Sample records for absorbing long-wavelength light

  1. Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation.

    PubMed

    Wilhelm, Christian; Jakob, Torsten

    2006-03-01

    From the algal genus Ostrobium two species are known which express a chlorophyll antenna absorbing between 710 and 725 nm to a different extent. In a comparative study with these two species it is shown that quanta absorbed by this long wavelength antenna can be transferred to PS II leading to significant PS II-related electron transfer. It is documented that under monochromatic far red light illumination growth continues with rather high efficiency. The data show that the uphill-energy transfer to PS II reduces the quantum yield under white light significantly. It is discussed that this strategy of energy conversion might play a role in special environments where far red light is the predominant energy source.

  2. Multiple-wavelength spectroscopic quantitation of light-absorbing species in scattering media

    DOEpatents

    Nathel, Howard; Cartland, Harry E.; Colston, Jr., Billy W.; Everett, Matthew J.; Roe, Jeffery N.

    2000-01-01

    An oxygen concentration measurement system for blood hemoglobin comprises a multiple-wavelength low-coherence optical light source that is coupled by single mode fibers through a splitter and combiner and focused on both a target tissue sample and a reference mirror. Reflections from both the reference mirror and from the depths of the target tissue sample are carried back and mixed to produce interference fringes in the splitter and combiner. The reference mirror is set such that the distance traversed in the reference path is the same as the distance traversed into and back from the target tissue sample at some depth in the sample that will provide light attenuation information that is dependent on the oxygen in blood hemoglobin in the target tissue sample. Two wavelengths of light are used to obtain concentrations. The method can be used to measure total hemoglobin concentration [Hb.sub.deoxy +Hb.sub.oxy ] or total blood volume in tissue and in conjunction with oxygen saturation measurements from pulse oximetry can be used to absolutely quantify oxyhemoglobin [HbO.sub.2 ] in tissue. The apparatus and method provide a general means for absolute quantitation of an absorber dispersed in a highly scattering medium.

  3. Multi-wavelength aerosol light absorption measurements in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Chi, Xuguang; Pöhlker, Christopher; Morán, Daniel; Ditas, Florian; Massabò, Dario; Prati, Paolo; Rizzo, Luciana; Artaxo, Paulo; Andreae, Meinrat

    2015-04-01

    The most important light-absorbing aerosol is black carbon (BC), which is emitted by incomplete combustion of fossil fuels and biomass. BC is considered the second anthropogenic contributor to global warming. Beyond BC, other aerosols like some organics, dust, and primary biological aerosol particles are able to absorb radiation. In contrast to BC, the light absorption coefficient of these aerosols is wavelength dependent. Therefore, multi-wavelength measurements become important in environments where BC is not the predominant light-absorbing aerosol like in the Amazon. The Amazon Tall Tower Observatory (ATTO) site is located in the remote Amazon rainforest, one of the most pristine continental sites in the world during the wet season. In the dry season, winds coming from the southern hemisphere are loaded with biomass burning aerosol particles originated by farming-related deforestation. BC and aerosol number concentration data from the last two years indicate this is the most polluted period. Two different techniques have been implemented to measure the light absorption at different wavelengths; one of them is the 7-wavelengths Aethalometer, model AE30, an instrument that measures the light attenuation on a filter substrate and requires multiple scattering and filter-loading corrections to retrieve the light absorption coefficient. The other method is an offline technique, the Multi-Wavelength Absorbance Analysis (MWAA), which is able to measure reflectance and absorbance by aerosols collected on a filter and, by means of a radiative model, can retrieve the light absorption coefficient. Filters collected during May-September 2014, comprehending wet-to-dry transition and most of the dry season, were analyzed. The results indicate that the Absorption Ångström Exponent (AAE), a parameter that is directly proportional to the wavelength dependence of the aerosol light absorption, is close to 1.0 during the transition period and slightly decreases in the beginning of

  4. Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source

    DTIC Science & Technology

    2016-11-29

    AFRL-AFOSR-VA-TR-2016-0365 Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source Jerome Moloney...SUBTITLE "Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source 5a. CONTRACT NUMBER FA9550-15-1-0272 5b...afosr.reports.sgizmo.com/s3/> Subject: Final Report to Dr. Arje Nachman Contract/Grant Title: Long Wavelength Electromagnetic Light Bullets Generated by a 10.6

