Sample records for absorbing galaxies mrk

  1. H I OBSERVATIONS OF THE Ca II ABSORBING GALAXIES Mrk 1456 AND SDSS J211701.26-002633.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherinka, B.; Schulte-Ladbeck, R. E.; Rosenberg, J. L.

    2009-12-15

    In an effort to study Damped Ly{alpha} (DLA) galaxies at low redshift, we have been using the Sloan Digital Sky Survey (SDSS) to identify galaxies projected onto quasi-stellar object (QSO) sight lines and to characterize their optical properties. For low-redshift galaxies, the H I 21 cm emission line can be used as an alternate tool for identifying possible DLA galaxies, since H I-emitting galaxies typically exhibit H I columns that are larger than the classical DLA limit. Here, we report on follow-up H I 21 cm emission-line observations of two DLA candidates that are both low-redshift spiral galaxies, Mrk 1456more » and SDSS J211701.26-002633.7. The observations were made using the Green Bank Telescope (GBT) and Arecibo telescope, respectively. Analysis of their H I properties reveal the galaxies to be about one and two M*{sub HI} galaxies, respectively, and to have average H I mass, gas richness, and gas-mass fraction for their morphological types. We consider Mrk 1456 and SDSS J211701.26-002633.7 to be candidate DLA systems based upon the strength of the Ca II absorption lines they cause in their QSO's spectra, and impact parameters to the QSO that are smaller than the stellar disk. Compared to the small numbers of other H I detected DLA and candidate DLA galaxies, Mrk 1456 and SDSS J211701.26-002633.7 have high H I masses. Mrk 1456 and SDSS J211701.26-002633.7 have also been found to lie in galaxy groups that are high in H I gas mass compared to the group containing SBS 1543+593, the only DLA galaxy previously known to be situated in a galaxy group. When compared with the expected properties of low-z DLAs from an H I-detected sample of galaxies, Mrk 1456 and SDSS J211701.26-002633.7 fall within the ranges for impact parameter and M{sub B} ; and the H I mass distribution for the H I-detected DLAs agrees with that of the expected H I mass distribution for low-z DLAs. Our observations support galaxy-evolution models in which high-mass galaxies make up an

  2. RXTE Observations of the Seyfert 2 Galaxy MrK 348

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Georgantopoulos, Ioannis; Warwick, Robert S.

    2000-01-01

    We present RXTE monitoring observations of the Seyfert 2 galaxy Mrk 348 spanning a 6 month period. The time-averaged spectrum in the 3-20 keV band shows many features characteristic of a Compton-thin Seyfert 2 galaxy, namely a hard underlying power-law continuum (Gamma approximately equal 1.8) with heavy soft X-ray absorption (N(sub H) approximately 10(exp 23)/sq cm) plus measurable iron K.alpha emission (equivalent width approximately 100 eV) and, at high energy, evidence for a reflection component (R approximately < 1). During the first half of the monitoring period the X-ray continuum flux from Mrk 348 remained relatively steady. However this was followed by a significant brightening of the source (by roughly a factor of 4) with the fastest change corresponding to a doubling of its X-ray flux on a timescale of about 20 days. The flux increase was accompanied by a marked softening of X-ray spectrum most likely attributable to a factor approximately 3 decline in the intrinsic line-of-sight column density. In contrast the iron K.alpha line and the reflection components showed no evidence of variability. These observations suggest a scenario in which the central X-ray source is surrounded by a patchy distribution of absorbing material located within about a light-week of the nucleus of Mrk 348. The random movement of individual clouds within the absorbing screen, across our line of sight, produces substantial temporal variations in the measured column density on timescales of weeks to months and gives rise to the observed X-ray spectral variability. However, as viewed from the nucleus the global coverage and typical thickness of the cloud layer remains relatively constant.

  3. ABSORPTION MEASURE DISTRIBUTION IN Mrk 509

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, T. P.; Różańska, A.; Sobolewska, M.

    2015-12-20

    In this paper we model the observed absorption measure distribution (AMD) in Mrk 509, which spans three orders of magnitude in ionization level with a single-zone absorber in pressure equilibrium. AMD is usually constructed from observations of narrow absorption lines in radio-quiet active galaxies with warm absorbers. We study the properties of the warm absorber in Mrk 509 using recently published broadband spectral energy distribution observed with different instruments. This spectrum is an input in radiative transfer computations with full photoionization treatment using the titan code. We show that the simplest way to fully reproduce the shape of AMD is tomore » assume that the warm absorber is a single zone under constant total pressure. With this assumption, we found theoretical AMD that matches the observed AMD determined on the basis of the 600 ks reflection grating spectrometer XMM-Newton spectrum of Mrk 509. The softness of the source spectrum and the important role of the free–free emission breaks the usual degeneracy in the ionization state calculations, and the explicit dependence of the depths of AMD dips on density open a new path to the density diagnostic for the warm absorber. In Mrk 509, the implied density is of the order of 10{sup 8} cm{sup −3}.« less

  4. OSSE observations of the ultraluminous infrared galaxies ARP 220 and MRK 273

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Shier, L. M.; Sturner, S. J.; McNaron-Brown, K.; Bland-Hawthorn, J.

    1997-01-01

    The results of oriented scintillation spectrometer experiment (OSSE) observations of the ultraluminous infrared galaxies Arp 220 and Mrk 273 are reported. The pointings of Arp 220 and Mrk 273 concentrated on their upper limits. The gamma ray luminosities from these sources were found to be between one and two orders of magnitude smaller than the infrared luminosities. Multiwavelength luminosity spectra are produced from the radio to the gamma ray regime, and are compared with the typical multiwavelength spectra of active galactic nuclei. The lack of measured gamma ray emission provides no evidence for the existence of buried active galactic nuclei in these ultraluminous infrared galaxies, but is consistent with an origin of the infrared luminosity from starburst activity.

  5. Broadband X-Ray Spectral Analysis of the Double-nucleus Luminous Infrared Galaxy Mrk 463

    NASA Astrophysics Data System (ADS)

    Yamada, Satoshi; Ueda, Yoshihiro; Oda, Saeko; Tanimoto, Atsushi; Imanishi, Masatoshi; Terashima, Yuichi; Ricci, Claudio

    2018-05-01

    We present a broadband (0.4–70 keV) X-ray spectral analysis of the luminous infrared galaxy (LIRG) system Mrk 463 observed with Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton, which contains double active galactic nuclei (AGNs; Mrk 463E and Mrk 463W) with a separation of ∼3.8 kpc. Detecting their transmitted hard X-ray >10 keV continua with NuSTAR, we confirm that Mrk 463E and Mrk 463W have AGNs with intrinsic luminosities of (1.6–2.2) × 1043 and (0.5–0.6) × 1043 erg s‑1 (2–10 keV) obscured by hydrogen column densities of 8 × 1023 and 3 × 1023 cm‑2, respectively. Both nuclei show strong reflection components from cold matter. The luminosity ratio between X-ray (2–10 keV) and [O IV] 25.89 μm of Mrk 463E is ∼5 times smaller than those of normal Seyfert galaxies, suggesting that the intrinsic SED is X-ray weak relative to the UV luminosity. In fact, the bolometric AGN luminosity of Mrk 463E estimated from L‧-band (3.8 μm), [O IV] 25.89 μm, and [Ne V] 14.32 μm lines indicate a large bolometric-to-X-ray luminosity ratio, κ 2–10 keV ≈ 110–410, and a high Eddington ratio, λ Edd ∼ 0.4–0.8. We suggest that the merger triggered a rapid growth of the black hole in Mrk 463E, which is not yet deeply “buried” by circumnuclear dust. By contrast, the L‧-band luminosity of Mrk 463W is unusually small relative to the X-ray luminosity, suggesting that the Eddington ratio is low (<10‑3) and it might be still in an early phase of merger-driven AGN activity.

  6. 3D spectroscopy of merger Seyfert galaxy Mrk 334: nuclear starburst, superwind and the circumnuclear cavern

    NASA Astrophysics Data System (ADS)

    Smirnova, Aleksandrina; Moiseev, Alexei

    2010-01-01

    We are presenting new results on kinematics and structure of the Mrk 334 Seyfert galaxy. Panoramic (3D) spectroscopy is performed at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences using the integral-field Multi-Pupil Fiber Spectrograph (MPFS) and scanning Fabry-Pérot interferometer. The deep images have revealed that Mrk 334 is observed during the final stage of its merging with a massive companion. A possible mass ratio ranges from 1/5 to 1/3. The merger has triggered mass redistribution in the disc resulting in an intensification of nuclear activity and in a burst of star formation in the inner region of the galaxy. The circumnuclear starburst is so intense that its contribution to the gas ionization exceeds that contribution of the active galactic nuclei (AGN). We interpret the nuclear gas outflow with velocities of ~200kms-1 as a galactic superwind that accompanies the violent star formation. This suggestion is consistent with the asymmetric X-ray brightness distribution in Mrk 334. The trajectory of the fragments of the disrupted satellite in the vicinity of the main galaxy nucleus can be traced. In the galaxy disc, a cavern is found that is filled with a low-density ionized gas. We consider this region to be the place where the remnants of the companion have recently penetrated through the gaseous disc of the main galaxy.

  7. High-resolution X-Ray Spectroscopy of the Seyfert 1 Galaxy Mrk 1040. Revealing the Failed Nuclear Wind with Chandra

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Behar, E.; Fischer, T. C.; Kraemer, S. B.; Lobban, A.; Nardini, E.; Porquet, D.; Turner, T. J.

    2017-03-01

    High-resolution X-ray spectroscopy of the warm absorber in the nearby X-ray bright Seyfert 1 galaxy Mrk 1040 is presented. The observations were carried out in the 2013-2014 timeframe using the Chandra High Energy Transmission Grating with a total exposure of 200 ks. A multitude of absorption lines from Ne, Mg, and Si are detected from a wide variety of ionization states. In particular, the detection of inner K-shell absorption lines from Ne, Mg, and Si, from charge states ranging from F-like to Li-like ions, suggests the presence of a substantial amount of low-ionization absorbing gas, illuminated by a steep soft X-ray continuum. The observations reveal at least three warm absorbing components ranging in ionization parameter from {log}(ξ /{erg} {cm} {{{s}}}-1)=0{--}2 and with column densities of {N}{{H}}=1.5{--}4.0× {10}21 cm-2. The velocity profiles imply that the outflow velocities of the absorbing gas are low and within ±100 km s-1 of the systemic velocity of Mrk 1040, which suggests that any outflowing gas may have stalled in this AGN on large enough scales. The warm absorber is likely located far from the black hole, within 300 pc of the nucleus, and is spatially coincident with emission from an extended narrow-line region as seen in the Hubble Space Telescope images. The iron K-band spectrum reveals only narrow emission lines, with Fe Kα at 6.4 keV consistent with originating from reflection off Compton-thick pc-scale reprocessing gas.

  8. Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22

    NASA Astrophysics Data System (ADS)

    Paswan, A.; Omar, A.; Jaiswal, S.

    2018-02-01

    The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.

  9. R-band host galaxy contamination of TeV γ-ray blazar Mrk 501: effects of aperture size and seeing

    NASA Astrophysics Data System (ADS)

    Feng, Hai-Cheng; Liu, Hong-Tao; Zhao, Ying-He; Bai, Jin-Ming; Wang, Fang; Fan, Xu-Liang

    2018-02-01

    We simulated the R-band contribution of the host galaxy of TeV γ-ray BL Lac object Mrk 501 in different aperture sizes and seeing conditions. An intensive set of observations was acquired with the 1.02 m optical telescope, managed by Yunnan Observatories, from 2010 May 15 to 18. Based on the host subtraction data usually used in the literature, the subtraction of host galaxy contamination results in significant seeing-brightness correlations. These correlations would lead to illusive large amplitude variations at short timescales, which will mask the intrinsic microvariability, thus giving rise to difficulty in detecting the intrinsic microvariability. Both aperture size and seeing condition influence the flux measurements, but the aperture size impacts the result more significantly. Based on the parameters of an elliptical galaxy provided in the literature, we simulated the host contributions of Mrk 501 in different aperture sizes and seeing conditions. Our simulation data of the host galaxy obviously weaken these significant seeing-brightness correlations for the host-subtracted brightness of Mrk 501, and can help us discover the intrinsic short timescale microvariability. The pure nuclear flux is ∼8.0mJy in the R band, i.e., the AGN has a magnitude of R ∼ 13.96 mag.

  10. VLA Observation of Seyfert Galaxy MRK 6

    NASA Astrophysics Data System (ADS)

    Xu, C.; Baum, S. A.; O'Dea, C.; Colbert, E. J. M.

    1997-12-01

    We have obtained deep radio observation of the Seyfert 1.5 galaxy Mrk6 with all VLA configurations at 6 and 20 cm. We confirm the existence of two pairs of diffuse low surface brightness radio lobes at different scales and orientations. The larger pair of lobes extend ( ~ 40" or 20 kpc) ~ 30(deg) NW-SE, and is evidence of starburst-driven superwind as suggested in Baum et. al (1993). The outer lobes are roughly perpendicular to a set of inner lobes which extend ( ~ 4" or 2 kpc) E-W and are in turn perpendicular to the inner jets imaged by Kukula et. al (1996). Both pairs of lobes appear to have shell-like structures, as implied by the observed anti-symmetric emission morphology which might be due to limb brightening as a result of increasing optical depth at the line of sight. The width of each structure is comparable to the length of the next smaller structure suggesting a "self-similar" (and possibly dynamical) relationship between these structures. These nested "bubble-like" structures with different orientations pose a challenge to the current paradigm of energy transport in Seyfert galaxies.

  11. The HI Environment of Nearby Lyman-alpha Absorbers

    NASA Technical Reports Server (NTRS)

    VanGorkom, J. H.; Carilli, C. L.; Stocke, John T.; Perlman, Eric S.; Shull, J. Michael

    1996-01-01

    We present the results of a VLA and WSRT search for H I emission from the vicinity of seven nearby clouds, which were observed in Ly-alpha absorption with HST toward Mrk 335, Mrk 501, and PKS 2155-304. Around the absorbers, we searched a volume of 4O' x 40' x 1000 km/s; for one of the absorbers we probed a velocity range of only 600 km/s. The H I mass sensitivity (5 sigma) very close to the lines of sight varies from 5 x 10(exp 6) solar mass at best to 5 x 10(exp 8) solar mass at worst. We detected H I emission in the vicinity of four out of seven absorbers. The closest galaxy we find to the absorbers is a small dwarf galaxy at a projected distance of 68 h(exp -1) kpc from the sight line toward Mrk 335. This optically uncataloged galaxy has the same velocity (V = 1970 km/s) as one of the absorbers, is fainter than the SMC, and has an H I mass of only 4 x 10(exp 7) solar mass. We found a somewhat more luminous galaxy at exactly the velocity (V = 5100 km/s) of one of the absorbers toward PKS 2155-304 at a projected distance of 230 h(exp -1) kpc from the sight line. Two other, stronger absorbers toward PKS 2155-304 at V approx. 17,000 km/s appear to be associated with a loose group of three bright spiral galaxies, at projected distances of 300 to 600 h(exp -1) kpc. These results support the conclusions emerging from optical searches that most nearby Ly-alpha forest clouds trace the large-scale structures outlined by the optically luminous galaxies, although this is still based on small-number statistics. We do not find any evidence from the H I distribution or kinematics that there is a physical association between an absorber and its closest galaxy. While the absorbing clouds are at the systemic velocity of the galaxies, the H I extent of the galaxies is fairly typical, and at least an order of magnitude smaller than the projected distance to the sight line at which the absorbers are seen. On the other hand, we also do not find evidence against such a connection. In

  12. Free-Free Absorption on Parsec Scales in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Ulvestad, J. S.; Wilson, A. S.; Colbert, E. J. M.; Mundell, C. G.; Wrobel, J. M.; Norris, R. P.; Falcke, H.; Krichbaum, T.

    Seyfert galaxies come in two main types (types 1 and 2) and the difference is probably due to obscuration of the nucleus by a torus of dense molecular material. The inner edge of the torus is expected to be ionized by optical and ultraviolet emission from the active nucleus, and will radiate direct thermal emission (e.g. NGC 1068) and will cause free-free absorption of nuclear radio components viewed through the torus (e.g. Mrk 231, Mrk 348, NGC 2639). However, the nuclear radio sources in Seyfert galaxies are weak compared to radio galaxies and quasars, demanding high sensitivity to study these effects. We have been making sensitive phase referenced VLBI observations at wavelengths between 21 and 2 cm where the free-free turnover is expected, looking for parsec-scale absorption and emission. We find that free-free absorption is common (e.g. in Mrk 348, Mrk 231, NGC 2639, NGC 1068) although compact jets are still visible, and the inferred density of the absorber agrees with the absorption columns inferred from X-ray spectra (Mrk 231, Mrk 348, NGC 2639). We find one-sided parsec-scale jets in Mrk 348 and Mrk 231, and we measure low jet speeds (typically £ 0.1 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma density required to produce the absorption is Ne 3 2 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  13. Detecting metal-poor gas accretion in the star-forming dwarf galaxies UM 461 and Mrk 600

    NASA Astrophysics Data System (ADS)

    Lagos, P.; Scott, T. C.; Nigoche-Netro, A.; Demarco, R.; Humphrey, A.; Papaderos, P.

    2018-06-01

    Using VIsible MultiObject Spectrograph (VIMOS)-integral field unit (IFU) observations, we study the interstellar medium (ISM) of two star-forming dwarf galaxies, UM 461 and Mrk 600. Our aim was to search for the existence of metallicity inhomogeneities that might arise from infall of nearly pristine gas feeding ongoing localized star formation. The IFU data allowed us to study the impact of external gas accretion on the chemical evolution as well as the ionized gas kinematics and morphologies of these galaxies. Both systems show signs of morphological distortions, including cometary-like morphologies. We analysed the spatial variation of 12 + log(O/H) abundances within both galaxies using the direct method (Te), the widely applied HII-CHI-mistry code, as well as by employing different standard calibrations. For UM 461, our results show that the ISM is fairly well mixed, at large scales; however, we find an off-centre and low-metallicity region with 12 + log(O/H) < 7.6 in the SW part of the brightest H II region, using the direct method. This result is consistent with the recent infall of a metal-poor H I cloud into the region now exhibiting the lowest metallicity, which also displays localized perturbed neutral and ionized gas kinematics. Mrk 600 in contrast, appears to be chemically homogeneous on both large and small scales. The intrinsic differences in the spatially resolved properties of the ISM in our analysed galaxies are consistent with these systems being at different evolutionary stages.

  14. QSO Lyalpha Absorption Lines in Galaxy Superclusters and Voids

    NASA Astrophysics Data System (ADS)

    Stocke, J. T.; Shull, J. M.; Penton, S.; Burks, G.; Donahue, M.

    1993-12-01

    We have used the Hubble Space Telescope (HST) Goddard High Resolution Spectrograph (GHRS) to search for Lyalpha absorption clouds in nearby galaxy voids (cz <= 10,000 km s(-1) ). Thus far, we have obtained GHRS spectra (G160M, 1225 -- 1255 Angstroms, 0.25 Angstroms resolution) of three very bright Active Galactic Nuclei, Mrk 501, I Zw I, and Mrk 335, at V <= 14.5. We find 4 probable (4.0 sigma - 4.5 sigma ) and 4 definite (5 sigma - 16 sigma ) Lyalpha absorption lines, with equivalent widths W_λ = 50 - 200 m Angstroms, corresponding to column densities N(H I) = 10(13) -- 10(14) cm(-2) , assuming a typical Doppler parameter of b = 25 km s(-1) . Based on an updated version of the CfA redshift survey (Huchra and Clemens, private communication), most of these Lyalpha systems appear to be associated with supercluster - sized ``strings'' of galaxies similar to the ``Great Wall''. Toward Mrk 501, the nearest bright galaxy at the redshift of the strongest (200 m Angstroms) Lyalpha cloud lies 500 h75(-1) kpc off the line of sight. Models of H I disks exposed to the intergalactic ionizing radiation field (Dove & Shull 1994, ApJ, 423, in press) show that the N(H I) = 10(13) cm(-2) contour in a typical spiral galaxy is reached at 100 kpc radial extent. Thus, the Lyalpha absorbers associated with galaxy-string systems may be the result of H I in an extended halo, in dwarf satellite galaxies (M_B > -15), or in tidally-stripped gas. Most importantly for cosmological origins of baryons, one (4.3 sigma ) Lyalpha absorption line in the spectrum of Mrk 501 lies within the galaxy void in the foreground of the ``Great Wall''. The nearest bright galaxy, to a level M_B <= -18.5 for H_0 = 75 km s(-1) Mpc(-1) , is more than 5 Mpc away. A pencil-beam survey of faint galaxies to M_B = -16.0 finds no galaxy within 100 h75(-1) kpc of the line of sight, at or near the absorber redshift.

  15. Wing galaxies: A formation mechanism of the clumpy irregular galaxy Markarian 297

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki; Noguchi, Masafumi

    1990-01-01

    In order to contribute to an understanding of collision-induced starburst activities, the authors present a detailed case study on the starburst galaxy Markarian 297 (= NGC 6052 = Arp 209; hereafter Mrk 297). This galaxy is classified as a clumpy irregular galaxy (CIG) according to its morphological properties (cf. Heidmann, 1987). Two major clumps and many small clumps are observed in the entire region of Mrk 297 (Hecquet, Coupinot, and Maucherat 1987). The overall morphology of Mrk 297 is highly chaotic and thus it seems difficult to determine possible orbits of galaxy-galaxy collision. However, the authors have serendipitously found a possible orbit during a course of numerical simulations for a radial-penetration collision between galaxies. The radial-penetration collision means that an intruder penetrates a target galaxy radially passing by its nucleus. This kind of collision is known to explain a formation mechanism of ripples around disk galaxies (Wallin and Struck-Marcell 1988). Here, the authors show that the radial-penetration collision between galaxies successfully explains both overall morphological and kinematical properties of Mrk 297. The authors made two kinds of numerical simulations for Mrk 297. One is N-body (1x10(exp 4) particles) simulations in which effects of self gravity of the stellar disk are taken into account. These simulations are used to study detailed morphological feature of Mrk 297. The response of gas clouds are also investigated in order to estimate star formation rates in such collisions. The other is test-particle simulations, which are utilized to obtain a rough picture of Mrk 297 and to analyze the velocity field of Mrk 297. The techniques of the numerical simulations are the same as those in Noguchi (1988) and Noguchi and Ishibashi (1986). In the present model, an intruding galaxy with the same mass of a target galaxy moves on a rectilinear orbit which passes the center of the target.

  16. Chandra HETGs Observation of the Warm Absorber in Mrk 290

    NASA Astrophysics Data System (ADS)

    Zhang, Shuinai; Marshall, H. L.; Ji, L. L.

    2009-01-01

    Four Chandra High Energy Transmission Grating spectra of Mrk 290, a bright Seyfert 1, were carried out in 2003 with a total integration time of 251 ks. The nuclear X-ray spectrum is best described by a absorbed power law of photon index Γ 1.83 plus a black body model with a temperature of 90 eV. Using the combined spectra, we detect significant absorption lines due to intervening ionized outflowing gas. Some absorption lines show a discrete velocity structure. The outflow velocity 500 km/s is comparable with that in ultraviolet band. Support for this work was provided by the National Aeronautic Space Administration through the Smithonian Astrophysics of Observation contract SV3-73016 to MIT for support of the Chandra X-ray Center, which is operated by SAO for and on behalf of NASA under contract NAS8-03060.

  17. Properties of CGM-Absorbing Galaxies

    NASA Astrophysics Data System (ADS)

    Hamill, Colin; Conway, Matthew; Apala, Elizabeth; Scott, Jennifer

    2018-01-01

    We extend the results of a study of the sightlines of 45 low-redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use photometric data and measured galaxy parameters from SDSS DR12 to examine the distributions of galaxy properties such as virial radius, morphology, and position angle among those that match to absorbers within a specific range of impact parameters. We compare those distributions to galaxies within the same impact parameter range that are not matched to any absorber in the HST/COS spectrum in order to investigate global properties of the circumgalactic medium.

  18. Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo

    2017-03-01

    With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.

  19. Analysis of X-ray spectral variability and black hole mass determination of the NLS1 galaxy Mrk 766

    NASA Astrophysics Data System (ADS)

    Giacchè, S.; Gilli, R.; Titarchuk, L.

    2014-02-01

    We present an XMM-Newton time-resolved spectral analysis of the narrow-line Seyfert 1 galaxy Mrk 766. We analysed eight available observations taken between May 2000 and June 2005 with the EPIC-pn camera in order to investigate the X-ray spectral variability produced by changes in the mass accretion rate. The 0.2 - 10 keV spectra are extracted in time bins longer than 3 ks to have at least 3 × 104 net counts in each bin and then accurately trace the variations of the best-fit parameters of our adopted Comptonization spectral model. We tested a bulk-motion Comptonization (BMC) model which is in general applicable to any physical system powered by accretion onto a compact object, and assumes that soft seed photons are efficiently up-scattered via inverse Compton scattering in a hot and dense electron corona. The Comptonized spectrum has a characteristic power law shape, whose slope was found to increase for large values of the normalization of the seed component, which is proportional to the mass accretion rate ṁ (in Eddington units). Our baseline spectral model also includes a warm absorber lying on the line of sight and radiation reprocessing from the accretion disc or from outflowing matter in proximity to the central compact object. Our study reveals that the normalization-slope correlation, observed in Galactic black hole sources (GBHs), also holds for Mrk 766: variations of the photon index in the range Γ ~ 1.9-2.4 are indeed likely to be related to the variations of ṁ, as observed in X-ray binary systems. We finally applied a scaling technique based on the observed correlation to estimate the BH mass in Mrk 766. This technique is commonly and successfully applied to measure masses of GBHs, and this is the first time it has been applied in detail to estimate the BH mass in an AGN. We obtained a value of MBH = 1.26-0.77+1.00×106 M⊙, which is in very good agreement with that estimated by the reverberation mapping. Appendix A is available in electronic

  20. GEMINI NEAR INFRARED FIELD SPECTROGRAPH OBSERVATIONS OF THE SEYFERT 2 GALAXY MRK 573: IN SITU ACCELERATION OF IONIZED AND MOLECULAR GAS OFF FUELING FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Travis C.; Straughn, A. N.; Machuca, C.

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out tomore » several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.« less

  1. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    NASA Technical Reports Server (NTRS)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  2. Soft X-Ray Emission Lines from a Relativistic Accretion Disk in MCG -6-30-15 and Mrk 766

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sako, M.; Kahn, S. M.; Brinkman, A. C.; Kaastra, J. S.; Page, M. J.

    2000-01-01

    XMM-Newton Reflection Grating Spectrometer (RGS) spectra of the Narrow Line Seyfert 1 galaxies MCG -6-30-15 and Mrk 766 are physically and spectroscopically inconsistent with standard models comprising a power-law continuum absorbed by either cold or ionized matter. We propose that the remarkably similar features detected in both objects in the 5 - 35 A band are H-like oxygen, nitrogen, and carbon emission lines, gravitation- ally redshifted and broadened by relativistic effects in the vicinity of a Kerr black hole. We discuss the implications of our interpretation, and demonstrate that the derived parameters can be physically self-consistent.

  3. Observation of soft X-ray spectra from a Seyfert 1 and a narrow emission-line galaxy

    NASA Technical Reports Server (NTRS)

    Singh, K. P.; Garmire, G. P.; Nousek, J.

    1985-01-01

    The 0.2-40 keV X-ray spectra of the Seyfert 1 galaxy Mrk 509 and the narrow emission-line galaxy NGC 2992 are analyzed. The results suggest the presence of a steep soft X-ray component in Mrk 509 in addition to the well-known Gamma = 1.7 component found in other active galactic nuclei in the 2-40 keV energy range. The soft X-ray component is interpreted as due to thermal emission from a hot gas, probably associated with the highly ionized gas observed to be outflowing from the galaxy. The X-ray spectrum of NGC 2992 does not show any steepening in the soft X-ray band and is consistent with a single power law (Gamma = 1.78) with very low absorbing column density of 4 x 10 to the 21st/sq cm. A model with partial covering of the nuclear X-ray source is preferred, however, to a simple model with a single power law and absorption.

  4. A partial eclipse of the heart: the absorbed X-ray low state in Mrk 1048

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Schartel, N.; Komossa, S.; Grupe, D.; Santos-Lleó, M.; Fabian, A. C.; Mathur, S.

    2014-11-01

    We present two new XMM-Newton observations of an unprecedented low-flux state in the Seyfert 1 Mrk 1048 (NGC 985), taken in 2013. The X-ray flux below 1 keV drops by a factor of 4-5, whereas the spectrum above 5 keV is essentially unchanged. This points towards an absorption origin for the low state, and we confirm this with spectral fitting, finding that the spectral differences can be well modelled by the addition of a partial covering neutral absorber, with a column density of ˜3 × 1022 cm-2 and a covering fraction of ˜0.6. The optical and UV fluxes are not affected, and indeed are marginally brighter in the more recent observations, suggesting that only the inner regions of the disc are affected by the absorption event. This indicates either that the absorption is due to a cloud passing over the inner disc, obscuring the X-ray source but leaving the outer disc untouched, or that the absorber is dust-free so the UV continuum is unaffected. We use arguments based on the duration of the event and the physical properties of the absorber to constrain its size and location, and conclude that it is most likely a small cloud at ˜1018 cm from the source.

  5. Chandra Discovery of a Binary Active Galactic Nucleus in Mrk 739

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Mushotzky, Richard; Treister, Ezequiel; Veilleux, Sylvain; Vasudevan, Ranjan; Miller, Neal; Sanders, D. B.; Schawinski, Kevin; Trippe, Margaret

    2011-07-01

    We have discovered a binary active galactic nucleus (AGN) in the galaxy Mrk 739 using Chandra and Swift BAT. We find two luminous (L 2-10 keV = 1.1 × 1043 and 1.0 × 1042 erg s-1), unresolved nuclei with a projected separation of 3.4 kpc (5farcs8 ± 0farcs1) coincident with two bulge components in the optical image. The western X-ray source (Mrk 739W) is highly variable (× 2.5) during the 4 hr Chandra observation and has a very hard spectrum consistent with an AGN. While the eastern component was already known to be an AGN based on the presence of broad optical recombination lines, Mrk 739W shows no evidence of being an AGN in optical, UV, and radio observations, suggesting the critical importance of high spatial resolution hard X-ray observations (>2 keV) in finding these binary AGNs. A high level of star formation combined with a very low L [O III]/L 2-10 keV ratio cause the AGN to be missed in optical observations. 12CO observations of the (3-2) and (2-1) lines indicate large amounts of molecular gas in the system that could be driven toward the black holes during the violent galaxy collision and be key to fueling the binary AGN. Mrk 739E has a high Eddington ratio of 0.71 and a small black hole (log M BH = 7.05 ± 0.3) consistent with an efficiently accreting AGN. Other than NGC 6240, this stands as the nearest case of a binary AGN discovered to date.

  6. A Gemini/GMOS study of the physical conditions and kinematics of the blue compact dwarf galaxy Mrk 996

    NASA Astrophysics Data System (ADS)

    Telles, Eduardo; Thuan, Trinh X.; Izotov, Yuri I.; Carrasco, Eleazar R.

    2014-01-01

    Aims: We present an integral field spectroscopic study with the Gemini Multi-Object Spectrograph (GMOS) of the unusual blue compact dwarf (BCD) galaxy Mrk 996. Methods: We show through velocity and dispersion maps, emission-line intensity and ratio maps, and by a new technique of electron density limit imaging that the ionization properties of different regions in Mrk 996 are correlated with their kinematic properties. Results: From the maps, we can spatially distinguish a very dense high-ionization zone with broad lines in the nuclear region, and a less dense low-ionization zone with narrow lines in the circumnuclear region. Four kinematically distinct systems of lines are identified in the integrated spectrum of Mrk 996, suggesting stellar wind outflows from a population of Wolf-Rayet (WR) stars in the nuclear region, superposed on an underlying rotation pattern. From the intensities of the blue and red bumps, we derive a population of ~473 late nitrogen (WNL) stars and ~98 early carbon (WCE) stars in the nucleus of Mrk 996, resulting in a high N(WR)/N(O+WR) of 0.19. We derive, for the outer narrow-line region, an oxygen abundance 12 + log (O/H) = 7.94 ± 0.30 (~0.2 Z⊙) by using the direct Te method derived from the detected narrow [O iii]λ4363 line. The nucleus of Mrk 996 is, however, nitrogen-enhanced by a factor of ~20, in agreement with previous CLOUDY modeling. This nitrogen enhancement is probably due to nitrogen-enriched WR ejecta, but also to enhanced nitrogen line emission in a high-density environment. Although we have made use here of two new methods - principal component analysis (PCA) tomography and a method for mapping low- and high-density clouds - to analyze our data, new methodology is needed to further exploit the wealth of information provided by integral field spectroscopy. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative

  7. Uncovering multiple Wolf-Rayet star clusters and the ionized ISM in Mrk 178: the closest metal-poor Wolf-Rayet H II galaxy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Brinchmann, J.; Kunth, D.; García-Benito, R.; Crowther, P. A.; Hernández-Fernández, J.; Durret, F.; Contini, T.; Fernández-Martín, A.; James, B. L.

    2013-07-01

    New integral field spectroscopy (IFS) has been obtained for the nearby metal-poor Wolf-Rayet (WR) galaxy Mrk 178 to examine the spatial correlation between its WR stars and the neighbouring ionized interstellar medium (ISM). The strength of the broad WR features and its low metallicity make Mrk 178 an intriguing object. We have detected the blue and red WR bumps in different locations across the field of view (˜300 pc × 230 pc) in Mrk 178. The study of the WR content has been extended, for the first time, beyond its brightest star-forming knot uncovering new WR star clusters. Using Large/Small Magellanic Cloud-template WR stars, we empirically estimate a minimum of ˜20 WR stars within the region sampled. Maps of the spatial distribution of the emission lines and of the physical-chemical properties of the ionized ISM have been created and analysed. Here, we refine the statistical methodology by Pérez-Montero et al. (2011) to probe the presence of variations in the ISM properties. An error-weighted mean of 12+log(O/H) = 7.72 ± 0.01 is taken as the representative oxygen abundance for Mrk 178. A localized N and He enrichment, spatially correlated with WR stars, is suggested by this analysis. Nebular He II λ4686 emission is shown to be spatially extended reaching well beyond the location of the WR stars. This spatial offset between WRs and He II emission can be explained based on the mechanical energy input into the ISM by the WR star winds, and does not rule out WR stars as the He II ionization source. We study systematic aperture effects on the detection and measurement of the WR features, using Sloan Digital Sky Survey spectra combined with the power of IFS. In this regard, the importance of targeting low metallicity nearby systems is discussed.

  8. Circumnuclear star formation in Mrk 42 mapped with Gemini Near-infrared Integral Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Hennig, Moiré G.; Riffel, Rogemar A.; Dors, O. L.; Riffel, Rogerio; Storchi-Bergmann, Thaisa; Colina, Luis

    2018-06-01

    We present Gemini Near-infrared Integral Field Spectrograph (NIFS) observations of the inner 1.5 × 1.5 kpc2 of the narrow-line Seyfert 1 galaxy Mrk 42 at a spatial resolution of 60 pc and spectral resolution of 40 km s^{-1}. The emission-line flux and equivalent width maps clearly show a ring of circumnuclear star formation regions surrounding the nucleus with radius of ˜500 pc. The spectra of some of these regions show molecular absorption features which are probably of CN, TiO, or VO, indicating the presence of massive evolved stars in the thermally pulsing asymptotic giant branch phase. The gas kinematics of the ring is dominated by rotation in the plane of the galaxy, following the large-scale disc geometry, while at the nucleus an additional outflowing component is detected blueshifted by 300-500 km s^{-1}, relative to the systemic velocity of the galaxy. Based on the equivalent width of Br γ we find pieces of evidence of gradients in the age of H II regions along the ring of Mrk 42, favouring the pearls on a string scenario of star formation. The broad component of Pa β emission line presents a Full Width at Half Maximum of ˜1480 km s^{-1}, implying in a mass of ˜2.5 × 106 M⊙ for the central supermassive black hole. Based on emission-line ratios we conclude that besides the active galactic nucleus, Mrk 42 presents nuclear Starburst activity.

  9. The Close AGN Reference Survey (CARS). What is causing Mrk 1018's return to the shadows after 30 years?

    NASA Astrophysics Data System (ADS)

    Husemann, B.; Urrutia, T.; Tremblay, G. R.; Krumpe, M.; Dexter, J.; Busch, G.; Combes, F.; Croom, S. M.; Davis, T. A.; Eckart, A.; McElroy, R. E.; Perez-Torres, M.; Powell, M.; Scharwächter, J.

    2016-09-01

    We recently discovered that the active galactic nucleus (AGN) of Mrk 1018 has changed optical type again after 30 yr as a type 1 AGN. Here we combine Chandra, NuStar, Swift, Hubble Space Telescope and ground-based observations to explore the cause of this change. The 2-10 keV flux declines by a factor of ~8 between 2010 and 2016. We show with our X-ray observation that this is not caused by varying neutral hydrogen absorption along the line-of-sight up to the Compton-thick level. The optical-UV spectral energy distributions are well fit with a standard geometrically thin optically thick accretion disc model that seems to obey the expected L ~ T4 relation. It confirms that a decline in accretion disc luminosity is the primary origin for the type change. We detect a new narrow-line absorber in Lyα blue-shifted by ~700 km s-1 with respect to the systemic velocity of the galaxy. This new Lyα absorber could be evidence for the onset of an outflow or a companion black hole with associated gas that could be related to the accretion rate change. However, the low column density of the absorber means that it is not the direct cause for Mrk 1018's changing-look nature. Based on Cycle 17 DDT program (ID: 18789, PI: G. Tremblay) approved by the Chandra Director, Dr. Belinda Wilkes. Based on Cycle 23 DDT project with the NASA/ESA Hubble Space Telescope (ID: 14486, PI: B. Husemann) approved by HST Director Dr. Kenneth Sembach.

  10. Optical, Near-IR, and Sub-mm IFU Observations of the Nearby Dual Active Galactic Nuclei MRK 463

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Privon, George C.; Sartori, Lia F.; Nagar, Neil; Bauer, Franz E.; Schawinski, Kevin; Messias, Hugo; Ricci, Claudio; U, Vivian; Casey, Caitlin; Comerford, Julia M.; Muller-Sanchez, Francisco; Evans, Aaron S.; Finlez, Carolina; Koss, Michael; Sanders, David B.; Urry, C. Megan

    2018-02-01

    We present optical and near-IR Integral Field Unit (IFU) and ALMA band 6 observations of the nearby dual active galactic nuclei (AGNs) Mrk 463. At a distance of 210 Mpc, and a nuclear separation of ∼4 kpc, Mrk 463 is an excellent laboratory to study the gas dynamics, star formation processes and supermassive black hole (SMBH) accretion in a late-stage gas-rich major galaxy merger. The IFU observations reveal a complex morphology, including tidal tails, star-forming clumps, and emission-line regions. The optical data, which map the full extent of the merger, show evidence for a biconical outflow and material outflowing at >600 km s‑1, both associated with the Mrk 463E nucleus, along with large-scale gradients likely related to the ongoing galaxy merger. We further find an emission-line region ∼11 kpc south of Mrk 463E that is consistent with photoionization by an AGN. Compared to the current AGN luminosity, the energy budget of the cloud implies a luminosity drop in Mrk 463E by a factor of 3–20 over the last 40,000 years. The ALMA observations of 12CO(2–1) and adjacent 1 mm continuum reveal the presence of ∼109 M ⊙ in molecular gas in the system. The molecular gas shows velocity gradients of ∼800 km s‑1 and ∼400 km s‑1 around the Mrk 463E and 463W nuclei, respectively. We conclude that, in this system, the infall of ∼100s M ⊙ yr‑1 of molecular gas is in rough balance with the removal of ionized gas by a biconical outflow being fueled by a relatively small, <0.01% of accretion onto each SMBH.

  11. A Galaxy at the Center of the Hubble Tuning Fork

    NASA Image and Video Library

    2017-12-08

    This galaxy is known as Mrk 820 and is classified as a lenticular galaxy — type S0 on the Hubble Tuning Fork. The Hubble Tuning Fork is used to classify galaxies according to their morphology. Elliptical galaxies look like smooth blobs in the sky and lie on the handle of the fork. They are arranged along the handle based on how elliptical they are, with the more spherical galaxies furthest from the tines of the fork, and the more egg-shaped ones closest to the end of the handle where it divides. The two prongs of the tuning fork represent types of unbarred and barred spiral galaxies. Lenticular galaxies like Mrk 820 are in the transition zone between ellipticals and spirals and lie right where the fork divides. A closer look at the appearance of Mrk 820 reveals hints of a spiral structure embedded in a circular halo of stars. Surrounding Mrk 820 in this image is a good sampling of other galaxy types, covering almost every type found on the Hubble Tuning Fork, both elliptical and spiral. Most of the smears and specks are distant galaxies, but the prominent bright object at the bottom is a foreground star called TYC 4386-787-1. Credit: ESA/Hubble & NASA and N. Gorin (STScI), Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Intergalactic Hydrogen Clouds at Low Redshift: Connections to Voids and Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stocke, John T.; Penton, Steve

    1996-01-01

    We provide new post-COSTAR data on one sightline (Mrk 421) and updated data from another (I Zw 1) from our Hubble Space Telescope (HST) survey of intergalactic Ly(alpha) clouds located along sightlines to four bright quasars passing through well-mapped galaxy voids (16000 km/s pathlength) and superclusters (18000 km/s). We report two more definite detections of low-redshift Ly(alpha) clouds in voids: one at 3047 km/s (heliocentric) toward Mrk 421 and a second just beyond the Local Supercluster at 2861 km/s toward I Zw 1, confirming our earlier discovery of Ly(alpha) absorption clouds in voids (Stocke et al., ApJ, 451, 24). We have now identified ten definite and one probable low-redshift neutral hydrogen absorption clouds toward four targets, a frequency of approximately one absorber every 3400 km/s above 10(exp 12.7/sq cm column density. Of these ten absorption systems, three lie within voids; the probable absorber also lies in a void. Thus, the tendency of Ly(alpha) absorbers to 'avoid the voids' is not as clear as we found previously. If the Ly(alpha) clouds are approximated as homogeneous spheres of 100 kpc radius, their masses are approximately 10(exp 9)solar mass (about 0.01 times that of bright L* galaxies) and they are 40 times more numerous, comparable to the density of dwarf galaxies and of low-mass halos in numerical CDM simulations. The Ly(alpha) clouds contribute a fraction Omega(sub cl)approximately equals 0.003/h(sub 75) to the closure density of the universe, comparable to that of luminous matter. These clouds probably require a substantial amount of nonbaryonic dark matter for gravitational binding. They may represent extended haloes of low-mass protogalaxies which have not experienced significant star formation or low-mass dwarf galaxies whose star formation ceased long ago, but blew out significant gaseous material.

  13. Mg II-Absorbing Galaxies in the UltraVISTA Survey

    NASA Astrophysics Data System (ADS)

    Stroupe, Darren; Lundgren, Britt

    2018-01-01

    Light that is emitted from distant quasars can become partially absorbed by intervening gaseous structures, including galaxies, in its path toward Earth, revealing information about the chemical content, degree of ionization, organization and evolution of these structures through time. In this project, quasar spectra are used to probe the halos of foreground galaxies at a mean redshift of z=1.1 in the COSMOS Field. Mg II absorption lines in Sloan Digital Sky Survey quasar spectra are paired with galaxies in the UltraVISTA catalog at an impact parameter less than 200 kpc. A sample of 77 strong Mg II absorbers with a rest-frame equivalent width ≥ 0.3 Å and redshift from 0.34 < z < 2.21 are investigated to find equivalent width ratios of Mg II, C IV and Fe II absorption lines, and their relation to the impact parameter and the star formation rates, stellar masses, environments and redshifts of their host galaxies.

  14. Discovery of a Dwarf Poststarburst Galaxy near a High Column Density Local Lyα Absorber

    NASA Astrophysics Data System (ADS)

    Stocke, John T.; Keeney, Brian A.; McLin, Kevin M.; Rosenberg, Jessica L.; Weymann, R. J.; Giroux, Mark L.

    2004-07-01

    We report the discovery of a dwarf (MB=-13.9) poststarburst galaxy coincident in recession velocity (within uncertainties) with the highest column density absorber (NHI=1015.85 cm-2 at cz=1586 km s- 1) in the 3C 273 sight line. This galaxy is by far the closest galaxy to this absorber, projected just 71h-170 kpc on the sky from the sight line. The mean properties of the stellar populations in this galaxy are consistent with a massive starburst ~3.5 Gyr ago, whose attendant supernovae, we argue, could have driven sufficient gas from this galaxy to explain the nearby absorber. Beyond its proximity on the sky and in recession velocity, the further evidence in favor of this conclusion includes both a match in the metallicities of absorber and galaxy and the fact that the absorber has an overabundance of Si/C, suggesting recent Type II supernova enrichment. Thus, this galaxy and its ejecta are in the expected intermediate stage in the fading dwarf evolutionary sequence envisioned by Babul & Rees to explain the abundance of faint blue galaxies at intermediate redshifts. While this one instance of a QSO metal-line absorber and a nearby dwarf galaxy is not proof of a trend, a similar dwarf galaxy would be too faint to be observed by galaxy surveys around more distant metal-line absorbers. Thus, we cannot exclude the possibility that dwarf galaxies are primarily responsible for weak (NHI=1014-1017 cm-2) metal-line absorption systems in general. If a large fraction of the dwarf galaxies expected to exist at high redshift had a similar history (i.e., they had a massive starburst that removed all or most of their gas), these galaxies could account for at least several hundred high-z metal-line absorbers along the line of sight to a high-z QSO. The volume-filling factor for this gas, however, would be less than 1%. ID="FN1"> 1Based on observations made with the Apache Point 3.5 m telescope, operated by the Astronomical Research Consortium, and the 2.6 m du Pont telescope of the

  15. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor.

    PubMed

    Ares, Miguel A; Fernández-Vázquez, José L; Pacheco, Sabino; Martínez-Santos, Verónica I; Jarillo-Quijada, Ma Dolores; Torres, Javier; Alcántar-Curiel, María D; González-Y-Merchand, Jorge A; De la Cruz, Miguel A

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae.

  16. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor

    PubMed Central

    Ares, Miguel A.; Fernández-Vázquez, José L.; Pacheco, Sabino; Martínez-Santos, Verónica I.; Jarillo-Quijada, Ma. Dolores; Torres, Javier; Alcántar-Curiel, María D.; González-y-Merchand, Jorge A.; De la Cruz, Miguel A.

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae. PMID:28278272

  17. Testing a double AGN hypothesis for Mrk 273

    NASA Astrophysics Data System (ADS)

    Iwasawa, K.; U, V.; Mazzarella, J. M.; Medling, A. M.; Sanders, D. B.; Evans, A. S.

    2018-04-01

    The ultra-luminous infrared galaxy (ULIRG) Mrk 273 contains two infrared nuclei, N and SW, separated by 1 arcsecond. A Chandra observation has identified the SW nucleus as an absorbed X-ray source with NH 4 × 1023 cm-2 but also hinted at the possible presence of a Compton-thick AGN in the N nucleus, where a black hole of 109 M⊙ is inferred from the ionized gas kinematics. The intrinsic X-ray spectral slope recently measured by NuSTAR is unusually hard (Γ 1.3) for a Seyfert nucleus, for which we seek an alternative explanation. We hypothesize a strongly absorbed X-ray source in N, of which X-ray emission rises steeply above 10 keV, in addition to the known X-ray source in SW, and test it against the NuSTAR data, assuming the standard spectral slope (Γ = 1.9). This double X-ray source model gives a good explanation of the hard continuum spectrum, deep Fe K absorption edge, and strong Fe K line observed in this ULIRG, without invoking the unusual spectral slope required for a single source interpretation. The putative X-ray source in N is found to be absorbed by NH = 1.4+0.7-0.4 × 1024 cm-2. The estimated 2-10 keV luminosity of the N source is 1.3 × 1043 erg s-1, about a factor of 2 larger than that of SW during the NuSTAR observation. Uncorrelated variability above and below 10 keV between the Suzaku and NuSTAR observations appears to support the double source interpretation. Variability in spectral hardness and Fe K line flux between the previous X-ray observations is also consistent with this picture.

  18. RXTE/ASCA Monitoring Observations of the Luminous Seyfert 1 Galaxy Mrk 509

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Leighly, K. M.; Matsuoka, M.

    We present the results from ten coordinated RXTE and ASCA observations of the luminous Seyfert 1 galaxy Mrk 509 conducted over a time period of 27 days in late 1996. Well-resolved flux variability of about 50 % was observed over the monitoring period. The spectra are generally well described by a model consisting of a power law plus reflection and an iron line. We find that the photon index is generally positively correlated with the reflection ratio R, where R is 1 when an isotropically emitting X-ray source illuminates optically thick material subtending 2π steradians. This result seems to be similar to that discovered by Zdziarski, Lubinski & Smith 1999 to generally hold true for AGN and black hole candidates. Because an increase in the soft photon flux can cause an increase in the photon index, this result is most simply interpreted as evidence for a physical connection between the reflecting material and the origin of the soft photons. Interpretation is complicated, however, by the fact that there is evidence for hysteresis in the photon index/reflection ratio dependence. It is possible that the hysteresis is a result of a lag in the response of the reflector to a change in the flux. We find that the equivalent width of the narrow component of the iron line is anticorrelated with the flux, indicating that part of the iron line is emitted by material far from the X-ray source.

  19. Eleven years of monitoring the Seyfert 1 Mrk 335 with Swift: Characterizing the X-ray and UV/optical variability

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.; Blue, D. M.; Grupe, D.; Komossa, S.; Wilkins, D. R.

    2018-05-01

    The narrow-line Seyfert 1 galaxy (NLS1) Mrk 335 has been continuously monitored with Swift since May 2007 when it fell into a long-lasting, X-ray low-flux interval. Results from the nearly 11 years of monitoring are presented here. Structure functions are used to measure the UV-optical and X-ray power spectra. The X-ray structure function measured between 10 - 100 days is consistent with the flat, low-frequency part of the power spectrum measured previously in Mrk 335. The UV-optical structure functions of Mrk 335 are comparable with those of other Seyfert 1 galaxies and of Mrk 335 itself when it was in a normal bright state. There is no indication that the current X-ray low-flux state is attributed to changes in the accretion disc structure of Mrk 335. The characteristic timescales measured in the structure functions can be attributed to thermal (for the UV) and dynamic (for the optical) timescales in a standard accretion disc. The high-quality UVW2 (˜1800 Å in the source frame) structure function appears to have two breaks and two different slopes between 10 - 160 days. Correlations between the X-ray and other bands are not highly significant when considering the entire 11-year light curves, but more significant behaviour is present when considering segments of the light curves. A correlation between the X-ray and UVW2 in 2014 (Year-8) may be predominately caused by an giant X-ray flare that was interpreted as jet-like emission. In 2008 (Year-2), possible lags between the UVW2 emission and other UV-optical waveband may be consistent with reprocessing of X-ray or UV emission in the accretion disc.

  20. Low Ionization Absorbing Gas Kinematics Around Z ~ 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Churchill, C. W.; Steidel, C. C.; Vogt, S. S.

    1996-12-01

    Absorption profiles of the Mg II lambda lambda 2796,2803 doublet arising from gas associated with 48 ``normal'' intermediate redshift (0.4 < z < 1.7) galaxies have been resolved in QSO spectra at 6 km s(-1) resolution using HIRES on Keck I. We have found evidence for pronounced redshift evolution in the subcomponent velocity two--point correlation function, suggestive that the gas surrounding galaxies has settled over a 5--10 Gyr look--back time. Based upon a sub--sample of 15 galaxies at z<1, we found no evidence for correlations between the absorbing gas kinematics and the projected galactocentric distance of the gas, galaxy luminosities, or galaxy rest--frame colors (though trends between galaxy properties and absorption properties are apparent from a larger low resolution absorption line sample). The implication is that low ionization gas surrounding early epoch galaxies was not smoothly distributed either spatially or kinematically out to a galactocentric distance ~ 40 kpc. Directly from the profiles, we have measured the number of separate absorbing ``kinematic subsystems'' associated with each galaxy, and each subsystem's profile velocity width, asymmetry (skew), and integrated column density. The distribution in these subsystem properties with velocity is highly peaked at zero, and does not exhibit a bimodality. The lack of a bimodality is suggestive that the gas kinematics is not dominated by quasi--symmetric infall into galactic potential wells. In view of absorption line studies of local galaxies, it appears that extended regions of low ionization gas surrounding galaxies represent a dynamical and active epoch of ``normal'' galaxy evolution. The reservoirs of gas for these extended ``halos'' were probably residual infalling fragments (from earlier formation processes and on--going dynamical events) whose evolution first included a settling in velocity dispersion and then more recently a decline in number. The build up of thick and/or extended gaseous

  1. Dense CO in Mrk 71-A: Superwind Suppressed in a Young Super Star Cluster

    NASA Astrophysics Data System (ADS)

    Oey, M. S.; Herrera, C. N.; Silich, Sergiy; Reiter, Megan; James, Bethan L.; Jaskot, A. E.; Micheva, Genoveva

    2017-11-01

    We report the detection of CO(J=2-1) coincident with the super star cluster (SSC) Mrk 71-A in the nearby Green Pea analog galaxy, NGC 2366. Our observations with the Northern Extended Millimeter Array reveal a compact, ˜7 pc, molecular cloud whose mass ({10}5 {M}⊙ ) is similar to that of the SSC, consistent with a high star formation efficiency, on the order of 0.5. There are two spatially distinct components separated by 11 {km} {{{s}}}-1. If expanding, these could be due to momentum-driven stellar wind feedback. Alternatively, we may be seeing remnants of the infalling, colliding clouds responsible for triggering the SSC formation. The kinematics are also consistent with a virialized system. These extreme, high-density, star-forming conditions inhibit energy-driven feedback; the co-spatial existence of a massive, molecular cloud with the SSC supports this scenario, and we quantitatively confirm that any wind-driven feedback in Mrk 71-A is momentum-driven, rather than energy-driven. Since Mrk 71-A is a candidate Lyman continuum emitter, this implies that energy-driven superwinds may not be a necessary condition for the escape of ionizing radiation. In addition, the detection of nebular continuum emission yields an accurate astrometric position for the Mrk 71-A. We also detect four other massive molecular clouds in this giant star-forming complex.

  2. No evidence for [O III] variability in Mrk 142

    NASA Astrophysics Data System (ADS)

    Barth, Aaron J.; Bentz, Misty C.

    2016-05-01

    Using archival data from the 2008 Lick AGN Monitoring Project, Zhang & Feng claimed to find evidence for flux variations in the narrow [O III] emission of the Seyfert 1 galaxy Mrk 142 over a two-month time span. If correct, this would imply a surprisingly compact size for the narrow-line region. We show that the claimed [O III] variations are merely the result of random errors in the overall flux calibration of the spectra. The data do not provide any support for the hypothesis that the [O III] flux was variable during the 2008 monitoring period.

  3. Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Prabhakar, Vedavvathi

    Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars Vijayakumar H. Doddamani*and P. Vedavathi Department of Physics, Bangalore University, Bangalore-560056, *Corresponding author:drvkdmani@gmail.com, Abstract The line and continuum flux variability is a hallmark phenomenon of Seyfert 1 galaxies and quasars. Large amplitude luminosity variability is observed in AGNs from x-rays through radio waves over a wide-ranging timescales from minutes to years. The combinations of high luminosity and short variability time scales suggests, that the power of AGN is produced by a phenomena more efficient in terms of energy release per unit mass than ordinary stellar processes. The basic structure of AGNs thus developed based on the variability studies consists of a central super massive black hole surrounded by an accretion disk or more generally optically thick plasma radiating brightly at UV and soft X-ray wavelengths. The variability studies have been important tools of understanding the physics of the central regions of AGNs, which in general cannot be resolved with the existing or planned ground and space telescopes. Therefore, we have undertaken a study of the simultaneous ultraviolet line and continuum flux variability studies in MRK501, ESOB113-IG45 (also called as Fairall 9), MRK1506, MRK1095 V*GQCOM, PG1211+143, MRK205, PG1226+023 (also known as 3C273), PG1351+640, MRK 1383, MRK876 and QSO2251-178 as these objects have been repeatedly observed by IUE satellite over several years.. It is observed that Fairall 9, MRK 1095 and 3C273 exhibit the large amplitude variability (» 30 times) over the observed timescale, which spans several years. The remaining nine objects exhibit small amplitude (» 5 times) variability over the long time scale of observations. The highest amplitude variability is observed in Lya with a least in the MgII line. The amplitude of variability decreases in the order of Lya, CIV and Mg II, lines. These

  4. GeV Outbursts in Mrk 501

    NASA Technical Reports Server (NTRS)

    Sreekumar, P.; Bertsch, D. L.; Bloom, S. D.; Hartman, R. C.; Lin, Y. C.; Mukherjee, R.; Thompson, D. J.

    1999-01-01

    Mrk 501 is the third TeV blazar with a known GeV component. Previous multiwavelength campaigns on Mrk 501 showed well correlated outbursts at x-ray and TeV energies with no significant activity at GeV energies. We present here new evidence suggesting GeV outbursts in Mrk 501 when the spectrum appears to be extremely hard. However, this outburst appears uncorrelated with emission at x-ray energies. The resulting spectral energy distribution suggests a sharp cut off in the high-energy emission beyond a few hundred GeV.

  5. Mapping the properties of blue compact dwarf galaxies: integral field spectroscopy with PMAS

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Zurita, C.; Kehrig, C.; Roth, M.; Weilbacher, P.

    2010-09-01

    Context. Blue compact dwarf (BCD) galaxies are low-luminosity, low-metal content dwarf systems undergoing violent bursts of star formation. They present a unique opportunity to probe galaxy formation and evolution and to investigate the process of star formation in a relatively simple scenario. Spectrophotometric studies of BCDs are essential to disentangle and characterize their stellar populations. Aims: We perform integral field spectroscopy of a sample of BCDs with the aim of analyzing their morphology, the spatial distribution of some of their physical properties (excitation, extinction, and electron density) and their relationship with the distribution and evolutionary state of the stellar populations. Methods: Integral field spectroscopy observations of the sample galaxies were carried out with the Potsdam Multi-Aperture Spectrophotometer (PMAS) at the 3.5 m telescope at Calar Alto Observatory. An area 16 arcsec × 16 arcsec in size was mapped with a spatial sampling of 1 arcsec × 1 arcsec. We obtained data in the 3590-6996 Å spectral range, with a linear dispersion of 3.2 Å per pixel. From these data we built two-dimensional maps of the flux of the most prominent emission lines, of two continuum bands, of the most relevant line ratios, and of the gas velocity field. Integrated spectra of the most prominent star-forming regions and of whole objects within the FOV were used to derive their physical parameters and the gas metal abundances. Results: Six galaxies display the same morphology both in emission line and in continuum maps; only in two objects, Mrk 32 and Tololo 1434+032, the distributions of the ionized gas and of the stars differ considerably. In general the different excitation maps for a same object display the same pattern and trace the star-forming regions, as expected for objects ionized by hot stars; only the outer regions of Mrk 32, I Zw 123 and I Zw 159 display higher [S II]/Hα values, suggestive of shocks. Six galaxies display an

  6. Multiwavelength campaign on Mrk 509. XIII. Testing ionized-reflection models on Mrk 509

    NASA Astrophysics Data System (ADS)

    Boissay, R.; Paltani, S.; Ponti, G.; Bianchi, S.; Cappi, M.; Kaastra, J. S.; Petrucci, P.-O.; Arav, N.; Branduardi-Raymont, G.; Costantini, E.; Ebrero, J.; Kriss, G. A.; Mehdipour, M.; Pinto, C.; Steenbrugge, K. C.

    2014-07-01

    Active galactic nuclei (AGN) are the most luminous persistent objects in the universe. The X-ray domain is particularly important because the X-ray flux represents a significant fraction of the bolometric emission from such objects and probes the innermost regions of accretion disks, where most of this power is generated. An excess of X-ray emission below ~2 keV, called soft-excess, is very common in Type 1 AGN spectra. The origin of this feature remains debated. Originally modeled with a blackbody, there are now several possibilities to model the soft-excess, including warm Comptonization and blurred ionized reflection. In this paper, we test ionized-reflection models on Mrk 509, a bright Seyfert 1 galaxy for which we have a unique data set, in order to determine whether it can be responsible for the strong soft-excess. We use ten simultaneous XMM-Newton and INTEGRAL observations performed every four days. We present here the results of the spectral analysis, the evolution of the parameters, and the variability properties of the X-ray emission. The application of blurred ionized-reflection models leads to a very strong reflection and an extreme geometry, but fails to reproduce the broad-band spectrum of Mrk 509. Two different scenarios for blurred ionized reflection are discussed: stable geometry and lamp-post configuration. In both cases we find that the model parameters do not follow the expected relations, indicating that the model is fine-tuned to fit the data without physical justification. A large, slow variation in the soft-excess without a counterpart in the hard X-rays could be explained by a change in ionization of the reflector. However, such a change does not naturally follow from the assumed geometrical configuration. Warm Comptonization remains the most probable origin of the soft-excess in this object. Nevertheless, it is possible that both ionized reflection and warm Comptonization mechanisms can explain the soft-excess in all objects, one

  7. Daily Monitoring of TeV Gamma-Ray Emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Bautista-Elivar, N.; Becerra Gonzalez, J.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Younk, P. W.; Zepeda, A.; Zhou, H.

    2017-06-01

    We present results from daily monitoring of gamma-rays in the energy range from ˜0.5 to ˜100 TeV with the first 17 months of data from the High Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2 steradians and duty cycle of > 95% are unique features compared to other TeV observatories that allow us to observe every source that transits over HAWC for up to ˜6 hr each sidereal day. This regular sampling yields unprecedented light curves from unbiased measurements that are independent of seasons or weather conditions. For the Crab Nebula as a reference source, we find no variability in the TeV band. Our main focus is the study of the TeV blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a power-law index {{Γ }}=2.21+/- {0.14}{stat}+/- {0.20}{sys} and an exponential cut-off {E}0=5.4+/- {1.1}{stat}+/- {1.0}{sys} TeV. For Mrk 501, we find an index {{Γ }}=1.60+/- {0.30}{stat}+/- {0.20}{sys} and exponential cut-off {E}0=5.7+/- {1.6}{stat}+/- {1.0}{sys} TeV. The light curves for both sources show clear variability and a Bayesian analysis is applied to identify changes between flux states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab Nebula flux by a factor of approximately five. For Mrk 501, several transits show fluxes in excess of three times the Crab Nebula flux. In a comparison to lower energy gamma-ray and X-ray monitoring data with comparable sampling, we cannot identify clear counterparts for the most significant flaring features observed by HAWC.

