Sample records for absorbent hydrogels based

  1. Bubble-driven light-absorbing hydrogel microrobot for the assembly of bio-objects.

    PubMed

    Hu, Wenqi; Fan, Qihui; Tonaki, Wade; Ohta, Aaron T

    2013-01-01

    Microrobots made of light-absorbing hydrogel material were actuated by optically induced thermocapillary flow and move at up to 700 µm/s. The micro-assembly capabilities of the microrobots were demonstrated by assembling polystyrene beads and yeast cells into various patterns on standard glass microscope slides. Two microrobots operating independently in parallel were also used to assemble micro-hydrogel structures.

  2. Biodegradable Cellulose-based Hydrogels: Design and Applications

    PubMed Central

    Sannino, Alessandro; Demitri, Christian; Madaghiele, Marta

    2009-01-01

    Hydrogels are macromolecular networks able to absorb and release water solutions in a reversible manner, in response to specific environmental stimuli. Such stimuli-sensitive behaviour makes hydrogels appealing for the design of ‘smart’ devices, applicable in a variety of technological fields. In particular, in cases where either ecological or biocompatibility issues are concerned, the biodegradability of the hydrogel network, together with the control of the degradation rate, may provide additional value to the developed device. This review surveys the design and the applications of cellulose-based hydrogels, which are extensively investigated due to the large availability of cellulose in nature, the intrinsic degradability of cellulose and the smart behaviour displayed by some cellulose derivatives.

  3. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    NASA Astrophysics Data System (ADS)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-07-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  4. Preparation of new GO-based slide ring hydrogel through a convenient one-pot approach as methylene blue absorbent.

    PubMed

    Soleimani, Khadijeh; Dadkhah Tehrani, Abbas; Adeli, Mohsen

    2018-05-01

    Slide ring hydrogels (SRHG) with supramolecular structures are a new class of hydrogels that contrary to the traditional hydrogels comprise dynamic cross-linking points. Herein, we reported on the fabrication of a new slide ring hydrogel through a very convenient one-pot approach. In this regard, isocyanate functionalized GO was synthesized and used as a stopper as well as cross-linker in the presence of a polypseudorotaxane of cyclodextrin threaded on poly(ethylene glycol) (PR). The surface of the resulting SRHG modified via graft polymerization with polyacrylamide (PAAm) and its application as a new type of absorbent for wastewater treatment was studied. Due to its porous structure and its high content of surface functional groups, the synthesized hydrogel was able to efficiently remove cationic dye methylene blue (MB) from wastewater in a short time. The maximum adsorption capacity of the resulting hydrogel was 92.3 mg/g which exhibited an almost 100% increment as compared to that of untreated GO. The adsorption mechanism of MB was also investigated. The kinetic data, obtained at the optimum pH 7, were fitted well with the pseudo-second-order model. Results from degradation and recycling experiments toward MB showed that the SRHG was stable and reusable. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications

    PubMed Central

    Mo, Liuting; Lu, Chun-Hua; Fu, Ting

    2016-01-01

    Hydrogels are crosslinked hydrophilic polymers that can absorb a large amount of water. By their hydrophilic, biocompatible and highly tunable nature, hydrogels can be tailored for applications in bioanalysis and biomedicine. Of particular interest are DNA-based hydrogels owing to the unique features of nucleic acids. Since the discovery of DNA double helical structure, interest in DNA has expanded beyond its genetic role to applications in nanotechnology and materials science. In particular, DNA-based hydrogels present such remarkable features as stability, flexibility, precise programmability, stimuli-responsive DNA conformations, facile synthesis and modification. Moreover, functional nucleic acids (FNAs) have allowed the construction of hydrogels based on aptamers, DNAzymes, i-motif nanostructures, siRNAs and CpG oligodeoxynucleotides to provide additional molecular recognition, catalytic activities and therapeutic potential, making them key players in biological analysis and biomedical applications. To date, a variety of applications have been demonstrated with FNA-based hydrogels, including biosensing, environmental analysis, controlled drug release, cell adhesion and targeted cancer therapy. In this review, we focus on advances in the development of FNA-based hydrogels, which have fully incorporated both the unique features of FNAs and DNA-based hydrogels. We first introduce different strategies for constructing DNA-based hydrogels. Subsequently, various types of FNAs and the most recent developments of FNA-based hydrogels for bioanalytical and biomedical applications are described with some selected examples. Finally, the review provides an insight into the remaining challenges and future perspectives of FNA-based hydrogels. PMID:26758955

  6. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review.

    PubMed

    Xinming, Li; Yingde, Cui; Lloyd, Andrew W; Mikhalovsky, Sergey V; Sandeman, Susan R; Howel, Carol A; Liewen, Liao

    2008-04-01

    Only about 5% of drugs administrated by eye drops are bioavailable, and currently eye drops account for more than 90% of all ophthalmic formulations. The bioavailability of ophthalmic drugs can be improved by a soft contact lens-based ophthalmic drug delivery system. Several polymeric hydrogels have been investigated for soft contact lens-based ophthalmic drug delivery systems: (i) polymeric hydrogels for conventional contact lens to absorb and release ophthalmic drugs; (ii) polymeric hydrogels for piggyback contact lens combining with a drug plate or drug solution; (iii) surface-modified polymeric hydrogels to immobilize drugs on the surface of contact lenses; (iv) polymeric hydrogels for inclusion of drugs in a colloidal structure dispersed in the lens; (v) ion ligand-containing polymeric hydrogels; (vi) molecularly imprinted polymeric hydrogels which provide the contact lens with a high affinity and selectivity for a given drug. Polymeric hydrogels for these contact lens-based ophthalmic drug delivery systems, their advantages and drawbacks are critically analyzed in this review.

  7. Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khoerunnisa, Fitri, E-mail: fitri.khoerunnisa@gmail.com; Hendrawan,; Sonjaya, Yaya

    2016-04-19

    Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shiftingmore » of peak intensity and position of several functional groups (O-H, C-H sp{sup 3}, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.« less

  8. Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels.

    PubMed

    Wang, Tao; Huang, Jiahe; Yang, Yiqing; Zhang, Enzhong; Sun, Weixiang; Tong, Zhen

    2015-10-28

    Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus.

  9. Synthesis and Characterization of Gelatin-Based Crosslinkers for the Fabrication of Superabsorbent Hydrogels

    PubMed Central

    Amonpattaratkit, Penphitcha; Khunmanee, Sureerat; Kim, Dong Hyun; Park, Hansoo

    2017-01-01

    In this work, crosslinkers were prepared by conjugating high- and low-molecular-weight gelatin with different mole ratios of itaconic acid (IA) with double bonds. Then, the gelatin-itaconic acid (gelatin-IA) crosslinkers were compared with the gelatin-methacrylate (gelatin-MA) crosslinkers. The molecular weights and structures of gelatin-MA and gelatin-IA were confirmed using gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR). Additionally, the swelling ratio and biodegradation properties of the hydrogels using IA as starting monomers and gelatin-IA and gelatin-MA as crosslinkers were investigated. Both hydrogels prepared with high and low molecular weights of gelatin-IA showed higher swelling ratios than those prepared with the gelatin-MA. The results also showed that absorbent hydrogels with different biodegradabilities and swelling ratios could be prepared by changing the ratio of the gelatin-based crosslinkers. PMID:28773186

  10. Electrochemical immunoassay for tumor markers based on hydrogels.

    PubMed

    Yin, Shuang; Ma, Zhanfang

    2018-05-08

    Hydrogel-based electrochemical immunoassays exhibit a large surface-to-volume ratio, excellent biocompatibility, unique stimuli-responsive behavior, high permeability and hydrophilicity and, thus, have shown great potential in the sensitive and accurate detection of tumor markers. Electrochemical immunosensing techniques for tumor markers based on hydrogels have greatly progressed in recent years. Areas covered: In this review, the authors describe the recent advances of hydrogel-based electrochemical immunosensing interface of tumor markers based on the different functions of hydrogels including conductive, catalytic, redox, stimuli-responsive and antifouling hydrogels. Expert commentary: Hydrogels have been successfully employed in electrochemical immunoassay of tumor markers, which is accountable to their unique properties. For further exploitation of hydrogel-based electrochemical biosensors, more variety of hydrogels need be fabricated with improved functionality.

  11. Hydrogels based on cellulose and chitin: fabrication, properties, and applications

    DOE PAGES

    Shen, Xiaoping; Shamshina, Julia L.; Berton, Paula; ...

    2015-11-16

    A review of the synthesis and applications of renewable, biocompatible, and biodegradable hydrogels made from cellulose, chitin, and some of their derivatives indicates increased attention due to their excellent processability, high absorbency, porosity, bioactivity, and abundant active groups.

  12. Hydrogels based on cellulose and chitin: fabrication, properties, and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Xiaoping; Shamshina, Julia L.; Berton, Paula

    A review of the synthesis and applications of renewable, biocompatible, and biodegradable hydrogels made from cellulose, chitin, and some of their derivatives indicates increased attention due to their excellent processability, high absorbency, porosity, bioactivity, and abundant active groups.

  13. Phenol red-silk tyrosine cross-linked hydrogels.

    PubMed

    Sundarakrishnan, Aswin; Herrero Acero, Enrique; Coburn, Jeannine; Chwalek, Karolina; Partlow, Benjamin; Kaplan, David L

    2016-09-15

    Phenol red is a cytocompatible pH sensing dye that is commonly added to cell culture media, but removed from some media formulations due to its structural mimicry of estrogen. Phenol red free media is also used during live cell imaging, to avoid absorbance and fluorescence quenching of fluorophores. To overcome these complications, we developed cytocompatible and degradable phenol red-silk tyrosine cross-linked hydrogels using horseradish peroxidase (HRP) enzyme and hydrogen peroxide (H2O2). Phenol red added to silk during tyrosine crosslinking accelerated di-tyrosine formation in a concentration-dependent reaction. Phenol red diffusion studies and UV-Vis spectra of phenol red-silk tyrosine hydrogels at different pHs showed altered absorption bands, confirming entrapment of dye within the hydrogel network. LC-MS of HRP-reacted phenol red and N-acetyl-l-tyrosine reaction products confirmed covalent bonds between the phenolic hydroxyl group of phenol red and tyrosine on the silk. At lower phenol red concentrations, leak-proof hydrogels which did not release phenol red were fabricated and found to be cytocompatible based on live-dead staining and alamar blue assessments of encapsulated fibroblasts. Due to the spectral overlap between phenol red absorbance at 415nm and di-tyrosine fluorescence at 417nm, phenol red-silk hydrogels provide both absorbance and fluorescence-based pH sensing. With an average pKa of 6.8 and good cytocompatibiltiy, phenol red-silk hydrogels are useful for pH sensing in phenol red free systems, cellular microenvironments and bioreactors. Phenol red entrapped within hydrogels facilitates pH sensing in phenol red free environments. Leak-proof phenol red based pH sensors require covalent binding techniques, but are complicated due to the lack of amino or carboxyl groups on phenol red. Currently, there is no simple, reliable technique to covalently link phenol red to hydrogel matrices, for real-time pH sensing in cell culture environments. Herein

  14. Synthesis and characterization of a novel cationic hydrogel base on salecan-g-PMAPTAC.

    PubMed

    Wei, Wei; Qi, Xiaoliang; Li, Junjian; Zhong, Yin; Zuo, Gancheng; Pan, Xihao; Su, Ting; Zhang, Jianfa; Dong, Wei

    2017-08-01

    Salecan is a biological macromolecular and biocompatible polysaccharide that has been investigated for recent years. Herein, we report a novel cationic hydrogel fabricated by graft-polymerizing 3-(methacryloylamino)propyl-trimethylammonium chloride (MAPTAC) onto salecan chains. The obtained hydrogels were transparent, solid-elastic, macro-porous, ion-sensitive, and non-cytotoxic. The swelling ratios increased with salecan content, while mechanical strength does the opposite. Moreover, drug delivery test was studied as a potential application. Diclofenac sodium (DS) and insulin were selected as model drugs. Interestingly, in drug loading process, DS molecules exhibited highly affinity to these cationic hydrogels. Almost all the DS molecules in loading solution were absorbed and spread into the hydrogel. For drug release profiles, insulin-loaded hydrogel showed an initial rapid release and a sustained release. As a comparison, DS-loaded hydrogel exhibited a more sustained release profile. Results suggested salecan-g-PMAPTAC hydrogel could be a good candidate for anionic drug loading and delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Protein-based hydrogels for tissue engineering

    PubMed Central

    Schloss, Ashley C.; Williams, Danielle M.; Regan, Lynne J.

    2017-01-01

    The tunable mechanical and structural properties of protein-based hydrogels make them excellent scaffolds for tissue engineering and repair. Moreover, using protein-based components provides the option to insert sequences associated with the promoting both cellular adhesion to the substrate and overall cell growth. Protein-based hydrogel components are appealing for their structural designability, specific biological functionality, and stimuli-responsiveness. Here we present highlights in the field of protein-based hydrogels for tissue engineering applications including design requirements, components, and gel types. PMID:27677513

  16. Chitosan based hydrogels: characteristics and pharmaceutical applications

    PubMed Central

    Ahmadi, F.; Oveisi, Z.; Samani, S. Mohammadi; Amoozgar, Z.

    2015-01-01

    Hydrogel scaffolds serve as semi synthetic or synthetic extra cellular matrix to provide an amenable environment for cellular adherence and cellular remodeling in three dimensional structures mimicking that of natural cellular environment. Additionally, hydrogels have the capacity to carry small molecule drugs and/or proteins, growth factors and other necessary components for cell growth and differentiation. In the context of drug delivery, hydrogels can be utilized to localize drugs, increase drugs concentration at the site of action and consequently reduce off-targeted side effects. The current review aims to describe and classify hydrogels and their methods of production. The main highlight is chitosan-based hydrogels as biocompatible and medically relevant hydrogels for drug delivery. PMID:26430453

  17. Advances in hydrogel delivery systems for tissue regeneration.

    PubMed

    Toh, Wei Seong; Loh, Xian Jun

    2014-12-01

    Hydrogels are natural or synthetic polymer networks that have high water-absorbing capacity and closely mimic native extracellular matrices. As hydrogel-based cell delivery systems are being increasingly employed in regenerative medicine, several advances have been made in the hydrogel chemistry and modification for enhanced control of cell fate and functions, and modulation of cell and tissue responses against oxidative stress and inflammation in the tissue environment. This review aims to provide the state-of-the-art overview of the recent advances in field, discusses new perspectives and challenges in the regeneration of specific tissues, and highlights some of the limitations of current systems for possible future advancements. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.

    PubMed

    Kapoor, Sonia; Kundu, Subhas C

    2016-02-01

    Hydrogels are a class of advanced material forms that closely mimic properties of the soft biological tissues. Several polymers have been explored for preparing hydrogels with structural and functional features resembling that of the extracellular matrix. Favourable material properties, biocompatibility and easy processing of silk protein fibers into several forms make it a suitable material for biomedical applications. Hydrogels made from silk proteins have shown a potential in overcoming limitations of hydrogels prepared from conventional polymers. A great deal of effort has been made to control the properties and to integrate novel topographical and functional characteristics in the hydrogel composed from silk proteins. This review provides overview of the advances in silk protein-based hydrogels with a primary emphasis on hydrogels of fibroin. It describes the approaches used to fabricate fibroin hydrogels. Attempts to improve the existing properties or to incorporate new features in the hydrogels by making composites and by improving fibroin properties by genetic engineering approaches are also described. Applications of the fibroin hydrogels in the realms of tissue engineering and controlled release are reviewed and their future potentials are discussed. This review describes the potentiality of silk fibroin hydrogel. Silk Fibroin has been widely recognized as an interesting biomaterial. Due to its properties including high mechanical strength and excellent biocompatibility, it has gained wide attention. Several groups are exploring silk-based materials including films, hydrogels, nanofibers and nanoparticles for different biomedical applications. Although there is a good amount of literature available on general properties and applications of silk based biomaterials, there is an inadequacy of extensive review articles that specifically focus on silk based hydrogels. Silk-based hydrogels have a strong potential to be utilized in biomedical applications. Our

  19. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  20. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications.

    PubMed

    Thombare, Nandkishore; Mishra, Sumit; Siddiqui, M Z; Jha, Usha; Singh, Deodhari; Mahajan, Gopal R

    2018-04-01

    The novel hydrogels were synthesized by grafting guar gum with acrylic acid and cross-linking with ethylene glycol di methacrylic acid (EGDMA). The synthesis of hydrogel was confirmed by characterization through 13 C NMR, FTIR spectroscopy, SEM micrography, thermo-gravimetric analysis and water absorption studies under different solutions. Synthesized hydrogel (GG-AA-EGDMA) was confirmed to be biodegradable with half-life period of 77 days through soil burial biodegradation studies. The effects of hydrogel treatment on soil were evaluated by studying various physico-chemical properties of soil like bulk density, porosity, water absorption and retention capacity etc. The hydrogel which could absorb up to 800 ml water per gram, after addition to soil, improved its porosity, moisture absorption and retention capacity significantly. Water holding capacity of water increased up to 54% of its original and porosity also increased up to 9% of its original. The synthesized hydrogel revealed tremendous potential as soil conditioning material for agricultural applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel.

    PubMed

    Rakhshaei, Rasul; Namazi, Hassan

    2017-04-01

    Lack of antibacterial activity, deficient water vapor and oxygen permeability, and insufficient mechanical properties are disadvantages of existing wound dressings. Hydrogels could absorb wound exudates due to their strong swelling ratio and give a cooling sensation and a wet environment. To overcome these shortcomings, flexible nanocomposite hydrogel films was prepared through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug carrier with carboxymethyl cellulose (CMC) hydrogel. Citric acid was used as cross linker to avoid the cytotoxicity of conventional cross linkers. The prepared nanocomposite hydrogel was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and UV-vis spectroscopy. Results of swelling and erosion tests showed CMC/ZnO nanocomposite hydrogel disintegrated during the first hours of the test. Using MCM-41 as a substrate for ZnO nanoparticles solved this problem and the CMC/ZnO-MCM-41 showed a great improvement in tensile strength (12%), swelling (100%), erosion (53%) and gas permeability (500%) properties. Drug delivery and antibacterial properties of the nanocomposite hydrogel films studied using tetracycline (TC) as a broad spectrum antibiotic and showed a sustained TC release. This could efficiently decrease bandage exchange. Cytocompatibility of the nanocomposite hydrogel films has been analyzed in adipose tissue-derived stem cells (ADSCs) and results showed cytocompatibility of CMC/ZnO-MCM-41. Based on these results the prepared CMC nanocomposite hydrogel containing ZnO impregnated MCM-41, could serve as a kind of promising wound dressing with sustained drug delivery properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ultrasonic-assisted synthesis of superabsorbent hydrogels based on sodium lignosulfonate and their adsorption properties for Ni2.

    PubMed

    Wang, Xiaohong; Wang, Yingying; He, Shufu; Hou, Haiqian; Hao, Chen

    2018-01-01

    Nowadays, the attention of both academic and industrial research is paid to the novel materials based on renewable organic resources. Sodium lignosulphonate (SLS) is selected in this study to synthesize novel superabsorbent hydrogels by ultrasonic polymerization. The structure, morphology and stability of SLS-based hydrogel were confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Under the optimal condition, SLS-based hydrogel possesses the water absorbency of 1328g·g -1 in distilled water and 110g·g -1 in 0.9wt% NaCl solution. In addition, the prepared SLS-hydrogel as an adsorbent was applied to remove Ni 2+ from an aqueous solution in virtue of its low cost and favorable adsorption capacity. The various experimental conditions that influence the adsorption capacity were investigated such as temperature (20-60°C), pH (2.0-7.0), contact time (0-360min) and initial concentration of the Ni 2+ solution (100-600mg·L -1 ). Then the adsorption capability could reach 293mg·g -1 under optimal conditions. The results revealed that the adsorption behavior is spontaneous and endothermic. Furthermore, it was observed that the adsorption mechanism and adsorption equilibrium data obeyed pseudo-second-order kinetic and Freundlich models. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. 21 CFR 878.4022 - Hydrogel wound dressing and burn dressing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydrogel wound dressing and burn dressing. 878... Hydrogel wound dressing and burn dressing. (a) Identification. A hydrogel wound dressing is a sterile or non-sterile device intended to cover a wound, to absorb wound exudate, to control bleeding or fluid...

  4. 21 CFR 878.4022 - Hydrogel wound dressing and burn dressing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hydrogel wound dressing and burn dressing. 878... Hydrogel wound dressing and burn dressing. (a) Identification. A hydrogel wound dressing is a sterile or non-sterile device intended to cover a wound, to absorb wound exudate, to control bleeding or fluid...

  5. Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels.

    PubMed

    Van Nieuwenhove, Ine; Salamon, Achim; Adam, Stefanie; Dubruel, Peter; Van Vlierberghe, Sandra; Peters, Kirsten

    2017-04-01

    Tissue regeneration often occurs only to a limited extent. By providing a three-dimensional matrix serving as a surrogate extracellular matrix that promotes adult stem cell adhesion, proliferation and differentiation, scaffold-guided tissue regeneration aims at overcoming this limitation. In this study, we applied hydrogels made from crosslinkable gelatin, the hydrolyzed form of collagen, and functionalized starch which were characterized in depth and optimized as described in Van Nieuwenhove et al., 2016. "Gelatin- and Starch-Based Hydrogels. Part A: Hydrogel Development, Characterization and Coating", Carbohydrate Polymers 152:129-39. Collagen is the main structural protein in animal connective tissue and the most abundant protein in mammals. Starch is a carbohydrate consisting of a mixture of amylose and amylopectin. Hydrogels were developed with varying chemical composition (ratio of starch to gelatin applied) and different degrees of methacrylation of the applied gelatin phase. The hydrogels used exhibited no adverse effect on viability of the stem cells cultured on them. Moreover, initial cell adhesion did not differ significantly between them, while the strongest proliferation was observed on the hydrogel with the highest degree of cross-linking. On the least crosslinked and thus most flexible hydrogels, the highest degree of adipogenic differentiation was found, while osteogenic differentiation was the strongest on the most rigid, starch-blended hydrogels. Hydrogel coating with extracellular matrix compounds aggrecan or fibronectin prior to cell seeding exhibited no significant effects. Thus, gelatin-based hydrogels can be optimized regarding maximum promotion of either adipogenic or osteogenic stem cell differentiation in vitro, which makes them promising candidates for in vivo evaluation in clinical studies aiming at either soft or hard tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Experimental study of porous media flow using hydro-gel beads and LED based PIV

    NASA Astrophysics Data System (ADS)

    Harshani, H. M. D.; Galindo-Torres, S. A.; Scheuermann, A.; Muhlhaus, H. B.

    2017-01-01

    A novel experimental approach for measuring porous flow characteristics using spherical hydro-gel beads and particle image velocimetry (PIV) technique is presented. A transparent porous medium consisting of hydro-gel beads that are made of a super-absorbent polymer, allows using water as the fluid phase while simultaneously having the same refractive index. As a result, a more adaptable and cost effective refractive index matched (RIM) medium is created. The transparent nature of the porous medium allows optical systems to visualize the flow field by using poly-amide seeding particles (PSP). Low risk light emitting diode (LED) based light was used to illuminate the plane in order to track the seeding particles’ path for the characterization of the flow inside the porous medium. The system was calibrated using a manually measured flow by a flow meter. Velocity profiles were obtained and analysed qualitatively and quantitatively in order to characterise the flow. Results show that this adaptable, low risk experimental set-up can be used for flow measurements in porous medium under low Reynolds numbers. The limitations of using hydro-gel beads are also discussed.

  7. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.

    PubMed

    Naahidi, Sheva; Jafari, Mousa; Logan, Megan; Wang, Yujie; Yuan, Yongfang; Bae, Hojae; Dixon, Brian; Chen, P

    2017-09-01

    Recently, understanding of the extracellular matrix (ECM) has expanded rapidly due to the accessibility of cellular and molecular techniques and the growing potential and value for hydrogels in tissue engineering. The fabrication of hydrogel-based cellular scaffolds for the generation of bioengineered tissues has been based on knowledge of the composition and structure of ECM. Attempts at recreating ECM have used either naturally-derived ECM components or synthetic polymers with structural integrity derived from hydrogels. Due to their increasing use, their biocompatibility has been questioned since the use of these biomaterials needs to be effective and safe. It is not surprising then that the evaluation of biocompatibility of these types of biomaterials for regenerative and tissue engineering applications has been expanded from being primarily investigated in a laboratory setting to being applied in the multi-billion dollar medicinal industry. This review will aid in the improvement of design of non-invasive, smart hydrogels that can be utilized for tissue engineering and other biomedical applications. In this review, the biocompatibility of hydrogels and design criteria for fabricating effective scaffolds are examined. Examples of natural and synthetic hydrogels, their biocompatibility and use in tissue engineering are discussed. The merits and clinical complications of hydrogel scaffold use are also reviewed. The article concludes with a future outlook of the field of biocompatibility within the context of hydrogel-based scaffolds. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Biodegradable HEMA-based hydrogels with enhanced mechanical properties.

    PubMed

    Moghadam, Mohamadreza Nassajian; Pioletti, Dominique P

    2016-08-01

    Hydrogels are widely used in the biomedical field. Their main purposes are either to deliver biological active agents or to temporarily fill a defect until they degrade and are followed by new host tissue formation. However, for this latter application, biodegradable hydrogels are usually not capable to sustain any significant load. The development of biodegradable hydrogels presenting load-bearing capabilities would open new possibilities to utilize this class of material in the biomedical field. In this work, an original formulation of biodegradable photo-crosslinked hydrogels based on hydroxyethyl methacrylate (HEMA) is presented. The hydrogels consist of short-length poly(2-hydroxyethyl methacrylate) (PHEMA) chains in a star shape structure, obtained by introducing a tetra-functional chain transfer agent in the backbone of the hydrogels. They are cross-linked with a biodegradable N,O-dimethacryloyl hydroxylamine (DMHA) molecule sensitive to hydrolytic cleavage. We characterized the degradation properties of these hydrogels submitted to mechanical loadings. We showed that the developed hydrogels undergo long-term degradation and specially meet the two essential requirements of a biodegradable hydrogel suitable for load bearing applications: enhanced mechanical properties and low molecular weight degradation products. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1161-1169, 2016. © 2015 Wiley Periodicals, Inc.

  9. Supramolecular Hydrogels Based on DNA Self-Assembly.

    PubMed

    Shao, Yu; Jia, Haoyang; Cao, Tianyang; Liu, Dongsheng

    2017-04-18

    viability in the three-dimensional matrix to several weeks and also provides an easy way to prepare interpenetrating double network materials. In this Account, we outline the stream of hydrogels based on DNA self-assembly and discuss the mechanism that brings outstanding properties to the materials. Unlike most reported hydrogel systems, the all-in-one character of the DNA hydrogel avoids the "cask effect" in the properties. We believe the hydrogel will greatly benefit cell behavior studies especially in the following aspects: (1) stem cell differentiation can be studied with solely tunable mechanical strength of the matrix; (2) the dynamic nature of the network can allow cell migration through the hydrogel, which will help to build a more realistic model to observe the migration of cancer cells in vivo; (3) combination with rapidly developing three-dimension printing technology, the hydrogel will boost the construction of three-dimensional tissues and artificial organs.

  10. Transient Dynamic Mechanical Analysis of Resilin-based Elastomeric Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Linqing; Kiick, Kristi

    2014-04-01

    The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young’s modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (< 15%). These studies expand our understanding of the properties of these RLP materials under a variety of conditions, and confirm the unique applicability, for mechanically demanding tissue engineering applications, of a range of RLP hydrogels.

  11. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    NASA Astrophysics Data System (ADS)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  12. Functionalized graphene hydrogel-based high-performance supercapacitors.

    PubMed

    Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2013-10-25

    Functionalized graphene hydrogels are prepared by a one-step low-temperature reduction process and exhibit ultrahigh specific capacitances and excellent cycling stability in the aqueous electrolyte. Flexible solid-state supercapacitors based on functionalized graphene hydrogels are demonstrated with superior capacitive performances and extraordinary mechanical flexibility. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    PubMed

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  14. A mini review on hydrogels classification and recent developments in miscellaneous applications.

    PubMed

    Varaprasad, Kokkarachedu; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Yallapu, Murali Mohan; Sadiku, Rotimi

    2017-10-01

    Hydrogels are composed of three-dimensional smart and/or hungry networks, which do not dissolve in water but swell considerably in an aqueous medium, demonstrating an extraordinary ability to absorb water into the reticulated structure. Such inherent feature is a subject of considerable scientific research interest which leads to a dominating path in extending their potential in hi-tech applications. Over the past decades, significant progress has been made in the field of hydrogels. Further, explorations are continuously being made in all directions at an accelerated pace for their extensive usage. In view of this, the present review discusses the subject on the miscellaneous hydrogels with regard to their raw materials, methods of fabrication and applications. In addition, this article summarizes the classification of hydrogels, based on their cross-linking and physical states. Lately, a brief outlook on the future prospects of hydrogels is also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications.

    PubMed

    Silva-Correia, J; Oliveira, J M; Caridade, S G; Oliveira, J T; Sousa, R A; Mano, J F; Reis, R L

    2011-06-01

    Intervertebral disc (IVD) degeneration is a challenging clinical problem that urgently demands viable nucleus pulposus (NP) implant materials. The best suited biomaterial for NP regeneration has yet to be identified, but it is believed that biodegradable hydrogel-based materials are promising candidates. In this work, we have developed ionic- and photo-crosslinked methacrylated gellan gum (GG-MA) hydrogels to be used in acellular and cellular tissue-engineering strategies for the regeneration of IVDs. The physicochemical properties of the developed hydrogels were investigated by Fourier-transform infrared spectroscopy, (1) H nuclear magnetic resonance and differential scanning calorimetry. The swelling ability and degradation rate of hydrogels were also analysed in phosphate-buffered saline solution at physiological pH for a period of 30 days. Additionally, the morphology and mechanical properties of the hydrogels were assessed under a scanning electron microscope and dynamic compression, respectively. An in vitro study was carried out to screen possible cytotoxicity of the gellan gum-based hydrogels by culturing rat lung fibroblasts (L929 cells) with hydrogel leachables up to 7 days. The results demonstrated that gellan gum was successfully methacrylated. We observed that the produced GG-MA hydrogels possess improved mechanical properties and lower water uptake ability and degradation rate as compared to gellan gum. This work also revealed that GG-MA hydrogels are non-cytotoxic in vitro, thus being promising biomaterials to be used in IVD tissue-engineering strategies. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Formulation and evaluation of microemulsion-based hydrogel for topical delivery.

    PubMed

    Sabale, Vidya; Vora, Sejal

    2012-07-01

    The purpose of this study was to develop microemulsion-based hydrogel formulation for topical delivery of bifonazole with an objective to increase the solubility and skin permeability of the drug. Oleic acid was screened as the oil phase of microemulsions, due to a good solubilizing capacity of the microemulison systems. The pseudo-ternary phase diagrams for microemulsion regions were constructed using oleic acid as the oil, Tween 80 as the surfactant and isopropyl alcohol (IPA) as the cosurfactant. Various microemulsion formulations were prepared and optimized by 3(2) factorial design on the basis of percentage (%) transmittance, globule size, zeta potential, drug release, and skin permeability. The abilities of various microemulsions to deliver bifonazole through the skin were evaluated ex vivo using Franz diffusion cells fitted with rat skins. The Hydroxy Propyl Methyl Cellulose (HPMC) K100 M as a gel matrix was used to construct the microemulsion-based hydrogel for improving the viscosity of microemulsion for topical administration. The optimized microemulsion-based hydrogel was evaluated for viscosity, spreadability, skin irritancy, skin permeability, stability, and antifungal activity by comparing it with marketed bifonazole cream. The mechanism of drug release from microemulsion-based hydrogel was observed to follow zero order kinetics. The studied optimized microemulsion-based hydrogel showed a good stability over the period of 3 months. Average globule size of optimized microemulsion (F5) was found to be 18.98 nm, zeta potential was found to be -5.56 mv, and permeability of drug from microemulsion within 8 h was observed 84%. The antifungal activity of microemulsion-based hydrogel was found to be comparable with marketed cream. The results indicate that the studied microemulsion-based hydrogel (F5) has a potential for sustained action of drug release and it may act as promising vehicle for topical delivery of ibuprofen.

  17. Formulation and evaluation of microemulsion-based hydrogel for topical delivery

    PubMed Central

    Sabale, Vidya; Vora, Sejal

    2012-01-01

    Background: The purpose of this study was to develop microemulsion-based hydrogel formulation for topical delivery of bifonazole with an objective to increase the solubility and skin permeability of the drug. Materials and Methods: Oleic acid was screened as the oil phase of microemulsions, due to a good solubilizing capacity of the microemulison systems. The pseudo-ternary phase diagrams for microemulsion regions were constructed using oleic acid as the oil, Tween 80 as the surfactant and isopropyl alcohol (IPA) as the cosurfactant. Various microemulsion formulations were prepared and optimized by 32 factorial design on the basis of percentage (%) transmittance, globule size, zeta potential, drug release, and skin permeability. The abilities of various microemulsions to deliver bifonazole through the skin were evaluated ex vivo using Franz diffusion cells fitted with rat skins. The Hydroxy Propyl Methyl Cellulose (HPMC) K100 M as a gel matrix was used to construct the microemulsion-based hydrogel for improving the viscosity of microemulsion for topical administration. The optimized microemulsion-based hydrogel was evaluated for viscosity, spreadability, skin irritancy, skin permeability, stability, and antifungal activity by comparing it with marketed bifonazole cream. Results: The mechanism of drug release from microemulsion-based hydrogel was observed to follow zero order kinetics. The studied optimized microemulsion-based hydrogel showed a good stability over the period of 3 months. Average globule size of optimized microemulsion (F5) was found to be 18.98 nm, zeta potential was found to be -5.56 mv, and permeability of drug from microemulsion within 8 h was observed 84%. The antifungal activity of microemulsion-based hydrogel was found to be comparable with marketed cream. Conclusion: The results indicate that the studied microemulsion-based hydrogel (F5) has a potential for sustained action of drug release and it may act as promising vehicle for topical

  18. Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine

    NASA Astrophysics Data System (ADS)

    Khoa Nguyen, Cuu; Quyen Tran, Ngoc; Phuong Nguyen, Thi; Hai Nguyen, Dai

    2017-03-01

    Over the past decades, biopolymer-based nanomaterials have been developed to overcome the limitations of other macro- and micro- synthetic materials as well as the ever increasing demand for the new materials in nanotechnology, biotechnology, biomedicine and others. Owning to their high stability, biodegradability, low toxicity, and biocompatibility, biopolymer-based nanomaterials hold great promise for various biomedical applications. The pursuit of this review is to briefly describe our recent studies regarding biocompatible biopolymer-based nanomaterials, particularly in the form of dendrimers, hydrogels, and hydrogel composites along with the synthetic and modification approaches for the utilization in drug delivery, tissue engineering, and biomedical implants. Moreover, in vitro and in vivo studies for the toxicity evaluation are also discussed.

  19. Applications of hydrogels in the nursery and during outplanting

    Treesearch

    Thomas D. Landis; Diane L. Haase

    2012-01-01

    Hydrogels have a variety of potential uses including application to plants in the nursery and at the time of outplanting. Absorptive capacity of these gels is influenced by their chemical and physical composition as well as the ion concentration of the liquid being absorbed. The most common uses for hydrogels in nurseries or during outplanting are incorporation or root...

  20. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.

    PubMed

    Kahn, Jason S; Hu, Yuwei; Willner, Itamar

    2017-04-18

    The base sequence of nucleic acids encodes structural and functional information into the DNA biopolymer. External stimuli such as metal ions, pH, light, or added nucleic acid fuel strands provide triggers to reversibly switch nucleic acid structures such as metal-ion-bridged duplexes, i-motifs, triplex nucleic acids, G-quadruplexes, or programmed double-stranded hybrids of oligonucleotides (DNA). The signal-triggered oligonucleotide structures have been broadly applied to develop switchable DNA nanostructures and DNA machines, and these stimuli-responsive assemblies provide functional scaffolds for the rapidly developing area of DNA nanotechnology. Stimuli-responsive hydrogels undergoing signal-triggered hydrogel-to-solution transitions or signal-controlled stiffness changes attract substantial interest as functional matrices for controlled drug delivery, materials exhibiting switchable mechanical properties, acting as valves or actuators, and "smart" materials for sensing and information processing. The integration of stimuli-responsive oligonucleotides with hydrogel-forming polymers provides versatile means to exploit the functional information encoded in the nucleic acid sequences to yield stimuli-responsive hydrogels exhibiting switchable physical, structural, and chemical properties. Stimuli-responsive DNA-based nucleic acid structures are integrated in acrylamide polymer chains and reversible, switchable hydrogel-to-solution transitions of the systems are demonstrated by applying external triggers, such as metal ions, pH-responsive strands, G-quadruplex, and appropriate counter triggers that bridge and dissociate the polymer chains. By combining stimuli-responsive nucleic acid bridges with thermosensitive poly(N-isopropylacrylamide) (pNIPAM) chains, systems undergoing reversible solution ↔ hydrogel ↔ solid transitions are demonstrated. Specifically, by bridging acrylamide polymer chains by two nucleic acid functionalities, where one type of bridging unit

  1. Smart hydrogel-functionalized textile system with moisture management property for skin application

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowen; Hu, Huawen; Yang, Zongyue; He, Liang; Kong, Yeeyee; Fei, Bin; Xin, John H.

    2014-12-01

    In this study, a functional textile-based material for topical skin application was fabricated by coating a thermoresponsive hydrogel onto one side of absorbent nonwoven fabric. The thermoresponsive hydrogel was synthesized easily through coupling of poly (ethylene glycol) (PEG) and poly (ɛ-caprolactone) (PCL) with hexamethylene diisocyanate (HMDI) as a chemical linker. The chemical structure of the as-prepared triblock copolymer hydrogel was unraveled by FTIR and 1H NMR analysis. The hydrogel showed a temperature-triggered sol-gel transition behavior and high potential for use as drug controlled release. When the surrounding temperature was close to the skin temperature of around 34 °C, it became a moisture management system where the liquids including sweat, blood, and other body fluids can be transported unidirectionally from one fabric side with the hydrophobic hydrogel coating to the untreated opposite side. This thereby showed that the thermoresponsive hydrogel-coated textile materials had a function to keep topical skin area clean, breathable, and comfortable, thus suggesting a great potential and significance for long-term skin treatment application. The structure and surface morphology of the thermoresponsive hydrogel, in vitro drug release behavior, and the mechanism of unidirectional water transport were investigated in detail. Our success in preparation of the functional textile composites will pave the way for development of various polymer- or textile-based functional materials that are applicable in the real world.

  2. A Supramolecular Hydrogel Based on Polyglycerol Dendrimer-Specific Amino Group Recognition.

    PubMed

    Cho, Ik Sung; Ooya, Tooru

    2018-05-24

    Dendrimer-based supramolecular hydrogels have gained attention in biomedical fields. While biocompatible dendrimers were used to prepare hydrogels via physical and/or chemical crosslinking, smart functions such as pH and molecular control remain undeveloped. Here, we present polyglycerol dendrimer-based supramolecular hydrogel formation induced by a specific interaction between the polyglycerol dendrimer and an amino group of glycol chitosan. Gelation was achieved by mixing the two aqueous solutions. Hydrogel formation was controlled by varying the polyglycerol dendrimer generation. The hydrogel showed pH-dependent swelling; strongly acidic conditions induced degradation via dissociation of the specific interaction. It also showed unique L-arginine-responsive degradation capability due to competitive exchange of the amino groups of glycol chitosan and L-arginine. These polyglycerol dendrimer-based supramolecular characteristics allow multimodal application in smart biomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly(γ-glutamic acid) hydrogel.

    PubMed

    Cho, Sun-Hee; Kim, Ahreum; Shin, Woojung; Heo, Min Beom; Noh, Hyun Jong; Hong, Kwan Soo; Cho, Jee-Hyun; Lim, Yong Taik

    2017-01-01

    Injectable and stimuli-responsive hydrogels have attracted attention in molecular imaging and drug delivery because encapsulated diagnostic or therapeutic components in the hydrogel can be used to image or change the microenvironment of the injection site by controlling various stimuli such as enzymes, temperature, pH, and photonic energy. In this study, we developed a novel injectable and photoresponsive composite hydrogel composed of anticancer drugs, imaging contrast agents, bio-derived collagen, and multifaceted anionic polypeptide, poly (γ-glutamic acid) (γ-PGA). By the introduction of γ-PGA, the intrinsic temperature-dependent phase transition behavior of collagen was modified to a low viscous sol state at room temperature and nonflowing gel state around body temperature. The modified temperature-dependent phase transition behavior of collagen/γ-PGA hydrogels was also evaluated after loading of near-infrared (NIR) fluorophore, indocyanine green (ICG), which could transform absorbed NIR photonic energy into thermal energy. By taking advantage of the abundant carboxylate groups in γ-PGA, cationic-charged doxorubicin (Dox) and hydrophobic MnFe 2 O 4 magnetic nanoparticles were also incorporated successfully into the collagen/γ-PGA hydrogels. By illumination of NIR light on the collagen/γ-PGA/Dox/ICG/MnFe 2 O 4 hydrogels, the release kinetics of Dox and magnetic relaxation of MnFe 2 O 4 nanoparticles could be modulated. The experimental results suggest that the novel injectable and NIR-responsive collagen/γ-PGA hydrogels developed in this study can be used as a theranostic platform after loading of various molecular imaging probes and therapeutic components.

  4. Polysaccharide-based hydrogels with tunable composition as 3D cell culture systems.

    PubMed

    Gentilini, Roberta; Munarin, Fabiola; Bloise, Nora; Secchi, Eleonora; Visai, Livia; Tanzi, Maria Cristina; Petrini, Paola

    2018-04-01

    To date, cell cultures have been created either on 2-dimensional (2D) polystyrene surfaces or in 3-dimensional (3D) systems, which do not offer a controlled chemical composition, and which lack the soft environment encountered in vivo and the chemical stimuli that promote cell proliferation and allow complex cellular behavior. In this study, pectin-based hydrogels were developed and are proposed as versatile cell culture systems. Pectin-based hydrogels were produced by internally crosslinking pectin with calcium carbonate at different initial pH, aiming to control crosslinking kinetics and degree. Additionally, glucose and glutamine were added as additives, and their effects on the viscoelastic properties of the hydrogels and on cell viability were investigated. Pectin hydrogels showed in high cell viability and shear-thinning behavior. Independently of hydrogel composition, an initial swelling was observed, followed by a low percentage of weight variation and a steady-state stage. The addition of glucose and glutamine to pectin-based hydrogels rendered higher cell viability up to 90%-98% after 1 hour of incubation, and these hydrogels were maintained for up to 7 days of culture, yet no effect on viscoelastic properties was detected. Pectin-based hydrogels that offer tunable composition were developed successfully. They are envisioned as synthetic extracellular matrix (ECM) either to study complex cellular behaviors or to be applied as tissue engineering substitutes.

  5. Heparin-based hydrogels induce human renal tubulogenesis in vitro.

    PubMed

    Weber, Heather M; Tsurkan, Mikhail V; Magno, Valentina; Freudenberg, Uwe; Werner, Carsten

    2017-07-15

    Dialysis or kidney transplantation is the only therapeutic option for end stage renal disease. Accordingly, there is a large unmet clinical need for new causative therapeutic treatments. Obtaining robust models that mimic the complex nature of the human kidney is a critical step in the development of new therapeutic strategies. Here we establish a synthetic in vitro human renal tubulogenesis model based on a tunable glycosaminoglycan-hydrogel platform. In this system, renal tubulogenesis can be modulated by the adjustment of hydrogel mechanics and degradability, growth factor signaling, and the presence of insoluble adhesion cues, potentially providing new insights for regenerative therapy. Different hydrogel properties were systematically investigated for their ability to regulate renal tubulogenesis. Hydrogels based on heparin and matrix metalloproteinase cleavable peptide linker units were found to induce the morphogenesis of single human proximal tubule epithelial cells into physiologically sized tubule structures. The generated tubules display polarization markers, extracellular matrix components, and organic anion transport functions of the in vivo renal proximal tubule and respond to nephrotoxins comparable to the human clinical response. The established hydrogel-based human renal tubulogenesis model is thus considered highly valuable for renal regenerative medicine and personalized nephrotoxicity studies. The only cure for end stage kidney disease is kidney transplantation. Hence, there is a huge need for reliable human kidney models to study renal regeneration and establish alternative treatments. Here we show the development and application of an in vitro human renal tubulogenesis model using heparin-based hydrogels. To the best of our knowledge, this is the first system where human renal tubulogenesis can be monitored from single cells to physiologically sized tubule structures in a tunable hydrogel system. To validate the efficacy of our model as a drug

  6. Impact of RGD amount in dextran-based hydrogels for cell delivery.

    PubMed

    Riahi, Nesrine; Liberelle, Benoît; Henry, Olivier; De Crescenzo, Gregory

    2017-04-01

    Dextran is one of the hydrophilic polymers that is used for hydrogel preparation. As any polysaccharide, it presents a high density of hydroxyl groups, which make possible several types of derivatization and crosslinking reactions. Furthermore, dextran is an excellent candidate for hydrogel fabrication with controlled cell/scaffold interactions as it is resistant to protein adsorption and cell adhesion. RGD peptide can be grafted to the dextran in order to promote selected cell adhesion and proliferation. Altogether, we have developed a novel strategy to graft the RGD peptide sequence to dextran-based hydrogel using divinyl sulfone as a linker. The resulting RGD functionalized dextran-based hydrogels were transparent, presented a smooth surface and were easy to handle. The impact of varying RGD peptide amounts, hydrogel porosity and topology upon human umbilical vein endothelial cell (HUVEC) adhesion, proliferation and infiltration was investigated. Our results demonstrated that 0.1% of RGD-modified dextran within the gel was sufficient to support HUVEC cells adhesion to the hydrogel surface. Sodium chloride was added (i) to the original hydrogel mix in order to form a macroporous structure presenting interconnected pores and (ii) to the hydrogel surface to create small orifices essential for cells migration inside the matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hydrogel based QCM aptasensor for detection of avian influenza virus.

    PubMed

    Wang, Ronghui; Li, Yanbin

    2013-04-15

    The objective of this study was to develop a quartz crystal microbalance (QCM) aptasensor based on ssDNA crosslinked polymeric hydrogel for rapid, sensitive and specific detection of avian influenza virus (AIV) H5N1. A selected aptamer with high affinity and specificity against AIV H5N1 surface protein was used, and hybridization between the aptamer and ssDNA formed the crosslinker in the polymer hydrogel. The aptamer hydrogel was immobilized on the gold surface of QCM sensor using a self-assembled monolayer method. The hydrogel remained in the state of shrink if no H5N1 virus was present in the sample because of the crosslinking between the aptamer and ssDNA in the polymer network. When it exposed to target virus, the binding reaction between the aptamer and H5N1 virus caused the dissolution of the linkage between the aptamer and ssDNA, resulting in the abrupt swelling of the hydrogel. The swollen hydrogel was monitored by the QCM sensor in terms of decreased frequency. Three polymeric hydrogels with different ratio (100:1 hydrogel I, 10:1 hydrogel II, 1:1 hydrogel III) of acrylamide and the aptamer monomer were synthesized, respectively, and then were used as the QCM sensor coating material. The results showed that the developed hydrogel QCM aptasensor was capable of detecting target H5N1 virus, and among the three developed aptamer hydrogels, hydrogel III coated QCM aptasensor achieved the highest sensitivity with the detection limit of 0.0128 HAU (HA unit). The total detection time from sampling to detection was only 30 min. In comparison with the anti-H5 antibody coated QCM immunosensor, the hydrogel QCM aptasensor lowered the detection limit and reduced the detection time. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Hydrogel-based three-dimensional cell culture for organ-on-a-chip applications.

    PubMed

    Lee, Seung Hwan; Shim, Kyu Young; Kim, Bumsang; Sung, Jong Hwan

    2017-05-01

    Recent studies have reported that three-dimensionally cultured cells have more physiologically relevant functions than two-dimensionally cultured cells. Cells are three-dimensionally surrounded by the extracellular matrix (ECM) in complex in vivo microenvironments and interact with the ECM and neighboring cells. Therefore, replicating the ECM environment is key to the successful cell culture models. Various natural and synthetic hydrogels have been used to mimic ECM environments based on their physical, chemical, and biological characteristics, such as biocompatibility, biodegradability, and biochemical functional groups. Because of these characteristics, hydrogels have been combined with microtechnologies and used in organ-on-a-chip applications to more closely recapitulate the in vivo microenvironment. Therefore, appropriate hydrogels should be selected depending on the cell types and applications. The porosity of the selected hydrogel should be controlled to facilitate the movement of nutrients and oxygen. In this review, we describe various types of hydrogels, external stimulation-based gelation of hydrogels, and control of their porosity. Then, we introduce applications of hydrogels for organ-on-a-chip. Last, we also discuss the challenges of hydrogel-based three-dimensional cell culture techniques and propose future directions. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:580-589, 2017. © 2017 American Institute of Chemical Engineers.

  9. Hydrogel based approaches for cardiac tissue engineering.

    PubMed

    Saludas, Laura; Pascual-Gil, Simon; Prósper, Felipe; Garbayo, Elisa; Blanco-Prieto, María

    2017-05-25

    Heart failure still represents the leading cause of death worldwide. Novel strategies using stem cells and growth factors have been investigated for effective cardiac tissue regeneration and heart function recovery. However, some major challenges limit their translation to the clinic. Recently, biomaterials have emerged as a promising approach to improve delivery and viability of therapeutic cells and proteins for the regeneration of the damaged heart. In particular, hydrogels are considered one of the most promising vehicles. They can be administered through minimally invasive techniques while maintaining all the desirable characteristics of drug delivery systems. This review discusses recent advances made in the field of hydrogels for cardiac tissue regeneration in detail, focusing on the type of hydrogel (conventional, injectable, smart or nano- and micro-gel), the biomaterials used for its manufacture (natural, synthetic or hybrid) and the therapeutic agent encapsulated (stem cells or proteins). We expect that these novel hydrogel-based approaches will open up new possibilities in drug delivery and cell therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. In vitro BMP-2 peptide release from thiolated chitosan based hydrogel.

    PubMed

    Liu, Xujie; Yu, Bo; Huang, Qianli; Liu, Rui; Feng, Qingling; Cai, Qiang; Mi, Shengli

    2016-12-01

    Thiolated chitosan based thermo-sensitive hydrogel is a water soluble system and the existing thiol groups are beneficial for the delivery of cysteine-rich peptides. In the present study, a kind of thiolated chitosan, i.e. chitosan-4-thio-butylamidine (CS-TBA) conjugate was characterized and used to prepare CS-TBA/hydroxyapatite (HA)/beta-glycerophosphate disodium (β-GP) thermo-sensitive hydrogel. The cysteine terminated peptide 24 (P24) containing residues 73-92 of the knuckle epitope of BMP-2 (N→C: KIPKASSVPTELSAISTLYLSGGC) was synthesized and characterized. The release behavior of P24 from CS-TBA based hydrogel was investigated in vitro. The thiol groups in CS-TBA may react with thiol groups in P24, thus decreases the P24 release rate and maintains the peptide release for a longer time compared with unmodified chitosan based hydrogel. Moreover, the bioactivity of P24 is preserved during release process. These results indicate that P24 loaded CS-TBA based thermosensitive hydrogel is a potential material for minimally invasive surgery of bone repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions.

    PubMed

    Hu, Yuwei; Kahn, Jason S; Guo, Weiwei; Huang, Fujian; Fadeev, Michael; Harries, Daniel; Willner, Itamar

    2016-12-14

    We present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems. The removal of the stress by a counter-trigger restores the original linear bilayer hydrogel. The stiffness of the DNA hydrogel layers is controlled by thermal, pH (i-motif), K + ion/crown ether (G-quadruplexes), chemical (pH-doped polyaniline), or biocatalytic (glucose oxidase/urease) triggers. A theoretical model relating the experimental bending radius of curvatures of the hydrogels with the Young's moduli and geometrical parameters of the hydrogels is provided. Promising applications of shape-regulated stimuli-responsive asymmetric hydrogels include their use as valves, actuators, sensors, and drug delivery devices.

  12. 3D-Hydrogel Based Polymeric Nanoreactors for Silver Nano-Antimicrobial Composites Generation

    PubMed Central

    Soto-Quintero, Albanelly; Romo-Uribe, Ángel; Bermúdez-Morales, Víctor H.; Quijada-Garrido, Isabel

    2017-01-01

    This study underscores the development of Ag hydrogel nanocomposites, as smart substrates for antibacterial uses, via innovative in situ reactive and reduction pathways. To this end, two different synthetic strategies were used. Firstly thiol-acrylate (PSA) based hydrogels were attained via thiol-ene and radical polymerization of polyethylene glycol (PEG) and polycaprolactone (PCL). As a second approach, polyurethane (PU) based hydrogels were achieved by condensation polymerization from diisocyanates and PCL and PEG diols. In fact, these syntheses rendered active three-dimensional (3D) hydrogel matrices which were used as nanoreactors for in situ reduction of AgNO3 to silver nanoparticles. A redox chemistry of stannous catalyst in PU hydrogel yielded spherical AgNPs formation, even at 4 °C in the absence of external reductant; and an appropriate thiol-functionalized polymeric network promoted spherical AgNPs well dispersed through PSA hydrogel network, after heating up the swollen hydrogel at 103 °C in the presence of citrate-reductant. Optical and swelling behaviors of both series of hydrogel nanocomposites were investigated as key factors involved in their antimicrobial efficacy over time. Lastly, in vitro antibacterial activity of Ag loaded hydrogels exposed to Pseudomona aeruginosa and Escherichia coli strains indicated a noticeable sustained inhibitory effect, especially for Ag–PU hydrogel nanocomposites with bacterial inhibition growth capabilities up to 120 h cultivation. PMID:28763050

  13. 3D-Hydrogel Based Polymeric Nanoreactors for Silver Nano-Antimicrobial Composites Generation.

    PubMed

    Soto-Quintero, Albanelly; Romo-Uribe, Ángel; Bermúdez-Morales, Víctor H; Quijada-Garrido, Isabel; Guarrotxena, Nekane

    2017-08-01

    This study underscores the development of Ag hydrogel nanocomposites, as smart substrates for antibacterial uses, via innovative in situ reactive and reduction pathways. To this end, two different synthetic strategies were used. Firstly thiol-acrylate (PSA) based hydrogels were attained via thiol-ene and radical polymerization of polyethylene glycol (PEG) and polycaprolactone (PCL). As a second approach, polyurethane (PU) based hydrogels were achieved by condensation polymerization from diisocyanates and PCL and PEG diols. In fact, these syntheses rendered active three-dimensional (3D) hydrogel matrices which were used as nanoreactors for in situ reduction of AgNO₃ to silver nanoparticles. A redox chemistry of stannous catalyst in PU hydrogel yielded spherical AgNPs formation, even at 4 °C in the absence of external reductant; and an appropriate thiol-functionalized polymeric network promoted spherical AgNPs well dispersed through PSA hydrogel network, after heating up the swollen hydrogel at 103 °C in the presence of citrate-reductant. Optical and swelling behaviors of both series of hydrogel nanocomposites were investigated as key factors involved in their antimicrobial efficacy over time. Lastly, in vitro antibacterial activity of Ag loaded hydrogels exposed to Pseudomona aeruginosa and Escherichia coli strains indicated a noticeable sustained inhibitory effect, especially for Ag-PU hydrogel nanocomposites with bacterial inhibition growth capabilities up to 120 h cultivation.

  14. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV-vis imaging.

    PubMed

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2017-10-25

    Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position. For the PLGA-1-methyl-2-pyrrolidinone system, the rate of spatial phase separation was determined and found to decrease with increasing the PLGA concentration from 20% to 40% (w/w). Hydrogels with different agarose concentrations (1% and 10% (w/v)) were prepared for providing the nonsolvent, water, to the in situ forming PLGA implants simulating the injection site environment. The resulting implant morphology depended on the stiffness of hydrogel matrix, indicating that the matrix in which implants are formed is of importance. Overall, the work showed that the UV-vis imaging-based platform with an agarose hydrogel mimicking the subcutaneous tissue holds potential in providing bio-relevant and mechanistic information on the phase separation processes of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications.

    PubMed

    Zhou, Hui Yun; Jiang, Ling Juan; Cao, Pei Pei; Li, Jun Bo; Chen, Xi Guang

    2015-03-06

    Chitosan is non-toxic, biocompatible and biodegradable polysaccharide composed of glucosamine and derived by deacetylation of chitin. Chitosan thermosensitive hydrogel has been developed to form a gel in situ, precluding the need for surgical implantation. In this review, the recent advances in chitosan thermosensitive hydrogels based on different glycerophosphate are summarized. The hydrogel is prepared with chitosan and β-glycerophosphate or αβ-glycerophosphate which is liquid at room temperature and transits into gel as temperature increases. The gelation mechanism may involve multiple interactions between chitosan, glycerophosphate, and water. The solution behavior, rheological and physicochemical properties, and gelation process of the hydrogel are affected not only by the molecule weight, deacetylation degree, and concentration of chitosan, but also by the kind and concentration of glycerophosphate. The properties and the three-dimensional networks of the hydrogel offer them wide applications in biomedical field including local drug delivery and tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies.

    PubMed

    Chuah, Yon Jin; Peck, Yvonne; Lau, Jia En Josias; Hee, Hwan Tak; Wang, Dong-An

    2017-03-28

    Hydrogels have been extensively employed as an attractive biomaterial to address numerous existing challenges in the fields of regenerative medicine and research because of their unique properties such as the capability to encapsulate cells, high water content, ease of modification, low toxicity, injectability, in situ spatial fit and biocompatibility. These inherent properties have created many opportunities for hydrogels as a scaffold or a cell/drug carrier in tissue regeneration, especially in the field of cartilaginous tissue such as articular cartilage and intervertebral discs. A concise overview of the anatomy/physiology of these cartilaginous tissues and their pathophysiology, epidemiology and existing clinical treatments will be briefly described. This review article will discuss the current state-of-the-art of various polymers and developing strategies that are explored in establishing different technologies for cartilaginous tissue regeneration. In particular, an innovative approach to generate scaffold-free cartilaginous tissue via a transient hydrogel scaffolding system for disease modeling to pre-clinical trials will be examined. Following that, the article reviews numerous hydrogel-based medical implants used in clinical treatment of osteoarthritis and degenerated discs. Last but not least, the challenges and future directions of hydrogel based medical implants in the regeneration of cartilaginous tissue are also discussed.

  17. Hydrogel Based Biosensors for In Vitro Diagnostics of Biochemicals, Proteins, and Genes.

    PubMed

    Jung, Il Young; Kim, Ji Su; Choi, Bo Ram; Lee, Kyuri; Lee, Hyukjin

    2017-06-01

    Hydrogel-based biosensors have drawn considerable attention due to their various advantages over conventional detection systems. Recent studies have shown that hydrogel biosensors can be excellent alternative systems to detect a wide range of biomolecules, including small biochemicals, pathogenic proteins, and disease specific genes. Due to the excellent physical properties of hydrogels such as the high water content and stimuli-responsive behavior of cross-linked network structures, this system can offer substantial improvement for the design of novel detection systems for various diagnostic applications. The other main advantage of hydrogels is the role of biomimetic three-dimensional (3D) matrix immobilizing enzymes and aptamers within the detection systems, which enhances their stability. This provides ideal reaction conditions for enzymes and aptamers to interact with substrates within the aqueous environment of the hydrogel. In this review, we have highlighted various novel detection approaches utilizing the outstanding properties of the hydrogel. This review summarizes the recent progress of hydrogel-based biosensors and discusses their future perspectives and clinical limitations to overcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions.

    PubMed

    Dax, Daniel; Chávez, María Soledad; Xu, Chunlin; Willför, Stefan; Mendonça, Regis Teixeira; Sánchez, Julio

    2014-10-13

    In this work the synthesis of hemicellulose-based hydrogels and their application for the removal of arsenic and chromium ions is described. In a first step O-acetyl galactoglucomannan (GGM) was subjected to a transesterification applying glycidyl methacrylate (GMA) for the synthesis of novel GGM macromonomers. Two distinguished and purified GGM fractions with molar mass of 7.1 and 28 kDa were used as starting materials. The resulting GGM macromonomers (GGM-MA) contained well-defined amounts of methacrylate groups as determined by (1)H NMR spectroscopy. Selected GGM-MA derivatives were consecutively applied as a crosslinker in the synthesis of tailored hydrogels using [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MeDMA) as monomer. The swelling rate of the hydrogels was determined and the coherence between the swelling rate and the hydrogel composition was examined. The morphology of the GGM-based hydrogels was analysed by SEM and the hydrogels revealed a high surface area and were assessed in respect to their ability to remove arsenate and chromate ions from aqueous solutions. The presented bio-based hydrogels are of high interest especially for the mining industries as a sustainable material for the treatment of their highly contaminated wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Radiation synthesis of biocompatible hydrogels of dextran methacrylate

    NASA Astrophysics Data System (ADS)

    Szafulera, Kamila; Wach, Radosław A.; Olejnik, Alicja K.; Rosiak, Janusz M.; Ulański, Piotr

    2018-01-01

    The aim of this work was to synthesize biocompatible dextran-based hydrogels through crosslinking initiated by ionizing radiation. A series of derivatives of dextran has been synthesized by coupling of methacrylated glycidyl to the structure of this polysaccharide, yielding dextran methacrylate (Dex-MA) of the degree of methacrylate substitution (DS) up to 1.13 as characterised by FTIR and NMR spectroscopy. Chemically crosslinked hydrogels were formed by electron-beam irradiation of Dex-MA in aqueous solution in the absence of low-molecular-weight additives such as catalysts, monomers or crosslinking agents. Crosslinking of Dex-MA in aqueous solutions of 20 g/l and above was an efficient process, the gels were formed at doses as low as 0.5 kGy (experiments conducted up to 100 kGy) and were characterised by high content of insoluble fraction (70-100%). Due to high crosslinking density the equilibrium degree of swelling of fabricated gels was controlled principally by the initial concentration of Dex-MA solution subjected to irradiation, and it was in the range of 20 to over 100 g of water absorbed by gram of gel. Cytocompatibility of hydrogels was examined using XTT assay through evaluation of the cell viability being in indirect contact with hydrogels. The results indicated that hydrogels of Dex-MA of the average DS below 1 were not cytotoxic. Altogether, our data demonstrate that irradiation of methacrylated dextran in aqueous solution is an efficient method of fabrication of biocompatible hydrogels, which applications in regeneration medicine are anticipated.

  20. Bromelain Loading and Release from a Hydrogel Formulated Using Alginate and Arabic Gum.

    PubMed

    Ataide, Janaína Artem; Cefali, Letícia Caramori; Rebelo, Marcia de Araujo; Spir, Lívia Genovez; Tambourgi, Elias Basile; Jozala, Angela Faustino; Chaud, Marco Vinícius; Silveira, Edgar; Gu, Xiaochen; Gava Mazzola, Priscila

    2017-07-01

    An ideal wound dressing ensures a moist environment around the wound area and absorbs exudates from the wound surface. Topical application of bromelain to incised wounds has been shown to reprogram the wound microenvironment to promote effective tissue repair. Combining the characteristics of hydrogels and bromelain is therefore of great interest. Herein, we describe the development of a hydrogel, formulated using alginate and Arabic gum, for bromelain loading and release. The hydrogel formulation was evaluated using response surface methodology, considering the pH value and the concentration of alginate and Arabic gum. Bromelain loading and release were evaluated based on passive diffusion. Differential scanning calorimetry and Fourier transform infrared spectroscopy were performed to confirm bromelain immobilization in the hydrogel. The final hydrogel formulation had a swelling ratio of 227 % and incorporated 19 % of bromelain from a bromelain solution. Bromelain immobilization in the hydrogel was the result of hydrogen bond formation and was optimal at 4 °C after 4 h of contact. This evidence suggests that bromelain entrapment into a hydrogel is a promising strategy for the development of wound dressings that support the debridement of burns and wounds. Georg Thieme Verlag KG Stuttgart · New York.

  1. Laboratory and Field Evaluations of Polyacrylamide Hydrogel Baits Against Argentine Ants (Hymenoptera: Formicidae).

    PubMed

    Rust, Michael K; Soeprono, Andrew; Wright, Sarajean; Greenberg, Les; Choe, Dong-Hwan; Boser, Christina L; Cory, Coleen; Hanna, Cause

    2015-06-01

    The development of effective baits to control the Argentine ant, Linepithema humile (Mayr), has been problematic because foragers prefer sweet liquids, while many toxicants are insoluble in water and liquid baits are generally difficult to deliver. The incorporation of thiamethoxam and sucrose solutions into a water-absorbing polyacrylamide hydrogel provides a unique and novel carrier and method of application for liquid baits. Formulations of thiamethoxam affected the size of the hydrogels, and sucrose solutions containing 0.0003% technical thiamethoxam provided hydrogels as large as those made with 25% sucrose solution or deionized water. Concentrations of thiamethoxam as low as 0.000075% in the hydrogels provided 50% kill of workers within 3 d in a laboratory setting. In small colony studies, baiting with 0.00015 and 0.000075% thiamethoxam hydrogels provided 100% mortality of workers and queens within 8 d. An enzyme-linked immunosorbent assay indicated that thiamethoxam was absorbed into the interior of the polyacrylamide matrix. The water loss rates of the hydrogels were dependent upon the relative humidity. Polyacrylamide hydrogels with >50% water loss were less attractive to ants. Field studies in highly infested areas indicated that concentrations of 0.0006 or 0.0018% thiamethoxam were more effective than 0.00015%. Hydrogels may provide a cost-effective alternative to providing aqueous baits to control Argentine ants. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Time-dependent chemo-electro-mechanical behavior of hydrogel-based structures

    NASA Astrophysics Data System (ADS)

    Leichsenring, Peter; Wallmersperger, Thomas

    2018-03-01

    Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change. Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference. In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.

  3. Investigation of the surface morphology of biocompatible chitosan-based hydrogels and xerogels

    NASA Astrophysics Data System (ADS)

    Zhuravleva, Yulia Yu.; Malinkina, Olga N.; Shipovskaya, Anna B.

    2018-04-01

    Our biocompatible hydrogel systems obtained by the sol-gel technqiue and based on chitosan and silicon polyolates are promising for medical and biological applications. The surface microrelief of these sol-gel materials (hydrogels and xerogels) based on chitosan and silicon tetraglycerolate was explored by AFM and SEM. A significant influence of the component ratio in the mixed system on the morphology and surface profile of the hydrogels and xerogels prepared therefrom was established. An increased content of the structure-forming component (chitosan) in the system was shown to increase the roughness scale of the hydrogel surface and to promote the porosity of the xerogel structure.

  4. Chitosan-containing hydrogel wound dressings prepared by radiation technique

    NASA Astrophysics Data System (ADS)

    Mozalewska, Wiktoria; Czechowska-Biskup, Renata; Olejnik, Alicja K.; Wach, Radoslaw A.; Ulański, Piotr; Rosiak, Janusz M.

    2017-05-01

    The aim of the study was to develop an antimicrobial hydrogel wound dressing by means of radiation-initiated crosslinking of hydrophilic polymers, i.e. by well-established technology comprising gel manufacturing and its sterilization in one process. The approach included admixture of chitosan of relatively low molecular weight dissolved in lactic acid (LA) into the initial regular components of the conventional hydrogel dressing based on poly(N-vinyl pyrrolidone) (PVP) and agar. Molecular weight of chitosan was regulated by radiation-initiated degradation in the range of 39-132 kg mol-1. Optimum total concentration of LA in the resultant hydrogel dressing was evaluated as 0.05 mol dm-3, that is ca. 0.5%. Presence of LA in the system influenced essential radiation and technological parameters of hydrogel manufacturing. The setting temperature of the pre-hydrogel mixture, resulting from agar ability to congeal, was reduced with LA concentration, yet remained significantly above the room temperature. 0.5% of chitosan was effectively dissolved in aqueous solution of lactic acid due to its pH (lower than 5.5). Radiation parameters of PVP crosslinking in the presence of LA, as determined with generalized Charlesby-Pinner equation, were reflected in slight reduction of the maximum gel fraction and increase in gelation dose and in the factor comparing yields of scission to crosslinking. Nevertheless, essentially physical characteristics of the hydrogel was not affected, except for somewhat increased water uptake capacity, what in turn improves functionality of the dressing as extensive exudate for the wound can be efficiently absorbed. Preliminary microbiological studies showed antimicrobial character of the chitosan-containing hydrogel towards Gram-positive bacterial strain.