  5. Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, Apratim, E-mail: apratim.majumder@utah.edu; Wan, Xiaowen; Masid, Farhana

    2016-06-15

    Absorbance-Modulation-Optical Lithography (AMOL) has been previously demonstrated to be able to confine light to deep sub-wavelength dimensions and thereby, enable patterning of features beyond the diffraction limit. In AMOL, a thin photochromic layer that converts between two states via light exposure is placed on top of the photoresist layer. The long wavelength photons render the photochromic layer opaque, while the short-wavelength photons render it transparent. By simultaneously illuminating a ring-shaped spot at the long wavelength and a round spot at the short wavelength, the photochromic layer transmits only a highly confined beam at the short wavelength, which then exposes themore » underlying photoresist. Many photochromic molecules suffer from a giant mismatch in quantum yields for the opposing reactions such that the reaction initiated by the absorption of the short-wavelength photon is orders of magnitude more efficient than that initiated by the absorption of the long-wavelength photon. As a result, large intensities in the ring-shaped spot are required for deep sub-wavelength nanopatterning. In this article, we overcome this problem by using the long-wavelength photons to expose the photoresist, and the short-wavelength photons to confine the “exposing” beam. Thereby, we demonstrate the patterning of features as thin as λ/4.7 (137 nm for λ = 647 nm) using extremely low intensities (4-30 W/m{sup 2}, which is 34 times lower than that required in conventional AMOL). We further apply a rigorous model to explain our experiments and discuss the scope of the reverse-AMOL process.« less

  6. Continuous light absorption photometer for long-term studies

    NASA Astrophysics Data System (ADS)

    Ogren, John A.; Wendell, Jim; Andrews, Elisabeth; Sheridan, Patrick J.

    2017-12-01

    A new photometer is described for continuous determination of the aerosol light absorption coefficient, optimized for long-term studies of the climate-forcing properties of aerosols. Measurements of the light attenuation coefficient are made at blue, green, and red wavelengths, with a detection limit of 0.02 Mm-1 and a precision of 4 % for hourly averages. The uncertainty of the light absorption coefficient is primarily determined by the uncertainty of the correction scheme commonly used to convert the measured light attenuation to light absorption coefficient and ranges from about 20 % at sites with high loadings of strongly absorbing aerosols up to 100 % or more at sites with low loadings of weakly absorbing aerosols. Much lower uncertainties (ca. 40 %) for the latter case can be achieved with an advanced correction scheme.

  7. Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications

    NASA Astrophysics Data System (ADS)

    Mudachathi, Renilkumar; Tanaka, Takuo

    2018-03-01

    The coupling of electromagnetic waves with subwavelength metal structures results in the perfect light absorption and has been extensively explored in the recent years for many possible applications like photovoltaics, sensing, photodetectors, emitters and camouflaging systems to name a few. Herein we present the design and fabrication of a broadband plasmonic light absorber using aluminum as functional material for operation in the visible frequency range. The metal structures can be tuned in size to manipulate the plasmonic resonance; thereby light absorption at any desired wavelengths could be realized. Thus the broadband light absorber in the visible spectrum is designed using metal structures of different sizes supporting non-overlapping individual resonances at regular intervals of wavelengths. The metal structures of different sizes are grouped in to a single unit cell and the absorber is fabricated by periodically arranging these unit cells in a square lattice. Light absorption of more than 90% for over a broad wavelength range of 200 nm from 425 nm to 650 nm in the visible spectrum is demonstrated.

  8. Effects of Long-Wavelength Lighting on Refractive Development in Infant Rhesus Monkeys

    PubMed Central

    Smith, Earl L.; Hung, Li-Fang; Arumugam, Baskar; Holden, Brien A.; Neitz, Maureen; Neitz, Jay