  8. High spatial resolution of the mid-infrared emission of the Compton-thick type 2 Seyfert galaxy, Markarian 3

    NASA Astrophysics Data System (ADS)

    Sales, Dinalva A.; Ruschel-Dutra, D.; Pastoriza, M. G.; Riffel, R.; Winge, Cláudia

    2014-06-01

    The mid-infrared (MIR) spectra observed with Gemini/Michelle have been used to study the nuclear region of the Compton-thick type 2 Seyfert galaxy, Markarian 3 (Mrk 3), at a spatial resolution of ˜200 pc. No polycyclic aromatic hydrocarbon emission bands were detected in the N-band spectrum of Mrk 3. However, intense [Ar III] 8.99 μm, [S IV] 10.5 μm and [Ne II] 12.8 μm ionic emission lines, as well as a silicate absorption feature at 9.7 μm, have been found in the nuclear extraction (˜200 pc). We also present a subarcsecond-resolution Michelle N-band image of Mrk 3, which resolves its circumnuclear region. This diffuse MIR emission shows up as a wing towards the east-west direction, closely aligned with the S-shape of the narrow-line region observed in the optical [O III] λ5007Å image from the Faint Object Camera onboard the Hubble Space Telescope. The nuclear continuum spectrum can be well represented by a theoretical torus spectral energy distribution, suggesting that the nucleus of Mrk 3 might host a dusty toroidal structure, as predicted by the unified model of an active galactic nucleus (AGN). In addition, the hydrogen column density (N_H= 4.8^{+3.3}_{-3.1}× 10^{23} cm-2) estimated with a torus model for Mrk 3 is consistent with the value derived from X-ray spectroscopy. The torus model geometry of Mrk 3 is similar to that of NGC 3281 (both are Compton-thick galaxies), confirmed through fitting the 9.7-μm silicate band profile. These results might provide further evidence that silicate-rich dust can be associated with the AGN torus and might also be responsible for the absorption observed at X-ray wavelengths in those galaxies.

  9. Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere

    2018-03-01

    The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 < z < 0.8 selected from Sloan Digital Sky Survey imaging data. This galaxy sample covers an effective volume of 2.2 Gpc3. A statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.

  10. Buried Quasars in Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    2004-01-01

    We were awarded l00OkS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order io measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  11. VizieR Online Data Catalog: The 2009 multiwavelength campaign on Mrk421 (Aleksic+, 2015)

    NASA Astrophysics Data System (ADS)

    Aleksic, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra Gonzalez, J.; Bednarek, W.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Carreto Fidalgo, D.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Caneva, G.; de Lotto, B.; Delgado Mendez, C.; Doert, M.; Dominguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Farina, E.; Ferenc, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Garcia Lopez, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giavitto, G.; Godinovi, N.; Gonzalez Munoz, A.; Gozzini, S. R.; Hadamek, A.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Knoetig, M. L.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Longo, F.; Lombardi, S.; Lopez, M.; Lopez-Coto, R.; Lopez-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martinez, M.; Mazin, D.; Menzel, U.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nowak, N.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Partini, S.; Persic, M.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Preziuso, S.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribo, M.; Rico, J.; Rodriguez Garcia, J.; Rugamer, S.; Saggion, A.; Saito, K.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpaa, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Storz, J.; Sun, S.; Suri, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzi, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Wagner, R. M.; Zandanel, F.; Zanin, R.

    2015-02-01

    Light Curves of Mrk 421 as shown in Figure 1 of the paper are presented for following instruments/observatories and bands (radio to very high energy gamma rays): Effelsberg (2.6, 4.6, 7.9, 10.3, 13.6, 21.7, 31GHz), Medicina (8.4GHz), Metsahovi (37GHz), OVRO (15GHz), Noto (8, 22GHz), OAGH (J, H, K bands), WIRO (J, K bands), MITSuME (g, Rc, Ic bands), ROVOR (B band), GRT (V, R, B, I bands), GASP (R band), Steward (V band), Swift/UVOT (UVW1, UVM2, UVW2), Swift/XRT (0.3-2 and 2-10keV), RXTE/PCA (2-10keV). RXTE/ASM (2-10keV), Swift/BAT (15-50keV), Fermi-LAT (>0.3keV), Whipple (>300GeV), MAGIC (>300GeV). The observation period is from 2009 January 19 (MJD 54850) to 2009 June 1st (MJD 54983), where Mrk 421 was observed approximately once every two days. The Fermi-LAT photon fluxes are integrated over a three-day-long time interval, the RXTE/ASM and Swift/BAT photon fluxes over a seven-day long time interval. The Whipple 10-meter data (with an energy threshold of 400GeV) were converted into fluxes above 300GeV using a power-law spectrum with index of 2.5. Host galaxy fluxes are given where a good estimate is available, which is the case for some optical bands only. In the infrared, e.g., the host galaxy flux is larger than in the R band, however, we do not have a good estimate of the galaxy flux and therefore it is not given in the table. (1 data file).

  12. Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies

    NASA Astrophysics Data System (ADS)

    Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.

    2018-04-01

    We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has an 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has a ˜13 Gyr old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyrs ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical AGN feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot halos around such massive galaxies and the growth of super/over-massive black holes via chaotic cold accretion.

  13. Digging for red nuggets: discovery of hot haloes surrounding massive, compact, relic galaxies

    NASA Astrophysics Data System (ADS)

    Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.

    2018-07-01

    We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has a 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has an ˜13-Gyr-old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyr ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical active galactic nucleus (AGN) feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot haloes around such massive galaxies and the growth of super-/overmassive black holes via chaotic cold accretion.

  14. New data on the peculiar galaxy MRK 273

    NASA Technical Reports Server (NTRS)

    Asatrian, A. S.; Petrosian, A. R.; Boerngen, F.

    1990-01-01

    Colorimetric and spectral investigations of Markarian 273 and its three neighbors were performed on the basis of direct ultraviolet blue visual (UBV) and spectral observations with the 2-m Tautenburg telescope and the 6-m telescope of the Special Astrophysical Observatory of the USSR Academy of Sciences. The results obtained suggest that this galaxy is a close system of two objects with active nuclei. The observed straight tail with a thermal emission character is probably the result of the interaction of these galaxies.

  15. The discovery of five new H2O megamasers in active galaxies

    NASA Technical Reports Server (NTRS)

    Braatz, J. A.; Wilson, A. S.; Henkel, C.

    1994-01-01

    H2O megamasers with (isotropic) luminosities between 60 and 200 solar luminosity (H(sub 0) = 75 km/s/Mpc) have been detected in the Seyfert 2 galaxies Mrk 1, Mrk 1210, and NGC 5506 and in the LINERs NGC 1052 and NGC 2639. No megamasers have been found in Seyfert 1's. The galaxies have redshifts between 1500 and 4800 km/s and are the most distant H2O sources reported to date. NGC 1052 is also the first elliptical galaxy known to contain an H2O maser. The intensity distribution of an H2O five-point map obtained toward NGC 5506 shows that the H2O emission is pointlike compared to the 40 sec telescope beam. The lack of CO emission in NGC 1052 implies a conservative lower limit to the H2O brightness temperature of 1000 K, thus ruling out a thermal origin for the H2O emission. The success of this survey relative to other recent searches makes it evident that H2O megamasers are preferentially found in galaxies with active nuclei.

  16. The HI Chronicles of LITTLE THINGS BCDs. III. Gas Clouds in and around Mrk 178, VII Zw 403, and NGC 3738

    NASA Astrophysics Data System (ADS)

    Ashley, Trisha; Simpson, Caroline E.; Elmegreen, Bruce G.; Johnson, Megan; Pokhrel, Nau Raj

    2017-03-01

    In most blue compact dwarf (BCD) galaxies, it remains unclear what triggers their bursts of star formation. We study the H I of three relatively isolated BCDs, Mrk 178, VII Zw 403, and NGC 3738, in detail to look for signatures of star formation triggers, such as gas cloud consumption, dwarf-dwarf mergers, and interactions with companions. High angular and velocity resolution atomic hydrogen (H I) data from the Very Large Array (VLA) dwarf galaxy H I survey, Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey (LITTLE THINGS), allow us to study the detailed kinematics and morphologies of the BCDs in H I. We also present high-sensitivity H I maps from the NRAO Green Bank Telescope (GBT) of each BCD to search their surrounding regions for extended tenuous emission or companions. The GBT data do not show any distinct galaxies obviously interacting with the BCDs. The VLA data indicate several possible star formation triggers in these BCDs. Mrk 178 likely has a gas cloud impacting the southeast end of its disk or it is experiencing ram pressure stripping. VII Zw 403 has a large gas cloud in its foreground or background that shows evidence of accreting onto the disk. NGC 3738 has several possible explanations for its stellar morphology and H I morphology and kinematics: an advanced merger, strong stellar feedback, or ram pressure stripping. Although apparently isolated, the H I data of all three BCDs indicate that they may be interacting with their environments, which could be triggering their bursts of star formation.

  17. Buried Quasars in Ultra-luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We were awarded l00kS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order to measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  18. Extended Narrow-Line Region in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Congiu, Enrico; Contini, Marcella.; Ciroi, Stefano; Cracco, Valentina; Di Mille, Francesco; Berton, Marco; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero

    2017-10-01

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modelling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as a) the contribution of shocks in ionizing the high velocity gas, b) the complex kinematics showed by the profile of the emission lines, c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  19. Outflows in the narrow-line region of bright Seyfert galaxies - I. GMOS-IFU data

    NASA Astrophysics Data System (ADS)

    Freitas, I. C.; Riffel, R. A.; Storchi-Bergmann, T.; Elvis, M.; Robinson, A.; Crenshaw, D. M.; Nagar, N. M.; Lena, D.; Schmitt, H. R.; Kraemer, S. B.

    2018-05-01

    We present two-dimensional maps of emission-line fluxes and kinematics, as well as of the stellar kinematics of the central few kpc of five bright nearby Seyfert galaxies - Mrk 6, Mrk 79, Mrk 348, Mrk 607, and Mrk 1058 - obtained from observations with the Gemini Multi-Object Spectrograph Integral Field Unit on the Gemini North Telescope. The data cover the inner 3.5 arcsec × 5.0 arcsec - corresponding to physical scales in the range 0.6 × 0.9-1.5 × 2.2 kpc2 - at a spatial resolution ranging from 110 to 280 pc with a spectral coverage of 4300-7100 Å and velocity resolution of ≈90 km s-1. The gas excitation is Seyfert like everywhere but show excitation gradients that are correlated with the gas kinematics, reddening and/or the gas density. The gas kinematics show in all cases two components: a rotation one similar to that observed in the stellar velocity field, and an outflow component. In the case of Mrk607, the gas is counter-rotating relative to the stars. Enhanced gas velocity dispersion is observed in association with the outflows according to two patterns: at the locations of the highest outflow velocities along the ionization axis or perpendicularly to it in a strip centred at the nucleus that we attribute to an equatorial outflow. Bipolar outflows are observed in Mrk 348 and Mrk 79, while in Mrk 1058 only the blueshifted part is clearly observed, while in cases of Mrk 6 and Mrk 607, the geometry of the outflow needs further constraints from modelling to be presented in a forthcoming study, where the mass flow rate and powers will also be obtained.

  20. A HUBBLE SPACE TELESCOPE/COSMIC ORIGINS SPECTROGRAPH SEARCH FOR WARM-HOT BARYONS IN THE Mrk 421 SIGHT LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danforth, Charles W.; Stocke, John T.; Keeney, Brian A.

    2011-12-10

    Thermally broadened Ly{alpha} absorbers (BLAs) offer an alternate method to using highly ionized metal absorbers (O VI, O VII, etc.) to probe the warm-hot intergalactic medium (WHIM, T = 10{sup 5}-10{sup 7} K). Until now, WHIM surveys via BLAs have been no less ambiguous than those via far-UV and X-ray metal-ion probes. Detecting these weak, broad features requires background sources with a well-characterized far-UV continuum and data of very high quality. However, a recent Hubble Space Telescope/Cosmic Origins Spectrograph (COS) observation of the z = 0.03 blazar Mrk 421 allows us to perform a metal-independent search for WHIM gas withmore » unprecedented precision. The data have high signal-to-noise ratio (S/N Almost-Equal-To 50 per {approx}20 km s{sup -1} resolution element) and the smooth, power-law blazar spectrum allows a fully parametric continuum model. We analyze the Mrk 421 sight line for BLA absorbers, particularly for counterparts to the proposed O VII WHIM systems reported by Nicastro et al. based on Chandra/Low Energy Transmission Grating observations. We derive the Ly{alpha} profiles predicted by the X-ray observations. The S/N of the COS data is high (S/N Almost-Equal-To 25 pixel{sup -1}), but much higher S/N can be obtained by binning the data to widths characteristic of the expected BLA profiles. With this technique, we are sensitive to WHIM gas over a large (N{sub H}, T) parameter range in the Mrk 421 sight line. We rule out the claimed Nicastro et al. O VII detections at their nominal temperatures (T {approx} 1-2 Multiplication-Sign 10{sup 6} K) and metallicities (Z = 0.1 Z{sub Sun }) at {approx}> 2{sigma} level. However, WHIM gas at higher temperatures and/or higher metallicities is consistent with our COS non-detections.« less

  1. PopIII-star siblings in IZw18 and metal-poor WR galaxies unveiled from integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Brinchmann, J.; Crowther, P. A.; Durret, F.; Kunth, D.

    Here, we highlight our recent results from the IFS study of Mrk178, the closest metal-poor WR galaxy, and of IZw18, the most metal-poor star-forming galaxy known in the local Universe. The IFS data of Mrk178 show the importance of aperture effects on the search for WR features, and the extent to which physical variations in the ISM properties can be detected. Our IFS data of IZw18 reveal its entire nebular HeIIλ4686-emitting region, and indicate for the very first time that peculiar, hot (nearly) metal-free ionizing stars (called here PopIII-star siblings) might hold the key to the HeII-ionization in IZw18.

  2. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; hide

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  3. The H i Chronicles of LITTLE THINGS BCDs. III. Gas Clouds in and around Mrk 178, VII Zw 403, and NGC 3738

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Trisha; Simpson, Caroline E.; Pokhrel, Nau Raj

    In most blue compact dwarf (BCD) galaxies, it remains unclear what triggers their bursts of star formation. We study the H i of three relatively isolated BCDs, Mrk 178, VII Zw 403, and NGC 3738, in detail to look for signatures of star formation triggers, such as gas cloud consumption, dwarf–dwarf mergers, and interactions with companions. High angular and velocity resolution atomic hydrogen (H i) data from the Very Large Array (VLA) dwarf galaxy H i survey, Local Irregulars That Trace Luminosity Extremes, The H i Nearby Galaxy Survey (LITTLE THINGS), allow us to study the detailed kinematics and morphologiesmore » of the BCDs in H i. We also present high-sensitivity H i maps from the NRAO Green Bank Telescope (GBT) of each BCD to search their surrounding regions for extended tenuous emission or companions. The GBT data do not show any distinct galaxies obviously interacting with the BCDs. The VLA data indicate several possible star formation triggers in these BCDs. Mrk 178 likely has a gas cloud impacting the southeast end of its disk or it is experiencing ram pressure stripping. VII Zw 403 has a large gas cloud in its foreground or background that shows evidence of accreting onto the disk. NGC 3738 has several possible explanations for its stellar morphology and H i morphology and kinematics: an advanced merger, strong stellar feedback, or ram pressure stripping. Although apparently isolated, the H i data of all three BCDs indicate that they may be interacting with their environments, which could be triggering their bursts of star formation.« less

  4. A VLT VIMOS study of the anomalous BCD Mrk996: mapping the ionized gas kinematics and abundances

    NASA Astrophysics Data System (ADS)

    James, B. L.; Tsamis, Y. G.; Barlow, M. J.; Westmoquette, M. S.; Walsh, J. R.; Cuisinier, F.; Exter, K. M.

    2009-09-01

    A study of the blue compact dwarf (BCD) galaxy Mrk996 based on high-resolution optical Very Large Telescope Visible Multi-Object Spectrograph integral field unit spectroscopy is presented. Mrk996 displays multicomponent line emission, with most line profiles consisting of a narrow, central Gaussian [full width at half-maximum (FWHM) ~ 110kms-1] with an underlying broad component (FWHM ~ 400kms-1). The broad HI Balmer component splits into two separate broad components inside a 1.5-arcsec radius from the nucleus; these are attributed to a two-armed minispiral. This spiral-like nucleus rotates in the same sense as the extended narrow line ionized gas but is offset by ~50kms-1 from the systemic velocity of the galaxy. The rotation curve of Mrk996 derived from the Hα narrow component yields a total mass of 5 × 108Msolar within a radius of 3kpc. From the Hα luminosity we infer a global star formation rate of ~2Msolaryr-1. The high excitation energy, high critical density [OIII] λ4363 and [NII] λ5755 lines are only detected from the inner region and exist purely in broad component form, implying unusual excitation conditions. Surface brightness, radial velocity and FWHM maps for several emission components are presented. A separate physical analysis of the broad and narrow emission line regions is undertaken. We derive an upper limit of 10000K for the electron temperature of the narrow line gas, together with an electron density of 170cm-3, typical of normal HII regions. For the broad line component, measured [OIII] and [FeIII] diagnostic line ratios are consistent with a temperature of 11000K and an electron density of 107cm-3. The broad line emission regions show N/H and N/O enrichment factors of ~20 relative to the narrow line regions, but no He/H, O/H, S/H or Ar/H enrichment is inferred. Previous studies indicated that Mrk996 showed anomalously high N/O ratios compared with BCDs of a similar metallicity. Our multicomponent analysis yields a revised metallicity

  5. Characterising the Circum-Galactic Medium of Damped Lyman-α Absorbing Galaxies

    NASA Astrophysics Data System (ADS)

    Augustin, Ramona; Péroux, Céline; Møller, Palle; Kulkarni, Varsha; Rahmani, Hadi; Milliard, Bruno; Pieri, Matthew; York, Donald G.; Vladilo, Giovanni; Aller, Monique; Zwaan, Martin

    2018-05-01

    Gas flows in and out of galaxies through their circumgalactic medium (CGM) are poorly constrained and direct observations of this faint, diffuse medium remain challenging. We use a sample of five z ˜ 1-2 galaxy counterparts to Damped Lyman-α Absorbers (DLAs) to combine data on cold gas, metals and stellar content of the same galaxies. We present new HST/WFC3 imaging of these fields in 3-5 broadband filters and characterise the stellar properties of the host galaxies. By fitting the spectral energy distribution, we measure their stellar masses to be in the range of log(M*/M⊙) ˜ 9.1-10.7. Combining these with IFU observations, we find a large spread of baryon fractions inside the host galaxies, between 7 and 100 percent. Similarly, we find gas fractions between 3 and 56 percent. Given their star formation rates, these objects lie on the expected main sequence of galaxies. Emission line metallicities indicate they are consistent with the mass-metallicity relation for DLAs. We also report an apparent anti-correlation between the stellar masses and N(H I), which could be due to a dust bias effect or lower column density systems tracing more massive galaxies. We present new ALMA observations of one of the targets leading to a molecular gas mass of log(Mmol/M⊙) < 9.89. We also investigate the morphology of the DLA counterparts and find that most of the galaxies show a clumpy structure and suggest ongoing tidal interaction. Thanks to our high spatial resolution HST data, we gain new insights in the structural complexity of the CGM.

  6. The molecular gas reservoir of 6 low-metallicity galaxies from the Herschel Dwarf Galaxy Survey. A ground-based follow-up survey of CO(1-0), CO(2-1), and CO(3-2)

    NASA Astrophysics Data System (ADS)

    Cormier, D.; Madden, S. C.; Lebouteiller, V.; Hony, S.; Aalto, S.; Costagliola, F.; Hughes, A.; Rémy-Ruyer, A.; Abel, N.; Bayet, E.; Bigiel, F.; Cannon, J. M.; Cumming, R. J.; Galametz, M.; Galliano, F.; Viti, S.; Wu, R.

    2014-04-01

    Context. Observations of nearby starburst and spiral galaxies have revealed that molecular gas is the driver of star formation. However, some nearby low-metallicity dwarf galaxies are actively forming stars, but CO, the most common tracer of this reservoir, is faint, leaving us with a puzzle about how star formation proceeds in these environments. Aims: We aim to quantify the molecular gas reservoir in a subset of 6 galaxies from the Herschel Dwarf Galaxy Survey with newly acquired CO data and to link this reservoir to the observed star formation activity. Methods: We present CO(1-0), CO(2-1), and CO(3-2) observations obtained at the ATNF Mopra 22-m, APEX, and IRAM 30-m telescopes, as well as [C ii] 157μm and [O i] 63μm observations obtained with the Herschel/PACS spectrometer in the 6 low-metallicity dwarf galaxies: Haro 11, Mrk 1089, Mrk 930, NGC 4861, NGC 625, and UM 311. We derived their molecular gas masses from several methods, including using the CO-to-H2 conversion factor XCO (both Galactic and metallicity-scaled values) and dust measurements. The molecular and atomic gas reservoirs were compared to the star formation activity. We also constrained the physical conditions of the molecular clouds using the non-LTE code RADEX and the spectral synthesis code Cloudy. Results: We detect CO in 5 of the 6 galaxies, including first detections in Haro 11 (Z ~ 0.4 Z⊙), Mrk 930 (0.2 Z⊙), and UM 311 (0.5 Z⊙), but CO remains undetected in NGC 4861 (0.2 Z⊙). The CO luminosities are low, while [C ii] is bright in these galaxies, resulting in [C ii]/CO(1-0) ≥ 10 000. Our dwarf galaxies are in relatively good agreement with the Schmidt-Kennicutt relation for total gas. They show short molecular depletion timescales, even when considering metallicity-scaled XCO factors. Those galaxies are dominated by their H i gas, except Haro 11, which has high star formation efficiency and is dominated by ionized and molecular gas. We determine the mass of each ISM phase in

  7. Pharmacological Inhibition of the Protein Kinase MRK/ZAK Radiosensitizes Medulloblastoma.

    PubMed

    Markowitz, Daniel; Powell, Caitlin; Tran, Nhan L; Berens, Michael E; Ryken, Timothy C; Vanan, Magimairajan; Rosen, Lisa; He, Mingzu; Sun, Shan; Symons, Marc; Al-Abed, Yousef; Ruggieri, Rosamaria

    2016-08-01

    Medulloblastoma is a cerebellar tumor and the most common pediatric brain malignancy. Radiotherapy is part of the standard care for this tumor, but its effectiveness is accompanied by significant neurocognitive sequelae due to the deleterious effects of radiation on the developing brain. We have previously shown that the protein kinase MRK/ZAK protects tumor cells from radiation-induced cell death by regulating cell-cycle arrest after ionizing radiation. Here, we show that siRNA-mediated MRK depletion sensitizes medulloblastoma primary cells to radiation. We have, therefore, designed and tested a specific small molecule inhibitor of MRK, M443, which binds to MRK in an irreversible fashion and inhibits its activity. We found that M443 strongly radiosensitizes UW228 medulloblastoma cells as well as UI226 patient-derived primary cells, whereas it does not affect the response to radiation of normal brain cells. M443 also inhibits radiation-induced activation of both p38 and Chk2, two proteins that act downstream of MRK and are involved in DNA damage-induced cell-cycle arrest. Importantly, in an animal model of medulloblastoma that employs orthotopic implantation of primary patient-derived UI226 cells in nude mice, M443 in combination with radiation achieved a synergistic increase in survival. We hypothesize that combining radiotherapy with M443 will allow us to lower the radiation dose while maintaining therapeutic efficacy, thereby minimizing radiation-induced side effects. Mol Cancer Ther; 15(8); 1799-808. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Multiwavelength observations of Mrk 501 in 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksic, J.; Ansoldi, S.; Antonelli, L. A.

    2015-01-01

    Context. Blazars are variable sources on various timescales over a broad energy range spanning from radio to very high energy (>100 GeV, hereafter VHE). Mrk 501 is one of the brightest blazars at TeV energies and has been extensively studied since its first VHE detection in 1996. However, most of the γ-ray studies performed on Mrk 501 during the past years relate to flaring activity, when the source detection and characterization with the available γ-ray instrumentation was easier toperform. Aims. Our goal is to characterize the source γ-ray emission in detail, together with the radio-to-X-ray emission, during the non-flaring (low)more » activity, which is less often studied than the occasional flaring (high) activity. Methods. We organized a multiwavelength (MW) campaign on Mrk 501 between March and May 2008. This multi-instrument effort included the most sensitive VHE γ-ray instruments in the northern hemisphere, namely the imaging atmospheric Cherenkov telescopes MAGIC and VERITAS, as well as Swift, RXTE, the F-GAMMA, GASP-WEBT, and other collaborations and instruments. This provided extensive energy and temporal coverage of Mrk 501 throughout the entire campaign. Results. Mrk 501 was found to be in a low state of activity during the campaign, with a VHE flux in the range of 10%–20% of the Crab nebula flux. Nevertheless, significant flux variations were detected with various instruments, with a trend of increasing variability with energy and a tentative correlation between the X-ray and VHE fluxes. The broadband spectral energy distribution during the two different emission states of the campaign can be adequately described within the homogeneous one-zone synchrotron self-Compton model, with the (slightly) higher state described by an increase in the electron number density. Conclusions. The one-zone SSC model can adequately describe the broadband spectral energy distribution of the source during the two months covered by the MW campaign. This agrees

  9. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  10. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  11. A Radio Study of the Seyfert Galaxy Markarian 6: Implications for Seyfert Life Cycles

    NASA Astrophysics Data System (ADS)

    Kharb, P.; O'Dea, C. P.; Baum, S. A.; Colbert, E. J. M.; Xu, C.

    2006-11-01

    We have carried out an extensive radio study with the Very Large Array on the Seyfert 1.5 galaxy Mrk 6 and imaged a spectacular radio structure in the source. The radio emission occurs on three different spatial scales: ~7.5 kpc bubbles, ~1.5 kpc bubbles lying nearly orthogonal to them, and a ~1 kpc radio jet lying orthogonal to the kiloparsec-scale bubble. To explain the complex morphology, we first consider a scenario in which the radio structures are the result of superwinds ejected by a nuclear starburst. However, recent Spitzer observations of Mrk 6 provide an upper limit to the star formation rate (SFR) of ~5.5 Msolar yr-1, an estimate much lower than the SFR of ~33 Msolar yr-1 derived assuming that the bubbles are a result of starburst winds energized by supernova explosions. Thus, a starburst alone cannot meet the energy requirements for the creation of the bubbles in Mrk 6. We then present an energetically plausible model wherein the bubbles are a result of energy deposited by the kiloparsec-scale jet as it plows into the interstellar medium. Finally, we consider a model in which the complex radio structure is a result of an episodically powered precessing jet that changes its orientation. This model is the most attractive as it can naturally explain the complex radio morphology and is consistent with the energetics, the spectral index, and the polarization structure. Radio emission in this scenario is a short-lived phenomenon in the lifetime of a Seyfert galaxy, which results from an accretion event.

  12. Ultraviolet and optical spectrophotometry of the Seyfert 1.8 galaxy Markarian 609

    NASA Technical Reports Server (NTRS)

    Rudy, Richard J.; Cohen, Ross D.; Ake, T. B.

    1988-01-01

    Ultraviolet and optical observations of the Seyfert 1.8 galaxy Mrk 609 were collected simultaneously. The observations reveal strong line and continuum emission in the UV, an increase in the flux of H-beta and He I 5876, and a decrease in the H-alpha/H-beta value since the measurements by Osterbrock (1978, 1981), as well as an extended population of early-type stars, which is considered to be the source powering the larger part of the far-IR emission. Special attention is given to the origin of steep broad-line Balmer decrement measured by Osterbrock, since the strong UV continuum and the emission lines of Mrk 609 observed rule out reddening as the cause of the Balmer decrement. It is suggested that smaller-than-normal optical depths are likely to be the cause of the decrement.

  13. The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies

    DOE PAGES

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...

    2015-04-17

    We perform an extensive characterization of the broadband emission of Mrk 421, as well as its temporal evolution, during the non-flaring (low) state. The high brightness and nearby location (z = 0.031) of Mrk 421 make it an excellent laboratory to study blazar emission. The goal is to learn about the physical processes responsible for the typical emission of Mrk 421, which might also be extended to other blazars that are located farther away and hence are more difficult to study. We performed a 4.5-month multi-instrument campaign on Mrk 421 between January 2009 and June 2009, which included VLBA, F-GAMMA,more » GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collaborations. This extensive radio to very-high-energy (VHE; E> 100 GeV) γ-ray dataset provides excellent temporal and energy coverage, which allows detailed studies of the evolution of the broadband spectral energy distribution. As a result, Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-correlation between optical/UV and X-rays extending over the duration of the campaign. In conclusion, the harder-when-brighter behavior in the X-ray spectra and the measured positive X-ray/VHE correlation during the 2009 multi-wavelength campaign suggests that the physical processes

  14. Revealing the Host Galaxy of a Quasar 2175 Å Dust Absorber at z =  2.12

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Brammer, Gabriel; Ge, Jian; Prochaska, J. Xavier; Lundgren, Britt

    2018-04-01

    We report the first detection of the host galaxy of a strong 2175 Å dust absorber at z = 2.12 toward the background quasar SDSS J121143.42+083349.7 using Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3) IR F140W direct imaging and G141 grism spectroscopy. The spectroscopically confirmed host galaxy is located at a small impact parameter of ∼5.5 kpc (∼0.″65). The F140W image reveals a disk-like morphology with an effective radius of 2.24 ± 0.08 kpc. The extracted 1D spectrum is dominated by a continuum with weak emission lines ([O III] and [O II]). The [O III]-based unobscured star formation rate (SFR) is 9.4 ± 2.6 M ⊙ yr‑1, assuming an [O III]/Hα ratio of 1. The moderate 4000 Å break (Dn(4000) index ∼1.3) and Balmer absorption lines indicate that the host galaxy contains an evolved stellar population with an estimated stellar mass M * of (3–7) × 1010 M ⊙. The SFR and M * of the host galaxy are comparable to, though slightly lower than, those of typical emission-selected galaxies at z ∼ 2. As inferred from our absorption analysis in Ma et al., the host galaxy is confirmed to be a chemically enriched, evolved, massive, and star-forming disk-like galaxy that is likely in the transition from a blue star-forming galaxy to a red quiescent galaxy.

  15. The Complex Soft X-ray Spectral Structure of MCG-6-30-15 and Mrk 766

    NASA Astrophysics Data System (ADS)

    Kahn, S. M.; Sako, M.; Behar, E.; Paerels, F.; Kinkhabwala, A.; Branduardi-Raymont, G.; Page, M. J.; Kaastra, J. S.; Brinkman, A. C.; den Herder, J. S.; Liedahl, D. A.

    The interpretation of the soft X-ray spectra of the Seyfert 1 galaxies, MCG-6-30-15 and Mrk 766, has remained controversial since high resolution data were first obtained with the grating instruments on Chandra and XMM-Newton, roughly one year ago. In an initial paper, Branduardi-Raymont et al. (2001), we argued that the RGS spectra of these two sources are inconsistent with simple warm absorber models, as has been invoked for Seyfert 1s in the past, but instead suggest the additional presence of relativistically broadened disk line features associated with the Lyα transitions of carbon, nitrogen, and oxygen. This conclusion was subsequently questioned by Lee et al. (2001), who contended that the Chandra HETG spectrum of MCG-6-30-15 is indeed well-described by the conventional warm absorber model, if one allows for the presence of dust in the warm absorbing medium. Here we reexamine the original RGS spectra in light of the Lee et al. (2001) criticisms. We first show that the explicit model presented by Lee et al. (2001) for MCG-6-30-15 is incompatible with the RGS data on this source, even if we allow both the continuum parameters and all of the absorbing column densities to be free parameters. That model over-predicts the ion{O}{VII} absorption line equivalent widths, and yields significant systematic residuals to the fits, especially at longer wavelengths, beyond the band covered by the HETG. We next show that the column densities of the oxygen ions (ion{O}{IV} through ion{O}{VIII}) are very well-constrained by the absorption line structure in the RGS data, and that, contrary to the assertion by Lee et al. (2001), the derived values are much too low to provide any significant contribution (either from line or continuum absorption) to the observed discrete jump in the spectra near 17.5 Å. Further, we show that the RGS spectra are also incompatible with the dust model presented by Lee et al. (2001). Specifically, the derived upper limit on the neutral oxygen

  16. CO excitation in four IR luminous galaxies

    NASA Technical Reports Server (NTRS)

    Radford, Simon J. E.; Solomon, P. M.; Downes, Dennis

    1990-01-01

    The correlation between the CO and far infrared luminosities of spiral galaxies is well established. The luminosity ration, L sub FIR/L sub CO in IR luminous active galaxies is, however, systematically five to ten times higher than in ordinary spirals and molecular clouds in our Galaxy. Furthermore, the masses of molecular hydrogen in luminous galaxies are large, M (H2) approx. equals 10(exp 10) solar magnitude, which indicates the observed luminosity ratios are due to an excess of infrared output, rather than a deficiency of molecular gas. These large amounts of molecular gas may fuel luminous galaxies through either star formation or nuclear activity. This interpretation rests on applying the M (H2)/L sub CO ratio calibrated in our Galaxy to galaxies with strikingly different luminosity ratios. But are the physical conditions of the molecular gas different in galaxies with different luminosity ratios. And, if so, does the proportionality between CO and H2 also vary among galaxies. To investigate these questions researchers observed CO (2 to 1) and (1 to 0) emission from four luminous galaxies with the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope. Researchers conclude that most of the CO emission from these Arp 193, Arp 220, and Mrk 231 arises in regions with moderate ambient densities similar to the clouds in the Milky Way molecular ring. The emission is neither from dense hot cloud cores nor from the cold low density gas characteristic of the envelopes of dark clouds.

  17. ALMA + VLT observations of a damped Lyman-α absorbing galaxy: massive, wide CO emission, gas-rich but with very low SFR

    NASA Astrophysics Data System (ADS)

    Møller, P.; Christensen, L.; Zwaan, M. A.; Kanekar, N.; Prochaska, J. X.; Rhodin, N. H. P.; Dessauges-Zavadsky, M.; Fynbo, J. P. U.; Neeleman, M.; Zafar, T.

    2018-03-01

    We are undertaking an Atacama Large Millimeter Array survey of molecular gas in galaxies selected for their strong H I absorption, so-called damped Lyα absorber (DLA)/sub-DLA galaxies. Here, we report CO(2-1) detection from a DLA galaxy at z = 0.716. We also present optical and near-infrared (NIR) spectra of the galaxy revealing [O II], Hα, and [N II] emission lines shifted by ˜170 km s-1 relative to the DLA, and providing an oxygen abundance 3.2 times solar, similar to the absorption metallicity. We report low unobscured SFR˜1 M⊙ yr-1 given the large reservoir of molecular gas, and also modest obscured SFR =4.5_{-2.6}^{+4.4} M⊙ yr-1 based on far-IR and sub-millimetre data. We determine mass components of the galaxy: log[M*/M_{&sun} ]= 10.80^{+0.07}_{-0.14}, log[Mmol-gas/M⊙] = 10.37 ± 0.04, and log[Mdust/M_{⊙} ]= 8.45^{+0.10}_{-0.30}. Surprisingly, this H I absorption-selected galaxy has no equivalent objects in CO surveys of flux-selected samples. The galaxy falls off current scaling relations for the star formation rate (SFR) to molecular gas mass and CO Tully-Fisher relation. Detailed comparison of kinematical components of the absorbing, ionized, and molecular gas, combined with their spatial distribution, suggests that part of the CO gas is both kinematically and spatially decoupled from the main galaxy. It is thus possible that a major starburst in the past could explain the wide CO profile as well as the low SFR. Support for this also comes from the spectral energy distribution favouring an instantaneous burst of age ≈0.5 Gyr. Our survey will establish whether flux-selected surveys of molecular gas are missing a key stage in the evolution of galaxies and their conversion of gas to stars.

  18. PSPC soft x-ray observations of Seyfert 2 galaxies

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Urry, C. M.; Mushotzky, R. F.

    1993-01-01

    We present the results from ROSAT PSPC soft x-ray (0.1-2.0 keV) observations of six Seyfert 2 galaxies, chosen from the brightest Seyfert 2s detected with the Einstein Imaging Proportional Counter. All of the targets were detected with the ROSAT PSPC. Spatial analysis shows that the source density within a few arcmin of each Seyfert 2 galaxy is a factor of approximately eight higher than in the rest of the inner field of view of the PSPC images. In NGC1365 it appears that the serendipitous sources may be x-ray binary systems in the host galaxy. The proximity of the serendipitous sources, typically within a few arcmin of the target Seyfert 2, means that previous x-ray observations of the Seyfert 2 galaxies have been significantly contaminated, and that source confusion is important on a spatial scale of approximately 1 arcmin. Some spectra, most notably Mrk3 and NGC1365, indicate the presence of a high equivalent width soft x-ray line blend consistent with unresolved iron L and oxygen K emission.

  19. Host galaxy properties of calcium II and sodium I quasar absorption-line systems

    NASA Astrophysics Data System (ADS)

    Cherinka, Brian

    Many questions remain within the areas of galaxy formation and evolution. Understanding the origin of gas in galaxy environments, whether as tidal debris, infalling High Velocity Clouds, galaxy outflows, or as gaseous material residing in galaxy disks, is an important step in answering those questions. Quasar absorption-lines can often be used to probe the environments of intervening galaxies. Traditionally, quasar absorption-lines are studied independently of the host galaxy but this method denies us the exploration of the connection between galaxy and environment. Instead, one can select pairs of known galaxies and quasars. This gives much more information regarding the host galaxy and allows us to better connect galaxy properties with associated absorbers. We use the seventh data release of the Sloan Digital Sky Survey to generate a sample of spectroscopic galaxy-quasar pairs. We cross-correlated a sample of 105,000 quasars and ˜800,000 galaxies to produce ˜98,000 galaxy-quasar pairs, with the quasar projected within 100 kpc of the galaxy. Adopting an automated line-finding algorithm and using the galaxy redshift as a prior, we search through all quasar spectra and identify Ca II and Na I absorption due to the intervening galaxy. This procedure produced 1745 Ca II absorbers and 4500 Na I absorbers detected at or above 2σ. Stacking analysis of a subset of absorbers at z > 0.01, with significances at or above 3σ, showed strong Ca II and Na I features around external galaxies. Using the same subset of absorbers at z > 0.01, we looked for correlations between absorber and galaxy properties and examined differences in galaxy properties between the absorbers and non-absorbers. We found no correlations with absorber strength or differences between many galaxy properties at the 3σ level. The lack of correlations and differences between absorbers and non-absorbers suggest a ubiquitous nature for Ca II and Na I around all types of galaxies, with the absorbers showing

  20. Role of MrkJ, a Phosphodiesterase, in Type 3 Fimbrial Expression and Biofilm Formation in Klebsiella pneumoniae▿

    PubMed Central

    Johnson, Jeremiah G.; Clegg, Steven

    2010-01-01

    Klebsiella pneumoniae is an opportunistic pathogen that has been shown to adhere to human extracellular matrices using the type 3 fimbriae. Introduction of plasmids carrying genes known to alter intracellular cyclic-di-GMP pools in Vibrio parahaemolyticus revealed that these genes also altered type 3 fimbrial surface expression in K. pneumoniae. Immediately adjacent to the type 3 fimbrial gene cluster is a gene, mrkJ, that is related to a family of bacterial genes encoding phosphodiesterases. We identify here a role for MrkJ, a functional phosphodiesterase exhibiting homology to EAL domain-containing proteins, in controlling type 3 fimbria production and biofilm formation in K. pneumoniae. Deletion of mrkJ resulted in an increase in type 3 fimbria production and biofilm formation as a result of the accumulation of intracellular cyclic-di-GMP. This gene was shown to encode a functional phosphodiesterase via restoration of motility in a V. parahaemolyticus strain previously shown to accumulate cyclic-di-GMP and in vitro using phosphodiesterase activity assays. The effect of the mrkJ mutation on type 3 fimbrial expression was shown to be at the level of mrkA gene transcription by using quantitative reverse transcription-PCR. These results reveal a previously unknown role for cyclic-di-GMP in type 3 fimbrial production. PMID:20511505

  1. Galaxy Groups in HST/COS-SDSS Fields

    NASA Astrophysics Data System (ADS)

    Conway, Matthew; Hamill, Colin; Apala, Elizabeth; Scott, Jennifer

    2018-01-01

    We extend the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use an existing catalog of galaxy group candidates in the SDSS DR8 to identify galaxy groups within our HST/COS-SDSS fields that may show line of sight absorption due to an intergroup medium. To identify galaxy group candidates that lie within the impact parameter of our quasar fields (< 3 degrees), we calculate the angular separation between the quasar coordinates and the galaxy group centroid coordinates. We investigate differences in galaxy and absorber properties among the galaxy-absorber pairs likely arising in groups and those likely associated with individual field galaxies.

  2. The Interstellar Medium of Blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Thuan, Trinh Xuan

    Blue compact dwarf (BCD) galaxies are metal-deficient and thus constitute excellent nearby laboratories for studying how the properties of the interstellar medium (ISM) in galaxies change with metallicity. Our sample consists of 4 BCDs chosen to span the metallicity range from 15 to 12 of the solar metallicity. This sample will extend the metallicity range covered by our Cycle 1 observations (141 to 110 solar). The proposed FUSE observations will allow us to investigate the 1) H_2 content of BCDs as a function of metallicity. No H_2 line has been detected in the 2 very metal-deficient BCDs which have been observed by FUSE so far. Will diffuse H_2 be present in more metal-rich BCDs and with less UV radiation density? 2) the structure of the ISM in BCDs. Analysis of 2 BCDs observed by FUSE in Cycle 1 (IZw18 and Mrk 59) show that in the first, the ISM appears to be relatively homogeneous while in the second, it is very clumpy. What are the factors which determine the gas clumpiness in BCDs 3) the abundances in the ISM. Analysis of the FUSE spectrum of Mrk 59 showed C, N, O, Si, Fe and S absorption lines which allow to derive abundances in the ISM using photoinization models. How do these abundances compare with the abundances derived from the emission-line optical spectra? 4) the evolutionary history and stellar winds in BCDs by detecting the P Cygni profiles of high ionization S VI and O VI lines.

  3. VizieR Online Data Catalog: Black hole masses in megamaser disk galaxies (Greene+, 2016)

    NASA Astrophysics Data System (ADS)

    Greene, J. E.; Seth, A.; Kim, M.; Lasker, R.; Goulding, A.; Gao, F.; Braatz, J. A.; Henkel, C.; Condon, J.; Lo, K. Y.; Zhao, W.

    2016-11-01

    The velocity dispersion (σ*) presented here for megamaser disk galaxies are measured from three data sets. Two galaxies (NGC1320, NGC5495) were observed with the B&C spectrograph on the Dupont telescope at the Las Campanas Observatory. These spectra have an instrumental resolution of σr~120km/s and a wavelength range of 3400-6000Å. Two galaxies (Mrk1029, ESO558-G009) have σ* measurements from the cross-dispersed near-infrared spectrograph Triplespec on the 3.5m telescope at Apache Point. Triplespec has a wavelength range of 0.9-2.4um with a spectral resolution of σr~37km/s. Finally, three galaxies (J0437+2456, NGC5765b, UGC6093) have spectra from the SDSS. They have a spectral resolution of σr~65km/s and cover a range of 3800-9200Å. (1 data file).

  4. Lyα-emitting galaxies as a probe of reionization: large-scale bubble morphology and small-scale absorbers

    NASA Astrophysics Data System (ADS)

    Kakiichi, Koki; Dijkstra, Mark; Ciardi, Benedetta; Graziani, Luca

    2016-12-01

    The visibility of Lyα-emitting galaxies during the Epoch of Reionization is controlled by both diffuse H I patches in large-scale bubble morphology and small-scale absorbers. To investigate their impacts on Lyα transfer, we apply a novel combination of analytic modelling and cosmological hydrodynamical, radiative transfer simulations to three reionization models: (I) the `bubble' model, where only diffuse H I outside ionized bubbles is present; (II) the `web' model, where H I exists only in overdense self-shielded gas; and (III) the hybrid `web-bubble' model. The three models can explain the observed Lyα luminosity function equally well, but with very different H I fractions. This confirms a degeneracy between the ionization topology of the intergalactic medium (IGM) and the H I fraction inferred from Lyα surveys. We highlight the importance of the clustering of small-scale absorbers around galaxies. A combined analysis of the Lyα luminosity function and the Lyα fraction can break this degeneracy and provide constraints on the reionization history and its topology. Constraints can be improved by analysing the full MUV-dependent redshift evolution of the Lyα fraction of Lyman break galaxies. We find that the IGM-transmission probability distribution function is unimodal for bubble models and bimodal in web models. Comparing our models to observations, we infer that the neutral fraction at z ˜ 7 is likely to be of the order of tens of per cent when interpreted with bubble or web-bubble models, with a conservative lower limit ˜1 per cent when interpreted with web models.

  5. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Cappi, M.; Reeves, J.; Nemmen, R.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60%, consistent with previous studies. The fraction of sources with UFOs is >34%, >67% of which also show WAs. The large dynamic range obtained when considering all the absorbers together allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. The absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. This strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The observed parameters and correlations are consistent with both radiation pressure through Compton scattering and MHD processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, have a sufficiently high mechanical power to significantly contribute to the AGN feedback.

  6. Parsec-scale jets and tori in seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Wrobel, J. M.; Wilson, A. S.; Ulvestad, J. S.; Norris, R. P.; Mundell, C. G.; Krichbaum, T. P.; Falcke, H.; Colbert, E. J. M.

    2001-01-01

    H. Falcke, T.P. Krichbaum, C.G. Mundell, J.S. Ulvestad, A.S. Wilson, J.M. Wrobel Active galaxies tend to be powerful or weak radio sources, and we still do not understand the underlying cause. Perhaps the engine is the same in both systems and the jet gets disrupted by dense interstellar medium in radio-quiet objects, or else the difference is intrinsic with jet power scaling with black hole spin. To distinguish, one can look for signs of interaction between the jet and the narrow-line region, and to measure the jet speed close to the jet base, before environmental effects become important. We find one-sided parsec-scale jet structures in Mrk 348, Mrk 231, NGC 4151, and NGC 5506 using VLBI, and we measure low jet speeds (typically <= 0.25 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma conditions required to produce the absorption are Ne >= 2 × 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  7. A high-density relativistic reflection origin for the soft and hard X-ray excess emission from Mrk 1044

    NASA Astrophysics Data System (ADS)

    Mallick, L.; Alston, W. N.; Parker, M. L.; Fabian, A. C.; Pinto, C.; Dewangan, G. C.; Markowitz, A.; Gandhi, P.; Kembhavi, A. K.; Misra, R.

    2018-06-01

    We present the first results from a detailed spectral-timing analysis of a long (˜130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ˜1.5 keV, iron Kα emission complex at ˜6 -7 keV and a `Compton hump' at ˜15 -30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2 - 6] × 10-5 Hz), the power-law continuum dominated 1.5-5 keV band lags behind the reflection dominated 0.3-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1 - 2] × 10-4 Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk 1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.

  8. An optical and X-ray survey of s-type Markarian galaxies

    NASA Technical Reports Server (NTRS)

    Hutter, D. J.; Mufson, S. L.

    1981-01-01

    The results of a study of 23 compact, lineless Markarian galaxies using broadband optical photometry and X-ray satellite observations are reported. The photometry shows that the sample can be broken into four groups. In one group (Mrk 180, 421, and 501) are composite objects in which a BL Lacertae object is embedded in an elliptical galaxy. For this group, the results of multiepoch X-ray observations using the HEAO-1 and -2 satellites are presented. In addition, photometry is used to decompose the optical emission into nonthermal and galactic components. In the second group are objects showing a small ultraviolet excess relative to normal galaxies. The X-ray survey indicates that the X-ray luminosity of objects in group 2 is much lower than those in group 1. This suggests that there is an intrinsic difference between objects in groups 1 and 2. The third and fourth groups are objects whose colors are indistinguishable from those of normal field galaxies and those of galactic stars, respectively. No X-ray emission was detected from objects in either of these groups.

  9. A NuSTAR SURVEY OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Stacy H.; Rigby, Jane R.; Ptak, Andrew

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Only one source (IRAS 13120–5453) has a spectrum consistent with a Compton-thick active galactic nucleus (AGN), but we cannot rule out that a second source (Arp 220) harborsmore » an extremely highly obscured AGN as well. Variability in column density (reduction by a factor of a few compared to older observations) is seen in IRAS 05189–2524 and Mrk 273, altering the classification of these borderline sources from Compton-thick to Compton-thin. The ULIRGs in our sample have surprisingly low observed fluxes in high-energy (>10 keV) X-rays, especially compared to their bolometric luminosities. They have lower ratios of unabsorbed 2–10 keV to bolometric luminosity, and unabsorbed 2–10 keV to mid-IR [O iv] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths.« less

  10. At the centre of the tuning fork

    NASA Image and Video Library

    2015-11-02

    This galaxy is known as Mrk 820 and is classified as a lenticular galaxy — type S0 on the Hubble Tuning Fork. The Hubble Tuning Fork is used to classify galaxies according to their morphology. Elliptical galaxies look like smooth blobs in the sky and lie on the handle of the fork. They are arranged along the handle based on how elliptical they are, with the more spherical galaxies furthest from the tines of the fork, and the more egg-shaped ones closest to the end of the handle where it divides. The two prongs of the tuning fork represent types of unbarred and barred spiral galaxies. Lenticular galaxies like Mrk 820 are in the transition zone between ellipticals and spirals and lie right where the fork divides. A closer look at the appearance of Mrk 820 reveals hints of a spiral structure embedded in a circular halo of stars. Surrounding Mrk 820 in this image is good sampling of other galaxy types, covering almost every type found on the Hubble Tuning Fork, both elliptical and spiral. Most of the smears and specks are distant galaxies, but the prominent bright object at the bottom is a foreground star called TYC 4386-787-1. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Judy Schmidt.

  11. The Study of TeV Variability and the Duty Cycle of Mrk 421 from 3 Yr of Observations with the Milagro Observatory

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Abeysekara, A. U.; Allen, B. T.; Aune, T.; Barber, A. S.; Berley, D.; Braun, J.; Chen, C.; Hays, E.; McEnery, J. E.

    2014-01-01

    TeV-flaring activity with timescales as short as tens of minutes and an orphan TeV flare have been observed from the blazar Markarian 421 (Mrk 421). The TeV emission from Mrk 421 is believed to be produced by leptonic synchrotron self-Compton (SSC) emission. In this scenario, correlations between the X-ray and the TeV fluxes are expected, TeV orphan flares are hardly explained, and the activity (measured as duty cycle) of the source at TeV energies is expected to be equal to or less than that observed in X-rays if only SSC is considered. To estimate the TeV duty cycle of Mrk 421 and to establish limits on its variability at different timescales, we continuously observed Mrk 421 with the Milagro observatory. Mrk 421 was detected by Milagro with a statistical significance of 7.1 standard deviations between 2005 September 21 and 2008 March 15. The observed spectrum is consistent with previous observations by VERITAS. We estimate the duty cycle of Mrk 421 for energies above 1 TeV for different hypotheses of the baseline flux and for different flare selections and we compared our results with the X-ray duty cycle estimated by Resconi et al. The robustness of the results is discussed.

  12. MULTI-FREQUENCY, MULTI-EPOCH STUDY OF Mrk 501: HINTS FOR A TWO-COMPONENT NATURE OF THE EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, A.; Chitnis, V. R.; Singh, B. B.

    2015-01-01

    Since the detection of very high energy (VHE) γ-rays from Mrk 501, its broadband emission of radiation was mostly and quite effectively modeled using the one zone emission scenario. However, broadband spectral and flux variability studies enabled by the multi-wavelength campaigns carried out during the recent years have revealed the rather complex behavior of Mrk 501. The observed emission from Mrk 501 could be due to a complex superposition of multiple emission zones. Moreover, new evidence of detection of very hard intrinsic γ-ray spectra obtained from Fermi-LAT observations has challenged the theories about the origin of VHE γ-rays. Our studiesmore » based on Fermi-LAT data indicate the existence of two separate components in the spectrum, one for low-energy γ-rays and the other for high-energy γ-rays. Using multi-waveband data from several ground- and space-based instruments, in addition to HAGAR data, the spectral energy distribution of Mrk 501 is obtained for various flux states observed during 2011. In the present work, this observed broadband spectral energy distribution is reproduced with a leptonic, multi-zone synchrotron self-Compton (SSC) model.« less

  13. Discovery of a Damped Lyα Absorber at z = 3.3 along a Galaxy Sight-line in the SSA22 Field

    NASA Astrophysics Data System (ADS)

    Mawatari, K.; Inoue, A. K.; Kousai, K.; Hayashino, T.; Cooke, R.; Prochaska, J. X.; Yamada, T.; Matsuda, Y.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H I) column density is log(NH I/cm-2) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc2. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M⊙ yr-1, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M* ≳ 5 × 1010M⊙ or a heavily dust-obscured galaxy with E(B - V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.

  14. PROPERTIES OF QSO METAL-LINE ABSORPTION SYSTEMS AT HIGH REDSHIFTS: NATURE AND EVOLUTION OF THE ABSORBERS AND NEW EVIDENCE ON ESCAPE OF IONIZING RADIATION FROM GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boksenberg, Alec; Sargent, Wallace L. W., E-mail: boksy@ast.cam.ac.uk

    2015-05-15

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 ≲ z ≲ 4.4. With associated Si IV, C II, Si II  and N V where available, we investigate the bulk statistical and ionization properties of the components and systems and find no significant change in redshift for C IV and Si IV while C II, Si II  and N V change substantially. The C IV components exhibit strong clustering, but no clustering is detected for systems on scales from 150 kmmore » s{sup –1} out to 50,000 km s{sup –1}. We conclude that the clustering is due entirely to the peculiar velocities of gas present in the circumgalactic media of galaxies. Using specific combinations of ionic ratios, we compare our observations with model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 < z ≲ 4.4.« less

  15. Ultraviolet and X-ray Variability of the Seyfert 1.5 Galaxy Markarian 817

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Danforth, Charles; Vasudevan, Ranjan; Brandt, W. N.; Scott, Jennifer; Froning, Cynthia; Keeney, Brian; Shull, J. Michael; Penton, Steve; Mushotzky, Richard; Schneider, Donald P.; Arav, Nahum

    2011-02-01

    We present an investigation of the ultraviolet and X-ray spectra of the Seyfert 1.5 galaxy Markarian 817. The ultraviolet analysis includes two recent observations taken with the Cosmic Origins Spectrograph (COS) in 2009 August and December, as well as archival spectra from the International Ultraviolet Explorer and the Hubble Space Telescope. Twelve Lyα absorption features are detected in the 1997 Goddard High Resolution Spectrograph (GHRS) and 2009 COS spectra—of these, four are associated with high-velocity clouds in the interstellar medium, four are at low significance, and the remaining four are intrinsic features, which vary between the GHRS and COS observations. The strongest intrinsic absorber in the 1997 spectrum has a systemic velocity of ~-4250 km s-1. The corresponding feature in the COS data is five times weaker than the GHRS absorber. The three additional weak (equivalent width from 13 to 54 mÅ) intrinsic Lyα absorbers are at systemic velocities of -4100 km s-1, -3550 km s-1, and -2600 km s-1. However, intrinsic absorption troughs from highly ionized C IV and N V are not detected in the COS observations. No ionized absorption signatures are detected in the ~14 ks XMM-Newton EPIC spectra. The factor of five change in the intrinsic Lyα absorber is most likely due to bulk motions in the absorber, since there is no drastic change in the UV luminosity of the source from the GHRS to the COS observations. In a study of the variability of Mrk 817, we find that the X-ray luminosity varies by a factor of ~40 over 20 years, while the UV continuum/emission lines vary by at most a factor of ~2.3 over 30 years. The variability of the X-ray luminosity is strongly correlated with the X-ray power-law index, but no correlation is found with the simultaneous optical/UV photometry.

  16. Motion and properties of nuclear radio components in Seyfert galaxies seen with VLBI

    NASA Astrophysics Data System (ADS)

    Middelberg, E.; Roy, A. L.; Nagar, N. M.; Krichbaum, T. P.; Norris, R. P.; Wilson, A. S.; Falcke, H.; Colbert, E. J. M.; Witzel, A.; Fricke, K. J.

    2004-04-01

    We report EVN, MERLIN and VLBA observations at 18 cm, 6 cm and 3.6 cm of the Seyfert galaxies NGC 7674, NGC 5506, NGC 2110 and Mrk 1210 to study their structure and proper motions on pc scales and to add some constraints on the many possible causes of the radio-quietness of Seyferts. The component configurations in NGC 7674 and NGC 2110 are simple, linear structures, whereas the configurations in NGC 5506 and Mrk 1210 have multiple components with no clear axis of symmetry. We suggest that NGC 7674 is a low-luminosity compact symmetric object. Comparing the images at different epochs, we find a proper motion in NGC 7674 of (0.92±0.07) c between the two central components separated by 282 pc and, in NGC 5506, we find a 3 σ upper limit of 0.50 c for the components separated by 3.8 pc. Our results confirm and extend earlier work showing that the outward motion of radio components in Seyfert galaxies is non-relativistic on pc scales. We briefly discuss whether this non-relativistic motion is intrinsic to the jet-formation process or results from deceleration of an initially relativistic jet by interaction with the pc or sub-pc scale interstellar medium. We combined our sample with a list compiled from the literature of VLBI observations made of Seyfert galaxies, and found that most Seyfert nuclei have at least one flat-spectrum component on the VLBI scale, which was not seen in the spectral indices measured at arcsec resolution. We found also that the bimodal alignment of pc and kpc radio structures displayed by radio galaxies and quasars is not displayed by this sample of Seyferts, which shows a uniform distribution of misalignment between 0° and 90°. The frequent misalignment could result from jet precession or from deflection of the jet by interaction with gas in the interstellar medium.

  17. BLAZAR ANTI-SEQUENCE OF SPECTRAL VARIATION WITHIN INDIVIDUAL BLAZARS: CASES FOR MRK 501 AND 3C 279

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jin; Zhang, Shuang-Nan; Liang, En-Wei, E-mail: zhang.jin@hotmail.com

    2013-04-10

    The jet properties of Mrk 501 and 3C 279 are derived by fitting broadband spectral energy distributions (SEDs) with lepton models. The derived {gamma}{sub b} (the break Lorenz factor of the electron distribution) is 10{sup 4}-10{sup 6} for Mrk 501 and 200 {approx} 600 for 3C 279. The magnetic field strength (B) of Mrk 501 is usually one order of magnitude lower than that of 3C 279, but their Doppler factors ({delta}) are comparable. A spectral variation feature where the peak luminosity is correlated with the peak frequency, which is opposite from the blazar sequence, is observed in the twomore » sources. We find that (1) the peak luminosities of the two bumps in the SEDs for Mrk 501 depend on {gamma}{sub b} in both the observer and co-moving frames, but they are not correlated with B and {delta} and (2) the luminosity variation of 3C 279 is dominated by the external Compton (EC) peak and its peak luminosity is correlated with {gamma}{sub b} and {delta}, but anti-correlated with B. These results suggest that {gamma}{sub b} may govern the spectral variation of Mrk 501 and {delta} and B would be responsible for the spectral variation of 3C 279. The narrow distribution of {gamma}{sub b} and the correlation of {gamma}{sub b} and B in 3C 279 would be due to the cooling from the EC process and the strong magnetic field. Based on our brief discussion, we propose that this spectral variation feature may originate from the instability of the corona but not from the variation of the accretion rate as does the blazar sequence.« less

  18. The Luminous X-Ray Halos of Two Compact Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Buote, David A.; Barth, Aaron J.

    2018-02-01

    There is mounting evidence that compact elliptical galaxies (CEGs) are local analogs of the high-redshift “red nuggets” that are thought to represent progenitors of today’s early-type galaxies (ETGs). We report the discovery of extended X-ray emission from a hot interstellar/intragroup medium in two CEGs, Mrk 1216 and PGC 032873, using shallow Chandra observations. We find that PGC 032873 has an average gas temperature of k B T = 0.67 ± 0.06 keV within a radius of 15 kpc and a luminosity L x = (1.8 ± 0.2) × 1041 erg s‑1 within a radius of 100 kpc. For Mrk 1216, which is closer and more luminous (L x(<100 kpc) = (12.1 ± 1.9) × 1041 erg s‑1), we used an entropy-based hydrostatic equilibrium (HE) procedure and obtained a good constraint on the H-band stellar mass-to-light ratio, M stars/L H = 1.33 ± 0.21 solar, that is in good agreement with stellar dynamical (SD) studies, which supports the HE approximation. We obtain a density slope of 2.22 ± 0.08 within R e that is consistent with other CEGs and normal local ETGs, while the dark matter fraction within R e , f DM = 0.20 ± 0.07 is similar to local ETGs. We constrain the supermasssive black hole mass, M BH = (5 ± 4) × 109 M ⊙, with M BH > 1.4 × 1010 M ⊙ (90% confidence), which is consistent with a recent SD measurement. We obtain a halo concentration (c 200 = 17.5 ± 6.7) and mass (M 200 = (9.6 ± 3.7) × 1012 M ⊙), where c 200 exceeds the mean ΛCDM value (≈7), which is consistent with a system that formed earlier than the general halo population. We suggest that these galaxies should be classified as fossil groups.

  19. Evidence for active galactic nucleus feedback in the broad absorption lines and reddening of MRK 231 {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.

    2014-06-20

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly fullmore » coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.« less

  20. Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae.

    PubMed

    Johnson, Jeremiah G; Murphy, Caitlin N; Sippy, Jean; Johnson, Tylor J; Clegg, Steven

    2011-07-01

    Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression.

  1. Type 3 Fimbriae and Biofilm Formation Are Regulated by the Transcriptional Regulators MrkHI in Klebsiella pneumoniae▿

    PubMed Central

    Johnson, Jeremiah G.; Murphy, Caitlin N.; Sippy, Jean; Johnson, Tylor J.; Clegg, Steven

    2011-01-01

    Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression. PMID:21571997

  2. DISCOVERY OF A DAMPED Lyα ABSORBER AT z = 3.3 ALONG A GALAXY SIGHT-LINE IN THE SSA22 FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mawatari, K.; Inoue, A. K.; Kousai, K.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H i) column density is log(N{sub H} {sub i}/cm{sup −2}) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc{sup 2}. Our search for a counterpartmore » galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M{sub ⊙} yr{sup −1}, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M{sub *} ≳ 5 × 10{sup 10}M{sub ⊙} or a heavily dust-obscured galaxy with E(B − V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.« less

  3. Outskirts of Distant Galaxies in Absorption

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen

    QSO absorption spectroscopy provides a sensitive probe of both the neutral medium and diffuse ionized gas in the distant Universe. It extends 21 cm maps of gaseous structures around low-redshift galaxies both to lower gas column densities and to higher redshifts. Combining galaxy surveys with absorption-line observations of gas around galaxies enables comprehensive studies of baryon cycles in galaxy outskirts over cosmic time. This chapter presents a review of the empirical understanding of the cosmic neutral gas reservoir from studies of damped Lyα absorbers (DLAs). It describes the constraints on the star formation relation and chemical enrichment history in the outskirts of distant galaxies from DLA studies. A brief discussion of available constraints on the ionized circumgalactic gas from studies of lower column density Lyα absorbers and associated ionic absorption transitions is presented at the end.

  4. Properties of QSO Metal-line Absorption Systems at High Redshifts: Nature and Evolution of the Absorbers and New Evidence on Escape of Ionizing Radiation from Galaxies

    NASA Astrophysics Data System (ADS)

    Boksenberg, Alec; Sargent, Wallace L. W.

