of both mat types, but in significantly (p < 0.05) higher abundances in Type-2 mats. Over 85% of SRM cells in the top 0.5 mm of Type-2 mats were contained in a dense 130 μm thick horizontal layer comprised of clusters of varying sizes; (2) Microspatial mapping revealed that locations of SRM and CaCO3 precipitation were significantly correlated (p < 0.05); (3) Extracts from Type-2 mats contained acylhomoserine-lactones (C4-, C6-, oxo-C6 C7-, C8-, C10-, C12-, C14-AHLs) involved in cell-cell communication. Similar AHLs were produced by SRM mat-isolates. These trends suggest that development of a microspatially-organized SRM community is closely-associated with the hallmark transition of stromatolite surface mats from a non-lithifying to a lithifying state. PMID:24413754

  15. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate

    PubMed Central

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-01-01

    Background: In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. Objectives: This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Materials and Methods: Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. Results: The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. Conclusions: The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change). PMID:26715970

  16. Nonequilibrium viscosity of glass

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Allan, Douglas C.; Potuzak, Marcel

    2009-09-01

    Since glass is a nonequilibrium material, its properties depend on both composition and thermal history. While most prior studies have focused on equilibrium liquid viscosity, an accurate description of nonequilibrium viscosity is essential for understanding the low temperature dynamics of glass. Departure from equilibrium occurs as a glass-forming system is cooled through the glass transition range. The glass transition involves a continuous breakdown of ergodicity as the system gradually becomes trapped in a subset of the available configurational phase space. At very low temperatures a glass is perfectly nonergodic (or “isostructural”), and the viscosity is described well by an Arrhenius form. However, the behavior of viscosity during the glass transition range itself is not yet understood. In this paper, we address the problem of glass viscosity using the enthalpy landscape model of Mauro and Loucks [Phys. Rev. B 76, 174202 (2007)] for selenium, an elemental glass former. To study a wide range of thermal histories, we compute nonequilibrium viscosity with cooling rates from 10-12 to 1012K/s . Based on these detailed landscape calculations, we propose a simplified phenomenological model capturing the essential physics of glass viscosity. The phenomenological model incorporates an ergodicity parameter that accounts for the continuous breakdown of ergodicity at the glass transition. We show a direct relationship between the nonequilibrium viscosity parameters and the fragility of the supercooled liquid. The nonequilibrium viscosity model is validated against experimental measurements of Corning EAGLE XG™ glass. The measurements are performed using a specially designed beam-bending apparatus capable of accurate nonequilibrium viscosity measurements up to 1016Pas . Using a common set of parameters, the phenomenological model provides an accurate description of EAGLE XG™ viscosity over the full range of measured temperatures and fictive temperatures.

  17. Diamond turning of glass

    SciTech Connect

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  18. Containerless processing of glass

    NASA Technical Reports Server (NTRS)

    Happe, R. A.

    1981-01-01

    Ground-based research on the containerless melting of glass and experiments performed during a flight on the SPAR 6 are described. Experiments leading to selection of the flight sample composition, a silica-modified gallia/calcia glass, and the preparation of a one quarter inch diameter flight sample are described. During the flight experiment, a sample of the glass was containerless melted and cooled to a clear glass in a single axis acoustic positioning apparatus. The functioning of the flight experimental hardware was evaluated. The evaluation of the sample is presented.

  19. Glass--Sand + Imagination

    NASA Astrophysics Data System (ADS)

    Kolb, Kenneth E.; Kolb, Doris K.

    2000-07-01

    Glass is older than recorded history, and yet it is as new as tomorrow! How, when, or where man first learned to make glass is not known, but we do know that the ancient Egyptians were making glass articles as early as 2,600 B.C.E. (The making of glass beads may have begun as much as 3000 years earlier.) They used it to make jewelry and luxury items, such as decorative bowls and perfume bottles, available only to the wealthy.

  20. Drugstore Reading Glasses

    NASA Astrophysics Data System (ADS)

    Erlichson, Herman

    2006-03-01

    The occasion for this paper was my reading of a paper in the February 2005 issue of TPT. As one gets older the near point of the eye begins to recede.2 This is called presbyopia.3 An alternative to purchasing glasses from an optometrist is to purchase an inexpensive pair of reading glasses in a pharmacy. The pharmacy has these glasses ordered by diopters corresponding to the strength of the lens needed for a particular presbyopic eye. The glasses are, of course, not available for myopic eyes.

  1. Apollo 15 green glasses.

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.; Reid, A. M.; Warner, J. L.; Brown, R. W.

    1973-01-01

    The samples analyzed include 28 spheres, portions of spheres, and angular fragments from soil 15101. Emerald green glasses from other soils are identical to those from 15101. The composition of the green glass is unlike that of any other major lunar glass group. The Fe content is comparable to that in mare basalts, but Ti is much lower. The Mg content is much higher than in most lunar materials analyzed to date, and the Cr content is also high. The low Al content is comparable to that of mare basalt glasses.

  2. Chalcogenide glass microsphere laser.

    PubMed

    Elliott, Gregor R; Murugan, G Senthil; Wilkinson, James S; Zervas, Michalis N; Hewak, Daniel W

    2010-12-01

    Laser action has been demonstrated in chalcogenide glass microsphere. A sub millimeter neodymium-doped gallium lanthanum sulphide glass sphere was pumped at 808 nm with a laser diode and single and multimode laser action demonstrated at wavelengths between 1075 and 1086 nm. The gallium lanthanum sulphide family of glass offer higher thermal stability compared to other chalcogenide glasses, and this, along with an optimized Q-factor for the microcavity allowed laser action to be achieved. When varying the pump power, changes in the output spectrum suggest nonlinear and/or thermal effects have a strong effect on laser action. PMID:21165022

  3. Water in Volcanic Glass: From Volcanic Degassing to Secondary Hydration

    NASA Astrophysics Data System (ADS)

    Seligman, A. N.; Bindeman, I. N.; Palandri, J. L.; Watkins, J. M.; Ross, A. M.

    2015-12-01

    Volcanic glass contains both primary magmatic and secondary meteoric dissolved water, which can have distinguishable hydrogen isotopic ratios. We analyzed compositionally and globally diverse volcanic glass from recent to 640 ka for their δD (‰, VSMOW) and H2Ot (wt.%) on the TC/EA MAT 253 continuous flow system. We find that rhyolite glass is hydrated faster than basaltic glass, and in the majority of glasses an increase in age and total water content leads to a decrease in δD (‰), which is opposite the trend for magmatic degassing, while a few equatorial glasses have little change in δD (‰). To better understand these results, we imaged 6 tephra clasts ranging in age and chemical composition using BSE (by FEI SEM) down to a resolution of ~1 mm. Mafic tephra have lower vesicle number densities (N/mm2 = 25-77) than silicic tephra (736) and thicker average bubble walls (0.07 mm) than silicic tephra (0.02 mm). Lengths of water diffusion were modeled by finite difference using H2Ot concentration-dependent diffusion coefficients for diffusion of water into basalt and rhyolite glass using Zhang et al. (2007) and Ni and Zhang (2008) diffusion parameterizations extrapolated to surface temperatures. Due to the 106 times slower diffusion, water only diffused ~10-5 mm into basaltic glass and ~10 mm into rhyolitic glass after 1000 years. These hydration rates match our H2Ot wt.% values for basaltic tephra, and would cause a rhyolite glass, with an average bubble wall thickness of 0.02 mm as described above, to already be fully hydrated with ~3.0-3.5 wt.% H2Ot after ~1000 years, which is similar to what we observe. Results here are our initial steps in understanding water diffusion rates at ambient temperature in basalt and rhyolite tephra, and the isotopic changes that occur during hydration, which have implications for research in physical volcanology (quantities of residual magmatic water) and paleoenvironments (low temperature hydration rates and isotopic changes

  4. 75 FR 55360 - In the Matter of Mattingly Testing Services, Inc. Molt, MT; Order Revoking License (Effective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION [Docket No. 030-20836, NRC-2009-0119, License No. 25-21479-01, EA-10- 100] In the Matter of Mattingly Testing Services, Inc. Molt, MT; Order Revoking License (Effective Immediately) I Mattingly Testing Services, Inc., (Mattingly or licensee) is...

  5. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  6. Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth

    PubMed Central

    Westall, Frances; de Ronde, Cornel E.J; Southam, Gordon; Grassineau, Nathalie; Colas, Maggy; Cockell, Charles; Lammer, Helmut

    2006-01-01

    Modelling suggests that the UV radiation environment of the early Earth, with DNA weighted irradiances of about three orders of magnitude greater than those at present, was hostile to life forms at the surface, unless they lived in specific protected habitats. However, we present empirical evidence that challenges this commonly held view. We describe a well-developed microbial mat that formed on the surface of volcanic littoral sediments in an evaporitic environment in a 3.5–3.3 Ga-old formation from the Barberton greenstone belt. Using a multiscale, multidisciplinary approach designed to strongly test the biogenicity of potential microbial structures, we show that the mat was constructed under flowing water by 0.25 μm filaments that produced copious quantities of extracellular polymeric substances, representing probably anoxygenic photosynthesizers. Associated with the mat is a small colony of rods–vibroids that probably represent sulphur-reducing bacteria. An embedded suite of evaporite minerals and desiccation cracks in the surface of the mat demonstrates that it was periodically exposed to the air in an evaporitic environment. We conclude that DNA-damaging UV radiation fluxes at the surface of the Earth at this period must either have been low (absorbed by CO2, H2O, a thin organic haze from photo-dissociated CH4, or SO2 from volcanic outgassing; scattered by volcanic, and periodically, meteorite dust, as well as by the upper layers of the microbial mat) and/or that the micro-organisms exhibited efficient gene repair/survival strategies. PMID:17008224

  7. Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth.