    2015-01-01

    Purpose Differences in the spectral composition of lighting between indoor and outdoor scenes may contribute to the higher prevalence of myopia in children who spend low amounts of time outdoors. Our goal was to determine whether environments dominated by long-wavelength light promote the development of myopia. Methods Beginning at 25 ± 2 days of age, infant monkeys were reared with long-wavelength-pass (red) filters in front of one (MRL, n = 6) or both eyes (BRL, n = 7). The filters were worn continuously until 146 ± 7 days of age. Refractive development, corneal power, and vitreous chamber depth were assessed by retinoscopy, keratometry, and ultrasonography, respectively. Control data were obtained from 6 monkeys reared with binocular neutral density (ND) filters and 33 normal monkeys reared with unrestricted vision under typical indoor lighting. Results At the end of the filter-rearing period, the median refractive error for the BRL monkeys (+4.25 diopters [D]) was significantly more hyperopic than that for the ND (+2.22 D; P = 0.003) and normal monkeys (+2.38 D; P = 0.0001). Similarly, the MRL monkeys exhibited hyperopic anisometropias that were larger than those in normal monkeys (+1.70 ± 1.55 vs. −0.013 ± 0.33 D, P < 0.0001). The relative hyperopia in the treated eyes was associated with shorter vitreous chambers. Following filter removal, the filter-reared monkeys recovered from the induced hyperopic errors. Conclusions The observed hyperopic shifts indicate that emmetropization does not necessarily target the focal plane that maximizes luminance contrast and that reducing potential chromatic cues can interfere with emmetropization. There was no evidence that environments dominated by long wavelengths necessarily promote myopia development. PMID:26447984

  9. Production of plasmas by long-wavelength lasers

    DOEpatents

    Dawson, J.M.

    1973-10-01

    A long-wavelength laser system for heating low-density plasma to high temperatures is described. In one embodiment, means are provided for repeatedly receiving and transmitting long-wavelength laser light in successive stages to form a laser-light beam path that repeatedly intersects with the equilibrium axis of a magnetically confined toroidal plasma column for interacting the laser light with the plasma for providing controlled thermonuclear fusion. Embodiments for heating specific linear plasmas are also provided. (Official Gazette)

  10. Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews.

    PubMed

    Gawne, Timothy J; Ward, Alexander H; Norton, Thomas T

    2017-11-01

    In infant tree shrews, exposure to narrow-band long-wavelength (red) light, that stimulates long-wavelength sensitive cones almost exclusively, slows axial elongation and produces hyperopia. We asked if red light produces hyperopia in juvenile and adolescent animals, ages when plus lenses are ineffective. Animals were raised in fluorescent colony lighting (100-300 lux) until they began 13days of red-light treatment at 11 (n=5, "infant"), 35 (n=5, "juvenile") or 95 (n=5, "adolescent") days of visual experience (DVE). LEDs provided 527-749 lux on the cage floor. To control for the higher red illuminance, a fluorescent control group (n=5) of juvenile (35 DVE) animals was exposed to ∼975 lux. Refractions were measured daily; ocular component dimensions at the start and end of treatment and end of recovery in colony lighting. These groups were compared with normals (n=7). In red light, the refractive state of both juvenile and adolescent animals became significantly (P<0.05) hyperopic: juvenile 3.9±1.0 diopters (D, mean±SEM) vs. normal 0.8±0.1D; adolescent 1.6±0.2D vs. normal 0.4±0.1D. The fluorescent control group refractions (0.6±0.3D) were normal. In red-treated juveniles the vitreous chamber was significantly smaller than normal (P<0.05): juvenile 2.67±0.03mmvs. normal 2.75±0.02mm. The choroid was also significantly thicker: juvenile 77±4μmvs. normal 57±3μm (P<0.05). Although plus lenses do not restrain eye growth in juvenile tree shrews, the red light-induced slowed growth and hyperopia in juvenile and adolescent tree shrews demonstrates that the emmetropization mechanism is still capable of restraining eye growth at these ages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber

    PubMed Central

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-01-01

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform. PMID:25418040

  12. Dinuclear PhotoCORMs: Dioxygen-Assisted Carbon Monoxide Uncaging from Long-Wavelength-Absorbing Metal-Metal-Bonded Carbonyl Complexes.