    2015-05-01

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 <~ z <~ 4.4. With associated Si IV, C II, Si II and N V where available, we investigate the bulk statistical and ionization properties of the components and systems and find no significant change in redshift for C IV and Si IV while C II, Si II and N V change substantially. The C IV components exhibit strong clustering, but no clustering is detected for systems on scales from 150 km s-1 out to 50,000 km s-1. We conclude that the clustering is due entirely to the peculiar velocities of gas present in the circumgalactic media of galaxies. Using specific combinations of ionic ratios, we compare our observations with model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 < z <~ 4.4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck

  5. The BRAVE Program. I. Improved Bulge Stellar Velocity Dispersion Estimates for a Sample of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R.; Onken, Christopher A.; Bershady, Matthew A.

    2017-02-01

    We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure MBH determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolved maps of the first (V) and second (σ⋆) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.

  6. Element abundance measurements in gas-rich galaxies at z~5

    NASA Astrophysics Data System (ADS)

    Poudel, Suraj; Kulkarni, Varsha; Morrison, Sean; Peroux, Celine; Som, Debopam; Rahmani, Hadi; Quiret, Samuel

    2018-01-01

    Element abundances in high-redshift galaxies offer key constraints on models of the chemical evolution of galaxies. The chemical composition of galaxies at z>~5 are especially important since they constrain the star formation history in the first ~1 Gyr after the Big Bang and the initial mass function of early stars. Observations of damped Lyman-alpha (DLA) absorbers in quasar spectra enable robust measurements of the element abundances in distant gas-rich galaxies. In particular, abundances of volatile elements such as S, O and refractory elements such as Si, Fe allow determination of the dust-corrected metallicity and the depletion strength in the absorbing galaxies. Unfortunately measurements for volatile (nearly undepleted) elements are very sparse for DLAs at z > 4.5. We present abundance measurements of O, C, Si and Fe for three gas-rich galaxies at z~5 using observations from the Very Large Telescope (VLT) X-shooter spectrograph and the Keck Echellette Spectrograph and Imager. Our study has doubled the existing sample of measurements of undepleted elements at z > 4.5. After combining our measurements with those from the literature, we find that the cosmological mean metallicity of z ˜ 5 absorbers is consistent with the prediction based on z < 4.5 DLAs within < 0.5 σ. Thus, we find no significant evidence of a sudden drop in metallicity at z > 4.7 as reported by prior studies. Some of the absorbers show evidence of depletion of elements on dust grains, e.g. low [Si/O] or [Fe/O]. These absorbers along with other z~5 absorbers from the literature show some peculiarities in the relative abundances, e.g. low [C/O] in several absorbers and high [Si/O] in one absorber. We also find that the metallicity vs. velocity dispersion relation of z~5 absorbers may be different from that of lower-redshift absorbers.We acknowledge support from NASA grant NNX14AG74G and NASA/STScI support for HST programs GO-12536, 13801 to the Univ. of South Carolina.

  7. Measuring the Impact of AGN Outflows via Intensive UV and X-ray Monitoring Campaigns

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard

    2015-08-01

    Observations of AGN outflows have progressed from the era of single-object surveys to intensive monitoring campaigns spanning weeks to months. The combination of multiple observations, improved temporal coverage, multi-wavelength monitoring in both the X-ray and UV bands, and the baseline of prior historical observations has enabled determinations of the locations, mass flux, and kinetic luminosities of the outflowing absorbing gas in several AGN, notably Mrk 509, NGC 5548, Mrk 335, and NGC 985. Another intensive campaign is planned for 2015-2016 on NGC 7469. In all cases, the mass flux and kinetic energy is dominated by the higher-ionization X-ray absorbing gas. But the higher-resolution UV observations give a kinematically resolved picture of the overall outflow. In most cases, the outflowing gas is located at parsec to kpc scales, with insufficient kinetic luminosity to have an evolutionary impact on the host galaxy. Typically, the kinetic luminosity is less than a percent of the Eddington luminosity. In some cases, transient, broad UV absorption troughs have appeared (e.g., Mrk 335 and NGC 5548), with variability timescales suggesting locations near the broad-line region of the AGN. Yet these higher-velocity outflows also have low-impact kinetic luminosities. In the best-studied case of NGC 5548, the strength of the broad UV absorption lines varies with the degree of soft X-ray obscuration first revealed by XMM-Newton spectra. The lower-ionization, narrow associated absorption lines in the UV spectrum of NGC 5548 that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. The intensive monitoring allows us to fit time-dependent photoionization models to the UV-absorbing gas, allowing precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.

  8. A Deep Search for Faint Galaxies Associated with Very Low Redshift C IV Absorbers. III. The Mass- and Environment-dependent Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Burchett, Joseph N.; Tripp, Todd M.; Bordoloi, Rongmon; Werk, Jessica K.; Prochaska, J. Xavier; Tumlinson, Jason; Willmer, C. N. A.; O'Meara, John; Katz, Neal

    2016-12-01

    Using Hubble Space Telescope Cosmic Origins Spectrograph observations of 89 QSO sightlines through the Sloan Digital Sky Survey footprint, we study the relationships between C IV absorption systems and the properties of nearby galaxies, as well as the large-scale environment. To maintain sensitivity to very faint galaxies, we restrict our sample to 0.0015\\lt z\\lt 0.015, which defines a complete galaxy survey to L≳ 0.01 L\\ast or stellar mass {M}* ≳ {10}8 {M}⊙ . We report two principal findings. First, for galaxies with impact parameter ρ \\lt 1 {r}{vir}, C IV detection strongly depends on the luminosity/stellar mass of the nearby galaxy. C IV is preferentially associated with galaxies with {M}* \\gt {10}9.5 {M}⊙ ; lower-mass galaxies rarely exhibit significant C IV absorption (covering fraction {f}C={9}-6+12 % for 11 galaxies with {M}* \\lt {10}9.5 {M}⊙ ). Second, C IV detection within the {M}* \\gt {10}9.5 {M}⊙ population depends on environment. Using a fixed-aperture environmental density metric for galaxies with ρ < 160 kpc at z\\lt 0.055, we find that {57}-13+12 % (8/14) of galaxies in low-density regions (regions with fewer than seven L\\gt 0.15 L\\ast galaxies within 1.5 Mpc) have affiliated C IV absorption; however, none (0/7) of the galaxies in denser regions show C IV. Similarly, the C IV detection rate is lower for galaxies residing in groups with dark matter halo masses of {M}{halo}\\gt {10}12.5 {M}⊙ . In contrast to C IV, H I is pervasive in the circumgalactic medium without regard to mass or environment. These results indicate that C IV absorbers with {log} N({{C}} {{IV}})≳ 13.5 {{cm}}-2 trace the halos of {M}* \\gt {10}9.5 {M}⊙ galaxies but also reflect larger-scale environmental conditions.

  9. DETECTION OF VERY HARD γ -RAY SPECTRUM FROM THE TEV BLAZAR MRK 501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, A.; Chitnis, V. R.; Acharya, B. S.

    2016-12-01

    The occasional hardening of the GeV-to-TeV spectrum observed from the blazar Mrk 501 has reopened the debate on the physical origin of radiation and particle acceleration processes in TeV blazars. We have used the ∼7 years of Fermi -LAT data to search for the time intervals with unusually hard spectra from the nearby TeV blazar Mrk 501. We detected hard spectral components above 10 GeV with photon index <1.5 at a significance level of more than 5 sigma on 17 occasions, each with 30 day integration time. The photon index of the hardest component reached a value of 0.89 ± 0.29. We interpretmore » these hard spectra as signatures of intermittent injection of sharply peaked and localized particle distributions from the base of the jet.« less

  10. The Local Ly(alpha) Forest: Association of Clouds with Superclusters and Voids

    NASA Technical Reports Server (NTRS)

    Stocke, John T.; Shull, J. Michael; Penton, Steve; Donahue, Megan; Carilli, Chris

    1995-01-01

    The Goddard High Resolution Spectrograph aboard the Hubble Space Telescope was used with the G160M grating to obtain high-resolution (6.2 A) spectra of three very bright active galactic nuclei located behind voids in the nearby distribution of bright galaxies (i.e., CfA and Arecibo redshift survey regions). A total of eight definite (greater than or equal to 4 sigma) Ly(alpha) absorption lines were discovered ranging in equivalent width from 26 to 240 mA at Galactocentric velocities 1740-7740 km/s. Of these eight systems, we locate seven in supercluster structures and one, in the sight line of Mrk 501 at 7740 km/s, in a void. In addition, one of two tentative (3-4 sigma) Ly(alpha) absorption lines are found in voids. Thus, the voids are not entirely devoid of matter, and not all Ly(alpha) clouds are associated with galaxies. Also, since the path lengths through voids and superclusters probed by our observations thus far are nearly equal, there is some statistical evidence that the Ly(alpha) clouds avoid the voids. The nearest galaxy neighbors to these absorbing clouds are 0.45-5.9 Mpc away, too far to be physically associated by most models. The lower equivalent width absorption lines (W(sub lambda) less than or equal to 100 mA) are consistent with random locations with respect to galaxies and may be truly intergalactic, similar to the bulk of the Ly(alpha) forest seen at high z. These results on local Ly(alpha) clouds are in full agreement with those found by Morris et al. (1993) for the 3C 273 sight line but are different from the results for higher equivalent width systems where closer cloud-galaxy associations were found by Lanzetta et al. (1994). Pencil-beam optical and 21 cm radio line observations of the area of sky surrounding Mrk 501 fail to find faint galaxies near the velocities of the Ly(alpha) clouds in that sight line. Specifically, for the 'void absorption' system at 7740 km/s, we find no galaxy at comparable redshift to the absorber within 100 h

  11. Modeling MgII Absorbers from SDSS Spectroscopic and Imaging Catalogs

    NASA Astrophysics Data System (ADS)

    Rimoldini, L. G.; Menard, B.; Nestor, D. B.; Rao, S. M.; Sheth, R. K.; Turnshek, D. A.; Zibetti, S.; Feather, S.; Quider, A.

    2005-12-01

    The detection of more than 14,000 MgII absorption doublets along the sight-lines to SDSS DR4 QSOs (pursued by Turnshek, Nestor, Rao, and collaborators) has produced the largest sample of MgII absorbers to date in the redshift interval 0.37 < z < 2.30. The statistical relation between galaxies and MgII systems is investigated by cross-correlating the spectroscopic MgII catalog with the SDSS imaging catalog of galaxies in the neighborhood of QSO sight-lines. A model for MgII absorbers is derived to account for the measured MgII rest equivalent width distribution and the absorbing galaxy properties (e.g., luminosity, impact parameter, and morphological type). Some preliminary results of our analysis are presented. This work was supported in part by the National Science Foundation. L.G.R. acknowledges further support from the Z. Daniel's Predoctoral Fellowship.

  12. Understanding the dust properties in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Decleir, Marjorie; Baes, Maarten; De Looze, Ilse; Camps, Peter

    2018-04-01

    Dust is a crucial component in the interstellar medium of galaxies. It regulates several physical and chemical processes. Dust grains are also efficient at absorbing and scattering ultraviolet/optical photons and then re-radiating the absorbed energy in the infrared/submm wavelength range. The spatial distribution and properties of dust in galaxies can hence be investigated in two complementary ways: by its attenuation effects at short wavelengths, and by its thermal emission at long wavelengths. Both approaches have their advantages and challenges. In this contribution, we discuss a number of recent interesting results on interstellar dust in nearby galaxies, obtained by our research group at Ghent University.

  13. Two new confirmed massive relic galaxies: red nuggets in the present-day Universe

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, Anna; Trujillo, Ignacio; Martín-Navarro, Ignacio; Vazdekis, Alexandre; Mezcua, Mar; Balcells, Marc; Domínguez, Lilian

    2017-05-01

    We confirm two new local massive relic galaxies, I.e. untouched survivors of the early Universe massive population: Mrk 1216 and PGC 032873. Both show early and peaked formation events within very short time-scales (<1 Gyr) and thus old mean mass-weighted ages (˜13 Gyr). Their star formation histories remain virtually unchanged out to several effective radii, even when considering the steeper initial-mass-function values inferred out to ˜3 effective radii. Their morphologies, kinematics and density profiles are like those found in the z > 2 massive population, setting them apart from the typical z ˜ 0 massive early-type galaxies. We find that there seems to exist a degree of relic that is related to how far into the path, to become one of these typical z ˜ 0 massive galaxies, the compact relic has moved. This path is partly dictated by the environment the galaxy lives in. For galaxies in rich environments, such as the previously reported relic galaxy NGC 1277, the most extreme properties (e.g. sizes, short formation time-scales, larger supermassive black holes) are expected, while lower density environments will have galaxies with delayed and/or extended star formations, slightly larger sizes and not that extreme black hole masses. The confirmation of three relic galaxies up to a distance of 106 Mpc, implies a lower limit in the number density of these red nuggets in the local Universe of 6 × 10-7 Mpc3, which is within the theoretical expectations.

  14. Hidden Pair of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Could a pair of supermassive black holes (SMBHs) be lurking at the center of the galaxy Mrk 231? A recent study finds that this may be the case and the unique spectrum of this galaxy could be the key to discovering more hidden binary SMBH systems.Where Are the Binary Supermassive Black Holes?Its believed that most, if not all, galaxies have an SMBH at their centers. As two galaxies merge, the two SMBHs should evolve into a closely-bound binary system before they eventually merge. Given the abundance of galaxy mergers, we would expect to see the kinematic and visual signatures of these binary SMBHs among observed active galactic nuclei yet such evidence for sub-parsec binary SMBH systems remains scarce and ambiguous. This has led researchers to wonder: is there another way that we might detect these elusive systems?A collaboration led by Chang-Shuo Yan (National Astronomical Observatories, Chinese Academy of Sciences) thinks that there is. The group suggests that these systems might have distinct signatures in their optical-to-UV spectra, and they identify a system that might be just such a candidate: Mrk 231.A Binary CandidateProposed model of Mrk 231. Two supermassive black holes, each with their own mini-disk, orbit each other in the center of a circumbinary disk. The secondary black hole has cleared gap in the circumbinary disk as a result of its orbit around the primary black hole. [Yan et al. 2015]Mrk 231 is a galaxy with a disturbed morphology and tidal tails strong clues that it might be in the final stages of a galactic merger. In addition to these signs, Mrk 231 also has an unusual spectrum for a quasar: its continuum emission displays an unexpected drop in the near-UV band.Yan and her collaborators propose that the odd behavior of Mrk 231s spectrum can be explained if the center of the galaxy houses a pair of SMBHs each with its own mini accretion disk surrounded by a circumbinary accretion disk. As the secondary SMBH orbits the primary SMBH (with a

  15. Dissecting the long-term emission behaviour of the BL Lac object Mrk 421

    NASA Astrophysics Data System (ADS)

    Carnerero, M. I.; Raiteri, C. M.; Villata, M.; Acosta-Pulido, J. A.; Larionov, V. M.; Smith, P. S.; D'Ammando, F.; Agudo, I.; Arévalo, M. J.; Bachev, R.; Barnes, J.; Boeva, S.; Bozhilov, V.; Carosati, D.; Casadio, C.; Chen, W. P.; Damljanovic, G.; Eswaraiah, E.; Forné, E.; Gantchev, G.; Gómez, J. L.; González-Morales, P. A.; Griñón-Marín, A. B.; Grishina, T. S.; Holden, M.; Ibryamov, S.; Joner, M. D.; Jordan, B.; Jorstad, S. G.; Joshi, M.; Kopatskaya, E. N.; Koptelova, E.; Kurtanidze, O. M.; Kurtanidze, S. O.; Larionova, E. G.; Larionova, L. V.; Latev, G.; Lázaro, C.; Ligustri, R.; Lin, H. C.; Marscher, A. P.; Martínez-Lombilla, C.; McBreen, B.; Mihov, B.; Molina, S. N.; Moody, J. W.; Morozova, D. A.; Nikolashvili, M. G.; Nilsson, K.; Ovcharov, E.; Pace, C.; Panwar, N.; Pastor Yabar, A.; Pearson, R. L.; Pinna, F.; Protasio, C.; Rizzi, N.; Redondo-Lorenzo, F. J.; Rodríguez-Coira, G.; Ros, J. A.; Sadun, A. C.; Savchenko, S. S.; Semkov, E.; Slavcheva-Mihova, L.; Smith, N.; Strigachev, A.; Troitskaya, Yu. V.; Troitsky, I. S.; Vasilyev, A. A.; Vince, O.

    2017-12-01

    We report on long-term multiwavelength monitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007-2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ-ray fluxes is very variable. The γ-ray flux variations show a fair correlation with the optical ones starting from 2012. We analyse spectropolarimetric data and find wavelength-dependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA. We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectral shape and suggest a shift of the synchrotron peak up to a factor of ∼50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight.

  16. Evidence for a Circum-Nuclear and Ionised Absorber in the X-ray Obscured Broad Line Radio Galaxy 3C 445

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Sambruna, R. M.; Gofford, J.

    2012-01-01

    Here we present the results of a Suzaku observation of the Broad Line Radio Galaxy 3C 445. We confirm the results obtained with the previous X-ray observations which unveiled the presence of several soft X-ray emission lines and an overall X-ray emission which strongly resembles a typical Seyfert 2 despite of the optical classification as an unobscured AGN. The broad band spectrum allowed us to measure for the first time the amount of reflection (R approximately 0.9) which together with the relatively strong neutral Fe Ka emission line (EW approximately 100 eV) strongly supports a scenario where a Compton-thick mirror is present. The primary X ray continuum is strongly obscured by an absorber with a column density of NH = 2 - 3 x 10(exp 23) per square centimeter. Two possible scenarios are proposed for the absorber: a neutral partial covering or a mildly ionised absorber with an ionisation parameter log xi approximately 1.0 erg centimeter per second. A comparison with the past and more recent X-ray observations of 3C 445 performed with XMM-Newton and Chandra is presented, which provided tentative evidence that the ionised and outflowing absorber varied. We argue that the absorber is probably associated with an equatorial diskwind located within the parsec scale molecular torus.

  17. The gas and stellar mass of low-redshift damped Lyman-α absorbers

    NASA Astrophysics Data System (ADS)

    Kanekar, Nissim; Neeleman, Marcel; Prochaska, J. Xavier; Ghosh, Tapasi

    2018-01-01

    We report Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet and Arecibo Telescope H I 21 cm spectroscopy of six damped and sub-damped Lyman-α absorbers (DLAs and sub-DLAs, respectively) at z ≲ 0.1, which have yielded estimates of their H I column density, metallicity and atomic gas mass. This significantly increases the number of DLAs with gas mass estimates, allowing the first comparison between the gas masses of DLAs and local galaxies. Including three absorbers from the literature, we obtain H I masses ≈(0.24-5.2) × 109 M⊙, lower than the knee of the local H I mass function. This implies that massive galaxies do not dominate the absorption cross-section for low-z DLAs. We use Sloan Digital Sky Survey photometry and spectroscopy to identify the likely hosts of four absorbers, obtaining low stellar masses, ≈107-108.4 M⊙, in all cases, consistent with the hosts being dwarf galaxies. We obtain high H I 21 cm or CO emission line widths, ΔV20 ≈ 100-290 km s-1, and high gas fractions, fH I ≈ 5-100, suggesting that the absorber hosts are gas-rich galaxies with low star formation efficiencies. However, the H I 21 cm velocity spreads (≳100 km s-1) appear systematically larger than the velocity spreads in typical dwarf galaxies.

  18. Relativistic jet models for the BL Lacertae object Mrk 421 during three epochs of observation

    NASA Technical Reports Server (NTRS)

    Mufson, S. L.; Hutter, D. J.; Kondo, Y.; Wisniewski, W. Z.

    1988-01-01

    Coordinated observation of the nearby BL Lacertae object Mrk 421 obtained during May 1980, January 1984, and March 1984 are described. These observations give a time-frozen picture of the continuous spectrum of Mrk 421 at X-ray, ultraviolet, optical, and radio wavelengths. The observed spectra have been fitted to an inhomogeneous relativistic jet model. In general, the models reproduce the data well. Many of the observed differences during the three epochs can be attributed to variations in the opening angle of the jet and in the angle that the jet makes to the line of sight. The jet models obtained here are compared with the homogeneous, spherically symmetric, synchrotron self-Compton models for this source. The models are also compared with the relativistic jet models obtained for other active galactic nuclei.

  19. The Two-Phase, Two-Velocity Ionized Absorber in the Seyfert 1 Galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Andrade-Velázquez, Mercedes; Krongold, Yair; Elvis, Martin; Nicastro, Fabrizio; Brickhouse, Nancy; Binette, Luc; Mathur, Smita; Jiménez-Bailón, Elena

    2010-03-01

    We present an analysis of X-ray high-quality grating spectra of the Seyfert 1 galaxy NGC 5548 using archival Chandra-High Energy Transmission Grating Spectrometer and Low Energy Transmission Grating Spectrometer observations for a total exposure time of 800 ks. The continuum emission (between 0.2 keV and 8 keV) is well represented by a power law (Γ = 1.6) plus a blackbody component (kT = 0.1 keV). We find that the well-known X-ray warm absorber (WA) in this source consists of two different outflow velocity systems. One absorbing system has a velocity of -1110 ± 150 km s-1 and the other of -490 ± 150 km s-1. Recognizing the presence of these kinematically distinct components allows each system to be fitted independently, each with two absorption components with different ionization levels. The high-velocity system consists of two components, one with a temperature of 2.7 ± 0.6 × 106 K, log U = 1.23, and another with a temperature of 5.8 ± 1.0 × 105 K, log U = 0.67. The high-velocity, high-ionization component produces absorption by charge states Fe XXI-XXIV, while the high-velocity, low-ionization component produces absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII. The low-velocity system also required two absorbing components, one with a temperature of 5.8 ± 0.8 × 105 K, log U = 0.67, producing absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII, and the other with a lower temperature of 3.5 ± 0.35 × 104 K and a lower ionization of log U = -0.49, producing absorption by O VI-VII and the Fe VII-XII M-shell Unresolved Transitions Array. Once these components are considered, the data do not require any further absorbers. In particular, a model consisting of a continuous radial range of ionization structures (as suggested by a previous analysis) is not required. The two absorbing components in each velocity system are in pressure equilibrium with each other. This suggests that each velocity system consists of a multi-phase medium. This is the first time that

  20. Anisotropic ionizing radiation in Seyfert galaxies. I - The extended narrow-line region in Markarian 573

    NASA Technical Reports Server (NTRS)

    Tsvetanov, Zlatan; Walsh, J. R.

    1992-01-01

    The morphology, kinematics, and ionization state of the nuclear extended narrow-line region (ENLR) of the Seyfert 2 galaxy Mrk 573 are studied using narrow-band images of a grid of long-slit spectra. The entire ENLR is mapped spectroscopically, and velocity structure is studied. The velocity field map shows a typical galactic rotation picture with some important deviations. A simple geometric model, in accordance with the 'unified schemes', is employed to study the effects of various parameters of the observed picture. The best match is achieved when a biconical radiation field illuminates the ISM of the host galaxy that takes part in a normal galaxy rotation but also has radial motions close to the nucleus. The emission-line images reveal an ENLR elongated along the radio axis in the northwest-southeast direction, but a map of the flux ratio forbidden O III 5007/(H-alpha + forbidden N II) shows a different structure, with the highest excitation peak offset by about 4 arcsec along the radio axis to the southeast.

  1. GALAXY CLUSTERS IN THE LINE OF SIGHT TO BACKGROUND QUASARS. III. MULTI-OBJECT SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, H.; Barrientos, L. F.; Padilla, N.

    2013-09-01

    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from Lopez et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h{sub 71}{sup -1} Mpc from the QSO sight line (a {sup p}hotometric hit{sup )}. The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 A. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters,more » (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 {<=} z{sub gal} {<=} 1.0955, up to an impact parameter of 142 h{sub 71}{sup -1} kpc and a maximum velocity difference of 280 km s{sup -1}. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within {approx}650 km s{sup -1} from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference {Delta}z = 0.1. The general population of our confirmed absorbing galaxies have

  2. CHEERS Results on Mrk 573: A Study of Deep Chandra Observations

    NASA Astrophysics Data System (ADS)

    Paggi, Alessandro; Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita

    2012-09-01

    We present results on Mrk 573 obtained as part of the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS). Previous studies showed that this source features a biconical emission in the soft X-ray band closely related to the narrow-line region as mapped by the [O III] emission line and the radio emission, though on a smaller scale; we investigate the properties of soft X-ray emission from this source with new deep Chandra observations. Making use of the subpixel resolution of the Chandra/ACIS image and point-spread function deconvolution, we resolve and study substructures in each ionizing cone. The two cone spectra are fitted with a photoionization model, showing a mildly photoionized phase diffused over the bicone. Thermal collisional gas at about ~1.1 keV and ~0.8 keV appears to be located between the nucleus and the "knots" resolved in radio observations, and between the "arcs" resolved in the optical images, respectively; this can be interpreted in terms of shock interaction with the host galactic plane. The nucleus shows a significant flux decrease across the observations indicating variability of the active galactic nucleus (AGN), with the nuclear region featuring a higher ionization parameter with respect to the bicone region. The long exposure allows us to find extended emission up to ~7 kpc from the nucleus along the bicone axis. Significant emission is also detected in the direction perpendicular to the ionizing cones, disagreeing with the fully obscuring torus prescribed in the AGN unified model and suggesting instead the presence of a clumpy structure.

  3. O VI ABSORBERS TRACING HOT GAS ASSOCIATED WITH A PAIR OF GALAXIES AT z = 0.167

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, B. D.; Narayanan, A.; Wakker, B. P.

    2010-08-20

    High signal-to-noise observations of the QSO PKS 0405-123 (z {sub em} = 0.572) with the Cosmic Origins Spectrograph from 1134 to 1796 A with a resolution of {approx}17 km s{sup -1} are used to study the multi-phase partial Lyman limit system (LLS) at z = 0.16716, which has previously been studied using relatively low signal-to-noise spectra from STIS and FUSE. The LLS and an associated H I-free broad O VI absorber likely originate in the circumgalactic gas associated with a pair of galaxies at z = 0.1688 and 0.1670 with impact parameters of 116 h {sup -1} {sub 70} andmore » 99 h {sup -1} {sub 70}. The broad and symmetric O VI absorption is detected in the z = 0.16716 rest frame with v = -278 {+-} 3 km s{sup -1}, log N(O VI) = 13.90 {+-} 0.03, and b = 52 {+-} 2 km s{sup -1}. This absorber is not detected in H I or other species with the possible exception of N V. The broad, symmetric O VI profile and the absence of corresponding H I absorption indicate that the circumgalactic gas in which the collisionally ionized O VI arises is hot (log T {approx} 5.8-6.2). The absorber may represent a rare but important new class of low-z intergalactic medium absorbers. The LLS has strong asymmetrical O VI absorption with log N(O VI) = 14.72 {+-} 0.02 spanning a velocity range from -200 to +100 km s{sup -1}. The high and low ions in the LLS have properties resembling those found for Galactic highly ionized high-velocity clouds where the O VI is likely produced in the conductive and turbulent interfaces between cool and hot gas.« less

  4. Multiwavelength campaign on Mrk 509. XI. Reverberation of the Fe Kα line

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Cappi, M.; Costantini, E.; Bianchi, S.; Kaastra, J. S.; De Marco, B.; Fender, R. P.; Petrucci, P.-O.; Kriss, G. A.; Steenbrugge, K. C.; Arav, N.; Behar, E.; Branduardi-Raymont, G.; Dadina, M.; Ebrero, J.; Lubiński, P.; Mehdipour, M.; Paltani, S.; Pinto, C.; Tombesi, F.

    2013-01-01

    Context. We report on a detailed study of the Fe K emission/absorption complex in the nearby, bright Seyfert 1 galaxy Mrk 509. The study is part of an extensive XMM-Newton monitoring consisting of 10 pointings (~60 ks each) about once every 4 days, and includes a reanalysis of previous XMM-Newton and Chandra observations. Aims: We aim at understanding the origin and location of the Fe K emission and absorption regions. Methods: We combine the results of time-resolved spectral analysis on both short and long time-scales including model-independent rms spectra. Results: Mrk 509 shows a clear (EW = 58 ± 4 eV) neutral Fe Kα emission line that can be decomposed into a narrow (σ = 0.027 keV) component (found in the Chandra HETG data) plus a resolved (σ = 0.22 keV) component. We find the first successful measurement of a linear correlation between the intensity of the resolved line component and the 3-10 keV flux variations on time scales of years down to a few days. The Fe Kα reverberates the hard X-ray continuum without any measurable lag, suggesting that the region producing the resolved Fe Kα component is located within a few light days to a week (r ≲ 103rg) from the black hole (BH). The lack of a redshifted wing in the line poses a lower limit of ≥40 rg for its distance from the BH. The Fe Kα could thus be emitted from the inner regions of the BLR, i.e. within the ~80 light days indicated by the Hβ line measurements. In addition to these two neutral Fe Kα components, we confirm the detection of weak (EW ~ 8-20 eV) ionised Fe K emission. This ionised line can be modelled with either a blend of two narrow Fe xxv and Fe xxvi emission lines (possibly produced by scattering from distant material) or with a single relativistic line produced, in an ionised disc, down to a few rg from the BH. In the latter interpretation, the presence of an ionised standard α-disc, down to a few rg, is consistent with the source high Eddington ratio. Finally, we observe a

  5. COS-Weak: probing the CGM using analogues of weak Mg II absorbers at z < 0.3

    NASA Astrophysics Data System (ADS)

    Muzahid, S.; Fonseca, G.; Roberts, A.; Rosenwasser, B.; Richter, P.; Narayanan, A.; Churchill, C.; Charlton, J.

    2018-06-01

    We present a sample of 34 weak metal line absorbers at z < 0.3 selected by the simultaneous >3σ detections of the Si IIλ1260 and C IIλ1334 absorption lines, with Wr(Si II)<0.2 Å and Wr(C II)<0.3 Å, in archival HST/COS spectra. Our sample increases the number of known low-z `weak absorbers' by a factor of >5. The column densities of H I and low-ionization metal lines obtained from Voigt profile fitting are used to build simple photoionization models. The inferred densities and line-of-sight thicknesses of the absorbers are in the ranges of -3.3 < log nH/cm-3 < -2.4 and ˜1 pc-50 kpc (median ≈500 pc), respectively. Most importantly, 85 per cent (50 per cent) of these absorbers show a metallicity of [Si/H] > -1.0 (0.0). The fraction of systems showing near-/supersolar metallicity in our sample is significantly higher than in the H I-selected sample of Wotta et al., and the galaxy-selected sample of Prochaska et al., of absorbers probing the circum-galactic medium at similar redshift. A search for galaxies has revealed a significant galaxy-overdensity around these weak absorbers compared to random positions with a median impact parameter of 166 kpc from the nearest galaxy. Moreover, we find the presence of multiple galaxies in ≈80 per cent of the cases, suggesting group environments. The observed dN/dz of 0.8 ± 0.2 indicates that such metal-enriched, compact, dense structures are ubiquitous in the haloes of low-z group galaxies. We suggest that these are transient structures that are related to galactic outflows and/or stripping of metal-rich gas from galaxies.

  6. Mrk 421 after the Giant X-Ray Outburst in 2013

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Dorner, D.; Romano, P.; Vercellone, S.; Kapanadze, S.; Tabagari, L.

    2017-10-01

    We present the results of the Swift observations of the nearby BL Lac object Mrk 421 during 2013 November-2015 June. The source exhibited a strong long-term variability in the 0.3-10 keV band, with a maximum-to-minimum flux ratio of 13, and underwent X-ray flares by a factor of 1.8-5.2 on timescales of a few weeks or shorter. The source showed 48 instances of intraday flux variability in this period, which sometimes was observed within the 1 ks observational run. It was characterized by fractional amplitudes of 1.5(0.3)%-38.6(0.4)% and flux doubling/halving times of 2.6-20.1 hr. The X-ray flux showed a lack of correlation with the TeV flux on some occasions (strong TeV flares were not accompanied by comparable X-ray activity and vice versa), indicating that the high-energy emission in Mrk 421 was generated from an emission region more complex than a single zone. The best fits of the 0.3-10 keV spectra were mainly obtained using the log-parabola model, showing a strong spectral variability that generally followed a “harder-when-brighter” trend. The position of the synchrotron spectral energy distribution peak showed an extreme range from a few eV to ˜10 keV that happens rarely in blazars.

  7. THE MEGAMASER COSMOLOGY PROJECT. IX. BLACK HOLE MASSES FOR THREE MASER GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, F.; Zhao, W.; Braatz, J. A.

    As part of the Megamaser Cosmology Project, we present VLBI maps of nuclear water masers toward five galaxies. The masers originate in sub-parsec circumnuclear disks. For three of the galaxies, we fit Keplerian rotation curves to estimate their supermassive black hole (SMBH) masses, and determine (2.9 ± 0.3) × 10{sup 6} M {sub ⊙} for J0437+2456, (1.7 ± 0.1) × 10{sup 7} M {sub ⊙} for ESO 558–G009, and (1.1 ± 0.2) × 10{sup 7} M {sub ⊙} for NGC 5495. In the other two galaxies, Mrk 1029 and NGC 1320, the geometry and dynamics are more complicated and preclude robust black hole mass estimates. Including our new results, we compiled amore » list of 15 VLBI-confirmed disk maser galaxies with robust SMBH mass measurements. With this sample, we confirm the empirical relation of R {sub out} ∝ 0.3 M {sub SMBH} reported in Wardle and Yusef-Zadeh. We also find a tentative correlation between maser disk outer radii and Wide-Field Infrared Survey Explorer luminosity. We find no correlations of maser disk size with X-ray 2–10 keV luminosity or [O iii] luminosity.« less

  8. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    PubMed

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. © 2011 Macmillan Publishers Limited. All rights

  9. [C ii] 158-μm emission from the host galaxies of damped Lyman-alpha systems.

    PubMed

    Neeleman, Marcel; Kanekar, Nissim; Prochaska, J Xavier; Rafelski, Marc; Carilli, Chris L; Wolfe, Arthur M

    2017-03-24

    Gas surrounding high-redshift galaxies has been studied through observations of absorption line systems toward background quasars for decades. However, it has proven difficult to identify and characterize the galaxies associated with these absorbers due to the intrinsic faintness of the galaxies compared with the quasars at optical wavelengths. Using the Atacama Large Millimeter/Submillimeter Array, we report on detections of [C ii] 158-μm line and dust-continuum emission from two galaxies associated with two such absorbers at a redshift of z ~ 4. Our results indicate that the hosts of these high-metallicity absorbers have physical properties similar to massive star-forming galaxies and are embedded in enriched neutral hydrogen gas reservoirs that extend well beyond the star-forming interstellar medium of these galaxies. Copyright © 2017, American Association for the Advancement of Science.

  10. NuSTARUnveils a Compton-Thick Type 2 Quasar in MrK 34

    DOE PAGES

    Gandhi, P.; Lansbury, G. B.; Alexander, D. M.; ...

    2014-08-22

    We present Nuclear Spectroscopic Telescope Array ( NuSTAR) 3-40 keV observations of the optically selected Type 2 quasar (QSO2) SDSS J1034+6001 or Mrk 34. The high-quality hard X-ray spectrum and archival XMM- Newton data can be fitted self-consistently with a reflection-dominated continuum and a strong Fe Kα fluorescence line with equivalent width >1 keV. Prior X-ray spectral fitting below 10 keV showed the source to be consistent with being obscured by Compton-thin column densities of gas along the line of sight, despite evidence for much higher columns from multiwavelength data. NuSTAR now enables a direct measurement of this column andmore » shows that N H lies in the Compton-thick (CT) regime. The new data also show a high intrinsic 2-10 keV luminosity of L 2-10 ~ 10 44 erg s –1, in contrast to previous low-energy X-ray measurements where L 2-10 ≲ 10 43 erg s –1 (i.e., X-ray selection below 10 keV does not pick up this source as an intrinsically luminous obscured quasar). Both the obscuring column and the intrinsic power are about an order of magnitude (or more) larger than inferred from pre- NuSTAR X-ray spectral fitting. Mrk 34 is thus a "gold standard" CT QSO2 and is the nearest non-merging system in this class, in contrast to the other local CT quasar NGC 6240, which is currently undergoing a major merger coupled with strong star formation. For typical X-ray bolometric correction factors, the accretion luminosity of Mrk 34 is high enough to potentially power the total infrared luminosity. In conclusion, X-ray spectral fitting also shows that thermal emission related to star formation is unlikely to drive the observed bright soft component below ~3 keV, favoring photoionization instead.« less

  11. Metals and dust in the neutral ISM: the Galaxy, Magellanic Clouds, and damped Lyman-α absorbers

    NASA Astrophysics Data System (ADS)

    De Cia, Annalisa

    2018-05-01

    Context. The presence of dust in the neutral interstellar medium (ISM) dramatically changes the metal abundances that we measure. Understanding the metal content in the neutral ISM, and a direct comparison between different environments, has been hampered to date because of the degeneracy to the observed ISM abundances caused by the effects of metallicity, the presence of dust, and nucleosynthesis. Aims: We study the metal and dust content in the neutral ISM consistently in different environments, and assess the universality of recently discovered sequences of relative abundances. We also intend to assess the validity of [Zn/Fe] as a tracer of dust in the ISM. This has recently been cast into doubt based on observations of stellar abundances, and needs to be addressed before we can safely use it to study the ISM. Methods: In this letter we present a simple comparison of relative abundances observed in the neutral ISM in the Galaxy, the Magellanic Clouds, and damped Lyman-α absorbers (DLAs). The main novelty in this comparison is the inclusion of the Magellanic Clouds. Results: The same sequences of relative abundances are valid for the Galaxy, Magellanic Clouds, and DLAs. These sequences are driven by the presence of dust in the ISM and seem "universal". Conclusions: The metal and dust properties in the neutral ISM appear to follow a similar behaviour in different environments. This suggests that a dominant fraction of the dust budget is built up from grain growth in the ISM depending of the physical conditions and regardless of the star formation history of the system. In addition, the DLA gas behaves like the neutral ISM, at least from a chemical point of view. Finally, despite the deviations in [Zn/Fe] observed in stellar abundances, [Zn/Fe] is a robust dust tracer in the ISM of different environments, from the Galaxy to DLAs.

  12. Mrk 421 after the Giant X-Ray Outburst in 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapanadze, B.; Kapanadze, S.; Tabagari, L.

    2017-10-20

    We present the results of the Swift observations of the nearby BL Lac object Mrk 421 during 2013 November–2015 June. The source exhibited a strong long-term variability in the 0.3–10 keV band, with a maximum-to-minimum flux ratio of 13, and underwent X-ray flares by a factor of 1.8–5.2 on timescales of a few weeks or shorter. The source showed 48 instances of intraday flux variability in this period, which sometimes was observed within the 1 ks observational run. It was characterized by fractional amplitudes of 1.5(0.3)%–38.6(0.4)% and flux doubling/halving times of 2.6–20.1 hr. The X-ray flux showed a lack ofmore » correlation with the TeV flux on some occasions (strong TeV flares were not accompanied by comparable X-ray activity and vice versa), indicating that the high-energy emission in Mrk 421 was generated from an emission region more complex than a single zone. The best fits of the 0.3–10 keV spectra were mainly obtained using the log-parabola model, showing a strong spectral variability that generally followed a “harder-when-brighter” trend. The position of the synchrotron spectral energy distribution peak showed an extreme range from a few eV to ∼10 keV that happens rarely in blazars.« less

  13. Galaxy Clusters in the Line of Sight to Background Quasars. III. Multi-object Spectroscopy

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Barrientos, L. F.; López, S.; Lira, P.; Padilla, N.; Gilbank, D. G.; Lacerna, I.; Maureira, M. J.; Ellingson, E.; Gladders, M. D.; Yee, H. K. C.

    2013-09-01

    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from López et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h_{71}^{-1} Mpc from the QSO sight line (a "photometric hit"). The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 Å. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters, (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 <= z gal <= 1.0955, up to an impact parameter of 142\\ h_{71}^{-1} kpc and a maximum velocity difference of 280 km s-1. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within ~650 km s-1 from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference Δz = 0.1. The general population of our confirmed absorbing galaxies have luminosities L_{B} \\sim L_{B}^{\\ast } and mean rest

  14. Spectral synthesis in the ultraviolet. II - Stellar populations and star formation in blue compact galaxies

    NASA Technical Reports Server (NTRS)

    Fanelli, Michael N.; O'Connell, Robert W.; Thuan, Trinh X.

    1988-01-01

    An initial attempt to apply optimizing spectral synthesis techniques to the far-UV spectra of blue compact galaxies (BCGs) is presented. The far-UV absorption-line spectra of the galaxies are clearly composite, with the signatures of the main-sequence types between O3 and mid-A. Most of the low-ionization absorption lines have a stellar origin. The Si IV and C IV features in several objects have P Cygni profiles. In Haro I the strength of Si IV indicates a significant blue supergiant population. The metal-poor blue compact dwarf Mrk 209 displays weak absorption lines, evidence that the stellar component has the same low metallicity as observed in the ionized gas. Good fits to the data are obtained the technique of optimizing population synthesis. The solutions yield stellar luminosity functions which display large discontinuities, indicative of discrete star formation episodes or bursts. The amount of UV extinction is low.

  15. Can Low-Luminosity Galaxies Reionize the Universe?

    NASA Astrophysics Data System (ADS)

    Ferguson, Harry

    2017-08-01

    The prevailing wisdom is that low-luminosity galaxies are responsible for cosmic reionization. If this is true, then low-luminosity galaxies at high redshift have to be different from most of the low-luminosity galaxies studied to date at low redshift, which absorb too much of their ionizing radiation. While it is possible that high-z dwarf galaxies have the same metallicity at fixed mass and star-formation rate as low-redshift galaxies, they are different in one key respect. At fixed dark-halo mass, they are probably much denser (having collapsed earlier). This could lead to higher star-formation surface densities more capable of creating cavities in the ISM. But the denser halos of surrounding gas could be harder to clear. There is a critical need for further observations to validate and test physical models for the trends of escaping ionizing continuum with redshift, luminosity, and surface density. JWST will not be able to measure ionizing radiation during the epoch of reionization because the IGM absorbs most of the photons. To prepare for JWST, we need to use the ultraviolet capabilities of HST to measure diverse samples of galaxies at z<3, where we can see the photons and quantify the trends with other galaxy properties. As a complement to other studies, we propose to constrain the Lyman-continuum emission from 8 relatively low-luminosity strongly-lensed galaxies at 1

  16. VizieR Online Data Catalog: Mrk421 in March 2010 (Aleksic+, 2015)

    NASA Astrophysics Data System (ADS)

    Aleksic, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; de Almeida, U. Barres; Barrio, J. A.; Gonzalez, J. Becerra; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Boller, A.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Caneva, G.; de Lotto, B.; de Ona Wilhelmi, E.; Delgado Mendez, C.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; Garcia Lopez, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinovic, N.; Gonzalez Munoz, A.; Gozzini, S. R.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hildebrand, D.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kadenius, V.; Kellermann, H.; Knoetig, M. L.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; Lopez, M.; Lopez-Coto, R.; Lopez-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martinez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribo, M.; Rico, J.; Rodriguez Garcia, J.; Rugamer, S.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Sun, S.; Shore, S. N.; Sillanpaa, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Steinke, B.; Storz, J.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzic, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Zanin, R.; MAGIC Collaboration; Archambault, S.; Archer, A.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Biteau, J.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Collins-Hughes, E.; Cui, W.; Eisch, J. D.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gillanders, G. H.; Griffin, S.; Gyuk, G.; Hakansson, N.; Holder, J.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Kieda, D.; Lang, M. J.; McArthur, S.; McCann, A.; Meagher, K.; Millis, J.; Moriarty, P.; Ong, R. A.; Otte, A. N.; Perkins, J. S.; Pichel, A.; Pohl, M.; Popkow, A.; Prokoph, H.; Pueschel, E.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rovero, A. C.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Varlotta, A.; Wakely, S. P.; Welsing, R.; Wilhelm, A.; Williams, D. A.

    2015-01-01

    I. The multi-wavelength light curves (LCs) of Mrk 421 between MJD 55264 and 55278, from VHE to radio (the data in Fig. 1) are given in 32 files (INSTRUMENT_BAND.dat) II. The day-by-day broadband spectral energy distributions (SEDs) between MJD 55264 and 55278 (the data in Figs. 7,8a-9f,12a-13f) are given in 13 files (55265-55277.dat) (19 data files).

  17. THE BINARY BLACK HOLE MODEL FOR MRK 231 BITES THE DUST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighly, Karen M.; Terndrup, Donald M.; Gallagher, Sarah C.

    2016-09-20

    Mrk 231 is a nearby quasar with an unusually red near-UV-to-optical continuum, generally explained as heavy reddening by dust. Yan et al. proposed that Mrk 231 is a milliparsec black hole binary with little intrinsic reddening. We show that if the observed FUV continuum is intrinsic, as assumed by Yan et al., it fails by a factor of about 100 in powering the observed strength of the near-infrared emission lines and the thermal near and mid-infrared continuum. In contrast, the line and continuum strengths are typical for a reddened AGN spectral energy distribution (SED). We find that the He i*/Pmore » β ratio is sensitive to the SED for a one-zone model. If this sensitivity is maintained in general broadline region models, then this ratio may prove a useful diagnostic for heavily reddened quasars. Analysis of archival Hubble Space Telescope STIS and Faint Object Camera data revealed evidence that the far-UV continuum emission is resolved on size scales of ∼40 pc. The lack of broad absorption lines in the far-UV continuum might be explained if it were not coincident with the central engine. One possibility is that it is the central engine continuum reflected from the receding wind on the far side of the quasar.« less

  18. An Intriguing Convex Break in the EGRET SED of Mrk 421

    NASA Technical Reports Server (NTRS)

    Nandikotkur, Giridhar; Jahoda, Keith M.; Georganopoulos, M.; Hartman, R. C.; Mukherjee, R.; Thompson, D. J.; Swank, Jean H.

    2007-01-01

    Based upon analysis of the entire EGRET data from Mrk 421, it is found that the time-averaged spectra are inconsistent with the predictions of current theoretical models that have had success in describing simultaneous X-ray/TeV observations, and suggest additional components in the GeV band, as well as complex time variability. Current theoretical pictures explain the GeV emission as comptonization of the synchrotron photons in the jet, and predict hard spectra that should join smoothly with the TeV emission. Our analysis shows that the situation is more complex. The spectrum ranges from hard to soft during individual epochs, and shows a convext break in the aggregated data. We also present the mission-averaged EGRET spectrum for PKS 2155-304, which shows a similar (but not as pronounced) convex curvature. We discuss a series of possible explanations for the 10(exp 22) - 10(exp 23) HZ declining part of the EGRET nu F(sub nu), spectrum for Mrk 421, and suggest that it is synchrotron emission from the high energy tail of the electron population that produces the X-rays during the highest X-ray states. Such multi-MeV photons are produced by electrons accelerated close to the limit of diffusive shock acceleration. Simultaneous GLAST and X-ray observations of high X-ray states will address the issue of the convex curvature in the future.

  19. A physical model for z ~ 2 dust-obscured galaxies

    NASA Astrophysics Data System (ADS)

    Narayanan, Desika; Dey, Arjun; Hayward, Christopher C.; Cox, Thomas J.; Bussmann, R. Shane; Brodwin, Mark; Jonsson, Patrik; Hopkins, Philip F.; Groves, Brent; Younger, Joshua D.; Hernquist, Lars

    2010-09-01

    We present a physical model for the origin of z ~ 2 dust-obscured galaxies (DOGs), a class of high-redshift ultraluminous infrared galaxies (ULIRGs) selected at 24μm which are particularly optically faint (F24μm/FR > 1000). By combining N-body/smoothed particle hydrodynamic simulations of high-redshift galaxy evolution with 3D polychromatic dust radiative transfer models, we find that luminous DOGs (with F24 >~ 0.3mJy at z ~ 2) are well modelled as extreme gas-rich mergers in massive (~5 × 1012-1013Msolar) haloes, with elevated star formation rates (SFR; ~500-1000Msolaryr-1) and/or significant active galactic nuclei (AGN) growth , whereas less luminous DOGs are more diverse in nature. At final coalescence, merger-driven DOGs transition from being starburst dominated to AGN dominated, evolving from a `bump' to a power-law (PL) shaped mid-IR (Infrared Array Camera, IRAC) spectral energy distribution (SED). After the DOG phase, the galaxy settles back to exhibiting a `bump' SED with bluer colours and lower SFRs. While canonically PL galaxies are associated with being AGN dominated, we find that the PL mid-IR SED can owe both to direct AGN contribution and to a heavily dust obscured stellar bump at times that the galaxy is starburst dominated. Thus, PL galaxies can be either starburst or AGN dominated. Less luminous DOGs can be well-represented either by mergers or by massive (Mbaryon ~ 5 × 1011Msolar) secularly evolving gas-rich disc galaxies (with SFR >~ 50Msolaryr-1). By utilizing similar models as those employed in the submillimetre galaxy (SMG) formation study of Narayanan et al., we investigate the connection between DOGs and SMGs. We find that the most heavily star-forming merger-driven DOGs can be selected as submillimetre galaxies, while both merger-driven and secularly evolving DOGs typically satisfy the BzK selection criteria. The model SEDs from the simulated galaxies match observed data reasonably well, though Mrk 231 and Arp 220 templates provide

  20. Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010

    DOE PAGES

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...

    2015-05-27

    Because of its proximity, Mrk 421 is one of the best sources on which to study the nature of BL Lac objects. Its proximity allows us to characterize its broadband spectral energy distribution (SED). Here, the goal is to better understand the mechanisms responsible for the broadband emission and the temporal evolution of Mrk 421. These mechanisms may also apply to more distant blazars that cannot be studied with the same level of detail. A flare occurring in March 2010 was observed for 13 consecutive days (from MJD 55 265 to MJD 55 277) with unprecedented wavelength coverage from radiomore » to very high energy (VHE; E> 100 GeV) γ-rays with MAGIC, VERITAS, Whipple, Fermi-LAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We modeled the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigated the physical parameters, and evaluated whether the observed broadband SED variability can be associated with variations in the relativistic particle population. As a result, the activity of Mrk 421 initially was high and then slowly decreased during the 13-day period. The flux variability was remarkable at the X-ray and VHE bands, but it was minor or not significant at the other bands. The variability in optical polarization was also minor. These observations revealed an almost linear correlation between the X-ray flux at the 2–10 keV band and the VHE γ-ray flux above 200 GeV, consistent with the γ-rays being produced by inverse-Compton scattering in the Klein-Nishina regime in the framework of SSC models. The one-zone SSC model can describe the SED of each day for the 13 consecutive days reasonably well, which once more shows the success of this standard theoretical scenario to describe the SEDs of VHE BL Lacs such as Mrk 421. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission, while the other smaller zone, which is spatially

  1. The formation and evolution of high-redshift dusty galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration

    2017-01-01

    Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 < z < 5.7, which were first discovered by the South Pole Telescope (SPT) and further confirmed by ALMA. My thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other

  2. The association between gas and galaxies - II. The two-point correlation function

    NASA Astrophysics Data System (ADS)

    Wilman, R. J.; Morris, S. L.; Jannuzi, B. T.; Davé, R.; Shone, A. M.

    2007-02-01

    We measure the two-point correlation function, ξAG, between galaxies and quasar absorption-line systems at z < 1, using the data set of Morris & Jannuzi on 16 lines-of-sight (LOS) with ultraviolet (UV) spectroscopy and galaxy multi-object spectroscopy (Paper I). The measurements are made in 2D redshift space out to π = 20h-1 Mpc (comoving) along the LOS and out to σ = 2h-1 Mpc projected; as a function of HI column density in the range NHI = 1013-1019cm-2, also for CIV absorption systems, and as a function of galaxy spectral type. This extends the absorber-galaxy pair analysis of Paper I. We find that the amplitude of the peak in ξAG at the smallest separations increases slowly as the lower limit on NHI is increased from 1013 to 1016cm-2, and then jumps sharply (albeit with substantial uncertainties) for NHI > 1017cm-2. For CIV absorbers, the peak strength of ξAG is roughly comparable to that of HI absorbers with NHI > 1016.5cm-2, consistent with the finding that the CIV absorbers are associated with strong HI absorbers. We do not reproduce the differences reported by Chen et al. between 1D ξAG measurements using galaxy subsamples of different spectral types. However, the full impact on the measurements of systematic differences in our samples is hard to quantify. We compare the observations with smoothed particle hydrodynamical (SPH) simulations and discover that in the observations ξAG is more concentrated to the smallest separations than in the simulations. The latter also display a `finger of god' elongation of ξAG along the LOS in redshift space, which is absent from our data, but similar to that found by Ryan-Weber for the cross-correlation of quasar absorbers and HI-emission-selected galaxies. The physical origin of these `fingers of god' is unclear, and we thus highlight several possible areas for further investigation.

  3. Frankenstein Galaxy

    NASA Image and Video Library

    2016-07-11

    The galaxy UGC 1382 has been revealed to be far larger and stranger than previously thought. Astronomers relied on a combination of ground-based and space telescopes to uncover the true nature of this "Frankenstein galaxy." The composite image shows the same galaxy as viewed with different instruments. The component images are also available. In the image at left, UGC 1382 appears to be a simple elliptical galaxy, based on optical data from the Sloan Digital Sky Survey (SDSS). But spiral arms emerged when astronomers incorporated ultraviolet data from the Galaxy Evolution Explorer (GALEX) and deep optical data from SDSS, as seen in the middle image. Combining that with a view of low-density hydrogen gas (shown in green), detected at radio wavelengths by the Very Large Array, scientists discovered that UGC 1382 is a giant, and one of the largest isolated galaxies known. GALEX in particular was able detect very faint features because it operated from space, which is necessary for UV observations because ultraviolet light is absorbed by the Earth's atmosphere. Astronomers also used Stripe 82 of SDSS, a small region of sky where SDSS imaged the sky 80 times longer than the original standard SDSS survey. This enabled optical detection of much fainter features as well. http://photojournal.jpl.nasa.gov/catalog/PIA20695

  4. INVERSE COMPTON X-RAY EMISSION FROM TeV BLAZAR MRK 421 DURING A HISTORICAL LOW-FLUX STATE OBSERVED WITH NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Jun; Stawarz, Łukasz, E-mail: kataoka.jun@waseda.jp

    2016-08-10

    We report on the detection of excess hard X-ray emission from the TeV BL Lac object Mrk 421 during the historical low-flux state of the source in 2013 January. Nuclear Spectroscopic Telescope Array observations were conducted four times between MJD 56294 and MJD 56312 with a total exposure of 80.9 ks. The source flux in the 3–40 keV range was nearly constant, except for MJD 56307 when the average flux level increased by a factor of three. Throughout the exposure, the X-ray spectra of Mrk 421 were well represented by a steep power-law model with a photon index of Γmore » ≃ 3.1, although a significant excess was noted above 20 keV in the MJD 56302 data when the source was in its faintest state. Moreover, Mrk 421 was detected at more than the 4 σ level in the 40–79 keV count maps for both MJD 56307 and MJD 56302 but not during the remaining two observations. The detected excess hard X-ray emission connects smoothly with the extrapolation of the high-energy γ -ray continuum of the blazar constrained by Fermi -LAT during source quiescence. These findings indicate that while the overall X-ray spectrum of Mrk 421 is dominated by the highest-energy tail of the synchrotron continuum, the variable excess hard X-ray emission above 20 keV (on the timescale of a week) is related to the inverse Compton emission component. We discuss the resulting constraints on the variability and spectral properties of the low-energy segment of the electron energy distribution in the source.« less

  5. Timing the warm absorber in NGC4051

    NASA Astrophysics Data System (ADS)

    Silva, C.; Uttley, P.; Costantini, E.

    2015-07-01

    In this work we have combined spectral and timing analysis in the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ˜600ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC4051, whose spectrum has revealed a complex multi-component wind. Working simultaneously with RGS and PN data, we have performed a detailed analysis using a time-dependent photoionization code in combination with spectral and Fourier timing techniques. This method allows us to study in detail the response of the gas due to variations in the ionizing flux of the central source. As a result, we will show the contribution of the recombining gas to the time delays of the most highly absorbed energy bands relative to the continuum (Silva, Uttley & Costantini in prep.), which is also vital information for interpreting the continuum lags associated with propagation and reverberation effects in the inner emitting regions. Furthermore, we will illustrate how this powerful method can be applied to other sources and warm-absorber configurations, allowing for a wide range of studies.

  6. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r< 17-70 pc) nuclei that have very high implied mid-infrared surface brightness > 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states

  7. How Do Inflows and Outflows from Galaxies Create Their Inner Circumgalactic Medium?

    NASA Astrophysics Data System (ADS)

    Bowen, David

    2017-08-01

    We propose using COS to observe 7 QSO sightlines within half a virial radius each of two galaxies in order to probe their circumgalactic mediums (CGMs) along multiple sightlines. Results from higher redshift QSO absorption line surveys suggest that this is the region where most metal line absorbing gas clouds reside, but their origin remains controversial. The two spiral galaxies studied in this proposal are NGC 4565 (the Needle Galaxy) which is highly inclined (i=86 degrees), and NGC 3184, which has a very low inclination (i=9 degrees). Their orientation makes them ideal targets for looking for kinematic and metallicity signatures from outflows along the minor axis, or inflows into the disk along the major axis. For both galaxies, we will measure how HI and metal line column densities change globally with radius, and how the ionzation structure of the absorbers varies with position. We predict that the HI column densities we detect will be similar to the Lyman Limit, or partial-Lyman Limit systems, and that we will be able to measure the gas metallicity in these clouds. These measurements can be used to infer whether the absorbing gas is flowing into the galaxy from the IGM (where the metallicity is lower than in the galaxy) or out of the galaxy (which should be metal enriched). Given that LLS and pLLS have been shown to have a bimodal distribution in their metallicity, we will see which of the two regimes the gas in our galaxies belong to, and even whether the bimodality can be seen in a single galaxy towards different sightlines.

  8. First Results from the ISO-IRAS Faint Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Levine, Deborah A.; Lonsdale, Carol J.; Hurt, Robert L.; Smith, Harding E.; Helou, George; Beichman, Charles; Cesarsky, Catherine; Elbaz, David; Klaas, Ulrich; Laureijs, Rene; Lemke, Detrich; Lord, Steven; McMahon, Richard; Moshir, Mehrdad; Neugebauer, Gerry; Soifer, B. T.; Van Buren, Dave; Wehrle, Ann; Wolstencroft, Ray

    1998-09-01

    We present the first results from the ISO-IRAS Faint Galaxy Survey (IIFGS), a program designed to obtain ISO observations of the most distant and luminous galaxies in the IRAS Faint Source Survey by filling short gaps in the ISO observing schedule with pairs of 12 μm ISOCAM and 90 μm ISOPHOT observations. As of 1997 October, over 500 sources have been observed, with an ISOCAM detection rate over 80%, covering over 1.25 deg2 of sky to an 11.5 μm point-source completeness limit of approximately 1.0 mJy (corresponding to a ~10 σ detection sensitivity). Observations are presented for nine sources detected by ISOPHOT and ISOCAM early in the survey for which we have ground-based G- and I-band images and optical spectroscopy. The ground-based data confirm that the IIFGS strategy efficiently detects moderate-redshift (z = 0.11-0.38 for this small sample) strong emission line galaxies with L60 μm >~ 1011 L⊙ one of our sample has L60 μm > 1012 L⊙ (H0 = 75 km s-1 Mpc-1, Ω = 1). The infrared-optical spectral energy distributions are comparable to those of nearby luminous infrared galaxies, which span the range from pure starburst (e.g., Arp 220) to infrared QSO (Mrk 231). Two of the systems show signs of strong interaction, and four show active galactic nucleus (AGN)-like excitation; one of the AGNs, F15390+6038, which shows a high excitation Seyfert 2 spectrum, has an unusually warm far- to mid-infrared color and may be an obscured QSO. The IIFGS sample is one of the largest and deepest samples of infrared-luminous galaxies available, promising to be a rich sample for studying infrared-luminous galaxies up to z ~ 1 and for understanding the evolution of infrared galaxies and the star formation rate in the universe. ISO is an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.

  9. Extreme X-ray Behaviour of Mrk 421

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2013-03-01

    In ATel #4864 (B. Kapanadze, M4k 421 Still Active through X-rays), we reported the flaring activity in the high-energy peaked BL Lacertae source Mrk 421 (z=0.031) detected via the observations performed during March 1-5, 2013, by the X-ray Telescope (XRT) onboard the Swift satellite. The recent observations, performed by this telescope, show increasing X-ray activity of this source. The data, allocated at the webpage http://www.swift.psu.edu/monitoring/ , show that the source was extremely active on hours timescale during the March 17 pointing: the 0.3-10 keV flux dropped from 16.83+0.17 cts/s (Orbit 1) to 12.46+0.24 cts/s (Orbit 5) in about 4.2 hr; it increased then to 24.60+0.14 cts/s for next orbit (in 1.45 hr) and afterwards drooped again to 16.01+0.15 cts/s in the case of next orbit (in 1.7 hr).

  10. Gemini NIFS survey of feeding and feedback processes in nearby active galaxies - I. Stellar kinematics

    NASA Astrophysics Data System (ADS)

    Riffel, Rogemar A.; Storchi-Bergmann, Thaisa; Riffel, Rogerio; Dahmer-Hahn, Luis G.; Diniz, Marlon R.; Schönell, Astor J.; Dametto, Natacha Z.

    2017-09-01

    We use the Gemini Near-Infrared Integral Field Spectrograph (NIFS) to map the stellar kinematics of the inner few hundred parsecs of a sample of 16 nearby Seyfert galaxies, at a spatial resolution of tens of parsecs and spectral resolution of 40 km s- 1. We find that the line-of-sight (LOS) velocity fields for most galaxies are well reproduced by rotating disc models. The kinematic position angle (PA) derived for the LOS velocity field is consistent with the large-scale photometric PA. The residual velocities are correlated with the hard X-ray luminosity, suggesting that more luminous active galactic nuclei have a larger impact in the surrounding stellar dynamics. The central velocity dispersion values are usually higher than the rotation velocity amplitude, what we attribute to the strong contribution of bulge kinematics in these inner regions. For 50 per cent of the galaxies, we find an inverse correlation between the velocities and the h3 Gauss-Hermitte moment, implying red wings in the blueshifted side and blue wings in the redshifted side of the velocity field, attributed to the movement of the bulge stars lagging the rotation. Two of the 16 galaxies (NGC 5899 and Mrk 1066) show an S-shape zero velocity line, attributed to the gravitational potential of a nuclear bar. Velocity dispersion (σ) maps show rings of low-σ values (˜50-80 km s- 1) for four objects and 'patches' of low σ for six galaxies at 150-250 pc from the nucleus, attributed to young/ intermediate age stellar populations.

  11. Quasar 2175 Å dust absorbers - I. Metallicity, depletion pattern and kinematics

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Ge, Jian; Zhao, Yinan; Prochaska, J. Xavier; Zhang, Shaohua; Ji, Tuo; Schneider, Donald P.