    PubMed

    Westall, Frances; de Ronde, Cornel E J; Southam, Gordon; Grassineau, Nathalie; Colas, Maggy; Cockell, Charles; Lammer, Helmut

    2006-10-29

    Modelling suggests that the UV radiation environment of the early Earth, with DNA weighted irradiances of about three orders of magnitude greater than those at present, was hostile to life forms at the surface, unless they lived in specific protected habitats. However, we present empirical evidence that challenges this commonly held view. We describe a well-developed microbial mat that formed on the surface of volcanic littoral sediments in an evaporitic environment in a 3.5-3.3Ga-old formation from the Barberton greenstone belt. Using a multiscale, multidisciplinary approach designed to strongly test the biogenicity of potential microbial structures, we show that the mat was constructed under flowing water by 0.25 microm filaments that produced copious quantities of extracellular polymeric substances, representing probably anoxygenic photosynthesizers. Associated with the mat is a small colony of rods-vibroids that probably represent sulphur-reducing bacteria. An embedded suite of evaporite minerals and desiccation cracks in the surface of the mat demonstrates that it was periodically exposed to the air in an evaporitic environment. We conclude that DNA-damaging UV radiation fluxes at the surface of the Earth at this period must either have been low (absorbed by CO2, H2O, a thin organic haze from photo-dissociated CH4, or SO2 from volcanic outgassing; scattered by volcanic, and periodically, meteorite dust, as well as by the upper layers of the microbial mat) and/or that the micro-organisms exhibited efficient gene repair/survival strategies. PMID:17008224

  8. Thermally efficient melting and fuel reforming for glass making

    DOEpatents

    Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

    1991-10-15

    An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

  9. Thermally efficient melting and fuel reforming for glass making

    DOEpatents

    Chen, Michael S.; Painter, Corning F.; Pastore, Steven P.; Roth, Gary S.; Winchester, David C.

    1991-01-01

    An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

  10. Study of natural glasses through their behaviour as membrane electrodes

    USGS Publications Warehouse

    Truesdell, A.H.

    1962-01-01

    THE low-temperature chemical alteration of natural glass occurs in two stages: an initial stage in which it remains glassy but absorbs as much as 6 per cent water1, and a final stage in which devitrification to clay minerals, with release of silica, occurs2,3. During the first stage the composition of the glass may change, with gain of K2O and water and loss of Na2O (Smith, R. L., personal communication). This change is due to ion exchange. ?? 1962 Nature Publishing Group.

  11. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

    SciTech Connect

    De Jonghe, Lutgard C.; Ray, Hannah L.; Wang, Ruigang

    2008-12-03

    The structure and conductivity of cerium and lanthanum phosphate glasses and glass-ceramics were investigated. The effects of varying the metal to phosphate ratio in the glasses, doping LaP3O9 glasses with Ce, and recrystallization of CeP3O9 glasses, on the glasses' microstructure and total conductivity were investigated using XRD, SEM, and AC impedance techniques. Strong increases in conductivity occurred when the glasses were recrystallized: the conductivity of a cerium metaphosphate glass increased conductivity after recrystallization from 10-7.5 S/cm to 10-6 S/cm at 400oC.

  12. Spatially-resolved carbon flow through a hypersaline phototrophic microbial mat

    NASA Astrophysics Data System (ADS)

    Moran, J.; Lindemann, S. R.; Cory, A. B.; Courtney, S.; Cole, J. K.; Fredrickson, J.

    2013-12-01

    Hot Lake is a hypersaline, meromictic lake located in an endorheic basin in north-central Washington. Low annual rainfall and high evaporation rates contribute to the lake's high salinity. The predominant dissolved salt is magnesium sulfate, of which monimolimnion waters may seasonally exceed 2 M concentrations. Induced by its high salinity and meromictic nature, Hot Lake displays an inverse thermal gradient with deep horizons seasonally exceeding 50 °C. Despite extreme conditions, dense benthic microbial mats composed of cyanobacteria, anoxygenic photoheterotrophs, and bacterial heterotroph populations develop in the lake. These mats can exceed 1 cm in thickness and display vertical stratification in color due to bacterial pigmentation. Typical mat stratification includes an orange surface layer underlain by green and purple layers at increasing depth. Carbonates, including aragonite and magnesite, are observed within the mat and their formation is likely induced or influenced by microbial metabolic activities and associated pH excursions. We are exploring the role Hot Lake's microbial mats play in carbon cycling. Cyanobacteria are the dominant CO2-fixing organisms in the mat and we seek to understand the spatial and metabolic controls on how the carbon initially fixed by mat cyanobacteria is transferred to associated heterotrophic populations spread throughout the mat strata. Secondly, we seek to understand the overall net carbon balance of the mat through a growing season. We are using a stable isotope probing approach for assessing carbon uptake and migration through representative mat samples. We performed a series of ex situ incubations of freshly harvested mat samples in lake water amended with 13C-labeled bicarbonate or substrates commonly consumed by heterotrophs (including acetate and glucose) and using multiple stable isotope techniques to track label uptake, residence time, remineralization, and location within the mat. In addition to bulk isotope

  13. Community Analysis of Dynamic Microbial Mat Communities from Actively Erupting Seamounts (Invited)

    NASA Astrophysics Data System (ADS)

    Davis, R.; Tebo, B.; Moyer, C. L.

    2009-12-01

    The actively erupting deep-sea volcanoes NW Rota-1 and W Mata have multiple diffuse low-temperature (Tmax= 20-30 degrees) vent sites which harbor dense populations of microbial mat communities driven by chemoautotrophy. These microbial mats were often composed of white filamentous bacteria growing in close proximity to focused hydrothermal flow. Eight microbial mats were sampled from discrete hydrothermal vents on NW Rota-1 and W Mata volcanoes in 2009. The microbial mat communities were analyzed with quantitative PCR (Q-PCR) and terminal-restriction fragment length polymorphism (T-RFLP) community fingerprinting. All of the sampled microbial mats were dominated by the class Epsilonproteobacteria. The microbial mat at Iceberg Vent contained 13.5% Archaea, while all other microbial mats contained less than 1% Archaea. Bacterial community fingerprints from NW Rota-1 and W Mata formed distinct clusters that were well separated from clusters formed by hydrothermal communities from Axial and Eifuku Seamounts that were also dominated by Epsilonproteobacteria. Iceberg vent communities from NW Rota-1 have transitioned from being dominated by Caminibacter phylotypes to Sulfuimonas group phylotypes since 2004. These data suggest that microbial communities found on actively erupting volcanoes are geographically distinct and provide a natural laboratory to study microbial colonization and community succession at hydrothermal systems.

  14. Antimicrobial activity of electrospun poly(butylenes succinate) fiber mats containing PVP-capped silver nanoparticles.

    PubMed

    Tian, Ligang; Wang, Pingli; Zhao, Zhiguo; Ji, Junhui

    2013-12-01

    In this study, biodegradable poly(butylenes succinate) (PBS) fiber mats containing silver nanoparticles (AgNPs) were prepared by the electrospinning process. Small AgNPs (<10 nm) were simply synthesized using polyvinylpyrrolidone as the capping agent as well as the reductant. The morphology of the PBS-AgNPs fiber mats and the distribution of the AgNPs were well characterized by TEM and SEM. The release of Ag from the PBS fiber mats was quantitively determined by ICP. The PBS fiber mats with 0.29 % AgNPs content showed strong antimicrobial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli with the efficacy as high as 99 %. The effective bactericidal activity on E. coli was demonstrated for a short contacting time with the PBS-AgNPs fiber mats. In addition, the long-term release performance of Ag from the fiber mats can keep inhibiting the bacterial growth in the mats over a long period of time. PMID:24013858

  15. The Positive Effects of Yerba Maté (Ilex paraguariensis) in Obesity

    PubMed Central

    Gambero, Alessandra; Ribeiro, Marcelo L.

    2015-01-01

    The prevalence of obesity has increased worldwide over the past three decades. Global anti-obesity strategies focus on dietary and lifestyle modifications to slow the development of obesity. Research in the nutrition field has recently aroused considerable interest based on the potential of natural products to counteract obesity. Several studies have identified yerba maté (Ilex paraguariensis) as an excellent candidate. In this review, we evaluated the impact of yerba maté on obesity and obesity-related inflammation. Cellular studies demonstrate that yerba maté suppresses adipocyte differentiation and triglyceride accumulation and reduces inflammation. Animal studies show that yerba maté modulates signaling pathways that regulate adipogenesis, antioxidant, anti-inflammatory and insulin signaling responses. In summary, the data presented here showed that the use of yerba maté might be useful against obesity, improving the lipid parameters in humans and animal models. In addition, yerba maté modulates the expression of genes that are changed in the obese state and restores them to more normal levels of expression. In doing so, it addresses several of the abnormal and disease-causing factors associated with obesity. Protective and ameliorative effects on insulin resistance were also observed. Thus, as a general conclusion, it seems that yerba maté beverages and supplements might be helpful in the battle against obesity. PMID:25621503

  16. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles.