    PubMed

    Li, Zhi; Pierri, Agustin E; Huang, Po-Ju; Wu, Guang; Iretskii, Alexei V; Ford, Peter C

    2017-06-05

    We describe a new strategy for triggering the photochemical release of caged carbon monoxide (CO) in aerobic media using long-wavelength visible and near-infrared (NIR) light. The dinuclear rhenium-manganese carbonyl complexes (CO) 5 ReMn(CO) 3 (L), where L = phenanthroline (1), bipyridine (2), biquinoline (3), or phenanthrolinecarboxaldehyde (4), each show a strong metal-metal-bond-to-ligand (σ MM → π L *) charge-transfer absorption band at longer wavelengths. Photolysis with deep-red (1 and 2) or NIR (3 and 4) light leads to homolytic cleavage of the Re-Mn bonds to give mononuclear metal radicals. In the absence of trapping agents, these radicals primarily recombine to reform dinuclear complexes. In oxygenated media, however, the radicals react with dioxygen to form species much more labile toward CO release via secondary thermal and/or photochemical reactions. Conjugation of 4, with an amine-terminated poly(ethylene glycol) oligomer, gives a water-soluble derivative with similar photochemistry. In this context, we discuss the potential applications of these dinuclear complexes as visible/NIR-light-photoactivated CO-releasing moieties (photoCORMs).

  13. Impact of long-wavelength UVA and visible light on melanocompetent skin.

    PubMed

    Mahmoud, Bassel H; Ruvolo, Eduardo; Hexsel, Camile L; Liu, Yang; Owen, Michael R; Kollias, Nikiforos; Lim, Henry W; Hamzavi, Iltefat H

    2010-08-01

    The purpose of this study was to determine the effect of visible light on the immediate pigmentation and delayed tanning of melanocompetent skin; the results were compared with those induced by long-wavelength UVA (UVA1). Two electromagnetic radiation sources were used to irradiate the lower back of 20 volunteers with skin types IV-VI: UVA1 (340-400 nm) and visible light (400-700 nm). Pigmentation was assessed by visual examination, digital photography with a cross-polarized filter, and diffused reflectance spectroscopy at 7 time points over a 2-week period. Confocal microscopy and skin biopsies for histopathological examination using different stains were carried out. Irradiation was also carried out on skin type II. Results showed that although both UVA1 and visible light can induce pigmentation in skin types IV-VI, pigmentation induced by visible light was darker and more sustained. No pigmentation was observed in skin type II. The quality and quantity of pigment induced by visible light and UVA1 were different. These findings have potential implications on the management of photoaggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions.

  14. Long term measurements of light absorbing particles on tropical glaciers

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; Sanchez Rodriguez, W.; Arnott, W. P.; All, J.; Schwarz, J. P.

    2016-12-01

    We present results of six years of measurements of light absorbing particles (LAP) on glaciers of the Cordillera Blanca mountain range in Peru. Tropical glaciers are important sources of water for human consumption, agriculture, and hydroelectric power in the region. Regular measurements in the dry season show that light absorbing particle concentrations are generally low (equivalent to the absorption equivalent of 5-30 nanograms of black carbon per gram of snow) during non-El Nino years while values increase substantially during the recent El Nino. Two years of monthly measurements at two glaciers show that fresh snow LAP concentration are very low while LAP levels increase dramatically during snow-less periods.

  15. 640 x 512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Hill, Cory J.; Ting, David Z.; Liu, John K.; Rafol, Sir B.; Blazejewski, Edward R.; Mumolo, Jason M.; Keo, Sam A.; Krishna, Sanjay; hide

    2007-01-01

    Epitaxially grown self-assembled. InAs-InGaAs-GaAs quantum dots (QDs) are exploited for the development of large-format long-wavelength infrared focal plane arrays (FPAs). The dot-in-a-well (DWELL) structures were experimentally shown to absorb both 45 degrees and normal incident light, therefore, a reflection grating structure was used to enhance the quantum efficiency. The devices exhibit peak responsivity out to 8.1 micrometers, with peak detectivity reaching approximately 1 X 10(exp 10) Jones at 77 K. The devices were fabricated into the first long-wavelength 640 x 512 pixel QD infrared photodetector imaging FPA, which has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60-K operating temperature.