  5. Viscoelastic Properties and Morphology of Mumio-based Medicated Hydrogels

    NASA Astrophysics Data System (ADS)

    Zandraa, Oyunchimeg; Jelínková, Lenka; Roy, Niladri; Sáha, Tomáš; Kitano, Takeshi; Saha, Nabanita

    2011-07-01

    Novel medicated hydrogels were prepared (by moist heat treatment) with PVA, agar, mumio, mare's milk (MM), seabuckthorn oil (SB oil) and salicylic acid (SA) for wound dressing/healing application. Scanning electron micrographs (SEM) show highly porous structure of these hydrogels. The swelling behaviour of the hydrogels in physiological solution displays remarkable liquid absorption property. The knowledge obtained from rheological investigations of these-systems may be highly useful for the characterization of the newly developed topical formulations. In the present study, an oscillation frequency sweep test was used for the evaluation of storage modulus (G'), loss modulus (G″), and complex viscosity (η*) of five different formulations, over an angular frequency range from 0.1 to 100 rad.s-1. The influence of healing agents and swelling effect on the rheological properties of mumio-based medicated hydrogels was investigated to judge its application on uneven surface of body.

  6. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Choi, Jin Woo; Kim, Seonghoon; Nizamoglu, Sedat; Hahn, Sei Kwang; Yun, Seok Hyun

    2013-12-01

    Polymer hydrogels are widely used as cell scaffolds for biomedical applications. Although the biochemical and biophysical properties of hydrogels have been investigated extensively, little attention has been paid to their potential photonic functionalities. Here, we report cell-integrated polyethylene glycol-based hydrogels for in vivo optical-sensing and therapy applications. Hydrogel patches containing cells were implanted in awake, freely moving mice for several days and shown to offer long-term transparency, biocompatibility, cell viability and light-guiding properties (loss of <1 dB cm-1). Using optogenetic, glucagon-like peptide-1 secreting cells, we conducted light-controlled therapy using the hydrogel in a mouse model with diabetes and obtained improved glucose homeostasis. Furthermore, real-time optical readout of encapsulated heat-shock-protein-coupled fluorescent reporter cells made it possible to measure the nanotoxicity of cadmium-based bare and shelled quantum dots (CdTe; CdSe/ZnS) in vivo.

  7. Synthesis of polymer ion-exchange hydrogels under γ - irradiation 60Co

    NASA Astrophysics Data System (ADS)

    Le, V. M.; Zhevnyak, V. D.; Pak, V. Kh; Ananev, V. A.; Borodin, U. V.

    2015-04-01

    We have reported earlier about the modification of ion-exchange hydrogel under the influence of gamma radiation. The optimal absorbed dose of irradiation had been choosen for radiation modification of polymer hydrogels by ionits to produce products with a high content of the gel - fractions and sufficient mechanical properties. The dependence of the static exchange capacity of hydrogels on the type of ionit and its fractional composition had been studied. The dependence of the static exchange capacity of the quantitative composition of the ionit in the volume of the hydrogel had been investigated. The ion-exchange medical eye lenses had been made under selected conditions of synthesis. Their sorption properties had been studied.

  8. Xylan-Modified-Based Hydrogels with Temperature/pH Dual Sensitivity and Controllable Drug Delivery Behavior

    PubMed Central

    Kong, Wei-Qing; Gao, Cun-Dian; Hu, Shu-Feng; Ren, Jun-Li; Zhao, Li-Hong; Sun, Run-Cang

    2017-01-01

    Among the natural macromolecules potentially used as the scaffold material in hydrogels, xylan has aroused great interest in many fields because of its biocompatibility, low toxicity, and biodegradability. In this work, new pH and thermoresponsive hydrogels were prepared by the cross-linking polymerization of maleic anhydride-modified xylan (MAHX) with N-isopropylacrylamide (NIPAm) and acrylic acid (AA) under UV irradiation to form MAHX-g-P(NIPAm-co-AA) hydrogels. The pore volume, the mechanical properties, and the release rate for drugs of hydrogels could be controlled by the degree of substitution of MAHX. These hydrogels were characterized by swelling ability, lower critical solution temperature (LCST), Fourier-transform infrared (FTIR), and SEM. Furthermore, the cumulative release rate was investigated for acetylsalicylic acid and theophylline, as well as the cytocompatibility MAHX-based hydrogels. Results showed that MAHX-based hydrogels exhibited excellent swelling–deswelling properties, uniform porous structure, and the temperature/pH dual sensitivity. In vitro, the cumulative release rate of acetylsalicylic acid for MAHX-based hydrogels was higher than that for theophylline, and in the gastrointestinal sustained drug release study, the acetylsalicylic acid release rate was extremely slow during the initial 3 h in the gastric fluid (24.26%), and then the cumulative release rate reached to 90.5% after sustained release for 5 h in simulated intestinal fluid. The cytotoxicity experiment demonstrated that MAHX-based hydrogels could promote cell proliferation and had satisfactory biocompatibility with NIH3T3 cells. These results indicated that MAHX-based hydrogels, as new drug carriers, had favorable behavior for intestinal-targeted drug delivery. PMID:28772664

  9. Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.

    PubMed

    Van Nieuwenhove, Ine; Salamon, Achim; Peters, Kirsten; Graulus, Geert-Jan; Martins, José C; Frankel, Daniel; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter

    2016-11-05

    The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering

  10. Induction of neurite outgrowth in 3D hydrogel-based environments.

    PubMed

    Assunção-Silva, Rita C; Oliveira, Cátia Costa; Ziv-Polat, Ofra; Gomes, Eduardo D; Sahar, Abraham; Sousa, Nuno; Silva, Nuno A; Salgado, António J

    2015-10-20

    The ability of peripheral nervous system (PNS) axons to regenerate and re-innervate their targets after an injury has been widely recognized. However, despite the considerable advances made in microsurgical techniques, complete functional recovery is rarely achieved, especially for severe peripheral nerve injuries (PNIs). Therefore, alternative therapies that can successfully repair peripheral nerves are still essential. In recent years the use of biodegradable hydrogels enriched with growth-supporting and guidance cues, cell transplantation, and biomolecular therapies have been explored for the treatment of PNIs. Bearing this in mind, the aim of this study was to assess whether Gly-Arg-Gly-Asp-Ser synthetic peptide (GRGDS)-modified gellan gum (GG) based hydrogels could foster an amenable environment for neurite/axonal growth. Additionally, strategies to further improve the rate of neurite outgrowth were also tested, namely the use of adipose tissue derived stem cells (ASCs), as well as the glial derived neurotrophic factor (GDNF). In order to increase its stability and enhance its bioactivity, the GDNF was conjugated covalently to iron oxide nanoparticles (IONPs). The impact of hydrogel modification as well as the effect of the GDNF-IONPs on ASC behavior was also screened. The results revealed that the GRGDS-GG hydrogel was able to support dorsal root ganglia (DRG)-based neurite outgrowth, which was not observed for non-modified hydrogels. Moreover, the modified hydrogels were also able to support ASCs attachment. In contrast, the presence of the GDNF-IONPs had no positive or negative impact on ASC behavior. Further experiments revealed that the presence of ASCs in the hydrogel improved axonal growth. On the other hand, GDNF-IONPs alone or combined with ASCs significantly increased neurite outgrowth from DRGs, suggesting a beneficial role of the proposed strategy for future applications in PNI regenerative medicine.

  11. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser

    PubMed Central

    Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen

    2015-01-01

    We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915

  12. Rheological performance of bacterial cellulose based nonmineralized and mineralized hydrogel scaffolds

    NASA Astrophysics Data System (ADS)

    Basu, Probal; Saha, Nabanita; Bandyopadhyay, Smarak; Saha, Petr

    2017-05-01

    Bacterial cellulose (BC) based hydrogels (BC-PVP and BC-CMC) are modified with β-tri-calcium phosphate (β-TCP) and hydroxyapatite (HA) to improve the structural and functional properties of the existing hydrogel scaffolds. The modified hydrogels are then biomineralized with CaCO3 following liquid diffusion technique, where salt solutions of Na2CO3 (5.25 g/100 mL) and CaCl2 (7.35 g/100 mL) were involved. The BC-PVP and BC-CMC are being compared with the non-mineralized (BC-PVP-β-TCP/HA and BC-CMC-β-TCP/HA) and biomineralized (BC-PVP-β-TCP/HA-CaCO3 and BC-CMC-β-TCP/HA-CaCO3) hydrogels on the basis of their structural and rheological properties. The Fourier Transform Infrared (FTIR) spectral analysis demonstrated the presence of BC, CMC, PVP, β-TCP, HA in the non-mineralized and BC, CMC, PVP, β-TCP, HA and CaCO3 in the biomineralized samples. Interestingly, the morphological property of non-mineralized and biomineralized, hydrogels are different than that of BC-PVP and BC-CMC based novel biomaterials. The Scanning Electron Microscopic (SEM) images of the before mentioned samples reveal the denser structures than BC-PVP and BC-CMC, which exhibits the changes in their pore sizes. Concerning rheological analysis point of view, all the non-mineralized and biomineralized hydrogel scaffolds have shown significant elastic property. Additionally, the complex viscosity (η*) values have also found in decreasing order with the increase of angular frequency (ω) 0.1 rad.sec-1 to 100 rad.sec-1. All these BC based hydrogel scaffolds are elastic in nature, can be recommended for their application as an implant for bone tissue engineering.

  13. Preparation and evaluation of β-glucan hydrogel prepared by the radiation technique for drug carrier applications.

    PubMed

    Park, Jong-Seok; Lim, Youn-Mook; Baik, Jae; Jeong, Jin-Oh; An, Sung-Jun; Jeong, Sung-In; Gwon, Hui-Jeong; Khil, Myung-Seob

    2018-06-14

    β-Glucan can provide excellent environment to apply to drug carrier due to its immunological and anti-inflammatory effect. Minocycline hydrochloride (MH) has excellent oral bioavailability pharmacological properties. Specifically, MH is effectively absorbed into the gingiva for periodontal disease treatment. In this study, we attempt to develop MH loaded β-glucan hydrogel for periodontal disease treatment through radiation-crosslinking technique. In addition, MH loaded β-glucan hydrogels were tested for their cytotoxicity and antibacterial activity. Finally, we conducted an in vivo study to demonstrate the potential to prevent the invasion of bacteria to treat periodontal disease. The gel content and compressive strength of the β-glucan hydrogels increased as the β-glucan content and the absorbed dose (up to 7 kGy) increased. For a radiation dose of 7 kGy, the gelation and the compressive strength of a 6 wt% β-glucan hydrogel were approximately 92% and 270 kPa, respectively. As a drug, MH was consistently released from β-glucan hydrogels, reaching 80% at approximately 90 min. Furthermore, the MH loaded β-glucan hydrogels showed no cytotoxicity. The MH loaded β-glucan hydrogels exhibited good antibacterial activity against Porphyromonas gingivalis. In addition, MH loaded β-glucan hydrogel demonstrated the potential of a good capability to prevent the invasion of bacteria and to treat wounds. Copyright © 2017. Published by Elsevier B.V.

  14. pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications.

    PubMed

    Sakthivel, M; Franklin, D S; Guhanathan, S

    2016-12-01

    A series of Itaconic Acid (IA) based pH-sensitive polymeric hydrogels were synthesized by condensation polymerization of Itaconic Acid (IA) with Ethylene Glycol (EG) in the presence of an acid medium resulted into pre-polymer. Further, pre-polymer were co-polymerized with Acrylic Acid (AA) through free radical polymerization using Potassium persulphate (KPS). The structural and surface morphological characterizations of the synthesized hydrogels were studied using FT-IR spectroscopy and Scanning Electron Microscope (SEM) respectively. The swelling and swelling equilibrium were performed at varies pH (4.0-10.0). Further, the effects of IA, EG and AA on swelling properties have also been investigated. Thermal stability of synthesized hydrogels have been investigated by TGA, DTA and DSC. The synthesized hydrogels have shown good ability to uptake a Cationic dye. The Methylene blue has been chosen as a model cationic dye. The results of dye removal using IA hydrogels found to have excellent dye removal capacity. Such kind of IA based hydrogels may be recommended for eco-friendly environmental application. viz., removal of dyes and metal ions and sewage water treatment, purification of water etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Hydrogel ionotronics

    NASA Astrophysics Data System (ADS)

    Yang, Canhui; Suo, Zhigang

    2018-06-01

    An ionotronic device functions by a hybrid circuit of mobile ions and mobile electrons. Hydrogels are stretchable, transparent, ionic conductors that can transmit electrical signals of high frequency over long distance, enabling ionotronic devices such as artificial muscles, skins and axons. Moreover, ionotronic luminescent devices, ionotronic liquid crystal devices, touchpads, triboelectric generators, artificial eels and gel-elastomer-oil devices can be designed based on hydrogels. In this Review, we discuss first-generation hydrogel ionotronic devices and the challenges associated with the mechanical properties and the chemistry of the materials. We examine how strong and stretchable adhesion between hydrophilic and hydrophobic polymer networks can be achieved, how water can be retained in hydrogels and how to design hydrogels that resist fatigue under cyclic loads. Finally, we highlight applications of hydrogel ionotronic devices and discuss the future of the field.

  16. Hydrogel Biomaterials: A Smart Future?

    PubMed Central

    Kopeček, Jindřich

    2007-01-01

    Hydrogels were the first biomaterials developed for human use. The state-of-the-art and potential for the future are discussed. Recently, new designs have produced mechanically strong synthetic hydrogels. Protein based hydrogels and hybrid hydrogels containing protein domains present a novel advance; such biomaterials may self-assemble from block or graft copolymers containing biorecognition domains. One of the domains, the coiled-coil, ubiquitously found in nature, has been used as an example to demonstrate the developments in the design of smart hydrogels. The application potential of synthetic, protein-based, DNA-based, and hybrid hydrogels bodes well for the future of this class of biomaterials. PMID:17697712

  17. Hydrogel-based electrochemical sensor for non-invasive and continuous glucose monitoring

    NASA Astrophysics Data System (ADS)

    Park, Habeen; Lee, Ji-Young; Kim, Dong-Chul; Koh, Younggook; Cha, Junhoe

    2017-07-01

    Monitoring blood glucose level of diabetic patients is crucial in diabetes care from life threating complications. Selfmonitoring blood glucose (SMBG) that involves finger prick to draw blood samples into the measurement system is a widely-used method of routine measurement of blood glucose levels to date. SMBG includes, however, unavoidable pain problems resulting from the repetitive measurements. We hereby present a hydrogel-based electrochemical (H-EC) sensor to monitor the glucose level, non-invasively. Glucose oxidase (GOx) was immobilized in the disc-type hydroxyethyl methacrylate (HEMA) based hydrogel and kept intact in the hydrogel. Fast electron transfer mediated by Prussian blue (PB, hexacyanoferrate) generated efficient signal amplifications to facilitate the detection of the extracted glucose from the interstitial fluid. The linear response and the selectivity against glucose of the H-EC sensor were validated by chronoamperometry. For the practical use, the outcomes from the correlation of the extracted glucose concentration and the blood glucose value by on-body extraction, as well as the validation of the hydrogel-based electrochemical (H-EC) device, were applied to the on-body glucose monitoring.

  18. Enzyme-Regulated Fast Self-Healing of a Pillararene-Based Hydrogel.

    PubMed

    Zhang, Xin; Xu, Jiayun; Lang, Chao; Qiao, Shanpeng; An, Guo; Fan, Xiaotong; Zhao, Linlu; Hou, Chunxi; Liu, Junqiu

    2017-06-12

    Self-healing, one of the exciting properties of materials, is frequently used to repair the damage of biological and artificial systems. Here we have used enzymatic catalysis approaches to develop a fast self-healing hydrogel, which has been constructed by dynamic aldimine cross-linking of pillar[5]arene-derivant and dialdehyde-functionalized PEG followed by encapsulation of glucose oxidase (GOx) and catalase (CAT). In specific, the two hydroxyl groups at terminal of PEG 4000 are functionalized with benzaldehydes that can interact with amino-containing pillar[5]arene-derivant through dynamic aldimine cross-links, resulting in reversible dynamic hydrogels. Modulus analysis indicated that storage modulus (G') and loss modulus (G″) of the hydrogel increased obviously as the concentration of dialdehyde-functionalized PEG 4000 (DF-PEG 4000 ) increased or the pH values decreased. Once glucose oxidase (GOx) and catalase (CAT) are located, the hydrogel could be fast repaired, with self-healing efficiency up to 100%. Notably tensile test showed that the repair process of pillararene-based hydrogel can finish in several minutes upon enzyme catalysis, while it needed more than 24 h to achieve this recovery without enzymes. This enzyme-regulated self-healing hydrogel would hold promise for delivering drugs and for soft tissue regeneration in the future.

  19. Extracellular-Matrix-Based and Arg-Gly-Asp–Modified Photopolymerizing Hydrogels for Cartilage Tissue Engineering

    PubMed Central

    Kim, Hwan D.; Heo, Jiseung; Hwang, Yongsung; Kwak, Seon-Yeong; Park, Ok Kyu; Kim, Hyunbum; Varghese, Shyni

    2015-01-01

    Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application. PMID:25266634

  20. Hydrogels Synthesized by Electron Beam Irradiation for Heavy Metal Adsorption

    PubMed Central

    Manaila, Elena; Craciun, Gabriela; Ighigeanu, Daniel; Cimpeanu, Catalina; Barna, Catalina; Fugaru, Viorel

    2017-01-01

    Poly(acrylamide co-acrylic acid) hydrogels were prepared by free-radical copolymerization of acrylamide and acrylic acid in aqueous solutions using electron beam irradiation in the dose range of 2.5 kGy to 6 kGy in atmospheric conditions and at room temperature. The influence of the absorbed dose, the amount of cross-linker (trimethylolpropane trimethacrylate) and initiator (potassium persulfate) on the swelling properties and the diffusion coefficient and network parameters of hydrogels were investigated. The structure and morphology of hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The use of the obtained hydrogels by the removal of Cu2+ and Cr6+ from aqueous solutions was investigated at room temperature. During the adsorption of metal ions on hydrogels, the residual metal ion concentration in the solution was measured by an atomic absorption spectrophotometer (AAS). It has been established that the use of a relatively small amount of trimethylolpropane trimethacrylate for hydrogel preparation has led to the increasing of swelling up to 8500%. PMID:28772904

  1. Hydrogels Synthesized by Electron Beam Irradiation for Heavy Metal Adsorption.

    PubMed

    Manaila, Elena; Craciun, Gabriela; Ighigeanu, Daniel; Cimpeanu, Catalina; Barna, Catalina; Fugaru, Viorel

    2017-05-18

    Poly(acrylamide co-acrylic acid) hydrogels were prepared by free-radical copolymerization of acrylamide and acrylic acid in aqueous solutions using electron beam irradiation in the dose range of 2.5 kGy to 6 kGy in atmospheric conditions and at room temperature. The influence of the absorbed dose, the amount of cross-linker (trimethylolpropane trimethacrylate) and initiator (potassium persulfate) on the swelling properties and the diffusion coefficient and network parameters of hydrogels were investigated. The structure and morphology of hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The use of the obtained hydrogels by the removal of Cu 2+ and Cr 6+ from aqueous solutions was investigated at room temperature. During the adsorption of metal ions on hydrogels, the residual metal ion concentration in the solution was measured by an atomic absorption spectrophotometer (AAS). It has been established that the use of a relatively small amount of trimethylolpropane trimethacrylate for hydrogel preparation has led to the increasing of swelling up to 8500%.

  2. SAM-based Cell Transfer to Photopatterned Hydrogels for Microengineering Vascular-Like Structures

    PubMed Central

    Sadr, Nasser; Zhu, Mojun; Osaki, Tatsuya; Kakegawa, Takahiro; Yang, Yunzhi; Moretti, Matteo; Fukuda, Junji; Khademhosseini, Ali

    2011-01-01

    A major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel photopatterning techniques for microengineering vascular structures. Human umbilical vein cell (HUVEC) transfer from oligopeptide SAM-coated surfaces to the hydrogel revealed two SAM desorption mechanisms: photoinduced and electrochemically triggered. The former, occurs concomitantly to hydrogel photocrosslinking, and resulted in efficient (>97%) monolayer transfer. The latter, prompted by additional potential application, preserved cell morphology and maintained high transfer efficiency of VE-cadherin positive monolayers over longer culture periods. This approach was also applied to transfer HUVECs to 3D geometrically defined vascular-like structures in hydrogels, which were then maintained in perfusion culture for 15 days. As a step toward more complex constructs, a cell-laden hydrogel layer was photopatterned around the endothelialized channel to mimic the vascular smooth muscle structure of distal arterioles. This study shows that the coupling of the SAM-based cell transfer and hydrogel photocrosslinking could potentially open up new avenues in engineering more complex, vascularized tissue constructs for regenerative medicine and tissue engineering applications. PMID:21802723

  3. Hydrogel-laden paper scaffold system for origami-based tissue engineering

    PubMed Central

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S.

    2015-01-01

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca2+. This procedure ensures the formation of alginate hydrogel on the paper due to Ca2+ diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs. PMID:26621717

  4. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    PubMed

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.

  5. Laponite crosslinked starch/polyvinyl alcohol hydrogels by freezing/thawing process and studying their cadmium ion absorption.

    PubMed

    Yu, Chen; Tang, Xiaozhi; Liu, Shaowei; Yang, Yuling; Shen, Xinchun; Gao, Chengcheng

    2018-05-22

    In this study, Laponite RD (LRD) cross-linked hydrogels consisting of starch, polyvinyl alcohol (PVA) were prepared by freezing/thawing process and the influence of LRD content on structure and properties of hydrogels was investigated. FTIR showed a new structure of hydrogen bonding might result from cross-linking reactions between LRD and polymers. X-ray diffraction (XRD) analysis showed that high degree of exfoliation of LRD clay layers had occurred during the preparation of hydrogels. The synergistic effect of physical cross-linking by freeze/thaw cycles and by LRD led to more porous, uniform and stable network, which was shown in SEM images. The melting temperature decreased and thermal stability got improved with the increase of LRD content. Reswelling ratios of hydrogels had the highest value when LRD content was 10%. Additionally, cadmium ion absorption capacity of the hydrogel was studied and the results showed that increasing the concentration of LRD increased absorption ratio and amount of Cd 2+ ion in the solution. In a word, LRD could be used as a physical crosslinker and reinforced agent for starch-PVA based hydrogels and the formed hydrogels could be used as novel type and high capacity absorbent materials in heavy metal removing processes. Copyright © 2018. Published by Elsevier B.V.

  6. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells

    PubMed Central

    Wei, Zhao; Zhao, Jingyi; Chen, Yong Mei; Zhang, Pengbo; Zhang, Qiqing

    2016-01-01

    Self-healing injectable hydrogels can be formulated as three-dimensional carriers for the treatment of neurological diseases with desirable advantages, such as avoiding the potential risks of cell loss during injection, protecting cells from the shearing force of injection. However, the demands for biocompatible self-healing injectable hydrogels to meet above requirements and to promote the differentiation of neural stem cells (NSCs) into neurons remain a challenge. Herein, we developed a biocompatible self-healing polysaccharide-based hydrogel system as a novel injectable carrier for the delivery of NSCs. N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) are the main backbones of the hydrogel networks, denoted as CEC-l-OSA hydrogel (“l” means “linked-by”). Owing to the dynamic imine cross-links formed by a Schiff reaction between amino groups on CEC and aldehyde groups on OSA, the hydrogel possesses the ability to self-heal into a integrity after being injected from needles under physiological conditions. The CEC-l-OSA hydrogel in which the stiffness mimicking nature brain tissues (100~1000 Pa) can be finely tuned to support the proliferation and neuronal differentiation of NSCs. The multi-functional, injectable, and self-healing CEC-l-OSA hydrogels hold great promises for NSC transplantation and further treatment of neurological diseases. PMID:27897217

  7. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells

    NASA Astrophysics Data System (ADS)

    Wei, Zhao; Zhao, Jingyi; Chen, Yong Mei; Zhang, Pengbo; Zhang, Qiqing

    2016-11-01

    Self-healing injectable hydrogels can be formulated as three-dimensional carriers for the treatment of neurological diseases with desirable advantages, such as avoiding the potential risks of cell loss during injection, protecting cells from the shearing force of injection. However, the demands for biocompatible self-healing injectable hydrogels to meet above requirements and to promote the differentiation of neural stem cells (NSCs) into neurons remain a challenge. Herein, we developed a biocompatible self-healing polysaccharide-based hydrogel system as a novel injectable carrier for the delivery of NSCs. N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) are the main backbones of the hydrogel networks, denoted as CEC-l-OSA hydrogel (“l” means “linked-by”). Owing to the dynamic imine cross-links formed by a Schiff reaction between amino groups on CEC and aldehyde groups on OSA, the hydrogel possesses the ability to self-heal into a integrity after being injected from needles under physiological conditions. The CEC-l-OSA hydrogel in which the stiffness mimicking nature brain tissues (100~1000 Pa) can be finely tuned to support the proliferation and neuronal differentiation of NSCs. The multi-functional, injectable, and self-healing CEC-l-OSA hydrogels hold great promises for NSC transplantation and further treatment of neurological diseases.

  8. Structural Design and Physicochemical Foundations of Hydrogels for Biomedical Applications.

    PubMed

    Li, Qingyong; Ning, Zhengxiang; Ren, Jiaoyan; Liao, Wenzhen

    2018-01-01

    Biomedical research, known as medical research, is conducive to support and promote the development of knowledge in the field of medicine. Hydrogels have been extensively used in many biomedical fields due to their highly absorbent and flexible properties. The smart hydrogels, especially, can respond to a broad range of external stimuli such as temperature, pH value, light, electric and magnetic fields. With excellent biocompatibility, tunable rheology, mechanical properties, porosity, and hydrated molecular structure, hydrogels are considered as promising candidate for simulating local tissue microenvironment. In this review article, we mainly focused on the most recent development of engineering synthetic hydrogels; moreover, the classification, properties, especially the biomedical applications including tissue engineering and cell scaffolding, drug and gene delivery, immunotherapies and vaccines, are summarized and discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Multiphoton imaging of myogenic differentiation in gelatin-based hydrogels as tissue engineering scaffolds.

    PubMed

    Kim, Min Jeong; Shin, Yong Cheol; Lee, Jong Ho; Jun, Seung Won; Kim, Chang-Seok; Lee, Yunki; Park, Jong-Chul; Lee, Soo-Hong; Park, Ki Dong; Han, Dong-Wook

    2016-01-01

    Hydrogels can serve as three-dimensional (3D) scaffolds for cell culture and be readily injected into the body. Recent advances in the image technology for 3D scaffolds like hydrogels have attracted considerable attention to overcome the drawbacks of ordinary imaging technologies such as optical and fluorescence microscopy. Multiphoton microscopy (MPM) is an effective method based on the excitation of two-photons. In the present study, C2C12 myoblasts differentiated in 3D gelatin hydroxyphenylpropionic acid (GHPA) hydrogels were imaged by using a custom-built multiphoton excitation fluorescence microscopy to compare the difference in the imaging capacity between conventional microscopy and MPM. The physicochemical properties of GHPA hydrogels were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. In addition, the cell viability and proliferation of C2C12 myoblasts cultured in the GHPA hydrogels were analyzed by using Live/Dead Cell and CCK-8 assays, respectively. It was found that C2C12 cells were well grown and normally proliferated in the hydrogels. Furthermore, the hydrogels were shown to be suitable to facilitate the myogenic differentiation of C2C12 cells incubated in differentiation media, which had been corroborated by MPM. It was very hard to get clear images from a fluorescence microscope. Our findings suggest that the gelatin-based hydrogels can be beneficially utilized as 3D scaffolds for skeletal muscle engineering and that MPM can be effectively applied to imaging technology for tissue regeneration.

  10. Angiogenic potential of gellan-gum-based hydrogels for application in nucleus pulposus regeneration: in vivo study.

    PubMed

    Silva-Correia, Joana; Miranda-Gonçalves, Vera; Salgado, António J; Sousa, Nuno; Oliveira, Joaquim M; Reis, Rui M; Reis, Rui L

    2012-06-01

    Hydrogels for nucleus pulposus (NP) regeneration should be able to comprise a nonangiogenic or even antiangiogenic feature. Gellan gum (GG)-based hydrogels have been reported to possess adequate properties for being used as NP substitutes in acellular and cellular strategies, due to its ability to support cell encapsulation, adequate mechanical properties, and noncytotoxicity. In this study, the angiogenic response of GG-based hydrogels was investigated by performing the chorioallantoic membrane assay. The convergence of macroscopic blood vessels toward the GG, ionic-crosslinked methacrylated GG (iGG-MA), and photo-crosslinked methacrylated GG (phGG-MA) hydrogel discs was quantified. Gelatin sponge (GSp) and filter paper (FP) alone and with vascular endothelial growth factor were used as controls of angiogenesis. The images obtained were digitally processed and analyzed by three independent observers. The macroscopic blood vessel quantification demonstrated that the GG-based hydrogels are not angiogenic as compared with FP controls. No statistical differences between the GG-based hydrogels tested in respect to its angiogenic ability were observed. Hematoxylin and eosin staining and SNA-lectin immunohistochemistry assay indicated that the iGG-MA and phGG-MA hydrogels do not allow the ingrowth of chick endothelial cells, following 4 days of implantation. On the contrary, GG, GSp, and FP controls allowed cell infiltration. The histological data also indicated that the GG-based hydrogels do not elicit any acute inflammatory response. The results showed that the GG, iGG-MA, and phGG-MA hydrogels present different permeability to cells but functioned as a physical barrier for vascular invasion. These hydrogels present promising and tunable properties for being used as NP substitutes in the treatment of degenerative intervertebral disc.

  11. Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels.

    PubMed

    Zhang, Wenming; Zhu, Sha; Bai, Yunping; Xi, Ning; Wang, Shaoyang; Bian, Yang; Li, Xiaowei; Zhang, Yucang

    2015-05-20

    The temperature/pH dual sensitivity reed hemicellulose-based hydrogels have been prepared through glow discharge electrolysis plasma (GDEP). The effect of different discharge voltages on the temperature and pH response performance of reed hemicellulose-based hydrogels was inspected, and the formation mechanism, deswelling behaviors of reed hemicellulose-based hydrogels were also discussed. At the same time, infrared spectroscopy (FT-IR), scanning differential thermal analysis (DSC) and scanning electron microscope (SEM) were adopted to characterize the structure, phase transformation behaviors and microstructure of hydrogels. It turned out to be that all reed hemicellulose-based hydrogels had a double sensitivity to temperature and pH, and their phase transition temperatures were all approximately 33 °C, as well as the deswelling dynamics met the first model. In addition, the hydrogel (TPRH-3), under discharge voltage 600 V, was more sensitive to temperature and pH and had higher deswelling ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Synthesis and Primary Characterization of Self-Assembled Peptide-Based Hydrogels

    PubMed Central

    Nagarkar, Radhika P.; Schneider, Joel P.

    2009-01-01

    Summary Hydrogels based on peptide self-assembly form an important class of biomaterials that find application in tissue engineering and drug delivery. It is essential to prepare peptides with high purity to achieve batch-to-batch consistency affording hydrogels with reproducible properties. Automated solid-phase peptide synthesis coupled with optimized Fmoc (9-fluorenylmethoxycarbonyl) chemistry to obtain peptides in high yield and purity is discussed. Details of isolating a desired peptide from crude synthetic mixtures and assessment of the peptide’s final purity by high-performance liquid chromatography and mass spectrometry are provided. Beyond the practical importance of synthesis and primary characterization, techniques used to investigate the properties of hydrogels are briefly discussed. PMID:19031061

  13. SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures.

    PubMed

    Sadr, Nasser; Zhu, Mojun; Osaki, Tatsuya; Kakegawa, Takahiro; Yang, Yunzhi; Moretti, Matteo; Fukuda, Junji; Khademhosseini, Ali

    2011-10-01

    A major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel photopatterning techniques for microengineering vascular structures. Human umbilical vein cell (HUVEC) transfer from oligopeptide SAM-coated surfaces to the hydrogel revealed two SAM desorption mechanisms: photoinduced and electrochemically triggered. The former, occurs concomitantly to hydrogel photocrosslinking, and resulted in efficient (>97%) monolayer transfer. The latter, prompted by additional potential application, preserved cell morphology and maintained high transfer efficiency of VE-cadherin positive monolayers over longer culture periods. This approach was also applied to transfer HUVECs to 3D geometrically defined vascular-like structures in hydrogels, which were then maintained in perfusion culture for 15 days. As a step toward more complex constructs, a cell-laden hydrogel layer was photopatterned around the endothelialized channel to mimic the vascular smooth muscle structure of distal arterioles. This study shows that the coupling of the SAM-based cell transfer and hydrogel photocrosslinking could potentially open up new avenues in engineering more complex, vascularized tissue constructs for regenerative medicine and tissue engineering applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Hydrogel microparticles for biosensing

    PubMed Central

    Le Goff, Gaelle C.; Srinivas, Rathi L.; Hill, W. Adam; Doyle, Patrick S.

    2015-01-01

    Due to their hydrophilic, biocompatible, and highly tunable nature, hydrogel materials have attracted strong interest in the recent years for numerous biotechnological applications. In particular, their solution-like environment and non-fouling nature in complex biological samples render hydrogels as ideal substrates for biosensing applications. Hydrogel coatings, and later, gel dot surface microarrays, were successfully used in sensitive nucleic acid assays and immunoassays. More recently, new microfabrication techniques for synthesizing encoded particles from hydrogel materials have enabled the development of hydrogel-based suspension arrays. Lithography processes and droplet-based microfluidic techniques enable generation of libraries of particles with unique spectral or graphical codes, for multiplexed sensing in biological samples. In this review, we discuss the key questions arising when designing hydrogel particles dedicated to biosensing. How can the hydrogel material be engineered in order to tune its properties and immobilize bioprobes inside? What are the strategies to fabricate and encode gel particles, and how can particles be processed and decoded after the assay? Finally, we review the bioassays reported so far in the literature that have used hydrogel particle arrays and give an outlook of further developments of the field. PMID:26594056

  15. Mechanically Robust 3D Nanostructure Chitosan-Based Hydrogels with Autonomic Self-Healing Properties.

    PubMed

    Karimi, Ali Reza; Khodadadi, Azam

    2016-10-12

    Fabrication of hydrogels based on chitosan (CS) with superb self-healing behavior and high mechanical and electrical properties has become a challenging and fascinating topic. Most of the conventional hydrogels lack these properties at the same time. Our objectives in this research were to synthesize, characterize, and evaluate the general properties of chitosan covalently cross-linked with zinc phthalocyanine tetra-aldehyde (ZnPcTa) framework. Our hope was to access an unprecedented self-healable three-dimensional (3D) nanostructure that would harvest the superior mechanical and electrical properties associated with chitosan. The properties of cross-linker such as the structure, steric effect, and rigidity of the molecule played important roles in determining the microstructure and properties of the resulting hydrogels. The tetra-functionalized phthalocyanines favor a dynamic Schiff-base linkage with chitosan to form a 3D porous nanostructure. Based on this strategy, the self-healing ability, as demonstrated by rheological recovery and macroscopic and microscopic observations, is introduced through dynamic covalent Schiff-base linkage between NH 2 groups in CS and benzaldehyde groups at cross-linker ends. The hydrogel was characterized using FT-IR, NMR, UV/vis, and rheological measurements. In addition, cryogenic scanning electron microscopy (cryo-SEM) was employed as a technique to visualize the internal morphology of the hydrogels. Study of the surface morphology of the hydrogel showed a 3D porous nanostructure with uniform morphology. Furthermore, incorporating the conductive nanofillers, such as carbon nanotubes (CNTs), into the structure can modulate the mechanical and electrical properties of the obtained hydrogels. Interestingly, these hydrogel nanocomposites proved to have very good film-forming properties, high modulus and strength, acceptable electrical conductivity, and excellent self-healing properties at neutral pH. Such properties can be finely tuned

  16. Elastin Based Cell-laden Injectable Hydrogels with Tunable Gelation, Mechanical and Biodegradation Properties

    PubMed Central

    Fathi, Ali; Mithieux, Suzanne M.; Wei, Hua; Chrzanowski, Wojciech; Valtchev, Peter; Weiss, Anthony S.; Dehghani, Fariba

    2015-01-01

    Injectable hydrogels made from extracellular matrix proteins such as elastin show great promise for various biomedical applications. Use of cytotoxic reagents, fixed gelling behavior, and lack of mechanical strength in these hydrogels are the main associated drawbacks. The aim of this study was to develop highly cytocompatible and injectable elastin-based hydrogels with alterable gelation characteristics, favorable mechanical properties and structural stability for load bearing applications. A thermoresponsive copolymer, poly(N-isopropylacrylamide-co-polylactide-2-hydroxyethyl methacrylate-co-oligo(ethylene glycol)monomethyl ether methacrylate, was functionalized with succinimide ester groups by incorporating N-acryloxysuccinimide monomer. These ester groups were exploited to covalently bond this polymer, denoted as PNPHO, to different proteins with primary amine groups such as α-elastin in aqueous media. The incorporation of elastin through covalent bond formation with PNPHO promotes the structural stability, mechanical properties and live cell proliferation within the structure of hydrogels. Our results demonstrated that elastin-co-PNPHO solutions were injectable through fine gauge needles and converted to hydrogels in situ at 37 °C in the absence of any crosslinking reagent. By altering PNPHO content, the gelling time of these hydrogels can be finely tuned within the range of 2 to 15 min to ensure compatibility with surgical requirements. In addition, these hydrogels exhibited compression moduli in the range of 40 to 145 kPa, which are substantially higher than those of previously developed elastin-based hydrogels. These hydrogels were highly stable in the physiological environment with the evidence of 10 wt% mass loss in 30 days of incubation in a simulated environment. This class of hydrogels is in vivo bioabsorbable due to the gradual increase of the lower critical solution temperature of the copolymer to above 37 °C due to the cleavage of polylactide from

  17. Glutathione-Triggered Formation of a Fmoc-Protected Short Peptide-Based Supramolecular Hydrogel

    PubMed Central

    Shi, Yang; Wang, Jingyu; Wang, Huaimin; Hu, Yanhui; Chen, Xuemei; Yang, Zhimou

    2014-01-01

    A biocompatible method of glutathione (GSH) catalyzed disulfide bond reduction was used to form Fmoc-short peptide-based supramolecular hydrogels. The hydrogels could form in both buffer solution and cell culture medium containing 10% of Fetal Bovine Serum (FBS) within minutes. The hydrogel was characterized by rheology, transmission electron microscopy, and fluorescence emission spectra. Their potential in three dimensional (3D) cell culture was evaluated and the results indicated that the gel with a low concentration of the peptide (0.1 wt%) was suitable for 3D cell culture of 3T3 cells. This study provides an alternative candidate of supramolecular hydrogel for 3D cell culture and cell delivery. PMID:25222132

  18. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines.

    PubMed

    Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah

    2016-01-01

    The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.

  19. Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes.

    PubMed

    Morais, D S; Rodrigues, M A; Silva, T I; Lopes, M A; Santos, M; Santos, J D; Botelho, C M

    2013-06-05

    In this work three different hydrogels were developed to associate, as vehicles, with the synthetic bone substitute GR-HAP. One based on an alginate matrix (Alg); a second on a mixture of alginate and chitosan (Alg/Ch); and a third on alginate and hyaluronate (Alg/HA), using Ca(2+) ions as cross-linking agents. The hydrogels, as well as the respective injectable bone substitutes (IBSs), were fully characterized from the physical-chemical point of view. Weight change studies proved that all hydrogels were able to swell and degrade within 72 h at pH 7.4 and 4.0, being Alg/HA the hydrogel with the highest degradation rate (80%). Rheology studies demonstrated that all hydrogels are non-Newtonian viscoelastic fluids, and injectability tests showed that IBSs presented low maximum extrusion forces, as well as quite stable average forces. In conclusion, the studied hydrogels present the necessary features to be successfully used as vehicles of GR-HAP, particularly the hydrogel Alg/HA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    NASA Astrophysics Data System (ADS)

    Prabhudesai, S. A.; Lawrence, Mathias B.; Mitra, S.; Desa, J. A. E.; Mukhopadhyay, R.

    2015-06-01

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D2O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10-5 cm2/sec.

  1. Lignin-based hydrogels with "super-swelling" capacities for dye removal.

    PubMed

    Domínguez-Robles, Juan; Peresin, María Soledad; Tamminen, Tarja; Rodríguez, Alejandro; Larrañeta, Eneko; Jääskeläinen, Anna-Stiina

    2018-04-12

    Lignin is a complex natural polymer and it is one of the main constituent of the lignocellulosic biomass. Moreover, it is a bio-renewable material and it is available in large amounts as by-product from the forest industry. Lignin-based hydrogels with high swelling capabilities were prepared by crosslinking poly (methyl vinyl ether co-maleic acid) and different technical lignins in ammonium and sodium hydroxide solutions. The produced hydrogels showed a wide range of water absorption capacities varying from 13 to 130 g of water per 1 g of sample. It was observed that the higher the water uptake the poorer mechanical performance, as evaluated in terms of storage and loss modulus (G' and G″, respectively) of the materials. Methylene blue (MB) was used as a model dye to evaluate the adsorption and release capabilities of the lignin hydrogels. Results suggested that these hydrogels showed a high MB removal efficiency, which ranged from 12 to 96%. On the contrary, the percentages of MB released depended on the negative surface charge of the hydrogels, showing values which ranged from 0.06 to 0.35%. Thus, these materials have potential to be used as adsorbents for the removal of organic dyes from waste water. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Mechanical Behavior of Tough Hydrogels for Structural Applications

    NASA Astrophysics Data System (ADS)

    Illeperuma, Widusha Ruwangi Kaushalya

    novel applications. This thesis aims to investigate the broader applications, well beyond those investigated so far. We show fiber reinforced tough hydrogels can dissipate a significant amount of energy at a tunable level of stress, making them suitable for energy absorbing applications such as inner layer of helmets. We develop inexpensive fire-retarding materials using tough hydrogels that provide superior protection from burn injuries. We also study hydrogels as actuators that can be used in soft robotics. Hydrogels contain mostly water and they freeze when the temperature drops below 00C and lose its functions. We demonstrate a new class of hydrogels that do not freeze and hydrogels that partially freeze below water freezing temperature. Partially freezing hydrogels are ideal for cooling applications such as gel packs and non-freezing hydrogels are useful in all the structural applications at low temperatures. This thesis will enable the use of inexpensive hydrogels in a new class of non-traditional structural applications where the mechanical behavior of the hydrogel is of prime importance.

  3. Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture.

    PubMed

    Li, Yongsan; Zhang, Yaling; Wei, Yen; Tao, Lei

    2017-09-29

    The protocol presents a facile, efficient, and versatile method to prepare chitosan-based hydrogels using dynamic imine chemistry. The hydrogel is prepared by mixing solutions of glycol chitosan with a synthesized benzaldehyde terminated polymer gelator, and hydrogels are efficiently obtained in several minutes at room temperature. By varying ratios between glycol chitosan, polymer gelator, and water contents, versatile hydrogels with different gelation times and stiffness are obtained. When damaged, the hydrogel can recover its appearances and modulus, due to the reversibility of the dynamic imine bonds as crosslinkages. This self-healable property enables the hydrogel to be injectable since it can be self-healed from squeezed pieces to an integral bulk hydrogel after the injection process. The hydrogel is also multi-responsive to many bio-active stimuli due to different equilibration statuses of the dynamic imine bonds. This hydrogel was confirmed as bio-compatible, and L929 mouse fibroblast cells were embedded following standard procedures and the cell proliferation was easily assessed by a 3D cell cultivation process. The hydrogel can offer an adjustable platform for different research where a physiological mimic of a 3D environment for cells is profited. Along with its multi-responsive, self-healable, and injectable properties, the hydrogels can potentially be applied as multiple carriers for drugs and cells in future bio-medical applications.

  4. Tailoring drug release rates in hydrogel-based therapeutic delivery applications using graphene oxide

    PubMed Central

    Zhi, Z. L.; Craster, R. V.

    2018-01-01

    Graphene oxide (GO) is increasingly used for controlling mass diffusion in hydrogel-based drug delivery applications. On the macro-scale, the density of GO in the hydrogel is a critical parameter for modulating drug release. Here, we investigate the diffusion of a peptide drug through a network of GO membranes and GO-embedded hydrogels, modelled as porous matrices resembling both laminated and ‘house of cards’ structures. Our experiments use a therapeutic peptide and show a tunable nonlinear dependence of the peptide concentration upon time. We establish models using numerical simulations with a diffusion equation accounting for the photo-thermal degradation of fluorophores and an effective percolation model to simulate the experimental data. The modelling yields an interpretation of the control of drug diffusion through GO membranes, which is extended to the diffusion of the peptide in GO-embedded agarose hydrogels. Varying the density of micron-sized GO flakes allows for fine control of the drug diffusion. We further show that both GO density and size influence the drug release rate. The ability to tune the density of hydrogel-like GO membranes to control drug release rates has exciting implications to offer guidelines for tailoring drug release rates in hydrogel-based therapeutic delivery applications. PMID:29445040

  5. Responsive Hydrogel-based Photonic Nanochains for Microenvironment Sensing and Imaging in Real Time and High Resolution.

    PubMed

    Luo, Wei; Cui, Qian; Fang, Kai; Chen, Ke; Ma, Huiru; Guan, Jianguo

    2018-01-17

    Microenvironment sensing and imaging are of importance in microscale zones like microreactors, microfluidic systems, and biological cells. But they are so far implemented only based on chemical colors from dyes or quantum dots, which suffered either from photobleaching, quenching, or photoblinking behaviors, or from limited color gamut. In contrast, structural colors from hydrogel-based photonic crystals (PCs) may be stable and tunable in the whole visible spectrum by diffraction peak shift, facilitating the visual detection with high accuracy. However, the current hydrogel-based PCs are all inappropriate for microscale detection due to the bulk size. Here we demonstrate the smallest hydrogel-based PCs, responsive hydrogel-based photonic nanochains with high-resolution and real-time response, by developing a general hydrogen bond-guided template polymerization method. A variety of mechanically separated stimuli-responsive hydrogel-based photonic nanochains have been obtained in a large scale including those responding to pH, solvent, and temperature. Each of them has a submicrometer diameter and is composed of individual one-dimensional periodic structure of magnetic particles locked by a tens-of-nanometer-thick peapod-like responsive hydrogel shell. Taking the pH-responsive hydrogel-based photonic nanochains, for example, pH-induced hydrogel volume change notably alters the nanochain length, resulting in a significant variation of the structural color. The submicrometer size endows the nanochains with improved resolution and response time by 2-3 orders of magnitude than the previous counterparts. Our results for the first time validate the feasibility of using structural colors for microenvironment sensing and imaging and may further promote the applications of responsive PCs, such as in displays and printing.

  6. PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering.

    PubMed

    Navaei, Ali; Truong, Danh; Heffernan, John; Cutts, Josh; Brafman, David; Sirianni, Rachael W; Vernon, Brent; Nikkhah, Mehdi

    2016-03-01

    Injectable biomaterials offer a non-invasive approach to deliver cells into the myocardial infarct region to maintain a high level of cell retention and viability and initiate the regeneration process. However, previously developed injectable matrices often suffer from low bioactivity or poor mechanical properties. To address this need, we introduced a biohybrid temperature-responsive poly(N-isopropylacrylamide) PNIPAAm-Gelatin-based injectable hydrogel with excellent bioactivity as well as mechanical robustness for cardiac tissue engineering. A unique feature of our work was that we performed extensive in vitro biological analyses to assess the functionalities of cardiomyocytes (CMs) alone and in co-culture with cardiac fibroblasts (CFs) (2:1 ratio) within the hydrogel matrix. The synthesized hydrogel exhibited viscoelastic behavior (storage modulus: 1260 Pa) and necessary water content (75%) to properly accommodate the cardiac cells. The encapsulated cells demonstrated a high level of cell survival (90% for co-culture condition, day 7) and spreading throughout the hydrogel matrix in both culture conditions. A dense network of stained F-actin fibers (∼ 6 × 10(4) μm(2) area coverage, co-culture condition) illustrated the formation of an intact and three dimensional (3D) cell-embedded matrix. Furthermore, immunostaining and gene expression analyses revealed mature phenotypic characteristics of cardiac cells. Notably, the co-culture group exhibited superior structural organization and cell-cell coupling, as well as beating behavior (average ∼ 45 beats per min, co-culture condition, day 7). The outcome of this study is envisioned to open a new avenue for extensive in vitro characterization of injectable matrices embedded with 3D mono- and co-culture of cardiac cells prior to in vivo experiments. In this work, we synthesized a new class of biohybrid temperature-responsive poly(N-isopropylacrylamide) PNIPAAm-Gelatin-based injectable hydrogel with suitable

  7. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal

    2015-12-01

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).

  8. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    PubMed Central

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  9. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    PubMed Central

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  10. A novel thermoresponsive hydrogel based on chitosan.

    PubMed

    Schuetz, Yannic B; Gurny, Robert; Jordan, Olivier

    2008-01-01

    Injectable thermosetting chitosan hydrogels are attractive systems for drug delivery and tissue engineering that combine biodegradability, biocompatibility and the ability to form in situ gel-like implants. Thermally-induced gelation relies advantageously on biopolymer secondary interactions, avoiding potentially toxic polymerization reactions that may occur with in situ polymerizing formulations. In view of a biomedical use, such formulations have to be sterilizable and storable on extended periods without losing their thermosetting properties. These two key features have been studied in the present paper. Chitosans from two different sources were added with several phosphate-free polyols or polyoses as gelling agents. Despite a reduction in chitosan molecular weight following autoclaving, the hydrogels prepared with autoclaved chitosan showed the desired thermosetting properties. Hence, chitosan steam sterilization combined with aseptic preparation of the hydrogel allows a sterile formulation to be obtained. Whereas thermosetting hydrogels were shown to be unstable when refrigerated, freezing was shown to be conceivable as a storage method. When trehalose or mannitol was used as stabilizing agent, the formulation reconstituted from a lyophilizate displayed thermosetting properties and was still injectable, paving the way to the development of a clinically utilizable, novel chitosan thermosetting hydrogel.

  11. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhudesai, S. A., E-mail: swapnil@barc.gov.in; Mitra, S.; Mukhopadhyay, R.

    2015-06-24

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D{sub 2}O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by amore » model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10{sup −5} cm{sup 2}/sec.« less

  12. New Hydrogels Enriched with Antioxidants from Saffron Crocus Can Find Applications in Wound Treatment and/or Beautification.

    PubMed

    Zeka, Keti; Ruparelia, Ketan C; Sansone, Claudia; Macchiarelli, Guido; Continenza, Maria Adelaide; Arroo, Randolph R J

    2018-01-01

    Saffron extracts have a long history of application as skin protectant, possibly due to their ability to scavenge free radicals. In this work, the performance of a hydrogel enriched with antioxidant compounds isolated from saffron crocus (Crocus sativus L.) petals was tested. These hydrogels could be considered as new drug delivery system. Hydrogels are crosslinked polymer networks that absorb large quantities of water but retain the properties of a solid, thus making ideal dressings for sensitive skin. We tested antioxidant-enriched hydrogels on primary mouse fibroblasts. Hydrogels enriched with kaempferol and crocin extracted from saffron petals showed good biocompatibility with in vitro cultured fibroblasts. These new types of hydrogels may find applications in wound treatment and/or beautification. © 2018 S. Karger AG, Basel.

  13. Hydrogel-Based Drug Delivery Systems for Poorly Water-Soluble Drugs.

    PubMed

    McKenzie, Matthew; Betts, David; Suh, Amy; Bui, Kathryn; Kim, London Doyoung; Cho, Hyunah

    2015-11-13

    Hydrogels are three-dimensional materials that can withstand a great amount of water incorporation while maintaining integrity. This allows hydrogels to be very unique biomedical materials, especially for drug delivery. Much effort has been made to incorporate hydrophilic molecules in hydrogels in the field of drug delivery, while loading of hydrophobic drugs has not been vastly studied. However, in recent years, research has also been conducted on incorporating hydrophobic molecules within hydrogel matrices for achieving a steady release of drugs to treat various ailments. Here, we summarize the types of hydrogels used as drug delivery vehicles, various methods to incorporate hydrophobic molecules in hydrogel matrices, and the potential therapeutic applications of hydrogels in cancer.

  14. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy.

    PubMed

    Qu, Jin; Zhao, Xin; Ma, Peter X; Guo, Baolin

    2017-08-01

    Injectable hydrogels with pH-responsiveness and self-healing ability have great potential for anti-cancer drug delivery. Herein, we developed a series of polysaccharide-based self-healing hydrogels with pH-sensitivity as drug delivery vehicles for hepatocellular carcinoma therapy. The hydrogels were prepared by using N-carboxyethyl chitosan (CEC) synthesized via Michael reaction in aqueous solution and dibenzaldehyde-terminated poly(ethylene glycol) (PEGDA). Doxorubicin (Dox), as a model of water-soluble small molecule anti-cancer drug was encapsulated into the hydrogel in situ. Self-healing behavior of the hydrogels was investigated at microscopic and macroscopic levels, and the hydrogels showed rapid self-healing performance without any external stimulus owing to the dynamic covalent Schiff-base linkage between amine groups from CEC and benzaldehyde groups from PEGDA. The chemical structures, rheological property, in vitro gel degradation, morphology, gelation time and in vitro Dox release behavior from the hydrogels were characterized. Injectability was verified by in vitro injection and in vivo subcutaneous injection in a rat. pH-responsive behavior was verified by in vitro Dox release from hydrogels in PBS solutions with different pH values. Furthermore, the activity of Dox released from hydrogel matrix was evaluated by employing human hepatocellular liver carcinoma (HepG2). Cytotoxicity test of the hydrogels using L929 cells confirmed their good cytocompatibility. Together, these pH-responsive self-healing injectable hydrogels are excellent candidates as drug delivery vehicles for liver cancer treatment. STATEMENT OF SIGNIFICANCE: pH-responsive drug delivery system could release drug efficiently in targeted acid environment and minimalize the amount of drug release in normal physiological environment. pH-sensitive injectable hydrogels as smart anti-cancer drug delivery carriers show great potential application for cancer therapy. The hydrogels with self

  15. Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles.

    PubMed

    Numata, Keiji; Yamazaki, Shoya; Naga, Naofumi

    2012-05-14

    We developed a facile and quick ethanol-based method for preparing silk nanoparticles and then fabricated a biodegradable and biocompatible dual-drug release system based on silk nanoparticles and the molecular networks of silk hydrogels. Model drugs incorporated in the silk nanoparticles and silk hydrogels showed fast and constant release, respectively, indicating successful dual-drug release from silk hydrogel containing silk nanoparticles. The release behaviors achieved by this dual-drug release system suggest to be regulated by physical properties (e.g., β-sheet contents and size of the silk nanoparticles and network size of the silk hydrogels), which is an important advantage for biomedical applications. The present silk-based system for dual-drug release also demonstrated no significant cytotoxicity against human mesenchymal stem cells (hMSCs), and thus, this silk-based dual-drug release system has potential as a versatile and useful new platform of polymeric materials for various types of dual delivery of bioactive molecules.

  16. A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate.

    PubMed

    Wu, Jie; Su, Zhi-Guo; Ma, Guang-Hui

    2006-06-06

    The quaternized chitosan was synthesized by the reaction of chitosan and glycidyltrimethylammonium chloride (GTMAC) and named as N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC). A novel hydrogel system composed of HTCC/glycerophosphate (HTCC/GP) with thermo- and pH-sensitivity was synthesized and used as an intelligent drug carrier. The formulation was solution below or at room temperature, which allowed it injectable and to incorporate living cells, proteins, enzymes or other therapeutic drugs easily. Once the surrounding temperature was up to 37 degrees C, the system was transformed to a non-flowing hydrogel, and the formed hydrogel can release the trapped drug as a function of pH values. The swelling behavior of the system and the release profiles of doxorubicin hydrochloride (DX) as a model drug at different pH values were investigated. At acidic condition the hydrogel dissolved and released drug quickly, while it absorbed water and released drug slowly at neutral or basic conditions. Hydrogel composed of chitosan hydrochloride and glycerophosphate (CS/GP) was also prepared to compare with HTCC/GP hydrogel. The HTCC/GP hydrogel in this study was transparent which made it suitable for some specific uses such as ocular drug formulation.

  17. About the Sterilization of Chitosan Hydrogel Nanoparticles

    PubMed Central

    Galante, Raquel; Rediguieri, Carolina F.; Kikuchi, Irene Satiko; Vasquez, Pablo A. S.; Colaço, Rogério; Pinto, Terezinha J. A.

    2016-01-01

    In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP) associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility) with the advantages of being possible to tailor its physicochemical properties at nano-scale to increase solubility, immunocompatibility and cellular uptake. In order to be safe, HNP for biomedical applications, such as injectable or ophthalmic formulations, must be sterile. Literature is very scarce with respect to sterilization effects on nanostructured systems, and even more in what concerns HNP. This work aims to evaluate the effect and effectiveness of different sterilization methods on chitosan (CS) hydrogel nanoparticles. In addition to conventional methods (steam autoclave and gamma irradiation), a recent ozone-based method of sterilization was also tested. A model chitosan-tripolyphosphate (TPP) hydrogel nanoparticles (CS-HNP), with a broad spectrum of possible applications was produced and sterilized in the absence and in the presence of protective sugars (glucose and mannitol). Properties like size, zeta potential, absorbance, morphology, chemical structure and cytotoxicity were evaluated. It was found that the CS-HNP degrade by autoclaving and that sugars have no protective effect. Concerning gamma irradiation, the formation of agglomerates was observed, compromising the suspension stability. However, the nanoparticles resistance increases considerably in the presence of the sugars. Ozone sterilization did not lead to significant physical adverse effects, however, slight toxicity signs were observed, contrarily to gamma irradiation where no detectable changes on cells were found. Ozonation in the presence of sugars avoided cytotoxicity. Nevertheless, some chemical alterations were observed in the nanoparticles. PMID:28002493

  18. Xanthan and κ-carrageenan based alkaline hydrogels as electrolytes for Al/air batteries.

    PubMed

    Di Palma, T M; Migliardini, F; Caputo, D; Corbo, P

    2017-02-10

    Xanthan and κ-carrageenan were used to prepare alkaline hydrogels to be used as electrolytes in aluminium air primary batteries. Two pasty gels were obtained starting from xanthan and KOH solutions (1M and 8M), while only the 8M KOH solution permitted the formation of a stable, elastic and gumminess hydrogel with κ-carrageenan. Discharge tests, performed on three Al/air cells assembled with Al anodes, electrolyte gels and Pt based cathodes, evidenced that all hydrogels exhibited appreciable properties of Al ion conductivities, according to the following performance order: xanthan with KOH 1Mhydrogels and galvanic cells to explain the behaviour differences detected between the hydrogels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes

    PubMed Central

    Navarra, Maria Assunta; Dal Bosco, Chiara; Serra Moreno, Judith; Vitucci, Francesco Maria; Paolone, Annalisa; Panero, Stefania

    2015-01-01

    Cellulose-based hydrogels, obtained by tuned, low-cost synthetic routes, are proposed as convenient gel electrolyte membranes. Hydrogels have been prepared from different types of cellulose by optimized solubilization and crosslinking steps. The obtained gel membranes have been characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mechanical tests in order to investigate the crosslinking occurrence and modifications of cellulose resulting from the synthetic process, morphology of the hydrogels, their thermal stability, and viscoelastic-extensional properties, respectively. Hydrogels liquid uptake capability and ionic conductivity, derived from absorption of aqueous electrolytic solutions, have been evaluated, to assess the successful applicability of the proposed membranes as gel electrolytes for electrochemical devices. To this purpose, the redox behavior of electroactive species entrapped into the hydrogels has been investigated by cyclic voltammetry tests, revealing very high reversibility and ion diffusivity. PMID:26633528

  20. Injectable In Situ Forming Biodegradable Chitosan-Hyaluronic acid Based Hydrogels for Cartilage Tissue Engineering

    PubMed Central

    Tan, Huaping; Chu, Constance R.; Payne, Karin; Marra, Kacey G.

    2009-01-01

    Injectable, biodegradable scaffolds are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural polysaccharides are ideal scaffolds as they resemble the extracellular matrices of tissues comprised of various glycosaminoglycans (GAG). Here, we report a new class of biocompatible and biodegradable composite hydrogels derived from water-soluble chitosan and oxidized hyaluronic acid upon mixing, without the addition of a chemical crosslinking agent. The gelation is attributed to the Schiff-base reaction between amino and aldehyde groups of polysaccharide derivatives. In the current work, N-succinyl-chitosan (S-CS) and aldehyde hyaluronic acid (A-HA) were synthesized for preparation of the composite hydrogels. The polysaccharide derivatives and composite hydrogels were characterized by FTIR spectroscopy. The effect of the ratio of S-CS and A-HA on the gelation time, microstructure, surface morphology, equilibrium swelling, compressive modulus, and in vitro degradation of composite hydrogels was examined. The potential of the composite hydrogel as an injectable scaffold was demonstrated by encapsulation of bovine articular chondrocytes within the composite hydrogel matrix in vitro. The results demonstrated that the composite hydrogel supported cell survival and the cells retained chondrocytic morphology. These characteristics provide a potential opportunity to use the injectable, composite hydrogels in tissue engineering applications. PMID:19167750

  1. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel.

    PubMed

    Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun

    2014-11-01

    A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments.

  2. Nanoceria-loaded injectable hydrogels for potential age-related macular degeneration treatment.

    PubMed

    Wang, Kai; Mitra, Rajendra Narayan; Zheng, Min; Han, Zongchao

    2018-05-12

    The major purpose of this article is to evaluate oligochitosan coated cerium oxide nanoparticles (OCCNPs) alginate laden injectable hydrogels and their potential treatment for age-related macular degeneration (AMD). The water soluble OCCNPs were loaded within injectable hydrogels as antioxidative agents. The release of OCCNPs from hydrogel, radical scavenging properties, and biocompatibility were evaluated and calculated in vitro. The effects of OCCNP laden hydrogel downregulating expression of angiogenic proteins and pro-inflammatory cytokines were quantified in human retinal pigment epithlium-19 (ARPE-19) and umbilical endothelium cell lines. The hydrogels behaved with moderate swelling and controllable degradation. The laden OCCNPs were released in a controlled manner in vitro during two months of testing. The OCCNP loaded hydrogels exhibited robust antioxidative properties in oxygen radical absorbance capacity tests and reduced apoptosis in H 2 O 2 -induced ARPE-19 cells. Furthermore, OCCNP loaded injectable hydrogels are biocompatible and suppressed the LPS-induced inflammation response in ARPE-19 cells, and inhibited expression of vascular endothelium growth factor in human ARPE-19 and umbilical endothelium cell lines. The alginate-gelatin injectable hydrogel loaded OCCNPs are biocompatible and have high potential in protecting cells from apoptosis, angiogenesis, and production of pro-inflammatory cytokines in AMD cellular models. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  3. Biofunctionalized peptide-based hydrogels provide permissive scaffolds to attract neurite outgrowth from spiral ganglion neurons.

    PubMed

    Frick, Claudia; Müller, Marcus; Wank, Ute; Tropitzsch, Anke; Kramer, Benedikt; Senn, Pascal; Rask-Andersen, Helge; Wiesmüller, Karl-Heinz; Löwenheim, Hubert

    2017-01-01

    Cochlear implants (CI) allow for hearing rehabilitation in patients with sensorineural hearing loss or deafness. Restricted CI performance results from the spatial gap between spiral ganglion neurons and the CI, causing current spread that limits spatially restricted stimulation and impairs frequency resolution. This may be substantially improved by guiding peripheral processes of spiral ganglion neurons towards and onto the CI electrode contacts. An injectable, peptide-based hydrogel was developed which may provide a permissive scaffold to facilitate neurite growth towards the CI. To test hydrogel capacity to attract spiral ganglion neurites, neurite outgrowth was quantified in an in vitro model using a custom-designed hydrogel scaffold and PuraMatrix ® . Neurite attachment to native hydrogels is poor, but significantly improved by incorporation of brain-derived neurotrophic factor (BDNF), covalent coupling of the bioactive laminin epitope IKVAV and the incorporation a full length laminin to hydrogel scaffolds. Incorporation of full length laminin protein into a novel custom-designed biofunctionalized hydrogel (IKVAV-GGG-SIINFEKL) allows for neurite outgrowth into the hydrogel scaffold. The study demonstrates that peptide-based hydrogels can be specifically biofunctionalized to provide a permissive scaffold to attract neurite outgrowth from spiral ganglion neurons. Such biomaterials appear suitable to bridge the spatial gap between neurons and the CI. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. High performance polymer chemical hydrogel-based electrode binder materials for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G.

    Novel, cost-effective, high-performance, and environment-friendly electrode binders, comprising polyvinyl alcohol chemical hydrogel (PCH) and chitosan chemical hydrogel (CCH), are reported for direct borohydride fuel cells (DBFCs). PCH and CCH binders-based electrodes have been fabricated using a novel, simple, cost-effective, time-effective, and environmentally benign technique. Morphologies and electrochemical performance in DBFCs of the chemical hydrogel binder-based electrodes have been compared with those of Nafion ® binder-based electrodes. Relationships between the performance of binders in DBFCs with structural features of the polymers and the polymer-based chemical hydrogels are discussed. The CCH binder exhibited better performance than a Nafion ® binder whereas the PCH binder exhibited comparable performance to Nafion ® in DBFCs operating at elevated cell temperatures. The better performance of CCH binder at higher operating cell temperatures has been ascribed to the hydrophilic nature and water retention characteristics of chitosan. DBFCs employing CCH binder-based electrodes and a Nafion ®-117 membrane as an electrolyte exhibited a maximum peak power density of about 589 mW cm -2 at 70 °C.

  5. Hydrogel Nanoparticles from Supercritical Technology for Pharmaceutical and Seismological Applications

    NASA Astrophysics Data System (ADS)

    Hemingway, Melinda Graham

    This research focuses on hydrogel nanoparticle formation using miniemulsion polymerization and supercritical carbon dioxide. Hydrogel nanopowder is produced by a novel combination of inverse miniemulsion polymerization and supercritical drying (MPSD) methods. Three drying methods of miniemulsions are examined: (1) a conventional freeze drying technique, and (2) two supercritical drying techniques: (2a) supercritical fluid injection into miniemulsions, and (2b) the polymerized miniemulsion injection into supercritical fluid. Method 2b can produce non-agglomerated hydrogel nanoparticles that are free of solvent or surfactant (Chapter 2). The optimized MPSD method was applied for producing an extended release drug formulation with mucoadhesive properties. Drug nanoparticles of mesalamine, were produced using supercritical antisolvent technology and encapsulation within two hydrogels, polyacrylamide and poly(acrylic acid-co-acrylamide). The encapsulation efficiency and release profile of drug nanoparticles is compared with commercial ground mesalamine particles. The loading efficiency is influenced by morphological compatibility (Chapter 3). The MPSD method was extended for encapsulation of zinc oxide nanoparticles for UV protection in sunscreens (Chapter 4). ZnO was incorporated into the inverse miniemulsion during polymerization. The effect of process parameters are examined on absorbency of ultraviolet light and transparency of visible light. For use of hydrogel nanoparticles in a seismological application, delayed hydration is needed. Supercritical methods extend MPSD so that a hydrophobic coating can be applied on the particle surface (Chapter 5). Multiple analysis methods and coating materials were investigated to elucidate compatibility of coating material to polyacrylamide hydrogel. Coating materials of poly(lactide), poly(sulphone), poly(vinyl acetate), poly(hydroxybutyrate), Geluice 50-13, Span 80, octadecyltrichlorosilane, and perfluorobutane sulfate (PFBS

  6. Introduction to cell–hydrogel mechanosensing

    PubMed Central

    Ahearne, Mark

    2014-01-01

    The development of hydrogel-based biomaterials represents a promising approach to generating new strategies for tissue engineering and regenerative medicine. In order to develop more sophisticated cell-seeded hydrogel constructs, it is important to understand how cells mechanically interact with hydrogels. In this paper, we review the mechanisms by which cells remodel hydrogels, the influence that the hydrogel mechanical and structural properties have on cell behaviour and the role of mechanical stimulation in cell-seeded hydrogels. Cell-mediated remodelling of hydrogels is directed by several cellular processes, including adhesion, migration, contraction, degradation and extracellular matrix deposition. Variations in hydrogel stiffness, density, composition, orientation and viscoelastic characteristics all affect cell activity and phenotype. The application of mechanical force on cells encapsulated in hydrogels can also instigate changes in cell behaviour. By improving our understanding of cell–material mechano-interactions in hydrogels, this should enable a new generation of regenerative medical therapies to be developed. PMID:24748951

  7. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakam, Adil; Lazim, Azwan Mat; Abdul Rahman, I. Irman

    2013-11-27

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution.