    PubMed

    Kohsari, Iraj; Shariatinia, Zahra; Pourmortazavi, Seied Mahdi

    2016-10-01

    Antimicrobial chitosan-polyethylene oxide (CS-PEO) nanofiber mats loaded with 3, 5 and 10% (w/w) of zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs, ∼60nm diameter) were developed by electrospinning technique. The CS-PEO-GA-3% ZIF-8 NPs crosslinked with glutaraldehyde (GA) vapor was also prepared. The electrospun mats were characterized by various analysis including FE-SEM, EDAX, elemental mapping, FT-IR, contact angle, TGA/DSC as well as tensile strength analysis. The nanofibers had average diameters within the range ∼70-120nm. Antimicrobial activities of the CS-PEO and CS-PEO-3% ZIF-8 mats were evaluated by the viable cell-counting method for determining their effectiveness in reducing or halting the growth of Staphylococcus aureus and Escherichia coli bacteria so that the CS-PEO mat containing 3% ZIF-8 revealed 100% bactericidal activity against both kinds of bacteria. The crosslinked CS-PEO-GA-3% ZIF-8 NPs sample was less thermally stable but more hydrophilic than its related non-crosslinked mat reflecting there was no need to crosslink the fibers using a chemical crosslinker having adverse effects. The highest hydrophobicity and appropriate thermal and tensile properties of CS-PEO-3% ZIF-8 NPs among those of the mats including 5 and 10% ZIF-8 NPs suggested that the mentioned mat is the most suitable sample for food coating applications. PMID:27311504

  17. Antimicrobial Activity of Silver Ions Released from Zeolites Immobilized on Cellulose Nanofiber Mats.

    PubMed

    Rieger, Katrina A; Cho, Hong Je; Yeung, Hiu Fai; Fan, Wei; Schiffman, Jessica D

    2016-02-10

    In this study, we exploit the high silver ion exchange capability of Linde Type A (LTA) zeolites and present, for the first time, electrospun nanofiber mats decorated with in-house synthesized silver (Ag(+)) ion exchanged zeolites that function as molecular delivery vehicles. LTA-Large zeolites with a particle size of 6.0 μm were grown on the surface of the cellulose nanofiber mats, whereas LTA-Small zeolites (0.2 μm) and three-dimensionally ordered mesoporous-imprinted (LTA-Meso) zeolites (0.5 μm) were attached to the surface of the cellulose nanofiber mats postsynthesis. After the three zeolite/nanofiber mat assemblies were ion-exchanged with Ag(+) ions, their ion release profiles and ability to inactivate Escherichia coli (E. coli) K12 were evaluated as a function of time. LTA-Large zeolites immobilized on the nanofiber mats displayed more than an 11 times greater E. coli K12 inactivation than the Ag-LTA-Large zeolites that were not immobilized on the nanofiber mats. This study demonstrates that by decorating nanometer to micrometer scale Ag(+) ion-exchanged zeolites on the surface of high porosity, hydrophilic cellulose nanofiber mats, we can achieve a tunable release of Ag(+) ions that inactivate bacteria faster and are more practical to use in applications over powder zeolites. PMID:26788882

  18. Composite nanofiber mats consisting of hydroxyapatite and titania for biomedical applications.

    PubMed

    Kim, Hong Mi; Chae, Won-Pyo; Chang, Ki-Whan; Chun, Sungsu; Kim, Sukyoung; Jeong, Yongsoo; Kang, Inn-Kyu

    2010-08-01

    Composite nanofiber mats (HA/TiO2) consisting of hydroxyapatite (HA) and titania (TiO2) were fabricated via an electrospinning technique and then collagen (type I) was immobilized on the surface of the HA/TiO2 composite nanofiber mat to improve tissue compatibility. The structure and morphology of the collagen-immobilized composite nanofiber mat (HA/TiO2-col) was investigated using an X-ray diffractometer, electron spectroscopy for chemical analysis, and scanning electron microscope. The potential of the HA/TiO2-col composite nanofiber mat for use as a bone scaffold was assessed by an experiment with osteoblastic cells (MC3T3-E1) in terms of cell adhesion, proliferation, and differentiation. The results showed that the HA/TiO2-col composite nanofiber mats possess better cell adhesion and significantly higher proliferation and differentiation than untreated HA/TiO2 composite nanofiber mats. This result suggests that the HA/TiO2-col composite nanofiber mat has a high-potential for use in the field of bone regeneration and tissue engineering. PMID:20574975

  19. The positive effects of yerba maté (Ilex paraguariensis) in obesity.

    PubMed

    Gambero, Alessandra; Ribeiro, Marcelo L

    2015-01-01

    The prevalence of obesity has increased worldwide over the past three decades. Global anti-obesity strategies focus on dietary and lifestyle modifications to slow the development of obesity. Research in the nutrition field has recently aroused considerable interest based on the potential of natural products to counteract obesity. Several studies have identified yerba maté (Ilex paraguariensis) as an excellent candidate. In this review, we evaluated the impact of yerba maté on obesity and obesity-related inflammation. Cellular studies demonstrate that yerba maté suppresses adipocyte differentiation and triglyceride accumulation and reduces inflammation. Animal studies show that yerba maté modulates signaling pathways that regulate adipogenesis, antioxidant, anti-inflammatory and insulin signaling responses. In summary, the data presented here showed that the use of yerba maté might be useful against obesity, improving the lipid parameters in humans and animal models. In addition, yerba maté modulates the expression of genes that are changed in the obese state and restores them to more normal levels of expression. In doing so, it addresses several of the abnormal and disease-causing factors associated with obesity. Protective and ameliorative effects on insulin resistance were also observed. Thus, as a general conclusion, it seems that yerba maté beverages and supplements might be helpful in the battle against obesity. PMID:25621503

  20. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing.

    PubMed

    Naseri, Narges; Algan, Constance; Jacobs, Valencia; John, Maya; Oksman, Kristiina; Mathew, Aji P

    2014-08-30

    The aim of this study was to develop electrospun chitosan/polyethylene oxide-based randomly oriented fiber mats reinforced with chitin nanocrystals (ChNC) for wound dressing. Microscopy studies showed porous mats of smooth and beadless fibers with diameters between 223 and 966 nm. The addition of chitin nanocrystals as well as crosslinking had a positive impact on the mechanical properties of the mats, and the crosslinked nanocomposite mats with a tensile strength of 64.9 MPa and modulus of 10.2 GPa were considered the best candidate for wound dressing application. The high surface area of the mats (35 m(2)g(-1)) was also considered beneficial for wound healing. The water vapor transmission rate of the prepared mats was between 1290 and 1,548 gm(-2)day(-1), and was in the range for injured skin or wounds. The electrospun fiber mats showed compatibility toward adipose derived stem cells, further confirming their potential use as wound dressing materials. PMID:24815394

  1. Complex polar lipids of a hot spring cyanobacterial mat and its cultivated inhabitants

    NASA Technical Reports Server (NTRS)

    Ward, D. M.; Panke, S.; Kloppel, K. D.; Christ, R.; Fredrickson, H.

    1994-01-01

    The complex polar lipids of the hot spring cyanobacterial mat in the 50 to 55 degrees C region of Octopus Spring, Yellowstone National Park, and of thermophilic bacteria cultivated from this or similar habitats, were compared in an attempt to understand the microbial sources of the major lipid biomarkers in this community. Intact complex lipids were analyzed directly by fast atom bombardment mass spectrometry (FAB-MS), two-dimensional thin-layer chromatography (TLC), and combined TLC-FAB-MS. FAB-MS and TLC gave qualitatively similar results, suggesting that the mat contains major lipids most like those of the cyanobacterial isolate we studied, Synechococcus sp. strain Y-7c-s. These include monoglycosyl, diglycosyl, and sulfoquinosovyl diglycerides (MG, DG, and SQ, respectively) and phosphatidyl glycerol (PG). Though Chloroflexus aurantiacus also contains MG, DG, and PG, the fatty acid chain lengths of mat MGs, DGs, and PGs resemble more those of cyanobacterial than green nonsulfur bacterial lipids. FAB-MS spectra of the lipids of nonphototrophic bacterial isolates were distinctively different from those of the mat and phototrophic isolates. The lipids of these nonphototrophic isolates were not detected in the mat, but most could be detected when added to mat samples. The mat also contains major glycolipids and aminophospholipids of unknown structure and origin. FAB-MS and TLC did not always give quantitatively similar results. In particular, PG and SQ may give disproportionately high FAB-MS responses.

  2. Magnetoacoustic tomography with magnetic induction (MAT-MI) for breast tumor imaging: numerical modeling and simulation

    NASA Astrophysics Data System (ADS)

    Zhou, Lian; Li, Xu; Zhu, Shanan; He, Bin

    2011-04-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) was recently introduced as a noninvasive electrical conductivity imaging approach with high spatial resolution close to ultrasound imaging. In this study, we test the feasibility of the MAT-MI method for breast tumor imaging using numerical modeling and computer simulation. Using the finite element method, we have built three-dimensional numerical breast models with varieties of embedded tumors for this simulation study. In order to obtain an accurate and stable forward solution that does not have numerical errors caused by singular MAT-MI acoustic sources at conductivity boundaries, we first derive an integral forward method for calculating MAT-MI acoustic sources over the entire imaging volume. An inverse algorithm for reconstructing the MAT-MI acoustic source is also derived with spherical measurement aperture, which simulates a practical setup for breast imaging. With the numerical breast models, we have conducted computer simulations under different imaging parameter setups and all the results suggest that breast tumors that have large conductivity in contrast to the surrounding tissue as reported in the literature may be readily detected in the reconstructed MAT-MI images. In addition, our simulations also suggest that the sensitivity of imaging breast tumors using the presented MAT-MI setup depends more on the tumor location and the conductivity contrast between the tumor and its surrounding tissue than on the tumor size.

  3. The micromorphology of Younger Dryas-aged black mats from Nevada, Arizona, Texas and New Mexico

    NASA Astrophysics Data System (ADS)

    Harris-Parks, Erin

    2016-01-01

    Black mats are organic-rich sediments and soils that form in wet environments associated with spring discharge. Micromorphological and geochemical analyses of 25 black mats dating to the Younger Dryas Chronozone (12.9-11.7 ka) and early Holocene were conducted to determine their composition and depositional environment. Samples were collected from Arizona, New Mexico, Texas and Nevada. Micromorphological analyses were conducted on thin sections using polarized and blue fluorescent light. These analyses determined that black mats contain humic acids, fine (5-20 μm) plant fragments, diatoms, phytoliths, and gastropods. The dominant type of organic matter in black mats is derived from herbaceous plants, contradicting previous studies that supported algal or charcoal sources. Differences in the micromorphological characteristics of the samples revealed that black mats formed as three different types, organic horizons, moist soils and, ponded sediments, depending on their topographic position in relation to the water table. The microscopic evidence found in black mats supports the presence of widespread wet environments in Nevada and Arizona during the Younger Dryas Chronozone, clearly indicating a sustained period of greater effective moisture, optimal for spring discharge and black mat formation.

  4. Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink(Registered TradeMark) (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.

  5. Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.