    2017-12-01

    We present 13 new 2175 Å dust absorbers at zabs = 1.0-2.2 towards background quasars from the Sloan Digital Sky Survey. These absorbers are examined in detail using data from the Echelle Spectrograph and Imager (ESI) on the Keck II telescope. Many low-ionization lines including Fe II, Zn II, Mg II, Si II, Al II, Ni II, Mn II, Cr II, Ti II and Ca II are present in the same absorber that gives rise to the 2175 Å bump. The relative metal abundances (with respect to Zn) demonstrate that the depletion patterns of our 2175 Å dust absorbers resemble that of the Milky Way clouds although some are disc-like and some are halo-like. The 2175 Å dust absorbers have significantly higher depletion levels compared to literature damped Lyman α absorbers (DLAs) and sub-DLAs. The dust depletion level indicator [Fe/Zn] tends to anticorrelate with bump strengths. The velocity profiles from the Keck/ESI spectra also provide kinematical information on the dust absorbers. The dust absorbers are found to have multiple velocity components with velocity widths extending from ∼100 to ∼600 km s-1, which are larger than those of most DLAs and sub-DLAs. Assuming the velocity width is a reliable tracer of stellar mass, the host galaxies of 2175 Å dust absorbers are expected to be more massive than DLA/sub-DLA hosts. Not all of the 2175 Å dust absorbers are intervening systems towards background quasars. The absorbers towards quasars J1006+1538 and J1047+3423 are proximate systems that could be associated with the quasar itself or the host galaxy.

  12. REVIEWS OF TOPICAL PROBLEMS: Prediction and discovery of new structures in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fridman, Aleksei M.

    2007-02-01

    A review is given of the last 20 years of published research into the nature, origin mechanisms, and observed features of spiral-vortex structures found in galaxies. The so-called rotating shallow water experiments are briefly discussed, carried out with a facility designed by the present author and built at the Russian Scientific Center 'Kurchatov Institute' to model the origin of galactic spiral structures. The discovery of new vortex-anticyclone structures in these experiments stimulated searching for them astronomically using the RAS Special Astrophysical Observatory's 6-meter BTA optical telescope, formerly the world's and now Europe's largest. Seven years after the pioneering experiments, Afanasyev and the present author discovered the predicted giant anticyclones in the galaxy Mrk 1040 by using BTA. Somewhat later, the theoretical prediction of giant cyclones in spiral galaxies was made, also to be verified by BTA afterwards. To use the observed line-of-sight velocity field for reconstructing the 3D velocity vector distribution in a galactic disk, a method for solving a problem from the class of ill-posed astrophysical problems was developed by the present author and colleagues. In addition to the vortex structure, other new features were discovered — in particular, slow bars (another theoretical prediction), for whose discovery an observational test capable of distinguishing them from their earlier-studied normal (fast) counterparts was designed.

  13. Simultaneous X-ray and optical observations of true type 2 Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Bianchi, Stefano; Panessa, Francesca; Barcons, Xavier; Carrera, Francisco J.; La Franca, Fabio; Matt, Giorgio; Onori, Francesca; Wolter, Anna; Corral, Amalia; Monaco, Lorenzo; Ruiz, Ángel; Brightman, Murray

    2012-11-01

    We present the results of a campaign of simultaneous X-ray and optical observations of 'true' type 2 Seyfert galaxies candidates, i.e. active galactic nuclei without a broad-line region (BLR). Out of the initial sample composed of eight sources, one object, IC 1631, was found to be a misclassified starburst galaxy, another, Q2130-431, does show broad optical lines, while other two, IRAS 01428-0404 and NGC 4698, are very likely absorbed by Compton-thick gas along the line of sight. Therefore, these four sources are not unabsorbed Seyfert 2s as previously suggested in the literature. On the other hand, we confirm that NGC 3147, NGC 3660 and Q2131-427 belong to the class of true type 2 Seyfert galaxies, since they do not show any evidence for a broad component of the optical lines nor for obscuration in their X-ray spectra. These three sources have low accretion rates (ṁ=L bol /L Edd ≲0.01), in agreement with theoretical models which predict that the BLR disappears below a critical value of Lbol/LEdd. The last source, Mrk 273x, would represent an exception even of these accretion-dependent versions of the Unification Models, due to its high X-ray luminosity and accretion rate, and no evidence for obscuration. However, its optical classification as a Seyfert 2 is only based on the absence of a broad component of Hβ, due to the lack of optical spectra encompassing the Hα band. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA); with the TNG and Nordic Optical Telescope (NOT) operated on the island of La Palma by the Centro Galileo Galilei and the Nordic Optical Telescope Science Association, respectively, in the Spanish Observatorio del Roque de los Muchachos; at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC); at the European

  14. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I: Physical Conditions in the UV Absorbers

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.

    2003-01-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.

  15. Galaxies Probing Galaxies in PRIMUS. I. Sample, Spectroscopy, and Characteristics of the z\\sim 0.5 Mg II–absorbing Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Rubin, Kate H. R.; Diamond-Stanic, Aleksandar M.; Coil, Alison L.; Crighton, Neil H. M.; Moustakas, John

    2018-01-01

    The spectroscopy of background QSO sightlines passing close to foreground galaxies is a potent technique for studying the circumgalactic medium (CGM). However, QSOs are effectively point sources, limiting their potential to constrain the size of circumgalactic gaseous structures. Here we present the first large Keck/Low-resolution Imaging Spectrometer (LRIS) and Very Large Telescope (VLT)/Focal Reducer/Low-dispersion Spectrograph 2 (FORS2) spectroscopic survey of bright ({B}{AB}< 22.3) background galaxies whose lines of sight probe Mg II λ λ 2796,2803 absorption from the CGM around close projected foreground galaxies at transverse distances 10 {kpc}< {R}\\perp < 150 {kpc}. Our sample of 72 projected pairs, drawn from the PRIsm MUlti-object Survey, includes 48 background galaxies that do not host bright active galactic nuclei, and both star-forming and quiescent foreground galaxies with stellar masses of 9.0< {log}{M}* /{M}ȯ < 11.2 at redshifts of 0.35< {z}{{f}/{{g}}}< 0.8. We detect Mg II absorption associated with these foreground galaxies with equivalent widths of 0.25 \\mathring{{A}} < {W}2796< 2.6 \\mathring{{A}} at > 2σ significance in 20 individual background sightlines passing within {R}\\perp < 50 {kpc} and place 2σ upper limits on W 2796 of ≲ 0.5 \\mathring{{A}} in an additional 11 close sightlines. Within {R}\\perp < 50 {kpc}, W 2796 is anticorrelated with R ⊥, consistent with analyses of Mg II absorption detected along background QSO sightlines. Subsamples of these foreground hosts divided at {log}{M}* /{M}ȯ =9.9 exhibit statistically inconsistent W 2796 distributions at 30 {kpc}< {R}\\perp < 50 {kpc}, with the higher-M * galaxies yielding a larger median W 2796 by 0.9 \\mathring{{A}} . Finally, we demonstrate that foreground galaxies with similar stellar masses exhibit the same median W 2796 at a given R ⊥ to within < 0.2 \\mathring{{A}} toward both background galaxies and toward QSO sightlines drawn from the literature. Analysis of these

  16. The role of black holes in galaxy formation and evolution.

    PubMed

    Cattaneo, A; Faber, S M; Binney, J; Dekel, A; Kormendy, J; Mushotzky, R; Babul, A; Best, P N; Brüggen, M; Fabian, A C; Frenk, C S; Khalatyan, A; Netzer, H; Mahdavi, A; Silk, J; Steinmetz, M; Wisotzki, L

    2009-07-09

    Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.

  17. The broad-band X-ray spectral variability of Mrk 841

    NASA Technical Reports Server (NTRS)

    George, I. M.; Nandra, K.; Fabian, A. C.; Turner, T. J.; Done, C.; Day, C. S. R.

    1993-01-01

    A detailed spectral analysis of five X-ray observations of Mrk 841 with the EXOSAT, Ginga, and ROSAT satellites is reported. Variability is apparent in both the soft (0.1-1.0 keV) and medium (1-20 keV) energy bands. Above, 1 keV, the spectra are adequately modeled by a power law with a strong emission line of equivalent width 450 eV. The large equivalent width of the emission line indicates a strongly enhanced reflection component of the source compared with other Seyferts observed with Ginga. The implications of the results of the analysis for physical models of the emission regions in this and other X-ray bright Seyferts are briefly examined.

  18. Spatially resolved star formation and dust attenuation in Mrk 848: Comparison of the integral field spectra and the UV-to-IR SED

    NASA Astrophysics Data System (ADS)

    Yuan, Fang-Ting; Argudo-Fernández, María; Shen, Shiyin; Hao, Lei; Jiang, Chunyan; Yin, Jun; Boquien, Médéric; Lin, Lihwai

    2018-05-01

    We investigate the star formation history and the dust attenuation in the galaxy merger Mrk 848. Thanks to the multiwavelength photometry from the ultraviolet (UV) to the infrared (IR), and MaNGA's integral field spectroscopy, we are able to study this merger in a detailed way. We divide the whole merger into the core and tail regions, and fit both the optical spectrum and the multi-band spectral energy distribution (SED) to models to obtain the star formation properties for each region respectively. We find that the color excess of stars in the galaxy E(B-V)sSED measured with the multi-band SED fitting is consistent with that estimated both from the infrared excess (the ratio of IR to UV flux) and from the slope of the UV continuum. Furthermore, the reliability of the E(B-V)sSED is examined with a set of mock SEDs, showing that the dust attenuation of the stars can be well constrained by the UV-to-IR broadband SED fitting. The dust attenuation obtained from optical continuum E(B-V)sspec is only about half of E(B-V)sSED. The ratio of the E(B-V)sspec to the E(B-V)g obtained from the Balmer decrement is consistent with the local value (around 0.5). The difference between the results from the UV-to-IR data and the optical data is consistent with the picture that younger stellar populations are attenuated by an extra dust component from the birth clouds compared to older stellar populations which are only attenuated by the diffuse dust. Both with the UV-to-IR SED fitting and the spectral fitting, we find that there is a starburst younger than 100 Myr in one of the two core regions, consistent with the scenario that the interaction-induced gas inflow can enhance the star formation in the center of galaxies.

  19. Large-scale galaxy bias

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian

    2018-02-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  20. NEAR-INFRARED SPECTROSCOPY OF NEARBY SEYFERT GALAXIES: IS THERE EVIDENCE FOR SHOCK EXCITATION IN NARROW-LINE REGIONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terao, K.; Nagao, T.; Toba, Y.

    2016-12-20

    One of the important unsettled problems regarding active galactic nuclei (AGNs) is the major ionization mechanism of gas clouds in AGN narrow-line regions (NLRs). In order to investigate this issue, we present our J -band spectroscopic observations of a sample of 26 nearby Seyfert galaxies. In our study, we use the flux ratio of the following two forbidden emission lines, [Fe ii]1.257  μ m and [P ii]1.188  μ m, because it is known that this ratio is sensitive to the ionization mechanism. We obtain the [Fe ii]/[P ii] flux ratio or its lower limit for 19 objects. In addition tomore » our data, we compile this flux ratio (or its lower limit) for 23 nearby Seyfert galaxies from the literature. Based on the collected data, we find that three Seyfert galaxies show very large lower limits of the [Fe ii]/[P ii] flux ratios (≳10): NGC 2782, NGC 5005, and Mrk 463. It is thus suggested that the contribution of the fast shock in the gas excitation is significantly large for them. However, more than half of the Seyfert galaxies in our sample show moderate [Fe ii]/[P ii] flux ratios (∼2), which is consistent with pure photoionization by power-law ionizing continuum emission. We also find that the [Fe ii]/[P ii] flux ratio shows no clear correlation with the radio loudness, suggesting that the radio jet is not the primary origin of shocks in NLRs of Seyfert galaxies.« less

  1. Another piece of the puzzle: The fast H I outflow in Mrk 231

    NASA Astrophysics Data System (ADS)

    Morganti, Raffaella; Veilleux, Sylvain; Oosterloo, Tom; Teng, Stacy H.; Rupke, David

    2016-09-01

    We present the detection, performed with the Westerbork Synthesis Radio Telescope (WSRT) and the Karl Jansky Very Large Array (VLA), of a fast H I 21 cm outflow in the ultra-luminous infrared galaxy Mrk 231. The outflow is observed as shallow H I absorption blueshifted ~1300 km s-1 with respect to the systemic velocity and located against the inner kpc of the radio source. The outflowing gas has an estimated column density between 5 and 15 × 1018Tspin cm-2. We derive the Tspin to lie in the range 400-2000 K and the corresponding H I densities are nHI ~ 10-100 cm-3. Our results complement previous findings and confirm the multiphase nature of the outflow in Mrk 231. Although effects of the interaction between the radio plasma and the surrounding medium cannot be ruled out, the energetics and the lack of a clear kpc-scale jet suggest that the most likely origin of the H I outflow is a wide-angle nuclear wind, as earlier proposed to explain the neutral outflow traced by Na I and molecular gas in this source. Our results suggest that an H I component is present in fast outflows regardless of the acceleration mechanism (wind vs. jet driven) and that it must be connected with common properties of the pre-interaction gas involved. Considering the observed similarity of their column densities, the H I outflow likely represents the inner part of the broad wind identified on larger scales in atomic Na I. The mass outflow rate of the H I outflow (between 8 and 18 M⊙ yr-1) does not appear to be as large as that observed in molecular gas, partly owing to the smaller sizes of the outflowing region sampled by the H I absorption. These characteristics are commonly seen in other cases of outflows driven by the active galactic nucleus (AGN) suggesting that the H I may represent a short intermediate phase in the rapid cooling of the gas. The results further confirm H I as a good tracer for AGN-driven outflows not only in powerful radio sources. We also obtained deeper continuum

  2. Statistical properties of Faraday rotation measure in external galaxies - I. Intervening disc galaxies

    NASA Astrophysics Data System (ADS)

    Basu, Aritra; Mao, S. A.; Fletcher, Andrew; Kanekar, Nissim; Shukurov, Anvar; Schnitzeler, Dominic; Vacca, Valentina; Junklewitz, Henrik

    2018-06-01

    Deriving the Faraday rotation measure (RM) of quasar absorption line systems, which are tracers of high-redshift galaxies intervening background quasars, is a powerful tool for probing magnetic fields in distant galaxies. Statistically comparing the RM distributions of two quasar samples, with and without absorption line systems, allows one to infer magnetic field properties of the intervening galaxy population. Here, we have derived the analytical form of the probability distribution function (PDF) of RM produced by a single galaxy with an axisymmetric large-scale magnetic field. We then further determine the PDF of RM for one random sight line traversing each galaxy in a population with a large-scale magnetic field prescription. We find that the resulting PDF of RM is dominated by a Lorentzian with a width that is directly related to the mean axisymmetric large-scale field strength of the galaxy population if the dispersion of B0 within the population is smaller than . Provided that RMs produced by the intervening galaxies have been successfully isolated from other RM contributions along the line of sight, our simple model suggests that in galaxies probed by quasar absorption line systems can be measured within ≈50 per cent accuracy without additional constraints on the magneto-ionic medium properties of the galaxies. Finally, we discuss quasar sample selection criteria that are crucial to reliably interpret observations, and argue that within the limitations of the current data base of absorption line systems, high-metallicity damped Lyman-α absorbers are best suited to study galactic dynamo action in distant disc galaxies.

  3. Reverberation Mapping of Optical Emission Lines in Five Active Galaxies

    DOE PAGES

    Fausnaugh, M. M.; Grier, C. J.; Bentz, M. C.; ...

    2017-05-10

    We present the first results from an optical reverberation mapping campaign executed in 2014 targeting the active galactic nuclei (AGNs) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a “changing look” AGN and a broad-line radio galaxy. Based on continuum-Hβ lags, we measure black hole masses for all five targets. We also obtain Hγ and He II λ4686 lags for all objects except 3C 382. The He II λ4686 lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. Themore » relative responsivities of these lines are also in qualitative agreement with photoionization models. Finally, these spectra have extremely high signal-to-noise ratios (100–300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.« less

  4. Reverberation Mapping of Optical Emission Lines in Five Active Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fausnaugh, M. M.; Denney, K. D.; Peterson, B. M.

    2017-05-10

    We present the first results from an optical reverberation mapping campaign executed in 2014 targeting the active galactic nuclei (AGNs) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a “changing look” AGN and a broad-line radio galaxy. Based on continuum-H β lags, we measure black hole masses for all five targets. We also obtain H γ and He ii λ 4686 lags for all objects except 3C 382. The He ii λ 4686 lags indicate radial stratification of the BLR, and the masses derived from different emission lines aremore » in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100–300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.« less

  5. Observational Tracers of Hot and Cold Gas in Isolated Galaxy Simulations

    NASA Astrophysics Data System (ADS)

    Brzycki, Bryan; Silvia, Devin

    2018-01-01

    We present results from an analysis comparing simulations of isolated spiral galaxies with recent observations of the circumgalactic medium (CGM). As the interface containing inflows and outflows between the interstellar and intergalactic media, the CGM plays an important role in the composition and evolution of galaxies. Using a set of isolated galaxy simulations over different initial conditions and star formation and feedback parameters, we investigate the evolution of CGM gas. Specifically, in light of recent observational studies, we compute the radial column density profiles and covering fractions of various observable ion species (H I, C IV, O VI, Mg II, Si III) for each simulated galaxy. Taking uniformly random sightlines through the CGM of each simulated galaxy, we find the abundance of gas absorbers and analyze their contribution to the overall column density along each sightline. By identifying the prevalence of high column density absorbers, we seek to characterize the distribution and evolution of observable ion species in the CGM. We also highlight a subset of our isolated galaxy simulations that produce and maintain a stable precipitating CGM that fuels high rates of sustained star formation. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  6. Optical and NIR spectroscopy of Mrk 1210: constraints and physical conditions of the active nucleus

    NASA Astrophysics Data System (ADS)

    Mazzalay, X.; Rodríguez-Ardila, A.

    2007-02-01

    Aims:Mrk 1210 is an outstanding Seyfert 2 galaxy because it displays signatures of recent circumnuclear star formation and a high level of X-ray activity, in addition to the classical spectral characteristics typical of an AGN. Here we investigate the extinction affecting the nuclear and extended emitting gas, the kinematics of the narrow-line region, and the physical properties and conditions of that gas. Methods: Near-infrared and optical spectra of the nuclear and extended emission region of Mrk 1210 are presented, covering the interval 0.4-2.4 μm. Emission and absorption lines were used to infer, respectively, the geometrical extension of the ionized gas and the contribution of the underlying stellar population to the observed integrated continuum. The emission line profiles were employed to study the kinematics in the NLR. The reddening and physical condition of the gas were investigated by means of flux ratios among permitted and forbidden lines. Results: The NIR nuclear spectrum is dominated by H I and He I recombination lines, as well as [S II], [S III], and [Fe II] forbidden lines. Coronal lines of [S VIII], [S IX], [Si VI], [Si X], and [Ca VIII], in addition to molecular H{2} lines, were also detected. The 12CO(6{-3)} 1.618 μm overtone bandhead helped to estimate the contribution of the stellar population to the continuum. It was found that 83±8% of the H-band continuum has a stellar origin. It improves previous estimates, which claimed that at least 50% of the observed continuum was attributed to the AGN. Analysis of the emission line profiles, both allowed and forbidden, shows a narrower ({FWHM} ˜ 500 km s-1) line on top of a broad ({FWHM} > 1000 km s-1) blue-shifted component. This seems to be associated to a nuclear outflow. This hypothesis is supported by 6 cm VLBI observations, which show a radio ejecta extending up to 30 pc from the nucleus. This result does not require the presence of the hidden BLR claimed to be present in previous NIR

  7. Large-scale galaxy bias

    NASA Astrophysics Data System (ADS)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian

    2018-01-01

    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  8. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I. Evidence for Dust in the UV Absorbers

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Crenshaw, D. M.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K.; George, I. M.; Turner, T. J.; Yaqoob, T.; Dunn, J. P.

    2002-12-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, obtained with the Space Telescope Imaging Spectrograph at high spectral resolution (λ /Δ λ = 30,000 - 46,000), simultaneously with Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner high-ionization narrow-line region (NLR). Assuming the NLR is fully covered, we find nonunity covering factors in the cores of several components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous C IV and N V columns for component 1 (at -1040 km s-1), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim (based on nonsimultaneous observations of N V and C IV). We find that dust-free models of the absorbers severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include dust (and thereby heavily deplete carbon) are successful in matching all of the observed ionic columns, and result in substantially lower ionization parameters and total column densities compared to dust-free models. Interestingly, these models yield the exact amount of dust needed to produce the observed reddening of the inner NLR, assuming a Galactic dust to gas ratio. The models produce little O VII and O VIII, indicating that none of the dusty UV absorbers is associated with a classic X-ray warm absorber.

  9. The z = 0.8596 damped Ly-alpha absorbing galaxy toward PKS 0454+039

    NASA Technical Reports Server (NTRS)

    Steidel, Charles C.; Bowen, David V.; Blades, J. Chris; Dickenson, Mark

    1995-01-01

    We present Hubble Space Telescope (HST) and ground-based data on the Z(sub abs) = 0.8596 metal-line absorption system along the line of sight to PKS 0454+0356. The system is a moderate-redshift damped Ly-alpha system, with N(H I) = (5.7 +/- 0.3) x 10(exp 20)/sq cm as measured from the Faint Object Spectrograph (FOS) spectrum. We also present ground-based images which we use to identify the galaxy which most probably gives rise to the damped system; the most likely candidate is relatively underluminous by QSO absorber standards M(sub B) approximately -19.0 for A(sub 0) = 0.5 and H(sub 0) = 50 km/s/Mpc) and lies approximately 8.5/h kpc in projection from the QSO sight line. Ground-based measurements of Zn II, Cr II, and Fe II absorption lines from this system allow us to infer abundances of (Zn/H) = -1.1, (Cr/H) = -1.2, and (Fe/H) = -1.2 indicating overall metallicity similar to damped systems at z is greater than 2, and that the depletion of Cr and Fe onto dust grains may be even less important than in many of the high-redshift systems of comparable metallicity. Limits previously placed on the 21 cm optical depth in the z = 0.8596 system, together with our new N(H I) measurement, suggest a very high spin temperature for the H I, T(sub s) is greater than 580 K.

  10. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Fiore, F.; Carniani, S.; Piconcelli, E.; Zappacosta, L.; Bongiorno, A.; Cicone, C.; Maiolino, R.; Marconi, A.; Menci, N.; Puccetti, S.; Veilleux, S.

    2015-11-01

    Mrk 231 is a nearby ultra-luminous IR galaxy exhibiting a kpc-scale, multi-phase AGN-driven outflow. This galaxy represents the best target to investigate in detail the morphology and energetics of powerful outflows, as well as their still poorly-understood expansion mechanism and impact on the host galaxy. In this work, we present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk 231, as traced by CO(2-1) and (3-2) observations obtained with the IRAM/PdBI. In addition, we analyze archival deep Chandra and NuSTAR X-ray observations. We use this unprecedented combination of multi-wavelength data sets to constrain the physical properties of both the molecular disk and outflow, the presence of a highly-ionized ultra-fast nuclear wind, and their connection. The molecular CO(2-1) outflow has a size of 1 kpc, and extends in all directions around the nucleus, being more prominent along the south-west to north-east direction, suggesting a wide-angle biconical geometry. The maximum projected velocity of the outflow is nearly constant out to 1 kpc, thus implying that the density of the outflowing material must decrease from the nucleus outwards as r-2. This suggests that either a large part of the gas leaves the flow during its expansion or that the bulk of the outflow has not yet reached out to 1 kpc, thus implying a limit on its age of 1 Myr. Mapping the mass and energy rates of the molecular outflow yields dot {M} OF = [500-1000] M⊙ yr-1 and Ėkin,OF = [7-10] × 1043 erg s-1. The total kinetic energy of the outflow is Ekin,OF is of the same order of the total energy of the molecular disk, Edisk. Remarkably, our analysis of the X-ray data reveals a nuclear ultra-fast outflow (UFO) with velocity -20 000 km s-1, dot {M}UFO = [0.3-2.1] M⊙ yr-1, and momentum load dot {P}UFO/ dot {P}rad = [0.2-1.6]. We find Ėkin,UFO Ėkin,OF as predicted for outflows undergoing an energy conserving expansion. This suggests that most of the UFO

  11. Simultaneous Ultraviolet and X-Ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I. Physical Conditions in the Ultraviolet Absorbers

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.; Turner, T. J.; Yaqoob, T.

    2003-09-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-Ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2-1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km s-1) and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectroscopic Explorer and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with proposal 9279.

  12. Detection of low-metallicity warm plasma in a galaxy overdensity environment at z ˜ 0.2

    NASA Astrophysics Data System (ADS)

    Narayanan, Anand; Savage, Blair D.; Mishra, Preetish K.; Wakker, Bart P.; Khaire, Vikram; Wadadekar, Yogesh

    2018-04-01

    We present results from the analysis of a multiphase O VI-broad Ly α (BLA) absorber at z = 0.19236 in the HubbleSpaceTelescope/Cosmic Origins Spectrograph spectrum of PG 1121 + 422. The low and intermediate ionization metal lines in this absorber have a single narrow component, whereas the Ly α has a possible broad component with b({H {I}}) ˜ 71 km s-1. Ionization models favour the low and intermediate ions coming from a T ˜ 8500 K, moderately dense (n H ˜ 10 - 3 cm-3) photoionized gas with near solar metallicities. The weak O VI requires a separate gas phase that is collisionally ionized. The O VI coupled with BLA suggests T ˜ 3.2 × 105 K, with significantly lower metal abundance and ˜1.8 orders of magnitude higher total hydrogen column density compared to the photoionized phase. Sloan Digitial Sky Survey (SDSS) shows 12 luminous (>L*) galaxies in the ρ ≤ 5 Mpc, |Δv| ≤ 800 km s-1 region surrounding the absorber, with the absorber outside the virial bounds of the nearest galaxy. The warm phase of this absorber is consistent with being transition temperature plasma either at the interface regions between the hot intragroup gas and cooler photoionized clouds within the group, or associated with high velocity gas in the halo of a ≲L* galaxy. The absorber highlights the advantage of O VI-BLA absorbers as ionization model independent probes of warm baryon reserves.

  13. Integrated Properties of Nearby Seyfert Galaxies Measured by 2-D Spectroscopy

    NASA Astrophysics Data System (ADS)

    Xia, Junjie; Malkan, Matthew Arnold

    2017-01-01

    We present our measurements of mosaicing long-slit spectra of 12 nearby Seyfert galaxies. We obtained these data cubes at ~6‧‧ spatial resolution using the Kast double spectrograph on the 3-m Shane telescope of Lick Observatory. We have measured the integrated emission lines of [O III], Hβ, Hα, [N II], and [S II]. We compare the relative strength of these lines from the galaxy nucleus with the total emission from the entire galaxy. In classification line ratio diagrams (BPT), the individual galaxy moves from the Seyfert region to the composite/star-forming locus as the effective absorbing aperture grows. This trend means that Seyfert galaxies observed at higher redshifts will become increasingly misclassified. We use our sample to quantify this systematic trend. We also estimate the rates of star formation in the host galaxies based on the emission lines.

  14. The Close AGN Reference Survey (CARS). Mrk 1018 halts dimming and experiences strong short-term variability

    NASA Astrophysics Data System (ADS)

    Krumpe, M.; Husemann, B.; Tremblay, G. R.; Urrutia, T.; Powell, M.; Davis, T. A.; Scharwächter, J.; Dexter, J.; Busch, G.; Combes, F.; Croom, S. M.; Eckart, A.; McElroy, R. E.; Perez-Torres, M.; Leung, G.

    2017-11-01

    After changing optical AGN type from 1.9 to 1 in 1984, the AGN Mrk 1018 recently reverted back to its type 1.9 state. Our ongoing monitoring now reveals that the AGN has halted its dramatic dimming, reaching a minimum around October 2016. The minimum was followed by an outburst rising with 0.25 U-band mag/month. The rebrightening lasted at least until February 2017, as confirmed by joint Chandra and Hubble observations. Monitoring was resumed in July 2017 after the source emerged from sunblock, at which point the AGN was found only 0.4 mag brighter than its minimum. The intermittent outburst was accompanied by the appearance of a red wing asymmetry in broad-line shape, indicative of an inhomogeneous broad-line region. The current flickering brightness of Mrk 1018 following its rapid fading either suggests that the source has reignited, remains variable at a low level, or may continue dimming over the next few years. Distinguishing between these possibilities requires continuous multiwavelength monitoring. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme(s) 098.B-0672 and 099.B-0159. The scientific results reported in this article are based on observations made by the Chandra X-ray Observatory and the NASA/ESA Hubble Space Telescope.

  15. Fermi LAT detection of a GeV flare from the BL Lac object Mrk 421

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.

    2012-07-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the BL Lac object Mrk 421 (also known as 2FGL J1104.4+3812, Nolan et al. 2012, ApJS, 199, 31; R.A.= 11h04m27.3139s, Dec.= +38d12m31.799s, J2000.0, Fey et al. 2004, AJ, 127, 3587) at redshift z=0.03 (De Vaucouleurs et al.

  16. Simulations of dust in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Jonsson, Patrik

    This dissertation studies the effects of dust in N-body simulations of interacting galaxies. A new Monte-Carlo radiative-transfer code, Sunrise , is used in conjunction with hydrodynamic simulations. Results from radiative- transfer calculations in over 20 SPH simulations of disk-galaxy major mergers (Cox, 2004) are presented. Dust has a profound effect on the appearance of these simulations. At peak luminosities, 90% of the bolometric luminosity is absorbed by dust. The dust obscuration increases with luminosity in such a way that the brightness at UV/ visual wavelengths remains roughly constant. A general relationship between the fraction of energy absorbed and the ratio of bolometric luminosity to baryonic mass is found to hold in galaxies with metallicities >0.7 [Special characters omitted.] over a factor of 50 in mass. The accuracy to which the simulations describe observed starburst galaxies is evaluated by comparing them to observations by Meurer et al. (1999) and Heckman et al. (1998). The simulations are found to follow a relation similar to the IRX-b relation found by Meurer et al. (1999) when similar luminosity objects are considered. The highest-luminosity simulated galaxies depart from this relation and occupy the region where local LIRGs/ULIRGs are found. Comparing to the Heckman et al. (1998) sample, the simulations are found to obey the same relations between UV luminosity, UV color, IR luminosity, absolute blue magnitude and metallicity as the observations. This agreement is contingent on the presence of a realistic mass-metallicity relation, and Milky-Way-like dust. SMC-like dust results in far too red a UV continuum slope. On the whole, the agreement between the simulated and observed galaxies is impressive considering that the simulations have not been fit to agree with the observations, and we conclude that the simulations provide a realistic replication of the real universe. The simulations are used to study the performance of star

  17. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. Pictured here, the galaxy NGC598 known as M33. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars farther away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, and dust rich in organic molecules burns red. This image is a 3-band composite including far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11998

  18. Constraints on the OH-to-H Abundance Ratio in Infrared-bright Galaxies Derived from the Strength of the OH 35 μm Absorption Feature

    NASA Astrophysics Data System (ADS)

    Stone, Myra; Veilleux, Sylvain; González-Alfonso, Eduardo; Spoon, Henrik; Sturm, Eckhard

    2018-02-01

    We analyze Spitzer/InfraRed Spectrograph (IRS) observations of the OH 35 μm feature in 15 nearby (z ≲ 0.06) (ultra-)luminous infrared galaxies (U/LIRGs). All objects exhibit OH 35 μm purely in absorption, as expected. The small optical depth of this transition makes the strength of this feature a good indicator of the true OH column density. The measured OH 35 μm equivalent widths imply an average OH column density and a 1-σ standard deviation to the mean of {N}{OH}=1.31+/- 0.22× {10}17 cm‑2. This number is then compared with the hydrogen column density for a typical optical depth at 35 μm of ∼0.5 and gas-to-dust ratio of 125 to derive an OH-to-H abundance ratio of {X}{OH}=1.01+/- 0.15× {10}-6. This abundance ratio is formally a lower limit. It is consistent with the values generally assumed in the literature. The OH 35 μm line profiles predicted from published radiative transfer models constrained by observations of OH 65, 79, 84, and 119 μm in 5 objects (Mrk 231, Mrk 273, IRAS F05189-2524, IRAS F08572+3915, and IRAS F20551-4250) are also found to be consistent with the IRS OH 35 μm spectra.

  19. Warm absorbers in X-rays (WAX), a comprehensive high-resolution grating spectral study of a sample of Seyfert galaxies - I. A global view and frequency of occurrence of warm absorbers.

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Guainazzi, Matteo; Dewangan, Gulab C.; Chakravorty, Susmita; Kembhavi, Ajit K.

    2014-07-01

    We present results from a homogeneous analysis of the broad-band 0.3-10 keV CCD resolution as well as of the soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. Our goal is to characterize warm absorbers (WAs) along the line of sight to the active nucleus. We significantly detect WAs in 65 per cent of the sample sources. Our results are consistent with WAs being present in at least half of the Seyfert galaxies in the nearby Universe, in agreement with previous estimates. We find a gap in the distribution of the ionization parameter in the range 0.5 < log ξ < 1.5 which we interpret as a thermally unstable region for WA clouds. This may indicate that the WA flow is probably constituted by a clumpy distribution of discrete clouds rather than a continuous medium. The distribution of the WA column densities for the sources with broad Fe Kα lines are similar to those sources which do not have broadened emission lines. Therefore, the detected broad Fe Kα emission lines are bona fide and not artefacts of ionized absorption in the soft X-rays. The WA parameters show no correlation among themselves, with the exception of the ionization parameter versus column density. The shallow slope of the log ξ versus log vout linear regression (0.12 ± 0.03) is inconsistent with the scaling laws predicted by radiation or magnetohydrodynamic-driven winds. Our results also suggest that WA and ultra fast outflows do not represent extreme manifestation of the same astrophysical system.

  20. X-RAY FLARING ACTIVITY OF MRK 421 IN THE FIRST HALF OF 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapanadze, B.; Kapanadze, S.; Tabagari, L.

    2016-11-01

    We present the results of the Swift and NuSTAR observations of the nearby BL Lac object Mrk 421 during 2013 January–June. The source exhibited a strong long-term variability in the 0.3–10 keV and 3–79 keV bands with the maximum-to-minimum daily-binned flux ratios of 22 and 95, respectively, in about 3 months, mainly due to unprecedented strong X-ray outbursts by more than an order of magnitude in both bands within 2 weeks in 2013 April when the 0.3–10 keV count rate exceeded the level of 200 cts s{sup −1} for the first time, and Mrk 421 became one of the brightestmore » sources in the X-ray sky. The source was also very active on intra-day timescales, and it showed flux doubling and halving timescales of 1.16–7.20 hr and 1.04–3.54 hr, respectively. On some occasions, the flux varied by 4%–23% within 300–840 s. During this period, the source also exhibited some of the most extreme X-ray spectral variability ever reported for BL Lacs—the location of the synchrotron spectral energy distribution peak shifted from a few eV to ∼10 keV, and the photon index at 1 keV and curvature parameter varied on timescales from a few weeks down to intervals shorter than 1 ks. MAGIC and First G-APD Cherenkov Telescope observations also revealed a very strong very high energy (VHE) flare during April 11–17. The UV and HE γ -ray flares were much weaker compared to their X-ray counterparts, and they generally showed significantly stronger correlation with each other than with the X-ray fluxes.« less

  1. X-Ray Characteristics of Megamaser Galaxies

    NASA Astrophysics Data System (ADS)

    Leiter, K.; Kadler, M.; Wilms, J.; Braatz, J.; Grossberger, C.; Krauss, F.; Kreikenbohm, A.; Langejahn, M.; Litzinger, E.; Markowitz, A.

    2017-10-01

    Water megamaser galaxies are a rare subclass of Active Galactic Nuclei (AGN). They play a key role in modern cosmology, providing a significant improvement for measuring geometrical distances with high precision. Megamaser studies presently measure H_{0} to about 5%. The goal of modern programs is to reach 3%, which strongly constrains the equation of state of dark energy. An increasing number of independent measurements of suitable water masers is providing the statistics necessary to decrease the uncertainties. X-ray studies of maser galaxies yield important constraints on target-selection criteria for future surveys, increasing their detection rate. We studied the X-ray properties of a homogeneous sample of Type 2 AGN with water maser activity observed by XMM-Newton to investigate the properties of megamaser-hosting galaxies compared to a control sample of non-maser galaxies. Comparing the luminosity distributions confirm previous results that water maser galaxies appear more luminous than non-maser sources. The maser phenomenon goes along with more complex X-ray spectra, higher column densities and higher equivalent widths of the Fe Kα line. Both a sufficiently luminous X-ray source and a high absorbing column density in the line of sight are necessary prerequisites to favour the appearance of the water megamaser phenomenon in AGN.

  2. The Statistical Properties of Galaxies Containing Ultraluminous X-Ray Objects

    NASA Astrophysics Data System (ADS)

    Ptak, A.; Colbert, E.

    2004-05-01

    We present a statistical analysis of the properties of galaxies containing ultraluminous X-ray objects (ULXs). Our primary goal is to establish the fraction of galaxies containing a ULX as a function of ULX luminosity. Our sample is based on ROSAT HRI observations of galaxies. We find that ~12% of galaxies contain at least one ULX with LX>1039 ergs s-1, and ~1% of galaxies contain at least one ULX with LX>1040 ergs s-1. These ULX frequencies are lower limits, since ROSAT HRI observations would miss absorbed ULXs (i.e., with NH>~1021cm-2) and those within ~10" of the nucleus (due to the positional error circle of the ROSAT HRI). The Hubble type distribution of galaxies with a ULX differs significantly from the distribution of types for nearby Third Reference Catalog galaxies but does not differ significantly from the galaxy type distribution of galaxies observed by the HRI in general. We find no increase in the mean far-infrared (FIR) luminosity or FIR/K-band luminosity ratio for galaxies with a ULX relative to galaxies observed by the HRI in general; however, this result is also most likely biased by the soft bandpass of the HRI and the relatively low number of high star formation rate galaxies observed by the HRI with enough sensitivity to detect a ULX.

  3. GALAXIES IN THE YOUNG UNIVERSE [left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of a small region of the constellation Sculptor, taken with a ground-based photographic sky survey camera, illustrates the extremely small angular size of a distant galaxy cluster in the night sky. Though this picture encompasses a piece of the sky about the width of the bowl of the Big Dipper, the cluster is so far away it fills a sky area only 1/10th the diameter of the Full Moon. The cluster members are not visible because they are so much fainter than foreground stars. [center] A NASA Hubble Space Telescope (HST) image of the farthest cluster of galaxies in the universe, located at a distance of 12 billion light-years. Because the light from these remote galaxies has taken 12 billion years to reach us, this image is a remarkable glimpse of the primeval universe, at it looked about two billion years after the Big Bang. The cluster contains 14 galaxies, the other objects are largely foreground galaxies. The galaxy cluster lies in front of quasar Q0000-263 in the constellation Sculptor. Presumably the brilliant core of an active galaxy, the quasar provides a beacon for searching for primordial galaxy clusters. The image is the full field view of the Wide Field and Planetary Camera-2, taken on September 6, 1994. The 4.7-hour exposure reveals objects down to 28.5 magnitude. [right] This enlargement shows one of the farthest normal galaxies yet detected, (blob at center right) at a distance of 12 billion light-years (redshift of z=3.330). The galaxy lies 300 million light-years in front of the quasar Q0000-263 (z=4.11, large white blob and spike on left side of frame) and was detected because it absorbs some light from the quasar. The galaxy's spectrum reveals that vigorous star formation is taking place. Credit: Duccio Macchetto (ESA/STScI), Mauro Giavalisco (STScI), and NASA

  4. On the origin of the warm-hot absorbers in the Milky Way's halo

    NASA Astrophysics Data System (ADS)

    Marasco, A.; Marinacci, F.; Fraternali, F.

    2013-08-01

    Disc galaxies like the Milky Way are expected to be surrounded by massive coronae of hot plasma that may contain a significant fraction of the so-called missing baryons. We investigate whether the local (|vLSR| < 400 km s-1) warm-hot absorption features observed towards extra-Galactic sources or halo stars are consistent with being produced by the cooling of the Milky Way's corona. In our scheme, cooling occurs at the interface between the disc and the corona and it is triggered by positive supernova feedback. We combine hydrodynamical simulations with a dynamical 3D model of the galactic fountain to predict the all-sky distribution of this cooling material, and we compare it with the observed distribution of detections for different `warm' (Si III, Si IV, C II, C IV) and `hot' (O VI) ionized species. The model reproduces the position-velocity distribution and the column densities of the vast majority of warm absorbers and about half of O VI absorbers. We conclude that the warm-hot gas responsible for most of the detections lies within a few kiloparsec from the Galactic plane, where high-metallicity material from the disc mixes efficiently with the hot corona. This process provides an accretion of a few M⊙ yr- 1 of fresh gas that can easily feed the star formation in the disc of the Galaxy. The remaining O VI detections are likely to be a different population of absorbers, located in the outskirts of the Galactic corona and/or in the circumgalactic medium of nearby galaxies.

  5. Fermi-LAT and Swift-XRT observe exceptionally high activity from the nearby TeV blazar Mrk421

    NASA Astrophysics Data System (ADS)

    Paneque, D.; D'Ammando, F.; Orienti, M.; Falcon, A.

    2013-04-01

    The high-synchrotron-peaked BL Lac Mrk421 (also known as 2FGL J1104.4+3812, Nolan et al. 2012, ApJS, 199, 31; R.A.= 11h04m27.3139s, Dec.= +38d12m31.799s, J2000.0, Fey et al. 2004, AJ, 127, 3587), at redshift z=0.03, is the subject of an extensive multi-year and multi-instrument program that aims at characterizing with exquisite detail the temporal evolution of the blazar emission across the electromagnetic spectrum.

  6. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars further away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, near-infrared light from old stars burns yellow and orange, and dust rich in organic molecules burns red. The small blue flecks outside the spiral disk of M33 are most likely distant background galaxies. This image is a four-band composite that, in addition to the two ultraviolet bands, includes near infrared as yellow/orange and far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11999

  7. An Exploration of Dusty Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    Submillimeter galaxies i.e., galaxies that we detect in the submillimeter wavelength range are mysterious creatures. Its only within the last couple decades that weve had telescope technology capable of observing them, and were only now getting to the point where angular resolution limits allow us to examine them closely. A new study has taken advantage of new capabilities to explore the properties of a sample of 52 of thesegalaxies.Dusty Star FormationSubmillimeter galaxies are generally observed in the early universe. Though theyre faint in other wavebands, theyre extremely luminous in infrared and submillimeter their infrared luminosities are typically trillions of times the Suns luminosity. This is thought to be because these galaxies are very actively forming stars at rates of hundreds of times that of the Milky Way!Example 10 10 true-color images of ten submillimeter galaxies in the authors ALMA-identified sample. [Simpson et al. 2017]Submillimeter galaxies are also extremely dusty, so we dont see their star formation directly in optical wavelengths. Instead, we see the stellar light after its been absorbed and reemitted by interstellar dust lanes were indirectly observing heavily obscured star formation.Why look for submillimeter galaxies? Studying them can help us to learn about galaxy and star formation early in our universes history, and help us to understand how the universe has evolved into what we see locally today.Submillimeter StrugglesDue to angular resolution limitations in the past, we often couldnt pin down the exact locations of submillimeter galaxies, preventing us from examining them properly. But now a team of scientists has used the Atacama Large Millimeter/submillimeter array (ALMA) to precisely locate 52 submillimeter galaxies identified by the Submillimeter Common-User Bolometer Array (SCUBA-2) in the UKIDSS Ultra Deep Survey field.The precise locations made possible by ALMA allowed the team led by James Simpson (University of Edinburgh

  8. Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution

    NASA Astrophysics Data System (ADS)

    Esteban, C.; García-Rojas, J.; Carigi, L.; Peimbert, M.; Bresolin, F.; López-Sánchez, A. R.; Mesa-Delgado, A.

    2014-09-01

    We present deep echelle spectrophotometry of the brightest emission-line knots of the star-forming galaxies He 2-10, Mrk 1271, NGC 3125, NGC 5408, POX 4, SDSS J1253-0312, Tol 1457-262, Tol 1924-416 and the H II region Hubble V in the Local Group dwarf irregular galaxy NGC 6822. The data have been taken with the Very Large Telescope Ultraviolet-Visual Echelle Spectrograph in the 3100-10420 Å range. We determine electron densities and temperatures of the ionized gas from several emission-line intensity ratios for all the objects. We derive the ionic abundances of C2+ and/or O2+ from faint pure recombination lines in several of the objects, permitting to derive their C/H and C/O ratios. We have explored the chemical evolution at low metallicities analysing the C/O versus O/H, C/O versus N/O and C/N versus O/H relations for Galactic and extragalactic H II regions and comparing with results for Galactic halo stars and damped Lyα systems. We find that H II regions in star-forming dwarf galaxies occupy a different locus in the C/O versus O/H diagram than those belonging to the inner discs of spiral galaxies, indicating their different chemical evolution histories, and that the bulk of C in the most metal-poor extragalactic H II regions should have the same origin than in halo stars. The comparison between the C/O ratios in H II regions and in stars of the Galactic thick and thin discs seems to give arguments to support the merging scenario for the origin of the Galactic thick disc. Finally, we find an apparent coupling between C and N enrichment at the usual metallicities determined for H II regions and that this coupling breaks in very low metallicity objects.

  9. MAXI/GSC detection of a rapid X-ray brightening from Mrk 421

    NASA Astrophysics Data System (ADS)

    Tachibana, Y.; Ueda, Y.; Negoro, H.; Ueno, S.; Tomida, H.; Ishikawa, M.; Sugawara, Y.; Isobe, N.; Shimomukai, R.; Mihara, T.; Sugizaki, M.; Nakahira, S.; Iwakiri, W.; Shidatsu, M.; Yatabe, F.; Takao, Y.; Matsuoka, M.; Kawai, N.; Sugita, S.; Yoshii, T.; Harita, S.; Muraki, Y.; Morita, K.; Yoshida, A.; Sakamoto, T.; Serino, M.; Kawakubo, Y.; Kitaoka, Y.; Hashimoto, T.; Tsunemi, H.; Yoneyama, T.; Nakajima, M.; Kawase, T.; Sakamaki, A.; Hori, T.; Tanimoto, A.; Oda, S.; Morita, T.; Yamada, S.; Tsuboi, Y.; Nakamura, Y.; Sasaki, R.; Kawai, H.; Sato, T.; Yamauchi, M.; Hanyu, C.; Hidaka, K.; Kawamuro, T.; Yamaoka, K.

    2018-01-01

    MAXI/GSC is detecting a bright X-ray flare from the BL Lac object Mrk 421. The MAXI daily fluxes for the last 5 days are following: MJD & emsp; 2-4 keV (mCrab) & emsp; 4-10 keV (mCrab) 58131 & emsp; 53 +- 5 & emsp; 52 +- 6 58132 & emsp; 34 +- 5 & emsp; 29 +- 5 58133 & emsp; 56 +- 5 & emsp; 53 +- 6 58134 & emsp; 91 +- 7 & emsp; 98 +- 7 58135 & emsp; 106 +- 8 & emsp; 124 +- 9 The current flux is comparable with the peak daily flux in the brightest X-ray flare from this object ever since the beginning of the MAXI observation (156 +- 11 mCrab in 1.5-10 keV on 2010 February 16, ATEL #2444; Isobe et al. 2010 PASJ 52, L55), and the X-ray brightening is still ongoing.

  10. Destruction and survival of polycyclic aromatic hydrocarbons in active galaxies

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1992-01-01

    Infrared spectra of dusty galactic environments often contain emission features attributed to polycyclic aromatic hydrocarbons or PAHs, which can be considered to be very small grains or very large molecules. Although IR spectra of starburst galaxies almost always show these emission features, similar spectra of active galaxies are usually featureless. Even in those active galaxies that do exhibit PAH emission, the PAHs still appear to be eradicated from the nuclear region. This dichotomy suggests that PAHs are destroyed by the intense hard radiation field from an AGN. Laboratory experiments show that certain PAHs are, in fact, so effectively destroyed by individual EUV and X-ray photons that they cannot survive even at kiloparsec distances from active nuclei. Regions within active galaxies that do show PAH emission must therefore be shielded from the central X-ray source by a substantial column density of X-ray absorbing gas.

  11. Unifying X-ray winds in radio galaxies with Chandra HETG

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco

    2013-09-01

    X-ray winds are routinely observed in the spectra of Seyfert galaxies. They can be classified as warm absorbers (WAs), with v~100-1,000km/s, and ultra-fast outflows (UFOs), with v>10,000km/s. In stark contrast, the lack of sensitive enough observations allowed the detection of WAs or UFOs only in very few radio galaxies. Therefore, we propose to observe a small sample of three radio galaxies with the Chandra HETG - 3C111 for 150ks, 3C390.3 for 150ks and 3C120 for 200ks - to detect and study in detail their WAs. We will quantify the importance of mechanical feedback from winds in radio galaxies and compare them to the radio jet power. We will also test whether WAs and UFOs can be unified in a single, multi-phase and multi-scale outflow, as recently reported for Seyferts.

  12. Kinematics and Energetics in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    U, Vivian; Sanders, D. B.; GOALS Team

    2012-01-01

    In the present paradigm of the merger-driven galaxy evolution scenario, gas-rich spirals interact and merge, triggering intense star formation and nuclear activity that can deplete the gas in progenitors of giant ellipticals. Starburst and AGN activities in systems like these cause an infrared-luminous stage associated with enhanced star formation rate and black hole growth. Therefore, the local luminous and ultraluminous infrared galaxies ((U)LIRGs) provide the ideal nearby, extreme environments in which we study black hole accretion, AGN feeding and feedback, and the nature of star formation in starbursts, the connection among which remains poorly understood due to limitations of previous instrumentation. Our new high-resolution submillimeter and near-infrared integral-field data cube of the nuclei in (U)LIRGs taken with the Submillimeter Array (SMA) and the Keck Telescopes reveal circumnuclear gas kinematics at an unprecedented level of details. At the distances of these local mergers, our SMA long-baseline and Keck laser guide star adaptive optics observations probe the physical conditions of the centers of these systems at the scale of 50-200 pc. For instance, the molecular gas emission in between the two AGNs in NGC 6240 has been resolved into two peaks that may be consistent with a scenario where two pre-coalescence gas disks are interacting at an angle; near-infrared integral-field spectra of the two nuclei in Mrk 273 disclose the temperature and excitation mechanism around an AGN and the nuclear disk of a potential second AGN. These findings give a detailed description of the molecular gas kinematics as well as AGN/starburst activities in the central dusty region of these merging systems, and paint an overall picture of the evolution of the energetics in (U)LIRGs as the merger sequence progresses. VU would like to acknowledge partial funding support from the NASA Harriet G. Jenkins Predoctoral Fellowship Project.

  13. Revealing H I gas in emission and absorption on pc to kpc scales in a galaxy at z ˜ 0.017

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Srianand, R.; Farnes, J. S.; Pidopryhora, Y.; Vivek, M.; Paragi, Z.; Noterdaeme, P.; Oosterloo, T.; Petitjean, P.

    2018-05-01

    We present a detailed study of the quasar-galaxy pair: J1243+4043-UGC 07904. The sight line of the background quasar ( zq = 1.5266) passes through a region of the galaxy (zg = 0.0169) at an impact parameter of 6.9 kpc with high metallicity (0.5 Z⊙) and negligible dust extinction. We detect H I 21-cm absorption from the foreground galaxy at arcsecond and milliarcsecond scales. For typical cold neutral medium (CNM) temperatures in the Milky Way, this 21-cm absorber can be classified as a damped Lyα absorber (DLA). We infer the harmonic mean spin temperature of the gas to be ˜400 K and for a simple two-phase medium we estimate the CNM fraction to be fCNM = 0.27. This is remarkably consistent with the CNM fraction observed in the Galaxy and less than that of high-redshift DLAs. The quasar exhibits a core-jet morphology on milliarcsecond scales, corresponding to an overall extent of ˜9 pc at zg. We show that the size of CNM absorbing clouds associated with the foreground galaxy is >5 pc and they may be part of cold gas structures that extend beyond ˜35 pc. Interestingly, the rotation measure of quasar J1243+4043 is higher than any other source in samples of quasars with high-z DLAs. However, we do not find any detectable differences in rotation measures and polarization fraction of sight lines with or without high-z (z ≥ 2) DLAs or low-z (z ≤ 0.3) 21-cm absorbers. Finally, the foreground galaxy UGC 07904 is also part of a galaxy group. We serendipitously detect H I 21-cm emission from four members of the group, and an ˜80 kpc long H I bridge connecting two of the other members. The latter, together with the properties of the group members, suggests that the group is a highly interactive environment.

  14. Mapping luminous blue compact galaxies with VIRUS-P. Morphology, line ratios, and kinematics

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; García Lorenzo, B.; Kelz, A.; Roth, M.; Papaderos, P.; Streicher, O.

    2012-11-01

    Context. Blue compact galaxies (BCG) are narrow emission-line systems that undergo a violent burst of star formation. They are compact, low-luminosity galaxies, with blue colors and low chemical abundances, which offer us a unique opportunity to investigate collective star formation and its effects on galaxy evolution in a relatively simple, dynamically unperturbed environment. Spatially resolved spectrophotometric studies of BCGs are essential for a better understanding of the role of starburst-driven feedback processes on the kinematical and chemical evolution of low-mass galaxies near and far. Aims: We carry out an integral field spectroscopy (IFS) study of a sample of luminous BCGs, with the aim to probe the morphology, kinematics, dust extinction, and excitation mechanisms of their warm interstellar medium (ISM). Methods: We obtained IFS data for five luminous BCGs with VIRUS-P, the prototype instrument for the Visible Integral Field Replicable Unit Spectrograph, attached to the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory. VIRUS-P consists of a square array of 247 optical fibers, which covers a 109″ × 109″ field of view, with a spatial sampling of 4farcs2 and a 0.3 filling factor. We observed in the 3550-5850 Å spectral range, with a resolution of 5 Å FWHM. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines ([O ii] λ3727, Hγ, Hβ and [O iii] λ5007), and investigated the morphology of diagnostic emission-line ratios and the extinction patterns in the ISM as well as stellar and gas kinematics. Additionally, from integrated spectra we inferred total line fluxes and luminosity-weighted extinction coefficients and gas-phase metallicities. Results: All galaxies exhibit an overall regular morphology in the stellar continuum, while their warm ISM morphology is more complex: in II Zw 33 and Mrk 314, the star-forming regions are aligned along a chain-structure; Haro 1, NGC 4670 and III Zw 102

  15. Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010

    NASA Astrophysics Data System (ADS)

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Boller, A.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Lotto, B.; de Oña Wilhelmi, E.; Delgado Mendez, C.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hildebrand, D.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kadenius, V.; Kellermann, H.; Knoetig, M. L.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Sun, S.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Steinke, B.; Storz, J.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Zanin, R.; MAGIC Collaboration; Archambault, S.; Archer, A.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Biteau, J.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Collins-Hughes, E.; Cui, W.; Eisch, J. D.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gillanders, G. H.; Griffin, S.; Gyuk, G.; Håkansson, N.; Holder, J.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Kieda, D.; Lang, M. J.; McArthur, S.; McCann, A.; Meagher, K.; Millis, J.; Moriarty, P.; Ong, R. A.; Otte, A. N.; Perkins, J. S.; Pichel, A.; Pohl, M.; Popkow, A.; Prokoph, H.; Pueschel, E.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rovero, A. C.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Varlotta, A.; Wakely, S. P.; Welsing, R.; Wilhelm, A.; Williams, D. A.; VERITAS Collaboration; Buson, S.; Finke, J.; Villata, M.; Raiteri, C.; Aller, H. D.; Aller, M. F.; Cesarini, A.; Chen, W. P.; Gurwell, M. A.; Jorstad, S. G.; Kimeridze, G. N.; Koptelova, E.; Kurtanidze, O. M.; Kurtanidze, S. O.; Lähteenmäki, A.; Larionov, V. M.; Larionova, E. G.; Lin, H. C.; McBreen, B.; Moody, J. W.; Morozova, D. A.; Marscher, A. P.; Max-Moerbeck, W.; Nikolashvili, M. G.; Perri, M.; Readhead, A. C. S.; Richards, J. L.; Ros, J. A.; Sadun, A. C.; Sakamoto, T.; Sigua, L. A.; Smith, P. S.; Tornikoski, M.; Troitsky, I. S.; Wehrle, A. E.; Jordan, B.

    2015-06-01

    Context. Because of its proximity, Mrk 421 is one of the best sources on which to study the nature of BL Lac objects. Its proximity allows us to characterize its broadband spectral energy distribution (SED). Aims: The goal is to better understand the mechanisms responsible for the broadband emission and the temporal evolution of Mrk 421. These mechanisms may also apply to more distant blazars that cannot be studied with the same level of detail. Methods: A flare occurring in March 2010 was observed for 13 consecutive days (from MJD 55 265 to MJD 55 277) with unprecedented wavelength coverage from radio to very high energy (VHE; E> 100 GeV) γ-rays with MAGIC, VERITAS, Whipple, Fermi-LAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We modeled the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigated the physical parameters, and evaluated whether the observed broadband SED variability can be associated with variations in the relativistic particle population. Results: The activity of Mrk 421 initially was high and then slowly decreased during the 13-day period. The flux variability was remarkable at the X-ray and VHE bands, but it was minor or not significant at the other bands. The variability in optical polarization was also minor. These observations revealed an almost linear correlation between the X-ray flux at the 2-10 keV band and the VHE γ-ray flux above 200 GeV, consistent with the γ-rays being produced by inverse-Compton scattering in the Klein-Nishina regime in the framework of SSC models. The one-zone SSC model can describe the SED of each day for the 13 consecutive days reasonably well, which once more shows the success of this standard theoretical scenario to describe the SEDs of VHE BL Lacs such as Mrk 421. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission, while the other smaller zone, which is spatially

  16. Dusty Sunrise at Core of Galaxy Artist Concept

    NASA Image and Video Library

    2015-05-21

    This artist's concept depicts the current record holder for the most luminous galaxy in the universe. The galaxy, named WISE J224607.57-052635.0, is erupting with light equal to more than 300 trillion suns. It was discovered by NASA's Wide-Field Infrared Survey Explorer, or WISE. The galaxy is smaller than the Milky Way, yet puts out 10,000 times more energy. Scientists think that a supermassive black hole at the center of this dusty galaxy is busily consuming gaseous material in a colossal growth spurt. As the gas is dragged toward the black hole, it heats up and blasts out visible, ultraviolet and X-ray light. The dust swaddling the galaxy absorbs this light and heats up, radiating longer-wavelength, infrared light. The dust also blocks our view of shorter, visible-light wavelengths, while letting longer-wavelengths through. This is similar to what happens when sunlight streams through our dusty atmosphere, producing a brilliant red sunrise. In fact, more than 99 percent of the light escaping from this dusty galaxy is infrared. As a result, it is much harder to see with optical telescopes. Because light from the galaxy hosting the black hole has traveled 12.5 billion years to reach us, astronomers are seeing the object as it was in the distant past. During this epoch, galaxies would have been more than five times closer together than they are now, as illustrated in the background of the artist's concept. This is due to the expansion of space -- space itself and the galaxies in it are stretching apart from each other at ever-increasing speeds. http://photojournal.jpl.nasa.gov/catalog/PIA19339

  17. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  18. Star-dust geometries in galaxies: The effect of interstellar matter distributions on optical and infrared properties of late-type galaxies

    NASA Technical Reports Server (NTRS)

    Capuano, J. M., Jr.; Thronson, H. A., Jr.; Witt, A. N.

    1993-01-01

    The presence of substantial amounts of interstellar dust in late-type galaxies affects observable parameters such as the optical surface brightness, the color, and the ratio of far-infrared to optical luminosity of these galaxies. We conducted radiative transfer calculations for late-type galaxy environments to examine two different scenarios: (1) the effects of increasing amounts of dust in two fixed geometries with different star distributions; and (2) the effects of an evolving dust-star geometry in which the total amount of dust is held constant, for three different star distributions. The calculations were done for ten photometric bands, ranging from the far-ultraviolet to the near-infrared (K), and scattered light was included in the galactic surface brightness at each wavelength. The energy absorbed throughout these ten photometric bands was assumed to re-emerge in the far-infrared as thermal dust emission. We also considered the evolutionary contraction of a constant amount of dust relative to pre-existing star distributions.

  19. Constraining MHD Disk-Winds with X-ray Absorbers

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Tombesi, F.; Shrader, C. R.; Kazanas, D.; Contopoulos, J.; Behar, E.

    2014-01-01

    From the state-of-the-art spectroscopic observations of active galactic nuclei (AGNs) the robust features of absorption lines (e.g. most notably by H/He-like ions), called warm absorbers (WAs), have been often detected in soft X-rays (< 2 keV). While the identified WAs are often mildly blueshifted to yield line-of-sight velocities up to ~100-3,000 km/sec in typical X-ray-bright Seyfert 1 AGNs, a fraction of Seyfert galaxies such as PG 1211+143 exhibits even faster absorbers (v/ 0.1-0.2) called ultra-fast outflows (UFOs) whose physical condition is much more extreme compared with the WAs. Motivated by these recent X-ray data we show that the magnetically- driven accretion-disk wind model is a plausible scenario to explain the characteristic property of these X-ray absorbers. As a preliminary case study we demonstrate that the wind model parameters (e.g. viewing angle and wind density) can be constrained by data from PG 1211+143 at a statistically significant level with chi-squared spectral analysis. Our wind models can thus be implemented into the standard analysis package, XSPEC, as a table spectrum model for general analysis of X-ray absorbers.

  20. Integral Field Spectroscopy of Markarian 273: Mapping High-Velocity Gas Flows and an Off-Nucleus Seyfert 2 Nebula.

    PubMed

    Colina; Arribas; Borne

    1999-12-10

    Integral field optical spectroscopy with the INTEGRAL fiber-based system is used to map the extended ionized regions and gas flows in Mrk 273, one of the closest ultraluminous infrared galaxies. The Hbeta and [O iii] lambda5007 maps show the presence of two distinct regions separated by 4&arcsec; (3.1 kpc) along position angle (P.A.) 240 degrees. The northeastern region coincides with the optical nucleus of the galaxy and shows the spectral characteristics of LINERs. The southwestern region is dominated by [O iii] emission and is classified as a Seyfert 2. Therefore, in the optical, Mrk 273 is an ultraluminous infrared galaxy with a LINER nucleus and an extended off-nucleus Seyfert 2 nebula. The kinematics of the [O iii] ionized gas shows (1) the presence of highly disturbed gas in the regions around the LINER nucleus, (2) a high-velocity gas flow with a peak-to-peak amplitude of 2.4x103 km s-1, and (3) quiescent gas in the outer regions (at 3 kpc). We hypothesize that the high-velocity flow is the starburst-driven superwind generated in an optically obscured nuclear starburst and that the quiescent gas is directly ionized by a nuclear source, similar to the ionization cones typically seen in Seyfert galaxies.