  8. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins.

    PubMed

    Kornreich, Micha; Malka-Gibor, Eti; Zuker, Ben; Laser-Azogui, Adi; Beck, Roy

    2016-09-30

    What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.

  9. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins

    NASA Astrophysics Data System (ADS)

    Kornreich, Micha; Malka-Gibor, Eti; Zuker, Ben; Laser-Azogui, Adi; Beck, Roy

    2016-09-01

    What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.

  10. Protease-modulating polyacrylate-based hydrogel stimulates wound bed preparation in venous leg ulcers – a randomized controlled trial

    PubMed Central

    Humbert, P; Faivre, B; Véran, Y; Debure, C; Truchetet, F; Bécherel, P-A; Plantin, P; Kerihuel, J-C; Eming, SA; Dissemond, J; Weyandt, G; Kaspar, D; Smola, H; Zöllner, P

    2014-01-01

    Background Stringent control of proteolytic activity represents a major therapeutic approach for wound-bed preparation. Objectives We tested whether a protease-modulating polyacrylate- (PA-) containing hydrogel resulted in a more efficient wound-bed preparation of venous leg ulcers when compared to an amorphous hydrogel without known protease-modulating properties. Methods Patients were randomized to the polyacrylate-based hydrogel (n = 34) or to an amorphous hydrogel (n = 41). Wound beds were evaluated by three blinded experts using photographs taken on days 0, 7 and 14. Results After 14 days of treatment there was an absolute decrease in fibrin and necrotic tissue of 37.6 ± 29.9 percentage points in the PA-based hydrogel group and by 16.8 ± 23.0 percentage points in the amorphous hydrogel group. The absolute increase in the proportion of ulcer area covered by granulation tissue was 36.0 ± 27.4 percentage points in the PA-based hydrogel group and 14.5 ± 22.0 percentage points in the control group. The differences between the groups were significant (decrease in fibrin and necrotic tissue P = 0.004 and increase in granulation tissue P = 0.0005, respectively). Conclusion In particular, long-standing wounds profited from the treatment with the PA-based hydrogel. These data suggest that PA-based hydrogel dressings can stimulate normalization of the wound environment, particularly in hard-to-heal ulcers. PMID:24612304

  11. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel

    PubMed Central

    Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun

    2014-01-01

    A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments. PMID:25426316

  12. Glucose Sensing with Phenylboronic Acid Functionalized Hydrogel-Based Optical Diffusers

    PubMed Central

    2018-01-01

    Phenylboronic acids have emerged as synthetic receptors that can reversibly bind to cis-diols of glucose molecules. The incorporation of phenylboronic acids in hydrogels offers exclusive attributes; for example, the binding process with glucose induces Donnan osmotic pressure resulting in volumetric changes in the matrix. However, their practical applications are hindered because of complex readout approaches and their time-consuming fabrication processes. Here, we demonstrate a microimprinting method to fabricate densely packed concavities in phenylboronic acid functionalized hydrogel films. A microengineered optical diffuser structure was imprinted on a phenylboronic acid based cis-diol recognizing motif prepositioned in a hydrogel film. The diffuser structure engineered on the hydrogel was based on laser-inscribed arrays of imperfect microlenses that focused the incoming light at different focal lengths and direction resulting in a diffused profile of light in transmission and reflection readout modes. The signature of the dimensional modulation was detected in terms of changing focal lengths of the microlenses due to the volumetric expansion of the hydrogel that altered the diffusion spectra and transmitted beam profile. The transmitted optical light spread and intensity through the sensor was measured to determine variation in glucose concentrations at physiological conditions. The sensor was integrated in a contact lens and placed over an artificial eye. Artificial stimulation of variation in glucose concentration allowed quantitative measurements using a smartphone’s photodiode. A smartphone app was utilized to convert the received light intensity to quantitative glucose concentration values. The developed sensing platform offers low cost, rapid fabrication, and easy detection scheme as compared to other optical sensing counterparts. The presented detection scheme may have applications in wearable real-time biomarker monitoring devices at point

  13. Thermo-responsive gels that absorb moisture and ooze water.

    PubMed

    Matsumoto, Kazuya; Sakikawa, Nobuki; Miyata, Takashi

    2018-06-13

    The water content of thermo-responsive hydrogels can be drastically altered by small changes in temperature because their polymer chains change from hydrophilic to hydrophobic above their low critical solution temperature (LCST). In general, such smart hydrogels have been utilized in aqueous solutions or in their wet state, and no attempt has been made to determine the phase-transition behavior of the gels in their dried states. Here we demonstrate an application of the thermo-responsive behavior of an interpenetrating polymer network (IPN) gel comprising thermo-responsive poly(N-isopropylacrylamide) and hydrophilic sodium alginate networks in their dried states. The dried IPN gel absorbs considerable moisture from air at temperatures below its LCST and oozes the absorbed moisture as liquid water above its LCST. These phenomena provide energy exchange systems in which moisture from air can be condensed to liquid water using the controllable hydrophilic/hydrophobic properties of thermo-responsive gels with a small temperature change.

  14. Gelam (Melaleuca spp.) Honey-Based Hydrogel as Burn Wound Dressing

    PubMed Central

    Mohd Zohdi, Rozaini; Abu Bakar Zakaria, Zuki; Yusof, Norimah; Mohamed Mustapha, Noordin; Abdullah, Muhammad Nazrul Hakim

    2012-01-01

    A novel cross-linked honey hydrogel dressing was developed by incorporating Malaysian honey into hydrogel dressing formulation, cross-linked and sterilized using electron beam irradiation (25 kGy). In this study, the physical properties of the prepared honey hydrogel and its wound healing efficacy on deep partial thickness burn wounds in rats were assessed. Skin samples were taken at 7, 14, 21, and 28 days after burn for histopathological and molecular evaluations. Application of honey hydrogel dressings significantly enhanced (P < 0.05) wound closure and accelerated the rate of re-epithelialization as compared to control hydrogel and OpSite film dressing. A significant decrease in inflammatory response was observed in honey hydrogel treated wounds as early as 7 days after burn (P < 0.05). Semiquantitative analysis using RT-PCR revealed that treatment with honey hydrogel significantly (P < 0.05) suppressed the expression of proinflammatory cytokines (IL-1α, IL-1β, and IL-6). The present study substantiates the potential efficacy of honey hydrogel dressings in accelerating burn wound healing. PMID:21941590

  15. A Novel Absorbable Radiopaque Hydrogel Spacer to Separate the Head of the Pancreas and Duodenum in Radiation Therapy for Pancreatic Cancer.

    PubMed

    Rao, Avani D; Feng, Ziwei; Shin, Eun Ji; He, Jin; Waters, Kevin M; Coquia, Stephanie; DeJong, Robert; Rosati, Lauren M; Su, Lin; Li, Dengwang; Jackson, Juan; Clark, Stephen; Schultz, Jeffrey; Hutchings, Danielle; Kim, Seong-Hun; Hruban, Ralph H; DeWeese, Theodore L; Wong, John; Narang, Amol; Herman, Joseph M; Ding, Kai

    2017-12-01

    We assessed the feasibility and theoretical dosimetric advantages of an injectable hydrogel to increase the space between the head of the pancreas (HOP) and duodenum in a human cadaveric model. Using 3 human cadaveric specimens, an absorbable radiopaque hydrogel was injected between the HOP and duodenum by way of open laparotomy in 1 case and endoscopic ultrasound (EUS) guidance in 2 cases. The cadavers were subsequently imaged using computed tomography and dissected for histologic confirmation of hydrogel placement. The duodenal dose reduction and planning target volume (PTV) coverage were characterized using pre- and postspacer injection stereotactic body radiation therapy (SBRT) plans for the 2 cadavers with EUS-guided placement, the delivery method that appeared the most clinically desirable. Modeling studies were performed using 60 SBRT plans consisting of 10 previously treated patients with unresectable pancreatic cancer, each with 6 different HOP-duodenum separation distances. The duodenal volume receiving 15 Gy (V15), 20 Gy (V20), and 33 Gy (V33) was assessed for each iteration. In the 3 cadaveric studies, an average of 0.9 cm, 1.1 cm, and 0.9 cm HOP-duodenum separation was achieved. In the 2 EUS cases, the V20 decreased from 3.86 cm 3 to 0.36 cm 3 and 3.75 cm 3 to 1.08 cm 3 (treatment constraint <3 cm 3 ), and the V15 decreased from 7.07 cm 3 to 2.02 cm 3 and 9.12 cm 3 to 3.91 cm 3 (treatment constraint <9 cm 3 ). The PTV coverage improved or was comparable between the pre- and postinjection studies. Modeling studies demonstrated that a separation of 8 mm was sufficient to consistently reduce the V15, V20, and V33 to acceptable clinical constraints. Currently, dose escalation has been limited owing to radiosensitive structures adjacent to the pancreas. We demonstrated the feasibility of hydrogel separation of the HOP and duodenum. Future studies will evaluate the safety and efficacy of this technique with the potential for more effective

  16. Microfluidic hydrogels for tissue engineering.

    PubMed

    Huang, Guo You; Zhou, Li Hong; Zhang, Qian Cheng; Chen, Yong Mei; Sun, Wei; Xu, Feng; Lu, Tian Jian

    2011-03-01

    With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.

  17. Development and Characterization of a 3D Printed, Keratin-Based Hydrogel.

    PubMed

    Placone, Jesse K; Navarro, Javier; Laslo, Gregory W; Lerman, Max J; Gabard, Alexis R; Herendeen, Gregory J; Falco, Erin E; Tomblyn, Seth; Burnett, Luke; Fisher, John P

    2017-01-01

    Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator-catalyst-inhibitor) photosensitive solution we produced 3D keratin constructs via UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications.

  18. Versatile hydrogel-based nanocrystal microreactors towards uniform fluorescent photonic crystal supraballs

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Tian, Yu; Ling, Lu-Ting; Yin, Su-Na; Wang, Cai-Feng; Chen, Su

    2014-12-01

    Versatile hydrogel-based nanocrystal (NC) microreactors were designed in this work for the construction of uniform fluorescence colloidal photonic crystal (CPC) supraballs. The hydrogel-based microspheres with sizes ranging from 150 to 300 nm were prepared by seeded copolymerization of acrylic acid and 2-hydroxyethyl methacrylate with micrometer-sized PS seed particles. As an independent NC microreactor, the as-synthesized hydrogel microsphere can effectively capture the guest cadmium ions due to the abundant carboxyl groups inside. Followed by the introduction of chalcogenides, in situ generation of higher-uptake NCs with sizes less than 5 nm was finally realized. Additionally, with the aid of the microfluidic device, the as-obtained NC-latex hybrids can be further self-assembled to bi-functional CPC supraballs bearing brilliant structural colors and uniform fluorescence. This research offers an alternative way to finely bind CPCs with NCs, which will facilitate progress in fields of self-assembled functional colloids and photonic materials.

  19. Synthesis of chitosan-PEO hydrogels via mesylation and regioselective Cu(I)-catalyzed cycloaddition.

    PubMed

    Tirino, Pasquale; Laurino, Rosaria; Maglio, Giovanni; Malinconico, Mario; d'Ayala, Giovanna Gomez; Laurienzo, Paola

    2014-11-04

    In this work, a well-defined hydrogel was developed by coupling chitosan with PEO through "click chemistry". Azide functionalities were introduced onto chitosan, through mesylation of C-6 hydroxyl groups, and reacted with a di-alkyne PEO by a regioselective Cu(I)-catalyzed cycloaddition. This synthetic approach allowed us to obtain a hydrogel with a controlled crosslinking degree. In fact, the extent of coupling is strictly dependent on the amount of azido groups on chitosan, which in turn can be easily modulated. The obtained hydrogel, with a crosslinking degree of around 90%, showed interesting swelling properties. With respect to chitosan hydrogels reported in literature, a considerably higher equilibrium uptake was reached (940%). The possibility to control the crosslinking degree of hydrogel and its capability to rapidly absorb high amounts of water make this material suitable for several applications, such as controlled drug release and wound healing. Copyright © 2014. Published by Elsevier Ltd.

  20. A novel hydrogel based piezoresistive pressure sensor platform for chemical sensing

    NASA Astrophysics Data System (ADS)

    Orthner, Michael P.

    New hydrogel-based micropressure sensor arrays for use in the fields of chemical sensing, physiological monitoring, and medical diagnostics are developed and demonstrated. This sensor technology provides reliable, linear, and accurate measurements of hydrogel swelling pressures, a function of ambient chemical concentrations. For the first time, perforations were implemented into the pressure sensors piezoresistive diaphragms, used to simultaneously increase sensor sensitivity and permit diffusion of analytes into the hydrogel cavity. It was shown through analytical and numerical (finite element) methods that pore shape, location, and size can be used to modify the diaphragm mechanics and concentrate stress within the piezoresistors, thus improving electrical output (sensitivity). An optimized pore pattern was chosen based on these numerical calculations. Fabrication was performed using a 14-step semiconductor fabrication process implementing a combination of potassium hydroxide (KOH) and deep reactive ion etching (DRIE) to create perforations. The sensor arrays (2x2) measure approximately 3 x 5 mm2 and used to measure full scale pressures of 50, 25, and 5 kPa, respectively. These specifications were defined by the various swelling pressures of ionic strength, pH and glucose specific hydrogels that were targeted in this work. Initial characterization of the sensor arrays was performed using a custom built bulge testing apparatus that simultaneously measured deflection (optical profilometry), pressure, and electrical output. The new perforated diaphragm sensors were found to be fully functional with sensitivities ranging from 23 to 252 muV/V-kPa with full scale output (FSO) ranging from 5 to 80 mV. To demonstrate proof of concept, hydrogels sensitive to changes in ionic strength were synthesized using hydroxypropyl-methacrylate (HPMA), N,N-dimethylaminoethyl-methacrylate (DMA) and a tetra-ethyleneglycol-dimethacrylate (TEGDMA) crosslinker. This hydrogel quickly and

  1. Viscoelastic behavior of mineralized (CaCO3) chitin based PVP-CMC hydrogel scaffolds

    NASA Astrophysics Data System (ADS)

    Čadež, Vida; Saha, Nabanita; Sikirić, Maja Dutour; Saha, Petr

    2017-05-01

    Enhancement of the mechanical as well as functional properties of the perspective mineralized PVP-CMC-CaCO3 hydrogel scaffold applicable for bone tissue engineering is quite essential. Therefore, the incorporation feasibility of chitin, a bioactive, antibacterial and biodegradable material, was examined in order to test its ability to enchance mechanical properties of the PVP-CMC-CaCO3 hydrogel scaffold. Chitin based PVP-CMC hydrogels were prepared and characterized both as non-mineralized and mineralized (CaCO3) form of hydrogel scaffolds. Both α-chitin (commercially bought) and β-chitin (isolated from the cuttlebone) were individually tested. It was observed that at 1% strain all hydrogel scaffolds have linear trend, with highly pronounced elastic properties in comparison to viscous ones. The complex viscosity has directly proportional behavior with negative slope against angular frequency within the range of ω = 0.1 - 100 rad.s-1. Incorporation of β-chitin increased storage modulus of all mineralized samples, making it interesting for further research.

  2. A PEG-Based Hydrogel for Effective Wound Care Management

    PubMed Central

    Chen, Sen-Lu; Fu, Ru-Huei; Liao, Shih-Fei; Liu, Shih-Ping; Lin, Shinn-Zong; Wang, Yu-Chi

    2018-01-01

    It is extremely challenging to achieve strong adhesion in soft tissues while minimizing toxicity, tissue damage, and other side effects caused by wound sealing materials. In this study, flexible synthetic hydrogel sealants were prepared based on polyethylene glycol (PEG) materials. PEG is a synthetic material that is nontoxic and inert and, thus, suitable for use in medical products. We evaluated the in vitro biocompatibility tests of the dressings to assess cytotoxicity and irritation, sensitization, pyrogen toxicity, and systemic toxicity following the International Organization for Standardization 10993 standards and the in vivo effects of the hydrogel samples using Coloskin liquid bandages as control samples for potential in wound closure. PMID:29637814

  3. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barleany, Dhena Ria, E-mail: dbarleany@yahoo.com; Ulfiyani, Fida; Istiqomah, Shafina

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w{sup −1} acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 gmore » g{sup −1} of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g{sup −1} and 523 g g{sup −1} for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)« less

  4. A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability.

    PubMed

    Yang, Yunlong; Liu, Xiaolin; Li, Yan; Wang, Yang; Bao, Chunyan; Chen, Yunfeng; Lin, Qiuning; Zhu, Linyong

    2017-10-15

    Postoperative adhesion is a serious complication that can further lead to morbidity and/or mortality. Polymer anti-adhesion barrier material provides an effective precaution to reduce the probability of postoperative adhesion. Clinical application requires these materials to be easily handled, biocompatible, biodegradable, and most importantly tissue adherent to provide target sites with reliable isolation. However, currently there is nearly no polymer barrier material that can fully satisfy these requirements. In this study, based on the photoinduced imine-crosslinking (PIC) reaction, we had developed a photo-crosslinking hydrogel (CNG hydrogel) that composed of o-nitrobenzyl alcohol (NB) modified carboxymethyl cellulose (CMC-NB) and glycol chitosan (GC) as an anti-adhesion barrier material. Under light irradiation, CMC-NB generated aldehyde groups which subsequently reacted with amino groups distributed on GC or tissue surface to form a hydrogel barrier that covalently attached to tissue surface. Rheological analysis demonstrated that CNG hydrogel (30mg/mL polymer content) could be formed in 30s upon light irradiation. Tissue adhesive tests showed that the tissue adhesive strength of CNG hydrogel (30mg/mL) was about 8.32kPa-24.65kPa which increased with increasing CMC-NB content in CNG hydrogel. Toxicity evaluation by L929 cells demonstrated that CNG hydrogel was cytocompatible. Furthermore, sidewall defect-cecum abrasion model of rat was employed to evaluate the postoperative anti-adhesion efficacy of CNG hydrogel. And a significantly reduction of tissue adhesion (20% samples with low score adhesion) was found in CNG hydrogel treated group, compared with control group (100% samples with high score adhesion). In addition, CNG hydrogel could be degraded in nearly 14days and showed no side effect on wound healing. These findings indicated that CNG hydrogel can effectively expanded the clinical treatments of postoperative tissue adhesion. In this study, a tissue

  5. Metamaterial Absorber Based Multifunctional Sensor Application

    NASA Astrophysics Data System (ADS)

    Ozer, Z.; Mamedov, A. M.; Ozbay, E.

    2017-02-01

    In this study metamaterial based (MA) absorber sensor, integrated with an X-band waveguide, is numerically and experimentally suggested for important application including pressure, density sensing and marble type detecting applications based on rectangular split ring resonator, sensor layer and absorber layer that measures of changing in the dielectric constant and/or the thickness of a sensor layer. Changing of physical, chemical or biological parameters in the sensor layer can be detected by measuring the resonant frequency shifting of metamaterial absorber based sensor. Suggested MA based absorber sensor can be used for medical, biological, agricultural and chemical detecting applications in microwave frequency band. We compare the simulation and experimentally obtained results from the fabricated sample which are good agreement. Simulation results show that the proposed structure can detect the changing of the refractive indexes of different materials via special resonance frequencies, thus it could be said that the MA-based sensors have high sensitivity. Additionally due to the simple and tiny structures it could be adapted to other electronic devices in different sizes.

  6. Production of lignin based insoluble polymers (anionic hydrogels) by C. versicolor.

    PubMed

    Brzonova, Ivana; Kozliak, Evguenii I; Andrianova, Anastasia A; LaVallie, Audrey; Kubátová, Alena; Ji, Yun

    2017-12-13

    Unlike previous lignin biodegradation studies, white rot fungi were used to produce functional biopolymers from Kraft lignin. Lignin-based polymers (hydrogel precursors) partially soluble in both aqueous and organic solvents were produced employing a relatively fast (6 days) enzymation of Kraft lignin with basidiomycetes, primarily Coriolus versicolor, pre-grown on kenaf/lignin agar followed by either vacuum evaporation or acid precipitation. After drying followed by a treatment with alkaline water, this intermediate polymer became a pH-sensitive anionic hydrogel insoluble in either aqueous or organic solvents. The yield of this polymer increased from 20 to 72 wt% with the addition of 2% dimethylsulfoxide to distilled water used as a medium. The mechanical stability and buffering capacity of this hydrogel can be adjusted by washing the intermediate polymer/hydrogel precursor prior to drying with solvents of different polarity (water, methanol or ethanol). Any of these polymers featured a significant thermal resilience assessed as a high thermostable "coked" fraction in thermal carbon analysis, apparently resulting from significant covalent cross-linking that occurs during the treatment of their intermediate precursors.

  7. A glucose-sensitive block glycopolymer hydrogel based on dynamic boronic ester bonds for insulin delivery.

    PubMed

    Cai, Baoqi; Luo, Yanping; Guo, Qianqian; Zhang, Xinge; Wu, Zhongming

    2017-06-05

    Hydrogels are good candidates to satisfy many needs for functional and tunable biomaterials. How to precisely control the gel structure and functions is crucial for the construction of sophisticated soft biomaterials comprising the hydrogels, which facilitates the impact of the surrounding environment on a unique biological function occurring. Here, glucose-responsive hydrogels comprised of 3-acrylamidophenyl boronic acid copolymerized with 2-lactobionamidoethyl methacrylate (p(APBA-b-LAMA)) were synthesized, and further evaluated as carriers for insulin delivery. The formation of (p(APBA-b-LAMA)) hydrogel was based on dynamic covalent bond using the association of boronic acid with diols. P(APBA-b-LAMA) hydrogel with the typical porous structure showed a rapid increase in equilibrium of swelling, which was up to 1856% after incubation with aqueous solution. Using insulin as a model protein therapeutic, p(APBA-b-LAMA) hydrogel exhibited high drug loading capability up to 15.6%, and also displayed glucose-dependent insulin release under physiological conditions. Additionally, the viability of NIH3T3 cells was more than 90% after treated with p(APBA-b-LAMA) hydrogel, indicating that the hydrogel had no cytotoxicity. Consequently, the novel p(APBA-b-LAMA) hydrogel has a practical application for diabetes treatment. Copyright © 2017. Published by Elsevier Ltd.

  8. Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels.

    PubMed

    Mittal, H; Jindal, R; Kaith, B S; Maity, A; Ray, S S

    2015-01-22

    This study reports the microwave-assisted synthesis of gum-ghatti (Gg)-grafted poly(acrylamide-co-methacrylic acid) (AAm-co-MAA) hydrogels for the development of biodegradable flocculants and adsorbents. The synthesized hydrogels were characterized using TGA, FTIR and SEM. TGA studies revealed that the synthesized hydrogels were thermally more stable than pristine Gg and exhibited maximum swelling capacity of 1959% at 60°C in neutral pH. The optimal Gg-cl-P(AAm-co-MAA) hydrogel was successfully employed for the removal of saline water from various petroleum fraction-saline emulsions. The maximum flocculation efficiency was achieved in an acidic clay suspension with a 15 mg polymer dose at 40°C. Moreover, the synthesized hydrogel adsorbed 94% and 75% of Pb(2+) and Cu(2+), respectively, from aqueous solutions. Finally, the Gg-cl-P(AAm-co-MAA) hydrogel could be degraded completely within 50 days. In summary, the Gg-cl-P(AAm-co-MAA) hydrogel was demonstrated to have potential for use as flocculants and heavy metal absorbents for industrial waste water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment

    PubMed Central

    Jiao, Tifeng; Guo, Haiying; Zhang, Qingrui; Peng, Qiuming; Tang, Yongfu; Yan, Xuehai; Li, Bingbing

    2015-01-01

    New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hydrogel matrix to form RGO-based composite gel. The stabilization of silver nanoparticles was also achieved simultaneously within the gel composite system. The as-formed silver nanoparticles were found to be homogeneously and uniformly dispersed on the surface of the RGO nanosheets within the composite gel. More importantly, this RGO-based silver nanoparticle-containing composite hydrogel matrix acts as a potential catalyst for removing organic dye pollutants from an aqueous environment. Interestingly, the as-prepared catalytic composite matrix structure can be conveniently separated from an aqueous environment after the reaction, suggesting the potentially large-scale applications of the reduced graphene oxide-based nanoparticle-containing composite hydrogels for organic dye removal and wastewater treatment. PMID:26183266

  10. Reversible water uptake/release by thermoresponsive polyelectrolyte hydrogels derived from ionic liquids.

    PubMed

    Deguchi, Yuki; Kohno, Yuki; Ohno, Hiroyuki

    2015-06-07

    Thermoresponsive polyelectrolyte hydrogels, derived from tetra-n-alkylphosphonium 3-sulfopropyl methacrylate-type ionic liquid monomers, show reversible water uptake/release, in which the gels absorb/desorb water for at least ten cycles via a lower critical solution temperature-type phase transition.

  11. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles.

    PubMed

    Pawar, Amol A; Saada, Gabriel; Cooperstein, Ido; Larush, Liraz; Jackman, Joshua A; Tabaei, Seyed R; Cho, Nam-Joon; Magdassi, Shlomo

    2016-04-01

    In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)-visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode-based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents.

  12. Heparin-mimetic polyurethane hydrogels with anticoagulant, tunable mechanical property and controllable drug releasing behavior.

    PubMed

    Chen, Yuan; Wang, Rui; Wang, Yonghui; Zhao, Weifeng; Sun, Shudong; Zhao, Changsheng

    2017-05-01

    In the present study, novel heparin-mimetic polyurethane hydrogels were prepared by introducing chemical crosslinked sulfated konjac glucomannan (SKGM). Scanning electron microscopy (SEM) results indicated that the introduction of SKGM and the increase of the molecular weight of diol segments could enlarge the pore sizes of the hydrogels. The swelling behavior corresponded with the SEM results, and the hydrogels could absorb more water after the modification. The modification also led to an improvement in the mechanical property. Meanwhile, the SKGM and the modified polyurethane hydrogels showed excellent hemocompatibility. The thromboplastin time of SKGM could reach up to 182.9s. Gentamycin sulfate (GS) was used as a model drug to be loaded into the hydrogels, and the loading amount was increased ca. 50% after the introduction of SKGM, thus resulting in high bactericidal efficiency. The results indicated that the introduction of SKGM and the alternation in the diol's molecular weight bestowed polyurethane hydrogels with promising properties of integrated blood-compatibility, mechanical properties and drug loading-releasing behavior. Therefore, the heparin-mimetic multifunctional polyurethane hydrogels have great potential to be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Thermoresponsive, in situ crosslinkable hydrogels based on N-isopropylacrylamide: Fabrication, characterization and mesenchymal stem cell encapsulation

    PubMed Central

    Klouda, Leda; Perkins, Kevin R.; Watson, Brendan M.; Hacker, Michael C.; Bryant, Stephanie J.; Raphael, Robert M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2011-01-01

    Hydrogels that solidify in response to a dual, physical and chemical, mechanism upon temperature increase were fabricated and characterized. The hydrogels were based on N-isopropylacrylamide, which renders them thermoresponsive, and contained covalently crosslinkable moieties in the macromers. The effects of the macromer end group, namely acrylate or methacrylate, and the fabrication conditions were investigated on the degradative and swelling properties of the hydrogels. The hydrogels exhibited higher swelling below their lower critical solution temperature (LCST). When immersed in cell culture media at physiological temperature, which was above their LCST, hydrogels showed constant swelling and no degradation over eight weeks, with methacrylated hydrogels having higher swelling than their acrylated analogs. In addition, hydrogels immersed in cell culture media under the same conditions showed lower swelling as compared to phosphate buffered saline. The interplay between chemical crosslinking and thermally induced phase separation affected the swelling characteristics of hydrogels in different media. Mesenchymal stem cells encapsulated in the hydrogels in vitro were viable over three weeks and markers of osteogenic differentiation were detected when the cells were cultured with osteogenic supplements. Hydrogel mineralization in the absence of cells was observed in cell culture medium with the addition of fetal bovine serum and β-glycerol phosphate. The results suggest that these hydrogels may be suitable as carriers for cell delivery in tissue engineering. PMID:21187170

  14. Synthesis and Characterization of Poly(Ethylene Glycol) Based Thermo-Responsive Hydrogels for Cell Sheet Engineering.

    PubMed

    Son, Kuk Hui; Lee, Jin Woo

    2016-10-20

    The swelling properties and thermal transition of hydrogels can be tailored by changing the hydrophilic-hydrophobic balance of polymer networks. Especially, poly( N -isopropylacrylamide) (PNIPAm) has received attention as thermo-responsive hydrogels for tissue engineering because its hydrophobicity and swelling property are transited around body temperature (32 °C). In this study, we investigated the potential of poly(ethylene glycol) diacrylate (PEGDA) as a hydrophilic co-monomer and crosslinker of PNIPAm to enhance biological properties of PNIPAm hydrogels. The swelling ratios, lower critical solution temperature (LCST), and internal pore structure of the synthesized p(NIPAm- co -PEGDA) hydrogels could be varied with changes in the molecular weight of PEGDA and the co-monomer ratios (NIPAm to PEGDA). We found that increasing the molecular weight of PEGDA showed an increase of pore sizes and swelling ratios of the hydrogels. In contrast, increasing the weight ratio of PEGDA under the same molecular weight condition increased the crosslinking density and decreased the swelling ratios of the hydrogels. Further, to evaluate the potential of these hydrogels as cell sheets, we seeded bovine chondrocytes on the p(NIPAm- co -PEGDA) hydrogels and observed the proliferation of the seed cells and their detachment as a cell sheet upon a decrease in temperature. Based on our results, we confirmed that p(NIPAm- co -PEGDA) hydrogels could be utilized as cell sheets with enhanced cell proliferation performance.

  15. Hydrogel Actuation by Electric Field Driven Effects

    NASA Astrophysics Data System (ADS)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  16. Synthesis and characterization of lactose-based homopolymers, hydrophilic/hydrophobic copolymers, and hydrogels

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjing

    The focus of this dissertation is the synthesis and characterization of lactose-based functional polymers. Currently 60% of lactose, a by-product from the cheese industry, is being utilized and the remaining fraction represents a serious disposal problem because of the high biological oxygen demand. Therefore, further development of utilization of lactose is an important issue both for industry and environment. Herein, the syntheses of lactose-based polymers such glycopolymers, hydrophilic/hydrophobic copolymers, and hydrogels are reported. A brief review of lactose formation, physical properties, and production is presented in Chapter 1. Syntheses and applications of lactose derivatives such as lactitol, lactulose, lactaime, lactosylurea, lactosylamine, lactone, and barbituric derivative are documented. Previous work in lactose-based polymers include: (1) hydrogels from cross linking of LPEP, borate complexation of lactose-containing polymer, and copolymerization of lactose monomer with crosslinkers; (2) lactose-based polyurethane rigid foams and adhesives; and (3) lactose-containing glycopolymers are also included. Chapter 2 documents the synthesis of acrylamidolactamine and the free radical copolymerization of this monomer with N-isopropylacrylamide in the presence of BisA to make hydrogels. Swelling behavior of the hydrogels at different temperatures as well as DSC study of these hydrogels are also carried out to characterize the swelling transition and the organization of water in the copolymer hydrogels. In Chapter 3, novel monomer syntheses of N-lactosyl- N'-(4-vinylbenzyl)urea or N '-lactosyl-N,N-methyl(4-vinylbenzyl)urea are described. Polymerization of these new urea monomers using a redox initiator gave water-soluble homopolymers with molecular weights in the range of 1.9 x 103 to 5.3 x 106. Synthesis and polymerization of lactose-O-(p-vinylbenzyl)hydroxime are documented in Chapter 4. The resulting polymers had high molecular weight (106) and narrow

  17. Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications

    PubMed Central

    Ding, Xiaochu; Wang, Yadong

    2017-01-01

    Here we define hydrogels crosslinked by weak bonds as physical hydrogels. They possess unique features including reversible bonding, shear thinning and stimuli-responsiveness. Unlike covalently crosslinked hydrogels, physical hydrogels do not require triggers to initiate chemical reactions for in situ gelation. The drug can be fully loaded in a pre-formed hydrogel for delivery with minimal cargo leakage during injection. These benefits make physical hydrogels useful as delivery vehicles for applications in biomedical engineering. This review focuses on recent advances of physical hydrogels crosslinked by weak bonds: hydrogen bonds, ionic interactions, host-guest chemistry, hydrophobic interactions, coordination bonds and π-π stacking interactions. Understanding the principles and the state of the art of gels with these dynamic bonds may give rise to breakthroughs in many biomedical research areas including drug delivery and tissue engineering. PMID:29062484

  18. Assessment of alginate hydrogel degradation in biological tissue using viscosity-sensitive fluorescent dyes

    NASA Astrophysics Data System (ADS)

    Shkand, Tatiana V.; Chizh, Mykola O.; Sleta, Iryna V.; Sandomirsky, Borys P.; Tatarets, Anatoliy L.; Patsenker, Leonid D.

    2016-12-01

    The main goal of this study is to investigate a combination of viscosity-sensitive and viscosity-insensitive fluorescent dyes to distinguish different rheological states of hydrogel based biostructural materials and carriers in biological tissues and to assess their corresponding location areas. The research is done in the example of alginate hydrogel stained with viscosity-sensitive dyes Seta-470 and Seta-560 as well as the viscosity-insensitive dye Seta-650. These dyes absorb/emit at 469/518, 565/591 and 651/670 nm, respectively. The rheological state of the alginate, the area of the fluorescence signal and the mass of the dense alginate versus the calcium gluconate concentration utilized for alginate gelation were studied in vitro. The most pronounced change in the fluorescence signal area was found at the same concentrations of calcium gluconate (below ~1%) as the change in the alginate plaque mass. The stained alginate was also implanted in situ in rat hip and myocardium and monitored using fluorescence imaging. In summary, our data indicate that the viscosity sensitive dye in combination with the viscosity-insensitive dye allow tracking the biodegradation of the alginate hydrogel and determining the rheological state of hydrogel in biological tissue, which both should have relevance for research and clinical applications. Using this method we estimated the half-life of the dense alginate hydrogel in a rat hip to be in the order of 4 d and about 6-8 d in rat myocardium. The half-life of the dense hydrogel in the myocardium was found to be long enough to prevent aneurysm rupture of the left ventricle wall, one of the more severe complications of the early post-infarction period.

  19. Accelerated Leach Testing of Glass (ALTGLASS): II. Mineralization of hydrogels by leachate strong bases

    DOE PAGES

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...

    2017-02-18

    The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less

  20. Accelerated Leach Testing of Glass (ALTGLASS): II. Mineralization of hydrogels by leachate strong bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.

    The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less

  1. Release behavior and bioefficacy of imazethapyr formulations based on biopolymeric hydrogels.

    PubMed

    Kumar, Vikas; Singh, Anupama; Das, T K; Sarkar, Dhruba Jyoti; Singh, Shashi Bala; Dhaka, Rashmi; Kumar, Anil

    2017-06-03

    Controlled release formulations of imazethapyr herbicide have been developed employing guar gum-g-cl-polyacrylate/bentonite clay hydrogel composite (GG-HG) and guar gum-g-cl-PNIPAm nano hydrogel (GG-NHG) as carriers, to assess the suitability of biopolymeric hydrogels as controlled herbicide release devices. The kinetics of imazethapyr release from the developed formulations was studied in water and it revealed that the developed formulations of imazethapyr behaved as slow release formulations as compared to commercial formulation. The calculated diffusion exponent (n) values showed that Fickian diffusion was the predominant mechanism of imazethapyr release from the developed formulations. Time for release of half of the loaded imazethapyr (t 1/2 ) ranged between 0.06 and 4.8 days in case of GG-NHG and 4.4 and 12.6 days for the GG-HG formulations. Weed control index (WCI) of GG-HG and GG-NHG formulations was similar to that of the commercial formulation and the herbicidal effect was observed for relatively longer period. Guar gum-based biopolymeric hydrogels in both macro and nano particle size range can serve as potential carriers in developing slow release herbicide formulations.

  2. A radiopaque polymer hydrogel used as a fiducial marker in gynecologic-cancer patients receiving brachytherapy

    PubMed Central

    Bair, Ryan J.; Bair, Eric; Viswanathan, Akila N.

    2016-01-01

    PURPOSE We assessed a novel Food and Drug Administration–approved hydrogel, synthesized as absorbable iodinated particles, in gynecologic-cancer patients undergoing computed tomography (CT) or magnetic resonance (MR) based brachytherapy after external beam radiation. METHODS AND MATERIALS Nineteen patients underwent CT-guided (n = 13) or MR-guided (n = 6) brachytherapy for gynecologic cancers. Seventy-seven hydrogel injections were placed. The hydrogel material was injected into gross residual disease and/or key anatomic landmarks in amounts ranging from 0.1 to 0.4 mL. The visibility of the tracer was scored on CT and on MR images using a 5-point scoring scale. A Cohen’s kappa statistic was calculated to assess interobserver agreement. To assess the unadjusted effects of baseline parameters on hydrogel visibility, we modeled visibility using a linear mixed-effect model. RESULTS Injections were without complication. The kappa statistic was 0.77 (95% confidence interval [CI], 0.68–0.87). The volume of hydrogel injected was significantly associated with visibility on both CT (p = 0.032) and magnetic resonance imaging (p = 0.016). We analyzed visibility by location, controlling for amount. A 0.1-cc increase in volume injected was associated with increases of 0.54 (95% CI = 0.05–1.03) in the CT visibility score and 0.83 (95% CI = 0.17–1.49) in the MR visibility score. Injection of 0.4 cc or more was required for unequivocal visibility on CT or MR. No statistically significant correlation was found between tumor type, tumor location, or anatomical location of injection and visibility on either CT or magnetic resonance imaging. CONCLUSIONS In this first report of an injectable radiopaque hydrogel, targets were visualized to assist with three-dimensional–based brachytherapy in gynecologic malignancies. This marker has potential for several applications, is easy to inject and visualize, and caused no acute complications. PMID:26481393

  3. pH/NIR Light-Controlled Multidrug Release via a Mussel-Inspired Nanocomposite Hydrogel for Chemo-Photothermal Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Ghavaminejad, Amin; Samarikhalaj, Melisa; Aguilar, Ludwig Erik; Park, Chan Hee; Kim, Cheol Sang

    2016-09-01

    This study reports on an intelligent composite hydrogel with both pH-dependent drug release in a cancer environment and heat generation based on NIR laser exposure, for the combined application of photothermal therapy (PTT) and multidrug chemotherapy. For the first time in the literature, Dopamine nanoparticle (DP) was incorporated as a highly effective photothermal agent as well as anticancer drug, bortezomib (BTZ) carrier inside a stimuli responsive pNIPAAm-co-pAAm hydrogel. When light is applied to the composite hydrogel, DP nanoparticle absorbs the light, which is dissipated locally as heat to impact cancer cells via hyperthermia. On the other hand, facile release of the anticancer drug BTZ from the surface of DP encapsulated hydrogel could be achieved due to the dissociation between catechol groups of DP and the boronic acid functionality of BTZ in typical acidic cancer environment. In order to increase the synergistic effect by dual drug delivery, Doxorubicin (DOXO) were also loaded to pNIPAAm-co-pAAm/DP-BTZ hydrogel and the effect of monotherapy as well as combined therapy were detailed by a complete characterization. Our results suggest that these mussel inspired nanocomposite with excellent heating property and controllable multidrug release can be considered as a potential material for cancer therapy.

  4. Imaging cell picker: A morphology-based automated cell separation system on a photodegradable hydrogel culture platform.

    PubMed

    Shibuta, Mayu; Tamura, Masato; Kanie, Kei; Yanagisawa, Masumi; Matsui, Hirofumi; Satoh, Taku; Takagi, Toshiyuki; Kanamori, Toshiyuki; Sugiura, Shinji; Kato, Ryuji

    2018-06-09

    Cellular morphology on and in a scaffold composed of extracellular matrix generally represents the cellular phenotype. Therefore, morphology-based cell separation should be interesting method that is applicable to cell separation without staining surface markers in contrast to conventional cell separation methods (e.g., fluorescence activated cell sorting and magnetic activated cell sorting). In our previous study, we have proposed a cloning technology using a photodegradable gelatin hydrogel to separate the individual cells on and in hydrogels. To further expand the applicability of this photodegradable hydrogel culture platform, we here report an image-based cell separation system imaging cell picker for the morphology-based cell separation on a photodegradable hydrogel. We have developed the platform which enables the automated workflow of image acquisition, image processing and morphology analysis, and collection of a target cells. We have shown the performance of the morphology-based cell separation through the optimization of the critical parameters that determine the system's performance, such as (i) culture conditions, (ii) imaging conditions, and (iii) the image analysis scheme, to actually clone the cells of interest. Furthermore, we demonstrated the morphology-based cloning performance of cancer cells in the mixture of cells by automated hydrogel degradation by light irradiation and pipetting. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Fire-Resistant Hydrogel-Fabric Laminates: A Simple Concept That May Save Lives.

    PubMed

    Illeperuma, Widusha R K; Rothemund, Philipp; Suo, Zhigang; Vlassak, Joost J

    2016-01-27

    There is a large demand for fabrics that can survive high-temperature fires for an extended period of time, and protect the skin from burn injuries. Even though fire-resistant polymer fabrics are commercially available, many of these fabrics are expensive, decompose rapidly, and/or become very hot when exposed to high temperatures. We have developed a new class of fire-retarding materials by laminating a hydrogel and a fabric. The hydrogel contains around 90% water, which has a large heat capacity and enthalpy of vaporization. When the laminate is exposed to fire, a large amount of energy is absorbed as water heats up and evaporates. The temperature of the hydrogel cannot exceed 100 °C until it is fully dehydrated. The fabric has a low thermal conductivity and maintains the temperature gradient between the hydrogel and the skin. The laminates are fabricated using a recently developed tough hydrogel to ensure integrity of the laminate during processing and use. A thermal model predicts the performance of the laminates and shows that they have excellent heat resistance in good agreement with experiments, making them viable candidates in life saving applications such as fire-resistant blankets or apparel.

  6. Effects of Mechanical Constraint on the Performance of Fluorescent Hydrogel-based Fiber Optic Sensors

    NASA Astrophysics Data System (ADS)

    Jukl, Jennifer Marie

    Although biosensor technology is a broad and well-studied field, the progress of many novel sensor technologies faces challenges. These challenges range from simple design considerations to fundamental issues with the concept or approach. One of the most active fields of sensor research integrates fiber optics with specially engineered fluorescent molecules. This type of sensor typically utilizes a porous polymer or porous glass substrate to entrap the fluorescent (or fluorescently-tagged) molecule. Porous polymer hydrogels are generally favored due to their ease of fabrication, low cost, adaptability, and biocompatibility. While hydrogels are ideal for both functional molecule suspension and fluid diffusion, their porosity and hydrophilicity are not always advantageous. The largest drawback of these properties is the hydrogel swelling they produce and the resulting geometric changes. This project investigated the limitations of fluorescent hydrogel-based sensors and the effects of unpredictable structural changes hydrogels undergo during typical, unrestrained swelling. The significance of covalent incorporation of the sensing fluorophore into the hydrogel matrix is also explored. Leaching tests were conducted using polyacrylamide (PAm) hydrogels which were impregnated with one of two pH sensitive fluorophores, one which bonded covalently with the hydrogel matrix during polymerization (fluorescein o-acrylate), and one which did not (fluorescein sodium). Once determined to be effective, the covalently bonding fluorophore was used to create constrained-dimension fluorescent pH sensors. These sensors were tested for effectiveness and reproducibility. All data was collected using a laboratory grade optical fibers, a USB spectrometer, and SpectraSuite software (Ocean Optics, 2010) unless otherwise specified.

  7. Enabling Surgical Placement of Hydrogels through Achieving Paste-Like Rheological Behavior in Hydrogel Precursor Solutions

    PubMed Central

    Beck, Emily C.; Lohman, Brooke L.; Tabakh, Daniel B.; Kieweg, Sarah L.; Gehrke, Stevin H.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Hydrogels are a promising class of materials for tissue regeneration, but they lack the ability to be molded into a defect site by a surgeon because hydrogel precursors are liquid solutions that are prone to leaking during placement. Therefore, although the main focus of hydrogel technology and developments are on hydrogels in their crosslinked form, our primary focus is on improving the fluid behavior of hydrogel precursor solutions. In this work, we introduce a method to achieve paste-like hydrogel precursor solutions by combining hyaluronic acid nanoparticles with traditional crosslinked hyaluronic acid hydrogels. Prior to crosslinking, the samples underwent rheological testing to assess yield stress and recovery using linear hyaluronic acid as a control. The experimental groups containing nanoparticles were the only solutions that exhibited a yield stress, demonstrating that the nanoparticulate rather than the linear form of hyaluronic acid was necessary to achieve paste-like behavior. The gels were also photocrosslinked and further characterized as solids, where it was demonstrated that the inclusion of nanoparticles did not adversely affect the compressive modulus and that encapsulated bone marrow-derived mesenchymal stem cells remained viable. Overall, this nanoparticle-based approach provides a platform hydrogel system that exhibits a yield stress prior to crosslinking, and can then be crosslinked into a hydrogel that is capable of encapsulating cells that remain viable. This behavior may hold significant impact for hydrogel applications where a paste-like behavior is desired in the hydrogel precursor solution. PMID:25691398

  8. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering

    PubMed Central

    You, Fu; Eames, B. Frank; Chen, Xiongbiao

    2017-01-01

    Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed. PMID:28737701

  9. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering.

    PubMed

    You, Fu; Eames, B Frank; Chen, Xiongbiao

    2017-07-23

    Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed.

  10. Classification of Hydrogels Based on Their Source: A Review and Application in Stem Cell Regulation

    NASA Astrophysics Data System (ADS)

    Khansari, Maziyar M.; Sorokina, Lioudmila V.; Mukherjee, Prithviraj; Mukhtar, Farrukh; Shirdar, Mostafa Rezazadeh; Shahidi, Mahnaz; Shokuhfar, Tolou

    2017-08-01

    Stem cells are recognized by their self-renewal ability and can give rise to specialized progeny. Hydrogels are an established class of biomaterials with the ability to control stem cell fate via mechanotransduction. They can mimic various physiological conditions to influence the fate of stem cells and are an ideal platform to support stem cell regulation. This review article provides a summary of recent advances in the application of different classes of hydrogels based on their source (e.g., natural, synthetic, or hybrid). This classification is important because the chemistry of substrate affects stem cell differentiation and proliferation. Natural and synthetic hydrogels have been widely used in stem cell regulation. Nevertheless, they have limitations that necessitate a new class of material. Hybrid hydrogels obtained by manipulation of the natural and synthetic ones can potentially overcome these limitations and shape the future of research in application of hydrogels in stem cell regulation.

  11. Neovascularization Induced by the Hyaluronic Acid-Based Spongy-Like Hydrogels Degradation Products.

    PubMed

    Silva, Lucília P da; Pirraco, Rogério P; Santos, Tírcia C; Novoa-Carballal, Ramon; Cerqueira, Mariana T; Reis, Rui L; Correlo, Vitor M; Marques, Alexandra P

    2016-12-14

    Neovascularization has been a major challenge in many tissue regeneration strategies. Hyaluronic acid (HA) of 3-25 disaccharides is known to be angiogenic due to its interaction with endothelial cell receptors. This effect has been explored with HA-based structures but a transitory response is observed due to HA burst biodegradation. Herein we developed gellan gum (GG)-HA spongy-like hydrogels from semi-interpenetrating network hydrogels with different HA amounts. Enzymatic degradation was more evident in the GG-HA with high HA amount due to their lower mechanical stability, also resulting from the degradation itself, which facilitated the access of the enzyme to the HA in the bulk. GG-HA spongy-like hydrogels hyaluronidase-mediated degradation lead to the release of HA oligosaccharides of different amounts and sizes in a HA content-dependent manner which promoted in vitro proliferation of human umbilical cord vein endothelial cells (HUVECs) but not their migration. Although no effect was observed in human dermal microvascular endothelial cells (hDMECs) in vitro, the implantation of GG-HA spongy-like hydrogels in an ischemic hind limb mice model promoted neovascularization in a material-dependent manner, consistent with the in vitro degradation profile. Overall, GG-HA spongy-like hydrogels with a sustained release of HA oligomers are valuable options to improve tissue vascularization, a critical issue in several applications in the tissue engineering and regenerative medicine field.

  12. The effects of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function.

    PubMed

    Turturro, Sanja B; Guthrie, Micah J; Appel, Alyssa A; Drapala, Pawel W; Brey, Eric M; Pérez-Luna, Victor H; Mieler, William F; Kang-Mieler, Jennifer J

    2011-05-01

    There is significant interest in biomaterials that provide sustained release of therapeutic molecules to the retina. Poly(N-isopropylacrylamide) (PNIPAAm)-based materials have received significant attention as injectable drug delivery platforms due to PNIPAAm's thermo-responsive properties at approximately 32 °C. While the drug delivery properties of PNIPAAm materials have been studied extensively, there is a need to evaluate the safety effects of hydrogel injection on retinal function. The purpose of this study was to examine the effect of poly(ethylene glycol) diacrylate (PEG-DA) crosslinked PNIPAAm hydrogel injection on retinal function. Utilizing scanning laser ophthalmoscopy (SLO), optical coherent tomography (OCT), and electroretinography (ERG), retinal function was assessed following hydrogel injection. In region near the hydrogel, there was a significant decrease in arterial and venous diameters (∼4%) and an increase in venous blood velocity (∼8%) 1 week post-injection. Retinal thickness decreased (∼6%) at 1 week and the maximum a- and b-wave amplitudes of ERG decreased (∼15%). All data returned to baseline values after week 1. These data suggest that the injection of PEG-DA crosslinked PNIPAAm hydrogel results in a small transient effect on retinal function without any long-term effects. These results further support the potential of PNIPAAm-based materials as an ocular drug delivery platform. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Biological performance of cell-encapsulated methacrylated gellan gum-based hydrogels for nucleus pulposus regeneration.

    PubMed

    Tsaryk, Roman; Silva-Correia, Joana; Oliveira, Joaquim Miguel; Unger, Ronald E; Landes, Constantin; Brochhausen, Christoph; Ghanaati, Shahram; Reis, Rui L; Kirkpatrick, C James

    2017-03-01

    Limitations of current treatments for intervertebral disc (IVD) degeneration have promoted interest in the development of tissue-engineering approaches. Injectable hydrogels loaded with cells can be used as a substitute material for the inner IVD part, the nucleus pulposus (NP), and provide an opportunity for minimally invasive treatment of IVD degeneration. The NP is populated by chondrocyte-like cells; therefore, chondrocytes and mesenchymal stem cells (MSCs), stimulated to differentiate along the chondrogenic lineage, could be used to promote NP regeneration. In this study, the in vitro and in vivo response of human bone marrow-derived MSCs and nasal chondrocytes (NCs) to modified gellan gum-based hydrogels was investigated. Both ionic- (iGG-MA) and photo-crosslinked (phGG-MA) methacrylated gellan gum hydrogels show no cytotoxicity in extraction assays with MSCs and NCs. Furthermore, the materials do not induce pro-inflammatory responses in endothelial cells. Moreover, MSCs and NCs can be encapsulated into the hydrogels and remain viable for at least 2 weeks, although apoptosis is observed in phGG-MA. Importantly, encapsulated MSCs and NCs show signs of in vivo chondrogenesis in a subcutaneous implantation of iGG-MA. Altogether, the data endorse the potential use of modified gellan gum-based hydrogel as a suitable material in NP tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Strong and Robust Polyaniline-Based Supramolecular Hydrogels for Flexible Supercapacitors.

    PubMed

    Li, Wanwan; Gao, Fengxian; Wang, Xiaoqian; Zhang, Ning; Ma, Mingming

    2016-08-01

    We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid-state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline-polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g(-1) ). The flexible solid-state supercapacitor based on PPH provides a large capacitance (306 mF cm(-2) and 153 F g(-1) ) and a high energy density of 13.6 Wh kg(-1) , superior to other flexible supercapacitors. The robustness of the PPH-based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge-discharge cycles. The high activity and robustness enable the PPH-based supercapacitor as a promising power device for flexible electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles

    PubMed Central

    Pawar, Amol A.; Saada, Gabriel; Cooperstein, Ido; Larush, Liraz; Jackman, Joshua A.; Tabaei, Seyed R.; Cho, Nam-Joon; Magdassi, Shlomo

    2016-01-01

    In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)–visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode–based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents. PMID:27051877

  16. A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Tang, Qianqiu; Chen, Mingming; Wang, Gengchao; Bao, Hua; Saha, Petr

    2015-06-01

    A facile prestrain-stick-release assembly strategy for the stretchable supercapacitor device is developed based on a novel Na2SO4-aPUA/PAAM hydrogel electrolyte, saving the stretchable rubber base conventionally used. The Na2SO4-aPUA/PAAM hydrogel electrolyte exhibits high stretchability (>1000%), electrical conductivity (0.036 S cm-1) and stickiness. Due to the unique features of the hydrogel electrolyte, the carbon nanotube@MnO2 film electrodes can be firmly stuck to two sides of the prestrained hydrogel electrolyte. Then, by releasing the hydrogel electrolyte, homogenous buckles are formed for the film electrodes to get a full stretchable supercapacitor device. Besides, the high stickiness of the hydrogel electrolyte ensures its strong adhesion with the film electrodes, facilitating ion and electronic transfer of the supercapacitor. As a result, excellent electrochemical performance is achieved with the specific capacitance of 478.6 mF cm-2 at 0.5 mA cm-2 (corresponding to 201.1 F g-1) and capacitance retention of 91.5% after 3000 charging-discharging cycles under 150% strain, which is the best for the stretchable supercapacitors.

  17. Synthesis of Acylated Xylan-Based Magnetic Fe3O4 Hydrogels and Their Application for H2O2 Detection

    PubMed Central

    Dai, Qing-Qing; Ren, Jun-Li; Peng, Feng; Chen, Xiao-Feng; Gao, Cun-Dian; Sun, Run-Cang

    2016-01-01

    Acylated xylan-based magnetic Fe3O4 nanocomposite hydrogels (ACX-MNP-gels) were prepared by fabricating Fe3O4 nanoctahedra in situ within a hydrogel matrix which was synthesized by the copolymerization of acylated xylan (ACX) with acrylamide and N-isopropylacrylamide under ultraviolet irradiation. The size of the Fe3O4 fabricated within the hydrogel matrix could be adjusted through controlling the crosslinking concentrations (C). The magnetic hydrogels showed desirable magnetic and mechanical properties, which were confirmed by XRD, Raman spectroscopy, physical property measurement system, SEM, TGA, and compression test. Moreover, the catalytic performance of the magnetic hydrogels was explored. The magnetic hydrogels (C = 7.5 wt %) presented excellent catalytic activity and provided a sensitive response to H2O2 detection even at a concentration level of 5 × 10−6 mol·L−1. This approach to preparing magnetic hydrogels loaded with Fe3O4 nanoparticles endows xylan-based hydrogels with new promising applications in biotechnology and environmental chemistry. PMID:28773811

  18. Metal-Ion-Mediated Supramolecular Chirality of l-Phenylalanine Based Hydrogels.

    PubMed

    Wang, Fang; Feng, Chuan-Liang

    2018-05-14

    For chiral hydrogels and related applications, one of the critical issues is how to control the chirality of supramolecular systems in an efficient way, including easy operation, efficient transfer of chirality, and so on. Herein, supramolecular chirality of l-phenylalanine based hydrogels can be effectively controlled by using a broad range of metal ions. The degree of twisting (twist pitch) and the diameter of the chiral nanostructures can also be efficiently regulated. These are ascribed to the synergic effect of hydrogen bonding and metal ion coordination. This study may develop a method to design a new class of electronically, optically, and biologically active materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Huaimin; Yang, Zhimou

    2012-08-01

    Molecular hydrogels hold big potential for tissue engineering and controlled drug delivery. Our lab focuses on short-peptide-based molecular hydrogels formed by biocompatible methods and their applications in tissue engineering (especially, 3D cell culture) and controlled drug delivery. This feature article firstly describes our recent progresses of the development of novel methods to form hydrogels, including the strategy of disulfide bond reduction and assistance with specific protein-peptide interactions. We then introduce the applications of our hydrogels in fields of controlled stem cell differentiation, cell culture, surface modifications of polyester materials by molecular self-assembly, and anti-degradation of recombinant complex proteins. A novel molecular hydrogel system of hydrophobic compounds that are only formed by hydrolysis processes was also included in this article. The hydrogels of hydrophobic compounds, especially those of hydrophobic therapeutic agents, may be developed into a carrier-free delivery system for long term delivery of therapeutic agents. With the efforts in this field, we believe that molecular hydrogels formed by short peptides and hydrophobic therapeutic agents can be practically applied for 3D cell culture and long term drug delivery in near future, respectively.

  20. Novel Osteoinductive Photo-cross-linkable Chitosan-lactide-fibrinogen Hydrogels Enhance Bone Regeneration in Critical Size Segmental Bone Defects

    DTIC Science & Technology

    2014-08-01

    an absorbable collagen sponge (ACS) is the FDA-approved device for clinical applications including lumbar spine fusion, open tibial fractures, and...fibrinogen on the morphological change of the CL hydrogels was observed. The hydrogel samples were incubated into PBS (pH 7.4) at 37°C for 1 day and... morphology was observed qualitatively using a Zeiss Axiovert 200 microscope (Carl Zeiss Microimaging, Thornwood, NY). Photomicrographs of cells

  1. Poly(amido-amine)-based hydrogels with tailored mechanical properties and degradation rates for tissue engineering.

    PubMed

    Martello, Federico; Tocchio, Alessandro; Tamplenizza, Margherita; Gerges, Irini; Pistis, Valentina; Recenti, Rossella; Bortolin, Monica; Del Fabbro, Massimo; Argentiere, Simona; Milani, Paolo; Lenardi, Cristina

    2014-03-01

    Poly(amido-amine) (PAA) hydrogels containing the 2,2-bisacrylamidoacetic acid-4-amminobutyl guanidine monomeric unit have a known ability to enhance cellular adhesion by interacting with the arginin-glycin-aspartic acid (RGD)-binding αVβ3 integrin, expressed by a wide number of cell types. Scientific interest in this class of materials has traditionally been hampered by their poor mechanical properties and restricted range of degradation rate. Here we present the design of novel biocompatible, RGD-mimic PAA-based hydrogels with wide and tunable degradation rates as well as improved mechanical and biological properties for biomedical applications. This is achieved by radical polymerization of acrylamide-terminated PAA oligomers in both the presence and absence of 2-hydroxyethylmethacrylate. The degradation rate is found to be precisely tunable by adjusting the PAA oligomer molecular weight and acrylic co-monomer concentration in the starting reaction mixture. Cell adhesion and proliferation tests on Madin-Darby canine kidney epithelial cells show that PAA-based hydrogels have the capacity to promote cell adhesion up to 200% compared to the control. Mechanical tests show higher compressive strength of acrylic chain containing hydrogels compared to traditional PAA hydrogels. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Robust multi-responsive supramolecular hydrogel based on a mono-component host-guest gelator.

    PubMed

    Cheng, Weinan; Zhao, Dongxu; Qiu, Yuan; Hu, Haisi; Wang, Hong; Wang, Qin; Liao, Yonggui; Peng, Haiyan; Xie, Xiaolin

    2018-05-29

    Supramolecular hydrogels have been widely investigated, but the construction of stimuli-responsive mono-component host-guest hydrogels remains a challenge in that it is still hard to balance the solubility and gelation ability of the gelator. In this work, three azobenzene-modified β-cyclodextrin derivatives with different alkyl lengths (β-CD-Azo-Cn) have been synthesized. The length of the alkyl chain dramatically influences the solubility and gelation ability of β-CD derivatives in water. Among these derivatives, β-CD-Azo-C8 possesses the lowest minimum gelation concentration (MGC). Based on the host-guest interaction between β-CD and azobenzene units in aqueous solution, which is confirmed by UV-visible and ROESY NMR spectra, the gelators self-assemble and further interwine into networks through the hydrogen bonds on the surface of β-CD cavities. Hydrogels formed by mono-component gelators can collapse under external stimuli such as heating, competition guests and hosts, and UV irradiation. When the concentration of the gelator is more than 8 wt%, the hydrogel exhibits good self-supporting ability with a storage modulus higher than 104 Pa. The gel-sol transition temperature of the hydrogel is near body temperature, indicating its potential applications in biological materials.

  3. The Formation Mechanism of Hydrogels.

    PubMed

    Lu, Liyan; Yuan, Shiliang; Wang, Jing; Shen, Yun; Deng, Shuwen; Xie, Luyang; Yang, Qixiang

    2017-06-12

    Hydrogels are degradable polymeric networks, in which cross-links play a vital role in structure formation and degradation. Cross-linking is a stabilization process in polymer chemistry that leads to the multi-dimensional extension of polymeric chains, resulting in network structures. By cross-linking, hydrogels are formed into stable structures that differ from their raw materials. Generally, hydrogels can be prepared from either synthetic or natural polymers. Based on the types of cross-link junctions, hydrogels can be categorized into two groups: the chemically cross-linked and the physically cross-linked. Chemically cross-linked gels have permanent junctions, in which covalent bonds are present between different polymer chains, thus leading to excellent mechanical strength. Although chemical cross-linking is a highly resourceful method for the formation of hydrogels, the cross-linkers used in hydrogel preparation should be extracted from the hydrogels before use, due to their reported toxicity, while, in physically cross-linked gels, dissolution is prevented by physical interactions, such as ionic interactions, hydrogen bonds or hydrophobic interactions. Physically cross-linked methods for the preparation of hydrogels are the alternate solution for cross-linker toxicity. Both methods will be discussed in this essay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Injectable hydrogels for delivering biotherapeutic molecules.

    PubMed

    Mathew, Ansuja Pulickal; Uthaman, Saji; Cho, Ki-Hyun; Cho, Chong-Su; Park, In-Kyu

    2018-04-15

    To date, numerous delivery systems based on either organic or inorganic material have been developed to achieve efficient and sustained delivery of therapeutics. Hydrogels, which are three dimensional networks of crosslinked hydrophilic polymers, have a significant role in solving the clinical and pharmacological limitations of present systems because of their biocompatibility, ease of preparation and unique physical properties such as a tunable porous nature and affinity for biological fluids. Development of an in situ forming injectable hydrogel system has allowed excellent spatial and temporal control, unlike systemically administered therapeutics. Injectable hydrogel systems can offset difficulties with conventional hydrogel-based drug delivery systems in the clinic by forming a drug/gene delivery or cell-growing depot in the body with a single injection, thereby enabling patient compliance and comfort. Carbohydrate polymers are widely used for the synthesis of injectable in situ-forming hydrogels because of ready availability, presence of modifiable functional groups, biocompatibility and other physiochemical properties. In this review, we discuss different aspects of injectable hydrogels, such as bulk hydrogels/macrogels, microgels, and nanogels derived from natural polymers, and their importance in the delivery of therapeutics such as genes, drugs, cells or other biomolecules and how these revolutionary systems can complement existing therapeutic delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Bio-functionalized silk hydrogel microfluidic systems.

    PubMed

    Zhao, Siwei; Chen, Ying; Partlow, Benjamin P; Golding, Anne S; Tseng, Peter; Coburn, Jeannine; Applegate, Matthew B; Moreau, Jodie E; Omenetto, Fiorenzo G; Kaplan, David L

    2016-07-01

    Bio-functionalized microfluidic systems were developed based on a silk protein hydrogel elastomeric materials. A facile multilayer fabrication method using gelatin sacrificial molding and layer-by-layer assembly was implemented to construct interconnected, three dimensional (3D) microchannel networks in silk hydrogels at 100 μm minimum feature resolution. Mechanically activated valves were implemented to demonstrate pneumatic control of microflow. The silk hydrogel microfluidics exhibit controllable mechanical properties, long-term stability in various environmental conditions, tunable in vitro and in vivo degradability in addition to optical transparency, providing unique features for cell/tissue-related applications than conventional polydimethylsiloxane (PDMS) and existing hydrogel-based microfluidic options. As demonstrated in the work here, the all aqueous-based fabrication process at ambient conditions enabled the incorporation of active biological substances in the bulk phase of these new silk microfluidic systems during device fabrication, including enzymes and living cells, which are able to interact with the fluid flow in the microchannels. These silk hydrogel-based microfluidic systems offer new opportunities in engineering active diagnostic devices, tissues and organs that could be integrated in vivo, and for on-chip cell sensing systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers.

    PubMed

    Ali, Akbar; Ahmed, Shakeel

    2018-06-26

    The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.

  7. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  8. Development of gellan gum-based microparticles/hydrogel matrices for application in the intervertebral disc regeneration.

    PubMed

    Pereira, Diana Ribeiro; Silva-Correia, Joana; Caridade, Sofia Glória; Oliveira, Joao T; Sousa, Rui A; Salgado, Antonio J; Oliveira, Joaquim M; Mano, João F; Sousa, Nuno; Reis, Rui L

    2011-10-01

    Low back pain is one of the most reported medical conditions associated to intervertebral disc (IVD) degeneration. Nucleus pulposus (NP) is often regarded as the structure where IVD degeneration begins. Gellan gum (GG)-based hydrogels for acellular and cellular tissue engineering strategies have been developed for finding applications as NP substitutes. The innovative strategy is based on the reinforcement of the hydrogel matrix with biocompatible and biodegradable GG microparticles (MPs), which are expected to improve the mechanical properties, while allowing to tailor its degradation rate. In this study, several GG MP/hydrogel disc formulations were prepared by means of mixing high acyl GG (0.75% (w/v)) and low acyl GG (2% (w/v)) GG aqueous solutions at different ratios, namely, 75%:25% (v/v), 50%:50% (v/v), and 25%:75% (v/v), respectively. The GG MP size was measured using a stereo microscope, and their dispersion within the hydrogel matrix was evaluated by means of staining the MPs with Toluidine Blue-O. The developed GG MPs/hydrogel discs were physicochemically characterized by Fourier-transform infrared spectroscopy and (1)H-nuclear magnetic resonance spectroscopy. The swelling behavior and degradation rate were assessed by immersion in a phosphate buffer saline for 14 days. The morphology and mechanical behavior were investigated by scanning electron microscopy and dynamic mechanical analysis, respectively. The mechanical properties of the hydrogel disc were improved by mixing the gels with the MPs. In addition, the possible cytotoxicity of the leachables released by MPs/hydrogel discs was screened in vitro, using a mouse lung fibroblast cell line (L929 cells). To investigate the encapsulation efficacy of L929 cells into the GG MPs/hydrogel discs, cells were stained with DAPI blue/Texas Red-Phalloidin and observed by confocal microscopy, after 24, 48, and 72 h of culturing. A cell viability assay was also performed using Calcein AM staining. The cell culture

  9. Superporous hybrid hydrogels based on polyacrylamide and chitosan: Characterization and in vitro drug release

    PubMed Central

    Nagpal, Manju; Singh, Shailendra Kumar; Mishra, Dinanath

    2013-01-01

    Objective: Current research was aimed at the development of the drug delivery systems based on the superporous hydrogels (SPH) with the desired swelling and the mechanical properties. Materials and Methods: Superporous hydrogel composites (SPHCs) and superporous hybrid hydrogels (SPHHs) based on the chitosan and the polyacrylamide were synthesized using the gas blowing technique. The prepared hydrogels were evaluated for swelling studies, mechanical strength and scanning electron microscopy. The selected hydrogels were loaded with the drug (verapamil hydrochloride) by aqueous loading method. Drug integrity with in polymeric network was evaluated via fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-RD), differential scanning calorimetry (DSC), proton nuclear magnetic resonance (1HNMR) studies. In vitro drug release studies were carried out using the united state pharmacopoeial (USP) dissolution apparatus (type II). Results and Discussion: The mechanical strength was observed to be higher in SPH hybrids in comparison to that in SPHCs while no significant difference was observed in swelling behavior. In situ crosslinking of chitosan with glutaraldehyde (GA) may be responsible for high mechanical strength. The equilibrium swelling time was slight higher in SPHH than in SPHCs. The integrity of pores was maintained in ethanol treated hydrogels as observed in scanning electron micrographs. Whereas, freeze dried SPH samples showed non-uniform pores. No drug polymer interaction was observed as indicated by DSC, FTIR, X-RD and NMR studies. However, the crosslinking of chitosan with GA was clearly indicated by these studies. The in vitro drug release studies from SPH hybrids indicated initial fast release (65%) with in first 2 h and then sustained release at the end of 24 h (95%). The addition of hydroxypropyl methyl cellulose with drug; however, leads to a significant decrease in drug release (56% at the end of 24 h). Conclusion: Superporous hybrid

  10. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials

    PubMed Central

    2015-01-01

    In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers. PMID:26646318

  11. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.