  16. The Investigation of Property of Radiation and Absorbed of Infrared Lights of the Biological Tissues

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Deng, Bo; Xiao, He-Lan; Cai, Guo-Ping

    2010-04-01

    The properties of absorption of infrared light for collagen, hemoglobin, bivine serum albumen (BSA) protein molecules with α- helix structure and water in the living systems as well as the infrared transmission spectra for person’s skins and finger hands of human body in the region of 400-4000 cm-1 (i.e., wavelengths of 2-20 μm) have been collected and determined by using a Nicolet Nexus 670 FT-IR Spectrometer, a Perkin Elmer GX FT-IR spectrometer, an OMA (optical multichannel analysis) and an infrared probe systems, respectively. The experimental results obtained show that the protein molecules and water can all absorb the infrared lights in the ranges of 600-1900 cm-1 and 2900-3900 cm-l, but their properties of absorption are somewhat different due to distinctions of their structure and conformation and molecular weight. We know from the transmission spectra of person’s finger hands and skin that the infrared lights with wavelengths of 2 μm-7 μm can not only transmit over the person’s skin and finger hands, but also be absorbed by the above proteins and water in the living systems. Thus, we can conclude from this study that the human beings and animals can absorb the infrared lights with wavelengths of 2 μm-7 μm.

  17. Hot spot generation in energetic materials created by long-wavelength infrared radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S.

    Hot spots produced by long-wavelength infrared (LWIR) radiation in an energetic material, crystalline RDX (1,3,5-trinitroperhydro-1,3,5-triazine), were studied by thermal-imaging microscopy. The LWIR source was a CO{sub 2} laser operating in the 28-30 THz range. Hot spot generation was studied using relatively low intensity (∼100 W cm{sup −2}), long-duration (450 ms) LWIR pulses. The hot spots could be produced repeatedly in individual RDX crystals, to investigate the fundamental mechanisms of hot spot generation by LWIR, since the peak hot-spot temperatures were kept to ∼30 K above ambient. Hot spots were generated preferentially beneath RDX crystal planes making oblique angles with the LWIR beam. Surprisingly,more » hot spots were more prominent when the LWIR wavelength was tuned to be weakly absorbed (absorption depth ∼30 μm) than when the LWIR wavelength was strongly absorbed (absorption depth ∼5 μm). This unexpected effect was explained using a model that accounts for LWIR refraction and RDX thermal conduction. The weakly absorbed LWIR is slightly focused underneath the oblique crystal planes, and it penetrates the RDX crystals more deeply, increasing the likelihood of irradiating RDX defect inclusions that are able to strongly absorb or internally focus the LWIR beam.« less

  18. Designing optically pumped InGaN quantum wells with long wavelength emission for a phosphor-free device with polarized white-light emission

    NASA Astrophysics Data System (ADS)

    Kowsz, Stacy J.; Pynn, Christopher D.; Wu, Feng; Farrell, Robert M.; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji

    2016-02-01

    We report a semipolar III-nitride device in which an electrically injected blue light emitting diode optically pumps monolithic long wavelength emitting quantum wells (QWs) to create polarized white light. We have demonstrated an initial device with emission peaks at 440 nm and 560 nm from the electrically injected and optically pumped QWs, respectively. By tuning the ratio of blue to yellow, white light was measured with a polarization ratio of 0.40. High indium content InGaN is required for long wavelength emission but is difficult to achieve because it requires low growth temperatures and has a large lattice mismatch with GaN. This device design incorporates optically pumped QWs for long wavelength emission because they offer advantages over using electrically injected QWs. Optically pumped QWs do not have to be confined within a p-n junction, and carrier transport is not a concern. Thus, thick GaN barriers can be incorporated between multiple InGaN QWs to manage stress. Optically pumping long wavelength emitting QWs also eliminates high temperature steps that degrade high indium content InGaN but are required when growing p-GaN for an LED structure. Additionally, by eliminating electrical injection, the doping profile can instead be engineered to affect the emission wavelength. We discuss ongoing work focused on improving polarized white light emission by optimizing the optically pumped QWs. We consider the effects of growth conditions, including: trimethylindium (TMI) flow rate, InGaN growth rate, and growth temperature. We also examine the effects of epitaxial design, including: QW width, number of QWs, and doping.