  6. MatLab program for precision calibration of optical tweezers

    NASA Astrophysics Data System (ADS)

    Tolić-Nørrelykke, Iva Marija; Berg-Sørensen, Kirstine; Flyvbjerg, Henrik

    2004-06-01

    Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in the ( x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein-Ornstein-Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency (aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended "virtual" filtering caused by the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters. Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for their interpretation: Independence of x- and y-coordinates, Hooke's law, exponential distribution of power spectral values, uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix. Program summaryTitle of program: tweezercalib Catalogue identifier: ADTV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV Computer for

  7. Getting Started with Glass

    ERIC Educational Resources Information Center

    White, Heather

    2007-01-01

    The metamorphosis of glass when heated is a magical process to students, yet teachers are often reluctant to try it in class. The biggest challenge in working with glass in the classroom is to simplify procedures just enough to ensure student success while maintaining strict safety practices so no students are injured. Project concepts and safety…

  8. Dramatic Stained Glass.

    ERIC Educational Resources Information Center

    Prater, Michael

    2002-01-01

    Describes an art project that is appropriate for students in fifth through twelfth grade in which they create Gothic-style stained-glass windows. Discusses how college students majoring in elementary education created stained-glass windows. Addresses how to adapt this lesson for younger students. (CMK)

  9. Proteins and glasses

    SciTech Connect

    Frauenfelder, H.

    1997-12-31

    The structure, the energy landscape, and the dynamics of proteins and glasses are similar. Both types of systems display characteristic nonexponential time dependencies of relaxation phenomena. Experiments suggest that both, proteins and glasses, are heterogeneous and that this fact causes the observed time dependence. This result is discussed in terms of the rough energy landscape characteristic of complex systems.

  10. Glasses and Contact Lenses

    MedlinePlus

    ... Here's Help White House Lunch Recipes Glasses and Contact Lenses KidsHealth > For Kids > Glasses and Contact Lenses Print A A A Text Size What's ... together the way they should. But eyeglasses or contact lenses, also called corrective lenses, can help most ...

  11. Surface Conductive Glass.

    ERIC Educational Resources Information Center

    Tanaka, John; Suib, Steven L.

    1984-01-01

    Discusses the properties of surface-conducting glass and the chemical nature of surface-conducting stannic (tin) oxide. Also provides the procedures necessary for the preparation of surface-conducting stannic oxide films on glass substrates. The experiment is suitable for the advanced inorganic chemistry laboratory. (JN)

  12. Insights into Microbial Mats and Possible Stromatolite Formation from Little Hot Creek, California

    NASA Astrophysics Data System (ADS)

    Niu, D.; Ciscato, E. R.; Trubl, G. G.; García-Maldonado, J. Q.; Berelson, W.; Johnson, H.; Stevenson, B. S.; Stamps, B. W.; Corsetti, F. A.; Spear, J. R.

    2014-12-01

    A carbonate-rich, partially lithified microbial mat from Little Hot Creek (Long Valley Caldera, CA) was studied as a potential proxy for ancient stromatolites. This microbial mat was characterized through a combination of water chemistry, 16S rRNA gene sequencing, and incubation experiments. Four distinct layers were observed in three replicate microbial mat samples based on color, texture, and microbial composition. The bacterial populations changed significantly across the mat layers: layer A (top) was dominated by the phyla Cyanobacteria (55%), Chloroflexi (14%), and Bacteroidetes (11%); layer B was dominated by Cholorflexi (57%) and Bacteroidetes (17%); layer C was dominated by Nitrospirae (23%) and Chlorobi (11%); and layer D was dominated by Nitrospirae (35%). Microbial diversity increased with depth (from layer A to layer D). The fraction of inorganic carbon and its δ13C values as well as the δ13Corg, however, remained nearly constant throughout the mat at 0.93 ± 0.03, -1.22 ± 0.10‰, and -20.44 ± 0.27‰, respectively. SEM images of the carbonate revealed similar features and highly conserved structure between layers. Incubations with δ13Cbicarbonate showed bicarbonate uptake in all layers of the mat with the highest rate of uptake occurring with the top layer in the light. The growth experiments, the microbial taxonomy and diversity, and the SEM analysis suggest top-down mat growth, with each layer originating from the "A" (top) layer. Incubation experiments with nutrient additions to each mat layer showed enhanced growth in the presence of added Mg2+ and Mn2+, but growth was inhibited with the addition of Fe2+. This data suggests that Mg2+ and Mn2+ may play an important and overlooked role in the growth of microbial mats and the biological origin of stromatolites.

  13. Morphology, release characteristics, and antimicrobial effect of nisin-loaded electrospun gelatin fiber mat.

    PubMed

    Dheraprasart, Chanuttaporn; Rengpipat, Sirirat; Supaphol, Pitt; Tattiyakul, Jirarat

    2009-11-01

    Gelatin electrospun (e-spun) fiber mats containing nisin were produced by electrostatic spinning of gelatin-nisin in 70% (vol/vol) acetic acid aqueous solutions. Varying nisin loading concentration (0 to 3% [wt/wt]) did not affect the fiber average diameter, whereas increasing gelatin concentration from 20 to 24% (wt/vol) caused an increase in the average diameter. All nisin-loaded gelatin e-spun fiber mats demonstrated inhibition against Lactobacillus plantarum TISTR 850. However, all fiber mats were fragile and easily dissolved in water. Cross-linking by saturated glutaraldehyde vapor at 37 degrees C for 5 min was done to strengthen the mat. Tensile strength, Young's modulus, and elongation of the cross-linked gelatin-nisin e-spun fiber mats varied in the range of 2.6 to 20.3 MPa, 163 to 966 MPa, and 1.7 to 5.9% , respectively. Cross-linking did not affect the mat's inhibition activity against L. plantarum TISTR 850. Nisin retention in cross-linked antimicrobial gelatin e-spun fiber mats was in the range of 1.0 to 1.22% . Increasing temperature caused an increase in nisin release, but increasing water activity did not cause a significant difference in nisin release over 50 h. After storage at 25 degrees C for 5 months, the antimicrobial gelatin e-spun fiber mat still showed inhibition against L. plantarum TISTR 850. The mats also inhibited the growth of Staphylococcus aureus and Listeria monocytogenes but not Salmonella Typhimurium. PMID:19903391

  14. qPCR analysis of carbon, nitrogen, and arsenic cycling in Zetaproteobacteria-dominated microbial mats

    NASA Astrophysics Data System (ADS)

    Jesser, K. J.; Fullerton, H.; Hilton, T. S.; Kimber, J.; Hager, K.; Moyer, C. L.

    2013-12-01

    The recently discovered Zetaproteobacteria represent a novel class of Proteobacteria which oxidize Fe(II) to Fe(III) to fix CO2 at hydrothermal vents. Zetaproteobacteria were first discovered at Lo'ihi Seamount, located 35 km southeast of the big island of Hawai'i and characterized by low-temperature diffuse hydrothermal vents. The hydrothermal vents at Lo'ihi are surrounded by luxuriant iron-rich microbial mats dominated by Zetaproteobacteria. We aim to use real-time quantitative PCR (qPCR) to quantify functional genes associated with the microbial carbon, nitrogen, and arsenic cycles in complex Zetaproteobacteria- dominated iron mat communities. Unique qPCR primer sets have been developed based on Illumina next-generation sequence data from an iron mat collected in 2009 at Lo'ihi. These primers target the sequences for arsenate reductase and nitrite reductase, genes associated with arsenic detoxification and denitrification, respectively. Additionally, we are utilizing published primer sets to quantify genes associated with autotrophic carbon and nitrogen fixation pathways. Genomic DNA was isolated from microbial mats at multiple vent sites with varying temperatures and fluid flow during our 2013 expedition to Lo'ihi. The qPCR data for these samples can be used to draw correlations among fine scale mat structures and nutrient cycling processes across diverse mat morphologies, as previous research has identified unique microbial communities and metabolic strategies associated with distinct mat morphologies. This work will enable us to better identify samples for further molecular analysis, and may provide insights into the evolutionary history and metabolic functionality of various mat morphotypes. We hypothesize that Zetaproteobacteria act as ecosystem engineers, driving the structure and function of iron mat ecosystems.

  15. Indium fluoride glass fibers

    NASA Astrophysics Data System (ADS)

    Saad, Mohammed

    2012-03-01

    Fluoride glasses are the only material that transmit light from ultraviolet to mid-infrared and can be drawn into industrial optical fibers. The mechanical and optical properties of new indium fluoride glass fibers have been investigated. Multimode fiber 190 microns, has very high mechanical strength greater than 100 kpsi and optical loss as low as 45 dB/km between 2 and 4 microns. Unlike chalcogenide glass fibers, indium fluoride fiber has a wide transmission window from 0.3 to 5.5 microns without any absorption peak. Indium fluoride glass fibers are the technology of choice for all application requiring transmission up to 5 micron such as infrared contour measure (IRCM) and chemical sensing. Furthermore, Indium fluoride glasses have low phonon energy and can be heavily doped and co-doped whit rare-earth elements. Therefore they are very promising candidates for infrared fiber lasers.

  16. Neutron detector using sol-gel absorber

    SciTech Connect

    Hiller, J.M.; Wallace, S.A.; Dai, S.

    1999-10-26

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  17. Neutron detector using sol-gel absorber

    DOEpatents

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  18. Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment

    SciTech Connect

    Pistor, P.; Greiner, D.; Kaufmann, C. A.; Brunken, S.; Gorgoi, M.; Steigert, A.; Calvet, W.; Lauermann, I.; Klenk, R.; Unold, T.; Lux-Steiner, M.-C.

    2014-08-11

    The implementation of potassium fluoride treatments as a doping and surface modification procedure in chalcopyrite absorber preparation has recently gained much interest since it led to new record efficiencies for this kind of solar cells. In the present work, Cu(In,Ga)Se{sub 2} absorbers have been evaporated on alkali containing Mo/soda-lime glass substrates. We report on compositional and electronic changes of the Cu(In,Ga)Se{sub 2} absorber surface as a result of a post deposition treatment with KF (KF PDT). In particular, by comparing standard X-ray photoelectron spectroscopy and synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES), we are able to confirm a strong Cu depletion in the absorbers after the KF PDT which is limited to the very near surface region. As a result of the Cu depletion, we find a change of the valence band structure and a shift of the valence band onset by approximately 0.4 eV to lower binding energies which is tentatively explained by a band gap widening as expected for Cu deficient compounds. The KF PDT increased the open circuit voltage by 60–70 mV compared to the untreated absorbers, while the fill factor deteriorated.