    PubMed

    Sajeesh, S; Vauthier, C; Gueutin, C; Ponchel, G; Sharma, Chandra P

    2010-08-01

    In the present study thiol functionalized polymethacrylic acid-polyethylene glycol-chitosan (PCP)-based hydrogel microparticles were utilized to develop an oral insulin delivery system. Thiol modification was achieved by grafting cysteine to the activated surface carboxyl groups of PCP hydrogels (Cys-PCP). Swelling and insulin loading/release experiments were conducted on these particles. The ability of these particles to inhibit protease enzymes was evaluated under in vitro experimental conditions. Insulin transport experiments were performed on Caco-2 cell monolayers and excised intestinal tissue with an Ussing chamber set-up. Finally, the efficacy of insulin-loaded particles in reducing the blood glucose level in streptozotocin-induced diabetic rats was investigated. Thiolated hydrogel microparticles showed less swelling and had a lower insulin encapsulation efficiency as compared with unmodified PCP particles. PCP and Cys-PCP microparticles were able to inhibit protease enzymes under in vitro conditions. Thiolation was an effective strategy to improve insulin absorption across Caco-2 cell monolayers, however, the effect was reduced in the experiments using excised rat intestinal tissue. Nevertheless, functionalized microparticles were more effective in eliciting a pharmacological response in diabetic animal, as compared with unmodified PCP microparticles. From these studies thiolation of hydrogel microparticles seems to be a promising approach to improve oral delivery of proteins/peptides. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Tough Supramolecular Hydrogel Based on Strong Hydrophobic Interactions in a Multiblock Segmented Copolymer

    PubMed Central

    2017-01-01

    We report the preparation and structural and mechanical characterization of a tough supramolecular hydrogel, based exclusively on hydrophobic association. The system consists of a multiblock, segmented copolymer of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dimer fatty acid (DFA) building blocks. A series of copolymers containing 2K, 4K, and 8K PEG were prepared. Upon swelling in water, a network is formed by self-assembly of hydrophobic DFA units in micellar domains, which act as stable physical cross-link points. The resulting hydrogels are noneroding and contain 75–92 wt % of water at swelling equilibrium. Small-angle neutron scattering (SANS) measurements showed that the aggregation number of micelles ranges from 2 × 102 to 6 × 102 DFA units, increasing with PEG molecular weight. Mechanical characterization indicated that the hydrogel containing PEG 2000 is mechanically very stable and tough, possessing a tensile toughness of 4.12 MJ/m3. The high toughness, processability, and ease of preparation make these hydrogels very attractive for applications where mechanical stability and load bearing features of soft materials are required. PMID:28469284

  13. Sustainable Hydrogels Based on Lignin-Methacrylate Copolymers with Enhanced Water Retention and Tunable Material Properties.

    PubMed

    Rajan, Kalavathy; Mann, Jeffrey K; English, Eldon; Harper, David P; Carrier, Danielle Julie; Rials, Timothy G; Labbé, Nicole; Chmely, Stephen C

    2018-04-12

    Synthesizing lignin-based copolymers would valorize a major coproduct stream from pulp and paper mills and biorefineries as well as reduce the dependence on petrochemical-based consumer goods. In this study, we used organosolv lignin isolated from hybrid poplar ( Populus trichocarpa × P. deltoides) to generate lignin-containing methacrylate hydrogels. The copolymer hydrogels were synthesized by first grafting 2-hydroxyethyl methacrylate (HEMA) onto lignin (OSLH) via esterification and then by free radical polymerization of OSLH with excess HEMA. The copolymer hydrogels were prepared with different stoichiometric ratios of OSLH (e.g., 0, 10, 20, and 40 wt %) with respect to HEMA. Copolymerization with OSLH led to an increase in cross-linking density, which in turn enhanced the hydrogel's material properties; we report up to 39% improvement in water retention, 20% increase in thermostability, and up to a 3 order increase in magnitude of the storage modulus ( G'). The copolymer's properties, such as water retention and glass transition temperature, could be tuned by altering the percent functionalization of lignin OH groups and the ratio of OSLH to HEMA.

  14. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II).

    PubMed

    Zhou, Yiming; Fu, Shiyu; Zhang, Liangliang; Zhan, Huaiyu; Levit, Mikhail V

    2014-01-30

    Novel magnetic hydrogel beads (m-CS/PVA/CCNFs), consisting of carboxylated cellulose nanofibrils (CCNFs), amine-functionalized magnetite nanoparticles and poly(vinyl alcohol) (PVA) blended chitosan (CS), were prepared by an instantaneous gelation method. SEM, XRD, and TGA techniques were applied to investigate the structure of the hydrogel materials. The magnetic hydrogels were employed as absorbents for removal of Pb(II) ions from aqueous solutions and the fundamental adsorption behavior was studied. Experimental results revealed that the m-CS/PVA/CCNFs hydrogels exhibit higher adsorption capacity with the value of 171.0mg/g, and the carboxylate groups on the CCNFs surface play an important role in Pb(II) adsorption. Moreover, adsorption isotherm data were reliably described by the Langmuir model and the adsorption kinetics closely followed pseudo-second order model. Additionally, the Pb(II)-loaded m-CS/PVA/CCNFs hydrogels could be easily regenerated in weak acid solution and the adsorption effectiveness of 90% can be maintained after the 4 cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review

    PubMed Central

    2017-01-01

    Hydrogels are promising biomaterials because of their important qualities such as biocompatibility, biodegradability, hydrophilicity and non-toxicity. These qualities make hydrogels suitable for application in medical and pharmaceutical field. Recently, a tremendous growth of hydrogel application is seen, especially as gel and patch form, in transdermal drug delivery. This review mainly focuses on the types of hydrogels based on cross-linking and; secondly to describe the possible synthesis methods to design hydrogels for different pharmaceutical applications. The synthesis and chemistry of these hydrogels are discussed using specific pharmaceutical examples. The structure and water content in a typical hydrogel have also been discussed. PMID:29399542

  16. Intrascleral outflow after deep sclerectomy with absorbable and non-absorbable implants in the rabbit eye.

    PubMed

    Kałużny, Jakub J; Grzanka, Dariusz; Wiśniewska, Halina; Niewińska, Alicja; Kałużny, Bartłomiej J; Grzanka, Alina

    2012-10-01

    The purpose of the study is an analysis of intrascleral drainage vessels formed in rabbits' eyes after non-penetrating deep sclerectomy (NPDS) with absorbable and non-absorbable implants, and comparison to eyes in which surgery was performed without implanted material. NPDS was carried out in 12 rabbits, with implantation of non-absorbable methacrylic hydrogel (N=10 eyes) or absorbable cross-linked sodium hyaluronate (N=6 eyes), or without any implant (N=8 eyes). All the animals were euthanized 1 year after surgery. Twenty-one eyeballs were prepared for light microscopy and 3 were prepared for transmission electron microscope (TEM) analysis. Aqueous humour pathways were stained with ferritin in 6 eyeballs. By light microscopy, small vessels adjacent to the areas of scarring were the most common abnormality. Vessel density was significantly higher in operated sclera compared to normal, healthy tissue, regardless of the type of implant used. The average vessel densities were 2.18±1.48 vessels/mm2 in non-implanted sclera, 2.34±1.69 vessels/mm2 in eyes with absorbable implants, and 3.64±1.78 vessels/mm2 in eyes with non-absorbable implants. Analysis of iron distribution in ferritin-injected eyes showed a positive reaction inside new aqueous draining vessels in all groups. TEM analysis showed that the ultrastructure of new vessels matched the features of the small veins. Aqueous outflow after NPDS can be achieved through the newly formed network of small intrascleral veins. Use of non-absorbable implants significantly increases vessel density in the sclera adjacent to implanted material compared to eyes in which absorbable implants or no implants were used.

  17. On the structural stability of guanosine-based supramolecular hydrogels.

    PubMed

    Carducci, Federica; Yoneda, Juliana S; Itri, Rosangela; Mariani, Paolo

    2018-04-18

    Supramolecular hydrogels formed from the self-assembly of low molecular weight derivatives are very attractive systems, because of their potential applications in nano- and bio-technology. In this paper, the stable and transparent hydrogels observed in binary mixtures of guanosine derivatives (G), namely guanosine 5'-monophosphate (GMP) and guanosine (Gua), dissolved in water (at volume fractions larger than 0.95), were investigated by microscopy techniques and Small Angle X-ray Scattering (SAXS). The results confirm the presence of G-quadruplexes, chiral cylindrical rods obtained by the regular stacking of self-assembled planar cyclic guanosine quartets. However, the addition of Gua determines the formation of very stable hydrogels able to trap large amounts of water (up to a volume fraction of 0.99) and characterised by an unusual anisotropic order. A modified lateral helix-to-helix interaction pattern, tuned by Gua, is suggested to be responsible for the supramolecular gelation and the stability of the hydrogels during swelling.

  18. Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin.

    PubMed

    Vulpe, Raluca; Le Cerf, Didier; Dulong, Virginie; Popa, Marcel; Peptu, Catalina; Verestiuc, Liliana; Picton, Luc

    2016-12-01

    The elaboration of chemically crosslinked hydrogels based on collagen (C), hyaluronanic acid (HA) and sericin (S) with different polymer ratios was investigated by in-situ rheology. This reaction was performed via amide or ester bond reaction activated by carbodiimide, in pure water. Prior to molecule crosslinking, the rheological behaviour of the biopolymers (alone or in mixture) was characterized in a semi-dilute concentration regime. Both flow and dynamic measurements showed that uncrosslinked collagen alone appears to be rather elastic with yield stress properties, whereas uncrosslinked HA alone appears to be rather shear thinning and viscoelastic in agreement with entangled polymer behaviour. Sericin exhibited Newtonian low viscosity behaviour according to its very low molar mass. Before crosslinking, HA exhibited viscoelastic behaviour at concentrations above the critical entangled concentration (C*) in the mixtures, thus HA shows promise as a matrix for future crosslinked networks, whereas sericin did not significantly modify the rheology. During the reaction, followed by rheology, the kinetics were slower for pure HA systems compared with the mixtures (i.e., with added collagen and/or to a lesser extent sericin). At the same time, the final network of hydrogels (i.e., the elastic modulus) was more structured in the mixture based systems. This result is explained by ester bonds (the only possibility for pure HA systems), which are less favourable and reactive than amide bonds (possible with sericin and collagen). The presence of collagen in the HA matrix reinforced the hydrogel network. SEM studies confirmed the structure of the hydrogels, and in vitro degradability was globally consistent with the effect of the selected enzyme according to the hydrogel composition. All the elaborated hydrogels were non-cytotoxic in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Reversible Polymer Hydrogels

    DTIC Science & Technology

    2008-12-01

    glucosamine hydrochloride was dissolved in 100 mL of de- ionized water and placed in an ice bath at >5oC and purged with N2 gas for 20 minutes; 3.25...Temperature sensitive hydrogels based on N-isopropyl acrylamide (NIPA) and acryloyl glucosamine (AG) were synthesized using ammonium persulfate (APS) as...hydrogels by copolymerization of poly (N-isopropylacrylamide) (NIPA), and acryloyl glucosamine (AG) a derivative of chi- tosan, a biopolymer from

  20. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation.

    PubMed

    Chen, Xingwei; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Zhang, Yanhui; Fan, Yating; Huang, Yanqing; Liu, Yan

    2012-11-01

    The purpose of this study was to evaluate the feasibility of in situ thermosensitive hydrogel based on chitosan in combination with disodium α-d-Glucose 1-phosphate (DGP) for ocular drug delivery system. Aqueous solution of chitosan/DGP underwent sol-gel transition as temperature increased which was flowing sol at room temperature and then turned into non-flowing hydrogel at physiological temperature. The properties of gels were characterized regarding gelation time, gelation temperature, and morphology. The sol-to-gel phase transition behaviors were affected by the concentrations of chitosan, DGP and the model drug levocetirizine dihydrochloride (LD). The developed hydrogel presented a characteristic of a rapid release at the initial period followed by a sustained release and remarkably enhanced the cornea penetration of LD. The results of ocular irritation demonstrated the excellent ocular tolerance of the hydrogel. The ocular residence time for the hydrogel was significantly prolonged compared with eye drops. The drug-loaded hydrogel produced more effective anti-allergic conjunctivitis effects compared with LD aqueous solution. These results showed that the chitosan/DGP thermosensitive hydrogel could be used as an ideal ocular drug delivery system in terms of the suitable sol-gel transition temperature, mild pH environment in the hydrogel as well as the organic solvent free.

  1. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications.

    PubMed

    García-Astrain, Clara; Avérous, Luc

    2018-06-15

    Environment-sensitive alginate-based hydrogels for drug delivery applications are receiving increasing attention. However, most work in this field involves traditional cross-linking strategies which led to hydrogels with poor long-term stability. Herein, a series of chemically cross-linked alginate hydrogels was synthesized via click chemistry using Diels-Alder reaction by reacting furan-modified alginate and bifunctional cross-linkers. Alginate was successfully functionalized with furfurylamine. Then, 3D architectures were synthesized with water-soluble bismaleimides. Different substitution degrees were achieved in order to study the effect of alginate modification and the cross-linking extent over the behaviour of the hydrogels. The ensuing hydrogels were analysed in terms of microstructure, swelling, structure modification and rheological behaviour. The materials response to external stimuli such as pH was also investigated, revealing a pulsatile behaviour in a large pH range (1-13) and a clear pH-dependent swelling. Finally, vanillin release studies were conducted to demonstrate the potential of these biobased materials for drug delivery applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Chromatographic matrix based on hydrogel-coated reticulated polyurethane foams, prepared by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Sánchez, Mirna L.; Giménez, Claudia Y.; Delgado, Juan F.; Martínez, Leandro J.; Grasselli, Mariano

    2017-12-01

    Novel chromatographic materials for protein purification with high adsorption capacity and fouling resistance are highly demanded to improve downstream processes. Here, we describe a novel adsorptive material based on reticulated polyurethane foam (rPUF) coated with a functional hydrogel layer. rPUF provides physical rigidity through its macroscopic structure, whereas the hydrogel layer provides capacity to adsorb proteins by specific interactions. The hydrogel coating process was performed by the dip-coating method, using a polyvinyl alcohol (PVA) solution. The PVA hydrogel was linked to the rPUF material by using a radiation-induced crosslinking process in aqueous ethanol solution. The ethanol in the solvent mixture allowed a balance between PVA swelling and PVA dissolution during the irradiation step. The resulting material showed higher thermal stability than the non-irradiated one. In addition, a simultaneous radiation-induced grafting polymerization (SRIGP) was done by simple addition of glycidyl methacrylate monomer into the irradiation solution. In a further step, sulfonic ligands were included specifically in the hydrogel layer, which contained around 200% of PVA respect to the original rPUF. Materials were characterized by FT-IR, thermogravimetric analysis, SEM microscopy and EDX analysis. The cation-exchange rPUF material was functionally characterized by the Langmuir isotherm and a dynamic adsorption experiment to analyze the chromatographic properties for protein purification processes.

  3. Injectable Hydrogels for Spinal Cord Repair: A Focus on Swelling and Intraspinal Pressure.

    PubMed

    Khaing, Zin Z; Ehsanipour, Arshia; Hofstetter, Christoph P; Seidlits, Stephanie K

    Spinal cord injury (SCI) is a devastating condition that leaves patients with limited motor and sensory function at and below the injury site, with little to no hope of a meaningful recovery. Because of their ability to mimic multiple features of central nervous system (CNS) tissues, injectable hydrogels are being developed that can participate as therapeutic agents in reducing secondary injury and in the regeneration of spinal cord tissue. Injectable biomaterials can provide a supportive substrate for tissue regeneration, deliver therapeutic factors, and regulate local tissue physiology. Recent reports of increasing intraspinal pressure after SCI suggest that this physiological change can contribute to injury expansion, also known as secondary injury. Hydrogels contain high water content similar to native tissue, and many hydrogels absorb water and swell after formation. In the case of injectable hydrogels for the spinal cord, this process often occurs in or around the spinal cord tissue, and thus may affect intraspinal pressure. In the future, predictable swelling properties of hydrogels may be leveraged to control intraspinal pressure after injury. Here, we review the physiology of SCI, with special attention to the current clinical and experimental literature, underscoring the importance of controlling intraspinal pressure after SCI. We then discuss how hydrogel fabrication, injection, and swelling can impact intraspinal pressure in the context of developing injectable biomaterials for SCI treatment. © 2016 S. Karger AG, Basel.

  4. Modulating release of ranibizumab and aflibercept from thiolated chitosan-based hydrogels for potential treatment of ocular neovascularization.

    PubMed

    Moreno, Miguel; Pow, Poh Yih; Tabitha, Tan Su Teng; Nirmal, Sonali; Larsson, Andreas; Radhakrishnan, Krishna; Nirmal, Jayabalan; Quah, Soo Tng; Geifman Shochat, Susana; Agrawal, Rupesh; Venkatraman, Subbu

    2017-08-01

    This paper describes the synthesis of thiolated chitosan-based hydrogels with varying degrees of crosslinking that has been utilized to modulate release kinetics of two clinically relevant FDA-approved anti-VEGF protein drugs, ranibizumab and aflibercept. These hydrogels have been fabricated into disc shaped structures for potential use as patches on ocular surface. Protein conformational changes and aggregation after loading and release was evaluated by circular dichroism (CD), steady-state tryptophan fluorescence spectroscopy, electrophoresis and size-exclusion chromatography (SEC). Finally, the capacity of both released proteins to bind to VEGF was tested by ELISA and surface plasmon resonance (SPR) technology. The study demonstrates the versatility of thiolated chitosan-based hydrogels for delivering proteins. The effect of various parameters of the hydrogel on protein release kinetics and mechanism of protein release was studied using the Korsmeyer-Peppas release model. Furthermore, we have studied the stability of released proteins in detail while comparing it with non-entrapped proteins under physiological conditions to understand the effect of formulation conditions on protein stability. The disc-shaped thiolated chitosan-based hydrogels provide a potentially useful platform to deliver ranibizumab and aflibercept for the treatments of ocular diseases such as wet AMD, DME and corneal neovascularization.

  5. Bioorthogonal in Situ Hydrogels Based on Polyether Polyols for New Biosensor Materials with High Sensitivity.

    PubMed

    Herrmann, Anna; Kaufmann, Lena; Dey, Pradip; Haag, Rainer; Schedler, Uwe

    2018-04-04

    Both noncovalent and covalent encapsulations of active biomolecules, for example, proteins and oligonucleotides, for a new biosensor matrix in an in situ bioorthogonal hydrogel formation via a strain-promoted azide-alkyne cycloaddition reaction were investigated. Unspecific interaction between the gel and the biomolecules as well as protein denaturation was prevented by the bioorthogonal gel components, which ensure a uniform aqueous environment in the hydrogel network. No leaching of the active biomolecules was observed. Additionally, a much higher and also adjustable loading of biomolecules in the hydrogel matrix was achieved compared to conventional biosensor surfaces, where the sensor molecules are immobilized on monolayers (2D surfaces) or brushlike structures (3D surfaces). Spotting experiments of the hydrogel confirm the possibility to use this new surface for microarray-based multiplex applications which require very high signal-to-noise ratios.

  6. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    PubMed

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Formulation Changes Affect Material Properties and Cell Behavior in HA-Based Hydrogels.

    PubMed

    Lawyer, Thomas; McIntosh, Kristen; Clavijo, Cristian; Potekhina, Lydia; Mann, Brenda K

    2012-01-01

    To develop and optimize new scaffold materials for tissue engineering applications, it is important to understand how changes to the scaffold affect the cells that will interact with that scaffold. In this study, we used a hyaluronic acid- (HA-) based hydrogel as a synthetic extracellular matrix, containing modified HA (CMHA-S), modified gelatin (Gtn-S), and a crosslinker (PEGda). By varying the concentrations of these components, we were able to change the gelation time, enzymatic degradation, and compressive modulus of the hydrogel. These changes also affected fibroblast spreading within the hydrogels and differentially affected the proliferation and metabolic activity of fibroblasts and mesenchymal stem cells (MSCs). In particular, PEGda concentration had the greatest influence on gelation time, compressive modulus, and cell spreading. MSCs appeared to require a longer period of adjustment to the new microenvironment of the hydrogels than fibroblasts. Fibroblasts were able to proliferate in all formulations over the course of two weeks, but MSCs did not. Metabolic activity changed for each cell type during the two weeks depending on the formulation. These results highlight the importance of determining the effect of matrix composition changes on a particular cell type of interest in order to optimize the formulation for a given application.

  8. Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    PubMed

    Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian

    2012-12-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.

  9. In Vivo Imaging of the Stability and Sustained Cargo Release of an Injectable Amphipathic Peptide-Based Hydrogel.

    PubMed

    Oyen, Edith; Martin, Charlotte; Caveliers, Vicky; Madder, Annemieke; Van Mele, Bruno; Hoogenboom, Richard; Hernot, Sophie; Ballet, Steven

    2017-03-13

    Hydrogels are promising materials for biomedical applications such as tissue engineering and controlled drug release. In the past two decades, the peptide hydrogel subclass has attracted an increasing level of interest from the scientific community because of its numerous advantages, such as biocompatibility, biodegradability, and, most importantly, injectability. Here, we report on a hydrogel consisting of the amphipathic hexapeptide H-FEFQFK-NH 2 , which has previously shown promising in vivo properties in terms of releasing morphine. In this study, the release of a small molecule, a peptide, and a protein cargo as representatives of the three major drug classes is directly visualized by in vivo fluorescence and nuclear imaging. In addition, the in vivo stability of the peptide hydrogel system is investigated through the use of a radiolabeled hydrogelator sequence. Although it is shown that the hydrogel remains present for several days, the largest decrease in volume takes place within the first 12 h of subcutaneous injection, which is also the time frame wherein the cargos are released. Compared to the situation in which the cargos are injected in solution, a prolonged release profile is observed up to 12 h, showing the potential of our hydrogel system as a scaffold for controlled drug delivery. Importantly, this study elucidates the release mechanism of the peptide hydrogel system that seems to be based on erosion of the hydrogel providing a generally applicable controlled release platform for small molecule, peptide, and protein drugs.

  10. Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering.

    PubMed

    Gnavi, S; di Blasio, L; Tonda-Turo, C; Mancardi, A; Primo, L; Ciardelli, G; Gambarotta, G; Geuna, S; Perroteau, I

    2017-02-01

    Hydrogels are promising materials in regenerative medicine applications, due to their hydrophilicity, biocompatibility and capacity to release drugs and growth factors in a controlled manner. In this study, biocompatible and biodegradable hydrogels based on blends of natural polymers were used in in vitro and ex vivo experiments as a tool for VEGF-controlled release to accelerate the nerve regeneration process. Among different candidates, the angiogenic factor VEGF was selected, since angiogenesis has been long recognized as an important and necessary step during tissue repair. Recent studies have pointed out that VEGF has a beneficial effect on motor neuron survival and Schwann cell vitality and proliferation. Moreover, VEGF administration can sustain and enhance the growth of regenerating peripheral nerve fibres. The hydrogel preparation process was optimized to allow functional incorporation of VEGF, while preventing its degradation and denaturation. VEGF release was quantified through ELISA assay, whereas released VEGF bioactivity was validated in human umbilical vein endothelial cells (HUVECs) and in a Schwann cell line (RT4-D6P2T) by assessing VEGFR-2 and downstream effectors Akt and Erk1/2 phosphorylation. Moreover, dorsal root ganglia explants cultured on VEGF-releasing hydrogels displayed increased neurite outgrowth, providing confirmation that released VEGF maintained its effect, as also confirmed in a tubulogenesis assay. In conclusion, a gelatin-based hydrogel system for bioactive VEGF delivery was developed and characterized for its applicability in neural tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Ciprofloxacin-lidocaine-based hydrogel: development, characterization, and in vivo evaluation in a second-degree burn model.

    PubMed

    Sanchez, María Florencia; Breda, Susana Andrea; Soria, Elio Andrés; Tártara, Luis Ignacio; Manzo, Rubén Hilario; Olivera, María Eugenia

    2018-04-13

    The purpose of this work was to develop an effective carbomer hydrogel to be used to treat second-degree burns that combined ciprofloxacin and lidocaine (CbCipLid hydrogel). Its antibiotic and anesthetic efficacy and the physical and chemical properties of the CbCipLid hydrogel (release rate and kinetics, rheology, appearance, and drug content) were evaluated both before and after a sterilization cycle and also after 6 months of storage. For the in vivo studies, second-degree burns were developed in a rat model. Animals were divided into three groups: CbCipLid hydrogel, silver sulfadiazine cream (reference), and carbomer hydrogel (as control). The treatments were applied daily for 21 days, and the healing was monitored by macroscopic observation and histologic evaluation. The anesthetic effect was evaluated through the corneal touch threshold in a rabbit eye model. The CbCipLid hydrogel obtained is transparent and allows the loading of ciprofloxacin above its solubility at a neutral pH, with a rheology which is convenient for topical administration. Its physical and chemical properties remained unchanged after sterilization and for at least six additional months. Both ciprofloxacin and lidocaine are reversibly released from the CbCipLid hydrogel with a kinetics fitting the Higuchi model. The presence of a biologic-like fluid increased the rate of drug delivery through an ionic exchange mechanism. Treatment with the CbCipLid hydrogel decreased the wound-healing period, compared with the reference, and was associated with a greater number of fibroblasts and a faster rate of epithelialization and dermis reconstruction. These differences were assigned to the moist environment provided by the hydrogel and also to the presence of a therapeutic concentration of ciprofloxacin. Moreover, CbCipLid hydrogel provides an immediate anesthetic effect, which is significantly more intense than that of the reference. Based on these results, it is believed that the Cb

  12. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    PubMed

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2018-04-01

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.

  13. Development of hydrogels for regenerative engineering.

    PubMed

    Guan, Xiaofei; Avci-Adali, Meltem; Alarçin, Emine; Cheng, Hao; Kashaf, Sara Saheb; Li, Yuxiao; Chawla, Aditya; Jang, Hae Lin; Khademhosseini, Ali

    2017-05-01

    The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nanosize effect of clay mineral nanoparticles on the drug diffusion processes in polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Miotke, M.; Strankowska, J.; Kwela, J.; Strankowski, M.; Piszczyk, Ł.; Józefowicz, M.; Gazda, M.

    2017-09-01

    Studies of swelling and release of naproxen sodium (NAP) solution by polyurethane nanocomposite hydrogels containing Cloisite® 30B (organically modified montmorillonite (OMMT)) have been performed. Polyurethane nanocomposite hydrogels are hybrid, nontoxic biomaterials with unique swelling and release properties in comparison with unmodified hydrogels. These features enable to use nanocomposite hydrogels as a modern wound dressing. The presence of nanoparticles significantly improves the swelling. On the other hand, their presence hinders drug diffusion from polymer matrix and consequently causes delay of the drug release. The kinetics of swelling and release were carefully analyzed using the Korsmeyer-Peppas and the modified Hopfenberg models. The models were fitted to precise experimental data allowing accurate quantitative and qualitative analysis. We observed that 0.5% admixture of nanoparticles (Cloisite® 30B) is the best concentration for hydrogel swelling properties. The release process was studied using fluorescence excitation spectra of NAP. Furthermore, we studied swelling hysteresis; polymer chains have not been destroyed after the swelling and part of swelled solution with active substances which remained absorbed in the polymer matrix after the drying process. We have found that the amount of solution with NAP remained in the nanocomposite matrix is greater than in pure hydrogel, as a consequence of NAP-OMMT interactions (nanosize effect).

  15. Microfluidic bioassay system based on microarrays of hydrogel sensing elements entrapping quantum dot-enzyme conjugates.

    PubMed

    Jang, Eunji; Kim, Sinyoung; Koh, Won-Gun

    2012-01-15

    This paper presents a simple method to fabricate a microfluidic biosensor that is able to detect substrates for H(2)O(2)-generating oxidase. The biosensor consists of three components (quantum dot-enzyme conjugates, hydrogel microstructures, and a set of microchannels) that were hierarchically integrated into a microfluidic device. The quantum dot (QD)-enzyme conjugates were entrapped within the poly(ethylene glycol) (PEG)-based hydrogel microstructures that were fabricated within the microchannels by a photopatterning process. Glucose oxidase (GOX) and alcohol oxidase (AOX) were chosen as the model oxidase enzymes, conjugated to carboxyl-terminated CdSe/ZnS QDs, and entrapped within the hydrogel microstructures, which resulted in a fluorescent hydrogel microarray that was responsive to glucose or alcohol. The hydrogel-entrapped GOX and AOX were able to perform enzyme-catalyzed oxidation of glucose and alcohol, respectively, to produce H(2)O(2), which subsequently quenched the fluorescence of the conjugated QDs. The fluorescence intensity of the hydrogel microstructures decreased as the glucose and alcohol concentrations increased, and the detection limits of this system were found to be 50 μM of glucose and 70 μM of alcohol. Because each microchannel was able to carry out different assays independently, the simultaneous detection of glucose and alcohol was possible using our novel microfluidic device composed of multiple microchannels. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells

    NASA Technical Reports Server (NTRS)

    Koh, Won-Gun; Revzin, Alexander; Pishko, Michael V.

    2002-01-01

    We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.

  17. Thiolated hyaluronan-based hydrogels crosslinked using oxidized glutathione: an injectable matrix designed for ophthalmic applications.

    PubMed

    Zarembinski, Thomas I; Doty, Nathaniel J; Erickson, Isaac E; Srinivas, Ramya; Wirostko, Barbara M; Tew, William P

    2014-01-01

    Future ophthalmic therapeutics will require the sustained delivery of bioactive proteins and nucleic acid-based macromolecules and/or provide a suitable microenvironment for the localization and sustenance of reparative progenitor cells after transplantation into or onto the eye. Water-rich hydrogels are ideal vehicles for such cargo, but few have all the qualities desired for novel ophthalmic use, namely in situ gelation speed, cytocompatibility, biocompatibility and capacity to functionalize. We describe here the development of an ophthalmic-compatible crosslinking system using oxidized glutathione (GSSG), a physiologically relevant molecule with a history of safe use in humans. When GSSG is used in conjunction with an existing hyaluronate-based, in situ crosslinkable hydrogel platform, gels form in less than 5 min using the thiol-disulfide exchange reaction. This GSSG hydrogel supports the 3-D culture of adipose-derived stem cells in vitro and shows biocompatibility in preliminary intracutaneous and subconjunctival experiments in vivo. In addition, the thiol-disulfide exchange reaction can also be used in conjunction with other thiol-compatible chemistries to covalently link peptides for more complex formulations. These data suggest that this hydrogel could be well suited for local ocular delivery, focusing initially on front of the eye therapies. Subsequent uses of the hydrogel include delivery of back of the eye treatments and eventually into other soft, hyaluronan-rich tissues such as those from the liver and brain. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release.

    PubMed

    Zhang, Wei; Jin, Xin; Li, Heng; Zhang, Run-Run; Wu, Cheng-Wei

    2018-04-15

    Hydrogels based on chitosan/hyaluronic acid/β-sodium glycerophosphate demonstrate injectability, body temperature sensitivity, pH sensitive drug release and adhesion to cancer cell. The drug (doxorubicin) loaded hydrogel precursor solutions are injectable and turn to hydrogels when the temperature is increased to body temperature. The acidic condition (pH 4.00) can trigger the release of drug and the cancer cell (Hela) can adhere to the surface of the hydrogels, which will be beneficial for tumor site-specific administration of drug. The mechanical strength, the gelation temperature, and the drug release behavior can be tuned by varying hyaluronic acid content. The mechanisms were characterized using dynamic mechanical analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and fluorescence microscopy. The carboxyl group in hyaluronic acid can form the hydrogen bondings with the protonated amine in chitosan, which promotes the increase of mechanical strength of the hydrogels and depresses the initial burst release of drug from the hydrogel. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis.

    PubMed

    Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya

    2017-08-01

    Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network

  20. Hyaluronic acid based hydrogel system for soft tissue regeneration and drug delivery

    NASA Astrophysics Data System (ADS)

    Jha, Amit Kumar

    We have developed hyaluronic acid (HA)-based, biomimetic hydrogel matrices that are hierarchically structured, mechanically robust and biologically active. Specifically, HA-based hydrogel particles (HGPs) with controlled sizes, defined porosity, and improved stability were synthesized using different inverse emulsion systems and crosslinking chemistries. The resultant particles either contained residual functional groups or were rendered reactive by subsequent chemical modifications. HA-based doubly crosslinked networks (DXNs) were synthesized via covalent crosslinking of HA HGPs with soluble HA macromers carrying mutually reactive functional groups. These hybrid matrices are hierarchical in nature, consisting of densely crosslinked HGPs integrated in a loosely connected secondary matrix. Their mechanical properties and degradation kinetics can be readily tuned by varying the particle size, functional group density, intra- and interparticle crosslinking. To improve the biological functions of HA HGPs, perlecan domain I (PlnDI), a basement membrane proteoglycan that has strong affinity for various heparin binding growth factors (HBGFs), was successfully conjugated to the particles through the core protein via a flexible poly(ethylene glycol) (PEG) linker. The immobilized PlnDI maintains its ability to bind bone morphogenetic proteins (BMP-2) and modulates its in vitro release. A similar, sustained release of BMP-2 was achieved by encapsulating BMP-2-loaded HGPs within a photocrosslinked HA matrix. When encapsulated in HA DXNs, primary bovine chondrocytes were able to maintain their phenotype, proliferate readily and produce abundant glycosaminoglycan. Finally, cell-adhesive HA DXNs were fabricated by encapsulating gelatin-decorated HA HGPs in a secondary HA matrix. Human MSCs were shown to adhere to the composite matrix through the focal adhesion sites clustered on particle surface. The cell-adhesive composite matrices supported hMSC proliferation and migration into

  1. Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids.

    PubMed

    Liu, Ting; Liu, Mengmeng; Dou, Su; Sun, Jiangman; Cong, Zifeng; Jiang, Chunyan; Du, Chunhua; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2018-03-27

    A major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel-elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs. Furthermore, the dehydration of this toughly bonded hydrogel-elastomer hybrid is significantly inhibited (the average dehydration decreases by over 73%). With PDMS as the electrification layer and hydrogel as the electrode, a stretchable, transparent (90% transmittance), and ultrathin (380 μm) single-electrode TENG was fabricated to conformally attach on human skin and deform as the body moves. The two-electrode mode TENG is capable of harvesting energy from arbitrary human motions (press, stretch, bend, and twist) to drive the self-powered electronics. This work provides a feasible technology to design soft power sources, which could potentially solve the energy issues of soft electronics.

  2. Spatiotemporal Programing for the On-Demand Release of Bupivacaine Based on an Injectable Composite Hydrogel.

    PubMed

    Dinh, Van Vuong; Suh, Yun-Suhk; Yang, Han-Kwang; Lim, Yong Taik

    2016-12-01

    We report a programed drug delivery system that can tailor the release of anesthetic bupivacaine in a spatiotemporally controlled manner. The drug delivery system was developed through the combination of a collagen-based injectable hydrogel and 2 types of poly(lactic-co-glycolic acid) (PLGA) particles. As a rapid-release platform (90% release after 24 h), bupivacaine hydrochloride was incorporated into collagen/poly(γ-glutamic acid) hydrogel, which exhibited gel formation at body temperature. PLGA microparticles (diameter 1-3 μm) containing bupivacaine base showed a very slow release of bupivacaine (95% after 240 h), whereas PLGA nanoparticles (124 ± 30 nm) containing bupivacaine base demonstrated an intermediate release rate (95% after 160 h). By changing the relative composition ratio between the 3 components in these injectable composite hydrogels, the release of bupivacaine could be easily controlled from very rapid (within 1 day) to very delayed (up to 9 days). The experimental results on the release data (cumulative release, time point release, average release rate) were coincident with the release profile generated by computer simulation. These injectable composite hydrogels with systematically tunable mixing ratios are expected to serve as a promising technology for the on-demand release of bupivacaine in pain management. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair.

    PubMed

    Paul, Arghya; Hasan, Anwarul; Kindi, Hamood Al; Gaharwar, Akhilesh K; Rao, Vijayaraghava T S; Nikkhah, Mehdi; Shin, Su Ryon; Krafft, Dorothee; Dokmeci, Mehmet R; Shum-Tim, Dominique; Khademhosseini, Ali

    2014-08-26

    The objective of this study was to develop an injectable and biocompatible hydrogel which can efficiently deliver a nanocomplex of graphene oxide (GO) and vascular endothelial growth factor-165 (VEGF) pro-angiogenic gene for myocardial therapy. For the study, an efficient nonviral gene delivery system using polyethylenimine (PEI) functionalized GO nanosheets (fGO) complexed with DNAVEGF was formulated and incorporated in the low-modulus methacrylated gelatin (GelMA) hydrogel to promote controlled and localized gene therapy. It was hypothesized that the fGOVEGF/GelMA nanocomposite hydrogels can efficiently transfect myocardial tissues and induce favorable therapeutic effects without invoking cytotoxic effects. To evaluate this hypothesis, a rat model with acute myocardial infarction was used, and the therapeutic hydrogels were injected intramyocardially in the peri-infarct regions. The secreted VEGF from in vitro transfected cardiomyocytes demonstrated profound mitotic activities on endothelial cells. A significant increase in myocardial capillary density at the injected peri-infarct region and reduction in scar area were noted in the infarcted hearts with fGOVEGF/GelMA treatment compared to infarcted hearts treated with untreated sham, GelMA and DNAVEGF/GelMA groups. Furthermore, the fGOVEGF/GelMA group showed significantly higher (p < 0.05, n = 7) cardiac performance in echocardiography compared to other groups, 14 days postinjection. In addition, no significant differences were noticed between GO/GelMA and non-GO groups in the serum cytokine levels and quantitative PCR based inflammatory microRNA (miRNA) marker expressions at the injected sites. Collectively, the current findings suggest the feasibility of a combined hydrogel-based gene therapy system for ischemic heart diseases using nonviral hybrid complex of fGO and DNA.

  4. Photothermal fabrication of microscale patterned DNA hydrogels

    NASA Astrophysics Data System (ADS)

    Shimomura, Suguru; Nishimura, Takahiro; Ogura, Yusuke; Tanida, Jun

    2018-02-01

    This paper introduces a method for fabricating microscale DNA hydrogels using irradiation with patterned light. Optical fabrication allows for the flexible and tunable formation of DNA hydrogels without changing the environmental conditions. Our scheme is based on local heat generation via the photothermal effect, which is induced by light irradiation on a quenching species. We demonstrate experimentally that, depending on the power and irradiation time, light irradiation enables the creation of local microscale DNA hydrogels, while the shapes of the DNA hydrogels are controlled by the irradiation patterns.

  5. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity.

    PubMed

    Wu, Tiantian; Huang, Jiaqi; Jiang, Yangyang; Hu, Yaqin; Ye, Xingqian; Liu, Donghong; Chen, Jianchu

    2018-02-01

    Novel hydrogels based on chitosan/sodium alginate (CS-ALG) were prepared to deliver and protect lysozyme while eliminating food-borne microorganisms. These hydrogels were characterized according to the zeta potential, optical microscopy, scanning electron microscopy (SEM), UV-visible spectroscopy (UV-vis), fourier transform infrared (FT-IR), and small-angle X-ray scattering (SAXS). The results demonstrated that the resultant hydrogels were negatively charged and spherical in shape. In addition, the maximum swelling ratio was 45.66±7.62 for CS-ALG hydrogels loaded with lysozyme. The relative activity of the released lysozyme was 87.72±3.96%, indicating that CS-ALG hydrogels are promising matrices for enzyme loading and adsorption. Furthermore, a 100% bacterial clearance rate of CS/ALG loaded with lysozyme was observed to correspond to the superposition effect stimulated by CS and lysozyme, which improved the antibacterial activity against E. coli and S. aureus compared to CS/ALG, suggesting its potential use in the food industry as well as other applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.

    PubMed

    Jeon, Seog-Jin; Hauser, Adam W; Hayward, Ryan C

    2017-02-21

    and even reprogrammable shape-morphing materials. We focus to a large extent on photothermally reprogrammable systems that include one of a variety of additives that serve to efficiently absorb light and convert it into heat, thereby driving the response of a temperature-sensitive hydrogel. Such systems are advantageous in that patterns of light can be defined with very high spatial and temporal resolution in addition to offering the potential for wavelength-selective addressability of multiple different inclusions. We highlight recent advances in the preparation of light-responsive hybrid systems capable of undergoing reprogrammable bending and buckling into well-defined 3D shapes. In addition, we describe several examples where shape tuning of hybrid systems enables control over the motion of responsive hydrogel-based materials. Finally, we offer our perspective on open challenges and future areas of interest for the field.

  7. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications

    PubMed Central

    Stewart, Sarah; Ervine, Michael; Al-Kasasbeh, Rehan; Donnelly, Ryan F.

    2018-01-01

    Hydrogels have been shown to be very useful in the field of drug delivery due to their high biocompatibility and ability to sustain delivery. Therefore, the tuning of their properties should be the focus of study to optimise their potential. Hydrogels have been generally limited to the delivery of hydrophilic drugs. However, as many of the new drugs coming to market are hydrophobic in nature, new approaches for integrating hydrophobic drugs into hydrogels should be developed. This article discusses the possible new ways to incorporate hydrophobic drugs within hydrogel structures that have been developed through research. This review describes hydrogel-based systems for hydrophobic compound delivery included in the literature. The section covers all the main types of hydrogels, including physical hydrogels and chemical hydrogels. Additionally, reported applications of these hydrogels are described in the subsequent sections. PMID:29364833

  8. 2-hydroxyethyl metahcrylate/gelatin based superporous hydrogels for tissue regeneration

    NASA Astrophysics Data System (ADS)

    Tomić, Simonida Lj.; Babić, Marija M.; Vuković, Jovana S.; Perišić, Marija D.; Filipović, Vuk V.; Davidović, Sladjana Z.; Filipović, Jovanka M.

    2016-05-01

    In this study, superporous hydrogels were synthesized by free radical polymerization of 2-hydroxyethyl methacrylate without and in the presence of gelatin. Highly porous hydrogel structures were obtained by two different techniques: using a gas blowing agent, sodium bicarbonate, and a cryogenic treatment followed by freeze-drying. After the gel synthesis, gelatin molecules were covalently immobilised onto PHEMA via glytaraldehyde activation. All samples were characterized for morphological, mechanical, swelling and antibacterial properties. The results obtained show that samples with gelatin show better properties in comparison with PHEMA samples, which make these materials highly attractive for developing hydrogel scaffolds for tissue regeneration.

  9. Injectable Absorbable Ocular Inserts for Controlled Drug Delivery

    DTIC Science & Technology

    1997-07-01

    conjunctiva for prolonged delivery of drugs to the anterior region of the eye (Gwon & Meadows, 1992). The dosage system was an elliptically shaped unit...1979) have reviewed many other gel formers which are available for preparing pharmaceutical gels. A.3.4.1. Hydrogels -- Hydrogels are materials which...denoted as hydrogels (or aquagels). Hydrogels based on crosslinked polymeric chains of methoxy poly(ethylene glycol) monomethacrylate having variable

  10. Tuning the Mechanical Properties of a DNA Hydrogel in Three Phases Based on ATP Aptamer.

    PubMed

    Liu, Hengyuan; Cao, Tianyang; Xu, Yun; Dong, Yuanchen; Liu, Dongsheng

    2018-05-31

    By integrating ATP aptamer into the linker DNA, a novel DNA hydrogel was designed, with mechanical properties that could be tuned into three phases. Based on the unique interaction between ATP and its aptamer, the mechanical strength of the hydrogel increased from 204 Pa to 380 Pa after adding ATP. Furthermore, with the addition of the complementary sequence to the ATP aptamer, the mechanical strength could be increased to 570 Pa.

  11. Preparation and characterization of oil palm frond based cellulose hydrogel and its swelling properties

    NASA Astrophysics Data System (ADS)

    Selvakumaran, Nesha; Lazim, Mohd Azwani Shah bin Mat

    2016-11-01

    Malaysia is one of the largest producer of palm oil thus the quantity of biomass each year from this industry is very large. The oil palm frond from palm oil industry can be used as a source of cellulose which can be incorporated into hydrogel to be used as adsorbent. This research reported how to disperse 2 % cellulose in a `green-solution' prepared by using urea and sodium hydroxide. Polymerization is carried out between the monomers polyacrylamide and cellulose using microwave to form hydrogel. Hydrogel with 2 % cellulose have a swelling index of 1814 %. Meanwhile, zero hydrogel which is made with only polyacrylamide has swelling index of 15 %. Scanning electron microscope shows that cellulose hydrogel have a rough surface compared with zero hydrogel. This might attribute to the high swelling index for cellulose hydrogel compared with zero hydrogel. Meanwhile, FTIR shows that successful polymerization has occurred between polyacrylamide and cellulose with the characteristic band at 1657.99 cm-1 which is for N-H bond.

  12. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.

    PubMed

    Ng, Wei Long; Goh, Min Hao; Yeong, Wai Yee; Naing, May Win

    2018-02-27

    Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes, it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence, the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here, a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone, PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.

  13. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery.

    PubMed

    Peng, Yifeng; Tellier, Liane E; Temenoff, Johnna S

    2016-08-16

    Sustained release of anti-inflammatory agents remains challenging for small molecule drugs due to their low molecular weight and hydrophobicity. Therefore, the goal of this study was to control the release of a small molecule anti-inflammatory agent, crystal violet (CV), from hydrogels fabricated with heparin, a highly sulfated glycosaminoglycan capable of binding positively-charged molecules such as CV. In this system, both electrostatic interactions between heparin and CV and hydrogel degradation were tuned simultaneously by varying the level of heparin sulfation and varying the amount of dithiothreitol within hydrogels, respectively. It was found that heparin sulfation significantly affected CV release, whereby more sulfated heparin hydrogels (Hep and Hep(-N)) released CV with near zero-order release kinetics (R-squared values between 0.96-0.99). Furthermore, CV was released more quickly from fast-degrading hydrogels than slow-degrading hydrogels, providing a method to tune total CV release between 5-15 days while maintaining linear release kinetics. In particular, N-desulfated heparin hydrogels exhibited efficient CV loading (∼90% of originally included CV), near zero-order CV release kinetics, and maintenance of CV bioactivity after release, making this hydrogel formulation a promising CV delivery vehicle for a wide range of inflammatory diseases.

  14. Synthesis of a chitosan-based photo-sensitive hydrogel and its biocompatibility and biodegradability.

    PubMed

    He, Ming; Han, Baoqin; Jiang, Zhiwen; Yang, Yan; Peng, Yanfei; Liu, Wanshun

    2017-06-15

    Hydroxyethyl chitosan (HECTS) is one of the most important water soluble derivatives of chitosan. In this study, photo-sensitive azidehydroxyethyl chitosan (AZ-HECTS) was synthesized with grafting degree 3.4%, and its water solution resulted in an insoluble hydrogel by 254nm UV irradiation for 90s. AZ-HECTS hydrogels, with water absorption 86.21%, had little impact on growth of mouse fibroblast (L929) and presented good cell biocompatibility. Obvious sudden degradation stage, slow degradation stage and no apparent toxicity was observed after AZ-HECTS hydrogels implanted into rats, and tissue inflammation was slighter, which indicated favorable biological safety. Furthermore, AZ-HECTS hydrogels was loaded with heparin, and released 50% of heparin accumulated 14d. AZ-HECTS-heparin hydrogels showed inhibitory effects on L929, and pro-growth functions within vascular endothelial cells seeded on the hydrogels, meanwhile a positive influence on vascular endothelial growth factor expression. In conclusion, AZ-HECTS hydrogels possessed favorable biocompatibility and biodegradability and had good potential as drug carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Design and characterization of hydrogel-based microfluidic devices with biomimetic solute transport networks

    PubMed Central

    Koo, Hyung-Jun

    2017-01-01

    Hydrogel could serve as a matrix material of new classes of solar cells and photoreactors with embedded microfluidic networks. These devices mimic the structure and function of plant leaves, which are a natural soft matter based microfluidic system. These unusual microfluidic-hydrogel devices with fluid-penetrable medium operate on the basis of convective-diffusive mechanism, where the liquid is transported between the non-connected channels via molecular permeation through the hydrogel. We define three key designs of such hydrogel devices, having linear, T-shaped, and branched channels and report results of numerical simulation of the process of their infusion with solute carried by the incoming fluid. The computational procedure takes into account both pressure-driven convection and concentration gradient-driven diffusion in the permeable gel matrix. We define the criteria for evaluation of the fluid infusion rate, uniformity, solute loss by outflow and overall performance. The T-shaped channel network was identified as the most efficient one and was improved further by investigating the effect of the channel-end secondary branches. Our parallel experimental data on the pattern of solute infusions are in excellent agreement with the simulation. These network designs can be applied to a broad range of novel microfluidic materials and soft matter devices with distributed microchannel networks. PMID:28396708

  16. Application of Hydrogel in Reconstruction Surgery: Hydrogel/Fat Graft Complex Filler for Volume Reconstruction in Critical Sized Muscle Defects.

    PubMed

    Lui, Y F; Ip, W Y

    2016-01-01

    Autogenic fat graft usually suffers from degeneration and volume shrinkage in volume reconstruction applications. How to maintain graft viability and graft volume is an essential consideration in reconstruction therapies. In this presented investigation, a new fat graft transplantation method was developed aiming to improve long term graft viability and volume reconstruction effect by incorporation of hydrogel. The harvested fat graft is dissociated into small fragments and incorporated into a collagen based hydrogel to form a hydrogel/fat graft complex for volume reconstruction purpose. In vitro results indicate that the collagen based hydrogel can significantly improve the survivability of cells inside isolated graft. In a 6-month investigation on artificial created defect model, this hydrogel/fat graft complex filler has demonstrated the ability of promoting fat pad formation inside the targeted defect area. The newly generated fat pad can cover the whole defect and restore its original dimension in 6-month time point. Compared to simple fat transplantation, this hydrogel/fat graft complex system provides much improvement on long term volume restoration effect against degeneration and volume shrinkage. One notable effect is that there is continuous proliferation of adipose tissue throughout the 6-month period. In summary, the hydrogel/fat graft system presented in this investigation demonstrated a better and more significant effect on volume reconstruction in large sized volume defect than simple fat transplantation.

  17. A composite hydrogels-based photonic crystal multi-sensor

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-04-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye.

  18. Characterization of elasticity and hydration of composite hydrogel based on collagen-iota carrageenan as a corneal tissue engineering

    NASA Astrophysics Data System (ADS)

    Rinawati, M.; Triastuti, J.; Pursetyo, K. T.

    2018-04-01

    The cornea is a refractive element of the eye that serves to continue the stimulation of light into the eye it has a clear, transparent, elastic and relatively thick tissue. Factors caused corneal blindness, are dystrophy, keratoconus, corneal scaring. Hydrogels can be made from polysaccharide derivatives that have gelation properties such as iota carrageenan. Therefore, it is a need to develop composite hydrogel based collagen-iota carragenan as an engineeried corneal tissue with high elasticity and hydration properties. Collagen hydrogel has a maximum water content an has equlibrium up to 40 %, less than the human cornea, 81 % and under normal hydration conditions, the human cornea can transmit 87 % of visible light. In addition, the refractive index on the surface of the cornea with air is 1.375-1.380. Based on this study, it is necessary to conduct research on the development and composition of hydrogel composite collagen-iota carrageen hydrogen based on. The best result was K5 (5:5) treatment, which has the equilibrium water content of 87.07 % and viscosity of 10.7346 Pa.s.

  19. Supramolecular Packing Controls H 2 Photocatalysis in Chromophore Amphiphile Hydrogels

    DOE PAGES

    Weingarten, Adam S.; Kazantsev, Roman V.; Palmer, Liam C.; ...

    2015-11-21

    Light harvesting supramolecular assemblies are potentially useful structures as components of solar-to-fuel conversion materials. The development of these functional constructs requires an understanding of optimal packing modes for chromophores. Here, we investigated assembly in water and the photocatalytic function of perylene monoimide chromophore amphiphiles with different alkyl linker lengths separating their hydrophobic core and the hydrophilic carboxylate headgroup. We found that these chromophore amphiphiles (CAs) self-assemble into charged nanostructures of increasing aspect ratio as the linker length is increased. The addition of salt to screen the charged nanostructures induced the formation of hydrogels and led to internal crystallization within somemore » of the nanostructures. For linker lengths up to seven methylenes, the CAs were found to pack into 2D crystalline unit cells within ribbon-shaped nanostructures, whereas the nine methylene CAs assembled into long nanofibers without crystalline molecular packing. At the same time, the different molecular packing arrangements after charge screening led to different absorbance spectra, despite the identical electronic properties of all PMI amphiphiles. While the crystalline CAs formed electronically coupled H-aggregates, only CAs with intermediate linker lengths showed evidence of high intermolecular orbital overlap. Photocatalytic hydrogen production using a nickel-based catalyst was observed in all hydrogels, with the highest turnovers observed for CA gels having intermediate linker lengths. Lastly, we conclude that the improved photocatalytic performance of the hydrogels formed by supramolecular assemblies of the intermediate linker CA molecules likely arises from improved exciton splitting efficiencies due to their higher orbital overlap.« less

  20. Supramolecular Packing Controls H 2 Photocatalysis in Chromophore Amphiphile Hydrogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weingarten, Adam S.; Kazantsev, Roman V.; Palmer, Liam C.

    2015-11-21

    Light harvesting supramolecular assemblies are potentially useful structures as components of solar-to-fuel conversion materials. The development of these functional constructs requires an understanding of optimal packing modes for chromophores. We investigated here assembly in water and the photocatalytic function of perylene monoimide chromophore amphiphiles with different alkyl linker lengths separating their hydrophobic core and the hydrophilic carboxylate headgroup. We found that these chromophore amphiphiles (CAs) self-assemble into charged nanostructures of increasing aspect ratio as the linker length is increased. The addition of salt to screen the charged nanostructures induced the formation of hydrogels and led to internal crystallization within somemore » of the nanostructures. For linker lengths up to seven methylenes, the CAs were found to pack into 2D crystalline unit cells within ribbon-shaped nanostructures, whereas the nine methylene CAs assembled into long nanofibers without crystalline molecular packing. At the same time, the different molecular packing arrangements after charge screening led to different absorbance spectra, despite the identical electronic properties of all PMI amphiphiles. While the crystalline CAs formed electronically coupled H-aggregates, only CAs with intermediate linker lengths showed evidence of high intermolecular orbital overlap. Photocatalytic hydrogen production using a nickel-based catalyst was observed in all hydrogels, with the highest turnovers observed for CA gels having intermediate linker lengths. We conclude that the improved photocatalytic performance of the hydrogels formed by supramolecular assemblies of the intermediate linker CA molecules likely arises from improved exciton splitting efficiencies due to their higher orbital overlap.« less

  1. Dynamic properties of hydrogels and fiber-reinforced hydrogels.

    PubMed

    Martin, Nicholas; Youssef, George

    2018-06-07

    Hydrophilic polymers, or hydrogels, are used for a wide variety of biomedical applications, due to their inherent ability to withhold a high-water content. In recent years, a large effort has been focused on tailoring the mechanical properties of these hydrogels to become more appropriate materials for use as anatomical and physiological structural supports. A few of these such methods include using diverse types of polymers, both natural and synthetic, varying the type of molecular cross-linking, as well as combining these efforts to form interpenetrating polymer network hydrogels. While multiple research groups have characterized these various hydrogels under quasi-static conditions, their dynamic properties, representative of native physiological loading scenarios, have been scarcely reported. In this study, an E-glass fiber reinforced family of alginate/PAAm hydrogels cross-linked by both divalent and trivalent cations are fabricated and investigated. The effect of the reinforcement phase on the dynamic and hydration behaviors is then explicated. Additionally, a micromechanics framework for short cylindrical chopped fibers is utilized to discern the contribution of the matrix and fiber constituents on the hydrogel composite. The addition of E-glass fibers resulted in the storage modulus exhibiting a ~50%, 5%, and ~120%, increase with a mere addition of 2 wt% of the reinforcing fibers to Na-, Sr-, and Al-alginate/PAAm, respectively. In studying the cross-linking effect of various divalent (Ba, Ca, Sr) and trivalent (Al, Fe) cations, it was noteworthy that the hydrogels were found to be effective in dissipating energy while resisting mechanical deformation when they are cross-linked with higher molecular weight elements, regardless of valency. This report on the dynamic properties of these hydrogels will help to improve their optimization for future use in biomedical load-bearing applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effect of xanthan gum on lipid digestion and bioaccessibility of β-carotene-loaded rice starch-based filled hydrogels.

    PubMed

    Park, Shinjae; Mun, Saehun; Kim, Yong-Ro

    2018-03-01

    The aim of this study was to examine the effects of xanthan gum on the lipid digestibility, rheological properties, and β-carotene bioaccessibility of rice starch-based filled hydrogels. β-Carotene was solubilized within lipid droplets of emulsion that were then entrapped within rice starch hydrogels fabricated with different concentrations of xanthan gum. At a low concentration of xanthan gum (<0.5wt%), the viscous characteristics of the filled starch hydrogels increased. Furthermore, these hydrogels had a slower rate of lipid digestion than the β-carotene-loaded emulsion. As the concentration of xanthan gum was increased (to 1.0wt% and 2.0wt%), the filled starch hydrogels became more elastic gel-like than those without xanthan gum, and also had the fastest rate and highest final extent of lipid digestion. The addition of xanthan gum to the filled starch hydrogel lowered the bioaccessibility of β-carotene to varying degrees, depending on the xanthan gum concentration. The results obtained from this study can be useful in designing gel-like food products fortified with lipophilic nutraceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Toward a versatile toolbox for cucurbit[n]uril-based supramolecular hydrogel networks through in situ polymerization.

    PubMed

    Liu, Ji; Soo Yun Tan, Cindy; Lan, Yang; Scherman, Oren A

    2017-09-15

    The success of exploiting cucurbit[ n ]uril (CB[ n ])-based molecular recognition in self-assembled systems has sparked a tremendous interest in polymer and materials chemistry. In this study, polymerization in the presence of host-guest complexes is applied as a modular synthetic approach toward a diverse set of CB[8]-based supramolecular hydrogels with desirable properties, such as mechanical strength, toughness, energy dissipation, self-healing, and shear-thinning. A range of vinyl monomers, including acrylamide-, acrylate-, and imidazolium-based hydrophilic monomers, could be easily incorporated as the polymer backbones, leading to a library of CB[8] hydrogel networks. This versatile strategy explores new horizons for the construction of supramolecular hydrogel networks and materials with emergent properties in wearable and self-healable electronic devices, sensors, and structural biomaterials. © 2017 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3105-3109.

  4. Programmable hydrogels.

    PubMed

    Wang, Yong

    2018-03-05

    Programmable hydrogels are defined as hydrogels that are able to change their properties and functions periodically, reversibly and/or sequentially on demand. They are different from those responsive hydrogels whose changes are passive or cannot be stopped or reversed once started and vice versa. The purpose of this review is to summarize major progress in developing programmable hydrogels from the viewpoints of principles, functions and biomedical applications. The principles are first introduced in three categories including biological, chemical and physical stimulation. With the stimulation, programmable hydrogels can undergo functional changes in dimension, mechanical support, cell attachment and molecular sequestration, which are introduced in the middle of this review. The last section is focused on the introduction and discussion of four biomedical applications including mechanistic studies in mechanobiology, tissue engineering, cell separation and protein delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Characterization of superabsorbent hydrogel based on epichlorohydrin crosslink and carboxymethyl functionalization of cassava starch

    NASA Astrophysics Data System (ADS)

    Muharam, S.; Yuningsih, L. M.; Sumitra, M. R.

    2017-07-01

    Superabsorbent hydrogel was prepared by epichlorohydrin crosslink of cassava starch. Their swelling improved with added carboxymethyl group on the starch-epichlorohydrin structure. The structure and properties of starch-epichlorohydrin-carboxymethyl hydrogel were measured by SEM, FTIR, water and physiological solution absorption test and water retention test. The result showed that hydrogel displayed macroporous with heterogenous distribution and irregular surface was formed by epichlorohydrin and carboxymethyl bond in the structure of hydrogel. It was confirmed also by the FTIR spectra. The swelling ratio of starch-epichlorohydrin hydrogel to the water is 518 % and increased to 1,028.5 % with carboxymethyl addition on the structure. The best influence of the physiological solution to the swelling ratio of starch-epichlorohydrin-carboxymethyl hydrogel is urea solution. The water retention of starch-epichlorohydrin-carboxymethyl hydrogel in NaCl solution is better than in CaCl2 solution.

  6. Poly(N-isopropylacrylamide) hydrogel-based shape-adjustable polyimide films triggered by near-human-body temperature.

    PubMed

    Huanqing Cui; Xuemin Du; Juan Wang; Tianhong Tang; Tianzhun Wu

    2016-08-01

    Hydrogel-based shape-adjustable films were successfully fabricated via grafting poly(N-isopropylacrylamide) (PNIPAM) onto one side of polyimide (PI) films. The prepared PI-g-PNIPAM films exhibited rapid, reversible, and repeatable bending/unbending property by heating to near-human-body temperature (37 °C) or cooling to 25 °C. The excellent property of PI-g-PNIPAM films resulted from a lower critical solution temperature (LCST) of PNIPAM at about 32 °C. Varying the thickness of PNIPAM hydrogel layer regulated the thermo-responsive shape bending degree and response speed of PI-g-PNIPAM films. The thermo-induced shrinkage of hydrogel layers can tune the curvature of PI films, which have potential applications in the field of wearable and implantable devices.

  7. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells.

    PubMed

    Khanmohammadi, Mehdi; Sakai, Shinji; Taya, Masahito

    2017-04-01

    The hydrogels having the ability to promote migration and morphogenesis of endothelial cells (ECs) are useful for fabricating vascularized dense tissues in vitro. The present study explores the immobilization of low molecular weight hyaluronic acid (LMWHA) derivative within gelatin-based hydrogel to stimulate migration of ECs. The LMWHA derivative possessing phenolic hydroxyl moieties (LMWHA-Ph) was bound to gelatin-based derivative hydrogel through the horseradish peroxidase-catalyzed reaction. The motility of ECs was analyzed by scratch migration assay and microparticle-based cell migration assay. The incorporated LMWHA-Ph molecules within hydrogel was found to be preserved stably through covalent bonds during incubation. The free and immobilized LMWHA-Ph did not lose an inherent stimulatory effect on human umbilical vein endothelial cells (HUVECs). The immobilized LMWHA-Ph within gelatin-based hydrogel induced the high motility of HUVECs, accompanied by robust cytoskeleton extension, and cell subpopulation expressing CD44 cell receptor. In the presence of immobilized LMWHA-Ph, the migration distance and the number of existing HUVECs were demonstrated to be encouraged in dose-dependent and time-dependent manners. Based on the results obtained in this work, it was concluded that the enzymatic immobilization of LMWHA-Ph within gelatin-based hydrogel represents a promising approach to promote ECs' motility and further exploitation for vascular tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Supramolecular Hydrogels Based on Minimalist Amphiphilic Squaramide-Squaramates for Controlled Release of Zwitterionic Biomolecules.

    PubMed

    López, Carlos; Ximenis, Marta; Orvay, Francisca; Rotger, Carmen; Costa, Antonio

    2017-06-01

    Supramolecular hydrogels with tunable properties have innovative applications in biomedicine, catalysis, and materials chemistry. Minimalist low-molecular-weight hydrogelators based on squaramide and squaramic acid motifs have been designed. This approach benefits from the high acidity of squaramic acids and the aromaticity of squaramides. Moreover, substituents on the aryl ring tune the π density of the arylsquaramide motif. Thus, materials featuring distinct thermal and mechanical properties have been successfully prepared. The hydrogel (G'≈400 Pa, G''≈57 Pa; at 1.0 % w/v; 1 Hz) obtained from 4-nitrophenylsquaramide motif 1 is thermoreversible (T=57 °C at 0.2 % w/v), thixotropic, self-healable, and undergoes irreversible shrinking in response to saline stress. Furthermore, the hydrogel is injectable and can be loaded with substantial amounts (5:1 excess molar ratio) of zwitterionic biomolecules, such as l-carnitine, γ-aminobutyric acid (GABA), or d,l-Ala-d,l-Ala, without any loss of structural integrity. Then, the release of these molecules can be modulated by saline solutions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biological hydrogels as selective diffusion barriers.

    PubMed

    Lieleg, Oliver; Ribbeck, Katharina

    2011-09-01

    The controlled exchange of molecules between organelles, cells, or organisms and their environment is crucial for life. Biological gels such as mucus, the extracellular matrix (ECM), and the biopolymer barrier within the nuclear pore are well suited to achieve such a selective exchange, allowing passage of particular molecules while rejecting many others. Although hydrogel-based filters are integral parts of biology, clear concepts of how their barrier function is controlled at a microscopic level are still missing. We summarize here our current understanding of how selective filtering is established by different biopolymer-based hydrogels. We ask if the modulation of microscopic particle transport in biological hydrogels is based on a generic filtering principle which employs biochemical/biophysical interactions with the filtered molecules rather than size-exclusion effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Crosslinking method of hyaluronic-based hydrogel for biomedical applications

    PubMed Central

    Khunmanee, Sureerat; Jeong, Younghyen; Park, Hansoo

    2017-01-01

    In the field of tissue engineering, there is a need for advancement beyond conventional scaffolds and preformed hydrogels. Injectable hydrogels have gained wider admiration among researchers as they can be used in minimally invasive surgical procedures. Injectable gels completely fill the defect area and have good permeability and hence are promising biomaterials. The technique can be effectively applied to deliver a wide range of bioactive agents, such as drugs, proteins, growth factors, and even living cells. Hyaluronic acid is a promising candidate for the tissue engineering field because of its unique physicochemical and biological properties. Thus, this review provides an overview of various methods of chemical and physical crosslinking using different linkers that have been investigated to develop the mechanical properties, biodegradation, and biocompatibility of hyaluronic acid as an injectable hydrogel in cell scaffolds, drug delivery systems, and wound healing applications. PMID:28912946

  11. A precision structured smart hydrogel for sensing applications

    NASA Astrophysics Data System (ADS)

    Menges, J.; Kleinschmidt, P.; Bart, H.-J.; Oesterschulze, E.

    2017-10-01

    We report on a macroinitiator based smart hydrogel film applied on a microcantilever for sensing applications. The studied hydrogel features a comparatively wide dynamic range for changes in the electrolyte's ionic strength. Furthermore, it offers a simple spin coating process for thin film deposition as well as the capability to obtain high aspect ratio microstructures by reactive ion etching. This makes the hydrogel compatible to microelectromechanical system integration. As a proof of concept, we study the response of hydrogel functionalized cantilevers in aqueous sodium chloride solutions of varying ionic strength. In contrast to the majority of hydrogel materials reported in the literature, we found that our hydrogel still responds in high ionic strength environments. This may be of future interest for sensing e.g., in sea water or physiological environments like urine.