  19. Method for extracting long-equivalent wavelength interferometric information

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor)

    1991-01-01

    A process for extracting long-equivalent wavelength interferometric information from a two-wavelength polychromatic or achromatic interferometer. The process comprises the steps of simultaneously recording a non-linear sum of two different frequency visible light interferograms on a high resolution film and then placing the developed film in an optical train for Fourier transformation, low pass spatial filtering and inverse transformation of the film image to produce low spatial frequency fringes corresponding to a long-equivalent wavelength interferogram. The recorded non-linear sum irradiance derived from the two-wavelength interferometer is obtained by controlling the exposure so that the average interferogram irradiance is set at either the noise level threshold or the saturation level threshold of the film.

  20. Multiple wavelength light collimator and monitor

    NASA Technical Reports Server (NTRS)

    Gore, Warren J. (Inventor)

    2011-01-01

    An optical system for receiving and collimating light and for transporting and processing light received in each of N wavelength ranges, including near-ultraviolet, visible, near-infrared and mid-infrared wavelengths, to determine a fraction of light received, and associated dark current, in each wavelength range in each of a sequence of time intervals.

  1. Submicron-resolution photoacoustic microscopy of endogenous light-absorbing biomolecules

    NASA Astrophysics Data System (ADS)

    Zhang, Chi

    Photoacoustic imaging in biomedicine has the unique advantage of probing endogenous light absorbers at various length scales with a 100% relative sensitivity. Among the several modalities of photoacoustic imaging, optical-resolution photoacoustic microscopy (OR-PAM) can achieve high spatial resolution, on the order of optical wavelength, at <1 mm depth in biological tissue (the optical ballistic regime). OR-PAM has been applied successfully to structural and functional imaging of blood vasculature and red blood cells in vivo. Any molecules which absorb sufficient light at certain wavelengths can potentially be imaged by PAM. Compared with pure optical imaging, which typically targets fluorescent markers, label-free PAM avoids the major concerns that the fluorescent labeling probes may disturb the function of biomolecules and may have an insufficient density. This dissertation aims to advance label-free OR-PAM to the subcellular scale. The first part of this dissertation describes the technological advancement of PAM yielding high spatial resolution in 3D. The lateral resolution was improved by using optical objectives with high numerical apertures for optical focusing. The axial resolution was improved by using broadband ultrasonic transducers for ultrasound detection. We achieved 220 nm lateral resolution in transmission mode, 0.43 microm lateral resolution in reflection mode, 7.6 microm axial resolution in normal tissue, and 5.8 microm axial resolution with silicone oil immersion/injection. The achieved lateral resolution and axial resolution were the finest reported at the time. With high-resolution in 3D, PAM was demonstrated to resolve cellular and subcellular structures in vivo, such as red blood cells and melanosomes in melanoma cells. Compared with previous PAM systems, our high-resolution PAM could resolve capillaries in mouse ears more clearly. As an example application, we demonstrated intracellular temperature imaging, assisted by fluorescence signal

  2. FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals.

    PubMed

    Bollati, Elena; Plimmer, Daniel; D'Angelo, Cecilia; Wiedenmann, Jörg

    2017-07-04

    Photoconvertible fluorescent proteins (pcRFPs) are a group of fluorophores that undergo an irreversible green-to-red shift in emission colour upon irradiation with near-ultraviolet (near-UV) light. Despite their wide application in biotechnology, the high-level expression of pcRFPs in mesophotic and depth-generalist coral species currently lacks a biological explanation. Additionally, reduced penetration of near-UV wavelengths in water poses the question whether light-driven photoconversion is relevant in the mesophotic zone, or whether a different mechanism is involved in the post-translational pigment modification in vivo. Here, we show in a long-term mesocosm experiment that photoconversion in vivo is entirely dependent on near-UV wavelengths. However, a near-UV intensity equivalent to the mesophotic underwater light field at 80 m depth is sufficient to drive the process in vitro, suggesting that photoconversion can occur near the lower distribution limits of these corals. Furthermore, live coral colonies showed evidence of efficient Förster Resonance Energy Transfer (FRET). Our simulated mesophotic light field maintained the pcRFP pool in a partially photoconverted state in vivo, maximising intra-tetrameric FRET and creating a long-range wavelength conversion system with higher quantum yield than other native RFPs. We hypothesise that efficient conversion of blue wavelengths, abundant at depth, into orange-red light could constitute an adaptation of corals to life in light-limited environments.