  1. Dwarf Galaxy Gives Giant Surprise

    NASA Astrophysics Data System (ADS)

    2005-01-01

    An astronomer studying small irregular galaxies discovered a remarkable feature in one galaxy that may provide key clues to understanding how galaxies form and the relationship between the gas and the stars within galaxies. Liese van Zee of Indiana University, using the National Science Foundation's Very Large Array (VLA) radio telescope, found that a small galaxy 16 million light-years from Earth is surrounded by a huge disk of hydrogen gas that has not been involved in the galaxy's star-formation processes and may be primordial material left over from the galaxy's formation. UGC 5288 Radio/Optical Image of UGC 5288 Bright white center object is visible-light image; Purple is giant hydrogen-gas disk seen with VLA CREDIT: Van Zee, NOAO, NRAO/AUI/NSF (Click on Image for Larger Version) "The lack of interaction between the large gas disk and the inner, star-forming region of this galaxy is a perplexing situation. When we figure out how this has happened, we'll undoubtedly learn more about how galaxies form," van Zee said. She presented her findings to the American Astronomical Society's meeting in San Diego, CA. The galaxy van Zee studied, called UGC 5288, had been regarded as just one ordinary example of a very numerous type of galaxy called dwarf irregular galaxies. As part of a study of such galaxies, she had earlier made a visible-light image of it at Kitt Peak National Observatory. When she observed it later using the VLA, she found that the small galaxy is embedded in a huge disk of atomic hydrogen gas. In visible light, the elongated galaxy is about 6000 by 4000 light-years, but the hydrogen-gas disk, seen with the VLA, is about 41,000 by 28,000 light-years. The hydrogen disk can be seen by radio telescopes because hydrogen atoms emit and absorb radio waves at a frequency of 1420 MHz, a wavelength of about 21 centimeters. A few other dwarf galaxies have large gas disks, but unlike these, UGC 5288's disk shows no signs that the gas was either blown out of the

  2. Infrared Luminosities and Dust Properties of z ≈ 2 Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Borys, C.; Desai, V.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Sheth, K.; Soifer, B. T.

    2009-11-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24 μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Boötes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ≈3 × 108 M sun. In comparison to other dusty z ~ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 × 1013 L sun versus 6 × 1012 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ~30 K) and lower inferred dust masses (3 × 108 M sun versus 3 × 109 M sun). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ~ 2 involves a submillimeter bright, cold-dust, and star

  3. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z approx 2 DUST-OBSCURED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.

    We present SHARC-II 350 mum imaging of twelve 24 mum bright (F{sub 24m}u{sub m} > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 mum imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 mum flux density. The 350 mum upper limits for the 8 non-detected DOGsmore » are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T{sub dust} > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of approx3 x 10{sup 8} M{sub sun}. In comparison to other dusty z approx 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10{sup 13} L{sub sun} versus 6 x 10{sup 12} L{sub sun} for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus approx30 K) and lower inferred dust masses (3 x 10{sup 8} M{sub sun} versus 3 x 10{sup 9} M{sub sun}). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 mum bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive

  4. SUZAKU VIEW OF X-RAY SPECTRAL VARIABILITY OF THE RADIO GALAXY CENTAURUS A: PARTIAL COVERING ABSORBER, REFLECTOR, AND POSSIBLE JET COMPONENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukazawa, Yasushi; Hiragi, Kazuyoshi; Yamazaki, Syoko

    2011-12-20

    We observed a nearby radio galaxy, Centaurus A (Cen A), three times with Suzaku in 2009 and measured the wide-band X-ray spectral variability more accurately than previous measurements. The Cen A was in an active phase in 2009, and the flux became higher by a factor of 1.5-2.0 and the spectrum became harder than that in 2005. The Fe-K line intensity increased by 20%-30% from 2005 to 2009. The correlation of the count rate between the XIS 3-8 keV and PIN 15-40 keV band showed a complex behavior with a deviation from a linear relation. The wide-band X-ray continuum inmore » 2-200 keV can be fitted with an absorbed power-law model plus a reflection component, or a power law with a partial covering Compton-thick absorption. The difference spectra between high and low flux periods in each observation were reproduced by a power law with a partial covering Compton-thick absorption. Such a Compton-thick partial covering absorber was observed for the first time in Cen A. The power-law photon index of the difference spectra in 2009 is almost the same as that of the time-averaged spectra in 2005, but steeper by {approx}0.2 than that of the time-averaged spectra in 2009. This suggests an additional hard power-law component with a photon index of <1.6 in 2009. This hard component could be a lower part of the inverse-Compton-scattered component from the jet, whose gamma-ray emission has recently been detected with the Fermi Large Area Telescope.« less

  5. Detection of two intervening Ne viii absorbers probing warm gas at z ˜ 0.6

    NASA Astrophysics Data System (ADS)

    Pachat, Sachin; Narayanan, Anand; Khaire, Vikram; Savage, Blair D.; Muzahid, Sowgat; Wakker, Bart P.

    2017-10-01

    We report on the detection of two Ne viii absorbers, at z = 0.619 07 and 0.570 52 in the Hubble Space Telescope/Cosmic Origins Spectrograph spectrum of background quasars SDSS J080908.13 + 461925.6 and SBS 1122 + 594, respectively. The Ne viii 770 line is at ˜3σ significance. In both instances, the Ne viii is found to be tracing gas with T ≳ 105 K, predominantly collisionally ionized, with moderate densities of n_{H} ≲ 10^{-4} cm-3, sub-solar metallicities and total hydrogen column densities of N(H) ≳ 1019 cm-2. In the z = 0.619 07 absorber, the low, intermediate ions and O VI are consistent with origin in photoionized gas, with the O VI potentially having some contribution from the warm collisional phase traced by Ne viii. The z = 0.570 52 system has H I absorption in at least three kinematically distinct components, with one of them having b({H I}) = 49 {± } 11 km s-1. The intermediate-ionization lines, O VI and Ne viii, are coincident in velocity with this component. Their different line widths suggest warm temperatures of T = (0.5-1.5) × 105 K. Both absorbers are residing in regions where there are several luminous (≳L★) galaxies. The absorber at z = 0.570 52 is within the virial radius of a 2.6L★ galaxy, possibly associated with shock-heated circumgalactic material.

  6. The Nature of Accreting Black Holes in Nearby Galaxy Nuclei

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Mushotzky, R. F.

    1999-04-01

    We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.

  7. The Nature of Accreting Black Holes in Nearby Galaxy Nuclei

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Mushotzky, R. F.

    1999-05-01

    We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.

  8. The origin of the mid-infrared nuclear polarization of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, E.; Alonso-Herrero, A.; Diaz-Santos, T.; Gonzalez-Martin, O.; Ichikawa, K.; Levenson, N. A.; Martinez-Paredes, M.; Nikutta, R.; Packham, C.; Perlman, E.; Almeida, C. Ramos; Rodriguez-Espinosa, J. M.; Telesco, C. M.

    2018-05-01

    We combine new (NGC 1275, NGC 4151, and NGC 5506) and previously published (Cygnus A, Mrk 231, and NGC 1068) sub-arcsecond resolution mid-infrared (MIR; 8-13 μm) imaging- and spectro-polarimetric observations of six Seyfert galaxies using CanariCam on the 10.4-m Gran Telescopio CANARIAS. These observations reveal a diverse set of physical processes responsible for the nuclear polarization, and permit characterization of the origin of the MIR nuclear polarimetric signature of active galactic nuclei (AGN). For all radio quiet objects, we found that the nuclear polarization is low (<1 per cent), and the degree of polarization is often a few per cent over extended regions of the host galaxy where we have sensitivity to detect such extended emission (i.e., NGC 1068 and NGC 4151). We suggest that the higher degree of polarization previously found in lower resolution data arises only on the larger-than-nuclear scales. Only the radio-loud Cygnus A exhibits significant nuclear polarization (˜11 per cent), attributable to synchrotron emission from the pc-scale jet close to the core. We present polarization models that suggest that the MIR nuclear polarization for highly obscured objects arises from a self-absorbed MIR polarized clumpy torus and/or dichroism from the host galaxy, while for unabsorbed cores, MIR polarization arises from dust scattering in the torus and/or surrounding nuclear dust.

  9. Probing Galaxy Formation and Evolution with Space Born Sub-Millimeter Telescopes

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Arendt, Richard G.; Moseley, Harvey; Benford, Dominic; Shafer, Richard; Mather, John; Oegerle, William (Technical Monitor)

    2002-01-01

    A major unresolved question in cosmology is how the complex system of galaxies we see in the present universe evolved from an almost perfectly smooth beginning. Multiwavelength observations of galaxies have revealed that a significant fraction of their UV-visible starlight is absorbed and reradiated by dust at infrared JR) and submillimeter wavelengths. The cumulative IR-submm. emission from galaxies since the epoch of recombination, the cosmic IR background, has recently been recorded by the COBE satellite. The COBE observations in combination with recent submm surveys conducted with the SCUBA on the 15 m JCMT have shown that most of the radiation from star formation that has taken place in the early stages of galaxy evolution is reradiated by dust at submm wavelengths. Therefore, submm telescopes offer a unique probe of the early stages of galaxy formation and evolution. This talk will: (1) consider the impact of telescope diameter on the depth of the survey (what redshift can be probed) at different wavelengths; (2) discuss the relative scientific merits of high-resolution narrow-field surveys versus lower resolution deep surveys; and (3) show how both strategies offer complementary information crucial to our understanding of the structure and evolution of galaxies in the universe.

  10. H I absorption in nearby compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-05-01

    H I absorption studies yield information on both active galactic nucleus (AGN) feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for H I absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3-87 per cent). Of the detections, 71 per cent exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disc. Comparing mid-infrared colours of our galaxies with H I detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic discs. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of H I content within the host galaxy. This sample extends previous H I surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  11. Gamma-ray bursts, QSOs and active galaxies.

    PubMed

    Burbidge, Geoffrey

    2007-05-15

    The similarity of the absorption spectra of gamma-ray burst (GRB) sources or afterglows with the absorption spectra of quasars (QSOs) suggests that QSOs and GRB sources are very closely related. Since most people believe that the redshifts of QSOs are of cosmological origin, it is natural to assume that GRBs or their afterglows also have cosmological redshifts. For some years a few of us have argued that there is much optical evidence suggesting a very different model for QSOs, in which their redshifts have a non-cosmological origin, and are ejected from low-redshift active galaxies. In this paper I extend these ideas to GRBs. In 2003, Burbidge (Burbidge 2003 Astrophys. J. 183, 112-120) showed that the redshift periodicity in the spectra of QSOs appears in the redshift of GRBs. This in turn means that both the QSOs and the GRB sources are similar objects ejected from comparatively low-redshift active galaxies. It is now clear that many of the GRBs of low redshift do appear in, or very near, active galaxies.A new and powerful result supporting this hypothesis has been produced by Prochter et al. (Prochter et al. 2006 Astrophys. J. Lett. 648, L93-L96). They show that in a survey for strong MgII absorption systems along the sightlines to long-duration GRBs, nearly every sightline shows at least one absorber. If the absorbers are intervening clouds or galaxies, only a small fraction should show absorption of this kind. The number found by Prochter et al. is four times higher than that normally found for the MgII absorption spectra of QSOs. They believe that this result is inconsistent with the intervening hypothesis and would require a statistical fluctuation greater than 99.1% probability. This is what we expect if the absorption is intrinsic to the GRBs and the redshifts are not associated with their distances. In this case, the absorption must be associated with gas ejected from the QSO. This in turn implies that the GRBs actually originate in comparatively low

  12. Mass Loss from the Nuclei of Active Galaxies

    NASA Technical Reports Server (NTRS)

    Crenshaw, Michael; Kraemer, Steven B.; George, Ian M.

    2003-01-01

    Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .

  13. A Unified View of X-ray Absorbers in AGNs and XRBs with MHD Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Behar, Ehud; Contopoulos, John

    2016-01-01

    The presence of UV and X-ray absorbers (aka. warm absorbers or WAs) has been long known for decades from extensive spectroscopic studies across diverse AGN populations such as nearby Seyfert galaxies and distant quasars. Furthermore, another class of seemingly distinct type of absorbers, ultra-fast outflows or UFOs, is becoming increasingly known today. Nonetheless, a physical identification of such absorbers, such as geometrical property and physical conditions, is very elusive to date despite the recent state-of-the-art observations. We develop a coherent scenario in which the detected absorbers are driven primarily (if not exclusively) by the action of global magnetic fields originating from a black hole accretion disk. In the context of MHD disk-wind of density profile of n~1/r, it is found that the properties of the observed WAs/UFOs are successfully described assuming a characteristic SED. As a case study, we analyze PG1211+143 and GRO J1655-40 to demonstrate that our wind model can systematically unify apparently diverse absorbers in both AGNs and XRBs in terms of explaining their global behavior as well as individual spectral lines.

  14. Quasar 2175 Å dust absorbers - II. Correlation analysis and relationship with other absorption line systems

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Ge, Jian; Prochaska, J. Xavier; Zhang, Shaohua; Ji, Tuo; Zhao, Yinan; Zhou, Hongyan; Lu, Honglin; Schneider, Donald P.

    2018-03-01

    We present the cold neutral content (H I and C I gas) of 13 quasar 2175 Å dust absorbers (2DAs) at z = 1.6-2.5 to investigate the correlation between the presence of the UV extinction bump with other physical characteristics. These 2DAs were initially selected from the Sloan Digital Sky Surveys I-III and followed up with the Keck-II telescope and the Multiple Mirror Telescope as detailed in our Paper I. We perform a correlation analysis between metallicity, redshift, depletion level, velocity width, and explore relationships between 2DAs and other absorption line systems. The 2DAs on average have higher metallicity, higher depletion levels, and larger velocity widths than Damped Lyman α absorbers (DLAs) or subDLAs. The correlation between [Zn/H] and [Fe/Zn] or [Zn/H] and logΔV90 can be used as alternative stellar mass estimators based on the well-established mass-metallicity relation. The estimated stellar masses of the 2DAs in this sample are in the range of ˜109 to ˜2 × 1011 M⊙ with a median value of ˜2 × 1010 M⊙. The relationship with other quasar absorption line systems can be described as (1) 2DAs are a subset of Mg II and Fe II absorbers, (2) 2DAs are preferentially metal-strong DLAs/subDLAs, (3) More importantly, all of the 2DAs show C I detections with logN(C I) > 14.0 cm-2, and (4) 2DAs can be used as molecular gas tracers. Their host galaxies are likely to be chemically enriched, evolved, massive (more massive than typical DLA/subDLA galaxies), and presumably star-forming galaxies.

  15. Warm Absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Laha, S.; Guainazzi, M.; Dewangan, G.; Chakravorty, S.; Kembhavi, A.

    2014-07-01

    We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. We could put a strict lower limit on the detection fraction of 50%. We find a gap in the distribution of the ionisation parameter in the range 0.5absorber flow is probably constituted by a clumpy distribution of discrete clouds. The distribution of the WA column densities for the sources with broad Fe K-alpha lines are similar to those sources which do not have broadened emission lines. Therefore the detected broad Fe K lines are bonafide and not artefacts of ionised absorption in the soft X-rays. The WA parameters show no correlation among themselves, except for one case. The shallow slope of the logξ versus logv_{out} linear regression (0.12± 0.03) is inconsistent with the scaling laws predicted by radiation or magneto-hydrodynamic-driven winds. Our results suggest also that WA and Ultra Fast Outflows (UFOs) do not represent extreme manifestation of the same astrophysical system.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheva, Genoveva; Oey, M. S.; Jaskot, Anne E.

    We present the remarkable discovery that the dwarf irregular galaxy NGC 2366 is an excellent analog of the Green Pea (GP) galaxies, which are characterized by extremely high ionization parameters. The similarities are driven predominantly by the giant H ii region Markarian 71 (Mrk 71). We compare the system with GPs in terms of morphology, excitation properties, specific star-formation rate, kinematics, absorption of low-ionization species, reddening, and chemical abundance, and find consistencies throughout. Since extreme GPs are associated with both candidate and confirmed Lyman continuum (LyC) emitters, Mrk 71/NGC 2366 is thus also a good candidate for LyC escape. Themore » spatially resolved data for this object show a superbubble blowout generated by mechanical feedback from one of its two super star clusters (SSCs), Knot B, while the extreme ionization properties are driven by the ≲1 Myr-old, enshrouded SSC Knot A, which has ∼10 times higher ionizing luminosity. Very massive stars (>100 M {sub ⊙}) may be present in this remarkable object. Ionization-parameter mapping indicates that the blowout region is optically thin in the LyC, and the general properties also suggest LyC escape in the line of sight. Mrk 71/NGC 2366 does differ from GPs in that it is one to two orders of magnitude less luminous. The presence of this faint GP analog and candidate LyC emitter (LCE) so close to us suggests that LCEs may be numerous and commonplace, and therefore could significantly contribute to the cosmic ionizing budget. Mrk 71/NGC 2366 offers an unprecedentedly detailed look at the viscera of a candidate LCE, and could clarify the mechanisms of LyC escape.« less

  17. A comparative study of intervening and associated H I 21-cm absorption profiles in redshifted galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Duchesne, S. W.; Divoli, A.; Allison, J. R.

    2016-11-01

    The star-forming reservoir in the distant Universe can be detected through H I 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sightline to the continuum source. In order to test whether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z ≥ 0.1) H I 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are, on average, wider than their intervening counterparts. It is widely hypothesized that this is due to high-velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. With regard to the potential of predicting the absorber type in the absence of optical spectroscopy, we have implemented machine learning techniques to the 55 associated and 43 intervening spectra, with each of the tested models giving a ≳ 80 per cent accuracy in the prediction of the absorber type. Given the impracticability of follow-up optical spectroscopy of the large number of 21-cm detections expected from the next generation of large radio telescopes, this could provide a powerful new technique with which to determine the nature of the absorbing galaxy.

  18. A high-redshift IRAS galaxy with huge luminosity - Hidden quasar or protogalaxy?

    NASA Technical Reports Server (NTRS)

    Rowan-Robinson, M.; Broadhurst, T.; Oliver, S. J.; Taylor, A. N.; Lawrence, A.; Mcmahon, R. G.; Lonsdale, C. J.; Hacking, P. B.; Conrow, T.

    1991-01-01

    An emission line galaxy with the enormous far-IR luminosity of 3 x 10 to the 14th solar has been found at z = 2.286. The spectrum is very unusual, showing lines of high excitation but with very weak Lyman-alpha emission. A self-absorbed synchrotron model for the IR energy distribution cannot be ruled out, but a thermal origin seems more plausible. A radio-quiet quasar embedded in a very dusty galaxy could account for the IR emission, as might a starburst embedded in 1-10 billion solar masses of dust. The latter case demands so much dust that the object would probably be a massive galaxy in the process of formation. The presence of a large amount of dust in an object of such high redshift implies the generation of heavy elements at an early cosmological epoch.

  19. NuSTAR observations of the powerful radio-galaxy Cygnus A

    DOE PAGES

    Reynolds, Christopher S.; Lohfink, Anne M.; Ogle, Patrick M.; ...

    2015-07-29

    Here, we present NuSTAR observations of the powerful radio galaxy Cygnus A, focusing on the central absorbed active galactic nucleus (AGN). Cygnus A is embedded in a cool-core galaxy cluster, and hence we also examine archival XMM-Newton data to facilitate the decomposition of the spectrum into the AGN and intracluster medium components. NuSTAR gives a source-dominated spectrum of the AGN out tomore » $$\\gt 70$$ keV. In gross terms, the NuSTAR spectrum of the AGN has the form of a power law ($${\\rm{\\Gamma }}\\sim 1.6-1.7$$) absorbed by a neutral column density of $${N}_{{\\rm{H}}}\\sim 1.6\\times {10}^{23}\\;\\;{\\mathrm{cm}}^{-2}$$. However, we also detect curvature in the hard ($$\\gt 10$$ keV) spectrum resulting from reflection by Compton-thick matter out of our line of sight to the X-ray source. Compton reflection, possibly from the outer accretion disk or obscuring torus, is required even permitting a high-energy cut off in the continuum source; the limit on the cut-off energy is $${E}_{\\mathrm{cut}}\\gt 111$$ keV(90% confidence). Interestingly, the absorbed power law plus reflection model leaves residuals suggesting the absorption/emission from a fast ($$15,000-26,000\\;\\;\\mathrm{km}\\;\\;{{\\rm{s}}}^{-1}\\;$$), high column-density ($${N}_{W}\\gt 3\\times {10}^{23}\\;\\;{\\mathrm{cm}}^{-2}$$), highly ionized ($$\\xi \\sim 2500\\;\\mathrm{erg}\\;\\mathrm{cm}\\;{{\\rm{s}}}^{-1}$$) wind. A second, even faster ionized wind component is also suggested by these data. We show that the ionized wind likely carries a significant mass and momentum flux, and may carry sufficient kinetic energy to exercise feedback on the host galaxy. If confirmed, the simultaneous presence of a strong wind and powerful jets in Cygnus A demonstrates that feedback from radio-jets and sub-relativistic winds are not mutually exclusive phases of AGN activity but can occur simultaneously.« less

  20. Probing the extent and content of low ionization gas in galaxies: QSO absorption and HI emission

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.

    1993-01-01

    The small projected separations of some QSO's and low-redshift galaxies provide unique opportunities to study the extent and content of gas in galaxies through observation of absorption in the QSO spectra. Observations of these systems provide valuable information on the connection between the absorbing gas and the galaxy, as well as detailed information on the morphology and environment of the galaxy itself. While there is direct evidence that galaxies can produce the intervening-type QSO absorption lines, over the past decade, the study of such 'QSO-galaxy pairs' (at low redshift) has been considered unsuccessful because new detections of absorption were seldom made. A fundamental problem concerning the relation between these low-redshift systems and those seen at moderate to high redshift remains unresolved. Direct and indirect measures of galaxy absorption cross sections at moderate to high redshifts (z is approximately greater than 20.5) are much larger than the optical and HI sizes of local galaxies. However, direct comparison of the low and moderate to high redshift systems is difficult since different ions are observed in different redshift regimes. Observations are presented for a new sample of QSO-galaxy pairs. Nine new QSO's which shine through nearby galaxies (on the sky-plane) were observed to search for CaII absorption in the QSO spectra at the foreground galaxy redshifts.

  1. High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors

    NASA Astrophysics Data System (ADS)

    Piconcelli, E.; Lanzuisi, G.; Fiore, F.; Feruglio, C.; Vignali, C.; Salvato, M.; Grappioni, C.

    2009-05-01

    Extreme Optical/Mid-IR color cuts have been used to uncover a population of dust-enshrouded, mid-IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton-thick quasar at the heart of these systems. Nonetheless, the X-ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X-ray spectroscopic study of a large sample of 44 extreme dust-obscured galaxies (EDOGs) with F24 μm/FR>2000 and F24 μm>1.3 mJy selected from a 6 deg2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X-ray luminous, absorbed z>1 quasars which is mostly missed in the traditional optical/X-ray surveys performed so far. Advances in the understanding of the X-ray properties of these recently-discovered sources by Simbol-X observations will be also discussed.

  2. Search for Intra-day Optical Variability in Mrk 501

    NASA Astrophysics Data System (ADS)

    Feng, Hai-Cheng; Liu, H. T.; Fan, X. L.; Zhao, Yinghe; Bai, J. M.; Wang, Fang; Xiong, D. R.; Li, S. K.

    2017-11-01

    We present our observations of the optical intra-day variability (IDV) in γ-ray BL Lac object Mrk 501. The observations were run with the 1.02 m and 2.4 m optical telescopes at Yunnan Observatories from 2005 April to 2012 May. The light curve at the R band on 2010 May 15 passes both variability tests (the F-test and the ANOVA test). A flare within the light curve on 2010 May 15 has a magnitude change of {{Δ }}m=0.03+/- {0.005}{stat}+/- {0.007}{sys} mag, a darkening timescale of {τ }{{d}}=26.7 minutes, and an amplitude of IDV {Amp}=2.9 % +/- 0.7 % . A decline described by 11 consecutive flux measurements within the flare can be fitted linearly with a Pearson’s correlation coefficient r = 0.945 at the confidence level of > 99.99 % . Under the assumptions that the IDV is tightly connected to the mass of the black hole, and that the flare duration, being two times {τ }{{d}}, is representative of the minimum characteristic timescale, we can derive upper bounds to the mass of the black hole. In the case of the Kerr black hole, the timescale of {{Δ }}{t}\\min {ob}=0.89 hr gives {M}\\bullet ≲ {10}9.20{M}⊙ , which is consistent with measurements reported in the literature. This agreement indicates that the hypothesis about {M}\\bullet and {{Δ }}{t}\\min {ob} is consistent with the measurements/data.

  3. ALMA observations of a metal-rich damped Lyα absorber at z = 2.5832: evidence for strong galactic winds in a galaxy group

    NASA Astrophysics Data System (ADS)

    Fynbo, J. P. U.; Heintz, K. E.; Neeleman, M.; Christensen, L.; Dessauges-Zavadsky, M.; Kanekar, N.; Møller, P.; Prochaska, J. X.; Rhodin, N. H. P.; Zwaan, M.

    2018-06-01

    We report on the results of a search for CO(3-2) emission from the galaxy counterpart of a high-metallicity Damped Lyα Absrober (DLA) at z = 2.5832 towards the quasar Q0918+1636. We do not detect CO emission from the previously identified DLA galaxy counterpart. The limit we infer on Mgas/M⋆ is in the low end of the range found for DLA galaxies, but is still consistent with what is found for other star-forming galaxies at similar redshifts. Instead we detect CO(3-2) emission from another intensely star-forming galaxy at an impact parameter of 117 kpc from the line-of-sight to the quasar and 131 km s-1 redshifted relative to the velocity centroid of the DLA in the quasar spectrum. In the velocity profile of the low- and high-ionisation absorption lines of the DLA there is an absorption component consistent with the redshift of this CO-emitting galaxy. It is plausible that this component is physically associated with a strong outflow in the plane of the sky from the CO-emitting galaxy. If true, this would be further evidence, in addition to what is already known from studies of Lyman-break galaxies, that galactic outflows can be traced beyond 100 kpc from star-forming galaxies. The case of this z = 2.583 structure is an illustration of this in a group environment.

  4. Hubble Peers at the Heart of a Spiral Galaxy

    NASA Image and Video Library

    2014-03-21

    This new Hubble image is centered on NGC 5793, a spiral galaxy over 150 million light-years away in the constellation of Libra. This galaxy has two particularly striking features: a beautiful dust lane and an intensely bright center — much brighter than that of our own galaxy, or indeed those of most spiral galaxies we observe. NGC 5793 is a Seyfert galaxy. These galaxies have incredibly luminous centers that are thought to be caused by hungry supermassive black holes — black holes that can be billions of times the size of the sun — that pull in and devour gas and dust from their surroundings. This galaxy is of great interest to astronomers for many reasons. For one, it appears to house objects known as masers. Whereas lasers emit visible light, masers emit microwave radiation. The term "masers" comes from the acronym Microwave Amplification by Stimulated Emission of Radiation. Maser emission is caused by particles that absorb energy from their surroundings and then re-emit this in the microwave part of the spectrum. Naturally occurring masers, like those observed in NGC 5793, can tell us a lot about their environment; we see these kinds of masers in areas where stars are forming. In NGC 5793 there are also intense mega-masers, which are thousands of times more luminous than the sun. Credit: NASA, ESA, and E. Perlman (Florida Institute of Technology) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Radio continuum observations of the quasar-galaxy pair 3C 232-NGC 3067

    NASA Technical Reports Server (NTRS)

    Haxthausen, Eric; Carilli, Chris; Vangorkom, Jacqueline H.

    1990-01-01

    The quasar-galaxy pair 3C 232-NGC 3067 is well known to show absorption by gas associated with the foreground galaxy against the background quasar (see Stocke et al. this volume). Observations by Carilli, van Gorkom, and Stocke (Nature 338, 134, 1989) found that the absorbing gas is located in a long tail of gas which extends from the galaxy toward the quasar and beyond (in projection). Though the HI observations of NGC 3067 indicate that the galaxy has been severely disturbed, there is no obvious candidate in the field which could cause such a disturbance, leading to the conclusion that the system has undergone a recent merger. The radio continuum observations of this system were designed to study the nature of this highly disturbed galaxy. New continuum observations confirm the notion that NGC 3067 is a highly disturbed system, and, in particular, the notion that the western half of the galaxy extends only 1/2 as far in radius as the eastern half. This disturbance must have occurred recently, since the galactic rotation would smooth out the observed asymmetry in about 10(exp 8) years. Researchers are left with the problem that there are no obvious candidates which could have caused such a disturbance.

  6. The column density distribution of hard X-ray radio galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, F.; Bassani, L.; Landi, R.; Bazzano, A.; Dallacasa, D.; La Franca, F.; Malizia, A.; Venturi, T.; Ubertini, P.

    2016-09-01

    In order to investigate the role of absorption in active galactic nuclei (AGN) with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/Imager on Board the Integral Satellite (IBIS) and Swift/The Burst Alert Telescope (BAT) AGN catalogues (˜7-10 per cent of the total AGN population). The 64 radio galaxies have a typical FR II radio morphology and are characterized by high 20-100 keV luminosities (from 1042 to 1046 erg s-1) and high Eddington ratios (log LBol/LEdd typically larger than ˜0.01). The observed fraction of absorbed AGN (NH > 1022 cm-2) is around 40 per cent among the total sample, and ˜75 per cent among type 2 AGN. The majority of obscured AGN are narrow-line objects, while unobscured AGN are broad-line objects, obeying to the zeroth-order predictions of unified models. A significant anti-correlation between the radio core dominance parameter and the X-ray column density is found. The observed fraction of Compton thick AGN is ˜2-3 per cent, in comparison with the 5-7 per cent found in radio-quiet hard X-ray selected AGN. We have estimated the absorption and Compton thick fractions in a hard X-ray sample containing both radio galaxies and non-radio galaxies and therefore affected by the same selection biases. No statistical significant difference was found in the absorption properties of radio galaxies and non-radio galaxies sample. In particular, the Compton thick objects are likely missing in both samples and the fraction of obscured radio galaxies appears to decrease with luminosity as observed in hard X-ray non-radio galaxies.

  7. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-01-01

    We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our

  8. A blind HI search for galaxies in the northern Zone of Avoidance

    NASA Astrophysics Data System (ADS)

    Rivers, Andrew James

    Searches for galaxies in the nearby and distant universe have long focused in the direction of the Galactic poles, or perpendicular to the plane of the Milky Way. Dust concentrated in the Milky Way's disk absorbs and scatters light and therefore precludes easy optical detection of extragalactic sources in this ``Zone of Avoidance'' (ZOA). The Dwingeloo Obscured Galaxies Survey (DOGS) was a 21-cm blind survey for galaxies hidden in the northern ZOA. Dust is transparent at radio wavelengths and therefore the survey is not biased against detection of galaxies near the Galactic plane. The DOGS project was designed to reveal hidden dynamically important nearby galaxies and to help ``fill in the blanks'' in the local large scale structure. During the survey and subsequent followup observations, 43 galaxies were detected; 28 of these were previously unknown. Obscuration by dust could effectively hide a massive member of the Local Group. This survey rules out the existence of a hidden gas-rich dynamically important source. The possibility of gas-poor elliptical galaxies and low-mass dwarfs remains; the low velocity of one detected dwarf irregular galaxy relative to the Milky Way indicates possible membership in the Local Group. Other nearby galaxies detected by DOGS were linked to the IC 342/Maffei group and to the nearby galaxy NGC 6946. Of the five galaxies in the IC 342/Maffei group, three were unknown at the time of the survey. Derived group properties indicate the group consists of two separate physical groups which appear close together in the sky. The five sources near NGC 6946 support the identification of a new nearby group associated with this large spiral galaxy. The distribution of massive spiral galaxies compared to low-mass dwarf galaxies may be used to test theories of structure formation. In a universe dominated by Cold Dark Matter (CDM) dwarf galaxies are more evenly distributed and are a more accurate tracer of the mass distribution. Open universe models

  9. Swift Observations of Mrk 421 in Selected Epochs. II. An Extreme Spectral Flux Variability in 2009–2012

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Vercellone, S.; Romano, P.; Hughes, P.; Aller, M.; Aller, H.; Kharshiladze, O.; Tabagari, L.

    2018-05-01

    We present the results from a detailed spectral and timing study of Mrk 421 based on the rich archival Swift data obtained during 2009–2012. Best fits of the 0.3–10 keV spectra were mostly obtained using the log-parabolic model showing the relatively low spectral curvature that is expected in the case of efficient stochastic acceleration of particles. The position of the synchrotron spectral energy density peak E p of 173 spectra is found at energies higher than 2 keV. The photon index at 1 keV exhibited a very broad range of values a = 1.51–3.02, and very hard spectra with a < 1.7 were observed during the strong X-ray flares, hinting at a possible hadronic jet component. The spectral parameters varied on diverse timescales and showed a correlation in some periods, which is expected in the case of first- and second-order Fermi acceleration. The 0.3–10 keV flux showed strong X-ray flaring activity by a factor of 3–17 on timescales of a few days–weeks between the lowest historical state and that corresponding to a rate higher than 100 cts s‑1. Moreover, 113 instances of intraday variability were revealed, exhibiting shortest flux-doubling/halving times of about 1.2 hr, as well as brightenings by 7%–24% in 180–720 s and declines by 68%–22% in 180–900 s. The X-ray and very high-energy fluxes generally showed a correlated variability, although one incidence of a more complicated variability was also detected, indicating that the multifrequency emission of Mrk 421 could not be generated in a single zone.

  10. Probing the cool interstellar and circumgalactic gas of three massive lensing galaxies at z = 0.4-0.7

    NASA Astrophysics Data System (ADS)

    Zahedy, Fakhri S.; Chen, Hsiao-Wen; Rauch, Michael; Wilson, Michelle L.; Zabludoff, Ann

    2016-05-01

    We present multisightline absorption spectroscopy of cool gas around three lensing galaxies at z = 0.4-0.7. These lenses have half-light radii re = 2.6-8 kpc and stellar masses of log M*/M⊙ = 10.9-11.4, and therefore resemble nearby passive elliptical galaxies. The lensed QSO sightlines presented here occur at projected distances of d = 3-15 kpc (or d ≈ 1-2 re) from the lensing galaxies, providing for the first time an opportunity to probe both interstellar gas at r ˜ re and circumgalactic gas at larger radii r ≫ re of these distant quiescent galaxies. We observe distinct gas absorption properties among different lenses and among sightlines of individual lenses. Specifically, while the quadruple lens for HE 0435-1223 shows no absorption features to very sensitive limits along all four sightlines, strong Mg II, Fe II, Mg I, and Ca II absorption transitions are detected along both sightlines near the double lens for HE 0047-1756, and in one of the two sightlines near the double lens for HE 1104-1805. The absorbers are resolved into 8-15 individual components with a line-of-sight velocity spread of Δ v ≈ 300-600 km s-1. The large ionic column densities, log N ≳ 14, observed in two components suggest that these may be Lyman limit or damped Ly α absorbers with a significant neutral hydrogen fraction. The majority of the absorbing components exhibit a uniform supersolar Fe/Mg ratio with a scatter of <0.1 dex across the full Δ v range. Given a predominantly old stellar population in these lensing galaxies, we argue that the observed large velocity width and Fe-rich abundance pattern can be explained by SNe Ia enriched gas at radius r ˜ re. We show that additional spatial constraints in line-of-sight velocity and relative abundance ratios afforded by a multisightline approach provide a powerful tool to resolve the origin of chemically enriched cool gas in massive haloes.

  11. The Luminosity Function of OB Associations in the Galaxy

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.; Williams, Jonathan P.

    1997-02-01

    OB associations ionize the interstellar medium, producing both localized H II regions and diffuse ionized gas. The supernovae resulting from these associations pressurize and stir the interstellar medium. Using Smith, Biermann, & Mezger's compilation of radio H II regions in the Galaxy, and Kennicutt, Edgar, & Hodge's optical study of H II regions in nearby galaxies, we show that the luminosity distribution of giant OB associations in the Galaxy can be fit by a truncated power law of the form \\Nscra(>S)=\\Nscrau[(Su/S)-1], where S is the ionizing photon luminosity, \\Nscra(>S) is the number of associations with a luminosity of at least S, and Su is the upper limit to the distribution. The coefficient \\Nscrau is the number of the most luminous associations, with a luminosity between 0.5Su and Su. For the Galaxy, \\Nscrau=6.1 the fact that the number of the most luminous associations is significantly larger than unity indicates that there is a physical limit to the maximum size of H II regions in the Galaxy. To extend the luminosity distribution to small H II regions, we assume that the birthrate of associations, \\Nscr\\dota(>\\Nscr*), is also a truncated power law, \\Nscr\\dota(>\\Nscr*)~[(\\Nscr*u/\\Nscr*)-1], where \\Nscr* is the number of stars in the association. For large associations, the ionizing luminosity is proportional to the number of stars, S~\\Nscr* for smaller associations, we use both an analytic and a Monte Carlo approach to find the resulting luminosity distribution \\Nscra(>S). H II regions are generally centrally concentrated, with only the dense central regions being bright enough to appear in radio catalogs. Anantharamaiah postulated that radio H II regions have extended envelopes in order to account for diffuse radio recombination line emission in the Galaxy. Some of these envelopes are visible as the ionized ``worms'' discussed by Heiles and coworkers. We estimate that on the average the envelopes of radio H II regions absorb about twice

  12. NEUTRAL HYDROGEN OPTICAL DEPTH NEAR STAR-FORMING GALAXIES AT z Almost-Equal-To 2.4 IN THE KECK BARYONIC STRUCTURE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakic, Olivera; Schaye, Joop; Steidel, Charles C.

    We study the interface between galaxies and the intergalactic medium by measuring the absorption by neutral hydrogen in the vicinity of star-forming galaxies at z Almost-Equal-To 2.4. Our sample consists of 679 rest-frame UV-selected galaxies with spectroscopic redshifts that have impact parameters <2 (proper) Mpc to the line of sight of one of the 15 bright, background QSOs and that fall within the redshift range of its Ly{alpha} forest. We present the first two-dimensional maps of the absorption around galaxies, plotting the median Ly{alpha} pixel optical depth as a function of transverse and line-of-sight separation from galaxies. The Ly{alpha} opticalmore » depths are measured using an automatic algorithm that takes advantage of all available Lyman series lines. The median optical depth, and hence the median density of atomic hydrogen, drops by more than an order of magnitude around 100 kpc, which is similar to the virial radius of the halos thought to host the galaxies. The median remains enhanced, at the >3{sigma} level, out to at least 2.8 Mpc (i.e., >9 comoving Mpc), but the scatter at a given distance is large compared with the median excess optical depth, suggesting that the gas is clumpy. Within 100 (200) kpc, and over {+-}165 km s{sup -1}, the covering fraction of gas with Ly{alpha} optical depth greater than unity is 100{sup +0}{sub -32}% (66% {+-} 16%). Absorbers with {tau}{sub Ly{alpha}} > 0.1 are typically closer to galaxies than random. The mean galaxy overdensity around absorbers increases with the optical depth and also as the length scale over which the galaxy overdensity is evaluated is decreased. Absorbers with {tau}{sub Ly{alpha}} {approx} 1 reside in regions where the galaxy number density is close to the cosmic mean on scales {>=}0.25 Mpc. We clearly detect two types of redshift space anisotropies. On scales <200 km s{sup -1}, or <1 Mpc, the absorption is stronger along the line of sight than in the transverse direction. This 'finger of

  13. Neutral Hydrogen Optical Depth near Star-forming Galaxies at z ≈ 2.4 in the Keck Baryonic Structure Survey

    NASA Astrophysics Data System (ADS)

    Rakic, Olivera; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.

    2012-06-01

    We study the interface between galaxies and the intergalactic medium by measuring the absorption by neutral hydrogen in the vicinity of star-forming galaxies at z ≈ 2.4. Our sample consists of 679 rest-frame UV-selected galaxies with spectroscopic redshifts that have impact parameters <2 (proper) Mpc to the line of sight of one of the 15 bright, background QSOs and that fall within the redshift range of its Lyα forest. We present the first two-dimensional maps of the absorption around galaxies, plotting the median Lyα pixel optical depth as a function of transverse and line-of-sight separation from galaxies. The Lyα optical depths are measured using an automatic algorithm that takes advantage of all available Lyman series lines. The median optical depth, and hence the median density of atomic hydrogen, drops by more than an order of magnitude around 100 kpc, which is similar to the virial radius of the halos thought to host the galaxies. The median remains enhanced, at the >3σ level, out to at least 2.8 Mpc (i.e., >9 comoving Mpc), but the scatter at a given distance is large compared with the median excess optical depth, suggesting that the gas is clumpy. Within 100 (200) kpc, and over ±165 km s-1, the covering fraction of gas with Lyα optical depth greater than unity is 100+0 - 32% (66% ± 16%). Absorbers with τLyα > 0.1 are typically closer to galaxies than random. The mean galaxy overdensity around absorbers increases with the optical depth and also as the length scale over which the galaxy overdensity is evaluated is decreased. Absorbers with τLyα ~ 1 reside in regions where the galaxy number density is close to the cosmic mean on scales >=0.25 Mpc. We clearly detect two types of redshift space anisotropies. On scales <200 km s-1, or <1 Mpc, the absorption is stronger along the line of sight than in the transverse direction. This "finger of God" effect may be due to redshift errors, but is probably dominated by gas motions within or very close to

  14. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    NASA Astrophysics Data System (ADS)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  15. A TWO-PHASE LOW-VELOCITY OUTFLOW IN THE SEYFERT 1 GALAXY Ark 564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, A.; Mathur, S.; Krongold, Y.

    2013-05-10

    The Seyfert 1 galaxy Ark 564 was observed with Chandra high-energy transmission gratings for 250 ks. We present the high-resolution X-ray spectrum that shows several associated absorption lines. The photoionization model requires two warm absorbers (WAs) with two different ionization states (log U = 0.39 {+-} 0.03 and log U = -0.99 {+-} 0.13), both with moderate outflow velocities ({approx}100 km s{sup -1}) and relatively low line of sight column densities (log N{sub H} = 20.94 and 20.11 cm{sup -2}). The high-ionization phase produces absorption lines of O VII, O VIII, Ne IX, Ne X, Mg XI, Fe XVII, andmore » Fe XVIII, while the low-ionization phase produces lines at lower energies (O VIand O VII). The pressure-temperature equilibrium curve for the Ark 564 absorber does not have the typical ''S'' shape, even if the metallicity is super-solar; as a result, the two WA phases do not appear to be in pressure balance. This suggests that the continuum incident on the absorbing gas is perhaps different from the observed continuum. We also estimated the mass outflow rate and the associated kinetic energy and find it to be at most 0.009% of the bolometric luminosity of Ark 564. Thus, it is highly unlikely that these outflows provide significant feedback required by the galaxy formation models.« less

  16. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prat, J.; et al.

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (more » $$i_{AB} < 22.5$$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($$z\\sim0.3$$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $$b\\cdot r$$ to be $$0.87\\pm 0.11$$, $$1.12 \\pm 0.16$$ and $$1.24\\pm 0.23$$, respectively for the three redshift bins of width $$\\Delta z = 0.2$$ in the range $0.2« less

  17. Lyα vs. fundamental properties of galaxies

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Leitherer, Claus; Salzer, John; COS Science Team

    2013-03-01

    We obtained HST COS Lyα spectroscopy for 20 galaxies that were Hα-selected from the Kitt Peak International Spectroscopic Survey data release. We cover redshifts of z=0.02-0.06 and a broad range in metallicity, reddening, and luminosity. We investigate correlations between the properties of the Lyα-lines and fundamental properties of the galaxies. Our seven emitters have: equivalent widths in the range EW(Lyα)=1-12 Å, i.e., below the completeness limits of higher redshift studies; extinction corrected Lyα/Hα ratios of at most 12-15% of the case B recombination theory value; and O I λ1302 ISM absorptions blueshifted to = - 117±40 km/s, which are consistent with H I gas outflows. Six emitters have P-Cygni-like Lyα profiles with peaks redshifted to =172±25 km/s, and one of our face-on spiral galaxies has two Lyα peaks separated by 370 km/s. The latter peaks are such that the blueshifted peak is twice as strong as the redshifted peak. The rest of the galaxies show Lyα absorption troughs centered at =19 km/s and O I λ1302 absorptions centered at = - 34±25 km/s, which is consistent with static or low velocity H I gas. Our two most metal poor and least reddened galaxies, which have large Hα equivalent widths are absorbers. The spiral galaxies in our sample have Lyα in single emission, double emission, or absorption. There appears to be a correlation between the Hα derived SFR and the strength of the Lyα emission but our sample is small. Our observations cover regions of at most 3 kpc in diameter and may miss a significant fraction of the resonantly scattered Lyα emission. This work is supported by NASA grant N1317.

  18. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  19. Galaxy properties in clusters. II. Backsplash galaxies

    NASA Astrophysics Data System (ADS)

    Muriel, H.; Coenda, V.

    2014-04-01

    Aims: We explore the properties of galaxies on the outskirts of clusters and their dependence on recent dynamical history in order to understand the real impact that the cluster core has on the evolution of galaxies. Methods: We analyse the properties of more than 1000 galaxies brighter than M0.1r = - 19.6 on the outskirts of 90 clusters (1 < r/rvir < 2) in the redshift range 0.05 < z < 0.10. Using the line of sight velocity of galaxies relative to the cluster's mean, we selected low and high velocity subsamples. Theoretical predictions indicate that a significant fraction of the first subsample should be backsplash galaxies, that is, objects that have already orbited near the cluster centre. A significant proportion of the sample of high relative velocity (HV) galaxies seems to be composed of infalling objects. Results: Our results suggest that, at fixed stellar mass, late-type galaxies in the low-velocity (LV) sample are systematically older, redder, and have formed fewer stars during the last 3 Gyrs than galaxies in the HV sample. This result is consistent with models that assume that the central regions of clusters are effective in quenching the star formation by means of processes such as ram pressure stripping or strangulation. At fixed stellar mass, LV galaxies show some evidence of having higher surface brightness and smaller size than HV galaxies. These results are consistent with the scenario where galaxies that have orbited the central regions of clusters are more likely to suffer tidal effects, producing loss of mass as well as a re-distribution of matter towards more compact configurations. Finally, we found a higher fraction of ET galaxies in the LV sample, supporting the idea that the central region of clusters of galaxies may contribute to the transformation of morphological types towards earlier types.

  20. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  1. Probing Magnetic Fields of Early Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    How do magnetic fields form and evolve in early galaxies? A new study has provided some clever observations to help us answer this question.The Puzzle of Growing FieldsDynamo theory is the primary model describing how magnetic fields develop in galaxies. In this picture, magnetic fields start out as weak seed fields that are small and unordered. These fields then become ordered and amplified by large-scale rotation and turbulence in galaxy disks and halos, eventually leading to the magnetic fields we observe in galaxies today.Schematic showinghow to indirectly measure protogalactic magnetic fields. The measured polarization of a background quasar is altered by the fields in a foreground protogalaxy. Click for a closer look! [Farnes et al. 2017/Adolf Schaller/STSCI/NRAO/AUI/NSF]To test this model, we need observations of the magnetic fields in young protogalaxies. Unfortunately, we dont have the sensitivity to be able to measure these fields directly but a team of scientists led by Jamie Farnes (Radboud University in the Netherlands) have come up with a creative alternative.The key is to find early protogalaxies that absorb the light of more distant background objects. If a protogalaxy lies between us and a distant quasar, then magnetic fields of the protogalaxy if present will affect the polarization measurements of the background quasar.Observing Galactic Building BlocksTop: Redshift distribution for the background quasars in the authors sample. Bottom: Redshift distribution for the foreground protogalaxies the authors are exploring. [Farnes et al. 2017]Farnes and collaborators examined two types of foreground protogalaxies: Damped Lyman-Alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). They obtained polarimetric data for a sample of 114 distant quasars with nothing in the foreground (the control sample), 19 quasars with DLAs in the foreground, and 27 quasars with LLSs in the foreground. They then used statistical analysis techniques to draw conclusions about

  2. Multiwavelength Study of Quiescent States of Mrk 421 with Unprecedented Hard X-Ray Coverage Provided by NuSTAR in 2013

    NASA Technical Reports Server (NTRS)

    Balokovic, M.; Paneque, D.; Madejski, G.; Chiang, J.; Furniss, A.; Ajello, M.; Alexander, D. M.; Barret, D.; Blandford, R. D.; Boggs, S. E.; hide

    2016-01-01

    We present coordinated multiwavelength observations of the bright, nearby BL Lacertae object Markarian 421 (Mrk 421) taken in 2013 January-March, involving GASP-WEBT, Swift, NuSTAR, Fermi-LAT, MAGIC, VERITAS, and other collaborations and instruments, providing data from radio to very high energy„ (VHE) gamma-ray bands. NuSTAR yielded previously unattainable sensitivity in the 3-79 kiloelectronvolt range, revealing that the spectrum softens when the source is dimmer until the X-ray spectral shape saturates into a steep Gamma approximating 3 power law, with no evidence for an exponential cutoff or additional hard components up to 80 kiloelectronvolts. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure that relates to the two bumps of the broadband SED. In each bump, the variability increases with energy, which, in the framework of the synchrotron self-Compton model, implies that the electrons with higher energies are more variable. The measured multi band variability, the significant X-ray-to-VHE correlation down to some of the lowest fluxes ever observed in both bands, the lack of correlation between optical/UV and X-ray flux, the low degree of polarization and its significant (random) variations, the short estimated electron cooling time, and the significantly longer variability timescale observed in the NuSTAR light curves point toward in situ electron acceleration and suggest that there are multiple compact regions contributing to the broadband emission of Mrk 421 during low-activity states.

  3. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  4. Galaxy bias from galaxy-galaxy lensing in the DES science verification data

    NASA Astrophysics Data System (ADS)

    Prat, J.; Sánchez, C.; Miquel, R.; Kwan, J.; Blazek, J.; Bonnett, C.; Amara, A.; Bridle, S. L.; Clampitt, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.; Giannantonio, T.; Hartley, W. G.; Jarvis, M.; MacCrann, N.; Percival, W. J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nord, B.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2018-01-01

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (iAB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h-1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ∼ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm BPZ. Using a different code to split the lens sample, TPZ, leads to changes in the measured biases at the 10-20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ∼ 0.3), where we find r = 0.71 ± 0.11 when using TPZ, and 0.83 ± 0.12 with BPZ.

  5. A FOURTH H I 21 cm ABSORPTION SYSTEM IN THE SIGHT LINE OF MG J0414+0534: A RECORD FOR INTERVENING ABSORBERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanna, A.; Webb, J. K.; Curran, S. J.

    2013-08-01

    We report the detection of a strong H I 21 cm absorption system at z = 0.5344, as well as a candidate system at z = 0.3389, in the sight line toward the z = 2.64 quasar MG J0414+0534. This, in addition to the absorption at the host redshift and the other two intervening absorbers, takes the total to four (possibly five). The previous maximum number of 21 cm absorbers detected along a single sight line is two and so we suspect that this number of gas-rich absorbers is in some way related to the very red color of themore » background source. Despite this, no molecular gas (through OH absorption) has yet been detected at any of the 21 cm redshifts, although, from the population of 21 cm absorbers as a whole, there is evidence for a weak correlation between the atomic line strength and the optical-near-infrared color. In either case, the fact that so many gas-rich galaxies (likely to be damped Ly{alpha} absorption systems) have been found along a single sight line toward a highly obscured source may have far-reaching implications for the population of faint galaxies not detected in optical surveys, a possibility which could be addressed through future wide-field absorption line surveys with the Square Kilometer Array.« less

  6. Discovery of a transparent sightline at ρ ≲ 20 kpc from an interacting pair of galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Sean D.; Chen, Hsiao-Wen; Mulchaey, John S.; Tripp, Todd M.; Prochaska, J. Xavier; Werk, Jessica K.

    2014-03-01

    We report the discovery of a transparent sightline at projected distances of ρ ≲ 20 kpc to an interacting pair of mature galaxies at z = 0.12. The sightline of the UV-bright quasar PG 1522+101 at zem = 1.328 passes at ρ = 11.5 kpc from the higher mass galaxy (M* = 1010.6 M⊙) and ρ = 20.4 kpc from the lower mass one (M* = 1010.0 M⊙). The two galaxies are separated by 9 kpc in projected distance and 30 km s-1 in line-of-sight velocity. Deep optical images reveal tidal features indicative of close interactions. Despite the small projected distances, the quasar sightline shows little absorption associated with the galaxy pair with a total H I column density no greater than log N({H I})/cm^{-2}=13.65. This limiting H I column density is already two orders of magnitude less than what is expected from previous halo gas studies. In addition, we detect no heavy-element absorption features associated with the galaxy pair with 3σ limits of log N({Mg II})/cm^{-2} < 12.2 and log N({O VI})/cm^{-2} < 13.7. The probability of seeing such little absorption in a sightline passing at a small projected distance from two non-interacting galaxies is 0.2 per cent. The absence of strong absorbers near the close galaxy pair suggests that the cool gas reservoirs of the galaxies have been significantly depleted by the galaxy interaction. These observations therefore underscore the potential impact of galaxy interactions on the gaseous haloes around galaxies.

  7. Multiwavelength Study of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh

    2010-08-01

    framework of the unification scheme. In other words, it is ensured that the two subtypes being compared are not selected from entirely different parts of the evolution function (redshift, luminosity, bulge magnitude, stellar luminosity of the host galaxy and Hubble type of the host galaxy). To study the X-ray spectral properties of two Seyfert subtypes I use the XMM-Newton pn data. The 0.5 - 10 keV X-ray spectra of Seyfert galaxies are generally best fitted with a model consists of: an absorbed power law with exponential cut-off which contains cold absorption from the Galactic hydrogen column density together with absorption from neutral gas at the redshift of the source; a narrow Gaussian line fitted to the Fe K_alpha line at 6.4 keV; a soft excess component characterized by either a steep power law and/or a thermal plasma model with temperature kT and in some cases, reflection component characterized by the reflection from an isotropically illuminated cold slab, (model `pexrav' in XSPEC) is required. Partial covering of the primary AGN power law component is also required for the best fit in some sources. There are several type 2 sources in our sample in which the hard (2.0 - 10.0 keV) part of the X-ray spectrum is best fitted with a reflection component alone (`pexrav' model). The statistical comparisons of the X-ray spectral properties show that in compared to Seyfert type 1s, the type 2s exhibit lower X-ray luminosities in soft (0.5 - 2.0 keV) and hard (2.0 - 10.0) X-ray bands, higher X-ray absorbing column densities, higher equivalent widths of Fe K line, and lower flux ratios of hard X-ray (2.0 - 10.0 keV) to [OIII]. In both the Seyfert subtypes, the X-ray luminosity is moderately correlated with the pc-scale, kpc-scale radio luminosities and [OIII] line luminosity, in a similar fashion. A large fraction ~ 60 - 70% of type 2 Seyferts of our sample are likely to be Compton-thick and as a case study of a Compton-thick AGN, we studied the broad-band 0.5 - 50 keV X

  8. Origin of the X-ray Spectral Variation and Seemingly Broad Iron Line Strucuture in the Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Ebisawa, Ken; Naoki, Iso

    2012-07-01

    X-ray intensities and spectra of the Seyfert galaxies are known to be variable. Some of the sources have characteristic seemingly broad iron line structure, and their spectral variations are small in the iron line energy band. MCG-6-30-15 is such an archetypal source, and Miyakawa (2011) proposed a "Variable Partial Covering (VPC)" model to explain its continuum spectral variation, seemingly broad iron line structure, and small spectral variation in the iron energy band simultaneously, only due to variation of a single parameter. That single parameter is the "partial covering fraction" to describe the geometrical fraction of the X-ray emitting area covered by the ionized absorbers in the line of sight. The intrinsic X-ray luminosity is hardly variable in this model. We have applied the VPC model to the 27 Seyfert galaxies observed with Suzaku, and found that spectral variations of the 22 sources are successfully explained by this model only varying the partial covering fraction. Intrinsic X-ray luminosities of Seyfert galaxies are not variable, as opposed to what they apparently seem, and gravitationally red-shifted iron line is not necessary. Those ionized absorbing clouds are most likely to be Broad Line Region (BLR) clouds, and we will be able to constrain the BLR structure from X-ray observations.

  9. Galaxy Morphology Revealed By SDSS: Blue Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae

    The Sloan Digital Sky Survey (SDSS) reveals many new features of galaxy morphologies. Among others, the discovery of blue elliptical galaxies provides some insights into the formation and evolution of galaxies. There seems to be two types of blue elliptical galaxies. One type shows globally blue colors suggesting star formations over the entire galaxy whereas the other type shows blue core that indicates enhanced star formation in the nuclear regions. The former seems to be currently forming galaxies, while the latter is thought to be in transition stage from the blue cloud to the red sequence due to AGN feedback.

  10. Polar ring galaxies in the Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  11. Submillimeter evidence for the coeval growth of massive black holes and galaxy bulges.

    PubMed

    Page, M J; Stevens, J A; Mittaz, J P; Carrera, F J

    2001-12-21

    The correlation, found in nearby galaxies, between black hole mass and stellar bulge mass implies that the formation of these two components must be related. Here we report submillimeter photometry of eight x-ray-absorbed active galactic nuclei that have luminosities and redshifts characteristic of the sources that produce the bulk of the accretion luminosity in the universe. The four sources with the highest redshifts are detected at 850 micrometers, with flux densities between 5.9 and 10.1 millijanskies, and hence are ultraluminous infrared galaxies. If the emission is from dust heated by starbursts, then the majority of stars in spheroids were formed at the same time as their central black holes built up most of their mass by accretion. This would account for the observed demography of massive black holes in the local universe. The skewed rate of submillimeter detection with redshift is consistent with a high redshift epoch of star formation in radio-quiet active galactic nuclei, similar to that seen in radio galaxies.

  12. The X-ray Absorber in the X-ray Transient NLS1 WPVS 007

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk

    This proposal is for a funding request for an approved XMM-Newton observations of the X-ray transient Narrow-Line Seyfert 1 galaxy WPVS 007. The request is for 4 month of salary for the PI for one year in order to do the data analysis, publish the results, and attend an international AGN meeting. XMM will observe WPVS 007 in June 2010 simultaneously with HST, Chandra, and Swift. The goal is to establish a tight connection between the UV broad absorption line troughs found in FUSE observations and the strong partial covering absorber feature found by Swift. WPVS 007 showed a dramatic transformation into a Broad Absorption line QSO like AGN between a 1996 HST observation and a 2003 FUSE observation. Several Swift monitoring observations have suggested that the absorber may have started to disappear. Therefore it is crucial for our HST COS UV spectroscopy to know what the status of the X-ray absorber is. The XMM observation will provide a well-exposed X-ray spectrum even if WPVS 007 will be in a low flux state. This spectrum will enable us to put constraints on the absorption column density and covering fraction of the partial covering absorber.

  13. Andromeda Galaxy

    NASA Image and Video Library

    2003-12-10

    This image is from NASA Galaxy Evolution Explorer is an observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way.

  14. Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-02-01

    Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.

  15. Ca II and Na I absorption in the QSO S4 0248 + 430 due to an intervening galaxy

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.; Junkkarinen, Vesa T.; Cohen, Ross D.; Burbidge, E. Margaret

    1990-01-01

    Observations of the QSO S4 0248 + 430 and a nearby anonymous galaxy are presented. Two absorption components are found in both Ca II H and K and Na I D1 and D2 at z(a) = 0.0515, 0.0523. Column densities of log N(Ca II) = 13.29, 13.50, and log N(Na I) = 13.79, 14.18 are found for z(a) = 0.0515, 0.0523 absorption systems, respectively. The column density ratios imply considerable calcium depletion and disk-type absorbing gas. At least one and possibly both absorption components are produced by high-velocity gas. A broadband image of the field shows an asymmetrical armlike feature or possible tidal tail covering and extending past the position of the QSO. The presence of this extended feature and the apparent difference between the absorption velocities and galaxy rotation velocity suggest that the absorbing gas is not ordinary disk gas, but rather is a result of tidal disruption.

  16. Hubble's Megamaser Galaxy

    NASA Image and Video Library

    2017-12-08

    Feast your eyes on Hubble's Megamaser galaxy! Phenomena across the Universe emit radiation spanning the entire electromagnetic spectrum — from high-energy gamma rays, which stream out from the most energetic events in the cosmos, to lower-energy microwaves and radio waves. Microwaves, the very same radiation that can heat up your dinner, are produced by a multitude of astrophysical sources, including strong emitters known as masers (microwave lasers), even stronger emitters with the somewhat villainous name of megamasers and the centers of some galaxies. Especially intense and luminous galactic centers are known as active galactic nuclei. They are in turn thought to be driven by the presence of supermassive black holes, which drag surrounding material inwards and spit out bright jets and radiation as they do so. The two galaxies shown here, imaged by the NASA/ESA Hubble Space Telescope, are named MCG+01-38-004 (the upper, red-tinted one) and MCG+01-38-005 (the lower, blue-tinted one). MCG+01-38-005 (also known as NGC 5765B) is a special kind of megamaser; the galaxy’s active galactic nucleus pumps out huge amounts of energy, which stimulates clouds of surrounding water. Water’s constituent atoms of hydrogen and oxygen are able to absorb some of this energy and re-emit it at specific wavelengths, one of which falls within the microwave regime, invisible to Hubble but detectable by microwave telescopes. MCG+01-38-005 is thus known as a water megamaser! Astronomers can use such objects to probe the fundamental properties of the Universe. The microwave emissions from MCG+01-38-005 were used to calculate a refined value for the Hubble constant, a measure of how fast the Universe is expanding. This constant is named after the astronomer whose observations were responsible for the discovery of the expanding Universe and after whom the Hubble Space Telescope was named, Edwin Hubble.

  17. A time dependent approach to model X-ray and γ-ray light curves of Mrk 421 observed during the flare in February 2010

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Sahayanathan, S.; Sinha, A.; Bhatt, N.; Tickoo, A. K.; Yadav, K. K.; Rannot, R. C.; Chandra, P.; Venugopal, K.; Marandi, P.; Kumar, N.; Goyal, H. C.; Goyal, A.; Agarwal, N. K.; Kothari, M.; Chanchalani, K.; Dhar, V. K.; Chouhan, N.; Bhat, C. K.; Koul, M. K.; Koul, R.

    2017-07-01

    Strong X-ray and γ-ray flares have been detected in February 2010 from the high synchrotron peaked blazar Mrk 421 (z = 0.031). With the motivation of understanding the physics involved in this flaring activity, we study the variability of the source in X-ray and γ-ray energy bands during the period February 10-23, 2010 (MJD 55237-55250). We use near simultaneous X-ray data collected by MAXI, Swift-XRT and γ-ray data collected by Fermi-LAT and TACTIC along with the optical V-band observations by SPOLat Steward Observatory. We observe that the variation in the one day averaged flux from the source during the flare is characterized by fast rise and slow decay. Besides, the TeV γ-ray flux shows a strong correlation with the X-ray flux, suggesting the former to be an outcome of synchrotron self Compton emission process. To model the observed X-ray and γ-ray light curves, we numerically solve the kinetic equation describing the evolution of particle distribution in the emission region. The injection of particle distribution into the emission region, from the putative acceleration region, is assumed to be a time dependent power law. The synchrotron and synchrotron self Compton emission from the evolving particle distribution in the emission region are used to reproduce the X-ray and γ-ray flares successfully. Our study suggests that the flaring activity of Mrk 421 can be an outcome of an efficient acceleration process associated with the increase in underlying non-thermal particle distribution.

  18. Discovery of OH Absorption from a Galaxy at z ∼ 0.05: Implications for Large Surveys with SKA Pathfinders

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Momjian, E.; Srianand, R.; Petitjean, P.; Noterdaeme, P.; Gyanchandani, D.; Sharma, R.; Kulkarni, S.