  12. Equilibrium swelling properties of polyampholytic hydrogels

    NASA Astrophysics Data System (ADS)

    English, Anthony E.; Mafé, Salvador; Manzanares, José A.; Yu, Xiahong; Grosberg, Alexander Yu.; Tanaka, Toyoichi

    1996-06-01

    The role of counter ions and ion dissociation in establishing the equilibrium swelling of balanced and unbalanced polyampholytic hydrogels has been investigated experimentally and theoretically. The swelling dependence on both the net charge offset and the external bath salt concentration has been examined using an acrylamide based polyampholytic hydrogels. By careful consideration of the swelling kinetics, we illustrate the effects of ion dissociation equilibria and counter ion shielding in polyampholytic hydrogels near their balance point where both polyelectrolyte and polyampholyte effects are present. The theory considers a Flory type swelling model where the Coulombic interactions between fixed ions in the hydrogel resemble those of an ionic solid with a Debye screening factor. Theoretical predictions from this model are in qualitative agreement with our experimental results.

  13. Gelator-polysaccharide hybrid hydrogel for selective and controllable dye release.

    PubMed

    Li, Ping; Dou, Xiao-Qiu; Tang, Yi-Tian; Zhu, Shenmin; Gu, Jiajun; Feng, Chuan-Liang; Zhang, Di

    2012-12-01

    In this paper, 1,4-bi(phenylalanine-diglycol)-benzene (PDB) based Low-Molecular-Weight-Gelator (LMWG) hydrogels are modified using hydrophilic polysaccharide (sodium alginate). A set of techniques including Fourier transform infrared (FT-IR) spectroscopy, (1)H Nuclear Magnetic Resonance ((1)H NMR), X-ray powder diffraction (XRD), Ultraviolet-Visible (UV-Vis), and circular dichroism (CD) had confirmed a β-turn arrangement of PDB gelators and a semi-interpenetrating network (semi-IPN), which was formed through hydrogen bonds between LMWG fibers and polysaccharide chains. The evaluation of physicochemical properties of hydrogels indicates that gelator-polysaccharide hybrid hydrogels possess better mechanical and water retention properties than LMWG hydrogels. The release study of dyes (model drug) from both LMWG and hybrid hydrogels was carried out. Compared with PDB based hydrogels, hybrid hydrogels show a selective and controllable release property for certain dyes. The results suggest LMWG-polysaccharide hybrid gels may find potential applications as promising drug delivery vehicles for drug molecules. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Prodrugs as self-assembled hydrogels: a new paradigm for biomaterials.

    PubMed

    Vemula, Praveen Kumar; Wiradharma, Nikken; Ankrum, James A; Miranda, Oscar R; John, George; Karp, Jeffrey M

    2013-12-01

    Prodrug-based self-assembled hydrogels represent a new class of active biomaterials that can be harnessed for medical applications, in particular the design of stimuli responsive drug delivery devices. In this approach, a promoiety is chemically conjugated to a known-drug to generate an amphiphilic prodrug that is capable of forming self-assembled hydrogels. Prodrug-based self-assembled hydrogels are advantageous as they alter the solubility of the drug, enhance drug loading, and eliminate the use of harmful excipients. In addition, self-assembled prodrug hydrogels can be designed to undergo controlled drug release or tailored degradation in response to biological cues. Herein we review the development of prodrug-based self-assembled hydrogels as an emerging class of biomaterials that overcome several common limitations encountered in conventional drug delivery. Published by Elsevier Ltd.

  15. Cyclodextrin-cross-linked diaminotriazine-based hydrogen bonding strengthened hydrogels for drug and reverse gene delivery.

    PubMed

    Hu, Xiufeng; Wang, Ning; Liu, Lu; Liu, Wenguang

    2013-01-01

    A hydrogen bonding strengthened hydrogel was prepared by radical copolymerization of poly(ethylene glycol) methacrylated β-cyclodextrin (PEG-β-CD) and 2-vinyl-4,6-diamino-1,3,5-triazine (VDT) monomer. PEG-β-CD served not only as a cross-linker, but also as a built-in solubilizing agent of the hydrophobic drug in the gel. Increasing VDT content resulted in a notable enhancement in the mechanical strengths of hydrogels whose equilibrium water contents could be modulated from 75% to 85% by varying the ratio of PEG-β-CD cross-linker. It was shown that copolymerizing more PEG-β-CDs could load higher amount of ibuprofen (IBU) in the gels and contribute to a slower release rate of IBU. Plasmid DNA could be anchored onto the surface of hydrogels due to the hydrogen bonding between the base pairs and diaminotriazine, thereby mediating efficient reverse gene transfection of luciferase gene in COS-7 cells cultured on the gel surface. The cytocompatible PEG-β-CD-cross-linked PVDT hydrogels with multifunction of drug and gene delivery hold a potential as tissue engineering scaffold.

  16. An investigation of konjac glucomannan-keratin hydrogel scaffold loaded with Avena sativa extracts for diabetic wound healing.

    PubMed

    Veerasubramanian, Praveen Krishna; Thangavel, Ponrasu; Kannan, Ramya; Chakraborty, Sudip; Ramachandran, Balaji; Suguna, Lonchin; Muthuvijayan, Vignesh

    2018-05-01

    We have developed a novel hydrogel composed of konjac glucomannan (KGM), human hair proteins (KER), and an ethanolic extract of Avena sativa (OAT) and evaluated its potential as a dressing material for diabetic wounds. KGM is an excellent biocompatible gelling agent that stimulates fibroblast proliferation and immunomodulation. Human hair proteins (KER) are biocompatible, biodegradable, and possess abundant cell adhesion sites. KER also promotes fibroblast attachment and proliferation, keratinocyte migration, and collagen expression, which can accelerate wound healing. OAT consists of oat β-glucans and several anti-inflammatory and antioxidant moieties that can reduce prolonged inflammation in chronic wounds. SEM images confirm the highly porous architecture of the scaffolds. When immersed in PBS, KGM+KER+OAT hydrogels absorb 7.5 times their dry weight. These hydrogels display a measured rate of degradation in lysozyme. KGM+KER+OAT hydrogels showed no significant cytotoxicity against NIH/3T3 fibroblasts. DAPI and SEM images obtained after 48h of cell culture illustrate the attachment and infiltration of fibroblasts. In vivo studies performed using a diabetic rat excision wound model showed that KGM+KER+OAT hydrogels significantly accelerated wound healing compared to the control and the KGM+KER hydrogels. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Lamellar Biogels: Fluid-Membrane-Based Hydrogels Containing Polymer Lipids

    NASA Astrophysics Data System (ADS)

    Warriner, Heidi E.; Idziak, Stefan H. J.; Slack, Nelle L.; Davidson, Patrick; Safinya, Cyrus R.

    1996-02-01

    A class of lamellar biological hydrogels comprised of fluid membranes of lipids and surfactants with small amounts of low molecular weight poly(ethylene glycol)-derived polymer lipids (PEG-lipids) were studied by x-ray diffraction, polarized light microscopy, and rheometry. In contrast to isotropic hydrogels of polymer networks, these membrane-based birefringent liquid crystalline biogels, labeled Lα,g, form the gel phase when water is added to the liquid-like lamellar L_α phase, which reenters a liquid-like mixed phase upon further dilution. Furthermore, gels with larger water content require less PEG-lipid to remain stable. Although concentrated (~50 weight percent) mixtures of free PEG (molecular weight, 5000) and water do not gel, gelation does occur in mixtures containing as little as 0.5 weight percent PEG-lipid. A defining signature of the Lα,g regime as it sets in from the fluid lamellar L_α phase is the proliferation of layer-dislocation-type defects, which are stabilized by the segregation of PEG-lipids to the defect regions of high membrane curvature that connect the membranes.

  18. Evaluation of CO2-based cold sterilization of a model hydrogel.

    PubMed

    Jiménez, A; Zhang, J; Matthews, M A

    2008-12-15

    The purpose of the present work is to evaluate a novel CO(2)-based cold sterilization process in terms of both its killing efficiency and its effects on the physical properties of a model hydrogel, poly(acrylic acid-co-acrylamide) potassium salt. Suspensions of Staphylococcus aureus and Escherichia coli were prepared for hydration and inoculation of the gel. The hydrogels were treated with supercritical CO(2) (40 degrees C, 27.6 MPa). The amount of bacteria was quantified before and after treatment. With pure CO(2), complete killing of S. aureus and E. coli was achieved for treatment times as low as 60 min. After treatment with CO(2) plus trace amounts of H(2)O(2) at the same experimental conditions, complete bacteria kill was also achieved. For times less than 30 min, incomplete kill was noted. Several physical properties of the gel were evaluated before and after SC-CO(2) treatment. These were largely unaffected by the CO(2) process. Drying curves showed no significant change between treated (pure CO(2) and CO(2) plus 30% H(2)O(2)) and untreated samples. The average equilibrium swelling ratios were also very similar. No changes in the dry hydrogel particle structure were evident from SEM micrographs.

  19. Design of self-assembling beta-hairpin pepide-based hydrogels for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Butterick, Lisa Ann

    The field of tissue engineering aims to repair damaged tissues and organs with diminished function. One approach used in tissue engineering is to introduce cells and/or growth factors to the damaged tissue in either one of two ways. The first method is an invasive procedure where cells are introduced to a preformed scaffold and cultured in vitro. The scaffold is then inserted into the host by making an incision at the site of interest, which must be as large as the preformed scaffold. The second method is a minimally invasive procedure where cells are suspended in a polymeric solution and injected via syringe. After leaving the syringe, the material undergoes a phase transition to form a hydrogel at the site of introduction. Regardless of the delivery mechanism employed, development of an appropriate scaffold conducive to cellular proliferation and extracellular matrix production is critical to the success of the implanted material in persuading the body to repair itself. In working toward this goal, we have developed a family of beta-hairpin peptides, based on the design MAX1, that undergoes intramolecular folding and self-assembly to form rigid hydrogels in response to changes in pH, ionic strength, and temperature. From a molecular design standpoint of view, site specific N-methylation of MAX1 was performed to determine the importance of forming hydrogen bonds during the self-assembly event and its effect on hydrogelation. The remainder of this thesis is dedicated to the development of materials and minimally methodologies to deliver gel/cell constructs via syringe to target sites to aid in tissue repair. A peptide, MAX7CNB was designed that undergoes folding and assembly in response to ultraviolet light to form hydrogel material. In addition, MAX8 was rationally designed to display the appropriate hydrogelation kinetics to achieve homogenous cellular encapsulation throughout the gel matrix. MAX8 gel/cell scaffolds can be easily delivered via syringe to

  20. Release of Cyclic Phosphatidic Acid from Gelatin-based Hydrogels Inhibit Colon Cancer Cell Growth and Migration

    PubMed Central

    Tsukahara, Tamotsu; Murakami-Murofushi, Kimiko

    2012-01-01

    Microparticle and nanoparticle formulations are widely used to improve the bioavailability of low-solubility drugs and as vehicles for organ- and tissue-specific targeted drug delivery. We investigated the effect of a novel, controlled-release form of a bioactive lipid, cyclic phosphatidic acid (cPA), on human colon cancer cell line functions. We encapsulated cPA in gelatin-based hydrogels and examined its ability to inhibit the viability and migration of HT-29 and DLD-1 cells in vitro and the LPA-induced activity of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ). The hydrogel delivery system prolonged cPA release into the culture medium. Accordingly, cPA-hydrogel microspheres substantially inhibited LPA-induced PPARγ activity and cell growth and migration compared with that of cells cultured with cPA alone. Thus, hydrogel microspheres are a potential system for stable and efficient delivery of bioactive lipids such as cPA and may offer a new strategy for targeted colon cancer treatment. PMID:23008752

  1. Formation of Cucurbit[8]uril-Based Supramolecular Hydrogel Beads Using Droplet-Based Microfluidics.

    PubMed

    Xu, Xuejiao; Appel, Eric A; Liu, Xin; Parker, Richard M; Scherman, Oren A; Abell, Chris

    2015-09-14

    Herein we describe the use of microdroplets as templates for the fabrication of uniform-sized supramolecular hydrogel beads, assembled by supramolecular cross-linking of functional biopolymers with the macrocyclic host molecule, cucurbit[8]uril (CB[8]). The microdroplets were formed containing diluted hydrogel precursors in solution, including the functional polymers and CB[8], in a microfluidic device. Subsequent evaporation of water from collected microdroplets concentrated the contents, driving the formation of the CB[8]-mediated host-guest ternary complex interactions and leading to the assembly of condensed three-dimensional polymeric scaffolds. Rehydration of the dried particles gave monodisperse hydrogel beads. Their equilibrium size was shown to be dependent on both the quantity of material loaded and the dimensions of the microfluidic flow focus. Fluorescein-labeled dextran was used to evaluate the efficacy of the hydrogel beads as a vector for controlled cargo release. Both passive, sustained release (hours) and triggered, fast release (minutes) of the FITC-dextran was observed, with the rate of sustained release dependent on the formulation. The kinetics of release was fitted to the Ritger-Peppas controlled release equation and shown to follow an anomalous (non-Fickian) transport mechanism.

  2. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  3. Hydrogel research in Germany: the priority programme, Intelligent Hydrogels

    NASA Astrophysics Data System (ADS)

    Wallmersperger, Thomas; Sadowski, Gabriele

    2009-03-01

    The priority programme "Intelligent Hydrogels" was established by the German Research Foundation (DFG) in 2006 in order to strengthen the hydrogel-related research in Germany. The programme is being coordinated by Gabriele Sadowski, Technische Universität Dortmund. The aim of this priority programme is to develop new methods for the synthesis and characterization of smart hydrogels and to develop new modelling strategies in order to a) prepare the hydrogels for special applications and/or b) to develop and extend their capabilities for any desired use. In this programme, 73 scientists (36 professors and 37 scientific assistants/PhD students) from all over Germany are involved, working in 23 projects.

  4. Stem Cell-Containing Hyaluronic Acid-Based Spongy Hydrogels for Integrated Diabetic Wound Healing.

    PubMed

    da Silva, Lucília Pereira; Santos, Tírcia Carlos; Rodrigues, Daniel Barreira; Pirraco, Rogério Pedro; Cerqueira, Mariana Teixeira; Reis, Rui Luís; Correlo, Vitor Manuel; Marques, Alexandra Pinto

    2017-07-01

    The detailed pathophysiology of diabetic foot ulcers is yet to be established and improved treatments are still required. We propose a strategy that directs inflammation, neovascularization, and neoinnervation of diabetic wounds. Aiming to potentiate a relevant secretome for nerve regeneration, stem cells were precultured in hyaluronic acid-based spongy hydrogels under neurogenic/standard media before transplantation into diabetic mice full-thickness wounds. Acellular spongy hydrogels and empty wounds were used as controls. Re-epithelialization was attained 4 weeks after transplantation independently of the test groups, whereas a thicker and more differentiated epidermis was observed for the cellular spongy hydrogels. A switch from the inflammatory to the proliferative phase of wound healing was revealed for all the experimental groups 2 weeks after injury, but a significantly higher M2(CD163 + )/M1(CD86 + ) subtype ratio was observed in the neurogenic preconditioned group that also failed to promote neoinnervation. A higher number of intraepidermal nerve fibers were observed for the unconditioned group probably due to a more controlled transition from the inflammatory to the proliferative phase. Overall, stem cell-containing spongy hydrogels represent a promising approach to enhance diabetic wound healing by positively impacting re-epithelialization and by modulating the inflammatory response to promote a successful neoinnervation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Mechanical characterization and modeling of sponge-reinforced hydrogel composites under compression.

    PubMed

    Wu, Lei; Mao, Guoyong; Nian, Guodong; Xiang, Yuhai; Qian, Jin; Qu, Shaoxing

    2018-05-30

    Load-bearing applications of hydrogels call for materials with excellent mechanical properties. Despite the considerable progress in developing tough hydrogels, there is still a requirement to prepare high-performance hydrogels using simple strategies. In this paper, a sponge-reinforced hydrogel composite is synthesized by combining poly(acrylamide) (PAAm) hydrogel and polyurethane (PU) sponge. Uniaxial compressive testing of the hydrogel composites reveals that both the compressive modulus and the strength of the hydrogel composites are much higher than those of the PAAm hydrogel or sponge. In order to predict the compressive modulus of the hydrogel composite, we develop a theoretical model that is validated by experiments and numerical simulations. The present work may guide the design and manufacture of hydrogel-based composite materials, especially for biomaterial scaffolds and soft transducers.

  6. Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels.

    PubMed

    Pescador, David; Ibáñez-Fonseca, Arturo; Sánchez-Guijo, Fermín; Briñón, Jesús G; Arias, Francisco Javier; Muntión, Sandra; Hernández, Cristina; Girotti, Alessandra; Alonso, Matilde; Del Cañizo, María Consuelo; Rodríguez-Cabello, José Carlos; Blanco, Juan Francisco

    2017-08-01

    Over the last decades, novel therapeutic tools for osteochondral regeneration have arisen from the combination of mesenchymal stromal cells (MSCs) and highly specialized smart biomaterials, such as hydrogel-forming elastin-like recombinamers (ELRs), which could serve as cell-carriers. Herein, we evaluate the delivery of xenogeneic human MSCs (hMSCs) within an injectable ELR-based hydrogel carrier for osteochondral regeneration in rabbits. First, a critical-size osteochondral defect was created in the femora of the animals and subsequently filled with the ELR-based hydrogel alone or with embedded hMSCs. Regeneration outcomes were evaluated after three months by gross assessment, magnetic resonance imaging and computed tomography, showing complete filling of the defect and the de novo formation of hyaline-like cartilage and subchondral bone in the hMSC-treated knees. Furthermore, histological sectioning and staining of every sample confirmed regeneration of the full cartilage thickness and early subchondral bone repair, which was more similar to the native cartilage in the case of the cell-loaded ELR-based hydrogel. Overall histological differences between the two groups were assessed semi-quantitatively using the Wakitani scale and found to be statistically significant (p < 0.05). Immunofluorescence against a human mitochondrial antibody three months post-implantation showed that the hMSCs were integrated into the de novo formed tissue, thus suggesting their ability to overcome the interspecies barrier. Hence, we conclude that the use of xenogeneic MSCs embedded in an ELR-based hydrogel leads to the successful regeneration of hyaline cartilage in osteochondral lesions.

  7. Biocompatible hydrogel membranes for the protection of RNA aptamer-based electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Schoukroun-Barnes, Lauren R.; Wagan, Samiullah; Liu, Juan; Leach, Jennie B.; White, Ryan J.

    2013-05-01

    Electrochemical-aptamer based (E-AB) sensors represent a universal specific, selective, and sensitive sensing platform for the detection of small molecule targets. Their specific detection abilities are afforded by oligonucleotide (RNA or DNA) aptamers employed as electrode-bound biorecognition elements. Sensor signaling is predicated on bindinginduced changes in conformation and/or flexibility of the aptamer that is readily measurable electrochemically. While sensors fabricated using DNA aptamers can achieve specific and selective detection even in unadulterated sample matrices, such as blood serum, RNA-based sensors fail when challenged in the same sample matrix without significant sample pretreatment. This failure is at least partially a result of enzymatic degradation of the RNA sensing element. This degradation destroys the sensing aptamer inhibiting the quantitative measurement of the target analyte and thus limits the application of E-AB sensors constructed with RNA aptamer. To circumvent this, we demonstrate that a biocompatible hydrogel membrane protects the RNA aptamer sensor surface from enzymatic degradation for at least 3 hours - a remarkable improvement over the rapid (~minutes) degradation of unprotected sensors. To demonstrate this, we characterize the response of sensors fabricated with representative DNA and RNA aptamers directed against the aminoglycoside antibiotic, tobramycin in blood serum both protected and unprotected by a polyacrylamide membrane. Furthermore, we find encapsulation of the sensor surface with the hydrogel does not significantly impede the detection ability of aptamer-based sensors. This hydrogel-aptamer interface will thus likely prove useful for the long-term monitoring of therapeutics in complex biological media.

  8. An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium.

    PubMed

    Liang, Ye; Liu, Wanshun; Han, Baoqin; Yang, Chaozhong; Ma, Qun; Song, Fulai; Bi, Qingqing

    2011-01-01

    Biodegradable hydrogels are important biomaterials for tissue engineering and drug delivery. For the purpose of corneal regenerative medicine, we describe an in situ formed hydrogel based on a water-soluble derivative of chitosan, hydroxypropyl chitosan (HPCTS), and sodium alginate dialdehyde (SAD). Periodate oxidized alginate rapidly cross-links HPCTS due to Schiff's base formation between the available aldehyde and amino groups. Hydrogel cytotoxicity, degradability and histocompatibility in vivo were examined. The potential of the composite hydrogel for corneal endothelium reconstruction was demonstrated by encapsulating corneal endothelial cells (CECs) to grow on Descemet's membranes. The results demonstrate that the composite hydrogel was both non-toxic and biodegradable and that CECs transplanted by the composite hydrogel could survive and retain normal morphology. These results provide an opportunity for corneal endothelium reconstruction based on tissue engineering by the in situ formed composite hydrogel. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels.

    PubMed

    Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2011-07-11

    Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.

  10. Advances in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics.

    PubMed

    Vashist, Arti; Kaushik, Ajeet; Vashist, Atul; Sagar, Vidya; Ghosal, Anujit; Gupta, Y K; Ahmad, Sharif; Nair, Madhavan

    2018-05-01

    In spite of significant advancement in hydrogel technology, low mechanical strength and lack of electrical conductivity have limited their next-level biomedical applications for skeletal muscles, cardiac and neural cells. Host-guest chemistry based hybrid nanocomposites systems have gained attention as they completely overcome these pitfalls and generate bioscaffolds with tunable electrical and mechanical characteristics. In recent years, carbon nanotube (CNT)-based hybrid hydrogels have emerged as innovative candidates with diverse applications in regenerative medicines, tissue engineering, drug delivery devices, implantable devices, biosensing, and biorobotics. This article is an attempt to recapitulate the advancement in synthesis and characterization of hybrid hydrogels and provide deep insights toward their functioning and success as biomedical devices. The improved comparative performance and biocompatibility of CNT-hydrogels hybrids systems developed for targeted biomedical applications are addressed here. Recent updates toward diverse applications and limitations of CNT hybrid hydrogels is the strength of the review. This will provide a holistic approach toward understanding of CNT-based hydrogels and their applications in nanotheranostics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multi-scale Multi-mechanism Toughening of Hydrogels

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe

    Hydrogels are widely used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical properties. Inspired by the mechanics and hierarchical structures of tough biological tissues, we propose that a general principle for the design of tough hydrogels is to implement two mechanisms for dissipating mechanical energy and maintaining high elasticity in hydrogels. A particularly promising strategy for the design is to integrate multiple pairs of mechanisms across multiple length scales into a hydrogel. We develop a multiscale theoretical framework to quantitatively guide the design of tough hydrogels. On the network level, we have developed micro-physical models to characterize the evolution of polymer networks under deformation. On the continuum level, we have implemented constitutive laws formulated from the network-level models into a coupled cohesive-zone and Mullins-effect model to quantitatively predict crack propagation and fracture toughness of hydrogels. Guided by the design principle and quantitative model, we will demonstrate a set of new hydrogels, based on diverse types of polymers, yet can achieve extremely high toughness superior to their natural counterparts such as cartilages. The work was supported by NSF(No. CMMI- 1253495) and ONR (No. N00014-14-1-0528).

  12. Mussel-inspired histidine-based transient network metal coordination hydrogels

    PubMed Central

    Fullenkamp, Dominic E.; He, Lihong; Barrett, Devin G.; Burghardt, Wesley R.; Messersmith, Phillip B.

    2013-01-01

    Transient network hydrogels cross-linked through histidine-divalent cation coordination bonds were studied by conventional rheologic methods using histidine-modified star poly(ethylene glycol) (PEG) polymers. These materials were inspired by the mussel, which is thought to use histidine-metal coordination bonds to impart self-healing properties in the mussel byssal thread. Hydrogel viscoelastic mechanical properties were studied as a function of metal, pH, concentration, and ionic strength. The equilibrium metal-binding constants were determined by dilute solution potentiometric titration of monofunctional histidine-modified methoxy-PEG and were found to be consistent with binding constants of small molecule analogs previously studied. pH-dependent speciation curves were then calculated using the equilibrium constants determined by potentiometric titration, providing insight into the pH dependence of histidine-metal ion coordination and guiding the design of metal coordination hydrogels. Gel relaxation dynamics were found to be uncorrelated with the equilibrium constants measured, but were correlated to the expected coordination bond dissociation rate constants. PMID:23441102

  13. Automation of 3D cell culture using chemically defined hydrogels.

    PubMed

    Rimann, Markus; Angres, Brigitte; Patocchi-Tenzer, Isabel; Braum, Susanne; Graf-Hausner, Ursula

    2014-04-01

    Drug development relies on high-throughput screening involving cell-based assays. Most of the assays are still based on cells grown in monolayer rather than in three-dimensional (3D) formats, although cells behave more in vivo-like in 3D. To exemplify the adoption of 3D techniques in drug development, this project investigated the automation of a hydrogel-based 3D cell culture system using a liquid-handling robot. The hydrogel technology used offers high flexibility of gel design due to a modular composition of a polymer network and bioactive components. The cell inert degradation of the gel at the end of the culture period guaranteed the harmless isolation of live cells for further downstream processing. Human colon carcinoma cells HCT-116 were encapsulated and grown in these dextran-based hydrogels, thereby forming 3D multicellular spheroids. Viability and DNA content of the cells were shown to be similar in automated and manually produced hydrogels. Furthermore, cell treatment with toxic Taxol concentrations (100 nM) had the same effect on HCT-116 cell viability in manually and automated hydrogel preparations. Finally, a fully automated dose-response curve with the reference compound Taxol showed the potential of this hydrogel-based 3D cell culture system in advanced drug development.

  14. Rheological characterization of cataplasm bases composed of cross-linked partially neutralized polyacrylate hydrogel.

    PubMed

    Wang, Jian; Zhang, Hongqin; An, Dianyun; Yu, Jian; Li, Wei; Shen, Teng; Wang, Jianxin

    2014-10-01

    Viscoelasticity is a useful parameter for characterizing the intrinsic properties of the cross-linked polyacrylate hydrogel used in cataplasm bases. The aim of this study was to investigate the effects of various formulation parameters on the rheological characteristics of polyacrylate hydrogel. The hydrogel layers were formed using a partially neutralized polyacrylate (Viscomate(™)), which contained acrylic acid and sodium acrylate in different copolymerization ratios, as the cross-linked gel framework. Dihydroxyaluminum aminoacetate (DAAA), which produces aluminum ions, was used as the cross-linking agent. Rheological analyses were performed using a "stress amplitude sweep" and a "frequency sweep". The results showed that greater amounts of acrylic acid in the structure of Viscomate as well as higher concentrations of DAAA and Viscomate led to an increase in the elastic modulus (G'). However, greater amounts of acrylic acid in the structure of Viscomate and higher concentrations of DAAA had an opposite on the viscous modulus (G″); this might be owing to higher steric hindrance. The results of this study can serve as guidelines for the optimization of formulations for cataplasms.

  15. High-Performance Biomass-Based Flexible Solid-State Supercapacitor Constructed of Pressure-Sensitive Lignin-Based and Cellulose Hydrogels.

    PubMed

    Peng, Zhiyuan; Zou, Yubo; Xu, Shiqi; Zhong, Wenbin; Yang, Wantai

    2018-06-19

    Employing renewable, earth-abundant, environmentally friendly, low-cost natural materials to design flexible supercapacitors (FSCs) as energy storage devices in wearable/portable electronics represents the global perspective to build sustainable and green society. Chemically stable and flexible cellulose and electroactive lignin have been employed to construct a biomass-based FSC for the first time. The FSC was assembled using lignosulfonate/single-walled carbon nanotube HNO 3 (Lig/SWCNT HNO 3 ) pressure-sensitive hydrogels as electrodes and cellulose hydrogels as an electrolyte separator. The assembled biomass-based FSC shows high specific capacitance (292 F g -1 at a current density of 0.5 A g -1 ), excellent rate capability, and an outstanding energy density of 17.1 W h kg -1 at a power density of 324 W kg -1 . Remarkably, the FSC presents outstanding electrochemical stability even suffering 1000 bending cycles. Such excellent flexibility, stability, and electrochemical performance enable the designed biomass-based FSCs as prominent candidates in applications of wearable electronic devices.

  16. Glucose-specific poly(allylamine) hydrogels--a reassessment.

    PubMed

    Fazal, Furqan M; Hansen, David E

    2007-01-01

    Polymer hydrogels synthesized by crosslinking poly(allylamine hydrochloride) with (+/-)-epichlorohydrin in the presence of d-glucose-6-phosphate monobarium salt do not show imprinting on the molecular level. A series of hydrogels was prepared using the following five templates: d-glucose-6-phosphate monobarium salt, d-glucose, l-glucose, barium hydrogen phosphate (BaHPO(4)), and d-gluconamide; a hydrogel was also prepared in the absence of a template. For all six hydrogels, batch binding studies were conducted with d-glucose, l-glucose, d-fructose, and d-gluconamide. The extent of analyte sugar binding was determined using (1)H NMR. Each hydrogel shows approximately the same relative binding affinity for the different sugar derivatives, and none displays selectivity for either glucose enantiomer. The results of the binding studies correlate with the octanol-water partition coefficients of the sugars, indicative that differential solubilities in the bulk polymer account for the binding affinities observed. Thus, in contrast to templated hydrogels prepared using methacrylate- or acrylamide-based reagents, true imprinting does not occur in this novel, crosslinked-poly(allylamine hydrochloride) system.

  17. Gelatin-based Hydrogel Degradation and Tissue Interaction in vivo: Insights from Multimodal Preclinical Imaging in Immunocompetent Nude Mice.

    PubMed

    Tondera, Christoph; Hauser, Sandra; Krüger-Genge, Anne; Jung, Friedrich; Neffe, Axel T; Lendlein, Andreas; Klopfleisch, Robert; Steinbach, Jörg; Neuber, Christin; Pietzsch, Jens

    2016-01-01

    Hydrogels based on gelatin have evolved as promising multifunctional biomaterials. Gelatin is crosslinked with lysine diisocyanate ethyl ester (LDI) and the molar ratio of gelatin and LDI in the starting material mixture determines elastic properties of the resulting hydrogel. In order to investigate the clinical potential of these biopolymers, hydrogels with different ratios of gelatin and diisocyanate (3-fold (G10_LNCO3) and 8-fold (G10_LNCO8) molar excess of isocyanate groups) were subcutaneously implanted in mice (uni- or bilateral implantation). Degradation and biomaterial-tissue-interaction were investigated in vivo (MRI, optical imaging, PET) and ex vivo (autoradiography, histology, serum analysis). Multimodal imaging revealed that the number of covalent net points correlates well with degradation time, which allows for targeted modification of hydrogels based on properties of the tissue to be replaced. Importantly, the degradation time was also dependent on the number of implants per animal. Despite local mechanisms of tissue remodeling no adverse tissue responses could be observed neither locally nor systemically. Finally, this preclinical investigation in immunocompetent mice clearly demonstrated a complete restoration of the original healthy tissue.

  18. Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques.

    PubMed

    Galante, Raquel; Ghisleni, Daniela; Paradiso, Patrizia; Alves, Vitor D; Pinto, Terezinha J A; Colaço, Rogério; Serro, Ana Paula

    2017-09-01

    Sterilization of hydrogels is challenging due to their often reported sensitivity to conventional methods involving heat or radiation. Although aseptic manufacturing is a possibility, terminal sterilization is safer in biological terms, leading to a higher overall efficiency, and thus should be used whenever it is possible. The main goal of this work was to study the applicability of an innovative ozone gas terminal sterilization method for silicone-based hydrogels and compare its efficacy and effects with those of traditional sterilization methods: steam heat and gamma irradiation. Ozone gas sterilization is a method with potential interest since it is reported as a low cost green method, does not leave toxic residues and can be applied to thermosensitive materials. A hydrogel intended for ophthalmological applications, based on tris(trimethylsiloxy)silyl] propyl methacrylate, was prepared and extensively characterized before and after the sterilization procedures. Alterations regarding transparency, swelling, wettability, ionic permeability, friction coefficient, mechanical properties, topography and morphology and chemical composition were monitored. Efficacy of the ozonation was accessed by performing controlled contaminations and sterility tests. In vitro cytotoxicity testes were also performed. The results show that ozonation may be applied to sterilize the studied material. A treatment with 8 pulses allowed sterilizing the material with bioburdens≤10 3 CFU/mL, preserving all the studied properties within the required known values for contact lenses materials. However, a higher exposure (10 pulses) led to some degradation of the material and induced mild cytotoxicity. Steam heat sterilization led to an increase of swelling capacity and a decrease of the water contact angle. Regarding gamma irradiation, the increase of irradiation dose led to an increase of the friction coefficient. The higher dose (25kGy) originated surface degradation and affected the

  19. Biodegradation of PVP-CMC hydrogel film: a useful food packaging material.

    PubMed

    Roy, Niladri; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2012-06-20

    Hydrogels can offer new opportunities for the design of efficient packaging materials with desirable properties (i.e. durability, biodegradability and mechanical strength). It is a promising and emerging concept, as most of the biopolymer based hydrogels are supposed to be biodegradable, they can be considered as alternative eco-friendly packaging materials. This article reports about synthetic (polyvinylpyrrolidone (PVP)) and biopolymer (carboxymethyl cellulose (CMC)) based a novel hydrogel film and its nature of biodegradability under controlled environmental condition. The dry hydrogel films were prepared by solution casting method and designated as 'PVP-CMC hydrogel films'. The hydrogel film containing PVP and CMC in a ratio of 20:80 shows best mechanical properties among all the test samples (i.e. 10:90, 20:80, 50:50, 80:20 and 90:10). Thus, PVP-CMC hydrogel film of 20:80 was considered as a useful food packaging material and further experiments were carried out with this particular hydrogel film. Biodegradation of the PVP-CMC hydrogel films were studied in liquid state (Czapec-Dox liquid medium+soil extracts) until 8 weeks. Variation in mechanical, viscoelastic properties and weight loss of the hydrogel films with time provide the direct evidence of biodegradation of the hydrogels. About 38% weight loss was observed within 8 weeks. FTIR spectra of the hydrogel films (before and after biodegradation) show shifts of the peaks and also change in the peak intensities, which refer to the physico-chemical change in the hydrogel structure and SEM views of the hydrogels show how internal structure of the PVP-CMC film changes in the course of biodegradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Highly stretchable HA/SA hydrogels for tissue engineering.

    PubMed

    Zhu, Chengcheng; Yang, Rui; Hua, Xiaobin; Chen, Hong; Xu, Jumei; Wu, Rile; Cen, Lian

    2018-04-01

    A highly stretchable hyaluronic acid (HA)/sodium alginate (SA) hydrogel was developed in this study based on an interpenetrating polymer network. HA/SA hydrogels were prepared by mixing two polysaccharides followed by covalent crosslinking via epoxy groups on HA molecules and ionic crosslinking via divalent ions on SA chains sequentially. The effect of HA/SA ratio on the pore size and distribution, swelling ratio, elongation and rheological properties as well as protein loading and release properties of HA/SA hydrogels was explored. Moreover, a surface modification method, layer-by-layer (LBL) assembly technique, was applied to modify the hydrogel to evaluate the hydrogel's tenability in varying biological performance. It was then shown that the hydrogels had the pore sizes ranging from 100 to 50 μm. With the increase in SA content of the resulting hydrogels, the pore size, swelling ratio, and storage modulus (G') and loss modulus (G″) of the hydrogel all decreased, whereas the in vitro bulk weight loss was fastened. Moreover, elongation at break (EB) value increased first, reached a peak value and then decreased, that is HA8/SA1 (HA:SA = 8:1) had the highest EB value of 417%. This hydrogel could retain 33.2% of the pre-loaded protein even after 72 h, which could be further attenuated when LBL was used to shell the hydrogel. The growth of fibroblasts on HA8/SA1 hydrogel gave preliminary assessment on its suitability as a cellular carrier, while the LBL modified HA8/SA1 hydrogel also favored the anchoring of keratinocytes, further enhancing its cell carrier role for tissue regeneration, especially skin engineering.

  1. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.

    PubMed

    Kocen, Rok; Gasik, Michael; Gantar, Ana; Novak, Saša

    2017-03-06

    Along with biocompatibility, bioinductivity and appropriate biodegradation, mechanical properties are also of crucial importance for tissue engineering scaffolds. Hydrogels, such as gellan gum (GG), are usually soft materials, which may benefit from the incorporation of inorganic particles, e.g. bioactive glass, not only due to the acquired bioactivity, but also due to improved mechanical properties. They exhibit complex viscoelastic properties, which can be evaluated in various ways. In this work, to reliably evaluate the effect of the bioactive glass (BAG) addition on viscoelastic properties of the composite hydrogel, we employed and compared the three most commonly used techniques, analyzing their advantages and limitations: monotonic uniaxial unconfined compression, small amplitude oscillatory shear (SAOS) rheology and dynamic mechanical analysis (DMA). Creep and small amplitude dynamic strain-controlled tests in DMA are suggested as the best ways for the characterization of mechanical properties of hydrogel composites, whereas the SAOS rheology is more useful for studying the hydrogel's processing kinetics, as it does not induce volumetric changes even at very high strains. Overall, the results confirmed a beneficial effect of BAG (nano)particles on the elastic modulus of the GG-BAG composite hydrogel. The Young's modulus of 6.6 ± 0.8 kPa for the GG hydrogel increased by two orders of magnitude after the addition of 2 wt.% BAG particles (500-800 kPa).

  2. Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and In Vivo Studies

    PubMed Central

    Szymańska, Emilia; Orłowski, Piotr; Tomaszewska, Emilia; Bąska, Piotr; Grobelny, Jarosław; Basa, Anna; Krzyżowska, Małgorzata

    2018-01-01

    Mucoadhesive gelling systems with tannic acid modified silver nanoparticles were developed for effective treatment of herpes virus infections. To increase nanoparticle residence time after local application, semi solid formulations designed from generally regarded as safe (GRAS) excipients were investigated for their rheological and mechanical properties followed with ex vivo mucoadhesive behavior to the porcine vaginal mucosa. Particular effort was made to evaluate the activity of nanoparticle-based hydrogels toward herpes simplex virus (HSV) type 1 and 2 infection in vitro in immortal human keratinocyte cell line and in vivo using murine model of HSV-2 genital infection. The effect of infectivity was determined by real time quantitative polymerase chain reaction, plaque assay, inactivation, attachment, penetration and cell-to-cell assessments. All analyzed nanoparticle-based hydrogels exhibited pseudoplastic and thixotropic properties. Viscosity and mechanical measurements of hydrogels were found to correlate with the mucoadhesive properties. The results confirmed the ability of nanoparticle-based hydrogels to affect viral attachment, impede penetration and cell-to-cell transmission, although profound differences in the activity evoked by tested preparations toward HSV-1 and HSV-2 were noted. In addition, these findings demonstrated the in vivo potential of tannic acid modified silver nanoparticle-based hydrogels for vaginal treatment of HSV-2 genital infection. PMID:29382085

  3. Flavonoid-based pH-responsive hydrogels as carrier of unstable drugs in oxidative conditions.

    PubMed

    Spizzirri, Umile Gianfranco; Cirillo, Giuseppe; Curcio, Manuela; Picci, Nevio; Iemma, Francesca

    2015-05-01

    In this study, pH-responsive hydrogels, synthesized by the coupling reaction of polyacrylic acid and catechin, are proposed as carriers of oxidable drugs toward the GI tract. The presence of polyphenolic moieties in the network gives the polymers properties suitable for the release of unstable drugs in oxidative conditions. The characterization of the hydrogels is obtained by means of morphological and physico-chemical analyses, antioxidant assays and evaluation of the swelling behavior in media simulating the gastric (pH 1.0) and the intestinal (pH 7.4) tracts. The hydrogels are tested as pH-responsive carriers in in vitro release studies of folic acid and thiamine, two model drugs easily degraded by oxidative conditions simulated by UV irradiation and t-butyl hydroperoxide treatment, respectively. Results show that catechin-based carriers are able to control the release of drugs at different pH values, giving a remarkable improvement in the stability of the therapeutics.

  4. Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing.

    PubMed

    Tsai, Ching-Yao; Woung, Lin-Chung; Yen, Jiin-Cherng; Tseng, Po-Chen; Chiou, Shih-Hwa; Sung, Yen-Jen; Liu, Kuan-Ting; Cheng, Yung-Hsin

    2016-01-01

    Oxidative damage to cornea can be induced by alkaline chemical burn which may cause vision loss or blindness. Recent studies showed that exogenous application of natural antioxidants may be a potential treatment for corneal wound healing. However, low ocular bioavailability and short residence time are the limiting factors of topically administered antioxidants. Ferulic acid (FA) is a natural phenolic compound and an excellent antioxidant. The study was aimed to investigate the effects of FA in corneal epithelial cells (CECs) under oxidative stress and evaluate the feasibility of use the thermosensitive chitosan-based hydrogel containing FA for corneal wound healing. The results demonstrated that post-treatment of FA on CECs could decrease the inflammation-level and apoptosis. In the rabbit corneal alkali burn model, post-treatment FA-loaded hydrogel may promote the corneal wound healing. The results of study suggest that FA-loaded hydrogel may have the potential applications in treating corneal alkali burn. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Material properties that predict preservative uptake for silicone hydrogel contact lenses.

    PubMed

    Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B

    2012-11-01

    To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.

  6. Glycerin-Based Hydrogel for Infection Control.

    PubMed

    Stout, Edward I; McKessor, Angie

    2012-02-01

    area upon dressing removal. Because of the thickness, the product provides excellent cushion and padding support. It has been also proven to be bacteriostatic/fungistatic. (Bacteriostatic is the ability to restrain the development or reproduction of bacteria. 3 ). Glycerin is a huamectant by definition and has been recognized by the U.S. Food and Drug Administration (FDA). Humectants attract, bind, and hold moisture to the site of application. The actual concentration of glycerin in a wound dressing is indicative of the ability to absorb excess moisture. Exudate management is an important function of topical treatment. The ability to absorb drainage and prevent pooling of exudate in the wound or on the surrounding skin are attributes specific to high glycerin content. Perhaps, the most significant advantage of the glycerin-based hydrogel sheet is its impact on wound bioburden and pathogenic organisms. 4 Glycerin is a simple three-carbon tri-alcohol and is a natural humectant. It is used as a carrier in many medicines and as plasticizer in gelatin gel capsules. Glycerin is a component of cosmetics, conditioners, soaps, foods, and other common products. It is a component of mono-, di-, and triglycerides naturally occurring in the body. These glycerides and glycerin are constantly reacted with each other by the natural enzymes and reversed with the natural metabolic processes already present in the body. Any glycerin that may be absorbed into the body fluid is rapidly diluted in these fluids and is no longer toxic but is metabolized as another component of the food chain. It is well known that glycerin in high concentration will exhibit dehydrating effect on many systems including living cells by the commonly known process of osmosis. (Osmosis: the flow or diffusion that takes place through a semipermable membrane, as of living cell, typically separating a solvent such as water, thus bringing about equilibrium conditions. 5 ) It has been shown that glycerin at high

  7. Encoding Hydrogel Mechanics via Network Cross-Linking Structure.

    PubMed

    Schweller, Ryan M; West, Jennifer L

    2015-05-11

    The effects of mechanical cues on cell behaviors in 3D remain difficult to characterize as the ability to tune hydrogel mechanics often requires changes in the polymer density, potentially altering the material's biochemical and physical characteristics. Additionally, with most PEG diacrylate (PEGDA) hydrogels, forming materials with compressive moduli less than ∼10 kPa has been virtually impossible. Here, we present a new method of controlling the mechanical properties of PEGDA hydrogels independent of polymer chain density through the incorporation of additional vinyl group moieties that interfere with the cross-linking of the network. This modification can tune hydrogel mechanics in a concentration dependent manner from <1 to 17 kPa, a more physiologically relevant range than previously possible with PEG-based hydrogels, without altering the hydrogel's degradation and permeability. Across this range of mechanical properties, endothelial cells (ECs) encapsulated within MMP-2/MMP-9 degradable hydrogels with RGDS adhesive peptides revealed increased cell spreading as hydrogel stiffness decreased in contrast to behavior typically observed for cells on 2D surfaces. EC-pericyte cocultures exhibited vessel-like networks within 3 days in highly compliant hydrogels as compared to a week in stiffer hydrogels. These vessel networks persisted for at least 4 weeks and deposited laminin and collagen IV perivascularly. These results indicate that EC morphogenesis can be regulated using mechanical cues in 3D. Furthermore, controlling hydrogel compliance independent of density allows for the attainment of highly compliant mechanical regimes in materials that can act as customizable cell microenvironments.

  8. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.

    PubMed

    Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2013-05-28

    Flexible solid-state supercapacitors are of considerable interest as mobile power supply for future flexible electronics. Graphene or carbon nanotubes based thin films have been used to fabricate flexible solid-state supercapacitors with high gravimetric specific capacitances (80-200 F/g), but usually with a rather low overall or areal specific capacitance (3-50 mF/cm(2)) due to the ultrasmall electrode thickness (typically a few micrometers) and ultralow mass loading, which is not desirable for practical applications. Here we report the exploration of a three-dimensional (3D) graphene hydrogel for the fabrication of high-performance solid-state flexible supercapacitors. With a highly interconnected 3D network structure, graphene hydrogel exhibits exceptional electrical conductivity and mechanical robustness to make it an excellent material for flexible energy storage devices. Our studies demonstrate that flexible supercapacitors with a 120 μm thick graphene hydrogel thin film can exhibit excellent capacitive characteristics, including a high gravimetric specific capacitance of 186 F/g (up to 196 F/g for a 42 μm thick electrode), an unprecedented areal specific capacitance of 372 mF/cm(2) (up to 402 mF/cm(2) for a 185 μm thick electrode), low leakage current (10.6 μA), excellent cycling stability, and extraordinary mechanical flexibility. This study demonstrates the exciting potential of 3D graphene macrostructures for high-performance flexible energy storage devices.

  9. Synthesis and characterization of cloisite-30B clay dispersed poly (acryl amide/sodium alginate)/AgNp hydrogel composites for the study of BSA protein drug delivery and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Nanjunda Reddy, B. H.; Ranjan Rauta, Pradipta; Venkatalakshimi, V.; Sreenivasa, Swamy

    2018-02-01

    The aim of this research is to inspect the effect of Cloisite-30B (C30B) modified clay dispersed poly (acrylamide-co-Sodiumalginate)/AgNp hydrogel nanocomposites (PASA/C30B/Ag) for drug delivery and antibacterial activity. A novel hydrogel composite based sodium alginate (SA) and the inorganic modified clay with silver nano particle (C30B/AgNps)polymer hydrogel composites are synthesized via the graft copolymerization of acrylamide (AAm) in an aqueous medium with methylene bisacrylamide (MBA) as a crosslinking agent and ammonium per sulfate(APS) as an initiator. The UV/Visible spectroscopy of obtained composites is successfully studied, which confirms the occurrence of AgNps in the hydrogel composites. And the swelling capacity and bovine serum albumin (BSA) protein as model drug delivery study for these hydrogel nanocomposites have been carried out. The C30B/Ag filled hydrogel composites exhibit superior water absorbency or swelling capacity compared to pure samples and it is establish that the formulations with clay (C30B) dispersed silver nanocomposite hydrogels show improved and somewhat faster rate of drug delivery than other formulations(pure systems) and SEM and TEM reports suggests that the size of AgNps in the composite hydrogels is in the range of 5-10 nm with shrunken surface and the antibacterial characterizations for gram positive and gram negative bacteria are carried out by using Streptococcus faecalis (S. Faecalis) and Escherichia coli (E.coli) as model bacteria and the hydrogel composites of PASA/C30B/Ag shows exceptional antibacterial activity against both the bacteria as compared to pure hydrogel composites samples.

  10. Stable environmentally sensitive cationic hydrogels for controlled delivery applications.

    PubMed

    Deo, Namita; Ruetsch, S; Ramaprasad, K R; Kamath, Y

    2010-01-01

    New thermosensitive, cationic hydrogels were synthesized by the dispersion copolymerization of N-isopropylacrylamide (NIPAM) and (3-acrylamidopropyl)trimethylammonium chloride (AAPTAC). In the polymerization protocol, an amide-based comonomer, (3-acrylamidopropyl)trimethylammonium chloride, was reacted as a new alternative monomer for introducing positive charges into the thermosensitive hydrogel. The hydrogels were synthesized without making any pH adjustment in the aqueous medium. These hydrogel particles exhibited colloidal stability in the pH range of 1.5 to 11.0, while similar cationic hydrogels were reported to be unstable at pHs higher than 6. The stronger cationic character of the selected comonomer provided higher colloidal stability to the poly(NIPAM-co-AAPTAC) hydrogels. Furthermore, these hydrogels displayed sensitivity towards temperature, pH, and salt concentration. Interestingly, the particle size of hydrogels was found to be decreased significantly with an increase in temperature and salt concentration. In addition, using pyrene fluorescence spectroscopy, it was established that the hydrophobicity/hydrophilicity of the hydrogel particles was largely controlled by both pH and temperature. The thermosensitive hydrogels reported in this paper may be suitable for delivering different actives for cosmetic and medical applications. Although direct application of these hydrogel particles in cosmetics has not been shown at this stage, the methodology of making them and controlling their absorption and release properties as a function of temperature and pH has been demonstrated. Furthermore, these hydrogels may also have applications in scavenging organic and inorganic toxics.

  11. Establishment of a Physical Model for Solute Diffusion in Hydrogel: Understanding the Diffusion of Proteins in Poly(sulfobetaine methacrylate) Hydrogel.

    PubMed

    Zhou, Yuhang; Li, Junjie; Zhang, Ying; Dong, Dianyu; Zhang, Ershuai; Ji, Feng; Qin, Zhihui; Yang, Jun; Yao, Fanglian

    2017-02-02

    Prediction of the diffusion coefficient of solute, especially bioactive molecules, in hydrogel is significant in the biomedical field. Considering the randomness of solute movement in a hydrogel network, a physical diffusion RMP-1 model based on obstruction theory was established in this study. The physical properties of the solute and the polymer chain and their interactions were introduced into this model. Furthermore, models RMP-2 and RMP-3 were established to understand and predict the diffusion behaviors of proteins in hydrogel. In addition, zwitterionic poly(sulfobetaine methacrylate) (PSBMA) hydrogels with wide range and fine adjustable mesh sizes were prepared and used as efficient experimental platforms for model validation. The Flory characteristic ratios, Flory-Huggins parameter, mesh size, and polymer chain radii of PSBMA hydrogels were determined. The diffusion coefficients of the proteins (bovine serum albumin, immunoglobulin G, and lysozyme) in PSBMA hydrogels were studied by the fluorescence recovery after photobleaching technique. The measured diffusion coefficients were compared with the predictions of obstruction models, and it was found that our model presented an excellent predictive ability. Furthermore, the assessment of our model revealed that protein diffusion in PSBMA hydrogel would be affected by the physical properties of the protein and the PSBMA network. It was also confirmed that the diffusion behaviors of protein in zwitterionic hydrogels can be adjusted by changing the cross-linking density of the hydrogel and the ionic strength of the swelling medium. Our model is expected to possess accurate predictive ability for the diffusion coefficient of solute in hydrogel, which will be widely used in the biomedical field.

  12. Dextran/Albumin hydrogel sealant for Dacron(R) vascular prosthesis.

    PubMed

    Lisman, Anna; Butruk, Beata; Wasiak, Iga; Ciach, Tomasz

    2014-05-01

    In this paper, the authors describe a novel type of hydrogel coating prepared from the copolymer of human serum albumin and oxidized dextran. The material was designed as a hydrogel sealant for polyester (Dacron®)-based vascular grafts. Dextran was chosen as a coating material due to its anti-thrombogenic properties. Prepared hydrogels were compared with similar, already known biomaterial made from gelatine with the same cross-linking agent. Obtained hydrogels, prepared from various ratios of oxidized dextran/albumin or oxidized dextran/gelatine, showed different cross-linking densities, which caused differences in swelling, degradation rate and mechanical properties. Permeability tests confirmed the complete tightness of the hydrogel-modified prosthesis. Results showed that application of the hydrogel coating provided leakage-free prosthesis and eliminated the need of pre-clotting.

  13. Molecular dynamics studies of polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.

    2013-10-01

    Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.

  14. Injectable Solid Peptide Hydrogel as Cell Carrier: Effects of Shear Flow on Hydrogel and Cell Payload

    PubMed Central

    Yan, Congqi; Mackay, Michael E.; Czymmek, Kirk; Nagarkar, Radhika P.; Schneider, Joel P.; Pochan, Darrin J.

    2012-01-01

    β-hairpin peptide-based hydrogels are a class of injectable solid hydrogels that can deliver encapsulated cells or molecular therapies to a target site via syringe or catheter injection as a carrier material. These physical hydrogels can shear-thin and consequently flow as a low-viscosity material under a sufficient shear stress but immediately recover back into a solid upon removal of the stress, allowing them to be injected as preformed gel solids. Hydrogel behavior during flow was studied in a cylindrical capillary geometry that mimicked the actual situation of injection through a syringe needle in order to quantify effects of shear-thin injection delivery on hydrogel flow behavior and encapsulated cell payloads. It was observed that all β-hairpin peptide hydrogels investigated displayed a promising flow profile for injectable cell delivery: a central wide plug flow region where gel material and cell payloads experienced little or no shear rate and a narrow shear zone close to the capillary wall where gel and cells were subject to shear deformation. The width of the plug flow region was found to be weakly dependent on hydrogel rigidity and flow rate. Live-dead assays were performed on encapsulated MG63 cells three hours after injection flow and revealed that shear-thin delivery through the capillary had little impact on cell viability and the spatial distribution of encapsulated cell payloads. These observations help us to fundamentally understand how the gels flow during injection through a thin catheter and how they immediately restore mechanically and morphologically relative to pre-flow, static gels. PMID:22390812

  15. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery.

    PubMed

    Singh, Baljit; Sharma, Vikrant

    2014-01-30

    The present article deals with design of tragacanth gum-based pH responsive hydrogel drug delivery systems. The characterization of hydrogels has been carried out by SEMs, EDAX, FTIR, (13)C NMR, XRD, TGA/DTA/DTG and swelling studies. The correlation between reaction conditions and structural parameters of polymer networks such as polymer volume fraction in the swollen state (ϕ), Flory-Huggins interaction parameter (χ), molecular weight of the polymer chain between two neighboring cross links (M¯c), crosslink density (ρ) and mesh size (ξ) has been determined. The different kinetic models such as zero order, first order, Higuchi square root law, Korsmeyer-Peppas model and Hixson-Crowell cube root model were applied and it has been observed that release profile of amoxicillin best followed the first order model for the release of drug from the polymer matrix. The swelling of the hydrogels and release of drug from the drug loaded hydrogels occurred through non-Fickian diffusion mechanism in pH 7.4 solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Physicochemical properties and cytotoxicity of hydrogels based on Beetosan® containing sage and bee pollen.

    PubMed

    Tyliszczak, Bożena; Drabczyk, Anna; Kudłacik-Kramarczyk, Sonia; Grabowska, Beata; Kędzierska, Magdalena

    2017-01-01

    Currently, increasing attention is being paid to issues related to environmental protection, waste management, as well as to the development of polymers with useful properties. The research presented here involved preparation of hydrogels based on Beetosan® - a chitosan derived from the multi-stage processing of dead bees. Moreover, hydrogels were additionally modified with natural substances - i.e. bee pollen and extract of Salvia officinalis (sage) that are well known for the presence of many compounds with beneficial properties from a medical point of view. Materials have been first obtained by photopolymerization. Then, their surface morphology, wettability and cytotoxicity to selected cell lines have been determined. It can be stated that such combination of Beetosan® hydrogel matrix and the mentioned additives resulted in a preparation of polymers characterized by negative impact on cancer cells. Impact of hydrogels with sage is slightly more intense due to the presence of substances such as ursalic or rosmaric acid that are characterized to have anticancer activity. Such negative impact has not been observed in case of studies using fibroblasts. Furthermore, addition of natural substances into hydrogels resulted in a more homogeneous surface and in the decrease of wettability angle of the tested polymers. It can be concluded that the use of natural-derived reagents and synthesis of polymers using these reagents (as a result of environmentally friendly photopolymerization) yields materials with interesting properties for medical purposes, with particular emphasis on antitumor activity, and without significant negative impact on fibroblasts.

  17. Antimicrobial cellulosic hydrogel from olive oil industrial residue.

    PubMed

    Dacrory, Sawsan; Abou-Yousef, Hussein; Abouzeid, Ragab E; Kamel, Samir; Abdel-Aziz, Mohamed S; El-Badry, Mohamed

    2018-05-25

    The cellulose-based antimicrobial hydrogel was prepared from seed and husk cellulosic fibers of olive industry residues by load silver nanoparticles (AgNPs) onto grafted acrylamide monomer (Am) cellulosic fibers. The grafting approach was the free radical mechanism by utilizing ceric ammonium nitrate (CAN) as initiator in aqueous medium and N,N methylene bisacrylamide (MBAm) as a cross linker. The effect of different grafting conditions on the properties of produced hydrogels has been studied by determining the grafting parameters, i.e. concentration of Am, MBAm, grafting time and temperature to optimize grafting yield (G %), grafting efficiency (GE %), and swelling %. Characterizations of the obtained hydrogels were performed through monitoring swelling behavior, FTIR spectroscopy, SEM, and EDX. AgNPs were grown into the prepared hydrogel. Hydrogel/AgNPs were characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The hydrogel loaded AgNPs exhibit high efficient antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Copyright © 2018. Published by Elsevier B.V.

  18. Hydrogel-coated microfluidic channels for cardiomyocyte culture

    PubMed Central

    Annabi, Nasim; Selimović, Šeila; Cox, Juan Pablo Acevedo; Ribas, João; Bakooshli, Mohsen Afshar; Heintze, Déborah; Weiss, Anthony S.; Cropek, Donald; Khademhosseini, Ali

    2013-01-01

    The research areas of tissue engineering and drug development have displayed increased interest in organ-on-a-chip studies, in which physiologically or pathologically relevant tissues can be engineered to test pharmaceutical candidates. Microfluidic technologies enable the control of the cellular microenvironment for these applications through the topography, size, and elastic properties of the microscale cell culture environment, while delivering nutrients and chemical cues to the cells through continuous media perfusion. Traditional materials used in the fabrication of microfluidic devices, such as poly(dimethylsiloxane) (PDMS), offer high fidelity and high feature resolution, but do not facilitate cell attachment. To overcome this challenge, we have developed a method for coating microfluidic channels inside a closed PDMS device with a cell-compatible hydrogel layer. We have synthesized photocrosslinkable gelatin and tropoelastin-based hydrogel solutions that were used to coat the surfaces under continuous flow inside 50 μm wide, straight microfluidic channels to generate a hydrogel layer on the channel walls. Our observation of primary cardiomyocytes seeded on these hydrogel layers showed preferred attachment as well as higher spontaneous beating rates on tropoelastin coatings compared to gelatin. In addition, cellular attachment, alignment and beating were stronger on 5 % (w/v) hydrogel-coated devices than on 10 % (w/v) gel-coated channels. Our results demonstrate that cardiomyocytes respond favorably to the elastic, soft tropoelastin culture substrates, indicating that tropoelastin-based hydrogels may be a suitable coating choice for some organ-on-a-chip applications. We anticipate that the proposed hydrogel coating method and tropoelastin as a cell culture substrate may be useful for the generation of elastic tissues, e.g. blood vessels, using microfluidic approaches. PMID:23728018

  19. Swelling of Superabsorbent Poly(Sodium-Acrylate Acrylamide) Hydrogels and Influence of Chemical Structure on Internally Cured Mortar

    NASA Astrophysics Data System (ADS)

    Krafcik, Matthew J.; Erk, Kendra A.

    Superabsorbent hydrogel particles show promise as internal curing agents for high performance concrete (HPC). These gels can absorb and release large volumes of water and offer a solution to the problem of self-dessication in HPC. However, the gels are sensitive to ions naturally present in concrete. This research connects swelling behavior with gel-ion interactions to optimize hydrogel performance for internal curing, reducing the chance of early-age cracking and increasing the durability of HPC. Four different hydrogels of poly(sodium-acrylate acrylamide) are synthesized and characterized with swelling tests in different salt solutions. Depending on solution pH, ionic character, and gel composition, diffrerent swelling behaviors are observed. As weight percent of acrylic acid increases, gels demonstrate higher swelling ratios in reverse osmosis water, but showed substantially decreased swelling when aqueous cations are present. Additionally, in multivalent cation solutions, overshoot peaks are present, whereby the gels have a peak swelling ratio but then deswell. Multivalent cations interact with deprotonated carboxylic acid groups, constricting the gel and expelling water. Mortar containing hydrogels showed reduced autogenous shrinkage and increased relative humidity.

  20. Classification, processing and application of hydrogels: A review.

    PubMed

    Ullah, Faheem; Othman, Muhammad Bisyrul Hafi; Javed, Fatima; Ahmad, Zulkifli; Md Akil, Hazizan

    2015-12-01

    This article aims to review the literature concerning the choice of selectivity for hydrogels based on classification, application and processing. Super porous hydrogels (SPHs) and superabsorbent polymers (SAPs) represent an innovative category of recent generation highlighted as an ideal mould system for the study of solution-dependent phenomena. Hydrogels, also termed as smart and/or hungry networks, are currently subject of considerable scientific research due to their potential in hi-tech applications in the biomedical, pharmaceutical, biotechnology, bioseparation, biosensor, agriculture, oil recovery and cosmetics fields. Smart hydrogels display a significant physiochemical change in response to small changes in the surroundings. However, such changes are reversible; therefore, the hydrogels are capable of returning to its initial state after a reaction as soon as the trigger is removed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Novel Hydrogels from Renewable Resources

    NASA Astrophysics Data System (ADS)

    Karaaslan, Muzafer Ahmet

    2011-12-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In the first part of this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose and glucose. The effect of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study and ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid. The aim of the second part of this study was to control the crosslink density and the mechanical properties of hemicellulose/chitosan semi-IPN hydrogels by changing the crosslinking sequence. It has been hypothesized that by performing the crosslinking step before introducing hemicellulose, covalent crosslinking of chitosan would not be hindered and therefore more and/or shorter crosslinks could be formed. Furthermore, additional secondary interactions and crystalline domains introduced through hemicellulose could be favorable in terms of

  2. Nanostructured PEG-based hydrogels with tunable physical properties for gene delivery to human mesenchymal stem cells.

    PubMed

    Li, Yan; Yang, Chuan; Khan, Majad; Liu, Shaoqiong; Hedrick, James L; Yang, Yi-Yan; Ee, Pui-Lai R

    2012-09-01

    Effective delivery of DNA to direct cell behavior in a well defined three dimensional scaffold offers a superior approach in tissue engineering. In this study, we synthesized biodegradable nanostructured hydrogels with tunable physical properties for cell and gene delivery. The hydrogels were formed via Michael addition chemistry by reacting a four-arm acrylate-terminated PEG with a four-arm thiol-functionalized PEG. Nanosized micelles self-assembled from the amphiphilic PEG-b-polycarbonate diblock copolymer, having reactive end-groups, were chemically incorporated into the hydrogel networks at various contents. The use of Michael addition chemistry allows for in situ hydrogel formation under the physiological conditions. Mechanical property analysis of the hydrogels revealed a correlation between the content of micelles and the storage modulus of the hydrogels. Internal morphology of hydrogels was observed using a field emission scanning electron microscope, which showed that the number and/or size of the pores in the hydrogel increased with increasing micelle content due to reduced crosslinking degree. There exists an optimal micelle content for cell proliferation and gene transfection. MTT assays demonstrated the highest cell viability in the hydrogel with 20% micelles. The gene expression level in hMSCs in the hydrogel with 20% micelles was also significantly higher than that in the hydrogel without micelles. The enhanced cell viability and gene expression in the hydrogel with the optimized micelle content are likely attributed to the physical properties that provide a better environment for cell-matrix interactions. Therefore, incorporating micelles into the hydrogel is a good strategy to control cellular behavior in 3-D through changes in physical properties of the microenvironment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The synthesis and characterization of hydrogel chitosan-alginate with the addition of plasticizer lauric acid for wound dressing application

    NASA Astrophysics Data System (ADS)

    Izak Rudyardjo, Djony; Wijayanto, Setiawan

    2017-05-01

    The writers conducted a study about the synthesis and characterization of hydrogel chitosan-alginate by addition plasticizer lauric acid for wound dressing application. The purpose was to find out the impact of lauric acid concentration variation on hydrogel chitosan-alginate to get the best mechanical and physical properties to be applied as wound dressing in accordance with existing standards. This study used commercially chitosan from extract of shells crab, commercially-available alginate from the extract of sargassum sp, and commercial lauric acid from palm starch. The addition of lauric acid was aimed to repair mechanical properties of hydrogel. The composition of chitosan-alginate is 4:1 (v/v), while the lauric acid concentration variations are 0%, 1%, 2%, 3%, 4%, and 5% w/v. The characterization of mechanical properties test (Tensile strength and Elongation at break) at hydrogel showed the hydrogel chitosan-alginate-lauric acid have the characteristic which meets the standard of mechanical properties for human skin. The best performance of hydrogel chitosan-alginate-lauric acid was obtained by increasing luric acid concentration by 4%, which has a thickness value of 125.46±0.63 µm, elongation 28.89±1.01 %, tensile strength (9.01±0.65) MPa, and ability to absorb liquids (601.45 ±1.24) %.

  4. Exploration of the nature of a unique natural polymer-based thermosensitive hydrogel.

    PubMed

    Lu, Shanling; Yang, Yuhong; Yao, Jinrong; Shao, Zhengzhong; Chen, Xin

    2016-01-14

    The chitosan (CS)/β-glycerol phosphate (GP) system is a heat induced gelling system with a promising potential application, such as an injectable biomedical material. Unlike most thermosensitive gelling systems, the CS/GP system is only partially reversible. That is once the hydrogel is fully matured, it only softens but cannot go back to its initial liquid state when cooled down. Here, we perform both the small and large amplitude oscillatory shear (SAOS and LAOS) tests on the fully matured CS/GP hydrogel samples at a variety of temperatures within the cooling process. The purpose of such tests is to investigate the structural change of the hydrogel network and thus to understand the possible gelation mechanism of this unique thermosensitive hydrogel. From the LAOS results and the further analysis with the Chebyshev expansion method, it shows that the CS/GP hydrogel is composed of a colloidal network dominated by hydrophobic interactions at high temperature, and gradually turns into a flexible network dominated by hydrogen bonding when the temperature goes down. Therefore, we may conclude that LOAS is a powerful tool to study the nonlinear behaviour of a polymer system that is closely related to its structure, and as a practical example, we achieve a clearer vision on the gelation mechanism of the unique CS/GP thermosensitive hydrogel on the basis of considerable previous studies and assumptions in this laboratory and other research groups.

  5. Ionizing radiation in the field of hydrogels used for agriculture and medicine

    NASA Astrophysics Data System (ADS)

    Radoiu, M.; Martin, D.; Oproiu, C.; Toma, M.; Popescu, A. S.; Bestea, V.; Dragusin, M.; Moraru, R.; Calinescu, I.; Manea, A.

    1999-01-01

    Some hydrogel types, obtained by gamma ray and electron beam irradiation, such as homopolymers of acrylamide (pAA type), co-polymers of acrylamide and sodium acrylate (pAANA type), homo-polymers of sodium acrylate (pNA type) and homo-polymers of 2-hydroxyethylmethacrylate (pHEMA type), are presented. The effects of the solution's chemical composition, swelling medium nature, radiation absorbed dose and radiation absorbed dose rate upon the swelling degree and mechanical strength of pAA, pAANA, pNA types are discussed. For the pHEMA type, which are reinforced in the polyester network, the studies concerning the influence of the irradiation parameters and chemical composition upon the shape stability after swelling and surface's roughness are also discussed.