  19. Defense HLW Glass Degradation Model

    SciTech Connect

    D. Strachan

    2004-10-20

    The purpose of this report is to document the development of a model for calculating the release rate for radionuclides and other key elements from high-level radioactive waste (HLW) glasses under exposure conditions relevant to the performance of the repository. Several glass compositions are planned for the repository, some of which have yet to be identified (i.e., glasses from Hanford and Idaho National Engineering and Environmental Laboratory). The mechanism for glass dissolution is the same for these glasses and the glasses yet to be developed for the disposal of DOE wastes. All of these glasses will be of a quality consistent with the glasses used to develop this report.

  20. Neutron absorbing coating for nuclear criticality control

    DOEpatents

    Mizia, Ronald E.; Wright, Richard N.; Swank, William D.; Lister, Tedd E.; Pinhero, Patrick J.

    2007-10-23

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  1. Design of a magnetorheological automotive shock absorber

    NASA Astrophysics Data System (ADS)

    Lindler, Jason E.; Dimock, Glen A.; Wereley, Norman M.

    2000-06-01

    Double adjustable shock absorbers allow for independent adjustment of the yield force and post-yield damping in the force versus velocity response. To emulate the performance of a conventional double adjustable shock absorber, a magnetorheological (MR) automotive shock absorber was designed and fabricated at the University of Maryland. Located in the piston head, an applied magnetic field between the core and flux return increases the force required for a given piston rod velocity. Between the core and flux return, two different shaped gaps meet the controllable performance requirements of a double adjustable shock. A uniform gap between the core and the flux return primarily adjusts the yield force of the shock absorber, while a non-uniform gap allows for control of the post-yield damping. Force measurements from sinusoidal displacement cycles, recorded on a mechanical damper dynamometer, validate the performance of uniform and non- uniform gaps for adjustment of the yield force and post-yield damping, respectively.

  2. Mucool Hydrogen Absorber R and D

    SciTech Connect

    Cummings, Mary Anne

    2006-03-20

    The Mucool hydrogen absorber program will be presented. An update of current projects will be described, and the next year's plan will be reviewed, along with efforts in collaboration with the Muon International Cooling Experiment.

  3. Passive Earth Entry Vehicle Energy Absorbing Systems

    NASA Astrophysics Data System (ADS)

    Kellas, S.; Maddock, R. W.

    2014-06-01

    A critical element of a passive EEV performance is the energy absorbing system required to attenuate the dynamic landing loads. Two design approaches are described and the pros and cons based on particular mission requirements are discussed.

  4. Attenuation of external Bremsstrahlung in metallic absorbers

    SciTech Connect

    Dhaliwal, A.S.; Powar, M.S.; Singh, M. )

    1990-12-01

    In this paper attenuation of bremsstrahlung from {sup 147}Pm and {sup 170}Tm beta emitters has been studied in aluminum, copper, tin, and lead metallic absorbers. Bremsstrahlung spectra and mass attenuation coefficients for monoenergetic gamma rays are used to calculate theoretical attenuation curves. Magnetic deflection and beta stopping techniques are used to measure the integral bremsstrahlung intensities above 30 keV in different target thicknesses. Comparison of measured and calculated attenuation curves shows a good agreement for various absorbers, thus providing a test of this technique, which may be useful in understanding bremsstrahlung intensity buildup and in the design of optimum shielding for bremsstrahlung sources. It is found that the absorption of bremsstrahlung in metallic absorbers does not obey an exponential law and that absorbers act as energy filters.

  5. Perfectly matched layer based multilayer absorbers

    NASA Astrophysics Data System (ADS)

    Stefaniuk, Tomasz; Stolarek, Marcin; Pastuszczak, Anna; Wróbel, Piotr; Wieciech, Bartosz; Antosiewicz, Tomasz J.; Kotyński, Rafał

    2015-05-01

    Broadband layered absorbers are analysed theoretically and experimentally. A genetic algorithm is used to opti- mize broadband and wide-angle of incidence metal-dielectric layered absorbers. An approximate representation of the perfectly matched layer with a spatially varied absorption strength is discussed. The PML is realised as a stack of uniform and isotropic metamaterial layers with permittivieties and permeabilities given from the effective medium theory. This approximate representation of PML is based on the effective medium theory and we call it an effective medium PML (EM-PML).1 We compare the re ection properties of the layered absorbers to that of a PML material and demonstrate that after neglecting gain and magnetic properties, the absorber remains functional.

  6. Improvement of hydrophilic properties of electrospun polyamide-imide fibrous mats by atmospheric-pressure plasma treatment

    NASA Astrophysics Data System (ADS)

    Park, Soo-Jin; Yop Rhee, Kyong; Jin, Fan-Long

    2015-03-01

    Polyamide-imide (PAI) fibrous mats were fabricated through electrospinning and further treated with atmospheric-pressure plasma. The surface characteristics of the PAI fibrous mats were examined to determine the effect of plasma treatment on the hydrophilic properties. FT-IR, X-ray photoelectron spectroscopy, and contact-angle analysis indicated that the hydrophilicity of the PAI fibrous mats increased upon the introduction of hydrophilic groups by plasma treatment. The concentration of functional groups, including oxygen, and the surface roughness of the PAI fibrous mats increased with increasing treatment time. The optimum plasma treatment time for surface modification of the PAI fibrous mats under atmospheric pressure was 120 s.

  7. Theories of glass formation and glass transition

    SciTech Connect

    Langer, James S.

    2014-03-19

    This key-issues review is a plea for a new focus on simpler and more realistic models of glass-forming fluids. It seems to me that we have too often been led astray by sophisticated mathematical models that beautifully capture some of the most intriguing features of glassy behavior, but are too unrealistic to provide bases for predictive theories. As illustrations of what I mean, the first part of this article is devoted to brief summaries of imaginative, sensible, but disparate and often contradictory ideas for solving glass problems. Almost all of these ideas remain alive today, with their own enthusiastic advocates. I then describe numerical simulations, mostly by H Tanaka and coworkers, in which it appears that very simple, polydisperse systems of hard disks and spheres develop long range, Ising-like, bond-orientational order as they approach glass transitions. Finally, a summary of my recent proposal that topologically ordered clusters of particles, in disordered environments, tend to become aligned with each other as if they were two-state systems, and thus produce the observed Ising-like behavior. Neither Tanaka’s results nor my proposed interpretation of them fit comfortably within any of the currently popular glass theories.

  8. Multilayer Radar Absorbing Non-Woven Material

    NASA Astrophysics Data System (ADS)

    Dedov, A. V.; Nazarov, V. G.

    2016-06-01

    We study the electrical properties of multilayer radar absorbing materials obtained by adding nonwoven sheets of dielectric fibers with an intermediate layer of electrically conductive carbon fibers. Multilayer materials that absorb electromagnetic radiation in a wide frequency range are obtained by varying the content of the carbon fibers. The carbon-fiber content dependent mechanism of absorption of electromagnetic radiation by sheets and multilayer materials is considered.

  9. Porous absorber for solar air heaters

    SciTech Connect

    Finch, J.A.

    1980-09-10

    A general discussion of the factors affecting solar collector performance is presented. Bench scale tests done to try to determine the heat transfer characteristics of various screen materials are explained. The design, performance, and evaluation of a crude collector with a simple screen stack absorber is treated. The more sophisticated absorber concept, and its first experimental approximation is examined. A short summary of future plans for the collector concept is included. (MHR)

  10. Possible evolution of mobile animals in association with microbial mats

    NASA Astrophysics Data System (ADS)

    Gingras, Murray; Hagadorn, James W.; Seilacher, Adolf; Lalonde, Stefan V.; Pecoits, Ernesto; Petrash, Daniel; Konhauser, Kurt O.

    2011-06-01

    Complex animals first evolved during the Ediacaran period, between 635 and 542 million years ago, when the oceans were just becoming fully oxygenated. In situ fossils of the mobile forms of these animals are associated with microbial sedimentary structures, and the animal's trace fossils generally were formed parallel to the surface of the seabed, at or below the sediment-water interface. This evidence suggests the earliest mobile animals inhabited settings with high microbial populations, and may have mined microbially bound sediments for food resources. Here we report the association of mobile animals--insect larvae, oligochaetes and burrowing shore crabs--with microbial mats in a modern hypersaline lagoon in Venezuela. The lagoon is characterized by low concentrations of dissolved O2 and pervasive biomats dominated by oxygen-producing cyanobacteria, both analogous to conditions during the Ediacaran. We find that, during the day, O2 levels in the biomats are four times higher than in the overlying water column. We therefore conclude that the animals harvest both food and O2 from the biomats. In doing so, the animals produce horizontal burrows similar to those found in Ediacaran-aged rocks. We suggest that early mobile animals may have evolved in similar environments during the Ediacaran, effectively exploiting oases rich in O2 that formed within low oxygen settings.

  11. Soil stabilization mat for lunar launch/landing site

    NASA Technical Reports Server (NTRS)

    Acord, Amy L.; Cohenour, Mark W.; Ephraim, Daniel; Gochoel, Dennis; Roberts, Jefferson G.

    1990-01-01

    Facilities which are capable of handling frequent arrivals and departures of spaceships between Earth and a lunar colony are necessary. The facility must be able to provide these services with minimal interruption of operational activity within the colony. The major concerns associated with the space traffic are the dust and rock particles that will be kicked up by the rocket exhaust. As a result of the reduced gravitation of the Moon, these particles scatter over large horizontal distances. This flying debris will not only seriously interrupt the routine operations of the colony, but could cause damage to the equipment and facilities surrounding the launch site. An approach to overcome this problem is presented. A proposed design for a lunar take-off/landing mat is presented. This proposal goes beyond dealing with the usual problems of heat and load resistances associated with take-off and landing, by solving the problem of soil stabilization at the site. Through adequate stabilization, the problem of flying debris is eliminated.

  12. Composite, large spirochetes from microbial mats: spirochete structure review

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Ashen, J. B.; Sole, M.; Guerrero, R.