    2018-06-01

    We present the first detection of OH absorption in diffuse gas at z > 0, along with another eight stringent limits on OH column densities for cold atomic gas in galaxies at 0 < z < 0.4. The absorbing gas detected toward Q0248+430 (z q = 1.313) originates from a tidal tail emanating from a highly star-forming galaxy G0248+430 (z g = 0.0519) at an impact parameter of 15 kpc. The measured column density is N(OH) = (6.3 ± 0.8) × 1013 ≤ft(\\tfrac{{T}ex}}{3.5}\\right)≤ft(\\tfrac{1.0}{{f}cOH}}\\right) cm‑2, where {f}cOH} and T ex are the covering factor and the excitation temperature of the absorbing gas, respectively. In our Galaxy, the column densities of OH in diffuse clouds are of the order of N(OH) ∼ 1013–14 cm‑2. From the incidence (number per unit redshift; n 21) of H I 21 cm absorbers at 0.5 < z < 1 and assuming no redshift evolution, we estimate the incidence of OH absorbers (with log N(OH) > 13.6) to be n OH = {0.008}-0.008+0.018 at z ∼ 0.1. Based on this we expect to detect {10}-10+20 such OH absorbers from the MeerKAT Absorption Line Survey (MALS). Using H I 21 cm and OH 1667 MHz absorption lines detected toward Q0248+430, we estimate (ΔF/F) = (5.2 ± 4.5) × 10‑6, where F\\equiv {g}p{({α }2/μ )}1.57, α is the fine structure constant, μ is the electron–proton mass ratio, and g p is the proton gyromagnetic ratio. This corresponds to Δα/α(z = 0.0519) = (1.7 ± 1.4) × 10‑6, which is among the stringent constraints on the fractional variation of α.

  19. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  20. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  1. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  2. Luminous Blue Compact Galaxies: Probes of galaxy assembly

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy Louann

    The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.

  3. The Most Luminous Object in the Universe: Shrouded Quasar or Proto-Galaxy

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.

    1999-01-01

    We have used ASCA to observe the IRAS source FSC 10214+4724, which is identified with a galaxy at a redshift of 2.286. When first discovered, it was believed to be the most luminous object in the universe. Subsequent HST images have established that it is gravitationally-lensed by a foreground cluster. It is still a very powerful object, but not extraordinarily so. Observations at other wavebands have not established whether it is a dust-shrouded quasar or a young, massive galaxy in the process of formation. Since quasars are strong emitters of hard X-rays, while proto-galaxies would not be, and since the opacity of gas and dust is relatively small in the energy regime probed by ASCA (3 to 30 keV in the galaxy rest frame), we undertook these observations to search for a heavily shrouded quasar that might be invisible at lower energies. However, the observations did not detect any emission from this object. This either means that the galaxy is in fact powered by a starburst or that the putative quasar is located behind a very high column density of absorbing gas (N_H > 10(exp 25)/sq cm), so that not even hard X-rays are transmitted. A hidden quasar should be visible in reflected light in X-ray data of higher sensitivity. Observations with NASA's Chandra X-ray Observatory or ESA's XMM are required to settle the matter. No publication resulted from our null result.

  4. Galaxy NGC 55

    NASA Image and Video Library

    2003-12-10

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04923

  5. Isolated galaxies, pairs, and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G (sup 1) be any galaxy and G (sup 2) be its nearest neighbor at a distance R sub 2. If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G (sup 1) is an isolated galaxy. Let the midpoint of G (sup 1) and G (sup 2) be O sub 2 and r sub 2=R sub 2/2. For the volume V sub 2, defined with the radius r sub 2, the density D sub 2 less than k mu, the galaxy G (sup 2) is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten.

  6. Galaxy bachelors, couples, spouses: Star formation in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Barger, Kathleen; Richstein, Hannah; SDSS-IV/MaNGA

    2017-01-01

    We investigate the star formation activity in three galaxy systems in different stages of interaction to determine how the environment of galaxies affects their star forming ability and potential. These systems include an isolated galaxy, a pair of interacting galaxies, and a pair of merging galaxies. All of the target galaxies in these systems have similar stellar masses and similar radii and are at similar redshifts. We trace the star formation activity over the past 1-2 Gyr using spatially and kinematically resolved H-alpha emission, H-alpha equivalent width, and 4000-Angstrom break maps. This work is based on data from the fourth-generation Sloan Digital Sky Survey (SDSS-IV)/Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), and is part of the Project No.0285 in SDSS-IV.

  7. Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.

    2017-06-01

    In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the

  8. Uncertainties and Systematic Effects on the estimate of stellar masses in high z galaxies

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Fontana, A.; Giallongo, E.; Grazian, A.; Menci, N.; Pentericci, L.; Santini, P.

    2009-05-01

    We discuss the uncertainties and the systematic effects that exist in the estimates of the stellar masses of high redshift galaxies, using broad band photometry, and how they affect the deduced galaxy stellar mass function. We use at this purpose the latest version of the GOODS-MUSIC catalog. In particular, we discuss the impact of different synthetic models, of the assumed initial mass function and of the selection band. Using Chariot & Bruzual 2007 and Maraston 2005 models we find masses lower than those obtained from Bruzual & Chariot 2003 models. In addition, we find a slight trend as a function of the mass itself comparing these two mass determinations with that from Bruzual & Chariot 2003 models. As consequence, the derived galaxy stellar mass functions show diverse shapes, and their slope depends on the assumed models. Despite these differences, the overall results and scenario is observed in all these cases. The masses obtained with the assumption of the Chabrier initial mass function are in average 0.24 dex lower than those from the Salpeter assumption, at all redshifts, causing a shift of galaxy stellar mass function of the same amount. Finally, using a 4.5 μm-selected sample instead of a Ks-selected one, we add a new population of highly absorbed, dusty galaxies at z~=2-3 of relatively low masses, yielding stronger constraints on the slope of the galaxy stellar mass function at lower masses.

  9. Chandra Observations of the Nuclei of Radio Galaxies: 3C 295 and Hydra A

    NASA Technical Reports Server (NTRS)

    Harris, D. E.; McNamara, B. R.; David, L. P.; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    The angular resolution available with Chandra allows us to isolate the X-ray emission from the nucleus of many radio galaxies and obtain their spectra. As expected from unification schemes, spectra so far obtained can best be interpreted as heavily absorbed power laws. We present the spectral parameters so derived for 3C 295 and Hydra A and compare them to data obtained at other wavelengths.

  10. A Bayesian Hierarchical Approach to Galaxy-Galaxy Lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-04-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter halos and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  11. A Bayesian hierarchical approach to galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-07-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter haloes and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  12. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  13. Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white 'bulge' of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise 'red,' old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.

  14. The dwarf galaxy population of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    2015-01-01

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass galaxies as probes for external mechanisms. Here we report on recent and ongoing observational studies of the said clusters with imaging and spectroscopy, as well as on the interpretation of present-day cluster galaxy populations with the aid of cosmological simulations.Multicolor imaging data allow us to identify residual star formation in otherwise red early-type dwarf galaxies, which hold clues to the strength of gas stripping processes. Major-axis spectra and 2D kinematical maps provide insight regarding the amount of rotational support and how much dynamical heating a dwarf galaxy may have experienced. To this end, dedicated N-body simulations that follow the evolution of galaxies since early epochs reveal their path through parameter space, and can be compared to observations in order to understand the time-integrated effect of environmental influence.

  15. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  16. A class of compact dwarf galaxies from disruptive processes in galaxy clusters.

    PubMed

    Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S

    2003-05-29

    Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

  17. Galaxy NGC 247

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a 'hole' in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together.

  18. Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  19. Galaxy And Mass Assembly (GAMA): the signatures of galaxy interactions as viewed from small scale galaxy clustering

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.

    2018-06-01

    Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.

  20. Extinction in SC galaxies

    NASA Astrophysics Data System (ADS)

    Giovanelli, Riccardo; Haynes, Martha P.; Salzer, John J.; Wegner, Gary; da Costa, Luiz N.; Freudling, Wolfram

    1994-06-01

    We analyze the photometric properties of a sample of Sbc-Sc galaxies with known redshifts, single-dish H I profiles, and Charge Coupled Device (CCD) I band images. We derive laws that relate the measured isophotal radius at muI = 23.5, magnitude, scale length, and H I flux to the face-on aspect. We find spiral galaxies to be substantially less transparent than suggested in most previous determinations, but not as opaque as claimed by Valentijn (1990). Regions in the disk farther than two or three scale lengths from the center are close to completely transparent. In addition to statistically derived relations for the inclination dependence of photometric parameters, we present the results of a modeling exercise that utilizes the 'triplex' model of Disney et al. (1989) to obtain upper limits of the disk opacity. Within the framework of that model, and with qualitative consideration of the effects of scattering on extinction, we estimate late spiral disks at I band to have central optical depths tauI(0) less than 5 and dust absorbing layers with scale heights on the order of half that of the stellar component or less. We discuss our results in light of previous determinations of internal extinction relations and point out the substantial impact of internal extinction on the scatter of the Tully-Fisher relation. We also find that the visual diameters by which large catalogs are constructed (UGC, ESO-Uppsala) are nearly proportional to face-on isophotal diameters.

  1. Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536

    NASA Technical Reports Server (NTRS)

    McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael

    2012-01-01

    The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536

  2. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies.

    PubMed

    Falgarone, E; Zwaan, M A; Godard, B; Bergin, E; Ivison, R J; Andreani, P M; Bournaud, F; Bussmann, R S; Elbaz, D; Omont, A; Oteo, I; Walter, F

    2017-08-24

    Starburst galaxies at the peak of cosmic star formation are among the most extreme star-forming engines in the Universe, producing stars over about 100 million years (ref. 2). The star-formation rates of these galaxies, which exceed 100 solar masses per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei. Consequently, starburst galaxies are ideal for studying the interplay between this feedback and the growth of a galaxy. The methylidyne cation, CH + , is a most useful molecule for such studies because it cannot form in cold gas without suprathermal energy input, so its presence indicates dissipation of mechanical energy or strong ultraviolet irradiation. Here we report the detection of CH + (J = 1-0) emission and absorption lines in the spectra of six lensed starburst galaxies at redshifts near 2.5. This line has such a high critical density for excitation that it is emitted only in very dense gas, and is absorbed in low-density gas. We find that the CH + emission lines, which are broader than 1,000 kilometres per second, originate in dense shock waves powered by hot galactic winds. The CH + absorption lines reveal highly turbulent reservoirs of cool (about 100 kelvin), low-density gas, extending far (more than 10 kiloparsecs) outside the starburst galaxies (which have radii of less than 1 kiloparsec). We show that the galactic winds sustain turbulence in the 10-kiloparsec-scale environments of the galaxies, processing these environments into multiphase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star-formation rates. Another mass input is therefore required for these reservoirs, which could be provided by ongoing mergers or cold-stream accretion. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase of a galaxy instead of quenching it.

  3. Galaxy NGC 247

    NASA Image and Video Library

    2003-12-10

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a "hole" in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together. http://photojournal.jpl.nasa.gov/catalog/PIA04922

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T., E-mail: yinoue@astro.isas.jaxa.jp

    The Fermi gamma-ray space telescope has revolutionized our understanding of the cosmic gamma-ray background radiation in the GeV band. However, investigation on the cosmic TeV gamma-ray background radiation still remains sparse. Here, we report the lower bound on the cosmic TeV gamma-ray background spectrum placed by the cumulative flux of individual detected extragalactic TeV sources including blazars, radio galaxies, and starburst galaxies. The current limit on the cosmic TeV gamma-ray background above 0.1 TeV is obtained as 2.8 × 10{sup −8}(E/100 GeV){sup −0.55} exp(−E/2100GeV)[GeV cm{sup −2} s{sup −1} sr{sup −1}] < E{sup 2}dN/dE < 1.1 × 10{sup −7}(E/100 GeV){sup −0.49} [GeV cm{sup −2} s{sup −1} sr{sup −1}], wheremore » the upper bound is set by requirement that the cascade flux from the cosmic TeV gamma-ray background radiation can not exceed the measured cosmic GeV gamma-ray background spectrum. Two nearby blazars, Mrk 421 and Mrk 501, explain ∼70% of the cumulative background flux at 0.8–4 TeV, while extreme blazars start to dominate at higher energies. We also provide the cumulative background flux from each population, i.e., blazars, radio galaxies, and starburst galaxies which will be the minimum requirement for their contribution to the cosmic TeV gamma-ray background radiation.« less

  5. Conditions in the z = 0.692 absorber toward 3CR 286

    NASA Technical Reports Server (NTRS)

    Cohen, Ross D.; Barlow, Thomas A.; Beaver, E. A.; Junkkarinen, Vesa T.; Lyons, Ronald W.; Smith, Harding E.

    1994-01-01

    We present Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) ultraviolet and ground-based optical spectra of the z = 0.692 21 cm absorption system in the quasi-stellar object (QSO) 3CR 286. The strength of the damped Lyman-alpha absorption implies an H I column density, N(H I) approximately 2 x 10(exp 21)/sq cm. We derive a high spin temperature for the H I gas, T(sub s) greater than or approximately equal to 10(exp 3) K, as has been found for other high-redshift 21 cm absorbing systems; at least 80% of the H I is hotter than 1200 K. Curve-of-growth analysis yields Mg(+) and Fe(+) abundances which are approximately 1-2 dex below solar values; the Ca(+) abundance is even lower implying some depletion onto dust grains. The H2 fraction is not high. We speculate that the high inferred T(sub s) for the gas may reflect continuing active star formation at the 5-8 Gyr look-back time to the absorbing galaxy.

  6. Galaxy NGC 300

    NASA Image and Video Library

    2003-12-10

    This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300. http://photojournal.jpl.nasa.gov/catalog/PIA04924

  7. The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2016-12-01

    We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.

  8. Galaxies Detected by the Dwingeloo Obscured Galaxies Survey

    NASA Astrophysics Data System (ADS)

    Rivers, A. J.; Henning, P. A.; Kraan-Korteweg, R. C.

    1999-04-01

    The Dwingeloo Obscured Galaxies Survey (DOGS) is a 21-cm blind survey for galaxies hidden in the northern `Zone of Avoidance' (ZOA): the portion of the optical extragalactic sky which is obscured by dust in the Milky Way. Like the Parkes southern hemisphere ZOA survey, the DOGS project is designed to reveal hidden dynamically important nearby galaxies and to help `fill in the blanks' in the local large scale structure. To date, 36 galaxies have been detected by the Dwingeloo survey; 23 of these were previously unknown [no corresponding sources recorded in the NASA Extragalactic Database (NED)]. Among the interesting detections are three nearby galaxies in the vicinity of NGC 6946 and 11 detections in the Supergalactic plane crossing region. VLA follow-up observations have been conducted for several of the DOGS detections.

  9. Dynamical Characterization of Galaxies at z ˜ 4-6 via Tilted Ring Fitting to ALMA [C II] Observations

    NASA Astrophysics Data System (ADS)

    Jones, G. C.; Carilli, C. L.; Shao, Y.; Wang, R.; Capak, P. L.; Pavesi, R.; Riechers, D. A.; Karim, A.; Neeleman, M.; Walter, F.

    2017-12-01

    Until recently, determining the rotational properties of galaxies in the early universe (z> 4, universe age < 1.5 Gyr) was impractical, with the exception of a few strongly lensed systems. Combining the high resolution and sensitivity of ALMA at (sub-)millimeter wavelengths with the typically high strength of the [C II] 158 μm emission line from galaxies and long-developed dynamical modeling tools raises the possibility of characterizing the gas dynamics in both extreme starburst galaxies and normal star-forming disk galaxies at z˜ 4{--}7. Using a procedure centered around GIPSY’s ROTCUR task, we have fit tilted ring models to some of the best available ALMA [C II] data of a small set of galaxies: the MS galaxies HZ9 and HZ10, the damped Lyα absorber host galaxy ALMA J0817+1351, the submm galaxies AzTEC/C159 and COSMOS J1000+0234, and the quasar host galaxy ULAS J1319+0950. This procedure directly derives rotation curves and dynamical masses as functions of radius for each object. In one case, we present evidence for a dark matter halo of { O }({10}11) {M}⊙ . We present an analysis of the possible velocity dispersions of two sources based on matching simulated observations to the integrated [C II] line profiles. Finally, we test the effects of observation resolution and sensitivity on our results. While the conclusions remain limited at the resolution and signal-to-noise ratios of these observations, the results demonstrate the viability of the modeling tools at high redshift, and the exciting potential for detailed dynamical analysis of the earliest galaxies, as ALMA achieves full observational capabilities.

  10. Quasar feedback revealed by giant molecular outflows

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Maiolino, R.; Piconcelli, E.; Menci, N.; Aussel, H.; Lamastra, A.; Fiore, F.

    2010-07-01

    In the standard scenario for galaxy evolution young star-forming galaxies transform into red bulge-dominated spheroids, where star formation has been quenched. To explain this transformation, a strong negative feedback generated by accretion onto a central super-massive black hole is often invoked. The depletion of gas resulting from quasar-driven outflows should eventually stop star-formation across the host galaxy and lead the black hole to “suicide” by starvation. Direct observational evidence for a major quasar feedback onto the host galaxy is still missing, because outflows previously observed in quasars are generally associated with the ionized component of the gas, which only accounts for a minor fraction of the total gas content, and typically occurrs in the central regions. We used the IRAM PdB Interferometer to observe the CO(1-0) transition in Mrk 231, the closest quasar known. Thanks to the wide band we detected broad wings of the CO line, with velocities of up to 750 km s-1 and spatially resolved on the kpc scale. These broad CO wings trace a giant molecular outflow of about 700 M_⊙/year, far larger than the ongoing star-formation rate (~200 M_⊙/year) observed in the host galaxy. This wind will totally expel the cold gas reservoir in Mrk 231 in about 107 yrs, therefore halting the star-formation activity on the same timescale. The inferred kinetic energy in the molecular outflow is ~1.2 × 1044 erg/s, corresponding to a few percent of the AGN bolometric luminosity, which is very close to the fraction expected by models ascribing quasar feedback to highly supersonic shocks generated by radiatively accelerated nuclear winds. Instead, the contribution by the SNe associated with the starburst fall short by several orders of magnitude to account for the kinetic energy observed in the outflow. The direct observational evidence for quasar feedback reported here provides solid support to the scenarios ascribing the observed properties of local massive

  11. Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Caplar, Neven; Carpineti, Alfredo; Hart, Ross E.; Kaviraj, Sugata; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Nichol, Robert C.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-08-01

    We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post-merger galaxies. We determine the stellar mass functions of the stages that we would expect major-merger-quenched galaxies to pass through on their way from the blue cloud to the red sequence: (1) major merger, (2) post-merger, (3) blue early type, (4) green early type, and (5) red early type. Based on their similar mass function shapes, we conclude that major mergers are likely to form an evolutionary sequence from star formation to quiescence via quenching. Relative to all blue galaxies, the major-merger fraction increases as a function of stellar mass. Major-merger quenching is inconsistent with the mass and environment quenching model. At z˜ 0, major-merger-quenched galaxies are unlikely to constitute the majority of galaxies that transition through the green valley. Furthermore, between z˜ 0-0.5, major-merger-quenched galaxies account for 1%-5% of all quenched galaxies at a given stellar mass. Major galaxy mergers are therefore not a significant quenching pathway, neither at z˜ 0 nor within the last 5 Gyr. The majority of red galaxies must have been quenched through an alternative quenching mechanism that causes a slow blue to red evolution. .

  12. VizieR Online Data Catalog: Swift and NuSTAR obs. of the BL Lac Mrk 421 (Kapanadze+, 2016)

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Dorner, D.; Vercellone, S.; Romano, P.; Aller, H.; Aller, M.; Hughes, P.; Reynolds, M.; Kapanadze, S.; Tabagari, L.

    2017-01-01

    We retrieved the Swift-XRT data from the publicly available archive, maintained by HEASARC. We present the results of X-ray observations of the high-energy peaked BL Lac (HBL) source Mrk421 performed by Swift-XRT and NuSTAR during 2013 January-June. Along with the 0.3-10keV and 3-79keV data obtained with the Swift-XRT and NuSTAR instruments, we have processed and analyzed those obtained with the Ultraviolet-Optical Telescope (UVOT) and Large Area Telescope (LAT) onboard Fermi. We have also used the publicly available light curves from the observations performed with the Burst Alert Telescope (BAT) onboard Swift, Monitor of All Sky X-ray Image (MAXI), MAGIC, First G-APD Cherenkov Telescope (FACT), and the OVRO 40m telescope during the 2013 January-June period to draw conclusions about the interband correlations. (8 data files).

  13. Galaxy-galaxy weak gravitational lensing in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Li, Baojiu; Shirasaki, Masato

    2018-03-01

    We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon f(R) gravity - a leading candidate of non-standard gravity models. For the analysis, we have created mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the f(R) and Λ cold dark matter (ΛCDM) models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the f(R) model predicts an enhancement of the convergence power spectrum by up to ˜ 30 per cent compared to the standard ΛCDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5 per cent on separations above ˜1-2 h-1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy autocorrelations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in f(R) gravity. We find that the galaxy-matter cross-correlation coefficient remains at unity down to ˜2-3 h-1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allows us to break the degeneracy between f(R) gravity and other cosmological parameters such as Ωm and σ8.

  14. Galaxy NGC5474

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101. http://photojournal.jpl.nasa.gov/catalog/PIA04634

  15. The Host Galaxy and Central Engine of the Dwarf Active Galactic Nucleus POX 52

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, Aaron J.; Ho, Luis C.; Rutledge, Robert E.; Greene, Jenny E.

    2008-10-01

    We present new multiwavelength observations of the dwarf Seyfert 1 galaxy POX 52 in order to investigate the properties of the host galaxy and the active nucleus and to examine the mass of its black hole, previously estimated to be ~105 M⊙. HST ACS HRC images show that the host galaxy has a dwarf elliptical morphology (MI = - 18.4 mag, Sérsic index n = 4.3) with no detected disk component or spiral structure, confirming previous results from ground-based imaging. X-ray observations from both Chandra and XMM-Newton show strong (factor of 2) variability over timescales as short as 500 s, as well as a dramatic decrease in the absorbing column density over a 9 month period. We attribute this change to a partial covering absorber, with a 94% covering fraction and NH = 58+ 8.4-9.2 × 1021 cm -2, that moved out of the line of sight in between the XMM-Newton and Chandra observations. Combining these data with observations from the VLA, Spitzer, and archival data from 2MASS and GALEX, we examine the SED of the active nucleus. Its shape is broadly similar to typical radio-quiet quasar SEDs, despite the very low bolometric luminosity of Lbol = 1.3 × 1043 ergs s-1. Finally, we compare black hole mass estimators, including methods based on X-ray variability, and optical scaling relations using the broad Hβ line width and AGN continuum luminosity, finding a range of black hole mass from all methods to be MBH = (2.2-4.2) × 105 M⊙, with an Eddington ratio of Lbol/LEdd ≈ 0.2-0.5.

  16. Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales

    NASA Astrophysics Data System (ADS)

    Patej, Anna

    2017-01-01

    We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We

  17. Galaxy And Mass Assembly (GAMA): the life and times of L★ galaxies

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Liske, J.; Driver, S. P.; Sansom, A. E.; Baldry, I. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Colless, M.; Christodoulou, L.; Drinkwater, M. J.; Grootes, M. W.; Hopkins, A. M.; Kelvin, L. S.; Norberg, P.; Loveday, J.; Phillipps, S.; Sharp, R.; Taylor, E. N.; Tuffs, R. J.

    2013-05-01

    In this work, we investigate in detail the effects the local environment (groups and pairs) has on galaxies with stellar mass similar to the Milky Way (L* galaxies). A volume limited sample of 6150 galaxies are visually classified to determine the emission features, morphological type and presence of a disc. This large sample allows for the significant characteristics of galaxies to be isolated (e.g. stellar mass and group halo mass), and their codependencies determined. We observe that galaxy-galaxy interactions play the most important role in shaping the evolution within a group halo; the main role of halo mass is in gathering the galaxies together to encourage such interactions. Dominant pair galaxies find their overall star formation enhanced when the pair's mass ratio is close to 1; otherwise, we observe the same galaxies as we would in an unpaired system. The minor galaxy in a pair is greatly affected by its companion galaxy, and while the star-forming fraction is always suppressed relative to equivalent stellar mass unpaired galaxies, it becomes lower still when the mass ratio of a pair system increases. We find that, in general, the close galaxy-galaxy interaction rate drops as a function of halo mass for a given amount of stellar mass. We find evidence of a local peak of interactions for Milky Way stellar mass galaxies in Milky Way halo mass groups. Low-mass haloes, and in particular Local Group mass haloes, are an important environment for understanding the typical evolutionary path of a unit of stellar mass. We find compelling evidence for galaxy conformity in both groups and pairs, where morphological type conformity is dominant in groups, and emission class conformity is dominant in pairs. This suggests that group scale conformity is the result of many galaxy encounters over an extended period of time, while pair conformity is a fairly instantaneous response to a transitory interaction.

  18. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  19. Unravelling Galaxy Components

    NASA Astrophysics Data System (ADS)

    Kennedy, Rebecca

    2017-06-01

    This thesis aims to understand more about the developmental histories of galaxies and their internal components by studying the wavelength dependence of their spatial structure. I use a large sample of low-redshift galaxies with optical–near-IR imaging from the GAMA survey, which have been fitted with Sérsic and Sérsic + exponential functions in nine wavebands simultaneously, using software developed by the MegaMorph project. The first section of this thesis examines how the sizes and radial profiles of galaxies vary with wavelength. To quantify the wavelength dependence of effective radius I use the ratio, R, of measurements in two restframe bands. The dependence of Sérsic index on wavelength, N, is computed correspondingly. I show that accounting for different redshift and luminosity selections partly reconciles variations between several recent studies. Dividing galaxies by visual morphology confirms the behaviour inferred using morphological proxies, although our quantitative measurements allow me to study larger and fainter samples. I then demonstrate that varying dust opacity and disc inclination can account for features of the joint distribution of R and N for late-type galaxies. However, dust does not appear to explain the highest values of R and N. The bulge-disc nature of galaxies must also contribute to the wavelength-dependence of their structure. The second section of this thesis studies radial colour gradients across the galaxy population. I use the multi-wavelength information provided by MegaMorph analysis of galaxy light profiles to calculate intrinsic colour gradients, and divide into six subsamples split by overall Sérsic index (n) and galaxy colour. I find a bimodality in the colour gradients of high- and low-n galaxies in all wavebands which varies with overall galaxy luminosity. Global trends in colour gradients therefore result from combining the contrasting behaviour of a number of different galaxy populations. The ubiquity of strong

  20. wft4galaxy: a workflow testing tool for galaxy.

    PubMed

    Piras, Marco Enrico; Pireddu, Luca; Zanetti, Gianluigi

    2017-12-01

    Workflow managers for scientific analysis provide a high-level programming platform facilitating standardization, automation, collaboration and access to sophisticated computing resources. The Galaxy workflow manager provides a prime example of this type of platform. As compositions of simpler tools, workflows effectively comprise specialized computer programs implementing often very complex analysis procedures. To date, no simple way to automatically test Galaxy workflows and ensure their correctness has appeared in the literature. With wft4galaxy we offer a tool to bring automated testing to Galaxy workflows, making it feasible to bring continuous integration to their development and ensuring that defects are detected promptly. wft4galaxy can be easily installed as a regular Python program or launched directly as a Docker container-the latter reducing installation effort to a minimum. Available at https://github.com/phnmnl/wft4galaxy under the Academic Free License v3.0. marcoenrico.piras@crs4.it. © The Author 2017. Published by Oxford University Press.

  1. Submillimeter Galaxy Number Counts and Magnification by Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark; Aguirre, James

    2010-07-01

    We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 μm-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 1013-1015 M sun. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clusters (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 μm lie at redshifts greater than 2.

  2. Rebuilding Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  3. The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every "core" galaxy?

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Capetti, A.

    2006-02-01

    This is the second of a series of three papers exploring the connection between the multiwavelength properties of AGN in nearby early-type galaxies and the characteristics of their hosts. We selected two samples with 5 GHz VLA radio flux measurements down to 1 mJy, reaching levels of radio luminosity as low as 1036 erg s-1. In Paper I we presented a study of the surface brightness profiles for the 65 objects with available archival HST images out of the 116 radio-detected galaxies. We classified early-type galaxies into "core" and "power-law" galaxies, discriminating on the basis of the slope of their nuclear brightness profiles, following the Nukers scheme. Here we focus on the 29 core galaxies (hereafter CoreG). We used HST and Chandra data to isolate their optical and X-ray nuclear emission. The CoreG invariably host radio-loud nuclei, with an average radio-loudness parameter of Log R = L5 {GHz} / LB ˜ 3.6. The optical and X-ray nuclear luminosities correlate with the radio-core power, smoothly extending the analogous correlations already found for low luminosity radio-galaxies (LLRG) toward even lower power, by a factor of ˜ 1000, covering a combined range of 6 orders of magnitude. This supports the interpretation of a common non-thermal origin of the nuclear emission also for CoreG. The luminosities of the nuclear sources, most likely dominated by jet emission, set firm upper limits, as low as L/L_Edd ˜ 10-9 in both the optical and X-ray band, on any emission from the accretion process. The similarity of CoreG and LLRG when considering the distributions host galaxies luminosities and black hole masses, as well as of the surface brightness profiles, indicates that they are drawn from the same population of early-type galaxies. LLRG represent only the tip of the iceberg associated with (relatively) high activity levels, with CoreG forming the bulk of the population. We do not find any relationship between radio-power and black hole mass. A minimum black hole

  4. Radio Galaxy Zoo: A Search for Hybrid Morphology Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Kapińska, A. D.; Terentev, I.; Wong, O. I.; Shabala, S. S.; Andernach, H.; Rudnick, L.; Storer, L.; Banfield, J. K.; Willett, K. W.; de Gasperin, F.; Lintott, C. J.; López-Sánchez, Á. R.; Middelberg, E.; Norris, R. P.; Schawinski, K.; Seymour, N.; Simmons, B.

    2017-12-01

    Hybrid morphology radio sources (HyMoRS) are a rare type of radio galaxy that display different Fanaroff-Riley classes on opposite sides of their nuclei. To enhance the statistical analysis of HyMoRS, we embarked on a large-scale search of these sources within the international citizen science project, Radio Galaxy Zoo (RGZ). Here, we present 25 new candidate hybrid morphology radio galaxies. Our selected candidates are moderate power radio galaxies ({L}{median}=4.7× {10}24 W Hz-1 sr-1) at redshifts 0.14< z< 1.0. Hosts of nine candidates have spectroscopic observations, of which six are classified as quasars, one as high- and two as low-excitation galaxies. Two candidate HyMoRS are giant (> 1 Mpc) radio galaxies, one resides at the center of a galaxy cluster, and one is hosted by a rare green bean galaxy. Although the origin of the hybrid morphology radio galaxies is still unclear, this type of radio source starts depicting itself as a rather diverse class. We discuss hybrid radio morphology formation in terms of the radio source environment (nurture) and intrinsically occurring phenomena (nature; activity cessation and amplification), showing that these peculiar radio galaxies can be formed by both mechanisms. While high angular resolution follow-up observations are still necessary to confirm our candidates, we demonstrate the efficacy of the RGZ in the pre-selection of these sources from all-sky radio surveys, and report the reliability of citizen scientists in identifying and classifying complex radio sources.

  5. Galaxy and Mass Assembly (GAMA): small-scale anisotropic galaxy clustering and the pairwise velocity dispersion of galaxies

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Christodoulou, L.; Norberg, P.; Peacock, J. A.; Baldry, I. K.; Bland-Hawthorn, J.; Brown, M. J. I.; Colless, M.; Driver, S. P.; Holwerda, B. W.; Hopkins, A. M.; Kafle, P. R.; Liske, J.; Lopez-Sanchez, A. R.; Taylor, E. N.

    2018-03-01

    The galaxy pairwise velocity dispersion (PVD) can provide important tests of non-standard gravity and galaxy formation models. We describe measurements of the PVD of galaxies in the Galaxy and Mass Assembly (GAMA) survey as a function of projected separation and galaxy luminosity. Due to the faint magnitude limit (r < 19.8) and highly complete spectroscopic sampling of the GAMA survey, we are able to reliably measure the PVD to smaller scales (r⊥ = 0.01 h - 1 Mpc) than previous work. The measured PVD at projected separations r⊥ ≲ 1 h - 1 Mpc increases near monotonically with increasing luminosity from σ12 ≈ 200 km s - 1 at Mr = -17 mag to σ12 ≈ 600 km s - 1 at Mr ≈ -22 mag. Analysis of the Gonzalez-Perez et al. (2014) GALFORM semi-analytic model yields no such trend of PVD with luminosity: the model overpredicts the PVD for faint galaxies. This is most likely a result of the model placing too many low-luminosity galaxies in massive haloes.

  6. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  7. The Ultra-Luminous X-ray Source Population from the Chandra Archive of Galaxies

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Ghosh, Kajal K.; Tennant, Allen F.; Wu, Kinwah

    2004-01-01

    One hundred fifty-four discrete non-nuclear Ultra-Luminous X-ray (ULX) sources, with spectroscopically-determined intrinsic X-ray luminosities greater than 1 e39 ergs/s, are identified in 82 galaxies observed with Chandra's Advanced CCD Imaging Spectrometer. Source positions, X-ray luminosities, and spectral and timing characteristics are tabulated. Statistical comparisons between these X-ray properties and those of the weaker discrete sources in the same fields (mainly neutron star and stellar-mass black hole binaries) are made. Sources above approximately le38 ergs per second display similar spatial, spectral, color, and variability distributions. In particular, there is no compelling evidence in the sample for a new and distinct class of X-ray object such as the intermediate-mass black holes. 83% of ULX candidates have spectra that can be described as absorbed power laws with index = 1.74 and column density = 2.24e21 l per square centimeter, or approximately 5 times the average Galactic column. About 20% of the ULX's have much steeper indices indicative of a soft, and likely thermal, spectrum. The locations of ULXs in their host galaxies are strongly peaked towards their galaxy centers. The deprojected radial distribution of the ULX candidates is somewhat steeper than an exponential disk, indistinguishable from that of the weaker sources. About 5--15% of ULX candidates are variable during the Chandra observations (which average 39.5 ks). Comparison of the cumulative X-ray luminosity functions of the ULXs to Chandra Deep Field results suggests approximately 25% of the sources may be background objects including 14% of the ULX candidates in the sample of spiral galaxies and 44% of those in elliptical galaxies implying the elliptical galaxy ULX population is severely compromised by background active galactic nuclei. Correlations with host galaxy properties confirm the number and total X-ray luminosity of the ULXs are associated with recent star formation

  8. The Surprising Absence of Absorption in the Far-ultraviolet Spectrum of Mrk 231

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Trippe, M.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Sembach, K. R.; Krug, H.; Teng, Stacy H.; hide

    2013-01-01

    Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering approx. 1150-1470A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (< or approx.2% of predictions based on H(alpha)), broad (> or approx.10,000 km/s at the base), and highly blueshifted (centroid at approx. 3500 km/s) Ly(aplpha) emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F(sub lambda) Alpha Lambda(sup 1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly(alpha) emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (Av approx. 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.

  9. Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS

    NASA Astrophysics Data System (ADS)

    Simmons, B. D.; Lintott, Chris; Willett, Kyle W.; Masters, Karen L.; Kartaltepe, Jeyhan S.; Häußler, Boris; Kaviraj, Sugata; Krawczyk, Coleman; Kruk, S. J.; McIntosh, Daniel H.; Smethurst, R. J.; Nichol, Robert C.; Scarlata, Claudia; Schawinski, Kevin; Conselice, Christopher J.; Almaini, Omar; Ferguson, Henry C.; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M.; Mortlock, Alice; Newman, Jeffrey A.; Bamford, Steven P.; Grogin, N. A.; Lucas, Ray A.; Hathi, Nimish P.; McGrath, Elizabeth; Peth, Michael; Pforr, Janine; Rizer, Zachary; Wuyts, Stijn; Barro, Guillermo; Bell, Eric F.; Castellano, Marco; Dahlen, Tomas; Dekel, Avishai; Ownsworth, Jamie; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grützbauch, Ruth; Koo, David; Lotz, Jennifer; Mobasher, Bahram; Mozena, Mark; Salvato, Mara; Wiklind, Tommy

    2017-02-01

    We present quantified visual morphologies of approximately 48 000 galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. 90 per cent of galaxies have z ≤ 3 and are observed in rest-frame optical wavelengths by CANDELS. Each galaxy received an average of 40 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly outlying classifications. After analysing the effect of varying image depth on reported classifications, we also provide depth-corrected classifications which both preserve the information in the deepest observations and also enable the use of classifications at comparable depths across the full survey. Comparing the Galaxy Zoo classifications to previous classifications of the same galaxies shows very good agreement; for some applications, the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of `smooth' galaxies with parametric morphologies to select a sample of featureless discs at 1 ≤ z ≤ 3, which may represent a dynamically warmer progenitor population to the settled disc galaxies seen at later epochs.

  10. Measuring Extinction in Local Group Galaxies Using Background Galaxies

    NASA Astrophysics Data System (ADS)

    Wyder, T. K.; Hodge, P. W.

    1999-05-01

    Knowledge of the distribution and quantity of dust in galaxies is important for understanding their structure and evolution. The goal of our research is to measure the total extinction through Local Group galaxies using measured properties of background galaxies. Our method relies on the SExtractor software as an objective and automated method of detecting background galaxies. In an initial test, we have explored two WFPC2 fields in the SMC and two in M31 obtained from the HST archives. The two pointings in the SMC are fields around the open clusters L31 and B83 while the two M31 fields target the globular clusters G1 and G170. Except for the G1 observations of M31, the fields chosen are very crowded (even when observed with HST) and we chose them as a particularly stringent test of the method. We performed several experiments using a series of completeness tests that involved superimposing comparison fields, adjusted to the equivalent exposure time, from the HST Medium-Deep and Groth-Westphal surveys. These tests showed that for crowded fields, such as the two in the core of the SMC and the one in the bulge of M31, this automated method of detecting galaxies can be completely dominated by the effects of crowding. For these fields, only a small fraction of the added galaxies was recovered. However, in the outlying G1 field in M31, almost all of the added galaxies were recovered. The numbers of actual background galaxies in this field are consistent with zero extinction. As a follow-up experiment, we used image processing techniques to suppress stellar objects while enhancing objects with non-stellar, more gradual luminosity profiles. This method yielded significant numbers of background galaxies in even the most crowded fields, which we are now analyzing to determine the total extinction and reddening caused by the foreground galaxy.

  11. Line asymmetry in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Bautista, Manuel; Kallman, Timothy

    2005-01-01

    We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.

  12. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    Astronomers have caught multiple massive galaxies in the act of merging about 4 billion years ago. This discovery, made possible by combining the power of the best ground- and space-based telescopes, uniquely supports the favoured theory of how galaxies form. ESO PR Photo 24/08 ESO PR Photo 24/08 Merging Galaxies in Groups How do galaxies form? The most widely accepted answer to this fundamental question is the model of 'hierarchical formation', a step-wise process in which small galaxies merge to build larger ones. One can think of the galaxies forming in a similar way to how streams merge to form rivers, and how these rivers, in turn, merge to form an even larger river. This theoretical model predicts that massive galaxies grow through many merging events in their lifetime. But when did their cosmological growth spurts finish? When did the most massive galaxies get most of their mass? To answer these questions, astronomers study massive galaxies in clusters, the cosmological equivalent of cities filled with galaxies. "Whether the brightest galaxies in clusters grew substantially in the last few billion years is intensely debated. Our observations show that in this time, these galaxies have increased their mass by 50%," says Kim-Vy Tran from the University of Zürich, Switzerland, who led the research. The astronomers made use of a large ensemble of telescopes and instruments, including ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, to study in great detail galaxies located 4 billion light-years away. These galaxies lie in an extraordinary system made of four galaxy groups that will assemble into a cluster. In particular, the team took images with VIMOS and spectra with FORS2, both instruments on the VLT. From these and other observations, the astronomers could identify a total of 198 galaxies belonging to these four groups. The brightest galaxies in each group contain between 100 and 1000 billion of stars, a property that makes them comparable

  13. Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Young; Park, Changbom; Kim, Juhan; Gott, J. Richard, III; Weinberg, David H.; Vogeley, Michael S.; Kim, Sungsoo S.; SDSS Collaboration

    2010-09-01

    We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr < -20.19 enables us to measure the genus curve with an amplitude of G = 378 at 6 h -1 Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10 h -1 Mpc reveals a mild scale dependence for the shift (Δν) and void abundance (AV ) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter AV depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a ΛCDM universe to generate mock galaxies: the halo-galaxy one-to-one correspondence model, the halo occupation distribution model, and three implementations of semi-analytic models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color dependence are usually correct in sign but incorrect in magnitude. Our topology tests indicate that, in

  14. SUBMILLIMETER GALAXY NUMBER COUNTS AND MAGNIFICATION BY GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark

    2010-07-01

    We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 {mu}m-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 10{sup 13}-10{sup 15} M{sub sun}. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clustersmore » (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 {mu}m lie at redshifts greater than 2.« less

  15. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  16. Uv Spectroscopy of Low-Redshift Active Galaxies -- Cyc 4

    NASA Astrophysics Data System (ADS)

    Boggess, Albert

    1994-01-01

    FOS will be used to measure the ultraviolet spectrum of active galaxies. Complementary and simultaneous visual and infrared data will also be obtained. The profile of the emission lines will provide information on the broadening mechanism and dynamics of the emitting regions. Comparison of the profile and radial velocity of the emission lines produced by species of different ioni- zation potential will allow the study of the thermal and density stratification of the emitting regions. The degree of asymmetry of lines at different wave- lengths will allow the absorbing material be identified and located. The ratio of the UV to visible lines, such as those for O I and He II will be used to estimate the reddening along the line of sight. Ratio of emission line fluxes will be compared with models in order to derive the ionization mechanism, elec- tron temperature and density, and chemical composition of the emitting gas. The emission line properties of low luminosity will be compared with those of high luminosity objects in order to investigate the covering factor and evolutionary effects. The continumm spectrum from the UV to the IR will be used to establish the emission mechanism and the nature and luminosity of the energy source. The weak absorption lines will be used to establish the physical conditions and the chemical composition of the gas in: our Galaxy, intergalactic medium and the parent galaxy. Absorption produced by broad line clouds will give information on cloud motion and covering factor.

  17. Galaxy-galaxy and galaxy-cluster lensing with the SDSS and FIRST surveys

    NASA Astrophysics Data System (ADS)

    Demetroullas, C.; Brown, M. L.

    2018-01-01

    We perform a galaxy-galaxy lensing study by correlating the shapes of ∼2.7 × 105 galaxies selected from the VLA FIRST (Faint Images of the Radio Sky at Twenty centimetres) radio survey with the positions of ∼38.5 million Sloan Digital Sky Survey (SDSS) galaxies, ∼132 000 Brightest Cluster Galaxies (BCGs) and ∼78 000 SDSS galaxies that are also detected in the VLA FIRST survey. The measurements are conducted on angular scales θ ≲ 1200 arcsec. On scales θ ≲ 200 arcsec, we find that the measurements are corrupted by residual systematic effects associated with the instrumental beam of the VLA data. Using simulations, we show that we can successfully apply a correction for these effects. Using the three lens samples (the SDSS DR10 sample, the BCG sample and the SDSS-FIRST matched object sample), we measure a tangential shear signal that is inconsistent with 0 at the 10.2σ, 3.8σ and 9σ levels, respectively. Fitting an NFW model to the detected signals, we find that the ensemble mass profile of the BCG sample agrees with the values in the literature. However, the mass profiles of the SDSS DR10 and the SDSS-FIRST matched object samples are found to be shallower and steeper than results in the literature, respectively. The best-fitting Virial masses for the SDSS DR10, BCG and SDSS-FIRST matched samples, derived using an NFW model and allowing for a varying concentration factor, are M_{200}^SDSS-DR10 = (1.2 ± 0.4) × 10^{12} M_{⊙}, M_{200}^BCG = (1.4 ± 1.3) × 10^{13} M_{⊙} and M_{200}^SDSS-FIRST =8.0 ± 4.2 × 10^{13} M_{⊙}, respectively. These results are in good agreement (within ∼2σ) with values in the literature. Our findings suggest that for galaxies to be bright both in the radio and in the optical, they must be embedded in very dense environment on scales R ≲ 1 Mpc.

  18. Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population

    NASA Astrophysics Data System (ADS)

    Law-Smith, Jamie; Ramirez-Ruiz, Enrico; Ellison, Sara L.; Foley, Ryan J.

    2017-11-01

    We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ˜500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong active galactic nucleus presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ˜4 (from ˜×100-190 to ˜×25-48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, “typical” galaxies. In particular, TDE host galaxies tend to live in or near the “green valley” between star-forming and passive galaxies, and have bluer bulge colors ({{Δ }}(g-r)≈ 0.3 mag), lower half-light surface brightnesses (by ˜1 mag/arcsec2), higher Sérsic indices ({{Δ }}{n}{{g}}≈ 3), and higher bulge-to-total-light ratios ({{Δ }}B/T≈ 0.5) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sérsic indices and B/T fractions—on average in the top 10% of galaxies of the same BH mass—suggesting a higher nuclear stellar density. We identify a region in the Sérsic index and BH mass parameter space that contains ˜2% of our reference catalog galaxies but ≥slant 60 % of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.

  19. Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses

    NASA Astrophysics Data System (ADS)

    Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.

    2012-03-01

    Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and

  20. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Technical Reports Server (NTRS)

    Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; hide

    2014-01-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  1. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Toft, S.; Smolčić, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; Wuyts, S.; Sanders, D.; Man, A. W. S.; Lutz, D.; Staguhn, J.; Berta, S.; Mccracken, H.; Krpan, J.; Riechers, D.

    2014-02-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42^{+40}_{-29} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  2. The formation of galaxies

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Silk, J.

    1983-01-01

    Current models of galaxy formation are examined in a review of recent observational and theoretical studies. Observational data on elliptical galaxies, disk galaxies, luminosity functions, clustering, and angular fluctuations in the cosmic microwave background are summarized. Theoretical aspects discussed include the origin and early evolution of small fluctuations, matter and radiation fluctuations, the formation of large-scale structure, dissipationless galaxy formation, galaxy mergers, dissipational galaxy formation, and the implications of particle physics (GUTs, massive neutrinos, and gravitinos) for cosmology.

  3. On the relation of optical obscuration and X-ray absorption in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Burtscher, L.; Davies, R. I.; Graciá-Carpio, J.; Koss, M. J.; Lin, M.-Y.; Lutz, D.; Nandra, P.; Netzer, H.; Orban de Xivry, G.; Ricci, C.; Rosario, D. J.; Veilleux, S.; Contursi, A.; Genzel, R.; Schnorr-Müller, A.; Sternberg, A.; Sturm, E.; Tacconi, L. J.

    2016-02-01

    The optical classification of a Seyfert galaxy and whether it is considered X-ray absorbed are often used interchangeably. There are many borderline cases, however, and also numerous examples where the optical and X-ray classifications appear to be in disagreement. In this article we revisit the relation between optical obscuration and X-ray absorption in active galactic nuclei (AGNs). We make use of our "dust colour" method to derive the optical obscuration AV, and consistently estimated X-ray absorbing columns using 0.3-150 keV spectral energy distributions. We also take into account the variable nature of the neutral gas column NH and derive the Seyfert subclasses of all our objects in a consistent way. We show in a sample of 25 local, hard-X-ray detected Seyfert galaxies (log LX/ (erg / s) ≈ 41.5-43.5) that there can actually be a good agreement between optical and X-ray classification. If Seyfert types 1.8 and 1.9 are considered unobscured, the threshold between X-ray unabsorbed and absorbed should be chosen at a column NH = 1022.3 cm-2 to be consistent with the optical classification. We find that NH is related to AV and that the NH/AV ratio is approximately Galactic or higher in all sources, as indicated previously. However, in several objects we also see that deviations from the Galactic ratio are only due to a variable X-ray column, showing that (1) deviations from the Galactic NH/AV can be simply explained by dust-free neutral gas within the broad-line region in some sources; that (2) the dust properties in AGNs can be similar to Galactic dust and that (3) the dust colour method is a robust way to estimate the optical extinction towards the sublimation radius in all but the most obscured AGNs.

  4. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  5. HIFI Spectroscopy of H2O Submillimeter Lines in Nuclei of Actively Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Liu, L.; Weiß, A.; Perez-Beaupuits, J. P.; Güsten, R.; Liu, D.; Gao, Y.; Menten, K. M.; van der Werf, P.; Israel, F. P.; Harris, A.; Martin-Pintado, J.; Requena-Torres, M. A.; Stutzki, J.

    2017-09-01

    We present a systematic survey of multiple velocity-resolved H2O spectra using Herschel/Heterodyne Instrument for the Far Infrared (HIFI) toward nine nearby actively star-forming galaxies. The ground-state and low-excitation lines (E up ≤ 130 K) show profiles with emission and absorption blended together, while absorption-free medium-excitation lines (130 K ≤ E up ≤ 350 K) typically display line shapes similar to CO. We analyze the HIFI observation together with archival SPIRE/PACS H2O data using a state-of-the-art 3D radiative transfer code that includes the interaction between continuum and line emission. The water excitation models are combined with information on the dust and CO spectral line energy distribution to determine the physical structure of the interstellar medium (ISM). We identify two ISM components that are common to all galaxies: a warm ({T}{dust}˜ 40{--}70 K), dense (n({{H}})˜ {10}5{--}{10}6 {{cm}}-3) phase that dominates the emission of medium-excitation H2O lines. This gas phase also dominates the far-IR emission and the CO intensities for {J}{up}> 8. In addition, a cold ({T}{dust}˜ 20{--}30 K), dense (n({{H}})˜ {10}4{--}{10}5 {{cm}}-3), more extended phase is present. It outputs the emission in the low-excitation H2O lines and typically also produces the prominent line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk 231) an even hotter and more compact (R s ≤ 100 pc) region is present, which is possibly linked to AGN activity. We find that collisions dominate the water excitation in the cold gas and for lines with {E}{up}≤slant 300 K and {E}{up}≤slant 800 K in the warm and hot component, respectively. Higher-energy levels are mainly excited by IR pumping.

  6. Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations

    NASA Astrophysics Data System (ADS)

    Wijesinghe, D. B.; Hopkins, A. M.; Brough, S.; Taylor, E. N.; Norberg, P.; Bauer, A.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S.; Driver, S.; Grootes, M. W.; Jones, D. H.; Kelvin, L.; Loveday, J.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Sharp, R.; Baldry, I.; Sadler, E. M.; Liske, J.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Gunawardhana, M.; Meyer, M.; Parkinson, H.; Drinkwater, M. J.; Peacock, J.; Tuffs, R.

    2012-07-01

    We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < -17.8. We investigate the known SFR-density relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFR-density trend is only visible when we include the passive galaxy population along with the star-forming population. This SFR-density relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHα on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a 'star-forming' sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHα with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFR-density relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode.

  7. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less

  8. Experimenting with galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1992-01-01

    A study to demonstrate how the dynamics of galaxies may be investigated through the creation of galaxies within a computer model is presented. The numerical technique for simulating galaxies is shown to be both highly efficient and highly robust. Consideration is given to the anatomy of a galaxy, the gravitational N-body problem, numerical approaches to the N-body problem, use of the Poisson equation, and the symplectic integrator.

  9. Galaxy NGC5962

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5962 on June 7, 2003. This spiral galaxy is located 90 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04635

  10. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    DOE PAGES

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; ...

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. Wemore » find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r -.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.« less

  11. The metal enrichment of passive galaxies in cosmological simulations of galaxy formation

    NASA Astrophysics Data System (ADS)

    Okamoto, Takashi; Nagashima, Masahiro; Lacey, Cedric G.; Frenk, Carlos S.

    2017-02-01

    Massive early-type galaxies have higher metallicities and higher ratios of α elements to iron than their less massive counterparts. Reproducing these correlations has long been a problem for hierarchical galaxy formation theory, both in semi-analytic models and cosmological hydrodynamic simulations. We show that a simulation in which gas cooling in massive dark haloes is quenched by radio-mode active galactic nuclei (AGNs) feedback naturally reproduces the observed trend between α/Fe and the velocity dispersion of galaxies, σ. The quenching occurs earlier for more massive galaxies. Consequently, these galaxies complete their star formation before α/Fe is diluted by the contribution from Type Ia supernovae. For galaxies more massive than ˜1011 M⊙, whose α/Fe correlates positively with stellar mass, we find an inversely correlated mass-metallicity relation. This is a common problem in simulations in which star formation in massive galaxies is quenched either by quasar- or radio-mode AGN feedback. The early suppression of gas cooling in progenitors of massive galaxies prevents them from recapturing enriched gas ejected as winds. Simultaneously reproducing the [α/Fe]-σ relation and the mass-metallicity relation is, thus, difficult in the current framework of galaxy formation.

  12. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  13. Deep infrared galaxies

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew; Houck, J. R.; Hacking, Perry B.

    1992-01-01

    High signal-to-noise ratio optical spectra of 17 infrared-bright emission-line galaxies near the north ecliptic pole are presented. Reddening-corrected line ratios forbidden O III 5007/H-beta, N II 6583/H-alpha, S II (6716 + 6731)/H-alpha, and O I 6300/H-alpha are used to discriminate between candidate energy generation mechanisms in each galaxy. These criteria have frequently been applied to optically selected samples of galaxies in the past, but this is the first time they have been applied to a set of faint flux-limited infrared-selected objects. The analysis indicates the sample contains seven starburst galaxies and three (AGN). However, seven galaxies in the present sample elude the classification scheme based on these line ratios. It is concluded that a two-component (starburst plus AGN) model for energy generation is inadequate for infrared galaxies.

  14. Galaxy And Mass Assembly (GAMA): The M-Z relation for galaxy groups

    NASA Astrophysics Data System (ADS)

    Lara-López, M. A.; Hopkins, A. M.; Robotham, A.; Owers, M. S.; Colless, M.; Brough, S.; Norberg, P.; Steele, O.; Taylor, E. N.; Thomas, D.

    2013-04-01

    The stellar mass and metallicity are among the fundamental parameters of galaxies. An understanding of the interplay between those properties as well as their environmental dependence will give us a general picture of the physics and feedback processes ongoing in groups of galaxies. We study the relationships and environmental dependencies between the stellar mass, and gas metallicity for more than 1900 galaxies in groups up to redshift 0.35 using the Galaxy And Mass Assembly (GAMA) survey. Using a control sample of more than 28 000 star-forming field galaxies, we find evidence for a decrement of the gas metallicity for galaxies in groups.

  15. Spatially Resolved Patchy Lyα Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew B.; Sharon, Keren; Acharyya, Ayan; Gladders, Michael D.; Rigby, Jane R.; Bian, Fuyan; Bordoloi, Rongmon; Runnoe, Jessie; Dahle, Hakon; Kewley, Lisa; Florian, Michael; Johnson, Traci; Paterno-Mahler, Rachel

    2017-08-01

    We report the detection of extended Lyα emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Lyα in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ˜200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Lyα emission to its physical origin on one side of the host galaxy at radii ˜0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyα and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyα, host galaxy Lyα, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  16. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew B.; Bordoloi, Rongmon; Sharon, Keren

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission tomore » its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.« less

  17. Executing SADI services in Galaxy.

    PubMed

    Aranguren, Mikel Egaña; González, Alejandro Rodríguez; Wilkinson, Mark D

    2014-01-01

    In recent years Galaxy has become a popular workflow management system in bioinformatics, due to its ease of installation, use and extension. The availability of Semantic Web-oriented tools in Galaxy, however, is limited. This is also the case for Semantic Web Services such as those provided by the SADI project, i.e. services that consume and produce RDF. Here we present SADI-Galaxy, a tool generator that deploys selected SADI Services as typical Galaxy tools. SADI-Galaxy is a Galaxy tool generator: through SADI-Galaxy, any SADI-compliant service becomes a Galaxy tool that can participate in other out-standing features of Galaxy such as data storage, history, workflow creation, and publication. Galaxy can also be used to execute and combine SADI services as it does with other Galaxy tools. Finally, we have semi-automated the packing and unpacking of data into RDF such that other Galaxy tools can easily be combined with SADI services, plugging the rich SADI Semantic Web Service environment into the popular Galaxy ecosystem. SADI-Galaxy bridges the gap between Galaxy, an easy to use but "static" workflow system with a wide user-base, and SADI, a sophisticated, semantic, discovery-based framework for Web Services, thus benefiting both user communities.

  18. Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Nakajima, R.; Seljak, U.; Hirata, C. M.

    2012-10-01

    In this paper, we measure the optical-to-virial velocity ratios Vopt/V200c of disc galaxies in the Sloan Digital Sky Survey (SDSS) at a mean redshift of = 0.07 and with stellar masses 109 < M* < 1011 M⊙. Vopt/V200c, the ratio of the circular velocity measured at the optical radius of the disc (˜10 kpc) to that at the virial radius of the dark matter halo (˜150 kpc), is a powerful observational constraint on disc galaxy formation. It links galaxies to their dark matter haloes dynamically and constrains the total mass profile of disc galaxies over an order of magnitude in length scale. For this measurement, we combine Vopt derived from the Tully-Fisher relation (TFR) from Reyes et al. with V200c derived from halo masses measured with galaxy-galaxy lensing. In anticipation of this combination, we use similarly selected galaxy samples for both the TFR and lensing analysis. For three M* bins with lensing-weighted mean stellar masses of 0.6, 2.7 and 6.5 × 1010 M⊙, we find halo-to-stellar mass ratios M200c/M* = 41, 23 and 26, with 1σ statistical uncertainties of around 0.1 dex, and Vopt/V200c = 1.27 ± 0.08, 1.39 ± 0.06 and 1.27 ± 0.08 (1σ), respectively. Our results suggest that the dark matter and baryonic contributions to the mass within the optical radius are comparable, if the dark matter halo profile has not been significantly modified by baryons. The results obtained in this work will serve as inputs to and constraints on disc galaxy formation models, which will be explored in future work. Finally, we note that this paper presents a new and improved galaxy shape catalogue for weak lensing that covers the full SDSS Data Release 7 footprint.

  19. Galaxy Distribution in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Yachi, S.; Habe, A.

    beta-discrepancy have been pointed out from comparison of optical and X-ray observations of clusters of galaxies. To examine physical reason of beta-discrepancy, we use N-body simulation which contains two components, dark particles and galaxies which are identified by using adaptive-linking friend of friend technique at a certain red-shift. The gas component is not included here, since the gas distribution follows the dark matter distribution in dark halos (Jubio F. Navarro, Carlos S. Frenk and Simon D. M. White 1995). We find that the galaxy distribution follows the dark matter distribution, therefore beta-discrepancy does not exist, and this result is consistent with the interpretation of the beta-discrepancy by Bahcall and Lubin (1994), which was based on recent observation.

  20. The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies

    NASA Astrophysics Data System (ADS)

    Foster, C.; van de Sande, J.; D'Eugenio, F.; Cortese, L.; McDermid, R. M.; Bland-Hawthorn, J.; Brough, S.; Bryant, J.; Croom, S. M.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Scott, N.; Taranu, D. S.; Tonini, C.; Zafar, T.

    2017-11-01

    Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically selected samples of galaxies is inferred. We implement an efficient and optimized algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS3D data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the 'spin' parameter proxy λ _{R_e}. In particular, low-spin systems have a higher occurrence of triaxiality, while high-spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high-spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multimerger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.

  1. Evolution of Lyman-α Emitters, Lyman-break Galaxies and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Mori, M.; Umemura, M.

    2008-10-01

    High redshift Lyman-α emitters (LAEs) and Lyman-break galaxies (LBGs) possibly provide a significant key for the embryology of galaxies. LBGs have been argued as candidate progenitors of present-day elliptical galaxies in terms of their observed properties. But, what evolutionary stages LBGs correspond to and how they are related to LAEs are still under debate. Here, we present an ultra-high-resolution hydrodynamic simulation of galaxy formation. We show that, at the earliest stages of less than 3×10^8 years, continual supernova explosions produce multitudinous hot bubbles and cooled HI shells in between. The HI shells radiate intense Lyman-α emission like LAEs. We found that the bubbly structures produced are quite similar to the observed features in the Lyman-α surface brightness distribution of the extended LAEs. After 10^9 years, the galaxy emission is dominated by stellar continuum, exhibiting an LBG-like spectrum. Also, we find that, as a result of purely dynamical evolution over 13 billion years, the properties of this galaxy match those of present-day elliptical galaxies well. It is implied that the major episode of star formation and chemical enrichment in elliptical galaxies is almost completed in the evolutionary path from LAEs to LBGs.

  2. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    DOE PAGES

    Park, Y.; Krause, E.; Dodelson, S.; ...

    2016-09-30

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less

  3. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y.; Krause, E.; Dodelson, S.

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less

  4. Brighter galaxy bias: underestimating the velocity dispersions of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Old, L.; Gray, M. E.; Pearce, F. R.

    2013-09-01

    We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal ≥ 50 at five low-redshift snapshots from the publicly available De Lucia & Blaziot semi-analytic model galaxy catalogue. Clusters are also selected from the Tempel Sloan Digital Sky Survey Data Release 8 groups and clusters catalogue across the redshift range 0.021 ≤ z ≤ 0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction experienced by the brighter cluster members. The velocity dispersions of the parent dark matter (DM) haloes are compared to the galaxy cluster dispersions and the stacked distribution of DM particle velocities is examined alongside the corresponding galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of σgal/σDM ˜ 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocities distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35 per cent, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass dependent but also that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly

  5. NGC 3934: a shell galaxy in a compact galaxy environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Galletta, G.; Rampazzo, R.; Marino, A.; Mazzei, P.; Buson, L. M.

    2011-10-01

    Context. Mergers/accretions are considered the main drivers of the evolution of galaxies in groups. We investigate the NGC 3933 poor galaxy association that contains NGC 3934, which is classified as a polar-ring galaxy. Aims: The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group's dynamical properties and its evolutionary phase. Methods: We imaged the group in the far (FUV, λeff = 1539 Å) and near (NUV, λeff = 2316 Å) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. Results: The NGC 3933 group has six bright members: a core composed of five galaxies, which have Hickson's compact group characteristics, and a more distant member, PGC 37112. The group velocity dispersion is relatively low (157 ± 44 km s-1). The projected mass, from the NUV photometry, is ~7 × 1012 M⊙ with a crossing time of 0.04 Hubble times, suggesting that at least in the center the group is virialized. We do not find evidence that NGC 3934 is a polar-ring galaxy, as suggested by the literature, but find that it is a disk galaxy with a prominent dust-lane structure and a wide type-II shell structure. Conclusions: NGC 3934 is a quite rare example of a shell galaxy in a likely dense galaxy region. The comparison between physically motivated SPH simulations with multi-band integrated photometry suggests that NGC 3934 is the product of a major merger.

  6. Sub-mm galaxies as progenitors of compact quiescent galaxies

    NASA Astrophysics Data System (ADS)

    Toft, Sune

    2015-08-01

    Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts which produce dense remnants. Sub-millimetre selected galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a new, mass-complete spectroscopic sample of compact quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z = 3 -6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr (consistent with independent estimates), indicating that the bulk of stars in these massive galaxies were formed in a major, early surge of star-formation. These results suggests a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star-formation through their appearance as high stellardensity galaxy cores and to their ultimate fate as giant ellipticals.If time permits i will show novel, spatially resolved spectroscopic observations of the inner regions (rgalaxies at z>2, allowing for strong new constraints on their formation and evolutionary path

  7. Galaxy And Mass Assembly (GAMA): bivariate functions of Hα star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Hopkins, A. M.; Taylor, E. N.; Bland-Hawthorn, J.; Norberg, P.; Baldry, I. K.; Loveday, J.; Owers, M. S.; Wilkins, S. M.; Colless, M.; Brown, M. J. I.; Driver, S. P.; Alpaslan, M.; Brough, S.; Cluver, M.; Croom, S.; Kelvin, L.; Lara-López, M. A.; Liske, J.; López-Sánchez, A. R.; Robotham, A. S. G.