  6. Highly Stretchable and Transparent Thermistor Based on Self-Healing Double Network Hydrogel.

    PubMed

    Wu, Jin; Han, Songjia; Yang, Tengzhou; Li, Zhong; Wu, Zixuan; Gui, Xuchun; Tao, Kai; Miao, Jianmin; Norford, Leslie K; Liu, Chuan; Huo, Fengwei

    2018-06-06

    An ultrastretchable thermistor that combines intrinsic stretchability, thermal sensitivity, transparency, and self-healing capability is fabricated. It is found the polyacrylamide/carrageenan double network (DN) hydrogel is highly sensitive to temperature and therefore can be exploited as a novel channel material for a thermistor. This thermistor can be stretched from 0 to 330% strain with the sensitivity as high as 2.6%/°C at extreme 200% strain. Noticeably, the mechanical, electrical, and thermal sensing properties of the DN hydrogel can be self-healed, analogous to the self-healing capability of human skin. The large mechanical deformations, such as flexion and twist with large angles, do not affect the thermal sensitivity. Good flexibility enables the thermistor to be attached on nonplanar curvilinear surfaces for practical temperature detection. Remarkably, the thermal sensitivity can be improved by introducing mechanical strain, making the sensitivity programmable. This thermistor with tunable sensitivity is advantageous over traditional rigid thermistors that lack flexibility in adjusting their sensitivity. In addition to superior sensitivity and stretchability compared with traditional thermistors, this DN hydrogel-based thermistor provides additional advantages of good transparency and self-healing ability, enabling it to be potentially integrated in soft robots to grasp real world information for guiding their actions.

  7. Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease.

    PubMed

    Li, Zhengzheng; Shim, Hyeeun; Cho, Myeong Ok; Cho, Ik Sung; Lee, Jin Hyun; Kang, Sun-Woong; Kwon, Bosun; Huh, Kang Moo

    2018-03-15

    The use of injectable hydrogel formulations have been suggested as a promising strategy for the treatment of degenerative disc disease to both restore the biomechanical function and reduce low back pain. In this work, a new thermo-sensitive injectable hydrogels with tunable thermo-sensitivity and enhanced stability were developed with N-hexanoylation of glycol chitosan (GC) for treatment of degenerative disc disease, and their physico-chemical and biological properties were evaluated. The sol-gel transition temperature of the hydrogels was controlled in a range of 23-56 °С, depending on the degree of hexanoylation and the polymer concentration. In vitro and in vivo tests showed no cytotoxicity and no adverse effects in a rat model. The hydrogel filling of the defective IVD site in an ex vivo porcine model maintained its stability for longer than 28 days. These results suggest that the hydrogel can be used as an alternative material for treatment of disc herniation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Cytocompatibility, antibacterial activity and biodegradability of self-assembling beta-hairpin peptide-based hydrogels for tissue regenerative applications

    NASA Astrophysics Data System (ADS)

    Salick, Daphne Ann

    Every year, millions of people suffer from tissue loss or failure. One approach to repair damaged or diseased tissue is through tissue/organ transplantation. However, one of the major problems which exist with this approach is that there are more people in need of a transplant than there are donors. Over the past several decades, scientists and doctors have come together to find a way to overcome this challenge. This collaboration has led to the development of biomimetic scaffolds, which closely mimic the desired tissue of interest to act as a substitute for the unfunctional tissue, with hopes to improve the quality of life. The Schneider and Pochan labs have developed a biomimetic scaffold using self-assembling beta-hairpin peptides. The self-assembly event can be triggered in response to physiological conditions, which is dictated by the monomer, to form non covalently crosslinked mechanically rigid hydrogels. In vitro studies showed that hydrogels were cytocompatible and may not elicit a pro-inflammatory response from murine macrophages. These material properties show promise for the use of these hydrogels in tissue engineering. When implanting a material into a host, a major concern is the introduction of infection. Infection, if not prevented or halted, results in poor tissue integration and function, ultimately leading to implant removal from the host. Interestingly, the beta-hairpin hydrogels were shown to exhibit antibacterial properties against pathogens commonly found in hospital environments. This inherently antibacterial hydrogel is advantageous because it may help decrease or diminish bacterial contamination when implanted in vivo, which may help to increase the success of implants. Also, a unique and exciting feature of these peptide-based hydrogels is their ability to shear-thin and self-heal. Hydrogels can be directly formed in a syringe and be subsequently delivered to a tissue defect in a minimally invasive manner where they will recover to their

  9. Hydrogel Walkers with Electro-Driven Motility for Cargo Transport.

    PubMed

    Yang, Chao; Wang, Wei; Yao, Chen; Xie, Rui; Ju, Xiao-Jie; Liu, Zhuang; Chu, Liang-Yin

    2015-08-28

    In this study, soft hydrogel walkers with electro-driven motility for cargo transport have been developed via a facile mould-assisted strategy. The hydrogel walkers consisting of polyanionic poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) exhibit an arc looper-like shape with two "legs" for walking. The hydrogel walkers can reversibly bend and stretch via repeated "on/off" electro-triggers in electrolyte solution. Based on such bending/stretching behaviors, the hydrogel walkers can move their two "legs" to achieve one-directional walking motion on a rough surface via repeated "on/off" electro-triggering cycles. Moreover, the hydrogel walkers loaded with very heavy cargo also exhibit excellent walking motion for cargo transport. Such hydrogel systems create new opportunities for developing electro-controlled soft systems with simple design/fabrication strategies in the soft robotic field for remote manipulation and transportation.

  10. Hydrogel: Preparation, characterization, and applications: A review

    PubMed Central

    Ahmed, Enas M.

    2013-01-01

    Hydrogel products constitute a group of polymeric materials, the hydrophilic structure of which renders them capable of holding large amounts of water in their three-dimensional networks. Extensive employment of these products in a number of industrial and environmental areas of application is considered to be of prime importance. As expected, natural hydrogels were gradually replaced by synthetic types due to their higher water absorption capacity, long service life, and wide varieties of raw chemical resources. Literature on this subject was found to be expanding, especially in the scientific areas of research. However, a number of publications and technical reports dealing with hydrogel products from the engineering points of view were examined to overview technological aspects covering this growing multidisciplinary field of research. The primary objective of this article is to review the literature concerning classification of hydrogels on different bases, physical and chemical characteristics of these products, and technical feasibility of their utilization. It also involved technologies adopted for hydrogel production together with process design implications, block diagrams, and optimized conditions of the preparation process. An innovated category of recent generations of hydrogel materials was also presented in some details. PMID:25750745

  11. Free radical scavenging injectable hydrogels for regenerative therapy.

    PubMed

    Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2017-02-01

    Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.

    PubMed

    Tabriz, Atabak Ghanizadeh; Hermida, Miguel A; Leslie, Nicholas R; Shu, Wenmiao

    2015-12-21

    Different bioprinting techniques have been used to produce cell-laden alginate hydrogel structures, however these approaches have been limited to 2D or simple three-dimension (3D) structures. In this study, a new extrusion based bioprinting technique was developed to produce more complex alginate hydrogel structures. This was achieved by dividing the alginate hydrogel cross-linking process into three stages: primary calcium ion cross-linking for printability of the gel, secondary calcium cross-linking for rigidity of the alginate hydrogel immediately after printing and tertiary barium ion cross-linking for long-term stability of the alginate hydrogel in culture medium. Simple 3D structures including tubes were first printed to ensure the feasibility of the bioprinting technique and then complex 3D structures such as branched vascular structures were successfully printed. The static stiffness of the alginate hydrogel after printing was 20.18 ± 1.62 KPa which was rigid enough to sustain the integrity of the complex 3D alginate hydrogel structure during the printing. The addition of 60 mM barium chloride was found to significantly extend the stability of the cross-linked alginate hydrogel from 3 d to beyond 11 d without compromising the cellular viability. The results based on cell bioprinting suggested that viability of U87-MG cells was 93 ± 0.9% immediately after bioprinting and cell viability maintained above 88% ± 4.3% in the alginate hydrogel over the period of 11 d.

  13. Glucose-responsive hydrogel electrode for biocompatible glucose transistor

    NASA Astrophysics Data System (ADS)

    Kajisa, Taira; Sakata, Toshiya

    2017-12-01

    In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin.

  14. Epoxy-based hydrogels investigated by high-frequency dielectric relaxation spectroscopy.

    PubMed

    Krakovský, Ivan; Shikata, Toshiyuki; Hasegawa, Ryuta

    2013-11-14

    Using high-frequency dielectric relaxation spectroscopy, nanophase-separated structures of epoxy-based hydrogels were investigated as a function of water content at 25 °C. The dielectric spectra resulting from the hydrogels were reasonably decomposed into two Debye-type and two Cole-Cole-type relaxation modes. The fastest Debye-type mode, found at 8.3 ps, was attributed to the rotational relaxation process of free water molecules in the bulk state. The other Debye-type mode, at ca. 20-34 ps, originates from the exchange process of water molecules that are hydrogen-bonded to the hydrophilic epoxy network portions for free bulk ones. The first Cole-Cole-type mode observed, at ca. 20-370 ps, was assigned to the complicated dynamics for electric dipole moments of the hydrophilic groups in the epoxy networks (mainly monomeric oxyethylene units). The slowest major Cole-Cole-type mode, at 5-29 ns, was attributed to the Maxwell-Wagner-Sillars polarization process and confirmed the presence of the nanophase-separated structures as revealed by the previous small-angle neutron scattering experiments.

  15. Designing degradable hydrogels for orthogonal control of cell microenvironments

    PubMed Central

    Kharkar, Prathamesh M.

    2013-01-01

    Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications. PMID:23609001

  16. Polyluminol/hydrogel composites as new electrochemiluminescent-active sensing layers.

    PubMed

    Leca-Bouvier, Béatrice D; Sassolas, Audrey; Blum, Loïc J

    2014-09-01

    This paper reports on electrochemiluminescent sensors and biosensors based on polyluminol/hydrogel composite sensing layers using chemical or biological membranes as hydrogel matrices. In this work, luminol is electropolymerized under near-neutral conditions onto screen-printed electrode (SPE)-supported hydrogel films. The working electrode coated with a hydrogel film is soaked in a solution containing monomeric luminol units, allowing the monomeric luminol units to diffuse inside the porous matrix to the electrode surface where they are electropolymerized by cyclic voltammetry (CV). Sensors and enzymatic biosensors for H2O2 and choline detection, respectively, have been developed, using choline oxidase (ChOD) as a model enzyme. In this case, hydrogel is used both as the enzymatic immobilization matrix and as a template for the electrosynthesis of polyluminol. The enzyme was immobilized by entrapment in the gel matrix during its formation before electropolymerization of the monomer. Several parameters have been optimized in terms of polymerization conditions, enzyme loading, and average pore size. Using calcium alginate or tetramethoxysilane (TMOS)-based silica as porous matrix, H2O2 and choline detection are reported down to micromolar concentrations with three orders of magnitude wide dynamic ranges starting from 4 × 10(-7) M. Polyluminol/hydrogel composites appear as suitable electrochemiluminescence (ECL)-active sensing layers for the design of new reagentless and disposable easy-to-use optical sensors and biosensors, using conventional TMOS-based silica gel or the more original and easier to handle calcium alginate, reported here for the first time in such a configuration, as the biocompatible hydrogel matrix.

  17. Preparation and characterisation of a novel hydrogel based on Auricularia polytricha β-glucan and its bio-release property for vitamin B12 delivery.

    PubMed

    Zhu, Kai; Chen, Xiaoyuan; Yu, Da; He, Yue; Song, Guanglei

    2018-05-01

    This study investigates a novel hydrogel synthesis method and its bio-release property. This hydrogel, with a three-dimensional network structure based on Auricularia polytricha β-glucan, was characterised by means of Fourier transform infrared spectroscopy, 1 H NMR and scanning electron microscopy. Vitamin B 12 (VB 12 , cobalamin) as a hydrophilic functional food component was entrapped into these hydrogels. The in vitro release profile of VB 12 was established in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The results showed that the hydrogel had medium pore size from 30 to 300 µm, and the swelling ratio increased with the degree of substitution. The hydrogel demonstrated good stability in SGF and bio-release capability in SIF for VB 12 . The accumulated release rate is about 80% in SIF and below 20% in SGF, which indicated the significant different release property in stomach and intestine. The Auricularia polytricha β-glucan-based hydrogel has a good swelling ratio, pepsin stability and pancrelipase-catalysed biodegradation property. The bio-release rate is significantly different in SIF and SGF, which indicated that this hydrogel could be a good intestinal target carrier of VB 12 . © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels

    NASA Astrophysics Data System (ADS)

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.

    2016-08-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials.

  19. Thermosensitive chitosan/glycerophosphate-based hydrogel and its derivatives in pharmaceutical and biomedical applications.

    PubMed

    Supper, Stephanie; Anton, Nicolas; Seidel, Nina; Riemenschnitter, Marc; Curdy, Catherine; Vandamme, Thierry

    2014-02-01

    Thermogelling chitosan (CS)/glycerophosphate (GP) solutions have been reported as a new type of parenteral in situ forming depot system. These free-flowing solutions at ambient temperature turn into semi-solid hydrogels after parenteral administration. Formulation parameters such as CS physico-chemical characteristics, CS/gelling agent ratio or pH of the system, were acknowledged as key parameters affecting the solution stability, the sol/gel transition behavior and/or the final hydrogel structure. We discuss also the use of the standard CS/GP thermogels for various biomedical applications, including drug delivery and tissue engineering. Furthermore, this manuscript reviews the different strategies implemented to improve the hydrogel characteristics such as combination with carrier particles, replacement of GP, addition of a second polymer and chemical modification of CS. The recent advances in the formulation of CS-based thermogelling systems already overcame several challenges faced by the standard CS/GP system. Dispersion of drug-loaded carrier particles into the thermogels allowed achieving prolonged release profiles for low molecular weight drugs; incorporation of an additional polymer enabled to strengthen the network, while the use of chemically modified CS led to enhanced pH sensitivity or biodegradability of the matrix.

  20. Rapid self-healing hydrogels

    PubMed Central

    Phadke, Ameya; Zhang, Chao; Arman, Bedri; Hsu, Cheng-Chih; Mashelkar, Raghunath A.; Lele, Ashish K.; Tauber, Michael J.; Arya, Gaurav; Varghese, Shyni

    2012-01-01

    Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allowing external control over the healing process. Moreover, the hydrogels can sustain multiple cycles of healing and separation without compromising their mechanical properties and healing kinetics. Beyond revealing how secondary interactions could be harnessed to introduce new functions to chemically cross-linked polymeric systems, we also demonstrate various potential applications of such easy-to-synthesize, smart, self-healing hydrogels. PMID:22392977

  1. Biocompatibility and in vivo degradation of chitosan based hydrogels as potential drug carrier.

    PubMed

    Su, Feng; Wang, Yuandou; Liu, Xue; Shen, Xin; Zhang, Xingjian; Xing, Quansheng; Wang, Lihong; Chen, Yangsheng

    2018-06-07

    Carboxymethyl chitosan-graft-polylactide (CMCS-PLA) and carboxymethyl chitosan (CMCS) hydrogels were prepared by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) as crosslinking agent and catalyst at room temperature. The biocompatibility of the hydrogels was evaluated with the aim of assessing their potential as drug carrier. Various aspects of biocompatibility were considered, including MTT assay, agar diffusion test, release of lactate dehydrogenase (LDH), hemolytic test, plasma recalcification time (PRT), and dynamic clotting time. MTT assay showed that the cytotoxicity level of both hydrogels to L-929 cells was 0 or 1. The LDH release of CMCS and CMCS-PLA was 26 and 29%, respectively, which is slightly higher than that of the negative control (21%) and much lower than that of the negative control (87%). The hemolysis ratio of CMCS and CMCS-PLA was 1.4 and 1.7%, respectively, suggesting outstanding anti-hemolysis properties of both materials. The PRT value of CMCS and CMCS-PLA was higher by 77 and 99% than the value of the positive control. All the results revealed that the hydrogels present good cytocompatibility and hemocompatibility in vitro. In vivo degradation and tissue compatibility were evaluated by subcutaneous injection in the dorsal area of rats. CMCS and CMCS-PLA hydrogels were completely degraded and the inflammatory response also completely disappeared around hydrogels after 19 days in vivo. It is thus concluded that hydrogels formed of CMCS and CMCS-PLA with outstanding biocompatibility are promising as potential drug carrier.

  2. Synthesis and characterization of oil palm empty fruit bunch-grafted-polyvinyl alcohol (OPEFB-g-PVA) hydrogel for removal of copper ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wen, Soh Jing; Rabat, Nurul Ekmi; Osman, Noridah

    2017-12-01

    Oil palm empty fruit bunch (OPEFB) fiber is a natural polymer which is potentially used as efficient adsorbents for heavy metal cations. The main objective of this research is to synthesize OPEFB grafted polyvinyl alcohol (PVA) hydrogel by using ammonium persulfate (APS) as initiator and gelatin as crosslinking agent. The grafting temperature, amounts of cross linking agent, initiator and concentration of OPEFB were manipulated in order to optimize the swelling capability of the hydrogel. Comparison of heavy metal adsorption performance between pure PVA hydrogel and optimized OPEFB-g-PVA hydrogel was evaluated by using copper ions solution. The characteristics and structure of the optimized OPEFB-g-PVA hydrogel was studied by using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) while Thermogravimetric Analysis (TGA) was used to study its thermal stability. The presence of band at 1088 and 1047cm-1 corresponds to C-O was observed as strong evidence of grafting. Water uptake capacity was evaluated and the maximum water absorption capacity was obtained at 180.67 g/g. PVA hydrogel with OPEFB proved to have better copper ion absorbency and thermal properties compared to pure PVA hydrogel.

  3. Co-delivery of evodiamine and rutaecarpine in a microemulsion-based hyaluronic acid hydrogel for enhanced analgesic effects on mouse pain models.

    PubMed

    Zhang, Yong-Tai; Li, Zhe; Zhang, Kai; Zhang, Hong-Yu; He, Ze-Hui; Xia, Qing; Zhao, Ji-Hui; Feng, Nian-Ping

    2017-08-07

    The aim of this study was to improve the analgesic effect of evodiamine and rutaecarpine, using a microemulsion-based hydrogel (ME-Gel) as the transdermal co-delivery vehicle, and to assess hyaluronic acid as a hydrogel matrix for microemulsion entrapment. A microemulsion was formulated with ethyl oleate as the oil core to improve the solubility of the alkaloids and was loaded into a hyaluronic acid-structured hydrogel. Permeation-enhancing effects of the microemulsion enabled evodiamine and rutaecarpine in ME-Gel to achieve 2.60- and 2.59-fold higher transdermal fluxes compared with hydrogel control (p<0.01). The hyaluronic acid hydrogel-containing microemulsion exhibited good skin biocompatibility, whereas effective ME-Gel co-delivery of evodiamine and rutaecarpine through the skin enhanced the analgesic effect in mouse pain models compared with hydrogel. Notably, evodiamine and rutaecarpine administered using ME-Gel effectively down-regulated serum levels of prostaglandin E 2 , interleukin 6, and tumor necrosis factor α in formaldehyde-induced mouse pain models, possibly reflecting the improved transdermal permeability of ME-Gel co-delivered evodiamine and rutaecarpine, particularly with hyaluronic acid as the hydrogel matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dendritic-metasurface-based flexible broadband microwave absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Weng, Bin; Zhao, Jing; Zhao, Xiaopeng

    2017-06-01

    Based on the dendritic metasurface model, a type of flexible and lightweight microwave absorber (MA) comprising resistance film array with dendritic slot (RFADS), dielectric material, and metal plate is proposed. A broadband absorptivity of >80% is obtained both from simulation and experiment at frequency ranges of 3.0-9.2 and 3.2-9.00 GHz, respectively. And the thickness of MA is 5 mm, which is only 0.05λ _{low}, or 0.15λ _ {high}, where the λ _{low} and the λ _{high} are the beginning and the end of the working frequency. By combining this metasurface-based MA with the dendritic-resistance-film-based microwave metasurface absorber (MMA), we designed a broadband MMA. The simulations and experiments showed that this kind of MMA can absorb the radiation effectively at a wide frequency range 4.5-17.5 GHz. And the thickness of this combined MMA is 4 mm. All the structures showed their insensitivity to the incident angle (0°-40°) and the polarization of the incident wave because of their structural symmetry. In addition, the small thickness, low apparent density, and flexibility made those structures possess the advantages of being applied in microwave stealth and radar cross-section (RCS) reduction.

  5. Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization.

    PubMed

    Cerqueira, Mariana Teixeira; da Silva, Lucília Pereira; Santos, Tírcia Carlos; Pirraco, Rogério Pedro; Correlo, Vítor Manuel; Reis, Rui Luís; Marques, Alexandra Pinto

    2014-11-26

    Currently available substitutes for skin wound healing often result in the formation of nonfunctional neotissue. Thus, urgent care is still needed to promote an effective and complete regeneration. To meet this need, we proposed the assembling of a construct that takes advantage of cell-adhesive gellan gum-hyaluronic acid (GG-HA) spongy-like hydrogels and a powerful cell-machinery obtained from adipose tissue, human adipose stem cells (hASCs), and microvascular endothelial cells (hAMECs). In addition to a cell-adhesive character, GG-HA spongy-like hydrogels overpass limitations of traditional hydrogels, such as reduced physical stability and limited manipulation, due to improved microstructural arrangement characterized by pore wall thickening and increased mean pore size. The proposed constructs combining cellular mediators of the healing process within the spongy-like hydrogels that intend to recapitulate skin matrix aim to promote neoskin vascularization. Stable and off-the-shelf dried GG-HA polymeric networks, rapidly rehydrated at the time of cell seeding then depicting features of both sponges and hydrogels, enabled the natural cell entrapment/encapsulation and attachment supported by cell-polymer interactions. Upon transplantation into mice full-thickness excisional wounds, GG-HA spongy-like hydrogels absorbed the early inflammatory cell infiltrate and led to the formation of a dense granulation tissue. Consequently, spongy-like hydrogel degradation was observed, and progressive wound closure, re-epithelialization, and matrix remodelling was improved in relation to the control condition. More importantly, GG-HA spongy-like hydrogels promoted a superior neovascularization, which was enhanced in the presence of human hAMECs, also found in the formed neovessels. These observations highlight the successful integration of a valuable matrix and prevascularization cues to target angiogenesis/neovascularization in skin full-thickness excisional wounds.

  6. Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens.

    PubMed

    Alshehri, Saad M; Aldalbahi, Ali; Al-Hajji, Abdullah Baker; Chaudhary, Anis Ahmad; Panhuis, Marc In Het; Alhokbany, Norah; Ahamad, Tansir

    2016-03-15

    Silver nanoparticles (AgNPs) containing hydrogel composite were first synthesized by preparing a new hydrogel from carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and the cross-linker ethylene glycol diglycidyl ether (EGDE), followed by the incorporation of AgNPs by microwave radiation. The resulting neat hydrogels and AgNPs-hydrogel composites were characterized using spectral, thermal, microscopic analysis and X-ray diffraction (XRD) analyses. The SEM and TEM results demonstrated that the synthesized AgNPs were spherical with diameters ranging from 8 to 14nm. In addition, the XRD analysis confirmed the nanocrystalline phase of silver with face-centered cubic (FCC) crystal structure. Energy dispersive spectroscopy (EDS) analysis of the AgNPs confirmed the presence of an elemental silver signal, and no peaks of any other impurities were detected. Additionally, the antibacterial activities of the neat hydrogel and AgNPs-hydrogel composites were measured by Kirby-Bauer method against urinary tract infection (UTI) pathogens. The rheology measurement revealed that the values of storage modulus (G') were higher than that of loss modulus (G″). The AgNPs-hydrogel composites exhibited higher antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus and Proteus mirabilis compared to the corresponding neat hydrogel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers.

    PubMed

    Mishra, Satyendra K; Gupta, Banshi D

    2013-05-07

    The fabrication and characterization of a surface plasmon resonance based pH sensor using coatings of silver, ITO (In2O3:SnO2), aluminium and smart hydrogel layers over an unclad core of an optical fiber have been reported. The silver, aluminium and ITO layers were coated using a thermal evaporation technique, while the hydrogel layer was prepared using a dip-coating method. The sensor works on the principle of detecting changes in the refractive index of the hydrogel layer due to its swelling and shrinkage caused by changes in the pH of the fluid surrounding the hydrogel layer. The sensor utilizes a wavelength interrogation technique and operates in a particular window of low and high pH values. Increasing the pH value of the fluid causes swelling of the hydrogel layer, which decreases its refractive index and results in a shift of the resonance wavelength towards blue in the transmitted spectra. The thicknesses of the ITO and aluminium layers have been optimized to achieve the best performance of the sensor. The ITO layer increases the sensitivity while the aluminium layer increases the detection accuracy of the sensor. The proposed sensor possesses maximum sensitivity in comparison to the sensors reported in the literature. A negligible effect of ambient temperature in the range 25 °C to 45 °C on the performance of the sensor has been observed. The additional advantages of the sensor are short response time, low cost, probe miniaturization, probe re-usability and the capability of remote sensing.

  8. The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla.

    PubMed

    Lambricht, Laure; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Goldansaz, Hadi; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne

    2014-12-01

    The goal of the present work was to evaluate in vitro and in vivo the influence of various types and compositions of natural hydrogels on the viability and metabolic activity of SCAPs. Two alginate, three hyaluronic-based (Corgel™) hydrogel formulations and Matrigel were characterized for their mechanical, surface and microstructure properties using rheology, X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. A characterized SCAP cell line (RP89 cells) was encapsulated in the different experimental hydrogel formulations. Cells were cultured in vitro, or implanted in cyclosporine treated mice. In vitro cell viability was evaluated using a Live/Dead assay and in vitro cellular metabolic activity was evaluated with a MTS assay. In vivo cell apoptosis was evaluated by a TUNEL test and RP89 cells were identified by human mitochondria immunostaining. Hydrogel composition influenced their mechanical and surface properties, and their microstructure. In vitro cell viability was above 80% after 2 days but decreased significantly after 7 days (60-40%). Viability at day 7 was the highest in Matrigel (70%) and then in Corgel 1.5 (60%). Metabolic activity increased over time in all the hydrogels, excepted in alginate SLM. SCAPs survived after 1 week in vivo with low apoptosis (<1%). The highest number of RP89 cells was found in Corgel 5.5 (140cells/mm(2)). Collectively, these data demonstrate that SCAP viability was directly modulated by hydrogel composition and suggest that a commercially available hyaluronic acid-based formulation might be a suitable delivery vehicle for SCAP-based dental pulp regeneration strategies. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy.

    PubMed

    Razmjou, Amir; Liu, Qi; Simon, George P; Wang, Huanting

    2013-11-19

    The feasibility of bilayer polymer hydrogels as draw agent in forward osmosis process has been investigated. The dual-functionality hydrogels consist of a water-absorptive layer (particles of a copolymer of sodium acrylate and N-isopropylacrylamide) to provide osmotic pressure, and a dewatering layer (particles of N-isopropylacrylamide) to allow the ready release of the water absorbed during the FO drawing process at lower critical solution temperature (32 °C). The use of solar concentrated energy as the source of heat resulted in a significant increase in the dewatering rate as the temperature of dewatering layer increased to its LSCT more rapidly. Dewatering flux rose from 10 to 25 LMH when the solar concentrator increased the input energy from 0.5 to 2 kW/m(2). Thermodynamic analysis was also performed to find out the minimum energy requirement of such a bilayer hydrogel-driven FO process. This study represents a significant step forward toward the commercial implementation of hydrogel-driven FO system for continuous production of fresh water from saline water or wastewaters.

  10. Rationally designed synthetic protein hydrogels with predictable mechanical properties.

    PubMed

    Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi

    2018-02-12

    Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.

  11. Self-Healing and Thermo-Responsive Dual-Crosslinked Alginate Hydrogels based on Supramolecular Inclusion Complexes

    PubMed Central

    Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.

    2015-01-01

    β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were contingent on the polymer concentrations, and the host-guest molar ratio. Transient and reversible physical crosslinking between host and guest polymers governed self-assembly, allowing flow under shear stress, and facilitating complete recovery of the material properties within a few seconds of unloading. The mechanical properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at body temperature, and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214

  12. Structure and properties of semi-interpenetrating network hydrogel based on starch.

    PubMed

    Zhu, Baodong; Ma, Dongzhuo; Wang, Jian; Zhang, Shuang

    2015-11-20

    Starch-g-P(acrylic acid-co-acrylamide)/PVA semi-interpenetrating network (semi-IPN) hydrogels were prepared by aqueous solution polymerization method. Starch grafting copolymerization reaction, semi-IPN structure and crystal morphology were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The PVA in the form of partial crystallization distributing in the gel matrix uniformly were observed by Field emission scanning electron microscope (FESEM). The space network structure, finer microstructure and pore size in the interior of hydrogel were presented by biomicroscope. The results demonstrated that absorption ratio of water and salt generated different degree changes with the effect of PVA. In addition, the mechanical strength of hydrogel was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Visual and portable strategy for copper(II) detection based on a striplike poly(thymine)-caged and microwell-printed hydrogel.

    PubMed

    Qing, Zhihe; Mao, Zhengui; Qing, Taiping; He, Xiaoxiao; Zou, Zhen; He, Dinggeng; Shi, Hui; Huang, Jin; Liu, Jianbo; Wang, Kemin

    2014-11-18

    Due to its importance to develop strategies for copper(II) (Cu(2+)) detection, we here report a visual and portable strategy for Cu(2+) detection based on designing and using a strip-like hydrogel. The hydrogel is functionalized through caging poly(thymine) as probes, which can effectively template the formation of fluorescent copper nanoparticles (CuNPs) in the presence of the reductant (ascorbate) and Cu(2+). On the hydrogel's surface, uniform wells of microliter volume (microwells) are printed for sample-injection. When the injected sample is stained by Cu(2+), fluorescent CuNPs will be in situ templated by poly T in the hydrogel. With ultraviolet (UV) irradiation, the red fluorescence of CuNPs can be observed by naked-eye and recorded by a common camera without complicated instruments. Thus, the strategy integrates sample-injection, reaction and indication with fast signal response, providing an add-and-read manner for visual and portable detection of Cu(2+), as well as a strip-like strategy. Detection ability with a detectable minimum concentration of 20 μM and practically applicable properties have been demonstrated, such as resistance to environmental interference and good constancy, indicating that the strategy holds great potential and significance for popular detection of Cu(2+), especially in remote regions. We believe that the strip-like hydrogel-based methodology is also applicable to other targets by virtue of altering probes.

  14. Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy.

    PubMed

    Belali, Simin; Karimi, Ali Reza; Hadizadeh, Mahnaz

    2018-04-15

    The major problems of porphyrins as promising materials for photodynamic therapy (PDT) are their low solubility, subsequently aggregation in biological environments, and a lack of tumor selectivity. With this in mind, a chitosan-based hydrogel conjugated with tetrakis(4-aminophenyl)porphyrin (NH 2 -TPP) and 2,4,6-tris(p-formylphenoxy)-1,3,5-triazine (TRIPOD) via Schiff base linkage, functionalized with folate was designed and synthesized as a pH-sensitive, self-healable and injectable targeted PS delivery system. This new hydrogel was characterized by FT-IR, 1 H NMR, SEM, UV-vis, fluorescence spectroscopy and zeta potential. Formation of imine bonds with the aldehyde group of TRIPOD and amine group of NH 2 -TPP and chitosan, as a dynamic connection, was approved by rheological analysis. Spectroscopic characterizations revealed that aggregation of porphyrin in aqueous media was eliminated due to diminished π stacking interaction of porphyrin in 3D cross-linked hydrogel structure. Hydrogel 3D microporous structure efficiently transfers the excitation energy to the porphyrin unit, yielding improvement singlet oxygen releases. Cytotoxicity and phototoxicity analysis of the CS/NH 2 -TPP/FA hydrogels indicating an excellent capability to kill cancer cells selectively and prevent damage to normal cells. This work presents a new and efficient model for the preparation of highly efficient and targeting photosensitizer delivery system. Copyright © 2018. Published by Elsevier B.V.

  15. Facile construction of terpridine-based metallo-polymers in hydrogels, crystals and solutions directed by metal ions.

    PubMed

    Li, Yajuan; Guo, Jiangbo; Dai, Bo; Geng, Lijun; Shen, Fengjuan; Zhang, Yajun; Yu, Xudong

    2018-07-01

    Driven by tunable metal-ligand interactions, a polydentate ligand TC containing terpyridine and carboxylic acid units was developed to construct metallo-polymers that showed multiple aggregation modes with controlled macroscopic properties. In the presence of different kind of Zn 2+ ions or NaOH, TC could form metallo-polymers via π-π stacking and metal-ligand interaction that further trapped water molecules, resulting in hydrogels and crystals. Moreover, these TC/Zn 2+ hydrogels could transform to soluble and fluorescent aggregates in the presence of NaOH due to the formation of binuclear metallo-polymers with enhanced ICT emission. The metal-ligand interactions tuned by different metal salts in gels, crystals, and sols were also studied and illustrated in detail, it was also proved that water was an essential linker for constructing Na + -based metallo-polymers from the TC/NaOH crystal data. This work demonstrated the engineered coordination pathways in generating controllable hydrogels and metallo-polymers for the first time, which led to novel approach for facilely constructing a number of hydrogels with tailorable macroscopic properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Design of multimodal degradable hydrogels for controlled therapeutic delivery

    NASA Astrophysics Data System (ADS)

    Kharkar, Prathamesh Madhav

    Hydrogels are of growing interest for the delivery of therapeutics to specific sites in the body. For localized drug delivery, hydrophilic polymeric precursors often are laden with bioactive moieties and then directly injected to the site of interest for in situ gel formation. The release of physically entrapped cargo is dictated by Fickian diffusion, degradation of the drug carrier, or a combination of both. The goal of this work was to design and characterize degradable hydrogel formulations that are responsive to multiple biologically relevant stimuli for degradation-mediated delivery of cargo molecules such as therapeutic proteins, growth factors, and immunomodulatory agents. We began by demonstrating the use of cleavable click linkages formed by Michael-type addition reactions in conjunction with hydrolytically cleavable functionalities for the degradation of injectable hydrogels by endogenous stimuli for controlled protein release. Specifically, the reaction between maleimides and thiols was utilized for hydrogel formation, where thiol selection dictates the degradability of the resulting linkage under thiol-rich reducing conditions. Relevant microenvironments where degradation would occur in vivo include those rich in glutathione (GSH), a tripeptide that is found at elevated concentrations in carcinoma tissues. Degradation of the hydrogels was monitored with rheometry and volumetric swelling measurements. Arylthiol-based thioether succinimide linkages underwent degradation via click cleavage and thiol exchange reaction in the presence of GSH and via ester hydrolysis, whereas alkylthiol-based thioether succinimide linkages only undergo degradation by only ester hydrolysis. The resulting control over the degradation rate within a reducing microenvironment resulted in 2.5 fold differences in the release profile of the model protein, a fluorescently-labeled bovine serum albumin, from dually degradable hydrogels compared to non-degradable hydrogels, where the

  17. [Thromboresistance of glucose-containing hydrogels].

    PubMed

    Valuev, I L; Valuev, L I; Vanchugova, L V; Obydennova, I V; Valueva, T A

    2013-01-01

    The thromboresistance of glucose-sensitive polymer hydrogels, modeling one of the functions of the pancreas, namely, the ability to secrete insulin in response to the introduction of glucose into the environment, has been studied. Hydrogels were synthesized by the copolymerization of hydroxyethyl methacrylate with N-acryloyl glucosamine in the presence of a cross-linking agent and subsequently treated with concanavalin A. Introduction of glucose residues into the hydrogel did not result in significant changes in either the number of trombocytes adhered to the hydrogel or the degree of denaturation of blood plasma proteins interacting with the hydrogel. Consequently, the biological activity of insulin did not change after release from the hydrogel. The use of glucose-sensitive hydrogels is supposed to contribute to the development of a novel strategy for the treatment of diabetes.

  18. Novel vaginal drug delivery system: deformable propylene glycol liposomes-in-hydrogel.

    PubMed

    Vanić, Željka; Hurler, Julia; Ferderber, Kristina; Golja Gašparović, Petra; Škalko-Basnet, Nataša; Filipović-Grčić, Jelena

    2014-03-01

    Deformable propylene glycol-containing liposomes (DPGLs) incorporating metronidazole or clotrimazole were prepared and evaluated as an efficient drug delivery system to improve the treatment of vaginal microbial infections. The liposome formulations were optimized based on sufficient trapping efficiencies for both drugs and membrane elasticity as a prerequisite for successful permeability and therapy. An appropriate viscosity for vaginal administration was achieved by incorporating the liposomes into Carbopol hydrogel. DPGLs were able to penetrate through the hydrogel network more rapidly than conventional liposomes. In vitro studies of drug release from the liposomal hydrogel under conditions simulating human treatment confirmed sustained and diffusion-based drug release. Characterization of the rheological and textural properties of the DPGL-containing liposomal hydrogels demonstrated that the incorporation of DPGLs alone had no significant influence on mechanical properties of hydrogels compared to controls. These results support the great potential of DPGL-in-hydrogel as an efficient delivery system for the controlled and sustained release of antimicrobial drugs in the vagina.

  19. Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface.

    PubMed

    He, Lei; Lin, Demeng; Wang, Yanping; Xiao, Yinghong; Che, Jianfei

    2011-10-15

    Electric interface between neural tissue and electrode plays a significant role in the development of implanted devices for continuous monitoring and functional stimulation of central nervous system in terms of electroactivity, biocompatibility and long-term stability. To engineer an interface that possesses these merits, a polymeric hydrogel based on poly(ethylene glycol) diacrylate (PEGDA) and single-walled carbon nanotubes (SWNTs) were employed to fabricate a hybrid hydrogel via covalent anchoring strategy, i.e., self-assembly of cysteamine (Cys) followed by Michael addition between Cys and PEGDA. XPS characterization proves that the Cys molecules are linked to gold surface via the strong S-Au bond and that the PEGDA macromers are covalently bonded to Cys. FTIR spectra indicate the formation of hybrid hydrogel coating during photopolymerization. Electrochemical measurements using cyclic voltammetry (CV) and impedance spectrum clearly show the enhancement of electric properties to the hydrogel by the SWNTs. The charge transfer of the hybrid hydrogel-based electrode is quasi-reversible and charge transfer resistance decreases to the tenth of that of the pure hydrogel due to electron hopping along the SWNTs. Additionally, this hybrid hydrogel provides a favorable biomimetic microenvironment for cell attachment and growth due to its inherent biocompatibility. Combination of these merits yields hybrid hydrogels that can be good candidates for application to biosensors and biomedical devices. More importantly, the hybrid hydrogel coatings fabricated via the current strategy have good adhesion to the electrode substrate which is highly desired for chronically implantable devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. On the development of multifunctional luminescent supramolecular hydrogel of gold and egg white

    NASA Astrophysics Data System (ADS)

    Patra, Sudeshna; Ravulapalli, Sathyavathi; Hahm, Myung Gwan; Tadi, Kiran Kumar; Narayanan, Tharangattu N.

    2016-10-01

    Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad.

  1. Rapid enrichment of rare-earth metals by carboxymethyl cellulose-based open-cellular hydrogel adsorbent from HIPEs template.

    PubMed

    Zhu, Yongfeng; Wang, Wenbo; Zheng, Yian; Wang, Feng; Wang, Aiqin

    2016-04-20

    A series of monolithic open-cellular hydrogel adsorbents based on carboxymethylcellulose (CMC) were prepared through high internal phase emulsions (HIPEs) and used to enrich the rare-earth metals La(3+) and Ce(3+). The changes of pore structure, and the effects of pH, contact time, initial concentration on the adsorption performance were systematically studied. The results show that the as-prepared monolithic hydrogel adsorbents possess good open-cellular framework structure and have fast adsorption kinetics and high adsorption capacity for La(3+) and Ce(3+). The involved adsorption system can reach equilibrium within 30min and the maximal adsorption capacity is determined to be 384.62mg/g for La(3+) and 333.33mg/g for Ce(3+). Moreover, these porous hydrogel adsorbents show an excellent adsorptive reusability for La(3+) and Ce(3+) through five adsorption-desorption cycles. Such a pore hierarchy structure makes this monolithic open-cellular hydrogel adsorbent be an effective adsorbent for effective enrichment of La(3+) and Ce(3+) from aqueous solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Morphological, electrical & antibacterial properties of trilayered Cs/PAA/PPy bionanocomposites hydrogel based on Fe3O4-NPs.

    PubMed

    Youssef, A M; Abdel-Aziz, M E; El-Sayed, E S A; Abdel-Aziz, M S; Abd El-Hakim, A A; Kamel, S; Turky, G

    2018-09-15

    Bionanocomposites hydrogel based on conducting polymers were successfully fabricated from chitosan/polyacrylic acid/polypyrrole (CS/PAA/PPy) as well as the magnetite nanoparticle (Fe 3 O 4 -NPs) was prepared via co-precipitation method. In addition, different ratios of Fe 3 O 4 -NPs were added to the prepared bionanocomposites to enhance the antimicrobial and the electrical conductivity of the prepared conductive hydrogel. Furthermore, the morphology, the swelling percent, antimicrobial activity and the dielectric properties of the prepared conducting bionanocomposites hydrogel were investigated. The antibacterial activities of the experienced microbes were improved with the increasing the loading of Fe 3 O 4 -NPs in conducting Bio-nanocomposites hydrogel. Moreover, the DC-conductivity was examined and our resulted indicated that the DC-conductivity was enhanced by increasing the loadings of Fe 3 O 4 -NPs compared to that of the pure CS/PAA as well as CS/PAA/PPy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Photonic hydrogel sensors.

    PubMed

    Yetisen, Ali K; Butt, Haider; Volpatti, Lisa R; Pavlichenko, Ida; Humar, Matjaž; Kwok, Sheldon J J; Koo, Heebeom; Kim, Ki Su; Naydenova, Izabela; Khademhosseini, Ali; Hahn, Sei Kwang; Yun, Seok Hyun

    2016-01-01

    Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display. This Review explains the operation principles of photonic hydrogel sensors, presents syntheses of stimuli-responsive polymers, and provides an overview of qualitative and quantitative readout technologies. Applications in clinical samples are discussed, and potential future directions are identified. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Ultra-thin, conformal, and hydratable color-absorbers using silk protein hydrogel

    NASA Astrophysics Data System (ADS)

    Umar, Muhammad; Min, Kyungtaek; Jo, Minsik; Kim, Sunghwan

    2018-06-01

    Planar and multilayered photonic devices offer unprecedented opportunities in biological and chemical sensing due to strong light-matter interactions. However, uses of rigid substances such as semiconductors and dielectrics confront photonic devices with issues of biocompatibility and a mechanical mismatch for their application on humid, uneven, and soft biological surfaces. Here, we report that favorable material traits of natural silk protein led to the fabrication of an ultra-thin, conformal, and water-permeable (hydratable) metal-insulator-metal (MIM) color absorber that was mapped on soft, curved, and hydrated biological interfaces. Strong absorption was induced in the MIM structure and could be tuned by hydration and tilting of the sample. The transferred MIM color absorbers reached the exhibition of a very strong resonant absorption in the visible and near infra-red ranges. In addition, we demonstrated that the conformal resonator could function as a refractometric glucose sensor applied on a contact lens.

  5. Artificial phototropism based on a photo-thermo-responsive hydrogel

    NASA Astrophysics Data System (ADS)

    Gopalakrishna, Hamsini

    Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon

  6. Multifunctional hydrogel nano-probes for atomic force microscopy

    PubMed Central

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-01-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165

  7. Characterization of Particle Translocation through Mucin Hydrogels

    PubMed Central

    Lieleg, Oliver; Vladescu, Ioana; Ribbeck, Katharina

    2010-01-01

    Abstract Biological functional entities surround themselves with selective barriers that control the passage of certain classes of macromolecules while rejecting others. A prominent example of such a selective permeability barrier is given by mucus. Mucus is a biopolymer-based hydrogel that lines all wet epithelial surfaces of the human body. It regulates the uptake of nutrients from our gastrointestinal system, adjusts itself with the menstrual cycle to control the passage of sperm, and shields the underlying cells from pathogens such as bacteria and viruses. In the case of drug delivery, the mucus barrier needs to be overcome for successful medical treatment. Despite its importance for both physiology and medical applications, the underlying principles which regulate the permeability of mucus remain enigmatic. Here, we analyze the mobility of microscopic particles in reconstituted mucin hydrogels. We show that electrostatic interactions between diffusing particles and mucin polymers regulate the permeability properties of reconstituted mucin hydrogels. As a consequence, various parameters such as particle surface charge and mucin density, and buffer conditions such as pH and ionic strength, can modulate the microscopic barrier function of the mucin hydrogel. Our findings suggest that the permeability of a biopolymer-based hydrogel such as native mucus can be tuned to a wide range of settings in different compartments of our bodies. PMID:20441741

  8. Reusable self-healing hydrogels realized via in situ polymerization.

    PubMed

    Vivek, Balachandran; Prasad, Edamana

    2015-04-09

    In this work, a self-healing hydrogel has been prepared using in situ polymerization of acrylic acid and acrylamide in the presence of glycogen. The hydrogel was characterized using NMR, SEM, FT-IR, rheology, and dynamic light scattering (DLS) studies. The developed hydrogel exhibits self-healing properties at neutral pH, high swelling ability, high elasticity, and excellent mechanical strength. The hydrogel exhibits modulus values (G', G″) as high as 10(6) Pa and shows an exceptionally high degree of swelling ratio (∼3.5 × 10(3)). Further, the polymer based hydrogel adsorbs toxic metal ions (Cd(2+), Pb(2+), and Hg(2+)) and organic dyes (methylene blue and methyl orange) from contaminated water with remarkable efficiency (90-98%). The mechanistic analysis indicated the presence of pseudo-second-order reaction kinetics. The reusability of the hydrogel has been demonstrated by repeating the adsorption-desorption process over five cycles with identical results in the adsorption efficiency.

  9. Biomimetic Hydrogel Materials

    DOEpatents

    Bertozzi, Carolyn , Mukkamala, Ravindranath , Chen, Oing , Hu, Hopin , Baude, Dominique

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  10. Biomimetic hydrogel materials

    DOEpatents

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  11. Polyvinyl alcohol hydrogels for iontohporesis

    NASA Astrophysics Data System (ADS)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  12. Synthesis, Characterization, and Acute Oral Toxicity Evaluation of pH-Sensitive Hydrogel Based on MPEG, Poly(ε-caprolactone), and Itaconic Acid

    PubMed Central

    Tan, Liwei; Song, Jia; Luo, Feng

    2013-01-01

    A kind of chemically cross-linked pH-sensitive hydrogels based on methoxyl poly(ethylene glycol)-poly(caprolactone)-acryloyl chloride (MPEG-PCL-AC, PECA), poly(ethylene glycol) methyl ether methacrylate (MPEGMA, MEG), N,N-methylenebisacrylamide (BIS), and itaconic acid (IA) were prepared without using any organic solvent by heat-initiated free radical method. The obtained macromonomers and hydrogels were characterized by 1H NMR and FT-IR, respectively. Morphology study of hydrogels was also investigated in this paper, and it showed that the hydrogels had good pH-sensitivity. The acute toxicity test and histopathological study were conducted in BALB/c mice. The results indicated that the maximum tolerance dose of the hydrogel was higher than 10000 mg/kg body weight. No morality or signs of toxicity were observed during the whole 7-day observation period. Compared to the control groups, there were no important adverse effects in the variables of hematology routine test and serum chemistry analysis both in male or female treatment group. Histopathological study also did not show any significant lesions, including heart, liver, lung, spleen, kidney, stomach, intestine, and testis. All the results demonstrated that this hydrogel was nontoxic after gavage. Thus, the hydrogel might be the biocompatible potential candidate for oral drug delivery system. PMID:24364030

  13. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea.

    PubMed

    Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao

    2014-03-01

    Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt.

  14. Bioadhesive hydrogels for cosmetic applications.

    PubMed

    Parente, M E; Ochoa Andrade, A; Ares, G; Russo, F; Jiménez-Kairuz, Á

    2015-10-01

    The use of bioadhesive hydrogels for skin care presents important advantages such as long residence times on the application site and reduced product administration frequency. The aim of the present work was to develop bioadhesive hydrogels for skin application, using caffeine as a model active ingredient. Eight hydrogels were formulated using binary combinations of a primary polymer (carbomer homopolymer type C (Carbopol(®) 980) or kappa carrageenan potassium salt (Gelcarin(®) GP-812 NF)) and a secondary polymer (carbomer copolymer type B (Pemulen(™) TR-1), xanthan gum or guar gum). Hydrogels were characterized by means of physico-chemical (dynamic rheological measurements, spreadability and adhesion measurements) and sensory methods (projective mapping in combination with a check-all-that-apply (CATA) question). Caffeine hydrogels were formulated using two of the most promising formulations regarding adhesion properties and sensory characteristics. In vitro active ingredient release studies were carried out. Hydrogel formulations showed a prevalently elastic rheological behaviour. Complex viscosity of carbomer homopolymer type C hydrogels was higher than that of the kappa carrageenan hydrogels. Besides, complex viscosity values were dependent on the secondary polymer present in the formulation. Significant differences among hydrogels were found in detachment force, work of adhesion and spreading diameter results. Association of projective mapping with CATA allowed to determine similarities and dissimilarities among samples. Cluster analysis associated the samples in two groups. Two hydrogels were selected to study the release of caffeine. Both hydrogels presented similar release profiles which were well described by the Higuchi model. Caffeine release was exclusively controlled by a diffusive process. Physico-chemical and sensory techniques enabled the identification of bioadhesive hydrogel formulations with positive characteristics for cosmetic applications

  15. Magnetic hyaluronate hydrogels: preparation and characterization

    NASA Astrophysics Data System (ADS)

    Tóth, Ildikó Y.; Veress, Gábor; Szekeres, Márta; Illés, Erzsébet; Tombácz, Etelka

    2015-04-01

    A novel soft way of hyaluronate (HyA) based magnetic hydrogel preparation was revealed. Magnetite nanoparticles (MNPs) were prepared by co-precipitation. Since the naked MNPs cannot be dispersed homogenously in HyA-gel, their surface was modified with natural and biocompatible chondroitin-sulfate-A (CSA) to obtain CSA-coated MNPs (CSA@MNPs). The aggregation state of MNPs and that loaded with increasing amount of CSA up to 1 mmol/g was measured by dynamic light scattering at pH~6. Only CSA@MNP with ≥0.2 mmol/g CSA content was suitable for magnetic HyA-gel preparation. Rheological studies showed that the presence of CSA@MNP with up to 2 g/L did not affect the hydrogel's rheological behavior significantly. The results suggest that the HyA-based magnetic hydrogels may be promising formulations for future biomedical applications, e.g. as intra-articular injections in the treatment of osteoarthritis.

  16. Surface wettability enhancement of silicone hydrogel lenses by processing with polar plastic molds.

    PubMed

    Lai, Y C; Friends, G D

    1997-06-05

    In the quest for hydrogel contact lenses with improved extended wear capability, the use of siloxane moieties in the lens materials was investigated. However, the introduction of hydrophobic siloxane groups gave rise to wettability and lipidlike deposit problems. It was found that when polysiloxane-based compositions for hydrogels were processed with polar plastic molds, such as those fabricated from an acrylonitrile-based polymer, the hydrogel lenses fabricated were wettable, with minimized lipidlike deposits. These findings were supported by the wettability of silicone hydrogel films, silicon, and nitrogen element contents near lens surfaces, as well as the results from clinical assessment of silicone hydrogel lenses.

  17. Design of integration-ready metasurface-based infrared absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogando, Karim, E-mail: karim@cab.cnea.gov.ar; Pastoriza, Hernán

    2015-07-28

    We introduce an integration ready design of metamaterial infrared absorber, highly compatible with many kinds of fabrication processes. We present the results of an exhaustive experimental characterization, including an analysis of the effects of single meta-atom geometrical parameters and collective arrangement. We confront the results with the theoretical interpretations proposed in the literature. Based on the results, we develop a set of practical design rules for metamaterial absorbers in the infrared region.

  18. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.

    PubMed

    Li, Pan; Yu, Haibo; Liu, Na; Wang, Feifei; Lee, Gwo-Bin; Wang, Yuechao; Liu, Lianqing; Li, Wen Jung

    2018-05-23

    The development of microengineered hydrogels co-cultured with cells in vitro could advance in vivo bio-systems in both structural complexity and functional hierarchy, which holds great promise for applications in regenerative tissues or organs, drug discovery and screening, and bio-sensors or bio-actuators. Traditional hydrogel microfabrication technologies such as ultraviolet (UV) laser or multiphoton laser stereolithography and three-dimensional (3D) printing systems have advanced the development of 3D hydrogel micro-structures but need either expensive and complex equipment, or harsh material selection with limited photoinitiators. Herein, we propose a simple and flexible hydrogel microfabrication method based on a ubiquitous visible-light projection system combined with a custom-designed photosensitive microfluidic chip, to rapidly (typically several to tens of seconds) fabricate various two-dimensional (2D) hydrogel patterns and 3D hydrogel constructs. A theoretical layer-by-layer model that involves continuous polymerizing-delaminating-polymerizing cycles is presented to explain the polymerization and structural formation mechanism of hydrogels. A large area of hydrogel patterns was efficiently fabricated without the usage of costly laser systems or photoinitiators, i.e., a stereoscopic mesh-like hydrogel network with intersecting hydrogel micro-belts was fabricated via a series of dynamic-changing digital light projections. The pores and gaps of the hydrogel network are tunable, which facilitates the supply of nutrients and discharge of waste in the construction of 3D thick bio-models. Cell co-culture experiments showed the effective regulation of cell spreading by hydrogel scaffolds fabricated by the new method presented here. This visible light enabled hydrogel microfabrication method may provide new prospects for designing cell-based units for advanced biomedical studies, e.g., for 3D bio-models or bio-actuators in the future.

  19. Development of soy lecithin based novel self-assembled emulsion hydrogels.

    PubMed

    Singh, Vinay K; Pandey, Preeti M; Agarwal, Tarun; Kumar, Dilip; Banerjee, Indranil; Anis, Arfat; Pal, Kunal

    2015-03-01

    The current study reports the development and characterization of soy lecithin based novel self-assembled emulsion hydrogels. Sesame oil was used as the representative oil phase. Emulsion gels were formed when the concentration of soy lecithin was >40% w/w. Metronidazole was used as the model drug for the drug release and the antimicrobial tests. Microscopic study showed the apolar dispersed phase in an aqueous continuum phase, suggesting the formation of emulsion hydrogels. FTIR study indicated the formation of intermolecular hydrogen bonding, whereas, the XRD study indicated predominantly amorphous nature of the emulsion gels. Composition dependent mechanical and drug release properties of the emulsion gels were observed. In-depth analyses of the mechanical studies were done using Ostwald-de Waele power-law, Kohlrausch and Weichert models, whereas, the drug release profiles were modeled using Korsmeyer-Peppas and Peppas-Sahlin models. The mechanical analyses indicated viscoelastic nature of the emulsion gels. The release of the drug from the emulsion gels was diffusion mediated. The drug loaded emulsion gels showed good antimicrobial activity. The biocompatibility test using HaCaT cells (human keratinocytes) suggested biocompatibility of the emulsion gels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Therapeutic applications of hydrogels in oral drug delivery

    PubMed Central

    Sharpe, Lindsey A; Daily, Adam M; Horava, Sarena D; Peppas, Nicholas A

    2015-01-01

    Introduction Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications. Areas covered This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed. Expert opinion Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest. PMID:24848309

  1. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering

    NASA Astrophysics Data System (ADS)

    Grover, Gregory N.; Rao, Nikhil; Christman, Karen L.

    2014-01-01

    Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of 30 min, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in 4 min upon irradiation, allowing 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates that PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications.

  2. Biomimetic membrane arrays on cast hydrogel supports.

    PubMed

    Roerdink Lander, Monique; Ibragimova, Sania; Rein, Christian; Vogel, Jörg; Stibius, Karin; Geschke, Oliver; Perry, Mark; Hélix-Nielsen, Claus

    2011-06-07

    Lipid bilayers are intrinsically fragile and require mechanical support in technical applications based on biomimetic membranes. Tethering the lipid bilayer membranes to solid substrates, either directly through covalent or ionic substrate-lipid links or indirectly on substrate-supported cushions, provides mechanical support but at the cost of small molecule transport through the membrane-support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane-support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE)/hydrogel sandwich as the support. The sandwich is realized as a perforated surface-treated ETFE film onto which a hydrogel composite support structure is cast. We report a simple method to prepare arrays of lipid bilayer membranes with low intrinsic electrical conductance on the highly permeable, self-supporting ETFE/hydrogel sandwiches. We demonstrate how the ETFE/hydrogel sandwich support promotes rapid self-thinning of lipid bilayers suitable for hosting membrane-spanning proteins.

  3. Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging.

    PubMed

    Gregorova, Adriana; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-03-06

    The PVP-CMC hydrogel film is biodegradable, transparent, flexible, hygroscopic and breathable material which can be used as a food packaging material. The hygroscopic character of CMC and PVP plays a big role in the changing of their mechanical properties where load carrying capacity is one of important criteria for packaging materials. This paper reports about the hydrothermal effect on the mechanical and viscoelastic properties of neat CMC, and PVP-CMC (20:80) hydrogel films under the conditions of combined multiple stress factors such as temperature, time, load, frequency and humidity. The dry films were studied by transient and dynamic oscillatory experiments using dynamic mechanical analyser combined with relative humidity chamber (DMA-RH). The mechanical properties of PVP-CMC hydrogel film at room temperature (25 °C), in the range of 0-30%RH remain steady. The 20 wt% of PVP in PVP-CMC hydrogel increases the stiffness of CMC from 2940 to 3260 MPa at 25 °C and 10%RH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    NASA Astrophysics Data System (ADS)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  5. Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel

    PubMed Central

    Lee, Jung Min; Sultan, Md. Tipu; Kim, Soon Hee; Kumar, Vijay; Yeon, Yeung Kyu; Lee, Ok Joo; Park, Chan Hum

    2017-01-01

    Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel. PMID:28777314

  6. A study in the adsorption of Fe(2+) and NO(3)(-) on pine needles based hydrogels.

    PubMed

    Chauhan, Ghanshyam S; Chauhan, Sandeep; Kumar, Sunil; Kumari, Anita

    2008-09-01

    Novel supports for use as cation and anion adsorbents were prepared from lignocellulosics using pine needles and their carboxymethylated forms by network/hydrogel formation with acrylamide and N,N-methylene bisacrylamide. The hydrogels thus prepared were further functionalized by partial alkaline hydrolysis with 0.5 N NaOH and were characterized by FTIR, SEM and nitrogen analysis. Adsorption of Fe(2+) on these hydrogels was carried as a function of time, temperature, pH and ionic strength. The hydrogel having the maximum adsorption capacity was loaded with Fe(2+) at the conditions those afforded maximum uptake and was used as novel anionic adsorbent for NO(3)(-). The water uptake capacities and biodegradability of the hydrogels before and after the ion loading was studied to evaluate the possible end-uses of these hydrogels as alternate materials in the removal of ionic species from water.

  7. Alginate-polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering.

    PubMed

    Thankam, Finosh G; Muthu, Jayabalan

    2015-11-01

    The physiochemical and biological responses of tissue engineering hydrogels are crucial in determining their desired performance. A hybrid comacromer was synthesized by copolymerizing alginate and poly(mannitol fumarate-co-sebacate) (pFMSA). Three bimodal hydrogels pFMSA-AA, pFMSA-MA and pFMSA-NMBA were synthesized by crosslinking with Ca(2+) and vinyl monomers acrylic acid (AA), methacrylic acid (MA) and N,N'-methylene bisacrylamide (NMBA), respectively. Though all the hydrogels were cytocompatible and exhibited a normal cell cycle profile, pFMSA-AA exhibited superior physiochemical properties viz non-freezable water content (58.34%) and water absorption per unit mass (0.97 g water/g gel) and pore length (19.92±3.91 μm) in comparing with other two hydrogels. The increased non-freezable water content and water absorption of pFMSA-AA hydrogels greatly influenced its biological performance, which was evident from long-term viability assay and cell cycle proliferation. The physiochemical and biological favorability of pFMSA-AA hydrogels signifies its suitability for cardiac tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water.

    PubMed

    Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X; Zhao, Xuanhe

    2017-02-01

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water.

  9. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water

    NASA Astrophysics Data System (ADS)

    Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X.; Zhao, Xuanhe

    2017-02-01

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water.

  10. Chitin-natural clay nanotubes hybrid hydrogel.

    PubMed

    Liu, Mingxian; Zhang, Yun; Li, Jingjing; Zhou, Changren

    2013-07-01

    Novel hybrid hydrogel was synthesized from chitin NaOH/urea aqueous solution in presence of halloysite nanotubes (HNTs) via crosslinking with epichlorohydrin. Fourier transform infrared (FT-IR) spectra and atomic force microscopy (AFM) results confirmed the interfacial interactions in the chitin-HNTs hybrid hydrogel. The compressive strength and shear modulus of chitin hydrogel were significantly increased by HNTs as shown in the static compressive experiment and rheology measurement. The hybrid hydrogels showed highly porous microstructures by scanning electron microscopy (SEM). The swelling ratio of chitin hydrogel decreased because of the addition of HNTs. The malachite green's absorption experiment result showed that the hybrid hydrogel exhibited much higher absorption rate than the pure chitin hydrogel. The prepared hybrid hydrogel had potential applications in waste treatment and biomedical areas. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Poroelasticity-driven lubrication in hydrogel interfaces.

    PubMed

    Reale, Erik R; Dunn, Alison C

    2017-01-04

    It is widely accepted that hydrogel surfaces are slippery, and have low friction, but dynamic applied stresses alter the hydrogel composition at the interface as water is displaced. The induced osmotic imbalance of compressed hydrogel which cannot swell to equilibrium should drive the resistance to slip against it. This paper demonstrates the driving role of poroelasticity in the friction of hydrogel-glass interfaces, specifically how poroelastic relaxation of hydrogels increases adhesion. We translate the work of adhesion into an effective surface energy density that increases with the duration of applied pressure from 10 to 50 mJ m -2 , as measured by micro-indentation. A model of static friction coefficient is derived from an area-based rules of mixture for the surface energies, and predicts the friction coefficient changes upon initiation of slip. For kinetic friction, the competition between duration of contact and relaxation time is quantified by a contacting Péclet number, Pe C . A single length parameter on the scale of micrometers fits these two models to experimental micro-friction data. These models predict how short durations of applied pressure and faster sliding speeds, do not disrupt interfacial hydration; this prevailing water maintains low friction. At low speeds where interface drainage dominates, the osmotic suction works against slip for higher friction. The prediction of friction coefficients after adhesion characterization by micro-indentation makes use of the interplay between poroelasticity, adhesion, and friction. This approach provides a starting point for prediction of, and design for, hydrogel interfacial friction.

  12. Large-scale broadband absorber based on metallic tungsten nanocone structure

    NASA Astrophysics Data System (ADS)

    Wang, Jiaxing; Liang, Yuzhang; Huo, Pengcheng; Wang, Daopeng; Tan, Jun; Xu, Ting

    2017-12-01

    We report a broadband tungsten absorber based on a nanocone metallic resonant structure fabricated by self-assembly nanosphere lithography. In experimental demonstration, the fabricated absorber has more than 90% average absorption efficiency and shows superior angular tolerance in the entire visible and near-infrared spectral region. We envision that this large-scale nanostructured broadband optical absorber would find great potential in the applications of high performance optoelectronic platforms and solar-thermal energy harvesting systems.

  13. Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via 'click' chemistry for controlled drug release.

    PubMed

    Guaresti, O; García-Astrain, C; Palomares, T; Alonso-Varona, A; Eceiza, A; Gabilondo, N

    2017-09-01

    A chemically cross-linked chitosan-based hydrogel was successfully synthesized through Diels-Alder (DA) reaction and characterized. The final product was obtained after different steps; on the one hand, furan-modified chitosan (Cs-Fu) was synthesized by the reaction of furfural with the free amino groups of chitosan. On the other hand, highlighting the novelty of the present research, maleimide-functionalized chitosan (Cs-AMI) was prepared by the reaction of a maleimide-modified aminoacid with the amino groups of chitosan through amide coupling. The two complementary chitosan derivatives were cross-linked to the final hydrogel network. Both modification reactions were confirmed by FTIR and 1 H NMR, obtaining a degree of substitution (DS) of 31% and 26% for Cs-Fu and Cs-AMI, respectively. The as-designed hydrogel was analyzed in terms of microstructure, swelling capacity and rheological behaviour. The hydrogel showed pH-sensitivity, biocompatibility and inhibitory bacterial activity, promising features for biomedical applications, particularly for targeted-drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Encapsulation of cell into monodispersed hydrogels on microfluidic device

    NASA Astrophysics Data System (ADS)

    Choi, Chang-Hyoung; Lee, Ji-Hye; Shim, Hyun-Woo; Lee, Nae-Rym; Jung, Jae-Hoon; Yoon, Tae-Ho; Kim, Dong-Pyo; Lee, Chang-Soo

    2007-12-01

    In here, we present the microfluidic approach to produce monodispersed microbeads that will contain viable cells. The utilization of microfludics is helpful to synthesize monodispersed alginate hydrogels and in situ encapsulate cell into the generating hydrogels in microfludic device. First, the condition of formation of hydrogels in multiphase flows including oil, CaCl II, and alginate was optimized. Based on the preliminary survey, microfludic device could easily manipulate the size of alginate beads having narrow size distribution. The microfluidic method manipulates the size of hydrogel microbeads from 30 to 200um with a variation less than 2%. For the proof of concept of cell entrapment, the live yeast expressing green fluorescence protein is successfully encapsulated in microfluidic device.

  15. Biodegradability and swelling capacity of kaolin based chitosan-g-PHEMA nanocomposite hydrogel.

    PubMed

    Pradhan, Arun Kumar; Rana, Pradeep Kumar; Sahoo, Prafulla Kumar

    2015-03-01

    Chitosan, a natural biopolymer, obtained by alkaline deacetylation of chitin, exhibits excellent biological properties such as biodegradability, immunological and antibacterial activity. Recently, there has been a growing interest in the chemical modification of chitosan in order to widen its applications. The chemical modification of chitosan has been achieved via grafting of monomer, 2-hydroxyethyl methacrylate (HEMA) in the presence of the initiator, ammonium persulfate (APS) and kaolin was added to improve the mechanical strength of the newly developed nanocomposites hydrogel. The so prepared grafted nanocomposites hydrogel was characterized by FTIR, XRD, SEM, TEM and TGA. The equilibrium water content (EWC) of the samples were measured at different pH ranges 6.5-8.0 and found optimum at pH 7.5 for biomedical applications. Further, the biodegradability of the samples was studied at different time intervals from 15 days to 1 year but, the kaolin based nanohydrogels exhibited good biodegradability. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Shi, Yuyang; Jiang, Guixiang; Liu, Wei; Han, Huili; Feng, Qianhua; Ren, Junxiao; Yuan, Yujie; Wang, Yongchao; Shi, Jinjin; Zhang, Zhenzhong

    2016-08-01

    A safe and efficient nanocomposite hydrogel for colon cancer drug delivery was synthesized using pH-sensitive and biocompatible graphene oxide (GO) containing azoaromatic crosslinks as well as poly (vinyl alcohol) (PVA) (GO-N=N-GO/PVA composite hydrogels). Curcumin (CUR), an anti-cancer drug, was encapsulated successfully into the hydrogel through a freezing and thawing process. Fourier transform infrared spectroscopy, scanning electron microscopy and Raman spectroscopy were performed to confirm the formation and morphological properties of the nanocomposite hydrogel. The hydrogels exhibited good swelling properties in a pH-sensitive manner. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released completely into the physiological environment of the stomach and small intestine. In vivo imaging analysis, pharmacokinetics and a distribution of the gastrointestinal tract experiment were systematically studied and evaluated as colon-specific drug delivery systems. All the results demonstrated that GO-N=N-GO/PVA composite hydrogels could protect CUR well while passing through the stomach and small intestine to the proximal colon, and enhance the colon-targeting ability and residence time in the colon site. Therefore, CUR loaded GO-N=N-GO/PVA composite hydrogels might potentially provide a theoretical basis for the treatment of colon cancer with high efficiency and low toxicity.