    1993-01-01

    Phenomena previously unknown in free-living spirochetes are reported: large-sized cells with variable diameter (length to 100 microns, width between 0.4 and 3.0 microns), composite structure (smaller spirochetes inside larger ones), and positive phototropic behavior. These bacteria, Spirosymplokos, are compared with all other spirochete genera. The large spirochete, grown in mixed culture, was studied live and by transmission EM. The protoplasmic cylinder was replete with spherical granules 20-32 nm in diameter, and three to six periplasmic 26-nm flagella were inserted subterminally. Comparably granulated and flagellated small spirochetes were located inside the protoplasmic cylinder and in the periplasm of the large ones. When exposed to air, movement became erratic, protoplasmic cylinders retracted to lie folded inside the outer membrane, and refractile membranous structures formed. From one to four structures per still-moving spirochete were seen. Spirosymplokos was enriched from laboratory samples exposed to oxygen-rich and desiccating, but not dry, conditions for at least 4 mo after removal of microbial mat from the field.

  13. Diverse Thermus species inhabit a single hot spring microbial mat

    NASA Technical Reports Server (NTRS)

    Nold, S. C.; Ward, D. M.

    1995-01-01

    Through an effort to characterize aerobic chemoorganotrophic bacteria in the Octopus Spring cyano-bacterial mat community, we cultivated four Thermus isolates with unique 16S rRNA sequences. Isolates clustered within existing Thermus clades, including those containing Thermus ruber, Thermus aquaticus, and a subgroup closely related to T. aquaticus. One Octopus Spring isolate is nearly identical (99.9% similar) to isolates from Iceland, and two others are closely related to a T. ruber isolated from Russia. Octopus Spring isolates similar to T. aquaticus and T. ruber exhibited optimal growth rates at high (65-70 degrees C) and low (50 degrees C) temperatures, respectively, with the most abundant species best adapted to the temperature of the habitat (50-55 degrees C). Our results display a diversity of Thermus genotypes defined by 16S rRNA within one hot spring microbial community. We suggest that specialization to temperature and perhaps other local environmental features controls the abundance of Thermus populations.

  14. Hydrogel–Electrospun Fiber Mat Composite Coatings for Neural Prostheses

    PubMed Central

    Han, Ning; Rao, Shreyas S.; Johnson, Jed; Parikh, Kunal S.; Bradley, Patrick A.; Lannutti, John J.; Winter, Jessica O.

    2011-01-01

    Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron–prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel–electrospun fiber mat (EFM) composite coatings. In particular, poly(ethylene glycol)-poly(ε-caprolactone) (PEGPCL) hydrogel–poly(ε-caprolactone) EFM composites were applied as coatings for multielectrode arrays. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF), was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel–EFM composite materials can be applied to neural prostheses to improve neuron–electrode proximity and enhance long-term device performance and function. PMID:21441993

  15. [Obtainment of pineapple juice powder by foam-mat drying].

    PubMed

    Beristain, C I; Cortés, R; Casillas, M A; Díaz, R

    1991-06-01

    The foam-mat production and stability using pineapple juice concentrate (25, 30 and 40 degrees Brix), adding a surfactants mixture and maltodextrin (DE 10) as co-adjuvant, stirred in a commercial mixer, was studied. Adequate foam formation conditions were as follows: concentrate of 25 degrees Brix using surface active agents (Sorbac 60-Polisorbac 80) 0.285% surface active agent/total solids, HLB = 6, and stirring time, 7 min. The foam was dehydrated in an oven dried with a horizontal air flow circulation set at 60, 70 and 80 degrees C using 3, 5 and 10 mm bed depths. The best conditions were obtained at 60 degrees C and 5 mm bed depth. The product had a particle size of sieve 40-80, and a moisture content of 3%. It was then packaged in multilayer plastic film and stored at environmental conditions. No brown color formation or mold growth was detected during storage. Pineapple juice and a refreshing drink were prepared. The general acceptability in a community indicated that 95% of the population involved accepted the product. PMID:1811453

  16. Optimization of DNA Extractions from Iron-rich Microbial Mats

    NASA Astrophysics Data System (ADS)

    Fullerton, H.; Hilton, T. S.; Moyer, C. L.

    2013-12-01

    Iron is the fourth most abundant element in the Earth's crust and is potentially one of the most abundant energy sources on the earth as an electron donor for chemolithoautotrophicgrowth coupled to Fe(II) oxidation. Many microbes have adapted to this energy source. One such bacterial class are the Zetaproteobacteria, which dominate Iron-rich microbial mats at Loihi seamount. Although cell counts are very high (up to 5.3x108 cells/ml), efficient DNA yields are low in comparison. In this study we compared extraction efficiency across different methods and with the addition of various buffers. Regardless of protocol (i.e., kit), the addition of sodium citrate drastically increased the DNA yield. The addition of sodium citrate did not alter community structure as determined by T-RFLP and qPCR. Citrate is a well-known ferric iron chelator and will bind ferrous as well. The chelated iron is then unable to participate in the Fenton reaction and this stops the generation of hydroxyl radicals which in turn can react and degrade the extracted DNA. We have utilized this relationship to allow us to obtain nearly an order of magnitude more microbial community DNA per sample, which should also have implications when processing low biomass samples, e.g., from the deep subsurface.

  17. Community Composition of a Hypersaline Endoevaporitic Microbial Mat

    PubMed Central

    Sørensen, Ketil Bernt; Canfield, Donald E.; Teske, Andreas P.; Oren, Aharon

    2005-01-01

    A hypersaline, endoevaporitic microbial community in Eilat, Israel, was studied by microscopy and by PCR amplification of genes for 16S rRNA from different layers. In terms of biomass, the oxygenic layers of the community were dominated by Cyanobacteria of the Halothece, Spirulina, and Phormidium types, but cell counts (based on 4′,6′-diamidino-2-phenylindole staining) and molecular surveys (clone libraries of PCR-amplified genes for 16S rRNA) showed that oxygenic phototrophs were outnumbered by the other constituents of the community, including chemotrophs and anoxygenic phototrophs. Bacterial clone libraries were dominated by phylotypes affiliated with the Bacteroidetes group and both photo- and chemotrophic groups of α-proteobacteria. Green filaments related to the Chloroflexi were less abundant than reported from hypersaline microbial mats growing at lower salinities and were only detected in the deepest part of the anoxygenic phototrophic zone. Also detected were nonphototrophic γ- and δ-proteobacteria, Planctomycetes, the TM6 group, Firmicutes, and Spirochetes. Several of the phylotypes showed a distinct vertical distribution in the crust, suggesting specific adaptations to the presence or absence of oxygen and light. Archaea were less abundant than Bacteria, their diversity was lower, and the community was less stratified. Detected archaeal groups included organisms affiliated with the Methanosarcinales, the Halobacteriales, and uncultured groups of Euryarchaeota. PMID:16269778

  18. Macroalgal mats and species abundance: a field experiment

    NASA Astrophysics Data System (ADS)

    Hull, S. C.

    1987-11-01

    A field experiment was carried out whereby the density of macroalgae ( Enteromorpha spp.) was manipulated and the resultant changes in sediment infaunal density were monitored. Four densities of Enteromorpha spp. were used: 0,0·3, 1, and 3 kg FW m -2, corresponding to control, low-, medium-, and high-density plots. The experiment ran from May to October 1985 and was sampled on three occasions. By July, the density of Corophium volutator was reduced at all weed levels when compared to control plots, whereas densities of Hydrobia ulvae, Macoma balthica, Nereis diversicolor, and Capitella capitata, all increased. Samples taken in October when the weed mats were buried in the sediment showed fewer differences than in July. Macoma, Nereis, and Capitella were still significantly more abundant at medium and high weed densities. Corophium showed no significant treatment effect. There was, however, a highly significant difference in population size structure for Corophium. Measurements of sediment redox potential and silt content under medium- and high-density plots revealed rapid anoxia with a significant increase in siltation.

  19. Radar Absorbing Materials for Cube Stealth Satellite

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Pastore, R.; Vricella, A.; Marchetti, M.

    A Cube Stealth Satellite is proposed for potential applications in defense system. Particularly, the faces of the satellite exposed to the Earth are made of nanostructured materials able to absorb radar surveillance electromagnetic waves, conferring stealth capability to the cube satellite. Microwave absorbing and shielding material tiles are proposed using composite materials consisting in epoxy-resin and carbon nanotubes filler. The electric permittivity of the composite nanostructured materials is measured and discussed. Such data are used by the modeling algorithm to design the microwave absorbing and the shielding faces of the cube satellite. The electromagnetic modeling takes into account for several incidence angles (0-80°), extended frequency band (2-18 GHz), and for the minimization of the electromagnetic reflection coefficient. The evolutionary algorithm used for microwave layered microwave absorber modeling is the recently developed Winning Particle Optimization. The mathematical model of the absorbing structure is finally experimentally validated by comparing the electromagnetic simulation to the measurement of the manufactured radar absorber tile. Nanostructured composite materials manufacturing process and electromagnetic reflection measurements methods are described. Finally, a finite element method analysis of the electromagnetic scattering by cube stealth satellite is performed.