    2015-02-01

    We present bivariate luminosity and stellar mass functions of Hα star-forming galaxies drawn from the Galaxy And Mass Assembly (GAMA) survey. While optically deep spectroscopic observations of GAMA over a wide sky area enable the detection of a large number of 0.001 < SFRHα (M⊙ yr-1) < 100 galaxies, the requirement for an Hα detection in targets selected from an r-band magnitude-limited survey leads to an incompleteness due to missing optically faint star-forming galaxies. Using z < 0.1 bivariate distributions as a reference we model the higher-z distributions, thereby approximating a correction for the missing optically faint star-forming galaxies to the local star formation rate (SFR) and M densities. Furthermore, we obtain the r-band luminosity functions (LFs) and stellar mass functions of Hα star-forming galaxies from the bivariate LFs. As our sample is selected on the basis of detected Hα emission, a direct tracer of ongoing star formation, this sample represents a true star-forming galaxy sample, and is drawn from both photometrically classified blue and red subpopulations, though mostly from the blue population. On average 20-30 per cent of red galaxies at all stellar masses are star forming, implying that these galaxies may be dusty star-forming systems.

  8. GalaxyGAN: Generative Adversarial Networks for recovery of galaxy features

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Krishnan Santhanam, Gokula

    2017-02-01

    GalaxyGAN uses Generative Adversarial Networks to reliably recover features in images of galaxies. The package uses machine learning to train on higher quality data and learns to recover detailed features such as galaxy morphology by effectively building priors. This method opens up the possibility of recovering more information from existing and future imaging data.

  9. Predicting galaxy star formation rates via the co-evolution of galaxies and haloes

    NASA Astrophysics Data System (ADS)

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.

    2015-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  10. Galaxy UGC10445

    NASA Image and Video Library

    2003-07-25

    This ultraviolet color image of the galaxy UGC10445 was taken by NASA Galaxy Evolution Explorer on June 7 and June 14, 2003. UGC10445 is a spiral galaxy located 40 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04623

  11. The galaxy builders

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-06-01

    Philip Hopkins, a theoretical astrophysicist at the California Institute of Technology in Pasadena, likes to prank his colleagues. An expert in simulating the formation of galaxies, Hopkins sometimes begins his talks by projecting images of his creations next to photos of real galaxies and defying his audience to tell them apart. "We can even trick astronomers," Hopkins says. For decades, scientists have tried to simulate how the trillions of galaxies in the observable universe arose from clouds of gas after the big bang. But only in the past few years have the simulations begun to reproduce both the details of individual galaxies and their distribution of masses and shapes. As the fake universes improve, their role is also changing. Previously, information flowed one way: from the astronomers studying real galaxies to the modelers trying to simulate them. Now, insight is flowing the other way, too, with the models helping guide astronomers and astrophysicists. The models suggest that the earliest galaxies were oddly pickle-shaped, that wafer-thin spiral galaxies are surprisingly rugged in the face of collisions, and, perhaps most important, that galaxies must form stars far more slowly than astrophysicists expected. Progress is coming so fast, says Tiziana Di Matteo, a numerical cosmologist at Carnegie Mellon University in Pittsburgh, Pennsylvania, that "the whole thing has reached this little golden age."

  12. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  13. Element Abundances in a Gas-rich Galaxy at z = 5: Clues to the Early Chemical Enrichment of Galaxies

    NASA Astrophysics Data System (ADS)

    Morrison, Sean; Kulkarni, Varsha P.; Som, Debopam; DeMarcy, Bryan; Quiret, Samuel; Péroux, Celine

    2016-10-01

    Element abundances in high-redshift quasar absorbers offer excellent probes of the chemical enrichment of distant galaxies, and can constrain models for population III and early population II stars. Recent observations indicate that the sub-damped Lyα (sub-DLA) absorbers are more metal-rich than DLA absorbers at redshifts 0 < z < 3. It has also been suggested that DLA metallicity drops suddenly at z > 4.7. However, only three DLAs at z > 4.5 and no sub-DLAs at z > 3.5 have “dust-free” metallicity measurements of undepleted elements. We report the first quasar sub-DLA metallicity measurement at z > 3.5, from detections of undepleted elements in high-resolution data for a sub-DLA at z = 5.0. We obtain fairly robust abundances of C, O, Si, and Fe, using lines outside the Lyα forest. This absorber is metal-poor, with [O/H] = -2.00 ± 0.12, which is ≳4σ below the level expected from extrapolation of the trend for z < 3.5 sub-DLAs. The C/O ratio is {1.8}-0.3+0.4 times lower than in the Sun. More strikingly, Si/O is {3.2}-0.5+0.6 times lower than in the Sun, whereas Si/Fe is nearly (1.2{}-0.3+0.4 times) solar. This absorber does not display a clear alpha/Fe enhancement. Dust depletion may have removed more Si from the gas phase than is common in the Milky Way interstellar medium, which may be expected if high-redshift supernovae form more silicate-rich dust. C/O and Si/O vary substantially between different velocity components, indicating spatial variations in dust depletion and/or early stellar nucleosynthesis (e.g., population III star initial mass function). The higher velocity gas may trace an outflow enriched by early stars. Based on observations obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  14. BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kormendy, John; Cornell, Mark E.; Drory, Niv

    2010-11-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R {identical_to} {lambda}/FWHM {approx_equal} 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 {+-} 1 km s{sup -1} in the nucleus of M 33 to 78 {+-} 2 km s{sup -1} in the pseudobulge of NGC 3338.more » We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M{sub .} {approx}< (2.6 {+-} 0.5) x 10{sup 6} M{sub sun} in M 101 and M{sub .} {approx}< (2.0 {+-} 0.6) x 10{sup 6} M{sub sun} in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up {approx}<3% of the stellar mass. This provides the strongest constraints to date on the lack of classical bulges in the biggest pure-disk galaxies. We inventory the galaxies in a sphere of radius 8 Mpc centered on our Galaxy to see whether giant, pure-disk galaxies are common or rare. We find that at least 11 of 19 galaxies with V{sub circ} > 150 km s{sup -1}, including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute {approx}1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the

  15. Faint blue galaxies revisited

    NASA Astrophysics Data System (ADS)

    Ferguson, Henry C.

    If dwarf-elliptical galaxies formed their stars very rapdily (on timescales of less than 1 Gyr), they may in principle be detectable out to high redshift. Prior to the discovery of cosmic acceleration, it appeared that rapid and late formation dwarf elliptical galaxies might be required to explain the number counts of faint galaxies. A plausible hypothesis emerged: that photoionization by the UV background prevents gas cooling in low-mass halos until z ≲ 1.5. The discovery of cosmic acceleration eased the tension between predicted galaxy number counts and galaxy-evolution models. Nevertheless, there is some evidence for relatively late star formation in nearby dE's, and the photoionization delay mechanism still appears to have some merit. It is thus of interest to look back in time to see if we can find starbursting dwarf galaxies at moderate redshift. We review the connection between faint-blue galaxies and bursting-dwarf galaxies and discuss some attempts to identify progenitors to dE galaxies in the Hubble Ultra Deep Field (HUDF) observations. We find roughly 85 galaxies in the HUDF with redshifts 0.6 that appear to have formed most of their stars at z. Of these, 70% have half-light radii less than 1.5 kpc. These are thus "smoking gun" candidates for dwarf galaxies that are either collapsing for the first time at moderate redshifts or have otherwise been unable to form stars for more than 1/3 of a Hubble time.

  16. Automatic Approach to Morphological Classification of Galaxies With Analysis of Galaxy Populations in Clusters

    NASA Astrophysics Data System (ADS)

    Sultanova, Madina; Barkhouse, Wayne; Rude, Cody

    2018-01-01

    The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 < z < 0.184) from Rude et al. 2017 (in preparation), which were observed by the Canada-France-Hawaii Telescope. Additionally, I studied 57 galaxy clusters from Barkhouse et al. (2007), 77 clusters from the WINGS survey (Fasano et al. 2006), and the six Hubble Space Telescope (HST) Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.

  17. Environment of Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hou, K.-c.; Chen, L.-w.

    2013-10-01

    To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.

  18. The SEDs and Host Galaxies of the Dustiest GRB Afterglows

    NASA Technical Reports Server (NTRS)

    Kruhler, T.; Greiner, J.; Schady, P.; Savaglio, S.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Filgas, R.; Gruber, D.; Kann, D. A.; hide

    2011-01-01

    The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe, Until recently, however. the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows. biasing all demographic studies against sight-lines that contain large amounts of dust. Aims. Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (A(sub v) (Sup GRB) approx > 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry and location of the absorbing dust of these poorly-explored host galaxies. and a comparison to hosts from optically-selected samples. Methods. This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line as well as galaxy-integrated characteristics like the host's stellar mass, luminosity. color-excess and star-formation rate. Results. For the eight afterglows considered in this study we report for the first time the redshift of GRBs 081109 (z = 0.97S7 +/- 0.0005). and the visual extinction towards GRBs 0801109 (A(sub v) (Sup GRB) = 3.4(sup +0.4) (sub -0.3) mag) and l00621A (A(sub v) (Sup GRB) = 3.8 +/- 0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs. there is a strong anti-correlation between the afterglow's metals-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder(((R - K)(sub AB)) approximates 1.6 mag), more luminous ( approximates 0.9 L (sup *)) and massive ((log M(sup *) [M(solar]) approximates 9.8) than the hosts of optically-bright events. We hence probe

  19. MULTIPLE GALAXY COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  20. An XMM-Newton view of the radio galaxy 3C 411

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostrom, Allison; Reynolds, Christopher S.; Tombesi, Francesco

    We present the first high signal-to-noise XMM-Newton observations of the broad-line radio galaxy 3C 411. After fitting various spectral models, an absorbed double power-law (PL) continuum and a blurred relativistic disk reflection model (kdblur) are found to be equally plausible descriptions of the data. While the softer PL component (Γ = 2.11) of the double PL model is entirely consistent with that found in Seyfert galaxies (and hence likely originates from a disk corona), the additional PL component is very hard (Γ = 1.05); amongst the active galactic nucleus zoo, only flat-spectrum radio quasars (FSRQ) have such hard spectra. Togethermore » with the flat radio-spectrum displayed by this source, we suggest that it should instead be classified as an FSRQ. This leads to potential discrepancies regarding the jet inclination angle, with the radio morphology suggesting a large jet inclination but the FSRQ classification suggesting small inclinations. The kdblur model predicts an inner disk radius of at most 20 r {sub g} and relativistic reflection.« less

  1. The Intervening Galaxies Hypothesis of the Absorption Spectra of Quasi-Stellar Objects: Some Statistical Studies

    NASA Astrophysics Data System (ADS)

    Duari, Debiprosad; Narlikar, Jayant V.

    This paper examines, in the light of the available data, the hypothesis that the heavy element absorption line systems in the spectra of QSOs originate through en-route absorption by intervening galaxies, halos etc. Several statistical tests are applied in two different ways to compare the predictions of the intervening galaxies hypothesis (IGH) with actual observations. The database is taken from a recent 1991 compilation of absorption line systems by Junkkarinen, Hewitt and Burbidge. Although, prima facie, a considerable gap is found between the predictions of the intervening galaxies hypothesis and the actual observations despite inclusion of any effects of clustering and some likely selection effects, the gap narrows after invoking evolution in the number density of absorbers and allowing for the incompleteness and inhomogeneity of samples examined. On the latter count the gap might be bridgeable by stretching the parameters of the theory. It is concluded that although the intervening galaxies hypothesis is a possible natural explanation to account for the absorption line systems and may in fact do so in several cases, it seems too simplistic to be able to account for all the available data. It is further stressed that the statistical techniques described here will be useful for future studies of complete and homogenous samples with a view to deciding the extent of applicability of the IGH.

  2. Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-12-01

    We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  3. A Complete Library of Infrared Spectral Energy Distributions for z=0 Galaxies

    NASA Astrophysics Data System (ADS)

    Sandstrom, Karin

    CONTEXT: Half of the light emitted by galaxies is starlight absorbed and reprocessed into the infrared by dust. The spectral energy distribution (SED) of this IR emission encodes information on the mass and properties of the dust, the radiation field heating it, and the bolometric luminosity of the region. This makes IR emission a main tool to estimate star formation rates (SFRs) and to trace the distribution of the interstellar medium (ISM) in galaxies. The dust itself also plays key roles in the physics of star formation, and thereby galaxy evolution. This critical information on dust and its dependence on environment can only be reliably measured when we have observations with full wavelength coverage of the IR SED that resolve galaxies. With no new IR imaging missions on the horizon, the remarkably thorough census conducted by Herschel, Spitzer, and WISE of the nearby (D < 50 Mpc) galaxy population is the definitive resource on dust at z=0 for the foreseeable future. Such observations allow us to understand the behavior of the IR SED and so inform observations from the major new facilities ALMA and JWST, which have amazing sensitivity and resolution but limited wavelength coverage. OBJECTIVES: We will create a library of matched resolution, uniformly processed IR SEDs for all 532 local galaxies with resolved mapping in the Herschel, Spitzer, and WISE archives. We will associate the SED measurements with rich "value added" data, including fits of physical models to the IR SED (yielding small grain fractions, temperature, and dust masses), host galaxy properties (e.g., stellar mass, SFR, morphology, inclination), and local conditions in the galaxy (SFR and stellar surface density, ISM gas mass and metallicity where available). The library will be created for a range of spatial and angular scales and served through IRSA/MAST, providing a major high level legacy resource that will be useful to a wide community. We will exploit this database to address three major

  4. Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.

    2018-04-01

    We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.

  5. A wide-field survey of satellite galaxies around the spiral galaxy M106

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, M.; Hwang, N.; Lee, M. G.; Chun, M.-Y.; Ann, H. B.

    2011-04-01

    We present a wide-field survey of satellite galaxies in M106 (NGC 4258) covering a ?× 2° field around M106 using Canada-France-Hawaii Telescope/MegaCam. We find 16 satellite galaxy candidates of M106. Eight of these galaxies are found to be dwarf galaxies that are much smaller and fainter than the remaining galaxies. Three of these galaxies are new findings. Surface brightness profiles of 15 out of 16 satellite galaxies can be represented well by an exponential disc profile with varying scalelength. We derive the surface number density distribution of these satellite galaxies. The central number density profile (d < 100 kpc) is well fitted by a power law with a power index of -2.1 ± 0.5, similar to the expected power index of isothermal distribution. The luminosity function of these satellites is represented well by the Schechter function with a faint-end slope of -1.19+0.03-0.06. Integrated photometric properties (total luminosity, total colour and disc scalelength) and the spatial distribution of these satellite galaxies are found to be roughly similar to those of the Milky Way and M31.

  6. Distant Galaxy Clusters Hosting Extreme Central Galaxies

    NASA Astrophysics Data System (ADS)

    McDonald, Michael

    2014-09-01

    The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.

  7. Lyα Escape from z ~ 0.03 Star-forming Galaxies: The Dominant Role of Outflows

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Leitherer, Claus; Salzer, John

    2013-03-01

    The usefulness of H I Lyα photons for characterizing star formation in the distant universe is limited by our understanding of the astrophysical processes that regulate their escape from galaxies. These processes can only be observed in detail out to a few × 100 Mpc. Past nearby (z < 0.3) spectroscopic studies are based on small samples and/or kinematically unresolved data. Taking advantage of the high sensitivity of Hubble Space Telescope's Cosmic Origins Spectrograph (COS), we observed the Lyα lines of 20 Hα-selected galaxies located at =0.03. The galaxies cover a broad range of luminosity, oxygen abundance, and reddening. In this paper, we characterize the observed Lyα lines and establish correlations with fundamental galaxy properties. We find seven emitters. These host young (<=10 Myr) stellar populations have rest-frame equivalent widths in the range 1-12 Å, and have Lyα escape fractions within the COS aperture in the range 1%-12%. One emitter has a double-peaked Lyα with peaks 370 km s-1 apart and a stronger blue peak. Excluding this object, the emitters have Lyα and O I λ1302 offsets from Hα in agreement with expanding-shell models and Lyman break galaxies observations. The absorbers have offsets that are almost consistent with a static medium. We find no one-to-one correspondence between Lyα emission and age, metallicity, or reddening. Thus, we confirm that Lyα is enhanced by outflows and is regulated by the dust and H I column density surrounding the hot stars.

  8. Galaxy Messier 83

    NASA Image and Video Library

    2003-07-25

    This image of the spiral galaxy Messier 83 was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. Located 15 million light years from Earth and known as the Southern Pinwheel Galaxy, Messier 83 displays significant amounts of ultraviolet emissions far from the optically bright portion of the galaxy. It is also known to have an extended hydrogen disc that appears to radiate a faint ultraviolet emission. The red stars in the foreground of the image are Milky Way stars. http://photojournal.jpl.nasa.gov/catalog/PIA04629

  9. Finding the First Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.

  10. Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology

    NASA Astrophysics Data System (ADS)

    Papastergis, Emmanouil

    2013-03-01

    The Arecibo Legacy Fast ALFA (ALFALFA) survey is a blind, extragalactic survey in the 21cm emission line of atomic hydrogen (HI). Presently, sources have been cataloged over ≈4,000 deg2 of sky (~60% of its final area), resulting in the largest HI-selected sample to date. We use the rich ALFALFA dataset to measure the statistical properties of HI-bearing galaxies, such as their mass distribution and clustering characteristics. These statistical distributions are determined by the properties of darkmatter on galactic scales, and by the complex baryonic processes through which galaxies form over cosmic time. As a result, detailed studies of these distributions can lead to important insights in galaxy formation & evolution and near-field cosmology. In particular, we measure the space density of HI-bearing galaxies as a function of the width of their HI profile (i.e. the velocity width function of galaxies), and find substantial disagreement with the distribution expected in a lambda cold dark matter (ΛCDM) universe. In particular, the number of galaxies with maximum rotational velocities upsilonrot ≈ 35 kms--1 (as judged by their HI velocity width) is about an order of magnitude lower than what predicted based on populating ΛCDM halos with modeled galaxies. We identify two possible solutions to the discrepancy: First, an alternative dark matter scenario in which the formation of low-mass halos is heavily suppressed (e.g. a warm dark matter universe with keV-scale dark matter particles). Secondly, we consider the possibility that rotational velocitites of dwarf galaxies derived from HI velocity widths may systematically underestimate the true mass of the host halo, due to the shape of their rotation curves. In this latter scenario, quantitative predictions for the internal kinematics of dwarf galaxies can be made, which can be checked in the future to probe the nature of dark matter. Furthermore, we take advantage of the overlap of ALFALFA with the Sloan Digital

  11. Primordial random motions and angular momenta of galaxies and galaxy clusters.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Lea, S.

    1973-01-01

    We study the decay of primordial random motions of galaxies and galaxy clusters in an expanding universe by solving a kinetic equation for the relaxation of differential energy spectra N(E, t). Systematic dissipative energy losses are included, involving gravitational drag by, and accretion of, intergalactic matter, as well as the effect of collisions with other systems. Formal and numerical solutions are described for two distinct modes of galaxy formation in a turbulent medium, corresponding to formation at a distinct epoch and to continuous formation of galaxies. We show that any primordial random motions of galaxies at the present epoch can amount to at most a few km/sec, and that collisions at early epochs can lead to the acquisition of significant amounts of primordial angular momentum.

  12. The early phase of the SMBH-galaxy coevolution in low-z "young" galaxies

    NASA Astrophysics Data System (ADS)

    Nagao, Tohru

    2014-01-01

    It is now widely recognized that most galaxies have a supermassive black hole (SMBH) in their nucleus, and the evolution of SMBHs is closely related with that of their host galaxies (the SMBH-galaxy coevolution). This is suggested by the correlation in the mass of SMBHs and their host galaxies, that has been observed in low redshifts. However, the physics of the coevolution is totally unclear, that prevents us from complete understandings of the galaxy evolution. One possible strategy to tackle this issue is measuring the mass ratio between SMBHs and their host galaxies (M_BH/M_host) at high redshifs, since different scenarios predict different evolution of the ratio ofMBH/Mhost. However it is extremely challenging to measure the mass of the host of high-z quasars, given the faint surface brightness of the host at close to the glaring quasar nucleus. Here we propose a brand-new approach to assess the early phase of the SMBH-galaxy coevolution, by focusing on low-z AGN-hosting "young" galaxies. Specifically, we focus on some very metal-poor galaxies with broadline Balmer lines at z ~ 0.1 - 0.3. By examining the SMBH scaling relations in some low-z metal-poor AGNs through high-resolution IRCS imaging observations, we will discriminate various scenarios for the SMBH-galaxy coevolution.

  13. The dwarf galaxy UGC 5272 and its small companion galaxy

    NASA Technical Reports Server (NTRS)

    Hopp, U.; Schulte-Ladbeck, R. E.

    1991-01-01

    The present study of optical images and spectroscopy of the dwarf irregular galaxy UGC 5272 notes the presence, at 3.6 kpc, of a small neighboring galaxy which is also of irregular type and has a Holmberg diameter of 0.6 kpc. Attention is given to the possibility that the two galaxies, which are resolved into single stars, may form a physical pair. It is suggested that the blue-to-red supergiant ratio of UGC 5272 is high due to its low metallicity. While its extremely blue colors are suggestive of a recent starburst, the structural parameters of the galaxy are surprisingly normal. The gas contribution to total mass is high.

  14. The H IX galaxy survey - II. H I kinematics of H I eXtreme galaxies

    NASA Astrophysics Data System (ADS)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.

    2018-05-01

    By analysing a sample of galaxies selected from the H I Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected H I content based on their optical properties, we investigate what drives these H I eXtreme (H IX) galaxies to be so H I-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed H IX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in H IX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of H IX galaxies is comparable to the control sample, (3) H IX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most H IX galaxies live in higher spin haloes than most control galaxies. These results suggest that H IX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the H IX galaxies inherits their high specific angular momentum from their halo. The H I content of H IX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array through the large program C 2705.

  15. Galaxy Surface Photometry

    NASA Astrophysics Data System (ADS)

    Milvang-Jensen, Bo; Jørgensen, Inger

    We describe galaxy surface photometry based on fitting ellipses to the isophotes of the galaxies. Example galaxies with different isophotal shapes are used to illustrate the process, including how the deviations from elliptical isophotes are quantified using Fourier expansions. We show how the definitions of the Fourier coefficients employed by different authors are linked. As examples of applications of surface photometry we discuss the determination of the relative disk luminosities and the inclinations for E and S0 galaxies. We also describe the color-magnitude and color-color relations. When using both near-infrared and optical photometry, the age--metallicity degeneracy may be broken. Finally we discuss the Fundamental Plane where surface photometry is combined with spectroscopy. It is shown how the FP can be used as a sensitive tool to study galaxy evolution.

  16. A study of star formation by Hα emission of galaxies in the galaxy group NGC 4213

    NASA Astrophysics Data System (ADS)

    Maungkorn, Sakdawoot; Kriwattanawong, Wichean

    2017-09-01

    This research aims to study hydrogen alpha emission, corresponding to star formation of galaxies in the NGC 4213 group that has an average recession velocity of 6,821 km/s. The imaging observations with broad-band filters (B, V and RC) and narrow-band filters ([S II] and Red-continuum) were carried out from the 2.4-m reflecting telescope at Thai National Observatory (TNO). There are 11 sample galaxies in this study, consisting of 2 elliptical, 2 lenticular and 7 spiral galaxies. It was found that the late-type galaxies tend to be bluer than early-type galaxies, due to these galaxies consist of relatively high proportion of blue stars. Furthermore, the equivalent width of hydrogen alpha (EW(Hα)) tends to increase as a function of morphological type. This indicates that star formation in late-type galaxies taking place more than the early-type galaxies. Furthermore, a ratio of the star formation rate to galaxy mass also increases slightly with the galaxy type. This could be due to the interaction between galaxy-galaxy or tidal interaction occurring within the galaxy group.

  17. Stellar feedback in galaxies and the origin of galaxy-scale winds

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological

  18. Dwarf elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Ferguson, Henry C.; Binggeli, Bruno

    1994-01-01

    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than M(sub B) = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently availiable data can constrain (a) models for the formation of dE's, (b) the physical and evolutionary connections between different types of galaxies that overlap in the same portion of the mass-spectrum of galaxies, (c) the contribution of dE's to the galaxy luminosity functions in clusters and the field, (d) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and (e) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.

  19. The role of submillimetre galaxies in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Pope, Erin Alexandra

    2007-08-01

    This thesis presents a comprehensive study of high redshift submillimetre galaxies (SMGs) using the deepest multi-wavelength observations. The submm sample consists of galaxies detected at 850 mm with the Submillimetre Common User Bolometer Array (SCUBA) in the Great Observatories Origins Deep Survey- North region. Using the deep Spitzer Space Telescope images and new data and reductions of the Very Large Array radio data, I find statistically secure counterparts for 60% of the submm sample, and identify tentative counterparts for most of the remaining objects. This is the largest sample of submm galaxies with statistically secure counterparts detected in the radio and with Spitzer . This thesis presents spectral energy distributions (SEDs), Spitzer colours, and infrared (IR) luminosities for the SMGs. A composite rest-frame SED shows that the submm sources peak at longer wavelengths than those of local ultraluminous IR galaxies (ULIRGs), i.e. they appear to be cooler than local ULIRGs of the same luminosity. This demonstrates the strong selection effects, both locally and at high redshift, which may lead to an incomplete census of the ULIRG population. The SEDs of submm galaxies are also different from those of their high redshift neighbours, the near-IR selected BzK galaxies, whose mid-IR to radio SEDs are more like those of local ULIRGs. I fit templates that span the mid-IR through radio to derive the integrated 1R luminosities of the submm galaxies and find a median value of L IR (8-1000 mm) = 6.0 x 10 12 [Special characters omitted.] . I also find that submm flux densities by themselves systematically overpredict L IR when using templates which obey the local ULIRG temperature-luminosity relation. The SED fits show that SMGs are consistent with the correlation between radio and IR luminosity observed in local galaxies. Because the shorter Spitzer wavelengths sample the stellar bump at the redshifts of the submm sources, one can obtain a model independent

  20. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy.

    PubMed

    Geach, J E; Hickox, R C; Diamond-Stanic, A M; Krips, M; Rudnick, G H; Tremonti, C A; Sell, P H; Coil, A L; Moustakas, J

    2014-12-04

    Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and have typical scales of less than a kiloparsec. In at least some cases, input from active galactic nuclei is dynamically important, so pure stellar feedback (the momentum return into the interstellar medium) has been considered incapable of rapidly terminating star formation on galactic scales. Molecular gas has been detected outside the galactic plane of the archetypal starburst galaxy M82 (refs 4 and 5), but so far there has been no evidence that starbursts can propel substantial quantities of cold molecular gas to the same galactocentric radius (about 10 kiloparsecs) as the warmer gas that has been traced by metal ion absorbers in the circumgalactic medium. Here we report observations of molecular gas in a compact (effective radius 100 parsecs) massive starburst galaxy at redshift 0.7, which is known to drive a fast outflow of ionized gas. We find that 35 per cent of the total molecular gas extends approximately 10 kiloparsecs, and one-third of this extended gas has a velocity of up to 1,000 kilometres per second. The kinetic energy associated with this high-velocity component is consistent with the momentum flux available from stellar radiation pressure. This demonstrates that nuclear bursts of star formation are capable of ejecting large amounts of cold gas from the central regions of galaxies, thereby strongly affecting their evolution by truncating star formation and redistributing matter.

  1. Galaxy NGC5398

    NASA Image and Video Library

    2003-07-25

    This is an ultraviolet color image of the galaxy NGC5398 taken by NASA Galaxy Evolution Explorer on June 7, 2003. NGC5398 is a barred spiral galaxy located 60 million light-years from Earth. The star formation is concentrated in the two bright regions of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04633

  2. The evolution of galaxies

    NASA Technical Reports Server (NTRS)

    Gunn, J. E.

    1982-01-01

    The recent observational evidence on the evolution of galaxies is reviewed and related to the framework of current ideas for galaxy formation from primordial density fluctuations. Recent strong evidence for the evolution of the stellar population in ellipticals is presented, as well as evidence that not all ellipticals behave as predicted by any simple theory. The status of counts of faint galaxies and the implications for the evolution of spirals is discussed, together with a discussion of recent work on the redshift distribution of galaxies at faint magnitudes and a spectroscopic investigation of the Butcher-Oemler blue cluster galaxies. Finally a new picture for the formation and evolution of disk galaxies which may explain most of the features of the Hubble sequence is outlined.

  3. Galaxy and Mass Assembly (GAMA): Impact of the Group Environment on Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Barsanti, S.; Owers, M. S.; Brough, S.; Davies, L. J. M.; Driver, S. P.; Gunawardhana, M. L. P.; Holwerda, B. W.; Liske, J.; Loveday, J.; Pimbblet, K. A.; Robotham, A. S. G.; Taylor, E. N.

    2018-04-01

    We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly groups at 0.05 ≤ z ≤ 0.2 and analyze the projected phase space (PPS) diagram, i.e., the galaxy velocity as a function of projected group-centric radius, as a local environmental metric in the low-mass halo regime 1012 ≤ (M 200/M ⊙) < 1014. We study the properties of star-forming group galaxies, exploring the correlation of star formation rate (SFR) with radial distance and stellar mass. We find that the fraction of star-forming group members is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialized regions. We observe a small decline in specific SFR of star-forming galaxies toward the group center by a factor ∼1.2 with respect to field galaxies. Similar to cluster studies, we conclude for low-mass halos that star-forming group galaxies represent an infalling population from the field to the halo and show suppressed star formation.

  4. Dynamics of Galaxies

    NASA Astrophysics Data System (ADS)

    Bertin, Giuseppe

    2000-08-01

    Part I. Basic Phenomenology: 1. Scales; 2. Observational windows; 3. Classifications; 4. Photometry, kinematics, dark matter; 5. Basic questions, semi-empirical approach, dynamical window; Part II. Physical Models: 6. Self-gravity and relation with plasma physics; 7. Relaxation times, absence of thermodynamical equilibrium; 8. Models; 9. Equilibrium and stability: symmetry and symmetry breaking; 10. Classical ellipsoids; 11. Introduction to dispersive waves; 12. Jeans instability; Part III. Spiral Galaxies: 13. Orbits; 14. The basic state: vertical and horizontal equilibrium in the disk; 15. Density waves; 16. Role of gas; 17. Global spiral modes; 18. Spiral structure in galaxies; 19. Bending waves; 20. Dark matter in spiral galaxies; Part IV. Elliptical Galaxies: 21. Orbits; 22. Stellar dynamical approach; 23. Stability; 24. Dark matter in elliptical galaxies; Part V. In Perspective: 25. Selected aspects of formation and evolution; Notes; Index.

  5. The luminous, massive and solar metallicity galaxy hosting the Swift γ-ray burst GRB 160804A at z = 0.737

    NASA Astrophysics Data System (ADS)

    Heintz, K. E.; Malesani, D.; Wiersema, K.; Jakobsson, P.; Fynbo, J. P. U.; Savaglio, S.; Cano, Z.; Covino, S.; D'Elia, V.; Gomboc, A.; Hammer, F.; Kaper, L.; Milvang-Jensen, B.; Møller, P.; Piranomonte, S.; Selsing, J.; Rhodin, N. H. P.; Tanvir, N. R.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S. D.; Watson, D.

    2018-02-01

    We here present the spectroscopic follow-up observations with VLT/X-shooter of the Swift long-duration gamma-ray burst GRB 160804A at z = 0.737. Typically, GRBs are found in low-mass, metal-poor galaxies that constitute the sub-luminous population of star-forming galaxies. For the host galaxy of the GRB presented here, we derive a stellar mass of log (M*/ M⊙) = 9.80 ± 0.07, a roughly solar metallicity (12 + log (O/H) = 8.74 ± 0.12) based on emission line diagnostics, and an infrared luminosity of M3.6/(1 + z) = -21.94 mag, but find it to be dust-poor (E(B - V) < 0.05 mag). This establishes the galaxy hosting GRB 160804A as one of the most luminous, massive and metal-rich GRB hosts at z < 1.5. Furthermore, the gas-phase metallicity is found to be representative of the physical conditions of the gas close to the explosion site of the burst. The high metallicity of the host galaxy is also observed in absorption, where we detect several strong Fe II transitions as well as Mg II and Mg I. Although host galaxy absorption features are common in GRB afterglow spectra, we detect absorption from strong metal lines directly in the host continuum (at a time when the afterglow was contributing to < 15 per cent). Finally, we discuss the possibility that the geometry and state of the absorbing and emitting gas are indicative of a galactic scale outflow expelled at the final stage of two merging galaxies.

  6. How A Black Hole Lights Up Its Surroundings

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    called photoionization. But could jets also be involved?In a recent study led by kos Bogdn, a team of scientists at the Harvard-Smithsonian Center for Astrophysics used X-ray observations of a galaxys nucleus to explore the possibility that its narrow-line region is heated and ionized not only by radiation, but also by the shocks produced as radio jets collide with their surrounding environment.Heating from JetsChandra X-ray data for Mrk 3, with radio contours overplotted. Both wavelengths show S-shaped morphology of the jets, with the X-ray emission enveloping the radio emission. A strong shock is present in the west and a weaker shock toward the east. [Bogdn et al. 2017]Bogdn and collaborators analyzed deep Chandra X-ray observations of the center of Mrk 3, an early-type galaxy located roughly 200 million light-years away. Chandras imaging and high-resolution spectroscopy of the galaxys narrow-line region allowed the team to build a detailed picture of the hot gas, demonstrating that it shows similar S-shaped morphology to the gas emitting at radio wavelengths, but its more broadly distributed.The authors demonstrate the presence of shocks in the X-ray gas both toward the west and toward the east of the nucleus. These shocks, combined with the broadening of the X-ray emission and other signs, strongly support the idea that collisions of the jets with the surrounding environment heat the narrow-line-region gas, contributing to its ionization. The authors argue that, given how common small-scale radio jets are in galaxies such as Mrk 3, its likely that collisional ionization plays an important role in how the black holes in these galaxies impart energy to their surrounding environments.Citationkos Bogdn et al 2017 ApJ 848 61. doi:10.3847/1538-4357/aa8c76

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitherer, Claus; Lee, Janice C.; Hernandez, Svea

    We report on the detection of Lyman continuum radiation in two nearby starburst galaxies. Tol 0440-381, Tol 1247-232, and Mrk 54 were observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope . The three galaxies have radial velocities of ∼13,000 km s{sup −1}, permitting a ∼35 Å window on the restframe Lyman continuum shortward of the Milky Way Lyman edge at 912 Å. The chosen instrument configuration using the G140L grating covers the spectral range from 912 to 2000 Å. We developed a dedicated background subtraction method to account for the temporal and spatial background variations ofmore » the detector, which is crucial at the low flux levels around 912 Å. This modified pipeline allowed us to significantly improve the statistical and systematic detector noise and will be made available to the community. We detect Lyman continuum in all three galaxies. However, we conservatively interpret the emission in Tol 0440-381 as an upper limit due to possible contamination by geocoronal Lyman series lines. We determined the current star formation properties from the far-ultraviolet continuum and spectral lines and used synthesis models to predict the Lyman continuum radiation emitted by the current population of hot stars. We discuss various model uncertainties such as, among others, atmospheres and evolution models. Lyman continuum escape fractions were derived from a comparison between the observed and predicted Lyman continuum fluxes. Tol 1247-232, Mrk 54, and Tol 0440-381 have absolute escape fractions of (4.5 ± 1.2)%, (2.5 ± 0.72)%, and <(7.1 ± 1.1)%, respectively.« less

  8. Giant Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  9. Galaxy Messier 51

    NASA Image and Video Library

    2003-07-25

    NASA's Galaxy Evolution Explorer took this image of the spiral galaxy Messier 51 on June 19 and 20, 2003. Messier 51 is located 27 million light-years from Earth. Due to a lack of star formation, the companion galaxy in the top of the picture is barely visible as a near ultraviolet object. http://photojournal.jpl.nasa.gov/catalog/PIA04628

  10. Galaxy Alignments: Theory, Modelling & Simulations

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  11. Hubble Captures Massive Dead Disk Galaxy that Challenges Theories of Galaxy Evolution

    NASA Image and Video Library

    2017-12-08

    By combining the power of a "natural lens" in space with the capability of NASA's Hubble Space Telescope, astronomers made a surprising discovery—the first example of a compact yet massive, fast-spinning, disk-shaped galaxy that stopped making stars only a few billion years after the big bang. Finding such a galaxy early in the history of the universe challenges the current understanding of how massive galaxies form and evolve, say researchers. Read more: go.nasa.gov/2sWwKkc caption: Acting as a “natural telescope” in space, the gravity of the extremely massive foreground galaxy cluster MACS J2129-0741 magnifies, brightens, and distorts the far-distant background galaxy MACS2129-1, shown in the top box. The middle box is a blown-up view of the gravitationally lensed galaxy. In the bottom box is a reconstructed image, based on modeling that shows what the galaxy would look like if the galaxy cluster were not present. The galaxy appears red because it is so distant that its light is shifted into the red part of the spectrum. Credits: NASA, ESA, M. Postman (STScI), and the CLASH team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  13. Featured Image: Identifying Weird Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    Hoags Object, an example of a ring galaxy. [NASA/Hubble Heritage Team/Ray A. Lucas (STScI/AURA)]The above image (click for the full view) shows PanSTARRSobservationsof some of the 185 galaxies identified in a recent study as ring galaxies bizarre and rare irregular galaxies that exhibit stars and gas in a ring around a central nucleus. Ring galaxies could be formed in a number of ways; one theory is that some might form in a galaxy collision when a smaller galaxy punches through the center of a larger one, triggering star formation around the center. In a recent study, Ian Timmis and Lior Shamir of Lawrence Technological University in Michigan explore ways that we may be able to identify ring galaxies in the overwhelming number of images expected from large upcoming surveys. They develop a computer analysis method that automatically finds ring galaxy candidates based on their visual appearance, and they test their approach on the 3 million galaxy images from the first PanSTARRS data release. To see more of the remarkable galaxies the authors found and to learn more about their identification method, check out the paper below.CitationIan Timmis and Lior Shamir 2017 ApJS 231 2. doi:10.3847/1538-4365/aa78a3

  14. Best Phd thesis Prize: Statistical analysis of ALFALFA galaxies: insights in galaxy

    NASA Astrophysics Data System (ADS)

    Papastergis, E.

    2013-09-01

    We use the rich dataset of local universe galaxies detected by the ALFALFA 21cm survey to study the statistical properties of gas-bearing galaxies. In particular, we measure the number density of galaxies as a function of their baryonic mass ("baryonic mass function") and rotational velocity ("velocity width function"), and we characterize their clustering properties ("two-point correlation function"). These statistical distributions are determined by both the properties of dark matter on small scales, as well as by the complex baryonic processes through which galaxies form over cosmic time. We interpret the ALFALFA measurements with the aid of publicly available cosmological N-body simulations and we present some key results related to galaxy formation and small-scale cosmology.

  15. Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Galloway, Melanie A.; Bamford, Steven P.; Lintott, Chris J.; Masters, Karen L.; Scarlata, Claudia; Simmons, B. D.; Beck, Melanie; Cardamone, Carolin N.; Cheung, Edmond; Edmondson, Edward M.; Fortson, Lucy F.; Griffith, Roger L.; Häußler, Boris; Han, Anna; Hart, Ross; Melvin, Thomas; Parrish, Michael; Schawinski, Kevin; Smethurst, R. J.; Smith, Arfon M.

    2017-02-01

    We present the data release paper for the Galaxy Zoo: Hubble (GZH) project. This is the third phase in a large effort to measure reliable, detailed morphologies of galaxies by using crowdsourced visual classifications of colour-composite images. Images in GZH were selected from various publicly released Hubble Space Telescope legacy programmes conducted with the Advanced Camera for Surveys, with filters that probe the rest-frame optical emission from galaxies out to z ˜ 1. The bulk of the sample is selected to have mI814W < 23.5, but goes as faint as mI814W < 26.8 for deep images combined over five epochs. The median redshift of the combined samples is = 0.9 ± 0.6, with a tail extending out to z ≃ 4. The GZH morphological data include measurements of both bulge- and disc-dominated galaxies, details on spiral disc structure that relate to the Hubble type, bar identification, and numerous measurements of clump identification and geometry. This paper also describes a new method for calibrating morphologies for galaxies of different luminosities and at different redshifts by using artificially redshifted galaxy images as a baseline. The GZH catalogue contains both raw and calibrated morphological vote fractions for 119 849 galaxies, providing the largest data set to date suitable for large-scale studies of galaxy evolution out to z ˜ 1.

  16. Growing Galaxies Gently

    NASA Astrophysics Data System (ADS)

    2010-10-01

    New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence

  17. Radial Alignment of Ellipitcal Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  18. Radial Alignment of Elliptical Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  19. The Effects of Physically Unrelated Near Neighbors on the Weak Galaxy-Galaxy Lensing Signal

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa

    2018-01-01

    The effects of physically unrelated near neighbors on the weak galaxy-galaxy lensing signal are explored. Physically unrelated near neighbors are galaxies that are close to a given lens galaxy in projection on the sky, but are located at substantially different redshifts. Typically, the effects of such physically unrelated near neighbors are assumed to cancel. If that were truly the case, these objects would not contribute to the mean tangential shear around the lenses and they can be ignored when using an observed weak lensing signal to infer the excess surface mass density surrounding a set of lens galaxies. Here, observed galaxies with known redshifts and luminosities are used as the basis of a suite of Monte Carlo simluations of weak galaxy-galaxy lensing. The simulations incorporate the intrinsic clustering of the lens galaxies, as well as the intrinsic distribution of the lens galaxy masses. Dark matter halos of appropriate sizes and masses are assigned to each of the lens galaxies, and the net effect of all lenses on a set of background source galaxies is determined. The net weak lensing signal (i.e., the mean tangential shear due to all lenses along the line of sight) is computed and then compared to the excess surface mass density surrounding the lenses. Due to the broad redshift and mass distributions of the lenses, the effects of physically unrelated near neighbors in the simulations do not cancel. On scales equal to or greater than the scale for which the two-halo term contributes substantially to the shear, this non-cancellation of the effects of physically unrelated near neighbors significantly affects the accuracy with which the excess surface mass density may be inferred from the mean tangential shear via the standard formula: < ΔΣ > = < Σc γt > . The effects of physically unrelated near neighbors are greatest for the least massive lens galaxies but can also be important for the most massive lens galaxies.

  20. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  1. Galaxy evolution. Isolated compact elliptical galaxies: stellar systems that ran away.

    PubMed

    Chilingarian, Igor; Zolotukhin, Ivan

    2015-04-24

    Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenitors, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts. Copyright © 2015, American Association for the Advancement of Science.

  2. Galactic wind shells and high redshift radio galaxies. On the nature of associated absorbers

    NASA Astrophysics Data System (ADS)

    Krause, M.

    2005-06-01

    A jet is simulated on the background of a galactic wind headed by a radiative bow shock. The wind shell, which is due to the radiative bow shock, is effectively destroyed by the impact of the jet cocoon, thanks to Rayleigh-Taylor instabilities. Associated strong HI absorption, and possibly also molecular emission, in high redshift radio galaxies which is observed preferentially in the smaller ones may be explained by that model, which is an improvement of an earlier radiative bow shock model. The model requires temperatures of ≈106 K in the proto-clusters hosting these objects, and may be tested by high resolution spectroscopy of the Lyα line. The simulations show that - before destruction - the jet cocoon fills the wind shell entirely for a considerable time with intact absorption system. Therefore, radio imaging of sources smaller than the critical size should reveal the round central bubbles, if the model is correct.

  3. Smokin Hot Galaxy animation

    NASA Image and Video Library

    2006-03-16

    This infrared image from NASA Spitzer Space Telescope shows a galaxy that appears to be sizzling hot, with huge plumes of smoke swirling around it. The galaxy is known as Messier 82 or the Cigar galaxy.

  4. GREEN GALAXIES IN THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, basedmore » on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.« less

  5. H1 in RSA galaxies

    NASA Technical Reports Server (NTRS)

    Richter, OTTO-G.

    1993-01-01

    The original Revised Shapley-Ames (RSA) galaxy sample of almost 1300 galaxies has been augmented with further bright galaxies from the RSA appendix as well as newer galaxy catalogs. A complete and homogeneous, strictly magnitude-limited all-sky sample of 2345 galaxies brighter than 13.4 in apparent blue magnitude was formed. New 21 cm H1 line observations for more than 600 RSA galaxies have been combined with all previously available H1 data from the literature. This new extentise data act allows detailed tests of widely accepted 'standard' reduction and analysis techniques.

  6. Hot Gas Halos in Galaxies

    NASA Astrophysics Data System (ADS)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  7. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  8. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  9. Secular Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Knapen, Johan H.

    2013-10-01

    Preface; 1. Secular evolution in disk galaxies John Kormendy; 2. Galaxy morphology Ronald J. Buta; 3. Dynamics of secular evolution James Binney; 4. Bars and secular evolution in disk galaxies: theoretical input E. Athanassoula; 5. Stellar populations Reynier F. Peletier; 6. Star formation rate indicators Daniela Calzetti; 7. The evolving interstellar medium Jacqueline van Gorkom; 8. Evolution of star formation and gas Nick Z. Scoville; 9. Cosmological evolution of galaxies Isaac Shlosman.

  10. Quenching of satellite galaxies at the outskirts of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Zinger, Elad; Dekel, Avishai; Kravtsov, Andrey V.; Nagai, Daisuke

    2018-04-01

    We find, using cosmological simulations of galaxy clusters, that the hot X-ray emitting intracluster medium (ICM) enclosed within the outer accretion shock extends out to Rshock ˜ (2-3)Rvir, where Rvir is the standard virial radius of the halo. Using a simple analytic model for satellite galaxies in the cluster, we evaluate the effect of ram-pressure stripping on the gas in the inner discs and in the haloes at different distances from the cluster centre. We find that significant removal of star-forming disc gas occurs only at r ≲ 0.5Rvir, while gas removal from the satellite halo is more effective and can occur when the satellite is found between Rvir and Rshock. Removal of halo gas sets the stage for quenching of the star formation by starvation over 2-3 Gyr, prior to the satellite entry to the inner cluster halo. This scenario explains the presence of quenched galaxies, preferentially discs, at the outskirts of galaxy clusters, and the delayed quenching of satellites compared to central galaxies.

  11. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-05-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudobulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudobulge hosting spirals. By studying the star formation properties of our galaxies in the NUV - r color-mass diagram, we find that the pseudobulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  12. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-07-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudo-bulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudo-bulge hosting spirals. By studying the star formation properties of our galaxies in the NUV-r colour-mass diagram, we find that the pseudo-bulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  13. Environmental influences on galaxy evolution

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1993-01-01

    We investigate the role of mergers and interactions in the evolution of galaxies by studying galaxies in compact groups. Compact groups of galaxies have high spatial densities and low velocity dispersions making these regions ideal laboratories in which to study the effect of interactions and mergers. Based on a detailed spectroscopic and multi-color imaging study, we find that both the isophotal shapes and the stellar kinematics indicate that many of the elliptical galaxies in compact groups have been affected by tidal interactions. At the same time, however, we find that only a few elliptical galaxies in compact groups have evidence for the young stellar populations that would be expected if they are the result of recent merger of two spiral galaxies. Therefore, we conclude that tidal interactions affect galaxy properties at the current epoch, but the bulk of basic galaxy formation and transformation must have occurred at much higher redshift.

  14. A Super Special Galaxy

    NASA Image and Video Library

    2011-03-24

    There something special going on in the nearby Circinus galaxy, as revealed by this image from NASA WISE telescope. The Circinus galaxy is located in the constellation of Circinus and is obscured by the plane of our Milky Way galaxy.

  15. Rapid Compton-thick/Compton-thin Transitions in the Seyfert 2 Galaxy NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Elvis, M.; Fabbiano, G.; Baldi, A.; Zezas, A.

    2006-01-01

    We present multiple Chandra and XMM-Newton observations of the type 1.8 Seyfert galaxy NGC 1365, which shows the most dramatic X-ray spectral changes observed so far in an active galactic nucleus: the source switched from reflection-dominated to transmission-dominated and back in just 6 weeks. During this time the soft thermal component, arising from a approx. 1 kpc region around the center, remained constant. The reflection component is constant at all timescales, and its high flux relative to the primary component implies the presence of thick gas covering a large fraction of the solid angle. The presence of this gas, and the fast variability timescale, suggest that the Compton-thick to Compton-thin change is due to variation in the line-of-sight absorber rather than to extreme intrinsic emission variability. We discuss a structure of the circumuclear absorber/reflector that can explain the observed X-ray spectral and temporal properties.

  16. Blue compact dwarf galaxies. I - Neutral hydrogen observations of 115 galaxies

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Martin, G. E.

    1981-01-01

    HI observations are reported for a sample of 115 blue compact dwarf (M sub B greater than approximately -18) galaxies or 'extragalactic H II regions' chosen mostly from the objective prism surveys of Markarian (1967-1974) and Haro (1956), with a few objects from Zwicky (1971) and other investigators. Ninety-three galaxies are detected. H I profiles, neutral hydrogen masses, total masses, and all available optical data are given for the 115 galaxies in a consistent and homogeneous system and in a useful format for statistical studies. The data are used in a companion paper to study the stochastic mode of star formation in galaxies.

  17. Probing the Evolution of the Galaxy Interaction/Merger Rate Using Distant Collisional Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Lavery, Russell J.; Remijan, Anthony J.

    We present the initial results from our long-term program of identifying distant collisional ring galaxies (CRGS) in deep HST WFPC-2 images. The unique morphological characteristics of these galaxies make them easily identifiable out to a redshift of z = 1. To date, we have visually scanned 100 WFPC-2 fields and identified 14 excellent collisional ring galaxy (CRG) candidates. Based on estimated redshifts, these 14 galaxies are expected to lie in the redshift interval of 0.1 to 1. We have used this sample of CRGs to estimate the evolution of the galaxy interaction/merger rate with redshift. To account for the number of CRGs we have identified in these fields, the galaxy interaction/merger rate, parameterized as (1 + z)m, must increase steeply with redshift, with m = 5.7 +/- 1.5. We can rule out a non-evolving galaxy merger rate (m = 0) at greater than the 3σ level. We compare our results with other programs to determine the value of m using the evolution of galaxy pairs.

  18. Galaxy Zoo: secular evolution of barred galaxies from structural decomposition of multiband images

    NASA Astrophysics Data System (ADS)

    Kruk, Sandor J.; Lintott, Chris J.; Bamford, Steven P.; Masters, Karen L.; Simmons, Brooke D.; Häußler, Boris; Cardamone, Carolin N.; Hart, Ross E.; Kelvin, Lee; Schawinski, Kevin; Smethurst, Rebecca J.; Vika, Marina

    2018-02-01

    We present the results of two-component (disc+bar) and three-component (disc+bar+bulge) multiwavelength 2D photometric decompositions of barred galaxies in five Sloan Digital Sky Survey (SDSS) bands (ugriz). This sample of ∼3500 nearby (z < 0.06) galaxies with strong bars selected from the Galaxy Zoo citizen science project is the largest sample of barred galaxies to be studied using photometric decompositions that include a bar component. With detailed structural analysis, we obtain physical quantities such as the bar- and bulge-to-total luminosity ratios, effective radii, Sérsic indices and colours of the individual components. We observe a clear difference in the colours of the components, the discs being bluer than the bars and bulges. An overwhelming fraction of bulge components have Sérsic indices consistent with being pseudo-bulges. By comparing the barred galaxies with a mass-matched and volume-limited sample of unbarred galaxies, we examine the connection between the presence of a large-scale galactic bar and the properties of discs and bulges. We find that the discs of unbarred galaxies are significantly bluer compared to the discs of barred galaxies, while there is no significant difference in the colours of the bulges. We find possible evidence of secular evolution via bars that leads to the build-up of pseudo-bulges and to the quenching of star formation in the discs. We identify a subsample of unbarred galaxies with an inner lens/oval and find that their properties are similar to barred galaxies, consistent with an evolutionary scenario in which bars dissolve into lenses. This scenario deserves further investigation through both theoretical and observational work.

  19. Mapping Nearby Galaxies at APO: The MaNGA IFU Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Law, David R.; MaNGA Team

    2014-01-01

    MaNGA is a new survey that will begin in August 2014 as part of SDSS-IV with the aim of obtaining integral-field spectroscopy for an unprecedented sample of 10,000 nearby galaxies. MaNGA's key goals are to understand the "life cycle" of present day galaxies from imprinted clues of their birth and assembly, through their ongoing growth via star formation and merging, to their death from quenching at late times. To achieve these goals, MaNGA will channel the impressive capabilities of the SDSS-III BOSS spectrographs in a fundamentally new direction by marshaling the unique power of 2D spectroscopy. MaNGA will deploy 17 pluggable Integral Field Units (IFUs) made by grouping fibers into hexagonal bundles ranging from 19 to 127 fibers each. The spectra obtained by MaNGA will cover the wavelength range 3600-10,000 Angstroms (with a velocity resolution of ~ 60 km/s) and will characterize the internal composition and the dynamical state of a sample of 10,000 galaxies with stellar masses greater than 10^9 Msun and an average redshift of z ~ 0.03. Such IFU observations enable a leap forward because they provide an added dimension to the information available for each galaxy. MaNGA will provide two-dimensional maps of stellar velocity and velocity dispersion, mean stellar age and star formation history, stellar metallicity, element abundance ratio, stellar mass surface density, ionized gas velocity, ionized gas metallicity, star formation rate, and dust extinction for a statistically powerful sample. This legacy dataset will address urgent questions in our understanding of galaxy formation, including 1) The formation history of galaxy subcomponents, including the disk, bulge, and dark matter halo, 2) The nature of present-day galaxy growth via merging and gas accretion, and 3) The processes responsible for terminating star formation in galaxies. Finally, MaNGA will also play a vital role in the coming era of advanced IFU instrumentation, serving as the low-z anchor for

  20. Cosmic Collisions: Galaxy Mergers and Evolution

    NASA Astrophysics Data System (ADS)

    Trouille, Laura; Willett, Kyle; Masters, Karen; Lintott, Christopher; Whyte, Laura; Lynn, Stuart; Tremonti, Christina A.

    2014-08-01

    Over the years evidence has mounted for a significant mode of galaxy evolution via mergers. This process links gas-rich, spiral galaxies; starbursting galaxies; active galactic nuclei (AGN); post-starburst galaxies; and gas-poor, elliptical galaxies, as objects representing different phases of major galaxy mergers. The post-starburst phase is particularly interesting because nearly every galaxy that evolves from star-forming to quiescent must pass through it. In essence, this phase is a sort of galaxy evolution “bottleneck” that indicates that a galaxy is actively evolving through important physical transitions. In this talk I will present the results from the ‘Galaxy Zoo Quench’ project - using post-starburst galaxies to place observational constraints on the role of mergers and AGN activity in quenching star formation. `Quench’ is the first fully collaborative research project with Zooniverse citizen scientists online; engaging the public in all phases of research, from classification to data analysis and discussion to writing the article and submission to a refereed journal.

  1. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  2. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  3. Infrared polarimetry of Mrk 231: scattering off hot dust grains in the central core

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, E.; Packham, C.; Jones, T. J.; Siebenmorgen, R.; Roche, P. F.; Levenson, N. A.; Alonso-Herrero, A.; Perlman, E.; Ichikawa, K.; Ramos Almeida, C.; González-Martín, O.; Nikutta, R.; Martinez-Paredez, M.; Shenoy, D.; Gordon, M. S.; Telesco, C. M.

    2017-01-01

    We present high-angular (0.17-0.35 arcsec) resolution imaging polarimetric observations of Mrk 231 in the 3.1 μm filter using MMT-Pol on the 6.5-m MMT, and in the 8.7, 10.3, and 11.6 μm filters using CanariCam on the 10.4-m Gran Telescopio CANARIAS. In combination with already published observations, we compile the 1-12 μm total and polarized nuclear spectral energy distribution (SED). The total flux SED in the central 400 pc is explained as the combination of (1) a hot (731 ± 4 K) dusty structure, directly irradiated by the central engine, which is at 1.6 ± 0.1 pc away and attributed to be in the pc-scale polar region, (2) an optically-thick, smooth and disc-like dusty structure (`torus') with an inclination of 48° ± 23° surrounding the central engine, and (3) an extinguished (AV = 36 ± 5 mag) starburst component. The polarized SED decreases from 0.77 ± 0.14 per cent at 1.2 μm to 0.31 ± 0.15 per cent at 11.6 μm and follows a power-law function, λ˜0.57. The polarization angle remains constant (˜108°) in the 1-12 μm wavelength range. The dominant polarization mechanism is explained as scattering-off hot dust grains in the pc-scale polar regions.

  4. On the occurrence of galaxy harassment

    NASA Astrophysics Data System (ADS)

    Bialas, D.; Lisker, T.; Olczak, C.; Spurzem, R.; Kotulla, R.

    2015-04-01

    Context. Tidal interactions of galaxies in galaxy clusters have been proposed as one potential explanation of the morphology-density relation at low masses. Earlier studies have shown that galaxy harassment is a suitable mechanism for inducing a morphological transformation from low-mass late-type disk galaxies to the abundant early-type galaxies. Aims: The efficiency of tidal transformation is expected to depend strongly on the orbit of a galaxy within the cluster halo. The orbit determines both the strength of the cluster's global tidal field and the probability of encounters with other cluster members. Here we aim to explore these dependencies. Methods: We use a combination of N-body simulation and Monte-Carlo method to study the efficiency of the transformation of late-type galaxies by tidal interactions on different orbits in a galaxy cluster. Additionally, we investigate the effect of an inclination between the disk of the infalling galaxy and its orbital plane. We compare our results to observational data to assess the possible relevance of such transformations for the existing cluster galaxy population. Results: We find that galaxies that entered a cluster from the outskirts are unlikely to be significantly transformed (stellar mass loss ≤6%). Closer to the cluster centre, tidal interactions are a more efficient mechanism (stellar mass loss up to 50%) for producing harassed galaxies. The inclination of the disk can reduce the mass loss significantly, yet it amplifies the thickening of the galaxy disk. Galaxies with smaller sizes on intermediate orbits are nearly unaffected by tidal interactions. The tidal influence on an infalling galaxy and the likelihood that it leads to galaxy harassment make a very stochastical process that depends on the galaxy's specific history. Conclusions: We conclude that harassment is a suitable mechanism that could explain the transformation of at least a fraction of galaxies inside galaxy clusters. However, the transformation

  5. Radial alignment of elliptical galaxies by the tidal force of a cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Yi, Shu-Xu; Zhang, Shuang-Nan; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster are expected to point preferentially towards the centre of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work, an analytic model is formulated to simulate this effect. The deformation time-scale of a galaxy in a cluster is usually much shorter than the time-scale of change of the tidal force; the dynamical process of tidal interaction within the galaxy can thus be ignored. The equilibrium shape of a galaxy is then assumed to be the surface of equipotential that is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte Carlo method to calculate the radial orientation distribution of cluster galaxies, by assuming a Navarro-Frenk-White mass profile for the cluster and the initial ellipticity of field galaxies. The radial angles show a single-peak distribution centred at zero. The Monte Carlo simulations also show that a shift of the reference centre from the real cluster centre weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell 2744 are consistent with the simulated distribution.

  6. Exploring star formation in high-z galaxies using atomic and molecular emission lines

    NASA Astrophysics Data System (ADS)

    Gullberg, Bitten

    2016-03-01

    The conditions under which stars are formed and the reasons for triggering and quenching of starburst events in high-z galaxies, are still not well understood. Studying the interstellar medium (ISM) and the morphology of high-z galaxies are therefore key points in order to understand galaxy evolution. The cosmic star formation rate density peaks between 1galaxy populations which show signs of major merger events and active galactic nuclei (AGN). This thesis presents three studies of the ISM in high-z galaxies and their morphologies by: Exploring the physical conditions of the ISM in a sample of dusty star-forming galaxies (DSFGs) using the relative observed line strength of ionised carbon ([CII]) and carbon monoxide (CO). We find that the line ratios can best be described by a medium of [CII] and CO emitting gas with a higher [CII] than CO excitation temperature, high CO optical depth tau(CO)>>1, and low to moderate [CII] optical depth tau(CII)<1. Combining millimetre/sub-millimetre and optical data cubes for the high-z radio galaxy (HzRG) MRC0943-242, has revealed a much more complicated morphology than seen in the individual data sets. The millimetre/sub-millimetre observations data have allowed us to spatially separate of the AGN and starburst dominated components, which ~65 kpc apart. The optical data reveal structures of emitting and absorbing gas at multiple wavelengths. A deep high resolution millimetre/sub-millimetre study of the HzRG MRC1138-262, shows emission from water (H2O) and an unusually large amount of neutral atomic carbon ([CI]) relative to highly excited CO compared to lensed DSFGs. The

  7. Impact of sub-keV soft excess on warm absorbers

    NASA Astrophysics Data System (ADS)

    Chakravorty, S.

    2009-09-01

    Soft X-ray spectral features of warm absorbers (WA) are often found in Seyfert 1 galaxies. The ionizing continuum coming from the central engine and which photoionizes the WA, can be optimally modeled to have three spectral components a) the 'disk blackbody' at about 10 eV - the spectrum from the accretion disk of the black hole, b) the X-ray powerlaw - representing the dominant component at energies 1 keV and above and c) the soft excess in sub keV - which is seen in most objects after deducting the powerlaw component. We use the thermal equilibrium curves generated by the photoionization code CLOUDY to study the influence of the soft excess component on the nature of the WA. Our studies show that the nature of the WA is strongly dependent on the chemical composition of the absorbing gas, particularly on the abundance of iron, oxygen and the X-ray group (C, Ne, O, Fe) which have important atomic transitions in the energy range 0.3 - 1.5 keV where the soft excess component is supposed to have maximum effect. One of the popular models for the soft excess component is a blackbody with its temperature lying between 100 - 200 eV. We find that the soft excess component seems to decide the stability properties of the gas at 10^5 K; the range of xi/T over which stable warm absorber exists almost doubles if the soft excess luminosity is equal to the luminosity in the powerlaw (0.1 - 10 keV) which is a ratio not unheard of. Even if the soft excess is represented using alternative spectral shapes like the 'comptonized reflection' model, the stability properties of the WA do not change significantly.

  8. Galaxy bias from galaxy–galaxy lensing in the DES science verification data

    DOE PAGES

    Prat, J.; Sánchez, C.; Miquel, R.; ...

    2017-09-25

    Here, we present a measurement of galaxy–galaxy lensing around a magnitude-limited (i AB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h –1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy–galaxy lensing with those obtained from galaxy clusteringmore » and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ~ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm bpz. Using a different code to split the lens sample, tpz, leads to changes in the measured biases at the 10–20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ~ 0.3), where we find r = 0.71 ± 0.11 when using tpz, and 0.83 ± 0.12 with bpz.« less

  9. Galaxy And Mass Assembly: resolving the role of environment in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Brough, S.; Croom, S.; Sharp, R.; Hopkins, A. M.; Taylor, E. N.; Baldry, I. K.; Gunawardhana, M. L. P.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Bauer, A. E.; Bland-Hawthorn, J.; Colless, M.; Foster, C.; Kelvin, L. S.; Lara-Lopez, M. A.; López-Sánchez, Á. R.; Loveday, J.; Owers, M.; Pimbblet, K. A.; Prescott, M.