  17. Silver nanoparticles-containing dual-function hydrogels based on a guar gum-sodium borohydride system

    PubMed Central

    Dai, Lei; Nadeau, Ben; An, Xingye; Cheng, Dong; Long, Zhu; Ni, Yonghao

    2016-01-01

    Dual-function hydrogels, possessing both stimuli-responsive and self-healing properties, have recently attracted attention of both chemists and materials scientists. Here we report a new paradigm using natural polymer (guar gum, GG) and sodium borohydride (NaBH4), for the preparation of silver nanoparticles (AgNPs)-containing smart hydrogels in a simple, fast and economical way. NaBH4 performs as a reducing agent for AgNPs synthesis using silver nitrate (AgNO3) as the precursor. Meanwhile, sodium metaborate (NaBO2) (from NaBH4) behaves as a cross-linking agent between GG molecular chains. The AgNPs/GG hydrogels with excellent viscoelastic properties can be obtained within 3 min at room temperature without the addition of other cross-linkers. The resultant AgNPs/GG hydrogels are flowable and injectable, and they possess excellent pH/thermal responsive properties. Additionally, they exhibit rapid self-healing capacity. This work introduces a facile and scale-up way to prepare a class of hydrogels that can have great potential to biomedical and other industrial applications. PMID:27819289

  18. Reinforcing the inner phase of the filled hydrogels with CNTs alters drug release properties and human keratinocyte morphology: A study on the gelatin- tamarind gum filled hydrogels.

    PubMed

    Maharana, Vivek; Gaur, Deepanjali; Nayak, Suraj K; Singh, Vinay K; Chakraborty, Subhabrata; Banerjee, Indranil; Ray, Sirsendu S; Anis, Arfat; Pal, Kunal

    2017-11-01

    The study reports the synthesis and characterization of gelatin-tamarind gum (TG) based filled hydrogels for drug delivery applications. In this study, three different types of carbon nanotubes (CNTs) were incorporated within the dispersed TG phase of the filled hydrogels. The prepared hydrogels were thoroughly characterised using bright field microscope, FESEM, FTIR spectroscopy, differential scanning calorimeter, and mechanical tester. The swelling and the drug (salicylic acid) release properties of the filled hydrogels were also evaluated. The micrographs revealed the formation of biphasic systems. The internal phase appeared as agglomerates, and the CNTs were confined within the dispersed TG phase. FTIR and XRD studies revealed that CNTs promoted associative interactions among the components of the hydrogel, which promoted the formation of large crystallite size. The mechanical study indicated better resistance to the breakdown of the architecture of the CNT-containing filled hydrogels. Drug release studies, both passive and iontophoretic, suggested that the non-Fickian diffusion of the drug was prevalent during its release from hydrogel matrices. The prepared hydrogels were cytocompatible with human keratinocytes. The results suggested the probable use of such hydrogels in wound healing, tissue engineering and drug delivery applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Kinetically Controlled Lifetimes in Redox-Responsive Transient Supramolecular Hydrogels.

    PubMed

    Wojciechowski, Jonathan P; Martin, Adam D; Thordarson, Pall

    2018-02-28

    It remains challenging to program soft materials to show dynamic, tunable time-dependent properties. In this work, we report a strategy to design transient supramolecular hydrogels based on kinetic control of competing reactions. Specifically, the pH-triggered self-assembly of a redox-active supramolecular gelator, N,N'-dibenzoyl-l-cystine (DBC) in the presence of a reducing agent, which acts to disassemble the system. The lifetimes of the transient hydrogels can be tuned simply by pH or reducing agent concentration. We find through kinetic analysis that gel formation hinders the ability of the reducing agent and enables longer transient hydrogel lifetimes than would be predicted. The transient hydrogels undergo clean cycles, with no kinetically trapped aggregates observed. As a result, multiple transient hydrogel cycles are demonstrated and can be predicted. This work contributes to our understanding of designing transient assemblies with tunable temporal control.

  20. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    PubMed

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue

  1. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water

    PubMed Central

    Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X.; Zhao, Xuanhe

    2017-01-01

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water. PMID:28145412

  2. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-07-13

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.

  3. In vivo biofunctional evaluation of hydrogels for disc regeneration.

    PubMed

    Reitmaier, Sandra; Kreja, Ludwika; Gruchenberg, Katharina; Kanter, Britta; Silva-Correia, Joana; Oliveira, Joaquim Miguel; Reis, Rui Luís; Perugini, Valeria; Santin, Matteo; Ignatius, Anita; Wilke, Hans-Joachim

    2014-01-01

    Regenerative strategies aim to restore the original biofunctionality of the intervertebral disc. Different biomaterials are available, which might support disc regeneration. In the present study, the prospects of success of two hydrogels functionalized with anti-angiogenic peptides and seeded with bone marrow derived mononuclear cells (BMC), respectively, were investigated in an ovine nucleotomy model. In a one-step procedure iliac crest aspirates were harvested and, subsequently, separated BMC were seeded on hydrogels and implanted into the ovine disc. For the cell-seeded approach a hyaluronic acid-based hydrogel was used. The anti-angiogenic potential of newly developed VEGF-blockers was investigated on ionically crosslinked metacrylated gellan gum hydrogels. Untreated discs served as nucleotomy controls. 24 adult merino sheep were used. After 6 weeks histological, after 12 weeks histological and biomechanical analyses were conducted. Biomechanical tests revealed no differences between any of the implanted and nucleotomized discs. All implanted discs significantly degenerated compared to intact discs. In contrast, there was no marked difference between implanted and nucleotomized discs. In tendency, albeit not significant, degeneration score and disc height index deteriorated for all but not for the cell-seeded hydrogels from 6 to 12 weeks. Cell-seeded hydrogels slightly decelerated degeneration. None of the hydrogel configurations was able to regenerate biofunctionality of the intervertebral disc. This might presumably be caused by hydrogel extrusion. Great importance should be given to the development of annulus sealants, which effectively exploit the potential of (cell-seeded) hydrogels for biological disc regeneration and restoration of intervertebral disc functioning.

  4. Enzyme actuated bioresponsive hydrogels

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  5. Culture of preantral follicles in poly(ethylene) glycol-based, three-dimensional hydrogel: a relationship between swelling ratio and follicular developments

    PubMed Central

    Ahn, Jong Il; Kim, Gil Ah; Kwon, Hyo Suk; Ahn, Ji Yeon; Hubbell, Jeffrey A; Song, Yong Sang; Lee, Seung Tae; Lim, Jeong Mook

    2015-01-01

    This study was undertaken to examine how the softness of poly(ethylene) glycol (PEG)-based hydrogels, creating a three-dimensional (3D) microenvironment, influences the in vitro growth of mouse ovarian follicles. Early secondary, preantral follicles of 2 week-old mice were cultured in a crosslinked four-arm PEG hydrogel. The hydrogel swelling ratio, which relates to softness, was modified within the range 25.7–15.5 by increasing the reactive PEG concentration in the precursor solution from 5% to 15% w/v, but it did not influence follicular growth to form the pseudoantrum (60–80%; p = 0.76). Significant (p < 0.04) model effects, however, were detected in the maturation and developmental competence of the follicle-derived oocytes. A swelling ratio of > 21.4 yielded better oocyte maturation than other levels, while the highest competence to develop pronuclear and blastocyst formation was detected at 20.6. In conclusion, gel softness, as reflected in swelling ratio, was one of the essential factors for supporting folliculogenesis in vivo within a hydrogel-based, 3D microenvironment. © 2014 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd. PMID:24493269

  6. Development of a P((MAA-co-NVP)-g-EG) Hydrogel Platform for Oral Protein Delivery: Effects of Hydrogel Composition on Environmental Response and Protein Partitioning.

    PubMed

    Steichen, Stephanie; O'Connor, Colleen; Peppas, Nicholas A

    2017-01-01

    Hydrogels based upon terpolymers of methacrylic acid, N-vinyl pyrrolidone, and poly(ethylene glycol) are developed and characterized for their ability to respond to changes in environmental pH and to partition protein therapeutics of varying molecular weights and isoelectric points. P((MAA-co-NVP)-g-EG) hydrogels are synthesized with PEG-based cross-linking agents of varying length and incorporation densities. The composition is confirmed using FT-IR spectroscopy and shows peak shifts indicating hydrogen bonding. Scanning electron microscopy reveals microparticles with an irregular, planar morphology. The pH-responsive behavior of the hydrogels is confirmed under equilibrium and dynamic conditions, with the hydrogel collapsed at acidic pH and swollen at neutral pH. The ability of the hydrogels to partition model protein therapeutics at varying pH and ionic strength is evaluated using three model proteins: insulin, porcine growth hormone, and ovalbumin. Finally, the microparticles are evaluated for adverse interactions with two model intestinal cell lines and show minimal cytotoxicity at concentrations below 5 mg mL -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dextran hydrogels by crosslinking with amino acid diamines and their viscoelastic properties.

    PubMed

    O'Connor, Naphtali A; Jitianu, Mihaela; Nunez, Greisly; Picard, Quentin; Wong, Madeline; Akpatsu, David; Negrin, Adam; Gharbaran, Rajendra; Lugo, Daniel; Shaker, Sundus; Jitianu, Andrei; Redenti, Stephen

    2018-05-01

    Amine functionalized polysaccharide hydrogels such as those based on chitosan are widely examined as biomaterials. Here we set out to develop a facile procedure for developing such hydrogels by crosslinking dextran with amino acid diamines. The dextran-amino acid gels were formed by the addition of the amino acid diamines to a dextran and epichlorohydrin solution once it became homogeneous. This was demonstrated with three amino acid diamines, lysine, lysine methyl ester, and cystine dimethyl ester. Hydrogel networks with albumin entrapped were also demonstrated. These hydrogels were characterized by FTIR, SEM, rotational rheometry, swelling studies and cell biocompatibility analysis. These hydrogels showed the unexpected pH-responsive behavior of greater swelling at more basic pH, similar to that of an anionic hydrogel. This is uncharacteristic for amine functionalized gels as they typically exhibit cationic hydrogel behavior. All hydrogels showed similar biocompatibility to that of dextran crosslinked without amino acids. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Development, characterization, and applications of self-assembling, photocrosslinkable collagen-based hydrogels

    NASA Astrophysics Data System (ADS)

    Gaudet, Ian Daniel

    Development of functional soft-tissue engineered constructs for use in regenerative medicine is currently limited by homogeneity within scaffolds that fails to recapitulate the complex architecture that supports normal function in healthy tissues. Additionally, recent breakthroughs in our understanding the biomechanical cell-matrix interface have provided insight into the role of substrate compliance during development and in the pathophysiological environment. This thesis is the result of investigation into using type-I collagen as a base material for creating dynamic, self-assembling, mechanically and biochemically tunable 3D hydrogel scaffolds into which instructive cellular cues can be imparted anisotropically via the directed application of light. This overarching goal was approached by (1) evaluating extant methods for photonically manipulating type I collagen mechanical properties, which led us to the conclusion that published methods were inadequate for our purposes. Following this realization, we (2) developed a novel process for derivatizing free amines on collagen amino acid residues to reactive methacrylamide moieties, allowing robust spatiotemporal control of mechanical properties through photocrosslinking with long-wave UV light and the water-soluble photoinitiator Irgacure 2959. Thorough characterization of this material, collagen methacrylamide (CMA), provided the basis for multiple applications in the field of soft tissue engineering. Additionally, (3) CMA was used in conjunction with synthetic photopolymers in an effort to create a hybrid natural/synthetic hydrogel material. CMA was also (4) employed as a dynamic hydrogel scaffold which we showed could be used to culture a number of neurogenic stem and progenitor cell types with a focus on using photomodulation to impart instructive heterogeneity to the mechanical and biochemical microenvironment. Finally, (5) we used a computational modeling approach to explain interesting yet poorly understood

  9. Ionic Hydrogel Based on Chitosan Cross-Linked with 6-Phosphogluconic Trisodium Salt as a Drug Delivery System.

    PubMed

    Martínez-Martínez, Mayte; Rodríguez-Berna, Guillermo; Gonzalez-Alvarez, Isabel; Hernández, Ma Jesús; Corma, Avelino; Bermejo, Marival; Merino, Virginia; Gonzalez-Alvarez, Marta

    2018-04-09

    In this work, 6-phosphogluconic trisodium salt (6-PG - Na + ) is introduced as a new aqueous and nontoxic cross-linking agent to obtain ionic hydrogels. Here, it is shown the formation of hydrogels based on chitosan cross-linked with 6-PG - Na + . This formulation is obtained by ionic interaction of cationic groups of polymer with anionic groups of the cross-linker. These hydrogels are nontoxic, do not cause dermal irritation, are easy to extend, and have an adequate adhesion force to be applied as polymeric film over the skin. This formulation exhibits a first order release kinetic and can be applied as drug vehicle for topical administration or as wound dressing for wound healing. The primary goal of this communication is to report the identification and utility of 6-phosphogluconic trisodium salt (6-PG - Na + ) as a nontoxic cross-linker applicable for cationic polymers.

  10. Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N-quaternized chitosan/poly(acrylic acid).

    PubMed

    Mohamed, Riham R; Elella, Mahmoud H Abu; Sabaa, Magdy W

    2017-05-01

    Physically crosslinked hydrogels resulted from interaction between N,N,N-trimethyl chitosan chloride (N-Quaternized Chitosan) (NQC) and poly(acrylic acid) (PAA) were synthesized in different weight ratios (3:1), (1:1) and (1:3) taking the following codes Q3P1, Q1P1 and Q1P3, respectively. Characterization of the mentioned hydrogels was done using several analysis tools including; FTIR, XRD, SEM, TGA, biodegradation in simulated body fluid (SBF) and cytotoxicity against HepG-2 liver cancer cells. FTIR results proved that the prepared hydrogels were formed via electrostatic and H-bonding interactions, while XRD patterns proved that the prepared hydrogels -irrespective to their ratios- were more crystalline than both matrices NQC and PAA. TGA results, on the other hand, revealed that Q1P3 hydrogel was the most thermally stable compared to the other two hydrogels (Q3P1 and Q1P1). Biodegradation tests in SBF proved that these hydrogels were more biodegradable than the native chitosan. Examination of the prepared hydrogels for their potency in heavy metal ions removal revealed that they adsorbed Fe (III) and Cd (II) ions more than chitosan, while they adsorbed Cr (III), Ni (II) and Cu (II) ions less than chitosan. Moreover, testing the prepared hydrogels as antibacterial agents towards several Gram positive and Gram negative bacteria revealed their higher antibacterial activity as compared with NQC when used alone. Evaluating the cytotoxic effect of these hydrogels on an in vitro human liver cancer cell model (HepG-2) showed their good cytotoxic activity towards HepG-2. Moreover, the inhibition rate increased with increasing the hydrogels concentration in the culture medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG.

    PubMed

    Feng, Zujian; Zhao, Junqiang; Li, Yin; Xu, Shuxin; Zhou, Junhui; Zhang, Jianhua; Deng, Liandong; Dong, Anjie

    2016-10-20

    Thermo-sensitive injectable hydrogels based on poly(ε-caprolactone)/poly(ethylene glycol) (PCL/PEG) block copolymers have attracted considerable attention for sustained drug release and tissue engineering applications. Previously, we have reported a thermo-sensitive hydrogel of P(CL-co-TOSUO)-PEG-P(CL-co-TOSUO) (PECT) triblock copolymers modified by hydrophilic cyclic ether pendant groups 1,4,8-trioxa-[4.6]spiro-9-undecanone (TOSUO). Unfortunately, the low gel modulus of PECT (only 50-70 Pa) may limit its applications. Herein, another kind of thermogelling triblock copolymer of a pendant cyclic ether-modified caprolactonic poloxamer analog, PEG-P(CL-co-TOSUO)-PEG (PECTE), was successfully prepared by control of the hydrophilicity/hydrophobicity balance and chemical compositions of the copolymers. PECTE powder could directly disperse in water to form a stable nanoparticle (NP) aqueous dispersion and underwent sol-gel-sol transition behavior at a higher concentration with the temperature increasing from ambient or lower temperatures. Significantly, the microstructure parameters (e.g., different chemical compositions of the hydrophobic block and topology) played a critical role in the phase transition behavior. Furthermore, comparison studies on PECTE and PEG-PCL-PEG (PECE) showed that the introduction of pendant cyclic ether groups into PCL blocks could avoid unexpected ahead-of-time gelling of the PECE aqueous solution. In addition, the rheological analysis of PECTE and PECT indicated that the storage modulus of the PECTE hydrogel could be 100 times greater than that of the PECT hydrogel under the same mole ratios of TOSUO/CL and lower molecular weight. Consequently, PECTE thermal hydrogel systems are believed to be promising as in situ gel-forming biomaterials for drug delivery and tissue engineering.

  12. Innovative energy absorbing devices based on composite tubes

    NASA Astrophysics Data System (ADS)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  13. Highly Swellable, Dual-Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties.

    PubMed

    Feng, Xueling; Zhang, Kaihuan; Chen, Peng; Sui, Xiaofeng; Hempenius, Mark A; Liedberg, Bo; Vancso, G Julius

    2016-12-01

    Highly swellable, dual-responsive hydrogels, consisting of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) and redox-responsive poly(ferrocenylsilane) (PFS) based poly(ionic liquid)s (PILs) are formed by photo-polymerization. PFS chains bearing cross-linkable vinylimidazolium (VIm) side groups are copolymerized with NIPAM in aqueous solutions under ultraviolet light (λ = 365 nm) in the presence of a photoinitiator. The PFS-PILs serve as a macro-cross-linker and also provide redox responsiveness. The swelling ratio, morphology, and lower critical solution temperature (LCST) of the hydrogels are studied as a function of the PNIPAM/PFS ratio. The value of the LCST is dependent on the choice of the counterion of the PIL and the PNIPAM/PFS ratio. The hydrogel is employed as a reducing environment for the in situ fabrication of gold nanoparticles (AuNPs), forming AuNP-hydrogel composites. The localized surface plasmon resonance peak of the as-synthesized Au nanoparticles inside the hydrogel could be tuned by altering the temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Conducting Polymeric Hydrogel Electrolyte Based on Carboxymethylcellulose and Polyacrylamide/Polyaniline for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.

    Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.

  15. Modulation of cultured neural networks using neurotrophin release from hydrogel-coated microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Jun, Sang Beom; Hynd, Matthew R.; Dowell-Mesfin, Natalie M.; Al-Kofahi, Yousef; Roysam, Badrinath; Shain, William; Kim, Sung June

    2008-06-01

    Polyacrylamide and poly(ethylene glycol) diacrylate hydrogels were synthesized and characterized for use as drug release and substrates for neuron cell culture. Protein release kinetics was determined by incorporating bovine serum albumin (BSA) into hydrogels during polymerization. To determine if hydrogel incorporation and release affect bioactivity, alkaline phosphatase was incorporated into hydrogels and a released enzyme activity determined using the fluorescence-based ELF-97 assay. Hydrogels were then used to deliver a brain-derived neurotrophic factor (BDNF) from hydrogels polymerized over planar microelectrode arrays (MEAs). Primary hippocampal neurons were cultured on both control and neurotrophin-containing hydrogel-coated MEAs. The effect of released BDNF on neurite length and process arborization was investigated using automated image analysis. An increased spontaneous activity as a response to the released BDNF was recorded from the neurons cultured on the top of hydrogel layers. These results demonstrate that proteins of biological interest can be incorporated into hydrogels to modulate development and function of cultured neural networks. These results also set the stage for development of hydrogel-coated neural prosthetic devices for local delivery of various biologically active molecules.

  16. Design of poly(mPEGMA-co-MAA) hydrogel-based mPEG-b-PCL nanoparticles for oral meloxicam delivery.

    PubMed

    Shi, Yongli; Liu, Zhaomin; Yang, Yaxing; Xu, Xiaojie; Li, Yan; Li, Tong

    2017-07-01

    To enhance the therapeutic effects of meloxicam (MLX), we developed an oral MLX-loaded poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles@hydrogel (MLX-NPs@hydrogel) preparation. The MLX-NPs were fabricated via a solvent evaporation method, and their morphologies were observed by a JEM-1011 transmission electron microscope (TEM). The poly(mPEGMA-co-MAA) hydrogels were synthesized, and studies on their pH sensibilities were carried out in pH1.2, 6.8, and 7.4 buffers. The final MLX-NPs@hydrogel preparation was obtained by immersing the hydrogels in the MLX-NPs suspensions (pH7.4) for 48h. The thermodynamic properties and cytotoxicity of the MLX-NPs@hydrogel preparation were also studied. TEM images illustrated that mPEG-b-PCL NPs had a uniform size distribution. The poly(mPEGMA-co-MAA) hydrogels showed an excellent pH-sensibility. Thermal gravity analysis (TGA) data suggested that the protection of hydrogels improved the stability of mPEG-b-PCL NPs. The release studies revealed that MLX-NPs@hydrogel could deliver the MLX-NPs into alkalescent environment (e.g. intestinal tract). Then, the medicated NPs released MLX at a sustained release profile. Such preparation could overcome the drawbacks of oral MLX, and enhance its therapeutic effects. Therefore, the NPs@hydrogel was a promising sustained-controlled release matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Microbial adhesion to silicone hydrogel lenses: a review.

    PubMed

    Willcox, Mark D P

    2013-01-01

    Microbial adhesion to contact lenses is believed to be one of the initiating events in the formation of many corneal infiltrative events, including microbial keratitis, that occur during contact lens wear. The advent of silicone hydrogel lenses has not reduced the incidence of these events. This may partly be related to the ability of microbes to adhere to these lenses. The aim of this study was to review the published literature on microbial adhesion to contact lenses, focusing on adhesion to silicone hydrogel lenses. The literature on microbial adhesion to contact lenses was searched, along with associated literature on adverse events that occur during contact lens wear. Particular reference was paid to the years 1995 through 2012 because this encompasses the time when the first clinical trials of silicone hydrogel lenses were reported, and their commercial availability and the publication of epidemiology studies on adverse events were studied. In vitro studies of bacterial adhesion to unworn silicone hydrogel lens have shown that generally, bacteria adhere to these lenses in greater numbers than to the hydroxyethyl methacrylate-based soft lenses. Lens wear has different effects on microbial adhesion, and this is dependent on the type of lens and microbial species/genera that is studied. Biofilms that can be formed on any lens type tend to protect the bacteria and fungi from the effects on disinfectants. Fungal hyphae can penetrate the surface of most types of lenses. Acanthamoeba adhere in greater numbers to first-generation silicone hydrogel lenses compared with the second-generation or hydroxyethyl methacrylate-based soft lenses. Microbial adhesion to silicone hydrogel lenses occurs and is associated with the production of corneal infiltrative events during lens wear.

  18. Poly(n-vinylpyrrolidone) hydrogels: 2.Hydrogel composites as wound dressing for tropical environment

    NASA Astrophysics Data System (ADS)

    Himly, N.; Darwis, D.; Hardiningsih, L.

    1993-10-01

    POLY(N-VINYLPYRROLIDONE) HYDROGELS: 2. HYDROGEL COMPOSITES AS WOUND DRESSING FOR TROPICAL ENVIRONMENT. The effects of irradiation on hydration and other properties of poly(vinylpyrrolidone) (PVP) hydrogel composites have been investigated. The aqueous solution of vinylpyrrolidone (VP) 10 wt % was mixed with several additives such as agar and polyethylen glycol (PEG). The solution was then irradiated with gamma rays from Cobalt-60 source at room temperature. Several parameters such as elongation at break (EB), tensile strength (TS), degree of swelling (DS), water vapor transmission rate (WVTR), equilibrium water content (EWC), microbial growth and penetration test, and water activity (Aw) were analysed at room temperature of 29 ±2°C humidity of 80 ± 10%. Results show that elongation at break of hydrogel membranes with initial composition of VP with agar, VP with agar and PEG were 240 % and 250 % kGy, the equilibrium water content of membranes were 96 to 90%, whereas degree of swelling were 55 to 10. The WVTR of hydrogel membranes with initial composition of VP with agar and PEG was 70 g m -2h -1, while the water activity was 0.9. Such hydrogel membranes exhibits the following properties: They are elastic, transparent, flexible, impermeable for bacteria. They absopt a high capacity of water, attached to healthy skin but not to the wound and they are easy to remove. These properties of the hydrogel membranes allow for applying as a wound dressings in tropical environment.

  19. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel

    PubMed Central

    Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.

    2016-01-01

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229

  20. Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials.

    PubMed

    Kodjikian, Laurent; Casoli-Bergeron, Emmanuelle; Malet, Florence; Janin-Manificat, Hélène; Freney, Jean; Burillon, Carole; Colin, Joseph; Steghens, Jean-Paul

    2008-02-01

    As bacterial adhesion to contact lenses may contribute to the pathogenesis of keratitis, the aim of our study was to investigate in vitro adhesion of clinically relevant bacteria to conventional hydrogel (standard HEMA) and silicone-hydrogel contact lenses using a bioluminescent ATP assay. Four types of unworn contact lenses (Etafilcon A, Galyfilcon A, Balafilcon A, Lotrafilcon B) were incubated with Staphylococcus epidermidis (two different strains) and Pseudomonas aeruginosa suspended in phosphate buffered saline (PBS). Lenses were placed with the posterior surface facing up and were incubated in the bacterial suspension for 4 hours at 37 degrees C. Bacterial binding was then measured and studied by bioluminescent ATP assay. Six replicate experiments were performed for each lens and strain. Adhesion of all species of bacteria to standard HEMA contact lenses (Etafilcon A) was found to be significantly lower than that of three types of silicone-hydrogel contact lenses, whereas Lotrafilcon B material showed the highest level of bacterial binding. Differences between species in the overall level of adhesion to the different types of contact lenses were observed. Adhesion of P. aeruginosa was typically at least 20 times greater than that observed with both S. epidermidis strains. Conventional hydrogel contact lenses exhibit significantly lower bacterial adhesion in vitro than silicone-hydrogel ones. This could be due to the greater hydrophobicity but also to the higher oxygen transmissibility of silicone-hydrogel lenses.

  1. Temperature responsive hydrogel magnetic nanocomposites for hyperthermia and metal extraction applications

    NASA Astrophysics Data System (ADS)

    Reddy, N. Narayana; Ravindra, S.; Reddy, N. Madhava; Rajinikanth, V.; Raju, K. Mohana; Vallabhapurapu, Vijaya Srinivasu

    2015-11-01

    The present work deals with the development of temperature and magnetic responsive hydrogel networks based on poly (N-isopropylacrylamide)/acrylamido propane sulfonic acid. The hydrogel matrices are synthesized by polymerizing N-isopropylacrylamide (NIPAM) monomer in the presence of acrylamido propane sulphonicacid (AMPS) using a cross-linker (N,N-methylenebisacrylamide, MBA) and redox initiating system [ammonium persulphate (APS)/tetramethylethylenediamine (TMEDA)]. The magnetic nanoparticles are generated throughout the hydrogel networks using in situ method by incorporating iron ions and subsequent treatment with ammonia. A series of hydrogel-magnetic nanocomposites (HGMNC) are developed by varying AMPS composition. The synthesized hydrogel magnetic nanocomposites (HGMNC) are characterized by using Fourier Transform Infrared (FTIR) Spectroscopy, X-ray diffraction (XRD), Thermal Analyses and Electron Microscopy analysis (Scanning and Transmission Electron Microscope). The metal extraction capacities of the prepared hydrogel (HG) and hydrogel magnetic nanocomposites (HGMNC) were studied at different temperatures. The results suggest that HGMNCs have higher extraction capacity compared to HG and HG loaded iron ions. This data also reveals that the extraction of metals by hydrogel magnetic nanocomposites (HGMNCs) is higher at higher temperatures than room temperature. The prepared HGMNCs are also subjected to hyperthermia (cancer therapy) studies.

  2. Evaluation of Gentamicin and Lidocaine Release Profile from Gum Acacia-crosslinked-poly(2-hydroxyethylmethacrylate)-carbopol Based Hydrogels.

    PubMed

    Singh, Baljit; Dhiman, Abhishek

    2017-01-01

    No doubt, the prevention of infection is an indispensable aspect of the wound management, but, simultaneous wound pain relief is also required. Therefore, herein this article, incorporation of antibiotic agent 'gentamicin' and pain relieving agent 'lidocaine' into hydrogel wound dressings, prepared by using acacia gum, carbopol and poly(2-hydroxyethylmethacrylate) polymers, has been carried out. The hydrogels were evaluated as a drug carrier for model drugs gentamicin and lidocaine. Synthesis of hydrogel wound dressing was carried out by free radical polymerization technique. The drug loading was carried out by swelling equilibrium method and gel strength of hydrogels was measured by a texture analyzer. Porous microstructure of the hydrogel was observed in cryo-SEM images. The hydrogel showed mesh size 37.29 nm, cross-link density 2.19× 10-5 mol/cm3, molecular weight between two cross-links 60.25× 10-3 g/mol and gel strength 0.625±0.112 N in simulated wound fluid. It is concluded that the pH of swelling medium has influenced the network structure of hydrogel i.e., molecular weight of the polymer chain between two neighboring cross links, crosslink density and the corresponding mesh size. A good correlation was established between gel strength and network parameters. Cryo-SEM images showed porous morphology of hydrogels. These hydrogels were found to be biodegradable and antimicrobial in nature. Drug release occurred through Fickian diffusion mechanism and release profile was best fitted in first order model. Overall it is concluded that modification in GA has led to formation of a porous hydrogels for wound dressing applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Glucose-Responsive Trehalose Hydrogel for Insulin Stabilization and Delivery.

    PubMed

    Lee, Juneyoung; Ko, Jeong Hoon; Mansfield, Kathryn M; Nauka, Peter C; Bat, Erhan; Maynard, Heather D

    2018-05-01

    Effective delivery of therapeutic proteins is important for many biomedical applications. Yet, the stabilization of proteins during delivery and long-term storage remains a significant challenge. Herein, a trehalose-based hydrogel is reported that stabilizes insulin to elevated temperatures prior to glucose-triggered release. The hydrogel is synthesized using a polymer with trehalose side chains and a phenylboronic acid end-functionalized 8-arm poly(ethylene glycol) (PEG). The hydroxyls of the trehalose side chains form boronate ester linkages with the PEG boronic acid cross-linker to yield hydrogels without any further modification of the original trehalose polymer. Dissolution of the hydrogel is triggered upon addition of glucose as a stronger binder to boronic acid (K b = 2.57 vs 0.48 m -1 for trehalose), allowing the insulin that is entrapped during gelation to be released in a glucose-responsive manner. Moreover, the trehalose hydrogel stabilizes the insulin as determined by immunobinding after heating up to 90 °C. After 30 min heating, 74% of insulin is detected by enzyme-linked immunosorbent assay in the presence of the trehalose hydrogel, whereas only 2% is detected without any additives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultrasound stimulated release of mimosa medicine from cellulose hydrogel matrix.

    PubMed

    Jiang, Huixin; Tovar-Carrillo, Karla; Kobayashi, Takaomi

    2016-09-01

    Ultrasound (US) drug release system using cellulose based hydrogel films was developed as triggered to mimosa. Here, the mimosa, a fascinating drug to cure injured skin, was employed as the loading drug in cellulose hydrogel films prepared with phase inversion method. The mimosa hydrogels were fabricated from dimethylacetamide (DMAc)/LiCl solution in the presence of mimosa, when the solution was exposed to ethanol vapor. The US triggered release of the mimosa from the hydrogel matrix was carried out under following conditions of US powers (0-30W) and frequencies (23, 43 and 96kHz) for different mimosa hydrogel matrix from 0.5wt% to 2wt% cellulose solution. To release the drug by US trigger from the matrix, the better medicine release was observed in the matrix prepared from the 0.5wt% cellulose solution when the 43kHz US was exposed to the aqueous solution with the hydrogel matrix. The release efficiency increased with the increase of the US power from 5 to 30W at 43kHz. Viscoelasticity of the hydrogel matrix showed that the hydrogel became somewhat rigid after the US exposure. FT-IR analysis of the mimosa hydrogel matrixes showed that during the US exposure, hydrogen bonds in the structure of mimosa-water and mimosa-cellulose were broken. This suggested that the enhancement of the mimosa release was caused by the US exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. General design method of ultra-broadband perfect absorbers based on magnetic polaritons.

    PubMed

    Liu, Yuanbin; Qiu, Jun; Zhao, Junming; Liu, Linhua

    2017-10-02

    Starting from one-dimensional gratings and the theory of magnetic polaritons (MPs), we propose a general design method of ultra-broadband perfect absorbers. Based on the proposed design method, the obtained absorber can keep the spectrum-average absorptance over 99% at normal incidence in a wide range of wavelengths; this work simultaneously reveals the robustness of the absorber to incident angles and polarization angles of incident light. Furthermore, this work shows that the spectral band of perfect absorption can be flexibly extended to near the infrared regime by adjusting the structure dimension. The findings of this work may facilitate the active design of ultra-broadband absorbers based on plasmonic nanostructures.

  6. Programmable Hydrogels for Cell Encapsulation and Neo-Tissue Growth to Enable Personalized Tissue Engineering.

    PubMed

    Bryant, Stephanie J; Vernerey, Franck J

    2018-01-01

    Biomimetic and biodegradable synthetic hydrogels are emerging as a promising platform for cell encapsulation and tissue engineering. Notably, synthetic-based hydrogels offer highly programmable macroscopic properties (e.g., mechanical, swelling and transport properties) and degradation profiles through control over several tunable parameters (e.g., the initial network structure, degradation kinetics and behavior, and polymer properties). One component to success is the ability to maintain structural integrity as the hydrogel transitions to neo-tissue. This seamless transition is complicated by the fact that cellular activity is highly variable among donors. Thus, computational models provide an important tool in tissue engineering due to their unique ability to explore the coupled processes of hydrogel degradation and neo-tissue growth across multiple length scales. In addition, such models provide new opportunities to develop predictive computational tools to overcome the challenges with designing hydrogels for different donors. In this report, programmable properties of synthetic-based hydrogels and their relation to the hydrogel's structural properties and their evolution with degradation are reviewed. This is followed by recent progress on the development of computational models that describe hydrogel degradation with neo-tissue growth when cells are encapsulated in a hydrogel. Finally, the potential for predictive models to enable patient-specific hydrogel designs for personalized tissue engineering is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multiplex Immunoassay Platforms Based on Shape-Coded Poly(ethylene glycol) Hydrogel Microparticles Incorporating Acrylic Acid

    PubMed Central

    Park, Saemi; Lee, Hyun Jong; Koh, Won-Gun

    2012-01-01

    A suspension protein microarray was developed using shape-coded poly(ethylene glycol) (PEG) hydrogel microparticles for potential applications in multiplex and high-throughput immunoassays. A simple photopatterning process produced various shapes of hydrogel micropatterns that were weakly bound to poly(dimethylsiloxane) (PDMS)-coated substrates. These micropatterns were easily detached from substrates during the washing process and were collected as non-spherical microparticles. Acrylic acids were incorporated into hydrogels, which could covalently immobilize proteins onto their surfaces due to the presence of carboxyl groups. The amount of immobilized protein increased with the amount of acrylic acid due to more available carboxyl groups. Saturation was reached at 25% v/v of acrylic acid. Immunoassays with IgG and IgM immobilized onto hydrogel microparticles were successfully performed with a linear concentration range from 0 to 500 ng/mL of anti-IgG and anti-IgM, respectively. Finally, a mixture of two different shapes of hydrogel microparticles immobilizing IgG (circle) and IgM (square) was prepared and it was demonstrated that simultaneous detection of two different target proteins was possible without cross-talk using same fluorescence indicator because each immunoassay was easily identified by the shapes of hydrogel microparticles. PMID:22969408

  8. Chitosan/chondroitin sulfate hydrogels prepared in [Hmim][HSO4] ionic liquid.

    PubMed

    Nunes, Cátia S; Rufato, Kessily B; Souza, Paulo R; de Almeida, Elizângela A M S; da Silva, Michael J V; Scariot, Débora B; Nakamura, Celso V; Rosa, Fernanda A; Martins, Alessandro F; Muniz, Edvani C

    2017-08-15

    [Hmim][HSO 4 ] ionic liquid (IL) and bio-renewable sources as chitosan (CHT) and chondroitin sulfate (CS) were used to yield hydrogel-based materials (CHT/CS). The use of IL to solubilize both polysaccharides was considered an innovative way based on "green chemistry" principle, aiming the production of CHT/CS blended systems. CHT/CS hydrogels were carried out in homogeneous medium from short dissolution times. The hydrogels were characterized and achieved with excellent stabilities (in the 1.2-10pH range), larger swelling capacities, as well as devoid of cytotoxicity towards the normal VERO and diseased HT29 cells. The CHT/CS hydrogels carried out in [Hmim][HSO 4 ] could be applied in many technological purposes, like medical, pharmaceutical, and environmental fields. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Tough photoluminescent hydrogels doped with lanthanide.

    PubMed

    Wang, Mei Xiang; Yang, Can Hui; Liu, Zhen Qi; Zhou, Jinxiong; Xu, Feng; Suo, Zhigang; Yang, Jian Hai; Chen, Yong Mei

    2015-03-01

    Photoluminescent hydrogels have emerged as novel soft materials with potential applications in many fields. Although many photoluminescent hydrogels have been fabricated, their scope of usage has been severely limited by their poor mechanical performance. Here, a facile strategy is reported for preparing lanthanide (Ln)-alginate/polyacrylamide (PAAm) hydrogels with both high toughness and photoluminescence, which has been achieved by doping Ln(3+) ions (Ln = Eu, Tb, Eu/Tb) into alginate/PAAm hydrogel networks, where Ln(3+) ions serve as both photoluminescent emitters and physical cross-linkers. The resulting hydrogels exhibit versatile advantages including excellent mechanical properties (∼ MPa strength, ≈ 20 tensile strains, ≈ 10(4) kJ m(-3) energy dissipation), good photoluminescent performance, tunable emission color, excellent processability, and cytocompatibility. The developed tough photoluminescent hydrogels hold great promises for expanding the usage scope of hydrogels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering

    PubMed Central

    Cochis, Andrea; Sorrentino, Rita; Grassi, Federico; Leigheb, Massimiliano; Farè, Silvia

    2018-01-01

    A possible strategy in regenerative medicine is cell-sheet engineering (CSE), i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS). The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC)-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na2SO4 and PBS). MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3) and endothelial murine cells (MS1), and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues. PMID:29642573

  11. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering.

    PubMed

    Cochis, Andrea; Bonetti, Lorenzo; Sorrentino, Rita; Contessi Negrini, Nicola; Grassi, Federico; Leigheb, Massimiliano; Rimondini, Lia; Farè, Silvia

    2018-04-10

    A possible strategy in regenerative medicine is cell-sheet engineering (CSE), i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS). The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC)-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na₂SO₄ and PBS). MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3) and endothelial murine cells (MS1), and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues.

  12. A new injectable biphasic hydrogel based on partially hydrolyzed polyacrylamide and nano hydroxyapatite, crosslinked with chromium acetate, as scaffold for cartilage regeneration

    NASA Astrophysics Data System (ADS)

    Koushki, N.; Tavassoli, H.; Katbab, A. A.; Katbab, P.; Bonakdar, S.

    2015-05-01

    Polymer scaffolds are applied in the field of tissue engineering as three dimensional structures to organize cells and present stimuli to direct generation of a desired damaged tissue. In situ gelling scaffolds have attracted great attentions, as they are structurally similar to the extra cellular matrix (ECM). In the present work, attempts have been made to design and fabricate a new injectable and crosslinkable biphasic hydrogel based on partially hydrolyzed polyacrylamide (HPAM), chromium acetate as crosslink agent and nanocrystalline hydroxyapatite (nHAp) as reinforcing and bioactive agent for repair and regeneration of damaged cartilage. The distinct characteristic of HPAM is the presence of carboxylate anion groups on its backbone which allows to engineer the structure of the hydrogel for the desired bioactivity with appropriate cells differentiation towards both soft and hard (bone) tissues. The synthesized hydrogel exhibited bifunctional behavior which was derived by its biphasic structure in which one phase was loaded with nano hydroxyapatite to provide integration capability by subchondral bones and fix the hydrogel at cartilage defect without a need for suturing. The other phase differentiates the rabbit adipogenic mesenchymal stem cells (MSCs) towards soft tissue. Rheomechanical spectrometry (RMS) was employed to study the kinetic of the gelation including induction time and rate, as well as to measure the ultimate elastic modulus of the optimum crosslinked hydrogel. Surface tension measurement was also performed to tailor the surface characteristics of the gels. In vitro culturing of the cells inside the crosslinked hydrogel revealed high viability and high differentiation of the encapsulated rabbit stem cells, providing that the chromium acetate level was kept below 0.2 wt%. Based on the obtained results, the designed and fabricated biphasic hydrogel exhibited high potential as carrier for the stem cells for cartilage tissue engineering application

  13. Recent Developments in Thiolated Polymeric Hydrogels for Tissue Engineering Applications.

    PubMed

    Gajendiran, Mani; Rhee, Jae-Sung; Kim, Kyobum

    2018-02-01

    This review focuses on the recent strategy in the preparation of thiolated polymers and fabrication of their hydrogel matrices. The mechanism involved in the synthesis of thiolated polymers and fabrication of thiolated polymer hydrogels is exemplified with suitable schematic representations reported in the recent literature. The 2-iminothiolane namely "Traut's reagent" has been widely used for effectively thiolating the natural polymers such as collagen and gelatin, which contain free amino group in their backbone. The free carboxylic acid group containing polymers such as hyaluronic acid and heparin have been thiolated by using the bifunctional molecules such as cysteamine and L-cysteine via N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The degree of thiolation in the polymer chain has been widely determined by using Ellman's assay method. The thiolated polymer hydrogels are prepared by disulfide bond formation (or) thiol-ene reaction (or) Michael-type addition reaction. The thiolated polymers such as thiolated gelatin are reacted with polyethylene glycol diacrylate for obtaining interpenetrating polymer network hydrogel scaffolds. Several in vitro cell culture experiments indicate that the developed thiolated polymer hydrogels exhibited biocompatibility and cellular mimicking properties. The developed hydrogel scaffolds efficiently support proliferation and differentiation of various cell types. In the present review article, the thiol-functionalized protein-based biopolymers, carbohydrate-based polymers, and some synthetic polymers have been covered with recently published research articles. In addition, the usage of new thiolated nanomaterials as a crosslinking agent for the preparation of three-dimensional tissue-engineered hydrogels is highlighted.

  14. Self-assembled three-dimensional reduced graphene oxide-based hydrogel for highly efficient and facile removal of pharmaceutical compounds from aqueous solution.

    PubMed

    Umbreen, Nadia; Sohni, Saima; Ahmad, Imtiaz; Khattak, Nimat Ullah; Gul, Kashif

    2018-05-14

    Herein, self-assembled three-dimensional reduced graphene oxide (RGO)-based hydrogels were synthesized and characterized in detail. A thorough investigation on the uptake of three widely used pharmaceutical drugs, viz. Naproxen (NPX), Ibuprofen (IBP) and Diclofenac (DFC) was carried out from aqueous solutions. To ensure the sustainability of developed hydrogel assembly, practically important parameters such as desorption, recyclability and applicability to real samples were also evaluated. Using the developed 3D hydrogels as adsorptive platforms, excellent decontamination for the above mentioned persistent pharmaceutical drugs was achieved in acidic pH with a removal efficiency in the range of 70-80%. These hydrogels showed fast adsorption kinetics and experimental findings were fitted to different kinetic models, such as pseudo-first order, pseudo-second order, intra-particle and the Elovich models in an attempt to better understand the adsorption kinetics. Furthermore, equilibrium adsorption data was fitted to the Langmuir and Freundlich models, where relatively higher R 2 values obtained in case of former one suggested that monolayer adsorption played an important part in drug uptake. Thermodynamic aspects were also studied and negative ΔG 0 values obtained indicated the spontaneous nature of adsorption process. The study was also extended to check practical utility of as-prepared hydrogels by spiking real aqueous samples with drug solution, where high % recoveries obtained for NPX, IBP and DFC were of particular importance with regard to prospective application in wastewater treatment systems. We advocate RGO-based hydrogels as environmentally benign, readily recoverable/recyclable material with excellent adsorption capacity for application in wastewater purification. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    PubMed

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation.

  16. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    PubMed Central

    Appel, Alyssa A.; Larson, Jeffery C.; Jiang, Bin; Zhong, Zhong; Anastasio, Mark A.; Brey, Eric M.

    2015-01-01

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response. PMID:26487123

  17. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    DOE PAGES

    Appel, Alyssa A.; Larson, Jeffrey C.; Jiang, Bin; ...

    2015-10-20

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript we describe results using XPC to image a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted inmore » a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. In quantitative results, there were no differences between XPC and the gold-standard histological measurements. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.« less

  18. Construction and characterization of a pure protein hydrogel for drug delivery application.

    PubMed

    Xu, Xu; Xu, ZhaoKang; Yang, XiaoFeng; He, YanHao; Lin, Rong

    2017-02-01

    Injectable hydrogels have a variety of applications, including regenerative medicine, tissue engineering and controlled drug delivery. In this paper, we reported on a pure protein hydrogel based on tetrameric recombinant proteins for the potential drug delivery application. This protein hydrogel was formed instantly by simply mixing two recombinant proteins (ULD-TIP1 and ULD-GGGWRESAI) through the specific protein-peptide interaction. The protein hydrogel was characterized by rheology and scanning electron microscopy (SEM). In vitro cytotoxicity test indicated that the developed protein hydrogel had no apparent cytotoxicity against L-929 cells and HCEC cells after 48h incubation. The formed protein hydrogels was gradually degraded after incubation in phosphate buffered solution (PBS, pH=7.4) for a period of 144h study, as indicated by in vitro degradation test. Encapsulation of model drug (sodium diclofenac; DIC) were achieved by simple mixing of drugs with hydrogelator and the entrapped drugs was almost completely released from hydrogels within 24h via a diffusion manner. As a conclusion, the simple and mild preparation procedure and good biocompatibility of protein hydrogel would render its good promising candidate for drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The effect of lysophosphatidic acid using a hydrogel or collagen sponge carrier on bone healing in dogs.

    PubMed

    Might, Kelly R; Martinez, Steven A; Karin, Norman; Lin, Genyao; Tarasevich, Barbara; Pool, Roy R

    2016-07-19

    The purposes of this study were to determine: 1) the efficacy of polycaprolactone-g-polyethylene glycol (PCL-g-PEG) and polylactic-co-glycolic acid (PLGA-g-PEG) hydrogels and an absorbable collagen sponge (ACS) as carriers for lysophosphatidic acid (LPA), 2) the effect of LPA on bone healing in dogs, and 3) the ideal dose of LPA to maximally stimulate bone healing. Bilateral ulnar ostectomies were performed on purpose bred dogs. Control defects were filled with a PCL-g-PEG or PLGA-g-PEG hydrogel, or a saline soaked ACS. Contralateral defects were filled with a PCL-g-PEG or PLGA-g-PEG hydrogel, or an ACS with each carrying differing concentrations of an LPA solution. Dual-energy X-ray absorptiometry (DXA) was performed. Total bone area (TBA), mineral density (BMD), and mineral content (BMC) were determined at each time point. Relationships between the effect of treatment over time on TBA, BMC and BMD were determined. Phase 1 - There was no significant difference in DXA-based TBA (p = 0.09), BMC (p = 0.33), or BMD (p = 0.74) over time between LPA treatments, or between the LPA treated and control groups TBA (p = 0.95), BMC (p = 0.99), or BMD (p = 0.46). Phase 2 - There was no significant difference over time between LPA treatments in DXA-based TBA (p = 0.33), BMC (p = 0.45), or BMD (p = 0.43), or between the LPA treated and control groups TBA (p = 0.94), BMC (p = 0.38), or BMD (p = 0.17). Phase 3 - There was no significant difference over time between LPA treatments in DXA-based TBA (p = 0.78), BMC (p = 0.88), or BMD (p = 0.35), or between the LPA treated and control groups TBA (p = 0.07), BMC (p = 0.85), or BMD (p = 0.06). There was a significant increase in TBA (p <0.0001) and BMC (p = 0.0014), but a significant decrease in BMD (p <0.0001) was noted over time when all groups were combined. Although LPA has shown promise as an osteoinductive agent in research, its performance as a bone graft substitute, as utilized in this study, is unsupported. Further studies are

  20. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    PubMed

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles.

    PubMed

    Sun, Xiao-Ting; Zhang, Ying; Zheng, Dong-Hua; Yue, Shuai; Yang, Chun-Guang; Xu, Zhang-Run

    2017-06-15

    A visualized sensing method for glucose and cholesterol was developed based on the hemispheres of the same Janus hydrogel microparticles. Single-phase and Janus hydrogel microparticles were both generated using a centrifugal microfluidic chip. For glucose sensing, concanavalin A and fluorescein labeled dextran used for competitive binding assay were encapsulated in alginate microparticles, and the fluorescence of the microparticles was positively correlated with glucose concentration. For cholesterol sensing, the microparticles embedded with γ-Fe 2 O 3 nanoparticles were used as catalyst for the oxidation of 3,3',5,5'-Tetramethylbenzidine by H 2 O 2 , an enzymatic hydrolysis product of cholesterol. And the color transition was more sensitive in the microparticles than in solutions, indicating the microparticles are more applicable for visualized determination. Furthermore, Janus microparticles were employed for multitarget sensing in the two hemespheres, and glucose and cholesterol were detected within the same microparticles without obvious interference. Besides, the particles could be manipulated by an external magnetic field. The glucose and cholesterol levels were measured in human serum utilizing the microparticles, which confirmed the potential application of the microparticles in real sample detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications.

    PubMed

    González-Sánchez, M Isabel; Perni, Stefano; Tommasi, Giacomo; Morris, Nathanael Glyn; Hawkins, Karl; López-Cabarcos, Enrique; Prokopovich, Polina

    2015-05-01

    Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2 days. Copyright © 2015. Published by Elsevier B.V.

  3. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications

    PubMed Central

    González-Sánchez, M. Isabel; Perni, Stefano; Tommasi, Giacomo; Morris, Nathanael Glyn; Hawkins, Karl; López-Cabarcos, Enrique; Prokopovich, Polina

    2015-01-01

    Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2 days. PMID:25746278

  4. Hemostatic potential of natural/synthetic polymer based hydrogels crosslinked by gamma radiation

    NASA Astrophysics Data System (ADS)

    Barba, Bin Jeremiah D.; Tranquilan-Aranilla, Charito; Abad, Lucille V.

    2016-01-01

    Various raw materials and hydrogels prepared from their combination were assessed for hemostatic capability using swine whole blood clotting analysis. Initial screening showed efficient coagulative properties from κ-carrageenan and its carboxymethylated form, and α-chitosan, even compared to commercial products like QuikClot Zeolite Powder. Blending natural and synthetic polymers formed into hydrogels using gamma radiation produced materials with improved properties. KC and CMKC hydrogels were found to have the lowest blood clotting index in granulated form and had the higher capacity for platelet adhesion in foamed form compared to GelFoam. Possible mechanisms involved in the evident thrombogenicity of the materials include adsorption of platelets and related proteins that aid in platelet activation (primary hemostasis), absorption of water to concentrate protein factors that control the coagulation cascade, contact activation by its negatively charged surface and the formation of gel-blood clots.

  5. Cellulose Anionic Hydrogels Based on Cellulose Nanofibers As Natural Stimulants for Seed Germination and Seedling Growth.

    PubMed

    Zhang, Hao; Yang, Minmin; Luan, Qian; Tang, Hu; Huang, Fenghong; Xiang, Xia; Yang, Chen; Bao, Yuping

    2017-05-17

    Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.

  6. Dual responsive supramolecular hydrogel with electrochemical activity.

    PubMed

    Du, Ping; Liu, Jianghua; Chen, Guosong; Jiang, Ming

    2011-08-02

    Supramolecular materials with reversible responsiveness to environmental changes are of particular research interest in recent years. Inclusion complexation between cyclodextrin (CD) and ferrocene (Fc) is well-known and extensively studied because of its reversible association-dissociation controlled by the redox state of Fc. Although there are quite a few reported nanoscale materials incorporating this host-guest pair, polymeric hydrogels with electrochemical activity based on this interactive pair are still rare. Taking advantage of our previous reported hybrid inclusion complex (HIC) hydrogel structure, a new Fc-HIC was designed and obtained with β-CD-modified quantum dots as the core and Fc-ended diblock co-polymer p(DMA-b-NIPAM) as the shell, to achieve an electrochemically active hydrogel at elevated temperatures. Considering the two independent cross-linking strategies in the network structure, i.e., the interchain aggregation of pNIPAM and inclusion complexation between CD and Fc on the surface of the quantum dots, the hydrogel was fully thermo-reversible and its gel-sol transition was achieved after the addition of either an oxidizing agent or a competitive guest to Fc.

  7. Mechanomimetic hydrogels for vocal fold lamina propria regeneration.

    PubMed

    Kutty, Jaishankar K; Webb, Ken

    2009-01-01

    Vocal fold injury commonly leads to reduced vocal quality due to scarring-induced alterations in matrix composition and tissue biomechanics. The long-term hypothesis motivating our work is that rapid restoration of phonation and the associated dynamic mechanical environment will reduce scarring and promote regenerative healing. Toward this end, the objective of this study was to develop mechanomimetic, degradable hydrogels approximating the viscoelastic properties of the vocal ligament and mucosa that may be photopolymerized in situ to restore structural integrity to vocal fold tissues. The tensile and rheological properties of hydrogels (targeting the vocal ligament and mucosa, respectively) were varied as a function of macromer concentration. PEG diacrylate-based hydrogels exhibited linear stress-strain response and elastic modulus consistent with the properties of the vocal ligament at low strains (0-15%), but did not replicate the non-linear behavior observed in native tissue at higher strains. Methacrylated hyaluronic acid hydrogels displayed dynamic viscosity consistent with native vocal mucosa, while elastic shear moduli values were several-fold higher. Cell culture studies indicated that both hydrogels supported spreading, proliferation and collagen/proteoglycan matrix deposition by encapsulated fibroblasts throughout the 3D network.

  8. Recent advances in green hydrogels from lignin: a review.

    PubMed

    Thakur, Vijay Kumar; Thakur, Manju Kumari

    2015-01-01

    Recently, biorenewable polymers from different natural resources have attracted a greater attention of the research community for different applications starting from biomedical to automotive. Lignin is the second most abundant non-food biomass next to cellulose in the category of biorenewable polymers and is abundantly available as byproduct of several industries involved in paper making, ethanol production, etc. The development of various green materials from lignin, which is most often considered as waste, is therefore of prime interest from environmental and economic points of view. Over the last few years, little studies have been made into the use of lignin as an indispensable component in the hydrogels. This article provides an overview of the research work carried out in the last few years on lignin based hydrogels. This article comprehensively reviews the potential efficacy of lignin in biopolymer based green hydrogels with particular emphasis on synthesis, characterization and applications. In this article, several examples of hydrogels synthesized using different types of lignin are discussed to illustrate the state of the art in the use of lignin.

  9. Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel.

    PubMed

    Verma, Jyoti; Kanoujia, Jovita; Parashar, Poonam; Tripathi, Chandra Bhusan; Saraf, Shubhini A

    2017-02-01

    Microbial contamination in wounds leading to severe sepsis can be treated by silver-based antiseptics. However, frequent application of silver-based antiseptics, staining of skin, burning, and irritation at application site resulted to poor patient compliances. Thus, we formulated sericin- and chitosan-capped silver nanoparticle (S/C-SNP)-loaded hydrogel for accelerated wound healing and antimicrobial properties. The wound healing property of sericin, antibacterial nature of chitosan and silver, and mucoadhesive property of carbopol were utilized in development of novel wound dressing hydrogel to investigate the combined effect of these materials for effective treatment of wounds. The chemical reduction method was successfully employed for the synthesis of SNPs using sericin and chitosan as a capping/reducing agent. The SNPs were characterized by ultraviolet-spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optimized SNPs were further used for preparation of carbopol hydrogel (0.5, 0.75, and 1.0 % w/v). The prepared hydrogels were characterized for pH, viscosity, and texture analysis. The antimicrobial activity and wound healing activity of the optimized hydrogel (S/C-SNPs G-1) demonstrated higher bactericidal activity and wound closure, as supported by results of histopathology. Hydrogel containing capped SNPs has application in wound healing treatment.

  10. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels

    PubMed Central

    Yue, Kan; Santiago, Grissel Trujillo-de; Alvarez, Mario Moisés; Tamayol, Ali; Annabi, Nasim; Khademhosseini, Ali

    2015-01-01

    Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. Three dimensional (3D) GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties which mimic the native ECM. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental single-single cell research, cell signaling, drug and gene delivery, and bio-sensing. PMID:26414409

  11. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine

    PubMed Central

    Annabi, Nasim; Tamayol, Ali; Uquillas, Jorge Alfredo; Akbari, Mohsen; Bertassoni, Luiz E.; Cha, Chaenyung; Camci-Unal, Gulden; Dokmeci, Mehmet R.

    2014-01-01

    Hydrogels are hydrophilic polymer-based materials with high water content and physical characteristics that resemble the native extracellular matrix. Because of their remarkable properties, hydrogel systems are used for a wide range of biomedical applications, such as three-dimensional (3D) matrices for tissue engineering, drug-delivery vehicles, composite biomaterials, and as injectable fillers in minimally invasive surgeries. In addition, the rational design of hydrogels with controlled physical and biological properties can be used to modulate cellular functionality and tissue morphogenesis. Here, the development of advanced hydrogels with tunable physiochemical properties is highlighted, with particular emphasis on elastomeric, light-sensitive, composite, and shape-memory hydrogels. Emerging technologies developed over the past decade to control hydrogel architecture are also discussed and a number of potential applications and challenges in the utilization of hydrogels in regenerative medicine are reviewed. It is anticipated that the continued development of sophisticated hydrogels will result in clinical applications that will improve patient care and quality of life. PMID:24741694

  12. Novel levan and pNIPA temperature sensitive hydrogels for 5-ASA controlled release.

    PubMed

    Osman, Asila; Oner, Ebru Toksoy; Eroglu, Mehmet S

    2017-06-01

    Levan based cross-linker was successfully synthesized and used to prepare a series of more biocompatible and temperature responsive levan/N-isopropyl acrylamide (levan/pNIPA) hydrogels by redox polymerization at room temperature. Volume phase transition temperature (VPTT) of the hydrogels were precisely determined by derivative differential scanning calorimetry (DDSC). Incorporation of levan into the pNIPA hydrogel increased the VPTT from 32.8°C to 35.09°C, approaching to body temperature. Swelling behavior and 5-aminosalicylic acid (5-ASA) release of the hydrogels were found to vary significantly with temperature and composition. Moreover, a remarkable increase in thermal stability of levan within hydrogel with increase of pNIPA content was recorded. The biocompatibility of the hydrogels were tested against mouse fibroblast L929 cell line in phosphate buffer saline (PBS, pH 7.4). The hydrogels showed increasing biocompatibility with increasing levan ratio, indicating levan enhanced the hydrogel surface during swelling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Programmable and Bidirectional Bending of Soft Actuators Based on Janus Structure with Sticky Tough PAA-Clay Hydrogel.

    PubMed

    Zhao, Lei; Huang, Jiahe; Zhang, Yuancheng; Wang, Tao; Sun, Weixiang; Tong, Zhen

    2017-04-05

    Facile preparation, rapid actuating, and versatile actions are great challenges in exploring new kinds of hydrogel actuators. In this paper, we presented a facile sticking method to prepare Janus bilayer and multilayer hydrogel actuators that benefited from a special tough and adhesive PAA-clay hydrogel. Combining physical and chemical cross-linking reagents, we endowed the PAA gel with both toughness and adhesion. This PAA gel was reinforced by further cross-linking with Fe 3+ . These two hydrogels with different cross-linking densities exhibited different swelling capabilities and moduli in the media manipulated by pH and ionic strength, thus acting as promising candidates for soft actuators. On the basis of these gels, we designed hydrogel actuators of rapid response in several minutes and precisely controlled actuating direction by sticking two hydrogel layers together. Elaborate soft actuators such as bidirectional bending flytrap, gel hand with grasp, open, and gesturing actions as well as word-writing actuator were prepared. This method could be generalized by using other stimuli-responsive hydrogels combined with the adhesive PAA gel, which would open a new way to programmable and versatile soft actuators.

  14. Pore Interconnectivity Influences Growth Factor-Mediated Vascularization in Sphere-Templated Hydrogels

    PubMed Central

    Somo, Sami I.; Akar, Banu; Bayrak, Elif S.; Larson, Jeffery C.; Appel, Alyssa A.; Mehdizadeh, Hamidreza; Cinar, Ali

    2015-01-01

    Rapid and controlled vascularization within biomaterials is essential for many applications in regenerative medicine. The extent of vascularization is influenced by a number of factors, including scaffold architecture. While properties such as pore size and total porosity have been studied extensively, the importance of controlling the interconnectivity of pores has received less attention. A sintering method was used to generate hydrogel scaffolds with controlled pore interconnectivity. Poly(methyl methacrylate) microspheres were used as a sacrificial agent to generate porous poly(ethylene glycol) diacrylate hydrogels with interconnectivity varying based on microsphere sintering conditions. Interconnectivity levels increased with sintering time and temperature with resultant hydrogel structure showing agreement with template structure. Porous hydrogels with a narrow pore size distribution (130–150 μm) and varying interconnectivity were investigated for their ability to influence vascularization in response to gradients of platelet-derived growth factor-BB (PDGF-BB). A rodent subcutaneous model was used to evaluate vascularized tissue formation in the hydrogels in vivo. Vascularized tissue invasion varied with interconnectivity. At week 3, higher interconnectivity hydrogels had completely vascularized with twice as much invasion. Interconnectivity also influenced PDGF-BB transport within the scaffolds. An agent-based model was used to explore the relative roles of steric and transport effects on the observed results. In conclusion, a technique for the preparation of hydrogels with controlled pore interconnectivity has been developed and evaluated. This method has been used to show that pore interconnectivity can independently influence vascularization of biomaterials. PMID:25603533

  15. Structural evolution of photocrosslinked silk fibroin and silk fibroin-based hybrid hydrogels: A small angle and ultra-small angle scattering investigation.

    PubMed

    Whittaker, Jasmin L; Balu, Rajkamal; Knott, Robert; de Campo, Liliana; Mata, Jitendra P; Rehm, Christine; Hill, Anita J; Dutta, Naba K; Roy Choudhury, Namita

    2018-07-15

    Regenerated Bombyx mori silk fibroin (RSF) is a widely recognized protein for biomedical applications; however, its hierarchical gel structure is poorly understood. In this paper, the hierarchical structure of photocrosslinked RSF and RSF-based hybrid hydrogel systems: (i) RSF/Rec1-resilin and (ii) RSF/poly(N-vinylcaprolactam (PVCL) is reported for the first time using small-angle scattering (SAS) techniques. The structure of RSF in dilute to concentrated solution to fabricated hydrogels were characterized using small angle X-ray scattering (SAXS), small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) techniques. The RSF hydrogel exhibited three distinctive structural characteristics: (i) a Porod region in the length scale of 2 to 3nm due to hydrophobic domains (containing β-sheets) which exhibits sharp interfaces with the amorphous matrix of the hydrogel and the solvent, (ii) a Guinier region in the length scale of 4 to 20nm due to hydrophilic domains (containing turns and random coil), and (iii) a Porod-like region in the length scale of few micrometers due to water pores/channels exhibiting fractal-like characteristics. Addition of Rec1-resilin or PVCL to RSF and subsequent crosslinking systematically increased the nanoscale size of hydrophobic and hydrophilic domains, whereas decreased the homogeneity of pore size distribution in the microscale. The presented results have implications on the fundamental understanding of the structure-property relationship of RSF-based hydrogels. Copyright © 2018. Published by Elsevier B.V.

  16. The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation.

    PubMed

    Moreira Teixeira, Liliana S; Leijten, Jeroen C H; Wennink, Jos W H; Chatterjea, Anindita G; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel

    2012-05-01

    In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and anti-inflammatory cytokines, but mechanically unstable. We hypothesized that the advantages of these systems may be combined in one hydrogel, which can be easily translated into clinical settings. Platelet lysate was successfully incorporated into Dex-TA polymer solution prior to gelation. After enzymatic crosslinking, rheological and morphological evaluations were performed. Subsequently, the effect of platelet lysate on cell migration, adhesion, proliferation and multi-lineage differentiation was determined. Finally, we evaluated the integration potential of this gel onto osteoarthritis-affected cartilage. The mechanical properties and covalent attachment of Dex-TA to cartilage tissue during in situ gel formation were successfully combined with the advantages of platelet lysate, revealing the potential of this enhanced hydrogel as a cell-free approach. The addition of platelet lysate did not affect the mechanical properties and porosity of Dex-TA hydrogels. Furthermore, platelet lysate derived anabolic growth factors promoted proliferation and triggered chondrogenic differentiation of mesenchymal stromal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Synthesis and properties of hemicelluloses-based semi-IPN hydrogels.

    PubMed

    Peng, Feng; Guan, Ying; Zhang, Bing; Bian, Jing; Ren, Jun-Li; Yao, Chun-Li; Sun, Run-Cang

    2014-04-01

    Hemicelluloses were extracted from holocellulose of bamboo by alkaline treatment. The phosphorylated poly(vinyl alcohol) (P-PVA) samples with various substitution degrees were prepared through the esterification of PVA and phosphoric acid. A series of hydrogels of semi-interpenetrating polymeric networks (semi-IPN) composed of hemicelluloses-g-poly(acrylic acid) (HM-g-PAA) and the phosphorylated poly(vinyl alcohol) (P-PVA) were prepared by radical polymerization using potassium persulphate (KPS) as initiator. The HM-g-PAA networks were crosslinked by N,N-methylenebisacrylamide (MBA) as a crosslinking agent in the presence of linear P-PVA. FT-IR results confirmed that the hydrogels comprised a porous crosslink structure of P-PVA and HM with side chains that carried carboxylate and phosphorylate groups. SEM observations indicated that the incorporation of P-PVA induced highly porous structure, and P-PVA was uniformly dispersed in the polymeric network. The interior network structures of the semi-IPN matrix became more porous with increasing P-PVA. The TGA results showed that the thermo-decomposing temperature and thermal stability were increased effectively for intruding the chain of P-PVA. The maximum equilibrium swelling ratio of hydrogels in distilled water and 0.9 wt% sodium chloride solutions was up to 1085 g g(-1) and 87 g g(-1), respectively. The compressive strength increased with increasing the MBA/HM and P-PVA/HM ratios, and decreased with the increment of AA/HM ratio. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel.

    PubMed

    Wei, Yubo; Zeng, Qiang; Hu, Qiong; Wang, Min; Tao, Jia; Wang, Lishi

    2018-01-15

    Herein, the self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel was constructed on a glassy carbon electrode (GCE) with a free radical polymerization method. Combining the advantages of thermo-responsive molecular imprinted polymers and electrochemistry, the resulted biosensor presents a novel self-cleaned ability for bovine serum albumin (BSA) in aqueous media. As a temperature controlled gate, the hydrogel film undergoes the adsorption and desorption of BSA basing on a reversible structure change with the external temperature stimuli. In particular, these processes have been revealed by the response of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of electroactive [Fe(CN) 6 ] 3-/4- . The results have been supported by the evidences of scanning electron microscopy (SEM) and contact angles measurements. Under the optimal conditions, a wide detection range from 0.02μmolL -1 to 10μmolL -1 with a detection limit of 0.012 μmolL -1 (S/N = 3) was obtained for BSA. This proposed BSA sensor also possesses high selectivity, excellent stability, acceptable recovery and good reproducibility in its practical applications. Copyright © 2017. Published by Elsevier B.V.

  19. Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering.