  20. Perfect terahertz absorber using fishnet based metafilm

    SciTech Connect

    Azad, Abul Kalam; Shchegolkov, Dmitry Yu; Chen, Houtong; Taylor, Antoinette; Smirnova, E I; O' Hara, John F

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  1. The lost intrinsic fragmentation of MAT1 protein during granulopoiesis promotes the growth and metastasis of leukemic myeloblasts

    PubMed Central

    Lou, Siyue; Liu, Gang; Shimada, Hiroyuki; Yang, Xiaochun; He, Qiaojun; Wu, Lingtao

    2013-01-01

    MAT1, an assembly factor and targeting subunit of both cyclin-dependent kinase-activating kinase (CAK) and general transcription factor IIH (TFIIH) kinase, regulates cell cycle and transcription. Previous studies show that expression of intact MAT1 protein is associated with expansion of human hematopoietic stem cells (HSC), whereas intrinsically programmed or retinoic acid (RA)-induced MAT1 fragmentation accompanies granulocytic differentiation of HSC or leukemic myeloblasts. Here we determined that, in humanized mouse microenvironment, MAT1 overexpression resisted intrinsic MAT1 fragmentation to sustain hematopoietic CD34+ cell expansion while preventing granulopoiesis. Conversely, we mimicked MAT1 fragmentation in vitro and in a mouse model by overexpressing a fragmented 81-aa MAT1 polypeptide (pM9) that retains the domain for assembling CAK but cannot affix CAK to TFIIH-core. Our results showed that pM9 formed ΔCAK by competing with MAT1 for CAK assembly to mimic MAT1 fragmentation-depletion of CAK. This resulting ΔCAK acted as a dominant negative to inhibit the growth and metastasis of different leukemic myeloblasts, with or without RA-resistance, by concurrently suppressing CAK and TFIIH kinase activities to inhibit cell cycle and gene transcription. These findings suggest that the intrinsically programmed MAT1 expression and fragmentation regulate granulopoiesis by inversely coordinating CAK and TFIIH activities, whereas pM9 shares a mechanistic resemblance with MAT1 fragmentation in suppressing myeloid leukemogenesis. PMID:23765726

  2. Fabrication of poly(ε-caprolactone)/keratin nanofibrous mats as a potential scaffold for vascular tissue engineering.

    PubMed

    Li, Yanmei; Wang, Yanfang; Ye, Jingjie; Yuan, Jiang; Xiao, Yinghong

    2016-11-01

    The natural abundance of cell adhesion sequences, RGD (Arg-Gly-Asp) and LDV (Leu-Asp-Val) in the keratins make them suitable as biomaterials for tissue engineering applications. Herein, keratins were coelectrospun with poly(ε-caprolactone)(PCL) at the ratio of 9/1, 8/2, and 7/3 to afford nanofibrous mats. The resulting mats were surface-characterized by ATR-FTIR, SEM, WCA, and XPS. Cell attachment data showed that NIH 3T3 cells adhered more to the PCL/keratin nanofibrous mats than the pristine PCL mats. The MTT assay revealed that the PCL/keratin mats had improved cell viability. The blood clotting time test (APTT, PT, and TT) indicated the PCL/keratin mats exerted good blood compatibility. These mats would be a good candidate as a scaffold for vascular tissue engineering. PMID:27524010

  3. Lipophilic pigments from cyanobacterial (blue-green algal) and diatom mats in Hamelin Pool, Shark Bay, Western Australia

    NASA Technical Reports Server (NTRS)

    Palmisano, A. C.; Summons, R. E.; Cronin, S. E.; Des Marais, D. J.

    1989-01-01

    Lipophilic pigments were examined in microbial mat communities dominated by cyanobacteria in the intertidal zone and by diatoms in the subtidal and sublittoral zones of Hamelin Pool, Shark Bay, Western Australia. These microbial mats have evolutionary significance because of their similarity to lithfied stromatolites from the Proterozoic and Early Paleozoic eras. Fucoxanthin, diatoxanthin, diadinoxanthin, beta-carotene, and chlorophylls a and c characterized the diatom mats, whereas cyanobacterial mats contained myxoxanthophyll, zeaxanthin, echinenone, beta-carotene, chlorophyll a and, in some cases, sheath pigment. The presence of bacteriochlorophyll a within the mats suggest a close association of photosynthetic bacteria with diatoms and cyanobacteria. The high carotenoids : chlorophyll a ratios (0.84-2.44 wt/wt) in the diatom mats suggest that carotenoids served a photoprotective function in this high light environment. By contrast, cyanobacterial sheath pigment may have largely supplanted the photoprotective role of carotenoids in the intertidal mats.

  4. Fiber-reinforced glass

    SciTech Connect

    Beier, W.; Markman, S.

    1997-12-01

    Fiber-reinforced glass composites are glass or glass ceramic matrices reinforced with long fibers of carbon or silicon carbide. These composites are lighter than steel but just as strong as many steel grades, and can resist higher temperatures. They also have outstanding resistance to impact, thermal shock, and wear, and can be formulated to control thermal and electrical conductivity. With proper tooling, operations such as drilling, grinding, and turning can be completed in half the time required for non-reinforced glass. Currently, fiber-reinforced glass components are primarily used for handling hot glass or molten aluminum during manufacturing operations. But FRG is also under test as an engineering material in a variety of markets, including the aerospace, automotive, and semiconductor industries. Toward this end, research is being carried out to increase the size of components that can be delivered on a production basis, to develop economical methods of achieving complex near-net shapes, and to reduce the cycle time for production of specific shapes. This article focuses on the properties and applications of fiber-reinforced glass composites.

  5. Structure and dynamics of glasses and glass formers

    SciTech Connect

    Angell, C.A.; Ngai, K.L.; Kieffer, J.; Egami, T.; Nienhaus, G.U.

    1997-12-31

    This book was divided into the following parts: (1) short-time dynamics; (2) relaxation dynamics of glasses and glass formers; (3) glasslike systems, simulations, and models; (4) contrasting metallic, ionic, bio, and polymer systems; (5) structure, energetics, and polyamorphism; and (6) structure and dynamics of glasses and glass formers. Separate abstracts were prepared for most papers in this volume.

  6. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine.

    PubMed

    Drewniak, Lukasz; Maryan, Natalia; Lewandowski, Wiktor; Kaczanowski, Szymon; Sklodowska, Aleksandra

    2012-03-01

    The ancient Zloty Stok (SW Poland) gold mine is such an environment, where different microbial communities, able to utilize inorganic arsenic species As(III) and As(V), are found. The purpose of the present study was to (i) estimate prokaryotic diversity in the microbial mats in bottom sediments of this gold mine, (ii) identify microorganisms that can metabolize arsenic, and (iii) estimate their potential role in the arsenic geochemistry of the mine and in the environment. The oxidation/reduction experiments showed that the microbial mat community may significantly contribute to arsenic contamination in groundwater. The presence of both arsenite oxidizing and dissimilatory arsenate reducing bacteria in the mat was confirmed by the detection of arsenite oxidase and dissimilatory arsenate reductase genes, respectively. This work also demonstrated that microorganisms utilizing other compounds that naturally co-occur with arsenic are present within the microbial mat community and may contribute to the arsenic geochemistry in the environment. PMID:22243864

  7. Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) software package is an open source, MATLABSimulink toolbox (plug in) that can be used by industry professionals and academics for the development of thermodynamic and controls simulations.

  8. Marine Microbial Mats and the Search for Evidence of Life in Deep Time and Space

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2011-01-01

    Cyanobacterial mats in extensive seawater evaporation ponds at Guerrero Negro, Baja California, Mexico, have been excellent subjects for microbial ecology research. The studies reviewed here have documented the steep and rapidly changing environmental gradients experienced by mat microorganisms and the very high rates of biogeochemical processes that they maintained. Recent genetic studies have revealed an enormous diversity of bacteria as well as the spatial distribution of Bacteria, Archaea and Eukarya. These findings, together with emerging insights into the intimate interactions between these diverse populations, have contributed substantially to our understanding of the origins, environmental impacts, and biosignatures of photosynthetic microbial mats. The biosignatures (preservable cells, sedimentary fabrics, organic compounds, minerals, stable isotope patterns, etc.) potentially can serve as indicators of past life on early Earth. They also can inform our search for evidence of any life on Mars. Mars exploration has revealed evidence of evaporite deposits and thermal spring deposits; similar deposits on Earth once hosted ancient microbial mat ecosystems.

  9. Alternating magnetic field heat behaviors of PVDF fibrous mats filled with iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Jinu; Choi, Jung-Su; Yang, Heejae; Ko, Frank K.; Kim, Ki Hyeon

    2016-05-01

    To study the magnetic heat behaviors, iron oxide nanoparticles (IONPs) and the polyvinylidene fluoride (PVDF) fibrous mats filled with IONPs were prepared by using coprecipitaion method and the electrospinning technique. The synthesized IONPs exhibited a magnetization of about 72 emu/g with average diameter of about 10 nm. The magnetizations of PVDF fibrous mats filled with IONPs showed 2.6 emu/g, 5.5 emu/g and 9.9 emu/g for 5 wt.%, 10 wt.% and 20 wt.% IONPs concentration, respectively. The heat of the magnetic fibrous mats were measured under various alternating magnetic fields (90, 128, and 167 Oe), frequencies (190, 250 and 355 kHz). The maximum saturated temperature showed up to 62 °C for 20 wt.% IONPs filled in PVDF fibrous mat under 167 Oe and 355 kHz.

  10. Manipulative Experimental Approaches to Addressing Geobiological Questions in Microbial Mat and Stromatolite Research

    NASA Technical Reports Server (NTRS)

    Bebout, I. Lee

    2005-01-01

    We will present a short synopsis of experimental approaches using greenhouse flume systems to address questions of biogeochemical cycling, mineral formation and 3-d structure for Guerrero Negro microbial mats and Highborne Cay Stromatolites.

  11. Life in Oligotropic Desert Environments: Contrasting Taxonomic and Functional Diversity of Two Microbial Mats with Metagenomics

    NASA Astrophysics Data System (ADS)

    Bonilla-Rosso, G.; Peimbert, M.; Olmedo, G.; Alcaraz, L. D.; Eguiarte, L. E.; Souza, V.

    2010-04-01

    The metagenomic analysis of two microbial mats from the oligotrophic waters in the Cuatrociéngas basin reveals large differences both at taxonomic and functional level. These are explained in terms of environmental stability and nutrient availability.

  12. Glass electrolyte composition

    DOEpatents

    Kucera, Gene H.; Roche, Michael F.

    1985-01-01

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na.sub.2 O, ZrO.sub.2, Al.sub.2 O.sub.3 and SiO.sub.2 in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2.times.10.sup.-3 (ohm-cm).sup.-1 at 300.degree. C. and a glass transition temperature in excess of 500.degree. C.

  13. Glass electrolyte composition

    DOEpatents

    Kucera, G.H.; Roche, M.F.