    2013-11-01

    We present observations of 18 galaxies from the Galaxy And Mass Assembly (GAMA) survey made with the SPIRAL optical integral field unit (IFU) on the Anglo-Australian Telescope. The galaxies are selected to have a narrow range in stellar mass (6 × 109 < M* < 2 × 1010 M⊙) in order to focus on the effects of environment. Local galaxy environments are measured quantitatively using fifth nearest neighbour surface densities. We find that the total star formation rates (SFR) measured from the IFU data are consistent with total SFRs measured from aperture correcting either GAMA or Sloan Digital Sky Survey single-fibre observations. The mean differences are SFRGAMA/SFRIFU = 1.26 ± 0.23, σ = 0.90 and for the Sloan Digital Sky Survey we similarly find SFRBrinchmann/SFRIFU = 1.34 ± 0.17, σ = 0.67. Examining the relationships with environment, we find that off-centre and clumpy Hα emission is not significantly dependent on environment, being present in 2/7 (29^{+20}_{-11} per cent) galaxies in high-density environments (>0.77 Mpc-2), and 5/11 (45^{+15}_{-13} per cent) galaxies in low-density environments (<0.77 Mpc-2). We find a weak but not significant relationship of the total SFRs of star-forming galaxies with environment. Due to the size of our sample and the scatter observed we do not draw a definitive conclusion about a possible SFR dependence on environment. Examining the spatial distribution of the Hα emission, we find no evidence for a change in shape or amplitude of the radial profile of star-forming galaxies with environment. If these observations are borne out in larger samples, this would infer that any environment-driven star formation suppression must either act very rapidly (the `infall-and-quench' model) or that galaxies must evolve in a density-dependent manner (an `in situ evolution' model).

  10. Galaxy Zoo: Morphological Classification of Galaxy Images from the Illustris  Simulation

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Fortson, Lucy; Lintott, Chris; Scarlata, Claudia; Willett, Kyle; Bamford, Steven; Beck, Melanie; Cardamone, Carolin; Galloway, Melanie; Simmons, Brooke; Keel, William; Kruk, Sandor; Masters, Karen; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory F.

    2018-02-01

    Modern large-scale cosmological simulations model the universe with increasing sophistication and at higher spatial and temporal resolutions. These ongoing enhancements permit increasingly detailed comparisons between the simulation outputs and real observational data. Recent projects such as Illustris are capable of producing simulated images that are designed to be comparable to those obtained from local surveys. This paper tests the degree to which Illustris achieves this goal across a diverse population of galaxies using visual morphologies derived from Galaxy Zoo citizen scientists. Morphological classifications provided by these volunteers for simulated galaxies are compared with similar data for a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey. This paper investigates how simple morphological characterization by human volunteers asked to distinguish smooth from featured systems differs between simulated and real galaxy images. Significant differences are identified, which are most likely due to the limited resolution of the simulation, but which could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Specifically, for stellar masses {M}\\star ≲ {10}11 {M}ȯ , a substantially larger proportion of Illustris galaxies that exhibit disk-like morphology or visible substructure, relative to their SDSS counterparts. Toward higher masses, the visual morphologies for simulated and observed galaxies converge and exhibit similar distributions. The stellar mass threshold indicated by this divergent behavior confirms recent works using parametric measures of morphology from Illustris simulated images. When {M}\\star ≳ {10}11 {M}ȯ , the Illustris data set contains substantially fewer galaxies that classifiers regard as unambiguously featured. In combination, these results suggest that comparison between the detailed properties of observed and simulated galaxies

  11. Galaxy bias from galaxy–galaxy lensing in the DES science verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prat, J.; Sánchez, C.; Miquel, R.

    Here, we present a measurement of galaxy–galaxy lensing around a magnitude-limited (i AB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h –1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy–galaxy lensing with those obtained from galaxy clusteringmore » and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ~ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm bpz. Using a different code to split the lens sample, tpz, leads to changes in the measured biases at the 10–20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ~ 0.3), where we find r = 0.71 ± 0.11 when using tpz, and 0.83 ± 0.12 with bpz.« less

  12. New Methods for Tracking Galaxy and Black Hole Evolution Using Post-Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    French, Katheryn Decker

    2017-08-01

    Galaxies in transition from star-forming to quiescence are a natural laboratory for exploring the processes responsible for this evolution. Using a sample of post-starburst galaxies identified to have recently experienced a recent burst of star formation that has now ended, I explore both the fate of the molecular gas that drives star formation and the increased rate of stars disrupted by the central supermassive black hole. Chapter 1 provides an introduction to galaxy evolution through the post-starburst phase and to tidal disruption events, which surprisingly favor post-starburst galaxy hosts. In Chapter 2, I present a survey of the molecular gas properties of 32 post-starburst galaxies traced by CO (1-0) and CO (2-1). In order to accurately put galaxies on an evolutionary sequence, we must select likely progenitors and descendants. We do this by identifying galaxies with similar starburst properties, such as the amount of mass produced in the burst and the burst duration. In Chapter 3, I describe a method to determine the starburst properties and the time elapsed since the starburst ended, and discuss trends in the molecular gas properties of these galaxies with time. In Chapter 4, I present the results of followup observations with ALMA of HCN (1-0) and HCO+ (1-0) in two post-starburst galaxies. CO (1-0) is detected in over half (17/32) the post-starburst sample and the molecular gas mass traced by CO declines on ˜100 Myr timescales after the starburst has ended. HCN (1-0) is not detected in either galaxy targeted, indicating the post-starbursts are now quiescent because of a lack of the denser molecular gas traced by HCN. In Chapter 5 I quantify the increase in TDE rate in quiescent galaxies with strong Balmer absorption to be 30 - 200x higher than in normal galaxies. Using the stellar population fitting method from Chapter 3, I examine possible reasons for the increased TDE rate in post-starburst galaxies in Chapter 6. The TDE rate could be boosted due to a

  13. Structural analysis of star-forming blue early-type galaxies. Merger-driven star formation in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    George, Koshy

    2017-02-01

    Context. Star-forming blue early-type galaxies at low redshift can give insight to the stellar mass growth of L⋆ elliptical galaxies in the local Universe. Aims: We wish to understand the reason for star formation in these otherwise passively evolving red and dead stellar systems. The fuel for star formation can be acquired through recent accretion events such as mergers or flyby. The signatures of such events should be evident from a structural analysis of the galaxy image. Methods: We carried out structural analysis on SDSS r-band imaging data of 55 star-forming blue elliptical galaxies, derived the structural parameters, analysed the residuals from best-fit to surface brightness distribution, and constructed the galaxy scaling relations. Results: We found that star-forming blue early-type galaxies are bulge-dominated systems with axial ratio >0.5 and surface brightness profiles fitted by Sérsic profiles with index (n) mostly >2. Twenty-three galaxies are found to have n< 2; these could be hosting a disc component. The residual images of the 32 galaxy surface brightness profile fits show structural features indicative of recent interactions. The star-forming blue elliptical galaxies follow the Kormendy relation and show the characteristics of normal elliptical galaxies as far as structural analysis is concerned. There is a general trend for high-luminosity galaxies to display interaction signatures and high star formation rates. Conclusions: The star-forming population of blue early-type galaxies at low redshifts could be normal ellipticals that might have undergone a recent gas-rich minor merger event. The star formation in these galaxies will shut down once the recently acquired fuel is consumed, following which the galaxy will evolve to a normal early-type galaxy.

  14. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  15. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  16. The IRAS galaxy 0421+040P06: An active spiral (?) galaxy with extended radio lobes

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Wynn-Williams, C. G.; Lonsdale, C. J.; Persson, S. E.; Heasley, J. N.; Miley, G. K.; Soifer, B. T.; Neugebauer, G.; Becklin, E. E.; Houck, J. R.

    1984-01-01

    The infrared bright galaxy 0421+040P06 detected by IRAS at 25 and 60 microns was studied at optical, infrared, and radio wavelength. It is a luminous galaxy with apparent spiral structure emitting 4 x 10 to the 37th power from far-infrared to optical wavelengths. Optical spectroscopy reveals a Seyfert 2 emission line spectrum, making 0421+040P06 the first active galaxy selected from an unbiased infrared survey of galaxies. The fact that this galaxy shows a flatter energy distribution with more 25 micron emission than other galaxies in the infrared sample may be related to the presence of an intense active nucleus. The radio observations reveal the presence of a non-thermal source that, at 6 cm, shows a prominent double lobed structure 20 to 30 kpc in size extending beyond the optical confines of the galaxy. The radio source is three to ten times larger than structures previously seen in spiral galaxies.

  17. The role of host galaxy for the environmental dependence of active nuclei in local galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Richard I.; Hicks, E. K. S.; Erwin, P.; Burtscher, L.; Contursi, A.; Genzel, R.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2017-04-01

    We discuss the environment of local hard X-ray selected active galaxies, with reference to two independent group catalogues. We find that the fraction of these AGN in S0 host galaxies decreases strongly as a function of galaxy group size (halo mass) - which contrasts with the increasing fraction of galaxies of S0 type in denser environments. However, there is no evidence for an environmental dependence of AGN in spiral galaxies. Because most AGN are found in spiral galaxies, this dilutes the signature of environmental dependence for the population as a whole. We argue that the differing results for AGN in disc-dominated and bulge-dominated galaxies are related to the source of the gas fuelling the AGN, and so may also impact the luminosity function, duty cycle and obscuration. We find that there is a significant difference in the luminosity function for AGN in spiral and S0 galaxies, and tentative evidence for some difference in the fraction of obscured AGN.

  18. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    NASA Astrophysics Data System (ADS)

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with

  19. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  20. Galaxy and Mass Assembly (GAMA): probing the merger histories of massive galaxies via stellar populations

    NASA Astrophysics Data System (ADS)

    Ferreras, I.; Hopkins, A. M.; Gunawardhana, M. L. P.; Sansom, A. E.; Owers, M. S.; Driver, S.; Davies, L.; Robotham, A.; Taylor, E. N.; Konstantopoulos, I.; Brough, S.; Norberg, P.; Croom, S.; Loveday, J.; Wang, L.; Bremer, M.

    2017-06-01

    The merging history of galaxies can be traced with studies of dynamically close pairs. These consist of a massive primary galaxy and a less massive secondary (or satellite) galaxy. The study of the stellar populations of secondary (lower mass) galaxies in close pairs provides a way to understand galaxy growth by mergers. Here we focus on systems involving at least one massive galaxy - with stellar mass above 1011M⊙ in the highly complete Galaxy and Mass Assembly (GAMA) survey. Our working sample comprises 2692 satellite galaxy spectra (0.1 ≤ z ≤ 0.3). These spectra are combined into high S/N stacks, and binned according to both an 'internal' parameter, the stellar mass of the satellite galaxy (I.e. the secondary), and an 'external' parameter, selecting either the mass of the primary in the pair, or the mass of the corresponding dark matter halo. We find significant variations in the age of the populations with respect to environment. At fixed mass, satellites around the most massive galaxies are older and possibly more metal-rich, with age differences ˜1-2 Gyr within the subset of lower mass satellites (˜1010 M⊙). These variations are similar when stacking with respect to the halo mass of the group where the pair is embedded. The population trends in the lower mass satellites are consistent with the old stellar ages found in the outer regions of massive galaxies.

  1. Understanding the build-up of SMBH and Galaxies

    NASA Astrophysics Data System (ADS)

    Carrera, Francisco; Georgakakis, Antonis; Ueda, Yoshihiro; Akylas, Thanassis; Lanzuisi, Giorgio; Castello, N.

    2015-09-01

    . The excellent survey capabilities of Athena/WFI (effective area, angular resolution, field of view) will allow to measure the incidence of feedback in the shape of warm absorbers and Ultra Fast Outflows among the general population of AGN, as well as to complete the census of black hole growth by detecting and characterising significant samples of the most heavily obscured (including Compton thick) AGN, to redshifts z~3-4. The outstanding spectral throughput and resolution of Athena/X-IFU will permit measuring the energetics of those outflows to assess their influence on their host galaxies. The demographics of the heavily obscured and outflowing populations relative to their hosts are fundamental for understanding how major black hole growth events relate to the build-up of galaxies.

  2. HI-Selected Galaxies in Hierarchical Models of Galaxy Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Zoldan, Anna

    2017-07-01

    This poster presents the main results of a statistical study of HI-selected galaxies based on six different semi-analytic models, all run on the same cosmological N-body simulation. One of these models includes an explicit treatment for the partition of cold gas into atomic and molecular hydrogen. All models considered agree nicely with the measured HI mass function in the local Universe and with the measured scaling relations between HI and galaxy stellar mass. Most models also reproduce the observed 2-point correlation function for HI rich galaxies, with the exception of one model that predicts very little HI associated with galaxies in haloes above 10^12 Msun. We investigated the influence of satellite treatment on the final HI content and found that it introduces large uncertainties at low HI masses. We found that the assumption of instantaneous stripping of hot gas in satellites does not translate necessarily in lower HI masses. We demonstrate that the assumed stellar feedback, combined with star formation, also affect significantly the gas content of satellite galaxies. Finally, we also analyse the origin of the correlation between HI content of model galaxies and the spin of the parent haloes. Zoldan et al., 2016, MNRAS, 465, 2236

  3. A new method to measure the virial factors in the reverberation mapping of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Liu, H. T.; Feng, H. C.; Bai, J. M.

    2017-04-01

    Based on the gravitational red shift, which is a prediction of Einstein's general relativity theory, of broad optical emission lines in active galactic nuclei (AGNs), a new method is proposed to estimate the virial factors f in measuring black hole masses MRM by the reverberation mapping of AGNs. The factors f can be measured based on two physical quantities, I.e. the gravitational red shifts zg and the full widths at half maxima vFWHM of broad lines. In the past, it has been difficult to determine the factors f for individual AGNs. We apply this new method to several reverberation-mapped type 1 Seyfert galaxies. There is a correlation between f and the radius of the broad-line region (BLR) rBLR, f=5.4 r_{BLR}^{0.3}, for the gravitationally red-shifted broad lines He II, He I, Hβ and Hα in the narrow-line type 1 Seyfert galaxy (NLS1) Mrk 110. This correlation results from the influence of the radiation pressure of the accretion disc on the BLR clouds. This influence seems to be more important than usually thought so in AGNs. Mrk 110 has f ≈ 8-16, distinctly larger than the mean ≈ 1 usually used to estimate MRM for vFWHM. NGC 4593 and NLS1 Mrk 486 have f ≈ 3 and f ≈ 9, respectively. Higher f values of several tens are derived for three other NLS1s. There is a correlation between f and accretion rate dot{M}_{f=1}, f=6.8dot{M}^{0.4}_{f=1} for five objects, where dot{M}_{f=1}=dot{M}_{bullet }/L_{Edd}c^{-2} as f = 1 is assumed when estimating MRM used in the Eddington luminosity LEdd, dot{M}_{bullet } is the mass accretion rate, and c is the speed of light. These larger f values will produce higher MRM values and lower Eddington ratios.

  4. Investigation of Dual Active Nuclei, Outflows, Shock-heated Gas, and Young Star Clusters in Markarian 266

    NASA Astrophysics Data System (ADS)

    Mazzarella, J. M.; Iwasawa, K.; Vavilkin, T.; Armus, L.; Kim, D.-C.; Bothun, G.; Evans, A. S.; Spoon, H. W. W.; Haan, S.; Howell, J. H.; Lord, S.; Marshall, J. A.; Ishida, C. M.; Xu, C. K.; Petric, A.; Sanders, D. B.; Surace, J. A.; Appleton, P.; Chan, B. H. P.; Frayer, D. T.; Inami, H.; Khachikian, E. Ye.; Madore, B. F.; Privon, G. C.; Sturm, E.; U, Vivian; Veilleux, S.

    2012-11-01

    Results of observations with the Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes are presented for the luminous infrared galaxy (LIRG) merger Markarian 266. The SW (Seyfert 2) and NE (LINER) nuclei reside in galaxies with Hubble types SBb (pec) and S0/a (pec), respectively. Both companions are more luminous than L* galaxies and they are inferred to each contain a ≈2.5 × 108 M ⊙ black hole. Although the nuclei have an observed hard X-ray flux ratio of fX (NE)/fX (SW) = 6.4, Mrk 266 SW is likely the primary source of a bright Fe Kα line detected from the system, consistent with the reflection-dominated X-ray spectrum of a heavily obscured active galactic nucleus (AGN). Optical knots embedded in an arc with aligned radio continuum radiation, combined with luminous H2 line emission, provide evidence for a radiative bow shock in an AGN-driven outflow surrounding the NE nucleus. A soft X-ray emission feature modeled as shock-heated plasma with T ~ 107 K is cospatial with radio continuum emission between the galaxies. Mid-infrared diagnostics provide mixed results, but overall suggest a composite system with roughly equal contributions of AGN and starburst radiation powering the bolometric luminosity. Approximately 120 star clusters have been detected, with most having estimated ages less than 50 Myr. Detection of 24 μm emission aligned with soft X-rays, radio continuum, and ionized gas emission extending ~34'' (20 kpc) north of the galaxies is interpreted as ~2 × 107 M ⊙ of dust entrained in an outflowing superwind. At optical wavelengths this Northern Loop region is resolved into a fragmented morphology indicative of Rayleigh-Taylor instabilities in an expanding shell of ionized gas. Mrk 266 demonstrates that the dust "blow-out" phase can begin in a LIRG well before the galaxies fully coalesce during a subsequent ultraluminous infrared galaxy (ULIRG) phase, and rapid gas consumption in luminous dual AGNs with kiloparsec-scale separations early

  5. DISTANT CLUSTER OF GALAXIES [left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the deepest images to date of the universe, taken with NASA's Hubble Space Telescope (HST), reveals thousands of faint galaxies at the detection limit of present day telescopes. Peering across a large volume of the observable cosmos, Hubble resolves thousands of galaxies from five to twelve billion light-years away. The light from these remote objects has taken billions of years to cross the expanding universe, making these distant galaxies fossil evidence' of events that happened when the universe was one-third its present age. A fraction of the galaxies in this image belong to a cluster located nine billion light-years away. Though the field of view (at the cluster's distance) is only two million light-years across, it contains a multitude of fragmentary objects. (By comparison, the two million light-years between our Milky Way galaxy and its nearest large companion galaxy, in the constellation Andromeda, is essentially empty space!) Very few of the cluster's members are recognizable as normal spiral galaxies (like our Milky Way), although some elongated members might be edge-on disks. Among this zoo of odd galaxies are ``tadpole-like'' objects, disturbed and apparently merging systems dubbed 'train-wrecks,' and a multitude of faint, tiny shards and fragments, dwarf galaxies or possibly an unknown population of objects. However, the cluster also contains red galaxies that resemble mature examples of today's elliptical galaxies. Their red color comes from older stars that must have formed shortly after the Big Bang. The image is the full field view of the Wide Field and Planetary Camera-2. The picture was taken in intervals between May 11 and June 15, 1994 and required an 18-hour long exposure, over 32 orbits of HST, to reveal objects down to 29th magnitude. [bottom right] A close up view of the peculiar radio galaxy 3C324 used to locate the cluster. The galaxy is nine billion light-years away as measured by its spectral redshift (z=1.2), and located in the

  6. Diverse Formation Mechanisms for Compact Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  7. Chemical Evidence for Evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Dutil, Yvan

    I have compiled the very best data published on abundance gradients. From this sample of 29 galaxies, some information can be gained on the mecanism of morphological evolution in disk galaxies. From this sample, I find that early-type galaxies show an identical trend in the behavior of extrapolated central abundance versus morphological type to that shown by late-type galaxies with strong bars, even in the absence of bar! On a a diagram showing extrapolated central abundance versus morphological type, two sequences appear: late-type barred galaxies and early-type galaxies (barred or not barred) fall on sequence 0.5 dex below that of normal late-type galaxies. This behavior is consistent with a scenario of morphological evolution of disk galaxies by formation and dissolution of a bar over a period of a few 10^^9 yr, where later type galaxies (Sd,Sc,Sbc, evolve into earlier-type disk galaxies trough transitory SBc and SBb phases.

  8. Extended Red Emission in the Evil Eye Galaxy

    NASA Astrophysics Data System (ADS)

    Pierini, D.; Majeed, A.; Boroson, T. A.; Witt, A. N.

    2001-05-01

    The Evil Eye Galaxy (NGC 4826) is a nearby galaxy with an asymmetrically placed, strongly absorbing dust lane across its prominent bulge, associated to an active star formation (SF) region. We obtained accurate low--resolution (4.2 Å/pixel) spectroscopy (KPNO 4-m) of NGC 4826 in the wavelength range 5300--9100Å with a slit of 4.4' length, positioned across the nucleus of the galaxy and encompassing its bulge size. We were able to study the wavelength dependent effects of absorption and scattering by the dust by comparing the stellar SEDs at corresponding positions on the bulge, symmetrically placed with respect to the nucleus, under the assumption that the intrinsic (i.e. unobscured by the dust lane) ISRF is radially symmetric, except for the ongoing SF region. We report on the detection of strong extended red emission (ERE) from the dust lane of NGC 4826 within a radial distance of about 15{' '} from its nucleus, adjacent to the active SF region. At the nucleus, the ERE band extends from about 5800 Å to 9100 Å, with peak near 8300 Å, and the ERE-to-scattered light integrated intensity ratio is about 0.7. At farther distances, approaching the ongoing SF region, the ERE band and peak shift to longer wavelengths, while the integrated ERE intensity diminishes and, finally, vanishes there. The H α line intensity and the index [NII]λ 6583/H α constrain the Lyman continuum photon rate and the effective temperatures of the OB association stars. The ERE-to-scattered light ratio decreases as well but shows a secondary maximum where the opacity of the dust lane peaks. We interpret the ERE nature as photoluminescence by nanometer--sized clusters, illuminated by UV/visible photons of the local radiation field. When examined within the context of ERE observations in the diffuse ISM of our Galaxy and in a variety of other dusty environments, we conclude that the ERE photon conversion efficiency in NGC 4826 is as high as found elsewhere, but that the characteristic size

  9. What made discy galaxies giant?

    NASA Astrophysics Data System (ADS)

    Saburova, A. S.

    2018-01-01

    I studied giant discy galaxies with optical radii more than 30 kpc. The comparison of these systems with discy galaxies of moderate sizes revealed that they tend to have higher rotation velocities, B-band luminosities, H I masses and dark-to-luminous mass ratios. The giant discs follow the trend log (M_{H I})(R_{25}) found for normal sized galaxies. It indicates the absence of the peculiarities of evolution of star formation in these galaxies. The H I mass-to-luminosity ratio of giant galaxies appears not to differ from that of normal-sized galaxies, giving evidence in favour of similar star formation efficiency. I also found that the bars and rings occur more frequently among giant discs. I performed mass modelling of the subsample of 18 giant galaxies with available rotation curves and surface photometry data and constructed χ2 maps for the parameters of their dark matter haloes. These estimates indicate that giant discs tend to be formed in larger more massive and rarified dark haloes in comparison to moderate-sized galaxies. However, giant galaxies do not deviate significantly from the relations between the optical sizes and dark halo parameters for moderate-sized galaxies. These findings can rule out the catastrophic scenario of the formation of at least most of giant discs, since they follow the same relations as normal discy galaxies. The giant sizes of the discs can be due to the high radial scale of the dark matter haloes in which they were formed.

  10. Galaxy-Galaxy Lensing in the Hubble Deep Field: The Halo Tully-Fisher Relation at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Gwyn, Stephen D. J.; Dahle, Håkon; Kaiser, Nick

    1998-08-01

    A tangential distortion of background source galaxies around foreground lens galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An important element of our analysis is the use of photometric redshifts to determine distances of lens and source galaxies and rest-frame B-band luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher relation between halo circular velocity and luminosity. The typical lens galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/- 40 km s-1 at MB = -18.5, if q0 = 0.5. Control tests, in which lens and source positions and source ellipticities are randomized, confirm the significance level of the detection quoted above. Furthermore, a marginal signal is also detected from an independent, fainter sample of source galaxies without photometric redshifts. Potential systematic effects, such as contamination by aligned satellite galaxies, the distortion of source shapes by the light of the foreground galaxies, PSF anisotropies, and contributions from mass distributed on the scale of galaxy groups are shown to be negligible. A comparison of our result with the local Tully-Fisher relation indicates that intermediate-redshift galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed circular velocity. This is consistent with some spectroscopic studies of the rotation curves of intermediate-redshift galaxies. This result suggests that the strong increase in the global luminosity density with redshift is dominated by evolution in the galaxy number density.

  11. nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes

    NASA Astrophysics Data System (ADS)

    Elahi, Pascal J.; Knebe, Alexander; Pearce, Frazer R.; Power, Chris; Yepes, Gustavo; Cui, Weiguang; Cunnama, Daniel; Kay, Scott T.; Sembolini, Federico; Beck, Alexander M.; Davé, Romeel; February, Sean; Huang, Shuiyao; Katz, Neal; McCarthy, Ian G.; Murante, Giuseppe; Perret, Valentin; Puchwein, Ewald; Saro, Alexandro; Teyssier, Romain

    2016-05-01

    We examine subhaloes and galaxies residing in a simulated Λ cold dark matter galaxy cluster (M^crit_{200}=1.1× 10^{15} h^{-1} M_{⊙}) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within ≲10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of ≲0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and Vmax distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully-Fisher relation is similar in almost all codes, the number of galaxies with 109 h- 1 M⊙ ≲ M* ≲ 1012 h- 1 M⊙ can differ by a factor of 4. Individual galaxies show code-to-code scatter of ˜0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ˜0.2-0.4 dex.

  12. Accretion by the Galaxy

    NASA Astrophysics Data System (ADS)

    Binney, J.; Fraternali, F.

    2012-02-01

    Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of Hi increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic Hi. The values of the model's parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies "red and dead."

  13. Galaxy M101

    NASA Image and Video Library

    2003-07-25

    This three-color image of galaxy M101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. The far ultraviolet emissions are shown in blue, the near ultraviolet emissions are green, and the red emissions, which were taken from NASA's Digital Sky Survey, represent visible light. This image combines short, medium, and long "exposure" pictures to best display the evolution of star formation in a spiral galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04630

  14. Interrogating Seyferts with NebulaBayes: Spatially Probing the Narrow-line Region Radiation Fields and Chemical Abundances

    NASA Astrophysics Data System (ADS)

    Thomas, Adam D.; Dopita, Michael A.; Kewley, Lisa J.; Groves, Brent A.; Sutherland, Ralph S.; Hopkins, Andrew M.; Blanc, Guillermo A.

    2018-04-01

    NebulaBayes is a new Bayesian code that implements a general method of comparing observed emission-line fluxes to photoionization model grids. The code enables us to extract robust, spatially resolved measurements of abundances in the extended narrow-line regions (ENLRs) produced by Active Galactic Nuclei (AGN). We observe near-constant ionization parameters but steeply radially declining pressures, which together imply that radiation pressure regulates the ENLR density structure on large scales. Our sample includes four “pure Seyfert” galaxies from the S7 survey that have extensive ENLRs. NGC 2992 shows steep metallicity gradients from the nucleus into the ionization cones. An inverse metallicity gradient is observed in ESO 138-G01, which we attribute to a recent gas inflow or minor merger. A uniformly high metallicity and hard ionizing continuum are inferred across the ENLR of Mrk 573. Our analysis of IC 5063 is likely affected by contamination from shock excitation, which appears to soften the inferred ionizing spectrum. The peak of the ionizing continuum E peak is determined by the nuclear spectrum and the absorbing column between the nucleus and the ionized nebula. We cannot separate variation in this intrinsic E peak from the effects of shock or H II region contamination, but E peak measurements nevertheless give insights into ENLR excitation. We demonstrate the general applicability of NebulaBayes by analyzing a nuclear spectrum from the non-active galaxy NGC 4691 using a H II region grid. The NLR and H II region model grids are provided with NebulaBayes for use by the astronomical community.

  15. Testing the MOND paradigm of modified dynamics with galaxy-galaxy gravitational lensing.

    PubMed

    Milgrom, Mordehai

    2013-07-26

    The MOND paradigm of modified dynamics predicts that the asymptotic gravitational potential of an isolated, bounded (baryonic) mass, M, is ϕ(r)=(MGa0)1/2ln(r). Relativistic MOND theories predict that the lensing effects of M are dictated by ϕ(r) as general-relativity lensing is dictated by the Newtonian potential. Thus MOND predicts that the asymptotic Newtonian potential deduced from galaxy-galaxy gravitational lensing will have (1) a logarithmic r dependence, and (2) a normalization (parametrized standardly as 2σ2) that depends only on M: σ=(MGa0/4)1/4. I compare these predictions with recent results of galaxy-galaxy lensing, and find agreement on all counts. For the “blue”-lenses subsample (“spiral” galaxies) MOND reproduces the observations well with an r′-band M/Lr′∼(1–3)(M/L)⊙, and for “red” lenses (“elliptical” galaxies) with M/Lr′∼(3–6)(M/L)⊙, both consistent with baryons only. In contradistinction, Newtonian analysis requires, typically, M/Lr′∼130(M/L)⊙, bespeaking a mass discrepancy of a factor ∼40. Compared with the staple, rotation-curve tests, MOND is here tested in a wider population of galaxies, through a different phenomenon, using relativistic test objects, and is probed to several-times-lower accelerations–as low as a few percent of a0.

  16. The Metallicity of Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  17. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2008-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  18. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  19. Do Galaxies Follow Darwinian Evolution?

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Using VIMOS on ESO's Very Large Telescope, a team of French and Italian astronomers have shown the strong influence the environment exerts on the way galaxies form and evolve. The scientists have for the first time charted remote parts of the Universe, showing that the distribution of galaxies has considerably evolved with time, depending on the galaxies' immediate surroundings. This surprising discovery poses new challenges for theories of the formation and evolution of galaxies. The 'nature versus nurture' debate is a hot topic in human psychology. But astronomers too face similar conundrums, in particular when trying to solve a problem that goes to the very heart of cosmological theories: are the galaxies we see today simply the product of the primordial conditions in which they formed, or did experiences in the past change the path of their evolution? ESO PR Photo 17/06 ESO PR Photo 45/06 Galaxy Distribution in Space In a large, three-year long survey carried out with VIMOS [1], the Visible Imager and Multi-Object Spectrograph on ESO's VLT, astronomers studied more than 6,500 galaxies over a wide range of distances to investigate how their properties vary over different timescales, in different environments and for varying galaxy luminosities [2]. They were able to build an atlas of the Universe in three dimensions, going back more than 9 billion years. This new census reveals a surprising result. The colour-density relation, that describes the relationship between the properties of a galaxy and its environment, was markedly different 7 billion years ago. The astronomers thus found that the galaxies' luminosity, their initial genetic properties, and the environments they reside in have a profound impact on their evolution. "Our results indicate that environment is a key player in galaxy evolution, but there's no simple answer to the 'nature versus nurture' problem in galaxy evolution," said Olivier Le Fèvre from the Laboratoire d'Astrophysique de Marseille

  20. Photometry of compact galaxies.

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.; Usher, P. D.; Barrett, J. W.

    1972-01-01

    Photometric histories of the N galaxies 3C 390.3 and PKS 0521-36. Four other compact galaxies, Markarian 9, I Zw 92, 2 Zw 136, and III Zw 77 showed no evidence of variability. The photometric histories were obtained from an exhaustive study of those plates of the Harvard collection taken with large aperture cameras. The images of all galaxies reported were indistinguishable from stars due to the camera f-ratios and low surface brightness of the outlying nebulosities of the galaxies. Standard techniques for the study of variable stars are therefore applicable.

  1. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  2. Galaxy with a view

    NASA Image and Video Library

    2015-07-06

    This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disc-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish. The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud  — one of the satellite galaxies of the Milky Way. The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys. This instrument has delivered some of the sharpest views of the Universe so far achieved by mankind. This image covers only a tiny patch of sky — about the size of a one cent euro coin held 100 metres away! A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by flickr user c.claude.

  3. Mysterious Blob Galaxies Revealed

    NASA Image and Video Library

    2005-01-11

    This image composite shows a giant galactic blob (red) and the three merging galaxies NASA's Spitzer Space Telescope discovered within it (yellow). Blobs are intensely glowing clouds of hot hydrogen gas that envelop faraway galaxies. They are about 10 times as large as the galaxies they surround. Visible-light images reveal the vast extent of blobs, but don't provide much information about their host galaxies. Using its heat-seeking infrared eyes, Spitzer was able to see the dusty galaxies tucked inside one well-known blob located 11 billion light-years away. The findings reveal three monstrously bright galaxies, trillions of times brighter than the Sun, in the process of merging together. Spitzer also observed three other blobs located in the same cosmic neighborhood, all of which were found to be glaringly bright. One of these blobs is also known to be a galactic merger, only between two galaxies instead of three. It remains to be seen whether the final two blobs studied also contain mergers. The Spitzer data were acquired by its multiband imaging photometer. The visible-light image was taken by the Blanco Telescope at the Cerro Tololo Inter-American Observatory, Chile. http://photojournal.jpl.nasa.gov/catalog/PIA07220

  4. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  5. Starburst Galaxies. III. Properties of a Radio-selected Sample

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Herter, Terry; Haynes, Martha P.

    1998-02-01

    We have analyzed the properties of the 20 most radio-luminous UGC starburst galaxies from Condon, Frayer, & Broderick. Near-infrared images, spectra, and optical rotation curves were presented in Smith et al. In this paper, we use these data and published radio data to assess the stellar populations, dust contents, ionizing conditions, and dynamics of the starbursts. Certain properties of the star formation occurring in these galaxies differ from those observed locally. The infrared excesses (IREs) are lower than and span a narrower range of values than those of Galactic H II regions. The starbursts appear to produce a higher proportion of ionizing photons than most Galactic H II regions. Consequently, the initial mass functions (IMFs) of the starbursts may be more strongly biased toward high-mass star formation. The starbursts may also contain fewer old H II regions than the Milky Way. Furthermore, the starburst IRE is likely to be influenced by the presence of large reservoirs of gas that absorb a larger fraction of the Lyman continuum photons. The OB stellar and far-infrared luminosities imply that the upper mass range of the starburst IMF (M > 10 M⊙) is characterized by a slope of 2.7 +/- 0.2. The starburst IMF thus bears a strong similarity to that observed in Magellanic OB associations. Optical line ratios indicate that a range of excitation conditions are present. We conclude that the near-infrared light from many of the starbursts is dominated by a heavily obscured mixture of emission from evolved red stars and young blue stars with small contributions (~5%) from thermal gas and hot dust, under the assumptions that a Galactic or SMC extinction law can be applied to these systems and that the true reddening curve follows one of the models currently existing in the literature. In some cases, larger amounts of emission from blue stars or hot dust may be required to explain the observed near-infrared colors. The amount of dust emission exceeds that predicted

  6. Hubble Spots a Secluded Starburst Galaxy

    NASA Image and Video Library

    2017-12-08

    This image was taken by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS) and shows a starburst galaxy named MCG+07-33-027. This galaxy lies some 300 million light-years away from us, and is currently experiencing an extraordinarily high rate of star formation — a starburst. Normal galaxies produce only a couple of new stars per year, but starburst galaxies can produce a hundred times more than that. As MCG+07-33-027 is seen face-on, the galaxy’s spiral arms and the bright star-forming regions within them are clearly visible and easy for astronomers to study. In order to form newborn stars, the parent galaxy has to hold a large reservoir of gas, which is slowly depleted to spawn stars over time. For galaxies in a state of starburst, this intense period of star formation has to be triggered somehow — often this happens due to a collision with another galaxy. MCG+07-33-027, however, is special; while many galaxies are located within a large cluster of galaxies, MCG+07-33-027 is a field galaxy, which means it is rather isolated. Thus, the triggering of the starburst was most likely not due to a collision with a neighboring or passing galaxy and astronomers are still speculating about the cause. The bright object to the right of the galaxy is a foreground star in our own galaxy. Image credit: ESA/Hubble & NASA and N. Grogin (STScI)

  7. Dark-ages reionization and galaxy formation simulation - IX. Economics of reionizing galaxies

    NASA Astrophysics Data System (ADS)

    Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Kim, Han-Seek; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-09-01

    Using a series of high-resolution hydrodynamical simulations we show that during the rapid growth of high-redshift (z > 5) galaxies, reserves of molecular gas are consumed over a time-scale of 300 Myr, almost independent of feedback scheme. We find that there exists no such simple relation for the total gas fractions of these galaxies, with little correlation between gas fractions and specific star formation rates. The bottleneck or limiting factor in the growth of early galaxies is in converting infalling gas to cold star-forming gas. Thus, we find that the majority of high-redshift dwarf galaxies are effectively in recession, with demand (of star formation) never rising to meet supply (of gas), irrespective of the baryonic feedback physics modelled. We conclude that the basic assumption of self-regulation in galaxies - that they can adjust total gas consumption within a Hubble time - does not apply for the dwarf galaxies thought to be responsible for providing most UV photons to reionize the high-redshift Universe. We demonstrate how this rapid molecular time-scale improves agreement between semi-analytic model predictions of the early Universe and observed stellar mass functions.

  8. Spectroscopic decomposition of the galaxy and halo of the cD galaxy NGC 3311

    NASA Astrophysics Data System (ADS)

    Johnston, Evelyn J.; Merrifield, Michael; Aragón-Salamanca, Alfonso

    2018-05-01

    Information on the star-formation histories of cD galaxies and their extended stellar haloes lie in their spectra. Therefore, to determine whether these structures evolved together or through a two-phase formation, we need to spectroscopically separate the light from each component. We present a pilot study to use BUDDI to fit and extract the spectra of the cD galaxy NGC 3311 and its halo in an Integral Field Spectroscopy datacube, and carry out a simple stellar populations analysis to study their star-formation histories. Using MUSE data, we were able to isolate the light of the galaxy and its halo throughout the datacube, giving spectra representing purely the light from each of these structures. The stellar populations analysis of the two components indicates that, in this case, the bulk of the stars in both the halo and the central galaxy are very old, but the halo is more metal poor and less α-enriched than the galaxy. This result is consistent with the halo forming through the accretion of much smaller satellite galaxies with more extended star formation. It is noteworthy that the apparent gradients in age and metallicity indicators across the galaxy are entirely consistent with the radially-varying contributions of galaxy and halo components, which individually display no gradients. The success of this study is promising for its application to a larger sample of cD galaxies that are currently being observed by IFU surveys.

  9. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  10. Galaxy Portal: interacting with the galaxy platform through mobile devices.

    PubMed

    Børnich, Claus; Grytten, Ivar; Hovig, Eivind; Paulsen, Jonas; Čech, Martin; Sandve, Geir Kjetil

    2016-06-01

    : We present Galaxy Portal app, an open source interface to the Galaxy system through smart phones and tablets. The Galaxy Portal provides convenient and efficient monitoring of job completion, as well as opportunities for inspection of results and execution history. In addition to being useful to the Galaxy community, we believe that the app also exemplifies a useful way of exploiting mobile interfaces for research/high-performance computing resources in general. The source is freely available under a GPL license on GitHub, along with user documentation and pre-compiled binaries and instructions for several platforms: https://github.com/Tarostar/QMLGalaxyPortal It is available for iOS version 7 (and newer) through the Apple App Store, and for Android through Google Play for version 4.1 (API 16) or newer. geirksa@ifi.uio.no. © The Author 2016. Published by Oxford University Press.

  11. Masking Out Galaxies

    NASA Image and Video Library

    2014-11-06

    This graphic illustrates how the Cosmic Infrared Background Experiment, or CIBER, team measures a diffuse glow of infrared light filling the spaces between galaxies. The glow does not come from any known stars and galaxies.

  12. Heavy-Element Abundances in Blue Compact Galaxies

    NASA Astrophysics Data System (ADS)

    Izotov, Yuri I.; Thuan, Trinh X.

    1999-02-01

    increase as due to the additional contribution of C and primary N production in intermediate-mass stars, on top of that by high-mass stars. The above results lead to the following timeline for galaxy evolution: (1) all objects with 12+logO/H<=7.6 began to form stars less than 40 Myr ago; (2) after 40 Myr, all galaxies have evolved so that 12+logO/H>7.6 (3) by the time intermediate-mass stars have evolved and released their nucleosynthetic products (100-500 Myr), all galaxies have become enriched to 7.6<12+logO/H<8.2. The delayed release of primary N at these metallicities greatly increases the scatter in N/O; (4) later, when galaxies get enriched to 12+logO/H>8.2, secondary N production becomes important. BCGs show the same O/Fe overabundance with respect to the Sun (~0.4 dex) as Galactic halo stars, suggesting the same chemical enrichment history. We compare heavy elements yields derived from the observed abundance ratios with theoretical yields for massive stars and find general good agreement. However, the theoretical models are unable to reproduce the observed N/O and Fe/O. Further theoretical developments are necessary, in particular to solve the problem of primary nitrogen production in low-metallicity massive stars. We discuss the apparent discrepancy between abundance ratios N/O measured in BCGs and those in high-redshift damped Lyα galaxies, which are up to 1 order of magnitude smaller. We argue that this large discrepancy may arise from the unknown physical conditions of the gas responsible for the metallic absorption lines in high-redshift damped Lyα systems. While it is widely assumed that the absorbing gas is neutral, we propose that it could be ionized. In this case, ionization correction factors can boost N/O in damped Lyα galaxies into the range of those measured in BCGs.

  13. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    DOE PAGES

    Clampitt, J.; S?nchez, C.; Kwan, J.; ...

    2016-11-22

    We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtainmore » consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.« less

  14. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Clampitt, J.; Sánchez, C.; Kwan, J.; Krause, E.; MacCrann, N.; Park, Y.; Troxel, M. A.; Jain, B.; Rozo, E.; Rykoff, E. S.; Wechsler, R. H.; Blazek, J.; Bonnett, C.; Crocce, M.; Fang, Y.; Gaztanaga, E.; Gruen, D.; Jarvis, M.; Miquel, R.; Prat, J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.

    2017-03-01

    We present galaxy-galaxy lensing results from 139 deg2 of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise ratio of 29 over scales 0.09 < R < 15 Mpc h-1, including all lenses over a wide redshift range 0.2 < z < 0.8. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, NGMIX and IM3SHAPE. We perform a number of null tests on the shear and photometric redshift catalogues and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The result and systematic checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a halo occupation distribution (HOD) model, and demonstrate that our data constrain the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.

  15. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clampitt, J.; S?nchez, C.; Kwan, J.

    We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtainmore » consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.« less

  16. Globular Clusters for Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions

  17. Galaxies at the Extremes: Ultradiffuse Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, Chris

    2017-08-01

    The ultradiffuse galaxies (UDGs) recently discovered in massive galaxy clusters presents both challenges and opportunities for our understanding of galaxy evolution in dense clusters. Such large, low density galaxies should be most vulnerable to gravitational destruction within the cluster environment. Thus their presence in cluster cores argues either that they must be stabilized by massive dark halos or else be short-lived objects undergoing rapid transformation, perhaps leading to the formation of ultracompact dwarf galaxies (UCDs) if their destruction leaves only a compact nucleus behind. We propose deep imaging of four Virgo Cluster UDGs to probe their local environment within Virgo via accurate tip of the red giant branch (TRGB) distances. With a distance precision of 1 Mpc, we will accurately place the objects in the Virgo core, cluster outskirts, or intervening field. When coupled with our extant kinematic data, we can determine whether they are infalling objects or instead have already passed through the cluster core. We will also compare their compact nuclei to Virgo UCDs, and study their globular cluster (GC) populations in detail. Probing three magnitudes beyond the turnover in the GC luminosity function, we will construct larger and cleaner GC samples than possible with ground-based imaging, using the total mass and radial extent of the globular cluster systems to estimate the dark halo mass and tidal radius for each UDG. The new information provided by HST about the local environment and intrinsic properties of these Virgo UDGs will be used in conjunction with simulation data to study cluster-driven evolution and transformation of low density galaxies.

  18. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  19. A Study of Galaxies and Quasars in the Background of the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Dhara, Atirath; McConnell, Kaela; Guhathakurta, Puragra; Roy, Namrata; Waite, Jurij

    2018-01-01

    The SPLASH (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo) survey is based on wide-field ground-based optical images (KPNO 4-m/Mosaic, CFHT 3.6-m/MegaCam imager, and Subaru 8-m/Suprime-Cam), deep Hubble Space Telescope ultraviolet/optical/near infrared images (ACS and WFC3), and medium resolution spectra (Keck II 10-m/DEIMOS). The SPLASH survey data set contains two main categories of (non-M31) contaminants (SPLASH trash, if you will): foreground Milky Way stars and compact background galaxies/quasars. In this poster, we present the discovery and characterization of galaxies and quasars behind M31. Such objects were identified based on the presence of redshifted emission lines and other galaxy/quasar spectral features (e.g., Ca H+K absorption and IGM absorption). The redshift of each galaxy was measured by cross-correlating its spectrum against an emission line galaxy spectral template. The cross-correlation results (spectrum and best-fit template) were visually inspected to identify cases of incorrect matching of emission lines. Many of these incorrect redshift estimates were corrected by using the second or third highest cross-correlation peak. Quasar redshifts were determined based on cross-correlation against a quasar spectral template. Most of the galaxies in our sample are star forming galaxies with strong emission lines. We analyze their emission line flux ratios in a BPT diagram to learn more about the ionization source and metallicity. Finally, the properties of these compact galaxies behind M31 are compared to those of galaxies selected in a more standard way in the DEEP2 redshift survey to explore the effects of morphological pre-selection (compact vs. extended) on the properties of the resulting galaxy sample.This research was supported by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.

  20. Isolated Galaxies and Isolated Satellite Systems

    NASA Astrophysics Data System (ADS)

    Ann, H. B.; Park, C.; Choi, Y. Y.

    2010-10-01

    We search for isolated galaxies using a volume-limited sample of galaxies with 0.02 < z < 0.04742 from SDSS DR7 supplemented by bright galaxies. We devise a diagnostic tool to select isolated galaxies in different environments using the projected separation (rp) normalized by the virial radius of the nearest neighbor (rvir,nei) and the local background density. We find that the isolation condition of rp > rvir,nei and ρ < ρbar well segregates the CIG galaxies. We confirm the morphology conformity between the host and their satellites, which suggests the importance to galaxy evolution of hydrodynamic interactions among galaxies within their virial radii.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R.

    We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure M {sub BH} determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolvedmore » maps of the first ( V ) and second ( σ {sub ⋆}) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.« less

  2. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  3. IRAS observations of Shapley-Ames galaxies

    NASA Technical Reports Server (NTRS)

    De Jong, T.; Clegg, P. E.; Rowan-Robinson, M.; Soifer, B. T.; Habing, H. J.; Houck, J. R.; Aumann, H. H.; Raimond, E.

    1984-01-01

    A preliminary discussion of the infrared properties of a representative subsample of galaxies in the Revised Shapley-Ames Catalog (B less than about 13 mag) is presented. Of the 165 galaxies in the sample, 108 predominantly spiral galaxies, are detected in the infrared by IRAS. None of the elliptical galaxies and only about 25 percent of the lenticular galaxies scanned were detected. The range of infrared-to-blue luminosity ratios, a measure of the infrared excess of galaxies, is large, varying from roughly 0.1 to roughly 5. The data suggest that weakly infrared emitting galaxies are cool (100-60 micron color temperatures of about 25 K), while the more infrared luminous ones tend to be warmer (about 50 K). The rate of star formation in barred spiral galaxies is apparently higher than in normal spirals. About 1 solar mass/year of interstellar matter is converted into massive stars in the typical spiral galaxy.

  4. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  5. How Simbol-X Will Reveal the Most Obscured High Energy Sources of our Galaxy

    NASA Astrophysics Data System (ADS)

    Chaty, S.

    2009-05-01

    The INTEGRAL satellite has revealed a major population of supergiant High Mass X-ray Binaries in our Galaxy, revolutionizing our understanding of binary systems and their evolution. This population, constituted of a compact object orbiting around a supergiant star, have unusual properties, either being extremely absorbed, or exhibiting very short flares. I will first describe the characteristics of these sources, that only intensive multi-wavelength observations have led us to disentangle, before showing that Simbol-X, thanks to its energy range and sensitivity, will allow us to go further in the understanding of these supergiant HMXBs.

  6. The Hidden Galaxy

    NASA Image and Video Library

    2011-01-18

    Maffei 2 is the poster child for an infrared galaxy that is almost invisible to optical telescopes. But this infrared image from NASA Spitzer Space Telescope penetrates the dust to reveal the galaxy in all its glory.

  7. Galaxy and Mass Assembly (GAMA): variation in galaxy structure across the green valley

    NASA Astrophysics Data System (ADS)

    Kelvin, Lee S.; Bremer, Malcolm N.; Phillipps, Steven; James, Philip A.; Davies, Luke J. M.; De Propris, Roberto; Moffett, Amanda J.; Percival, Susan M.; Baldry, Ivan K.; Collins, Chris A.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Brough, Sarah; Cluver, Michelle; Driver, Simon P.; Hashemizadeh, Abdolhosein; Holwerda, Benne W.; Laine, Jarkko; Lara-Lopez, Maritza A.; Liske, Jochen; Maciejewski, Witold; Napolitano, Nicola R.; Penny, Samantha J.; Popescu, Cristina C.; Sansom, Anne E.; Sutherland, Will; Taylor, Edward N.; van Kampen, Eelco; Wang, Lingyu

    2018-07-01

    Using a sample of 472 local Universe (z < 0.06) galaxies in the stellar mass range 10.25 {<} log {M}_{\\star }/{M}_{⊙} {<} 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is subdivided into red, green, and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using Kilo-Degree Survey (KiDS) and Visible and Infrared Survey Telescope for Astronomy (VISTA) Kilo-Degree Infrared Galaxy Survey (VIKING) derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells, and signs of merger activity for all systems. We find a significant surplus of rings (2.3σ) and lenses (2.9σ) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3σ relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of {˜ }44 per cent which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ˜20-30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0σ surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley.

  8. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  9. Galaxy Infall by Interacting with Its Environment: A Comprehensive Study of 340 Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak; Inada, Naohisa; Kawaharada, Madoka; Kodama, Tadayuki; Konami, Saori; Nakazawa, Kazuhiro; Xu, Haiguang; Makishima, Kazuo

    2016-07-01

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra/XMM-Newton. For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 1044-45 erg s-1 per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.

  10. Killing Star Formation in Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    When a dwarf galaxy falls into the halo of a large galaxy like the Milky Way, how is star formation in the dwarf affected? A collaboration led by Andrew Wetzel (California Institute of Technology and Carnegie Observatories) recently set out to answer this question using observations of nearby galaxies and simulations of the infall process. Observed Quenching: Isolated dwarf galaxies tend to be gas-rich and very actively star-forming. In contrast, most dwarf galaxies within 300 kpc of us (the Milky Way's virial radius) contain little or no cold gas, and they're quiescent: there's not much star formation happening. And this isn't just true of the Milky Way; we observe the same difference in the satellite galaxies surrounding Andromeda galaxy. Once a dwarf galaxy has moved into the gravitational realm of a larger galaxy, the satellite's gas vanishes rapidly and its star formation is shut off — but how, and on what timescale? The known dwarf galaxies in the Local Group (out to 1.6 Mpc) are plotted by their distance from their host vs. their stellar mass. Blue stars indicate actively star-forming dwarfs and red circles indicate quiescent ones. Credit: Wetzel et al. 2015. Timescales for Quiescence: To answer these questions, the authors explored the process of galaxy infall using Exploring the Local Volume in Simulations (ELVIS), a suite of cosmological N-body simulations intended to explore the Local Group. They combined the infall times from the simulations with observational knowledge of the fraction of nearby galaxies that are currently quiescent, in order to determine what timescales are required for different processes to deplete the gas in the dwarf galaxies and quench star formation. Based on their results, two types of quenching culprits are at work: gas consumption (where a galaxy simply uses up its immediate gas supply and doesn't have access to more) and gas stripping (where external forces like ram pressure remove gas from the galaxy). These processes

  11. ROSAT detection of diffuse hot gas in the edge-on galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    Wang, Q. David; Walterbos, Rene A. M.; Steakley, Michael F.; Norman, Colin A.; Braun, Robert

    1994-01-01

    ROSAT observation is presented of the edge-on spiral galaxy NGC 4631, a nearby Sc/SBd galaxy best known for its extended radio halo. Because of the low foreground Galactic X-ray-absorbing gas column density, N(sub H) approximately 1.4 x 10(exp 20)cm(exp -2), this observation is sensitive to gas of temperature greater than or equal to a few times 10(exp 5) K. A soft (approximately 0.25 keV) X-ray radiation out to more than 8 kpc above the midplane of the galaxy was detected. The strongest X-ray emission in the halo is above the central disk, a region of about 3 kpc radius which shows high star formation activity. The X-ray emission in the halo is bordered by two extended filaments of radio continuum emission. Diffuse X-ray emission from hot gas in the galaxy's disk was found. The spectrum of the radiation can be characterized by a thermal plasma with a temperature of 3 x 10(exp 6) K and a radiative cooling rate of approximately 8 x 10(exp 39) ergs s(exp -1). This rate is only a few percent of the estimated supernova energy release in the interstellar medium of the galaxy. Analysis of the X-ray spectrum shows evidence for the presence of a cooler (several times 10(exp 5) K) halo gas component that could consume a much larger fraction of the supernova energy. Strong evidence was found for disk/halo interaction. Hot gas apparently blows out from supershells in the galaxy's disk at a rate of approximately 1 solar mass yr(exp -1). This outflow of hot gas drags magnetic field lines up in the halo and forms a magnetized gaseous halo. If the magnetic field lines are still anchored to the disk gas at large disk radii, the outflowing gas may be confined high above the disk by magnetic pressure. A strong X-ray source which coincides spatially with an H I supershell has been identified. However, the source is likely an extremely luminous X-ray binary with L(sub chi)(0.1 - 2 keV) approximately 5 x 10(exp 39) ergs s(exp -1), which makes it a stellar mass black hole candidate.

  12. Old Galaxies in the Young Universe

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Very Large Telescope Unravels New Population of Very Old Massive Galaxies [1] Summary Current theories of the formation of galaxies are based on the hierarchical merging of smaller entities into larger and larger structures, starting from about the size of a stellar globular cluster and ending with clusters of galaxies. According to this scenario, it is assumed that no massive galaxies existed in the young universe. However, this view may now have to be revised. Using the multi-mode FORS2 instrument on the Very Large Telescope at Paranal, a team of Italian astronomers [2] have identified four remote galaxies, several times more massive than the Milky Way galaxy, or as massive as the heaviest galaxies in the present-day universe. Those galaxies must have formed when the Universe was only about 2,000 million years old, that is some 12,000 million years ago. The newly discovered objects may be members of a population of old massive galaxies undetected until now. The existence of such systems shows that the build-up of massive elliptical galaxies was much faster in the early Universe than expected from current theory. PR Photo 21a/04: Small Part of the K20 Field Showing the z=1.9 Elliptical Galaxy (ACS/HST). PR Photo 21b/04: Averaged Spectrum of Old Galaxies (FORS2/VLT). Hierarchical merging Galaxies are like islands in the Universe, made of stars as well as dust and gas clouds. They come in different sizes and shapes. Astronomers generally distinguish between spiral galaxies - like our own Milky Way, NGC 1232 or the famous Andromeda galaxy - and elliptical galaxies, the latter mostly containing old stars and having very little dust or gas. Some galaxies are intermediate between spirals and ellipticals and are referred to as lenticular or spheroidal galaxies. Galaxies are not only distinct in shape, they also vary in size: some may be as "light" as a stellar globular cluster in our Milky Way (i.e. they contain about the equivalent of a few million Suns) while others

  13. The Smallest Galaxies in the Universe: Investigating the Origins of Ultra-faint Galaxies

    NASA Astrophysics Data System (ADS)

    Qi, Yuewen; Graus, Andrew; Bullock, James

    2018-01-01

    One outstanding question in cosmology is, what are the smallest galaxies that can form? The answer to this question can tell us much about galaxy formation, and even of the properties of dark matter itself. A candidate for the smallest galaxies that can form are the ultrafaint galaxies. The star formation of ultrafaints appears to have been shut off during the epoch of reionization, when radiation from the first stars ionized all the free hydrogen in the universe. This would imply ultrafaints should exist everywhere in the universe. However, we can only observe ultrafaints as satellites of the Milky Way, due to their low brightness. This will change with the next generation of telescopes such as the Large Synoptic Survey Telescope (LSST). The focus of this work is to predict the number of ultrafaints that should be seen with future surveys. To that end, we use the ELVIS suite, which contains 14 dark matter only simulations of Local Group like systems containing a Milky Way and Andromeda-like galaxy and the substructure out to around 1 Mpc of the barycenter. We mock observe the simulations in order to mimic current surveys such as the Sloan Digital Sky Survey (SDSS), and the Dark Energy Survey (DES), and use the population of galaxies found by those surveys to project the population of dwarf galaxies out beyond the virial radius of either galaxy. This number will depend sensitively on the formation mechanism of ultrafaint dwarfs, and comparisons of future surveys to this work could help rule out certain formation scenarios.

  14. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  15. The Co-Evolution of Galaxies, their ISM, and the ICM: The Hydrodynamics of Galaxy Transformation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Sarazin, Craig L.; Ricker, Paul M.

    2017-01-01

    Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM.

  16. Matching Supernovae to Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  17. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy.

    PubMed

    Ibata, Rodrigo A; Lewis, Geraint F; Conn, Anthony R; Irwin, Michael J; McConnachie, Alan W; Chapman, Scott C; Collins, Michelle L; Fardal, Mark; Ferguson, Annette M N; Ibata, Neil G; Mackey, A Dougal; Martin, Nicolas F; Navarro, Julio; Rich, R Michael; Valls-Gabaud, David; Widrow, Lawrence M

    2013-01-03

    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. It has previously been suspected that dwarf galaxies may not be isotropically distributed around our Galaxy, because several are correlated with streams of H I emission, and may form coplanar groups. These suspicions are supported by recent analyses. It has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence of a planar subgroup of satellites in the Andromeda galaxy (M 31), comprising about half of the population. The structure is at least 400 kiloparsecs in diameter, but also extremely thin, with a perpendicular scatter of less than 14.1 kiloparsecs. Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and with the vector between the Milky Way and Andromeda.

  18. COMPACT E+A GALAXIES AS A PROGENITOR OF MASSIVE COMPACT QUIESCENT GALAXIES AT 0.2 < z < 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Hochmuth, Nicholas Baeza; Geller, Margaret J.

    We search the Sloan Digital Sky Survey and the Baryon Oscillation Sky Survey to identify ∼5500 massive compact quiescent galaxy candidates at 0.2 < z < 0.8. We robustly classify a subsample of 438 E+A galaxies based on their spectral properties and make this catalog publicly available. We examine sizes, stellar population ages, and kinematics of galaxies in the sample and show that the physical properties of compact E+A galaxies suggest that they are a progenitor of massive compact quiescent galaxies. Thus, two classes of objects—compact E+A and compact quiescent galaxies—may be linked by a common formation scenario. The typicalmore » stellar population age of compact E+A galaxies is <1 Gyr. The existence of compact E+A galaxies with young stellar populations at 0.2 < z < 0.8 means that some compact quiescent galaxies first appear at intermediate redshifts. We derive a lower limit for the number density of compact E+A galaxies. Assuming passive evolution, we convert this number density into an appearance rate of new compact quiescent galaxies at 0.2 < z < 0.8. The lower limit number density of compact quiescent galaxies that may appear at z < 0.8 is comparable to the lower limit of the total number density of compact quiescent galaxies at these intermediate redshifts. Thus, a substantial fraction of the z < 0.8 massive compact quiescent galaxy population may descend from compact E+A galaxies at intermediate redshifts.« less

  19. Effects of the environment on galaxies in the Catalogue of Isolated Galaxies: physical satellites and large scale structure

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Espada, D.; Leon, S.; Sánchez-Expósito, S.; Santander-Vela, J. D.; Verdes-Montenegro, L.

    2014-04-01

    Context. We present a study of the 3D environment for a sample of 386 galaxies in the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973) using the Ninth Data Release of the Sloan Digital Sky Survey (SDSS-DR9). Aims: We aim to identify and quantify the effects of the satellite distribution around a sample of galaxies in the CIG, as well as the effects of the large-scale structure (LSS). Methods: To recover the physically bound galaxies we first focused on the satellites that are within the escape speed of each CIG galaxy. We also propose a more conservative method using the stacked Gaussian distribution of the velocity difference of the neighbours. The tidal strengths affecting the primary galaxy were estimated to quantify the effects of the local and LSS environments. We also defined the projected number density parameter at the fifth nearest neighbour to characterise the LSS around the CIG galaxies. Results: Out of the 386 CIG galaxies considered in this study, at least 340 (88% of the sample) have no physically linked satellite. Following the more conservative Gaussian distribution of physical satellites around the CIG galaxies leads to upper limits. Out of the 386 CIG galaxies, 327 (85% of the sample) have no physical companion within a projected distance of 0.3 Mpc. The CIG galaxies are distributed following the LSS of the local Universe, although presenting a large heterogeneity in their degree of connection with it. When present around a CIG galaxy, the effect of physically bound galaxies largely dominates (typically by more than 90%) the tidal strengths generated by the LSS. Conclusions: The CIG samples a variety of environments, from galaxies with physical satellites to galaxies without neighbours within 3 Mpc. A clear segregation appears between early-type CIG galaxies with companions and isolated late-type CIG galaxies. Isolated galaxies are in general bluer, with probably younger stellar populations and very high star formation compared with older

  20. Far Ultraviolet Spectroscopic Explorer Observations of the Seyfert 1.5 Galaxy NGC 5548 in a Low State

    NASA Technical Reports Server (NTRS)

    Brotherton, M. S.; Green, R. F.; Kriss, G. A.; Oegerle, W.; Kaiser, M. E.; Zheng, W.; Hutchings, J. B.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present far-ultraviolet spectra of the Seyfert 1.5 galaxy NGC 5548 obtained in 2000 June with the Far Ultraviolet Spectroscopic Explorer (FUSE). Our data span the observed wavelength range 915-1185 A at a resolution of approximately 20 km s(exp -1). The spectrum shows a weak continuum and emission from O VI (lambda)(lambda)1032, 1038, C III (lambda)977, and He II (lambda)1085. The FUSE data were obtained when the AGN (Active Galactic Nuclei) was in a low state, which has revealed strong, narrow O VI emission lines. We also resolve intrinsic, associated absorption lines of O VI and the Lyman series. Several distinct kinematic components are present, spanning a velocity range of approximately 0 to -1300 km s(exp -1) relative to systemic, with kinematic structure similar to that seen in previous observations of longer wavelength ultraviolet (UV) lines. We explore the relationships between the far-UV (ultraviolet) absorbers and those seen previously in the UV and X-rays. We find that the high-velocity UV absorption component is consistent with being low-ionization, contrary to some previous claims, and is consistent with its non-detection in high-resolution X-ray spectra. The intermediate velocity absorbers, at -300 to -400 km s(exp -1), show H I and O VI column densities consistent with having contributions from both a high-ionization X-ray absorber and a low-ionization UV absorber. No single far-UV absorbing component can be solely identified with the X-ray absorber.