  3. FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals

    PubMed Central

    Bollati, Elena; Plimmer, Daniel; D’Angelo, Cecilia; Wiedenmann, Jörg

    2017-01-01

    Photoconvertible fluorescent proteins (pcRFPs) are a group of fluorophores that undergo an irreversible green-to-red shift in emission colour upon irradiation with near-ultraviolet (near-UV) light. Despite their wide application in biotechnology, the high-level expression of pcRFPs in mesophotic and depth-generalist coral species currently lacks a biological explanation. Additionally, reduced penetration of near-UV wavelengths in water poses the question whether light-driven photoconversion is relevant in the mesophotic zone, or whether a different mechanism is involved in the post-translational pigment modification in vivo. Here, we show in a long-term mesocosm experiment that photoconversion in vivo is entirely dependent on near-UV wavelengths. However, a near-UV intensity equivalent to the mesophotic underwater light field at 80 m depth is sufficient to drive the process in vitro, suggesting that photoconversion can occur near the lower distribution limits of these corals. Furthermore, live coral colonies showed evidence of efficient Förster Resonance Energy Transfer (FRET). Our simulated mesophotic light field maintained the pcRFP pool in a partially photoconverted state in vivo, maximising intra-tetrameric FRET and creating a long-range wavelength conversion system with higher quantum yield than other native RFPs. We hypothesise that efficient conversion of blue wavelengths, abundant at depth, into orange-red light could constitute an adaptation of corals to life in light-limited environments. PMID:28677653

  4. Dual-wavelength, mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber.

    PubMed

    Lau, K Y; Abu Bakar, M H; Muhammad, F D; Latif, A A; Omar, M F; Yusoff, Z; Mahdi, M A

    2018-05-14

    Mode-locked fiber laser incorporating a saturable absorber is an attractive configuration due to its stability and simple structure. In this work, we demonstrate a dual-wavelength passively mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber. A laser resonator is developed based on dual cavity architecture with unidirectional signal oscillation, which is connected by a fiber branch sharing a common gain medium and saturable absorber. Dual wavelength mode-locked fiber lasers are observed at approximately 1530 and 1560 nm with 22.6 mW pump power threshold. Soliton pulse circulates in the laser cavity with pulse duration of 900 and 940 fs at shorter and longer wavelengths, respectively. This work presents a viable option in developing a low threshold mode-locked laser source with closely spaced dual wavelength femtosecond pulses in the C-band wavelength region.

  5. Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber

    PubMed Central

    Jen, Yi-Jun; Huang, Yu-Jie; Liu, Wei-Chih; Lin, Yueh Weng

    2017-01-01

    Metals have been formed into nanostructures to absorb light with high efficiency through surface plasmon resonances. An ultra-thin plasmonic structure that exhibits strong absorption over wide ranges of wavelengths and angles of incidence is sought. In this work, a nearly perfect plasmonic nanostructure is fabricated using glancing angle deposition. The difference between the morphologies of obliquely deposited aluminum and silver nanohelices is exploited to form a novel three-dimensional structure, which is an aluminum-silver nanohelix array on a pattern-free substrate. With a thickness of only 470 nm, densely distributed nanohelices support rod-to-rod localized surface plasmons for broadband and polarization-independent light extinction. The extinctance remains high over wavelengths from 400 nm to 2000 nm and angles of incidence from 0° to 70°. PMID:28045135

  6. Wavelength specific excitation of gold nanoparticle thin-films

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas M.; James, Kurtis T.; Beharic, Jasmin; Moiseeva, Evgeniya V.; Keynton, Robert S.; O'Toole, Martin G.; Harnett, Cindy K.

    2014-01-01

    Advances in microelectromechanical systems (MEMS) continue to empower researchers with the ability to sense and actuate at the micro scale. Thermally driven MEMS components are often used for their rapid response and ability to apply relatively high forces. However, thermally driven MEMS often have high power consumption and require physical wiring to the device. This work demonstrates a basis for designing light-powered MEMS with a wavelength specific response. This is accomplished by patterning surface regions with a thin film containing gold nanoparticles that are tuned to have an absorption peak at a particular wavelength. The heating behavior of these patterned surfaces is selected by the wavelength of laser directed at the sample. This method also eliminates the need for wires to power a device. The results demonstrate that gold nanoparticle films are effective wavelength-selective absorbers. This "hybrid" of infrared absorbent gold nanoparticles and MEMS fabrication technology has potential applications in light-actuated switches and other mechanical structures that must bend at specific regions. Deposition methods and surface chemistry will be integrated with three-dimensional MEMS structures in the next phase of this work. The long-term goal of this project is a system of light-powered microactuators for exploring cellular responses to mechanical stimuli, increasing our fundamental understanding of tissue response to everyday mechanical stresses at the molecular level.