    1985-01-08

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

  14. Nanocone array glass

    NASA Astrophysics Data System (ADS)

    D'Urso, Brian; Simpson, John T.; Kalyanaraman, Meenaa

    2007-04-01

    We report a novel method of producing ordered arrays of glass nanocones with precisely controlled height, lattice constant and aspect ratio. As with nanochannel glass, fibre drawing, bundling and redrawing are used to produce structured glass composite material. The surface of the composite is etched to form nanocones through a differential etching process. The lattice constant of the arrays ranges from 40 µm to 1.6 µm, while the aspect ratio of the nanocones is varied from 0.4 to 13 by simple changes in the chemistry of the hydrofluoric acid etching solution.

  15. Fabrication and In Vitro/In Vivo Performance of Mucoadhesive Electrospun Nanofiber Mats Containing α-Mangostin.

    PubMed

    Samprasit, Wipada; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-10-01

    This study aimed to fabricate mucoadhesive electrospun nanofiber mats containing α-mangostin for the maintenance of oral hygiene and reduction of the bacterial growth that causes dental caries. Synthesized thiolated chitosan (CS-SH) blended with polyvinyl alcohol (PVA) was selected as the mucoadhesive polymer. α-Mangostin was incorporated into the CS-SH/PVA solution and electrospun to obtain nanofiber mats. Scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and tensile strength testing were used to characterize the mats. The swelling degree and mucoadhesion were also determined. The nanofiber mats were further evaluated regarding their α-mangostin content, in vitro α-mangostin release, antibacterial activity, cytotoxicity, in vivo performance, and stability. The results indicated that the mats were in the nanometer range. The α-mangostin was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength, swelling, and mucoadhesive properties. The loading capacity increased when the initial amount of α-mangostin was increased. Rapid release of α-mangostin from the mats was achieved. Additionally, a fast bacterial killing rate occurred at the lowest concentration of nanofiber mats when α-mangostin was added to the mats. The mats were less cytotoxic after use for 72 h. Moreover, in vivo testing indicated that the mats could reduce the number of oral bacteria, with a good mouth feel. The mats maintained the amount of α-mangostin for 6 months. The results suggest that α-mangostin-loaded mucoadhesive electrospun nanofiber mats may be a promising material for oral care and the prevention of dental caries. PMID:25716329

  16. Unequal Recombination and Evolution of the Mating-Type (MAT) Loci in the Pathogenic Fungus Grosmannia clavigera and Relatives

    PubMed Central

    Tsui, Clement K.-M.; DiGuistini, Scott; Wang, Ye; Feau, Nicolas; Dhillon, Braham; Bohlmann, Jörg; Hamelin, Richard C.

    2013-01-01

    Sexual reproduction in fungi is regulated by the mating-type (MAT) locus where recombination is suppressed. We investigated the evolution of MAT loci in eight fungal species belonging to Grosmannia and Ophiostoma (Sordariomycetes, Ascomycota) that include conifer pathogens and beetle symbionts. The MAT1-2 idiomorph/allele was identified from the assembled and annotated Grosmannia clavigera genome, and the MAT locus is flanked by genes coding for cytoskeleton protein (SLA) and DNA lyase. The synteny of these genes is conserved and consistent with other members in Ascomycota. Using sequences from SLA and flanking regions, we characterized the MAT1-1 idiomorph from other isolates of G. clavigera and performed dotplot analysis between the two idiomorphs. Unexpectedly, the MAT1-2 idiomorph contains a truncated MAT1-1-1 gene upstream of the MAT1-2-1 gene that bears the high-mobility-group domain. The nucleotide and amino acid sequence of the truncated MAT1-1-1 gene is similar to its homologous copy in the MAT1-1 idiomorph in the opposite mating-type isolate, except that positive selection is acting on the truncated gene and the alpha(α)-box that encodes the transcription factor has been deleted. The MAT idiomorphs sharing identical gene organization were present in seven additional species in the Ophiostomatales, suggesting that the presence of truncated MAT1-1-1 gene is a general pattern in this order. We propose that an ancient unequal recombination event resulted in the ancestral MAT1-1-1 gene integrated into the MAT1-2 idiomorph and surviving as the truncated MAT1-1-1 genes. The α-box domain of MAT1-1-1 gene, located at the same MAT locus adjacent to the MAT1-2-1 gene, could have been removed by deletion after recombination due to mating signal interference. Our data confirmed a 1:1 MAT/sex ratio in two pathogen populations, and showed that all members of the Ophiostomatales studied here including those that were previously deemed asexual have the potential to

  17. Targeting accurate object extraction from an image: a comprehensive study of natural image matting.

    PubMed

    Zhu, Qingsong; Shao, Ling; Li, Xuelong; Wang, Lei

    2015-02-01

    With the development of digital multimedia technologies, image matting has gained increasing interests from both academic and industrial communities. The purpose of image matting is to precisely extract the foreground objects with arbitrary shapes from an image or a video frame for further editing. It is generally known that image matting is inherently an ill-posed problem because we need to output three images out of only one input image. In this paper, we provide a comprehensive survey of the existing image matting algorithms and evaluate their performance. In addition to the blue screen matting, we systematically divide all existing natural image matting methods into four categories: 1) color sampling-based; 2) propagation-based; 3) combination of sampling-based and propagation-based; and 4) learning-based approaches. Sampling-based methods assume that the foreground and background colors of an unknown pixel can be explicitly estimated by examining nearby pixels. Propagation-based methods are instead based on the assumption that foreground and background colors are locally smooth. Learning-based methods treat the matting process as a supervised or semisupervised learning problem. Via the learning process, users can construct a linear or nonlinear model between the alpha mattes and the image colors using a training set to estimate the alpha matte of an unknown pixel without any assumption about the characteristics of the testing image. With three benchmark data sets, the various matting algorithms are evaluated and compared using several metrics to demonstrate the strengths and weaknesses of each method both quantitatively and qualitatively. Finally, we conclude this paper by outlining the research trends and suggesting a number of promising directions for future development. PMID:25423658

  18. Microbial mats, stromatolites and the rise of oxygen in the Precambrian atmosphere

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1991-01-01

    Microbial mats are stratified communities that develop within the environmental microgradients established at the interfaces of water and solid substrates (Cohen, 1989). Stromatolites, the lithified remains of layered accumulations of microbial mats, occur in rocks as old as 3.5 Ga (Lowe, 1980; Walter et al., 1980). These lithified microbial communities represent the most ancient, widespread ecosystems known, and it is useful to explore their role in the accumulation of free oxygen in the ancient atmosphere.

  19. Sedimentary Parameters Controlling Occurrence and Preservation of Microbial Mats in Siliciclastic Depositional Systems

    NASA Technical Reports Server (NTRS)

    Noffke, Nora; Knoll, Andrew H.

    2001-01-01

    Shallow-marine, siliciclastic depositional systems are governed by physical sedimentary processes. Mineral precipitation or penecontemporaneous cementation play minor roles. Today, coastal siliciclastic environments may be colonized by a variety of epibenthic, mat-forming cyanobacteria. Studies on microbial mats showed that they are not randomly distributed in modern tidal environments. Distribution and abundancy is mainly function of a particular sedimentary facies. Fine-grained sands composed of "clear" (translucent) quartz particles constitute preferred substrates for cyanobacteria. Mat-builders also favor sites characterized by moderate hydrodynamic flow regimes, which permit biomass enrichment and construction of mat fabrics without lethal burial of mat populations by fine sediments. A comparable facies relationship can be observed in ancient siliciclastic shelf successions from the terminal Neoproterozoic Nama Group, Namibia. Wrinkle structures that record microbial mats are present but sparsely distributed in mid- to inner shelf sandstones of the Nudaus Formation. The sporadic distribution of these structures reflects both the narrow ecological window that governs mat development and the distinctive taphonomic conditions needed to preserve the structures. These observations caution that statements about changing mat abundance across the Proterozoic-Cambrian boundary must be firmly rooted in paleoenvironmental and taphonomic analysis. Understanding the factors that influence the formation and preservation of microbial structures in siliciclastic regimes can facilitate exploration for biological signatures in Earth's oldest rocks. Moreover, insofar as these structures can be preserved on bedding surfaces and are not easily mimicked by physical processes, they constitute a set of biological markers that can be searched for on Mars by remotely controlled rovers.

  20. Microfacies analysis of Green River Formation stromatolites and comparison to microbial mat experiments

    NASA Astrophysics Data System (ADS)

    Miller, S. E.; Bahniuk Rumbelsperger, A. M.; Sauvage, J. F.; Jarrett, A. J.; Petryshyn, V. A.; Corsetti, F. A.; Shapiro, R. S.

    2011-12-01

    Stromatolites were collected from the Laney Member of the Early Eocene Green River Formation near LaClede, Wyoming. LaClede stromatolites are laminated at the micron scale and form domes ~10 cm in diameter. Relatively coarse sediments (>300 μm) fill interdomal depressions, but are rare within fine-grained laminae (a grain size distribution common in Proterozoic stromatolites). On the sides of domes, laminae thin significantly and are nearly vertical. Stromatolite growth and infill sedimentation likely occurred simultaneously, as laminae are draped into interdomal areas and are rarely cut by infill. Grains longer than 200 μm are absent on the steep edges of stromatolite domes, despite the presence of >200 μm grains deposited concomitantly in interdomal depressions. To test whether microbial mats are capable of collecting relatively coarse sediments at steep angles, sedimentation experiments were conducted using cyanobacterial mats collected from Catalina Harbor, Catalina Island, California. Fine (0.125-0.250 mm), medium (0.50-1.0 mm), and coarse (1.0-2.0 mm) sediments were dropped on mats inclined at six angles (15° increments from 0-75°). Coarse grains did not adhere to mats steeper than 45°, and all fine grains were captured by mats at angles less than 45°. All grains that settled on mats were strongly bound after one day of further microbial growth. Although we cannot conclude that fine-grained stromatolites were formed by cyanobacteria, our results suggest that coarse-grained stromatolites (e.g., most modern marine stromatolites) require processes not typically observed in modern cyanobacterial mats (e.g., processes associated with algal eukaryotes, diatoms, and/or copious extracellular polymeric substances, or EPS). Similar sedimentation experiments using other microbial mats, such as those with a thicker coating of EPS or a eukaryotic component, may yield additional information on the origins of coarse- and fine-grained stromatolites. This research was