    PubMed

    Maia, F Raquel; Musson, David S; Naot, Dorit; da Silva, Lucilia P; Bastos, Ana R; Costa, João B; Oliveira, Joaquim M; Correlo, Vitor M; Reis, Rui L; Cornish, Jillian

    2018-03-16

    Bone tissue engineering with cell-scaffold constructs has been attracting a lot of attention, in particular as a tool for the efficient guiding of new tissue formation. However, the majority of the current strategies used to evaluate novel biomaterials focus on osteoblasts and bone formation, while osteoclasts are often overlooked. Consequently, there is limited knowledge on the interaction between osteoclasts and biomaterials. In this study, the ability of spongy-like gellan gum and hydroxyapatite-reinforced gellan gum hydrogels to support osteoclastogenesis was investigated in vitro. First, the spongy-like gellan gum and hydroxyapatite-reinforced gellan gum hydrogels were characterized in terms of microstructure, water uptake and mechanical properties. Then, bone marrow cells isolated from the long bones of mice and cultured in spongy-like hydrogels were treated with 1,25-dihydroxyvitamin D3 to promote osteoclastogenesis. It was shown that the addition of HAp to spongy-like gellan gum hydrogels enables the formation of larger pores and thicker walls, promoting an increase in stiffness. Hydroxyapatite-reinforced spongy-like gellan gum hydrogels support the formation of the aggregates of tartrate-resistant acid phosphatase-stained cells and the expression of genes encoding DC-STAMP and Cathepsin K, suggesting the differentiation of bone marrow cells into pre-osteoclasts. The hydroxyapatite-reinforced spongy-like gellan gum hydrogels developed in this work show promise for future use in bone tissue scaffolding applications.

  20. Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering.

    PubMed

    Wang, Jianqi; Zhang, Fengjie; Tsang, Wing Pui; Wan, Chao; Wu, Chi

    2017-03-01

    Hydrogels prepared from poly(ethylene glycol) (PEG) are widely applied in tissue engineering, especially those derived from a combination of functional multi-arm star PEG and linear crosslinker, with an expectation to form a structurally ideal network. However, the poor mechanical strength still renders their further applications. Here we examined the relationship between the dynamics of the pre-gel solution and the mechanical property of the resultant hydrogel in a system consisting of 4-arm star PEG functionalized with vinyl sulfone and short dithiol crosslinker. A method to prepare mechanically strong hydrogel for cartilage tissue engineering is proposed. It is found that when gelation takes place at the overlap concentration, at which a slow relaxation mode just appears in dynamic light scattering (DLS), the resultant hydrogel has a local maximum compressive strength ∼20 MPa, while still keeps ultralow mass concentration and Young's modulus. Chondrocyte-laden hydrogel constructed under this condition was transplanted into the subcutaneous pocket and an osteochondral defect model in SCID mice. The in vivo results show that chondrocytes can proliferate and maintain their phenotypes in the hydrogel, with the production of abundant extracellular matrix (ECM) components, formation of typical chondrocyte lacunae structure and increase in Young's modulus over 12 weeks, as indicated by histological, immunohistochemistry, gene expression analyses and mechanical test. Moreover, newly formed hyaline cartilage was observed to be integrated with the host articular cartilage tissue in the defects injected with chondrocytes/hydrogel constructs. The results suggest that this hydrogel is a promising candidate scaffold for cartilage tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing

    PubMed Central

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-01

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant’s adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant’s adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a “suturing” effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. PMID:26731614

  2. Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices.

    PubMed

    Wang, Zhengmu; Zhang, Hongbin; Chu, Axel J; Jackson, John; Lin, Karen; Lim, Chinten James; Lange, Dirk; Chiao, Mu

    2018-04-01

    Well-organized composite formations such as hierarchical nested-network (NN) structure in bone tissue and reticular connective tissue present remarkable mechanical strength and play a crucial role in achieving physical and biological functions for living organisms. Inspired by these delicate microstructures in nature, an analogous scaffold of double network hydrogel was fabricated by creating a poly(2-hydroxyethyl methacrylate) (pHEMA) network in the porous structure of alginate hydrogels. The resulting hydrogel possessed hierarchical NN structure and showed significantly improved mechanical strength but still maintained high elasticity comparable to soft tissues due to a mutual strengthening effect between the two networks. The tough hydrogel is also self-lubricated, exhibiting a surface friction coefficient comparable with polydimethylsiloxane (PDMS) substrates lubricated by a commercial aqueous lubricant (K-Y Jelly) and other low surface friction hydrogels. Additional properties of this hydrogel include high hydrophilicity, good biocompatibility, tunable cell adhesion and bacterial resistance after incorporation of silver nanoparticles. Firm bonding of the hydrogel on silicone substrates could be achieved through facile chemical modification, thus enabling the use of this hydrogel as a versatile coating material for biomedical applications. In this study, we developed a tough hydrogel by crosslinking HEMA monomers in alginate hydrogels and forming a well-organized structure of hierarchical nested network (NN). Different from most reported stretchable alginate-based hydrogels, the NN hydrogel shows higher compressive strength but retains comparable softness to alginate counterparts. This work further demonstrated the good integration of the tough hydrogel with silicone substrates through chemical modification and micropillar structures. Other properties including surface friction, biocompatibility and bacterial resistance were investigated and the hydrogel shows

  3. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering.

    PubMed

    Wang, Xiaoyu; Li, Zihan; Shi, Ting; Zhao, Peng; An, Kangkang; Lin, Chao; Liu, Hongwei

    2017-04-01

    Injectable dextran-based hydrogels were prepared for the first time by bioorthogonal click chemistry for cartilage tissue engineering. Click-crosslinked injectable hydrogels based on cyto-compatible dextran (Mw=10kDa) were successfully fabricated under physiological conditions by metal-free alkyne-azide cycloaddition (click) reaction between azadibenzocyclooctyne-modified dextran (Dex-ADIBO) and azide-modified dextran (Dex-N 3 ). Gelation time of these dextran hydrogels could be regulated in the range of approximately 1.1 to 10.2min, depending on the polymer concentrations (5% or 10%) and ADIBO substitution degree (DS, 5 or 10) of Dex-ADIBO. Rheological analysis indicated that the dextran hydrogels were elastic and had storage moduli from 2.1 to 6.0kPa with increasing DS of ADIBO from 5 to 10. The in vitro tests revealed that the dextran hydrogel crosslinked from Dex-ADIBO DS 10 and Dex-N 3 DS 10 at a polymer concentration of 10% could support high viability of individual rabbit chondrocytes and the chondrocyte spheroids encapsulated in the hydrogel over 21days. Individual chondrocytes and chondrocyte spheroids in the hydrogel could produce cartilage matrices such as collagen and glycosaminoglycans. However, the chondrocyte spheroids produced a higher content of matrices than individual chondrocytes. This study indicates that metal-free click chemistry is effective to produce injectable dextran hydrogels for cartilage tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Microfabrication of proangiogenic cell-laden alginate-g-pyrrole hydrogels.

    PubMed

    DeVolder, Ross J; Zill, Andrew T; Jeong, Jae H; Kong, Hyunjoon

    2012-11-01

    Cells have been extensively studied for their uses in various therapies because of their capacities to produce therapeutic proteins and recreate new tissues. It has often been suggested that the efficacy of cell therapies can greatly be improved through the ability to localize and regulate cellular activities at a transplantation site; however, the technologies for this control are lacking. Therefore, this study reports a cell-Laden hydrogel patch engineered to support the proliferation and angiogenic growth factor expression of cells adhered to their surfaces, and to further promote neovascularization. Hydrogels consisting of alginate chemically linked with pyrrole units, termed alginate-g-pyrrole, were prepared through an oxidative cross-linking reaction between pyrrole units. Fibroblasts adhered to the alginate-g-pyrrole hydrogels, and exhibited increased proliferation and overall vascular endothelial growth factor (VEGF) expression, compared to those on pyrrole-free hydrogels. Furthermore, the alginate-g-pyrrole hydrogel surfaces were modified to present microposts, subsequently increasing the amount of pyrrole units on their surfaces. Cells adhered to the microfabricated gel surfaces exhibited increased proliferation and overall VEGF expression proportional to the density of the microposts. The resulting micropatterned alginate-g-pyrrole hydrogels exhibited increases in the size and density of mature blood vessels when implanted on chick chorioallantoic membranes (CAMs). The hydrogel system developed in this study will be broadly useful for improving the efficacy of a wide array of cell-based wound healing and tissue regenerative therapies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Keratocyte behavior in three-dimensional photopolymerizable poly(ethylene glycol) hydrogels

    PubMed Central

    Thibault, Richard; Ambrose, Winnette McIntosh; Schein, Oliver D.; Chakravarti, Shukti; Elisseeff, Jennifer

    2015-01-01

    The goal of this study was to evaluate three-dimensional (3-D) poly(ethylene glycol) (PEG) hydrogels as a culture system for studying corneal keratocytes. Bovine keratocytes were subcultured in DMEM/F-12 containing 10% fetal bovine serum (FBS) through passage 5. Primary keratocytes (P0) and corneal fibroblasts from passages 1 (P1) and 3 (P3) were photoencapsulated at various cell concentrations in PEG hydrogels via brief exposure to light. Additional hydrogels contained adhesive YRGDS and nonadhesive YRDGS peptides. Hydrogel constructs were cultured in DMEM/F-12 with 10% FBS for 2 and 4 weeks. Cell viability was assessed by DNA quantification and vital staining. Biglycan, type I collagen, type III collagen, keratocan and lumican expression were determined by reverse transcriptase–polymerase chain reaction. Deposition of type I collagen, type III collagen and keratan sulfate (KS)-containing matrix components was visualized using confocal microscopy. Keratocytes in a monolayer lost their stellate morphology and keratocan expression, displayed elongated cell bodies, and up-regulated biglycan, type I collagen and type III collagen characteristic of corneal fibroblasts. Encapsulated keratocytes remained viable for 4 weeks with spherical morphologies. Hydrogels supported production of KS, type I collagen and type III collagen matrix components. PEG-based hydrogels can support keratocyte viability and matrix production. 3-D hydrogel culture can stabilize but not restore the keratocyte phenotype. This novel application of PEG hydrogels has potential use in the study of corneal keratocytes in a 3-D environment. PMID:18567550

  6. Synthesis, characterization, and evaluation of poly(aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing.

    PubMed

    Zhang, Yubei; Dang, Qifeng; Liu, Chengsheng; Yan, Jingquan; Cha, Dongsu; Liang, Shengnan; Li, Xiaoli; Fan, Bing

    2017-09-01

    This study aims to develop new antibacterial hydrogel wound dressings composed of poly(aminoethyl) modified chitosan (PAEMCS). FTIR, 1 H NMR, and elemental analysis demonstrated that PAEMCS was successfully synthesized via grafting poly(aminoethyl) groups onto hydroxyl groups on chitin first, and removing acetyl groups from the grafted polymer afterward. XRD and TGA implied its well-defined crystallinity and thermostability. Furthermore, a series of hydrogels were fabricated under the participation of dipotassium hydrogen phosphate (DHP). The gelation tests suggested that the higher concentration of PAEMCS or DHP was beneficial to the formation of hydrogels. The pH values of hydrogels at 37°C were all in the range of 7.12-7.50. The rheological tests indicated that PAEMCS-based hydrogels were of lower DHP addition and higher elasticity than CS-based hydrogels to achieve the same gelation temperature under the same polymer's concentration. Additionally, the swelling, anti-bacteria, and cytotoxicity experiments showed that PAEMCS-based hydrogels possessed excellent hygroscopicity, high antibacterial activity against E. coli, S. aureus, or S. epidermidis, and good cytocompatibility toward L929 cells or HUVECs, respectively. All the results implied that PAEMCS-based hydrogels not only maintained inherent multiple properties of chitosan but also possessed excellent antibacterial activity, and might be promising antibacterial hydrogel dressings used in wound therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application.

    PubMed

    Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T

    2017-09-15

    Polymeric hydrogels have great potential in soft biological micro-actuator applications. However, inappropriate micro-architecture, non-anisotropy, weak biomechanics, and inferior response behaviors limit their development. In this study, we designed and manufactured novel polyacrylonitrile (PAN)-based hydrogel yarns composed with uniaxially aligned nanofibers. The nanofibrous hydrogel yarns possessed anisotropic architecture and robust mechanical properties with flexibility, and could be assembled into defined scaffold structures by subsequent processes. The as-prepared hydrogel yarns showed excellent pH response behaviors, with around 100% maximum length and 900% maximum diameter changes, and the pH response was completed within several seconds. Moreover, the hydrogel yarns displayed unique cell-responsive abilities to promote the cell adhesion, proliferation, and smooth muscle differentiation of human adipose derived mesenchymal stem cells (HADMSC). Chicken cardiomyocytes were further seeded onto our nanofibrous hydrogel yarns to engineer living cell-based microactuators. Our results demonstrated that the uniaxially aligned nanofibrous networks within the hydrogel yarns were the key characteristics leading to the anisotropic organization of cardiac cells, and improved sarcomere organization, mimicking the cardiomyocyte bundles in the native myocardium. The construct is capable of sustaining spontaneous cardiomyocyte pumping behaviors for 7days. Our PAN-based nanofibrous hydrogel yarns are attractive for creating linear microactuators with pH-response capacity and biological microactuators with cardiomyocyte-drivability. A mechanically robust polyacrylonitrile-based nanofibrous hydrogel yarn is fabricated by using a modified electrospinning setup in combination with chemical modification processes. The as-prepared hydrogel yarn possesses a uniaxially aligned nanofiber microarchitecture and supports a rapid, pH-dependent expansion/contraction response within a few

  8. A POSS based hydrogel with mechanical robustness, cohesiveness and a rapid self-healing ability by electrostatic interaction.

    PubMed

    Pu, Wanfen; Jiang, Feng; Chen, Pei; Wei, Bing

    2017-08-30

    A molecularly dispersed nano-material called POSS-NH 2 -AA was synthesized to construct a hybrid hydrogel with a rapid self-healing ability (stress 8 kPa) and excellent mechanical performance (a strain of 4683% and a stress of 37.8 kPa). The hydrogel also exhibits good cohesiveness to materials, such as plastics, glass and iron. The backbone of the POSS makes the hydrogel much stronger than the hydrogel without POSS, which accounts for the improvement in its properties. This process is facile and useful to construct mechanically strong and self-healable materials.

  9. Synthesis and evaluation on pH- and temperature-responsive chitosan-p(MAA-co-NIPAM) hydrogels.

    PubMed

    Rasib, S Z M; Ahmad, Z; Khan, A; Akil, H M; Othman, M B H; Hamid, Z A A; Ullah, F

    2018-03-01

    In this study, chitosan-poly(methacrylic acid-co-N-isopropylacrylamide) [chitosan-p(MAA-co-NIPAM)] hydrogels were synthesized by emulsion polymerization. In order to be used as a carrier for drug delivery systems, the hydrogels had to be biocompatible, biodegradable and multi-responsive. The polymerization was performed by copolymerize MAA and NIPAM with chitosan polymer to produce a chitosan-based hydrogel. Due to instability during synthesis and complexity of components to produce the hydrogel, further study at different times of reaction is important to observe the synthesis process, the effect of end product on swelling behaviour and the most important is to find the best way to control the hydrogel synthesis in order to have an optimal swelling behaviour for drug release application. Studied by using Fourier transform infra-red (FTIR) spectroscopy found that, the synthesized was successfully produced stable chitosan-based hydrogel with PNIPAM continuously covered the outer surface of hydrogel which influenced much on the stability during synthesis. The chitosan and PMAA increased the zeta potential of the hydrogel and the chitosan capable to control shrinkage above human body temperature. The chitosan-p(MAA-co-NIPAM) hydrogels also responses to pH and temperature thus improved the ability to performance as a drug carrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Study on the millimeter-wave scale absorber based on the Salisbury screen

    NASA Astrophysics Data System (ADS)

    Yuan, Liming; Dai, Fei; Xu, Yonggang; Zhang, Yuan

    2018-03-01

    In order to solve the problem on the millimeter-wave scale absorber, the Salisbury screen absorber is employed and designed based on the RL. By optimizing parameters including the sheet resistance of the surface resistive layer, the permittivity and the thickness of the grounded dielectric layer, the RL of the Salisbury screen absorber could be identical with that of the theoretical scale absorber. An example is given to verify the effectiveness of the method, where the Salisbury screen absorber is designed by the proposed method and compared with the theoretical scale absorber. Meanwhile, plate models and tri-corner reflector (TCR) models are constructed according to the designed result and their scattering properties are simulated by FEKO. Results reveal that the deviation between the designed Salisbury screen absorber and the theoretical scale absorber falls within the tolerance of radar Cross section (RCS) measurement. The work in this paper has important theoretical and practical significance in electromagnetic measurement of large scale ratio.

  11. A Stimuli-Responsive Supramolecular Hydrogel for Controlled Release of Drug

    NASA Astrophysics Data System (ADS)

    Biswas, Subharanjan; Datta, Lakshmi Priya; Roy, Soumyajit

    An inexpensive, facile, and environmentally benign method has been developed for the preparation of stimuli-responsive and self-healing polyacrylic acid-chitosan-based supramolecular hydrogels. Guanidine hydrochloride is used as the supramolecular crosslinker to form an interconnected network with polyacrylic acid-chitosan complex. Because of the dynamic equilibrium between the hydrogen-bonding sites of the components, the hydrogels were found to be self-healable and sensitive to biochemical-stimulus, such as pH. Controlled loading of drug like doxorubicin and its significant anticancer activity of such hydrogels is worth mentioning.

  12. Hydrogels with covalent and noncovalent crosslinks

    NASA Technical Reports Server (NTRS)

    Kilck, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2013-01-01

    A method for targeted delivery of therapeutic compounds from hydrogels is presented. The method involves administering to a cell a hydrogel in which a therapeutic compound is noncovalently bound to heparin. The hydrogel may contain covalent and non-covalent crosslinks.

  13. Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings.

    PubMed

    Grande, M; Vincenti, M A; Stomeo, T; Bianco, G V; de Ceglia, D; Aközbek, N; Petruzzelli, V; Bruno, G; De Vittorio, M; Scalora, M; D'Orazio, A

    2014-12-15

    A one-dimensional dielectric grating, based on a simple geometry, is proposed and investigated to enhance light absorption in a monolayer graphene exploiting guided mode resonances. Numerical findings reveal that the optimized configuration is able to absorb up to 60% of the impinging light at normal incidence for both TE and TM polarizations resulting in a theoretical enhancement factor of about 26 with respect to the monolayer graphene absorption (≈2.3%). Experimental results confirm this behavior showing CVD graphene absorbance peaks up to about 40% over narrow bands of a few nanometers. The simple and flexible design points to a way to realize innovative, scalable and easy-to-fabricate graphene-based optical absorbers.

  14. An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery.

    PubMed

    Zhao, Fuli; Wu, Di; Yao, Dan; Guo, Ruiwei; Wang, Weiwei; Dong, Anjie; Kong, Deling; Zhang, Jianhua

    2017-12-01

    Long-term and daily subcutaneous injections of insulin for the treatment of insulin-dependent diabetic patients often lead to poor patient compliance and undesired complications. Phenylboronic acid (PBA)-based polymeric hydrogels have been widely considered as one of the most promising insulin delivery system to replace the frequent insulin injections. However, their applications are limited by clinically irrelevant glucose-responsive range, slow response rate, low tissue-adhesiveness and poor biodegradability, undesirable leakage at normoglycemic state. Herein, we report a novel implantable insulin hydrogel for glucose-regulated delivery of insulin based on a unique particle-hydrogel hybrid platform featuring fast glucose responsiveness at physiological pH, shear-thinning behavior for injection, tissue-adhesive function for long-lasting adherence, and full biodegradability for safe use. The system was thoroughly characterized both in vitro and in vivo and was demonstrated to hold these unique functions. Using streptozotocin-induced diabetic mice as a model, it was shown that a single subcutaneous injection of the insulin-loaded particle-hydrogel formulation led to quasi-steady-state blood glucose levels within the normal range for about two weeks. In addition, the preparation of the formulation only involved simple mixing and self-assembling processes, and thus it had great scalability and reproducibility for practical use. The highly feasible preparation, excellent performance, inherent biocompatibility and biodegradability make this novel composite hydrogel promising platform for diabetes therapy. Phenylboronic acid (PBA)-based polymeric hydrogels have been widely considered as one of the most promising insulin delivery system to replace the frequent insulin injections. However, these hydrogels, mostly based on a variety of PBA-containing acrylamide monomers, are still far from clinical reality. Building upon a unique particle-hydrogel hybrid platform, herein we

  15. Influence of hydrophobic modification in alginate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Soumitra

    Alginate has been exploited commercially for decades in foods, textiles, paper, pharmaceutical industries, and also as a detoxifier for removing heavy metals. Alginate is also popular in cell encapsulation because of its relatively mild gelation protocol and simple chemistry with which biological active entities can be immobilized. Surface modification of alginate gels has been explored to induce desired cell interactions with the gel matrix. These modifications alter the bulk properties, which strongly determine on how cells feel and response to the three-dimensional microenvironment. However, there is a need to develop strategies to engineer functionalities into bulk alginate hydrogels that not only preserve their inherent qualities but are also less toxic. In this thesis, our main focus was to optimize the mechanical properties of alginate-based hydrogels, and by doing so control the performance of the biomaterials. In the first scheme, we used alginate and hydrophobically modified ethyl hydroxy ethyl cellulose as components in interpenetrating polymer network (IPN) gels. The second network was used to control gelation time and rheological properties. We believe these experiments also may provide insight into the mechanical and structural properties of more complex biopolymer gels and naturally-occurring IPNs. Next, we worked on incorporating a hydrophobic moiety directly into the alginate chain, resulting in materials for extended release of hydrophobic drugs. We successfully synthesized hydrophobically modified alginate (HMA) by attaching octylamine groups onto the alginate backbone by standard carbodiimide based amide coupling reaction. Solubility of several model hydrophobic drugs in dilute HMA solutions was found to be increased by more than an order of magnitude. HMA hydrogels, prepared by crosslinking the alginate chains with calcium ions, were found to exhibit excellent mechanical properties (modulus ˜100 kPa) with release extended upto 5 days. Ability

  16. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    DOEpatents

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  17. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.

    PubMed

    Altomare, Lina; Cochis, Andrea; Carletta, Andrea; Rimondini, Lia; Farè, Silvia

    2016-05-01

    Methylcellulose (MC), a water-soluble polymer derived from cellulose, was investigated as a possible temporary substrate having thermo-responsive properties favorable for cell culturing. MC-based hydrogels were prepared by a dispersion technique, mixing MC powder (2, 4, 6, 8, 10, 12 % w/v) with selected salts (sodium sulphate, Na2SO4), sodium phosphate, calcium chloride, or phosphate buffered saline, to evaluate the influence of different compositions on the thermo-responsive behavior. The inversion test was used to determine the gelation temperatures of the different hydrogel compositions; thermo-mechanical properties and thermo-reversibility of the MC hydrogels were investigated by rheological analysis. Gelation temperatures and rheological behavior depended on the MC concentration and type and concentration of salt used in hydrogel preparation. In vitro cytotoxicity tests, performed using L929 mouse fibroblasts, showed no toxic release from all the tested hydrogels. Among the investigated compositions, the hydrogel composed of 8 % w/v MC with 0.05 M Na2SO4 had a thermo-reversibility temperature at 37 °C. For that reason, this formulation was thus considered to verify the possibility of inducing in vitro spontaneous detachment of cells previously seeded on the hydrogel surface. A continuous cell layer (cell sheet) was allowed to grow and then detached from the hydrogel surface without the use of enzymes, thanks to the thermo-responsive behavior of the MC hydrogel. Immunofluorescence observation confirmed that the detached cell sheet was composed of closely interacting cells.

  18. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration.

    PubMed

    Zheng, Jiafu; Zhao, Fujian; Zhang, Wen; Mo, Yunfei; Zeng, Lei; Li, Xian; Chen, Xiaofeng

    2018-08-01

    In recent years, gelatin-based composites hydrogels have been intensively investigated because of their inherent bioactivity, biocompatibility and biodegradability. Herein, we fabricated photocrosslinkable biomimetic composites hydrogels from bioactive glass (BG) and gelatin methacryloyl (GelMA) by a sequential physical and chemical crosslinking (gelation + UV) approach. The results showed that the compressive modulus of composites hydrogels increased significantly through the sequential crosslinking approach. The addition of BG resulted in a significant increase in physiological stability and apatite-forming ability. In vitro data indicated that BG/GelMA composites hydrogels promoted cell attachment, proliferation and differentiation. Overall, the BG/GelMA composites hydrogels combined the advantages of good biocompatibility and bioactivity, and had potential applications in bone regeneration. Copyright © 2018. Published by Elsevier B.V.

  19. Development of CMC hydrogels loaded with silver nano-particles for medical applications.

    PubMed

    Hebeish, Ali; Hashem, M; El-Hady, M M Abd; Sharaf, S

    2013-01-30

    Innovative CMC-based hydrogels with great potentials for usage in medical area were principally synthesized as per two strategies .The first involved reaction of epichlorohydrin in alkaline medium containing silver nitrate to yield silver nano-particles (AgNPs)-loaded CMC hydrogel. While CMC acted as stabilizing for AgNPs, trisodium citrate was added to the reaction medium to assist CMC in establishing reduction of Ag(+) to AgNPs. The second strategy entailed preparation of CMC hydrogel which assists the in situ preparation of AgNPs under the same conditions. In both strategies, factors affecting the characterization of AgNPs-loaded CMC hydrogels were studied. Analysis and characterization of the so obtained hydrogels were performed through monitoring swelling behavior, FTIR spectroscopy, SEM, EDX, UV-vis spectrophotometer and TEM. Antimicrobial activity of the hydrogels was examined and mechanisms involved in their synthesis were reported. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Tough Hydrogel Robots: High-Speed, High-Force and Opto-sonically Invisible in Water

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of tough hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. We invent a simple method capable of assembling physically-crosslinked hydrogel parts followed by covalent crosslinking to fabricate large-scale hydraulic hydrogel actuators and robots with robust bodies and interfaces. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owning to the anti-fatigue property of the hydrogel under moderate stresses. A multiscale theoretical framework has been developed to guide the design and optimization of the hydrogel robots. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and catching a live fish in water. The work was supported by NSF(No. CMMI- 1253495) and ONR (No. N00014-14-1-0528).

  1. Thiol–ene click hydrogels for therapeutic delivery

    PubMed Central

    Kharkar, Prathamesh M.; Rehmann, Matthew S.; Skeens, Kelsi M.; Maverakis, Emanual; Kloxin, April M.

    2016-01-01

    Hydrogels are of growing interest for the delivery of therapeutics to specific sites in the body. For use as a delivery vehicle, hydrophilic precursors are usually laden with bioactive moieties and then directly injected to the site of interest for in situ gel formation and controlled release dictated by precursor design. Hydrogels formed by thiol–ene click reactions are attractive for local controlled release of therapeutics owing to their rapid reaction rate and efficiency under mild aqueous conditions, enabling in situ formation of gels with tunable properties often responsive to environmental cues. Herein, we will review the wide range of applications for thiol–ene hydrogels, from the prolonged release of anti-inflammatory drugs in the spine to the release of protein-based therapeutics in response to cell-secreted enzymes, with a focus on their clinical relevance. We will also provide a brief overview of thiol–ene click chemistry and discuss the available alkene chemistries pertinent to macromolecule functionalization and hydrogel formation. These chemistries include functional groups susceptible to Michael type reactions relevant for injection and radically-mediated reactions for greater temporal control of formation at sites of interest using light. Additionally, mechanisms for the encapsulation and controlled release of therapeutic cargoes are reviewed, including i) tuning the mesh size of the hydrogel initially and temporally for cargo entrapment and release and ii) covalent tethering of the cargo with degradable linkers or affinity binding sequences to mediate release. Finally, myriad thiol–ene hydrogels and their specific applications also are discussed to give a sampling of the current and future utilization of this chemistry for delivery of therapeutics, such as small molecule drugs, peptides, and biologics. PMID:28361125

  2. Energy conversion in polyelectrolyte hydrogels

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  3. A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors.

    PubMed

    Zhang, Guangzhao; Chen, Yunhua; Deng, Yonghong; Wang, Chaoyang

    2017-10-18

    We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly(ethylene oxide) block (A) and terminal poly(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device.

  4. Controlling Mechanical Properties of Cell-Laden Hydrogels by Covalent Incorporation of Graphene Oxide

    PubMed Central

    Cha, Chaenyung; Shin, Su Ryon; Gao, Xiguang; Annabi, Nasim; Dokmeci, Mehmet R.; Tang, Xiaowu (Shirley); Khademhosseini, Ali

    2013-01-01

    Graphene-based materials are useful reinforcing agents to modify the mechanical properties of hydrogels. Here, we present an approach to covalently incorporate graphene oxide (GO) into hydrogels via radical copolymerization to enhance the dispersion and conjugation of GO sheets within the hydrogels. GO is chemically modified to present surface-grafted methacrylate groups (MeGO). In comparison to GO, higher concentrations of MeGO can be stably dispersed in a pre-gel solution containing methacrylated gelatin (GelMA) without aggregation or significant increase in viscosity. In addition, the resulting MeGO-GelMA hydrogels demonstrate a significant increase in fracture strength with increasing MeGO concentration. Interestingly, the rigidity of the hydrogels is not significantly affected by the covalently incorporated GO. Therefore, our approach can be used to enhance the structural integrity and resistance to fracture of the hydrogels without inadvertently affecting their rigidity, which is known to affect the behavior of encapsulated cells. The biocompatibility of MeGO-GelMA hydrogels is confirmed by measuring the viability and proliferation of the encapsulated fibroblasts. Overall, this study highlights the advantage of covalently incorporating GO into a hydrogel system, and improves the quality of cell-laden hydrogels. PMID:24127350

  5. Construction of physical crosslink-based chitosan/liquid crystal composite hydrogel and evaluation on their cytocompatibility

    PubMed Central

    Du, Lin; Yang, Xiaohui; Li, Wenqiang; Luo, Xuhui; Wu, Hao; Zhang, Jiaqing; Tu, Mei

    2017-01-01

    In order to provide a novel biomimetic composite substrate for tissue engineering and explore the interaction between cells and this type of material, we developed chitosan/liquid crystal (CS/LC) composite hydrogel with embedded LC phases by composing of cholesterol hydroxypropyl cellulose ester liquid crystalline material and CS. The micromorphology of CS/LC composite hydrogels exhibited ‘islands-sea’ phase separation structures similar to the ‘fluid mosaic model’ of biomembrane. In vitro cell compatibility study suggested that 3T3 is fibroblasts exhibited better initial cell adhesions and higher proliferation rates on the composite hydrogel than on the polystyrene control plate and the pure LC membrane. This novel CS/LC composite hydrogel provides more favorable interface for cell growth and proliferation and may serve as potentially active substrate for engineering interfaces to live cells. PMID:28149528

  6. Hydrogel-based ultra-moisturizing cream formulation for skin hydration and enhanced dermal drug delivery.

    PubMed

    Lee, Sang Gon; Kim, Sung Rae; Cho, Hye In; Kang, Mean Hyung; Yeom, Dong Woo; Lee, Seo Hyun; Lee, Sangkil; Choi, Young Wook

    2014-01-01

    To develop an external vehicle for skin hydration and enhanced dermal drug delivery, a hydrogel-based ultra-moisturizing cream (HUMC) was successfully formulated with carbopol 934P, urea, Tinocare GL, grape seed oil, and other excipients. The HUMC showed plastic flow behavior due to a gel structure with a cream base. Different types of drug-free vehicles such as a hydrogel, conventional cream (CC), and three HUMCs were prepared and subjected to an in vivo skin hydration test on a hairless mouse using a corneometer. Hydration effect (∆AU) was in the order of HUMC2>HUMC1 ≥ CC>HUMC3>hydrogel. Using nile red (NR) and 5-carboxyfluorescein (5-CF) as lipophilic and hydrophilic fluorescent probes, respectively, in vitro skin permeation and accumulation studies were conducted using Franz diffusion cells. The values of steady-state flux (Jss, ng/h/cm(2)) were obtained: 74.8 (CC), 145.6 (HUMC1), and 161.9 (HUMC2) for NR delivery; 6.8 (CC), 8.3 (HUMC1), and 10.9 (HUMC2) for 5-CF delivery. The amounts retained in the skin at 12 h (Qr, ng/cm(2)) were determined: 86.4 (CC) and 102.0 (HUMC2) for NR; and 70.1 (CC) and 195.6 (HUMC2) for 5-CF. Confocal microscopy was used to visualize the distribution of the fluorescent probes. NR tended to be localized into the deeper part of the skin with adipose tissue whereas 5-CF localized in the upper layer of the skin. Thus we propose that HUMC2 is an efficacious vehicle for skin hydration and enhances dermal delivery of lipophilic and hydrophilic drugs.

  7. Osmotic Engine: Translating Osmotic Pressure into Macroscopic Mechanical Force via Poly(Acrylic Acid) Based Hydrogels

    PubMed Central

    Arens, Lukas; Weißenfeld, Felix; Klein, Christopher O.; Schlag, Karin

    2017-01-01

    Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg−1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. PMID:28932675

  8. Broadband infrared metamaterial absorber based on anodic aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Yang, Jingfan; Qu, Shaobo; Ma, Hua; Wang, Jiafu; Yang, Shen; Pang, Yongqiang

    2018-05-01

    In this work, a broadband infrared metamaterial absorber is proposed based on trapezoid-shaped anodic aluminum oxide (AAO) template. Unlike traditional metamaterial absorber constructed from metal-dielectric-metal sandwich structure, our proposed absorber is composed of trapezoid-shaped AAO template with metallic nanowires inside. The infrared absorption efficiency is numerically calculated and the mechanism analysis is given in the paper. Owing to the superposition of multiple resonances produced by the nanowires with different heights, the infrared metamatrial absorber can keep high absorption efficiency during broad working wavelength band from 3.4 μm to 6.1 μm. In addition, the resonance wavelength is associated with the height of nanowires, which indicates that the resonance wavelength can be modulated flexibly through changing the heights of nanowires. This kind of design can also be adapted to other wavelength regions.

  9. Bio-inspired self-healing structural color hydrogel

    PubMed Central

    Fu, Fanfan; Chen, Zhuoyue; Zhao, Ze; Wang, Huan; Shang, Luoran; Gu, Zhongze

    2017-01-01

    Biologically inspired self-healing structural color hydrogels were developed by adding a glucose oxidase (GOX)- and catalase (CAT)-filled glutaraldehyde cross-linked BSA hydrogel into methacrylated gelatin (GelMA) inverse opal scaffolds. The composite hydrogel materials with the polymerized GelMA scaffold could maintain the stability of an inverse opal structure and its resultant structural colors, whereas the protein hydrogel filler could impart self-healing capability through the reversible covalent attachment of glutaraldehyde to lysine residues of BSA and enzyme additives. A series of unprecedented structural color materials could be created by assembling and healing the elements of the composite hydrogel. In addition, as both the GelMA and the protein hydrogels were derived from organisms, the composite materials presented high biocompatibility and plasticity. These features of self-healing structural color hydrogels make them excellent functional materials for different applications. PMID:28533368

  10. Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays

    PubMed Central

    2017-01-01

    The combination of supramolecular hydrogels formed by low molecular weight gelator self-assembly via noncovalent interactions within a scaffold derived from polyethylene glycol (PEG) affords an interesting approach to immobilize fully functional, isolated reporter bacteria in novel microwell arrays. The PEG-based scaffold serves as a stabilizing element and provides physical support for the self-assembly of the C2-phenyl-derived gelator on the micrometer scale. Supramolecular hydrogel microwell arrays with various shapes and sizes were used to isolate single or small numbers of Escherichia coli TOP10 pTetR-LasR-pLuxR-GFP. In the presence of the autoinducer N-(3-oxododecanoyl) homoserine lactone, the entrapped E. coli in the hydrogel microwell arrays showed an increased GFP expression. The shape and size of microwell arrays did not influence the fluorescence intensity and the projected size of the bacteria markedly, while the population density of seeded bacteria affected the number of bacteria expressing GFP per well. The hydrogel microwell arrays can be further used to investigate quorum sensing, reflecting communication in inter- and intraspecies bacterial communities for biology applications in the field of biosensors. In the future, these self-assembled hydrogel microwell arrays can also be used as a substrate to detect bacteria via secreted autoinducers. PMID:28486805

  11. Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays.

    PubMed

    Li, Ping; Dou, Xiaoqiu; Feng, Chuanliang; Müller, Mareike; Chang, Matthew Wook; Frettlöh, Martin; Schönherr, Holger

    2017-08-08

    The combination of supramolecular hydrogels formed by low molecular weight gelator self-assembly via noncovalent interactions within a scaffold derived from polyethylene glycol (PEG) affords an interesting approach to immobilize fully functional, isolated reporter bacteria in novel microwell arrays. The PEG-based scaffold serves as a stabilizing element and provides physical support for the self-assembly of the C 2 -phenyl-derived gelator on the micrometer scale. Supramolecular hydrogel microwell arrays with various shapes and sizes were used to isolate single or small numbers of Escherichia coli TOP10 pTetR-LasR-pLuxR-GFP. In the presence of the autoinducer N-(3-oxododecanoyl) homoserine lactone, the entrapped E. coli in the hydrogel microwell arrays showed an increased GFP expression. The shape and size of microwell arrays did not influence the fluorescence intensity and the projected size of the bacteria markedly, while the population density of seeded bacteria affected the number of bacteria expressing GFP per well. The hydrogel microwell arrays can be further used to investigate quorum sensing, reflecting communication in inter- and intraspecies bacterial communities for biology applications in the field of biosensors. In the future, these self-assembled hydrogel microwell arrays can also be used as a substrate to detect bacteria via secreted autoinducers.

  12. Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets.

    PubMed

    Wei, Xiaofeng; Tian, Tian; Jia, Shasha; Zhu, Zhi; Ma, Yanli; Sun, Jianjun; Lin, Zhenyu; Yang, Chaoyong James

    2015-04-21

    A versatile point-of-care assay platform was developed for simultaneous detection of multiple targets based on a microfluidic paper-based analytic device (μPAD) using a target-responsive hydrogel to mediate fluidic flow and signal readout. An aptamer-cross-linked hydrogel was used as a target-responsive flow regulator in the μPAD. In the absence of a target, the hydrogel is formed in the flow channel, stopping the flow in the μPAD and preventing the colored indicator from traveling to the final observation spot, thus yielding a "signal off" readout. In contrast, in the presence of a target, no hydrogel is formed because of the preferential interaction of target and aptamer. This allows free fluidic flow in the μPAD, carrying the indicator to the observation spot and producing a "signal on" readout. The device is inexpensive to fabricate, easy to use, and disposable after detection. Testing results can be obtained within 6 min by the naked eye via a simple loading operation without the need for any auxiliary equipment. Multiple targets, including cocaine, adenosine, and Pb(2+), can be detected simultaneously, even in complex biological matrices such as urine. The reported method offers simple, low cost, rapid, user-friendly, point-of-care testing, which will be useful in many applications.

  13. Visible Light Crosslinking of Methacrylated Hyaluronan Hydrogels for Injectable Tissue Repair

    PubMed Central

    Fenn, Spencer L.; Oldinski, Rachael A.

    2015-01-01

    Tissue engineering hydrogels are primarily cured in situ using ultraviolet (UV) radiation which limits the use of hydrogels as drug or cell carriers. Visible green light activated crosslinking systems are presented as a safe alternative to UV photocrosslinked hydrogels, without compromising material properties such as viscosity and stiffness. The objective of this study was to fabricate and characterize photocrosslinked hydrogels with well-regulated gelation kinetics and mechanical properties for the repair or replacement of soft tissue. An anhydrous methacrylation of hyaluronan (HA) was performed to control the degree of modification (DOM) of HA, verified by 1H-NMR spectroscopy. UV activated crosslinking was compared to visible green light activated crosslinking. While the different photocrosslinking techniques resulted in varied crosslinking times, comparable mechanical properties of UV and green light activated crosslinked hydrogels were achieved using each photocrosslinking method by adjusting time of light exposure. Methacrylated HA (HA-MA) hydrogels of varying molecular weight, DOM and concentration exhibited compressive moduli ranging from 1 kPa to 116 kPa, for UV crosslinking, and 3 kPa to 146 kPa, for green light crosslinking. HA-MA molecular weight and concentration were found to significantly influence moduli values. HA-MA hydrogels did not exhibit any significant cytotoxic affects towards human mesenchymal stem cells. Green light activated crosslinking systems are presented as a viable method to form natural-based hydrogels in situ. PMID:26097172

  14. Mechanical Testing of Hydrogels in Cartilage Tissue Engineering: Beyond the Compressive Modulus

    PubMed Central

    Xiao, Yinghua; Friis, Elizabeth A.; Gehrke, Stevin H.

    2013-01-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context. PMID:23448091

  15. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    PubMed

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  16. Fitting the post-keratoplasty cornea with hydrogel lenses.

    PubMed

    Katsoulos, Costas; Nick, Vasileiou; Lefteris, Karageorgiadis; Theodore, Mousafeiropoulos

    2009-02-01

    We report two cases who have undergone penetrating keratoplasty (three eyes total), and who were fitted with hydrogel lenses. In the first case, a 28-year-old male presented with an interest in contact lens fitting. He had undergone corneal transplantation in both eyes, about 5 years ago. After topographies and trial fitting were performed, it was decided to be fitted with reverse geometry hydrogel lenses, due to the globular geometry of the cornea, the resultant instability of RGPs, and personal preference. In the second case, a 26-year-old female who had also penetrating keratoplasty was fitted with a hydrogel toric lens of high cylinder in the right eye. The final hydrogel lenses for the first subject incorporated a custom tricurve design, in which the second curve was steeper than the base curve and the third curve flatter than the second but still steeper than the first. Visual acuity was 6/7.5 RE and a mediocre 6/15 LE (OU 6/7.5). The second subject achieved 6/4.5 acuity RE with the high cylinder hydrogel toric lens. In corneas exhibiting extreme protrusion, such as keratoglobus and some cases after penetrating keratoplasty, curvatures are so extreme and the cornea so globular leading to specific fitting options: sclerals, small diameter RGPs and reverse geometry hydrogel lenses, in order to improve lens and optical stability. In selected cases such as the above, large diameter inverse geometry RGP may be fitted only if the eyelid shape and tension permits so. The first case demonstrates that the option of hydrogel lenses is viable when the patient has no interest in RGPs and in certain cases can improve vision to satisfactory levels. In other cases, graft toricity might be so high that the practitioner will need to employ hydrogel torics with large amounts of cylinder in order to correct vision. In such cases, the patient should be closely monitored in order to avoid complications from hypoxia.

  17. Green synthesis of tea Ag nanocomposite hydrogels via mint leaf extraction for effective antibacterial activity.

    PubMed

    Jayaramudu, Tippabattini; Varaprasad, Kokkarachedu; Raghavendra, Gownolla Malegowd; Sadiku, E R; Mohana Raju, Konduru; Amalraj, John

    2017-10-01

    In this report, we investigated the swelling behavior and antibacterial property of nanosilver composite hydrogels made from tea with polyacrylamide via a free-radical polymerization and green process technique. This is probably for the first time; tea-based nano silver composite hydrogels were developed. The composite hydrogels comprise embedded nano silver particles in the tea hydrogel matrix via a green process with mint leaf extract. The size of the nano silver particles in the hydrogel matrix was found to be < 10 nm. The nano silver composite hydrogels formed and their blank hydrogels from the mint leaf were characterized by using ultraviolet-visible spectroscopy, scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis and X-ray diffraction studies. The nano silver composite hydrogels developed exhibit eminent antibacterial activity against Escherichia coli and Staphylococcus aureus. This clearly indicates that the nano silver composite hydrogels are potential candidates for antimicrobial applications.

  18. DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy.

    PubMed

    Yata, Tomoya; Takahashi, Yuki; Tan, Mengmeng; Nakatsuji, Hirotaka; Ohtsuki, Shozo; Murakami, Tatsuya; Imahori, Hiroshi; Umeki, Yuka; Shiomi, Tomoki; Takakura, Yoshinobu; Nishikawa, Makiya

    2017-11-01

    Success of tumor photothermal immunotherapy requires a system that induces heat stress in cancer cells and enhances strong anti-tumor immune responses. Here, we designed a composite-type immunostimulatory DNA hydrogel consisting of a hexapod-like structured DNA (hexapodna) with CpG sequences and gold nanoparticles. Mixing of the properly designed hexapodna and oligodeoxynucleotide-modified gold nanoparticles resulted in the formation of composite-type gold nanoparticle-DNA hydrogels. Laser irradiation of the hydrogel resulted in the release of hexapodna, which efficiently stimulated immune cells to release proinflammatory cytokines. Then, EG7-OVA tumor-bearing mice received an intratumoral injection of a gold nanoparticle-DNA hydrogel, followed by laser irradiation at 780 nm. This treatment increased the local temperature and the mRNA expression of heat shock protein 70 in the tumor tissue, increased tumor-associated antigen-specific IgG levels in the serum, and induced tumor-associated antigen-specific interferon-γ production from splenocytes. Moreover, the treatment significantly retarded the tumor growth and extended the survival of the tumor-bearing mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering.

    PubMed

    Teixeira, Liliana S Moreira; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel

    2012-02-01

    State-of-the-art bioactive hydrogels can easily and efficiently be formed by enzyme-catalyzed mild-crosslinking reactions in situ. Yet this cell-friendly and substrate-specific method remains under explored. Hydrogels prepared by using enzyme systems like tyrosinases, transferases and lysyl oxidases show interesting characteristics as dynamic scaffolds and as systems for controlled release. Increased attention is currently paid to hydrogels obtained via crosslinking of precursors by transferases or peroxidases as catalysts. Enzyme-mediated crosslinking has proven its efficiency and attention has now shifted to the development of enzymatically crosslinked hydrogels with higher degrees of complexity, mimicking extracellular matrices. Moreover, bottom-up approaches combining biocatalysts and self-assembly are being explored for the development of complex nano-scale architectures. In this review, the use of enzymatic crosslinking for the preparation of hydrogels as an innovative alternative to other crosslinking methods, such as the commonly used UV-mediated photo-crosslinking or physical crosslinking, will be discussed. Photo-initiator-based crosslinking may induce cytotoxicity in the formed gels, whereas physical crosslinking may lead to gels which do not have sufficient mechanical strength and stability. These limitations can be overcome using enzymes to form covalently crosslinked hydrogels. Herewith, we report the mechanisms involved and current applications, focusing on emerging strategies for tissue engineering and regenerative medicine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Enzymatically-stable oxetane-based dipeptide hydrogels.

    PubMed

    McDougall, Laura; Draper, Emily R; Beadle, Jonathan D; Shipman, Michael; Raubo, Piotr; Jamieson, Andrew G; Adams, Dave J

    2018-02-13

    Low molecular weight gelators that are not easily degraded by enzymes have a range of potential applications. Here, we report new Fmoc-protected dipeptides in which the amide carbonyl group has been replaced by an oxetane ring. Remarkably one of these peptidomimetics, but not the corresponding dipeptide, is an effective gelator, forming hydrogels at a concentration of 3 mg mL -1 . On assembly, there is a lack of beta-sheet structure, implying that there is no requirement for this motif in such a gel. Furthermore, the modified dipeptide is also stable to proteolysis compared to the parent dipeptide.

  1. Wood hemicellulose/chitosan-based semi-interpenetrating network hydrogels : mechanical swelling and controlled drug release properties

    Treesearch

    Ahmet M. Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2010-01-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the...

  2. DNA Hydrogel with Tunable pH-Responsive Properties Produced by Rolling Circle Amplification.

    PubMed

    Xu, Wanlin; Huang, Yishun; Zhao, Haoran; Li, Pan; Liu, Guoyuan; Li, Jing; Zhu, Chengshen; Tian, Leilei

    2017-12-22

    Recently, smart DNA hydrogels, which are generally formed by the self-assembly of oligonucleotides or through the cross-linking of oligonucleotide-polymer hybrids, have attracted tremendous attention. However, the difficulties of fabricating DNA hydrogels limit their practical applications. We report herein a novel method for producing pH-responsive hydrogels by rolling circle amplification (RCA). In this method, pH-sensitive cross-linking sites were introduced into the polymeric DNA chains during DNA synthesis. As the DNA sequence can be precisely defined by its template, the properties of such hydrogels can be finely tuned in a very facile way through template design. We have investigated the process of hydrogel formation and pH-responsiveness to provide rationales for functional hydrogel design based on the RCA reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Writing with Fluid: Structuring Hydrogels with Micrometer Precision by AFM in Combination with Nanofluidics.

    PubMed

    Helfricht, Nicolas; Mark, Andreas; Behr, Marina; Bernet, Andreas; Schmidt, Hans-Werner; Papastavrou, Georg

    2017-08-01

    Hydrogels have many applications in biomedical surface modification and tissue engineering. However, the structuring of hydrogels after their formation represents still a major challenge, in particular due to their softness. Here, a novel approach is presented that is based on the combination of atomic force microscopy (AFM) and nanofluidics, also referred to as FluidFM technology. Its applicability is demonstrated for supramolecular hydrogel films that are prepared from low-molecular weight hydrogelators, such as derivates of 1,3,5-benzene tricarboxamides (BTAs). BTA films can be dissolved selectively by ejecting alkaline solution through the aperture of a hollow AFM-cantilever connected to a nanofluidic controller. The AFM-based force control is essential in preventing mechanical destruction of the hydrogels. The resulting "chemical writing" process is studied in detail and the influence of various parameters, such as applied pressure and time, is validated. It is demonstrated that the achievable structuring precision is primarily limited by diffusion and the aperture dimensions. Recently, various additive techniques have been presented to pattern hydrogels. The here-presented subtractive approach can not only be applied to structure hydrogels from the large class of reversibly formed gels with superior resolution but would also allow for the selective loading of the hydrogels with active substances or nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications.

    PubMed

    García-Millán, Eva; Koprivnik, Sandra; Otero-Espinar, Francisco Javier

    2015-06-20

    This paper proposes an approach to improve drug loading capacity and release properties of poly(2-hydroxyethyl methacrylate) (p(HEMA)) soft contact lenses based on the optimization of the hydrogel composition and microstructural modifications using water during the polymerization process. P(HEMA) based soft contact lenses were prepared by thermal or photopolymerization of 2-hydroxyethyl methacrylate (HEMA) solutions containing ethylene glycol di-methacrylate as crosslinker and different proportions of N-vinyl-2-pyrrolidone (NVP) or methacrylic acid (MA) as co-monomers. Transmittance, water uptake, swelling, microstructure, drug absorption isotherms and in vitro release were characterized using triamcinolone acetonide (TA) as model drug. Best drug loading ratios were obtained with lenses containing the highest amount (200 mM) of MA. Incorporation of 40% V/V of water during the polymerization increases the hydrogel porosity giving a better drug loading capacity. In vitro TA release kinetics shows that MA hydrogels released the drug significantly faster than NVP-hydrogels. Drug release was found to be diffusion controlled and kinetics was shown to be reproducible after consecutive drug loading/release processes. Results of p(HEMA) based soft contact lenses copolymerized with ethylene glycol dimethacrylate (EGDMA) and different co-monomers could be a good alternative to optimize the loading and ocular drug delivery of this corticosteroid drug. Copyright © 2015. Published by Elsevier B.V.

  5. Thermo-sensitive hydrogel for preventing bowel injury in percutaneous renal radiofrequency ablation.

    PubMed

    Wang, Xin; Zhao, Xiaozhi; Lin, Tingsheng; Guo, Hongqian

    2016-10-01

    cm vs 0.1 ± 0.0 cm, P < .01), (1.8 ± 0.4 cm vs 0.5 ± 0.1 cm, P < .01), respectively]. The gel and control groups did not differ in size of the ablation zones (0.80 ± 0.2 cm vs 0.75 ± 0.3 cm, P > .05). Thermal injury in adjacent bowel was more serious in the control than gel group (P < .01). As for the follow-up, rabbits with gel instillation showed good condition and gel was absorbed gradually within 5 days. Those rabbits with no bowel displacement by gel got significantly lower survival rate and high complication rate (P < .01). Hydrogel-dissection by means of thermo-sensitive hydrogel instillation is valuable for protecting the bowel adjacent to ablation area against thermal injury during PRFA.

  6. Multifunctional 3D printing of heterogeneous hydrogel structures

    NASA Astrophysics Data System (ADS)

    Nadernezhad, Ali; Khani, Navid; Skvortsov, Gözde Akdeniz; Toprakhisar, Burak; Bakirci, Ezgi; Menceloglu, Yusuf; Unal, Serkan; Koc, Bahattin

    2016-09-01

    Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation. We printed different patterned objects with varying chemical, electrical, mechanical, and biological properties by tuning process and material related parameters, to demonstrate the abilities of this method in producing heterogeneous and multi-functional hydrogel structures. Our results show the potential of proposed method in producing heterogeneous objects with spatially controlled functionalities while preserving structural integrity at the switching interface between different segments. We anticipate that this method would introduce new opportunities in multimaterial additive manufacturing of hydrogels for diverse applications such as biosensors, flexible electronics, tissue engineering and organ printing.

  7. Multifunctional 3D printing of heterogeneous hydrogel structures

    PubMed Central

    Nadernezhad, Ali; Khani, Navid; Skvortsov, Gözde Akdeniz; Toprakhisar, Burak; Bakirci, Ezgi; Menceloglu, Yusuf; Unal, Serkan; Koc, Bahattin

    2016-01-01

    Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation. We printed different patterned objects with varying chemical, electrical, mechanical, and biological properties by tuning process and material related parameters, to demonstrate the abilities of this method in producing heterogeneous and multi-functional hydrogel structures. Our results show the potential of proposed method in producing heterogeneous objects with spatially controlled functionalities while preserving structural integrity at the switching interface between different segments. We anticipate that this method would introduce new opportunities in multimaterial additive manufacturing of hydrogels for diverse applications such as biosensors, flexible electronics, tissue engineering and organ printing. PMID:27630079

  8. Peptide hydrogelation triggered by enzymatic induced pH switch

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Li, Ying

    2016-07-01

    It remains challenging to develop methods that can precisely control the self-assembling kinetics and thermodynamics of peptide hydrogelators to achieve hydrogels with optimal properties. Here we report the hydrogelation of peptide hydrogelators by an enzymatically induced pH switch, which involves the combination of glucose oxidase and catalase with D-glucose as the substrate, in which both the gelation kinetics and thermodynamics can be controlled by the concentrations of D-glucose. This novel hydrogelation method could result in hydrogels with higher mechanical stability and lower hydrogelation concentrations. We further illustrate the application of this hydrogelation method to differentiate different D-glucose levels.

  9. An injectable and biodegradable hydrogel based on poly(α,β-aspartic acid) derivatives for localized drug delivery.

    PubMed

    Lu, Caicai; Wang, Xiaojuan; Wu, Guolin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao

    2014-03-01

    An injectable hydrogel via hydrazone cross-linking was prepared under mild conditions without addition of cross-linker or catalyst. Hydrazine and aldehyde modified poly(aspartic acid)s were used as two gel precursors. Both of them are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter can be prepared by thermal polycondensation of aspartic acid. Hydrogels were prepared in PBS solution and characterized by different methods including gel content and swelling, Fourier transformed-infrared spectroscopy, and in vitro degradation experiment. A scanning electron microscope viewed the interior morphology of the obtained hydrogels, which showed porous three-dimensional structures. Different porous sizes were present, which could be well controlled by the degree of aldehyde substitution in precursor poly(aspartic acid) derivatives. The doxorubicin-loaded hydrogels were prepared and showed a pH-sensitive release profile. The release rate can be accelerated by decreasing the environmental pH from a physiological to a weak acidic condition. Moreover, the cell adhesion and growth behaviors on the hydrogel were studied and the polymeric hydrogel showed good biocompatibility. Copyright © 2013 Wiley Periodicals, Inc.

  10. A simple hemostasis model for the quantitative evaluation of hydrogel-based local hemostatic biomaterials on tissue surface.

    PubMed

    Murakami, Yoshihiko; Yokoyama, Masayuki; Nishida, Hiroshi; Tomizawa, Yasuko; Kurosawa, Hiromi

    2008-09-01

    Several hemostat hydrogels are clinically used, and some other agents are studied for safer, more facile, and more efficient hemostasis. In the present paper, we proposed a novel method to evaluate local hemostat hydrogel on tissue surface. The procedure consisted of the following steps: (step 1) a mouse was fixed on a cork board, and its abdomen was incised; (step 2) serous fluid was carefully removed because it affected the estimation of the weight gained by the filter paper, and parafilm and preweighted filter paper were placed beneath the liver (parafilm prevented the filter paper's absorption of gradually oozing serous fluid); (step 3) the cork board was tilted and maintained at an angle of about 45 degrees so that the bleeding would more easily flow from the liver toward the filter paper; and (step 4) the bleeding lasted for 3 min. In this step, a hemostat was applied to the liver wound immediately after the liver was pricked with a needle. We found that (1) a careful removal of serous fluid prior to a bleeding and (2) a quantitative determination of the amount of excess aqueous solution that oozed out from a hemostat were important to a rigorous evaluation of hemostat efficacy. We successfully evaluated the efficacy of a fibrin-based hemostat hydrogel by using our method. The method proposed in the present study enabled the quantitative, accurate, and easy evaluation of the efficacy of local hemostatic hydrogel which acts as tissue-adhesive agent on biointerfaces.

  11. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide.

    PubMed

    Cha, Chaenyung; Shin, Su Ryon; Gao, Xiguang; Annabi, Nasim; Dokmeci, Mehmet R; Tang, Xiaowu Shirley; Khademhosseini, Ali

    2014-02-12

    Graphene-based materials are useful reinforcing agents to modify the mechanical properties of hydrogels. Here, an approach is presented to covalently incorporate graphene oxide (GO) into hydrogels via radical copolymerization to enhance the dispersion and conjugation of GO sheets within the hydrogels. GO is chemically modified to present surface-grafted methacrylate groups (MeGO). In comparison to GO, higher concentrations of MeGO can be stably dispersed in a pre-gel solution containing methacrylated gelatin (GelMA) without aggregation or significant increase in viscosity. In addition, the resulting MeGO-GelMA hydrogels demonstrate a significant increase in fracture strength with increasing MeGO concentration. Interestingly, the rigidity of the hydrogels is not significantly affected by the covalently incorporated GO. Therefore, this approach can be used to enhance the structural integrity and resistance to fracture of the hydrogels without inadvertently affecting their rigidity, which is known to affect the behavior of encapsulated cells. The biocompatibility of MeGO-GelMA hydrogels is confirmed by measuring the viability and proliferation of the encapsulated fibroblasts. Overall, this study highlights the advantage of covalently incorporating GO into a hydrogel system, and improves the quality of cell-laden hydrogels. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of Different ECM-Like Hydrogels on Neurite Outgrowth Induced by Adipose Tissue-Derived Stem Cells

    PubMed Central

    Oliveira, E.; Assunção-Silva, R. C.; Teixeira, F. G.

    2017-01-01

    Mesenchymal stem cells (MSCs) have been proposed for spinal cord injury (SCI) applications due to their capacity to secrete growth factors and vesicles—secretome—that impacts important phenomena in SCI regeneration. To improve MSC survival into SCI sites, hydrogels have been used as transplantation vehicles. Herein, we hypothesized if different hydrogels could interact differently with adipose tissue-derived MSCs (ASCs). The efficacy of three natural hydrogels, gellan gum (functionalized with a fibronectin peptide), collagen, and a hydrogel rich in laminin epitopes (NVR-gel) in promoting neuritogenesis (alone and cocultured with ASCs), was evaluated in the present study. Their impact on ASC survival, metabolic activity, and gene expression was also evaluated. Our results indicated that all hydrogels supported ASC survival and viability, being this more evident for the functionalized GG hydrogels. Moreover, the presence of different ECM-derived biological cues within the hydrogels appears to differently affect the mRNA levels of growth factors involved in neuronal survival, differentiation, and axonal outgrowth. All the hydrogel-based systems supported axonal growth mediated by ASCs, but this effect was more robust in functionalized GG. The data herein presented highlights the importance of biological cues within hydrogel-based biomaterials as possible modulators of ASC secretome and its effects for SCI applications. PMID:29333166

  13. A tunable sound-absorbing metamaterial based on coiled-up space

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhao, Honggang; Yang, Haibin; Zhong, Jie; Zhao, Dan; Lu, Zhongliang; Wen, Jihong

    2018-05-01

    This paper presents a theoretical, numerical, and experimental investigation of a deep-subwavelength absorber based on the concept of coiled-up space. By adjusting a partition panel in the cavity to form an unequal-section channel, it is found that the resonance frequency of the absorber is easily tuned and near-total absorption is acquired under a fixed deep-subwavelength thickness. The absorption mechanism induced by nearly critical coupling is revealed by graphically analyzing the reflection coefficient in the complex plane. In contrast to conventional techniques, near-total absorption can be adjusted over a wider frequency range. To further enhance the absorption, we demonstrate a broadband absorber with a relative bandwidth up to 33.3%.

  14. Self Assembled Bi-functional Peptide Hydrogels with Biomineralization-Directing Peptides

    PubMed Central

    Gungormus, Mustafa; Branco, Monica; Fong, Hanson; Schneider, Joel P.; Tamerler, Candan; Sarikaya, Mehmet

    2014-01-01

    A peptide-based hydrogel has been designed that directs the formation of hydroxyapatite. MDG1, a twenty-seven residue peptide, undergoes triggered folding to form an unsymmetrical β-hairpin that self-assembles in response to an increase in solution ionic strength to yield a mechanically rigid, self supporting hydrogel. The C-terminal portion of MDG1 contains a heptapeptide (MLPHHGA) capable of directing the mineralization process. Circular dichroism spectroscopy indicates that the peptide folds and assembles to form a hydrogel network rich in β-sheet secondary structure. Oscillatory rheology indicates that the hydrogel is mechanical rigid (G′ ∼ 2500 Pa) before mineralization. In separate experiments, mineralization was induced both biochemically and with cementoblast cells. Mineralization-domain had little effect on the mechanical rigidity of the gel. SEM and EDS show that MDG1 gels are capable of directing the formation of hydroxapatite. Control hydrogels, prepared by peptides either lacking the mineral-directing portion or reversing its sequence, indicated that the heptapeptide is necessary and its actions are sequence specific. PMID:20591477

  15. Enzymatically crosslinked silk-hyaluronic acid hydrogels.

    PubMed

    Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L

    2017-07-01

    In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Water-soluble, neutral 3,5-diformyl-BODIPY with extended fluorescence lifetime in a self-healable chitosan hydrogel.

    PubMed

    Belali, Simin; Emandi, Ganapathi; Cafolla, Atillio A; O'Connell, Barry; Haffner, Benjamin; Möbius, Matthias E; Karimi, Alireza; Senge, Mathias O

    2017-11-08

    3,5-Diformyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (3,5-diformyl-BODIPY) can be used as an efficient biofunctional cross-linker to generate a new class of chitosan-based hydrogels with fluorescence resonance energy transfer (FRET) dynamics and good solubility in water. The hydrogel was fully characterized by FT-IR, UV-vis, fluorescence, FE-SEM, AFM, rheology and picosecond time-resolved spectroscopic techniques. The self-healing ability was demonstrated by rheological recovery and macroscopic and microscopic observations. The fluorescence lifetime was found to increase in aqueous solution of the BODIPY-chitosan hydrogel compared to the 3,5-diformyl-BODIPY monomer. Calculations based on experimental results such as red-shift and decreased intensity of the emission spectrum of highly dye-concentrated hydrogel in comparison to dilute hydrogels, together with changes in the fluorescence lifetime of the hydrogel at different concentration of dyes, suggest that the BDP-CS hydrogels fluorescence dynamics obey the Förster resonance energy transfer (FRET). Improvements in mechanical and photochemical properties and the acceptable values of BODIPY fluorescence lifetime in the hydrogel matrix indicate the utility of the newly synthesized hydrogels for biomedical applications.

  17. A Nanocomposite Hydrogel with Potent and Broad-Spectrum Antibacterial Activity.

    PubMed

    Dai, Tianjiao; Wang, Changping; Wang, Yuqing; Xu, Wei; Hu, Jingjing; Cheng, Yiyun

    2018-05-02

    Local bacterial infection is a challenging task and still remains a serious threat to human health in clinics. Systemic administration of antibiotics has only short-term antibacterial activity and usually causes adverse effects and bacterial resistance. A bioadhesive hydrogel with broad-spectrum and on-demand antibiotic activity is highly desirable. Here, we designed a pH-responsive nanocomposite hydrogel via a Schiff base linkage between oxidized polysaccharides and cationic dendrimers encapsulated with silver nanoparticles. The antibacterial components, both the cationic dendrimers and silver species, could be released in response to the acidity generated by growing bacteria. The released cationic polymer and silver exhibited a synergistic effect in antibacterial activity, and thus, the nanocomposite hydrogel showed potent antibacterial activity against both Gram-negative ( Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria ( Staphylococcus epidermidis and Staphylococcus aureus). The gel showed superior in vivo antibacterial efficacy against S. aureus infection compared with a commercial silver hydrogel at the same silver concentration. In addition, no obvious hemolytic toxicity, cytotoxicity, and tissue and biochemical toxicity were observed for the antibacterial hydrogel after incubation with cells or implantation. This study provides a facile and promising strategy to develop smart hydrogels to treat local bacterial infections.

  18. Supramolecular Amino Acid Based Hydrogels: Probing the Contribution of Additive Molecules using NMR Spectroscopy

    PubMed Central

    Ramalhete, Susana M.; Nartowski, Karol P.; Sarathchandra, Nichola; Foster, Jamie S.; Round, Andrew N.; Angulo, Jesús

    2017-01-01

    Abstract Supramolecular hydrogels are composed of self‐assembled solid networks that restrict the flow of water. l‐Phenylalanine is the smallest molecule reported to date to form gel networks in water, and it is of particular interest due to its crystalline gel state. Single and multi‐component hydrogels of l‐phenylalanine are used herein as model materials to develop an NMR‐based analytical approach to gain insight into the mechanisms of supramolecular gelation. Structure and composition of the gel fibres were probed using PXRD, solid‐state NMR experiments and microscopic techniques. Solution‐state NMR studies probed the properties of free gelator molecules in an equilibrium with bound molecules. The dynamics of exchange at the gel/solution interfaces was investigated further using high‐resolution magic angle spinning (HR‐MAS) and saturation transfer difference (STD) NMR experiments. This approach allowed the identification of which additive molecules contributed in modifying the material properties. PMID:28401991

  19. Development of visible-light responsive and mechanically enhanced "smart" UCST interpenetrating network hydrogels.

    PubMed

    Xu, Yifei; Ghag, Onkar; Reimann, Morgan; Sitterle, Philip; Chatterjee, Prithwish; Nofen, Elizabeth; Yu, Hongyu; Jiang, Hanqing; Dai, Lenore L

    2017-12-20

    An interpenetrating polymer network (IPN), chlorophyllin-incorporated environmentally responsive hydrogel was synthesized and exhibited the following features: enhanced mechanical properties, upper critical solution temperature (UCST) swelling behavior, and promising visible-light responsiveness. Poor mechanical properties are known challenges for hydrogel-based materials. By forming an interpenetrating network between polyacrylamide (PAAm) and poly(acrylic acid) (PAAc) polymer networks, the mechanical properties of the synthesized IPN hydrogels were significantly improved compared to hydrogels made of a single network of each polymer. The formation of the interpenetrating network was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), the analysis of glass transition temperature, and a unique UCST responsive swelling behavior, which is in contrast to the more prevalent lower critical solution temperature (LCST) behaviour of environmentally responsive hydrogels. The visible-light responsiveness of the synthesized hydrogel also demonstrated a positive swelling behavior, and the effect of incorporating chlorophyllin as the chromophore unit was observed to reduce the average pore size and further enhance the mechanical properties of the hydrogel. This interpenetrating network system shows potential to serve as a new route in developing "smart" hydrogels using visible-light as a simple, inexpensive, and remotely controllable stimulus.

  20. Morphological Characterization of Silicone Hydrogels

    NASA Astrophysics Data System (ADS)

    Gido, Samuel

    2007-03-01

    Silicone hydrogel materials are used in the latest generation of extended wear soft contact lenses. To ensure comfort and eye health, these materials must simultaneously exhibit high oxygen permeability and high water permeability / hydrophilicity. The materials achieve these opposing requirements based on bicontinuous composite of nanoscale domains of oxygen permeable (silicones) and hydrophilic (water soluble polymer) materials. The microphase separated morphology of silicone hydrogel contact lens materials was imaged using field emission gun scanning transmission electron microscopy (FEGSTEM), and atomic force microscopy (AFM). Additional morphological information was provided by small angle X-ray scattering (SAXS). These results all indicate a nanophase separated structure of silicone rich (oxygen permeable) and carbon rich (water soluble polymer) domains separated on a length scale of about 10 nm.