  7. Impact of natural photosensitizer extraction solvent upon light absorbance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Ahmad Hambali, Nor Azura Malini; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Natural pigmentations of Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella were used to study the general trend in performance of dyes as a photosensitizer in the application of dye-sensitized solar cells (DSSCs) based on optical light absorbance and photoelectrochemical characteristics. From the Ultraviolet-Visible Spectrophotometer with the recorded absorption measurements in the range between 400 nm to 800 nm, the dyes extracted from Rosella and Oxalis Triangularis in water solvent exhibited the conversion efficiency up to 0.68% and 0.67%, respectively. The light absorbance peak for dye extracted from Ardisia, Bawang Sabrang, Oxalis Triangularis and Rosella in water and ethanol solvent resulted in the range between 500 nm to 650 nm, while the Harum Manis mango resulted in the broader spectra in both water and ethanol solvent. The light absorbance spectra of each the dyes shows shifted wavelength spectrum when the extracted dye is adsorbed onto TiO2 film surface that might influenced the absorption of light by TiO2 particle in the visible region. The capabilities of the dyes to absorb light when bonded onto the TiO2 photoanode was found to be significant with the current-voltage conversion of the cell. The results demonstrates just the tip of the vastness of natural dyes' (native to tropical region) feasibility and applicability as a photosensitizer.

  8. Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review.

    PubMed

    Ogawa, Shinpei; Kimata, Masafumi

    2018-03-20

    Electromagnetic wave absorbers have been investigated for many years with the aim of achieving high absorbance and tunability of both the absorption wavelength and the operation mode by geometrical control, small and thin absorber volume, and simple fabrication. There is particular interest in metal-insulator-metal-based plasmonic metamaterial absorbers (MIM-PMAs) due to their complete fulfillment of these demands. MIM-PMAs consist of top periodic micropatches, a middle dielectric layer, and a bottom reflector layer to generate strong localized surface plasmon resonance at absorption wavelengths. In particular, in the visible and infrared (IR) wavelength regions, a wide range of applications is expected, such as solar cells, refractive index sensors, optical camouflage, cloaking, optical switches, color pixels, thermal IR sensors, IR microscopy and gas sensing. The promising properties of MIM-PMAs are attributed to the simple plasmonic resonance localized at the top micropatch resonators formed by the MIMs. Here, various types of MIM-PMAs are reviewed in terms of their historical background, basic physics, operation mode design, and future challenges to clarify their underlying basic design principles and introduce various applications. The principles presented in this review paper can be applied to other wavelength regions such as the ultraviolet, terahertz, and microwave regions.

  9. Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review

    PubMed Central

    Ogawa, Shinpei; Kimata, Masafumi

    2018-01-01

    Electromagnetic wave absorbers have been investigated for many years with the aim of achieving high absorbance and tunability of both the absorption wavelength and the operation mode by geometrical control, small and thin absorber volume, and simple fabrication. There is particular interest in metal-insulator-metal-based plasmonic metamaterial absorbers (MIM-PMAs) due to their complete fulfillment of these demands. MIM-PMAs consist of top periodic micropatches, a middle dielectric layer, and a bottom reflector layer to generate strong localized surface plasmon resonance at absorption wavelengths. In particular, in the visible and infrared (IR) wavelength regions, a wide range of applications is expected, such as solar cells, refractive index sensors, optical camouflage, cloaking, optical switches, color pixels, thermal IR sensors, IR microscopy and gas sensing. The promising properties of MIM-PMAs are attributed to the simple plasmonic resonance localized at the top micropatch resonators formed by the MIMs. Here, various types of MIM-PMAs are reviewed in terms of their historical background, basic physics, operation mode design, and future challenges to clarify their underlying basic design principles and introduce various applications. The principles presented in this review paper can be applied to other wavelength regions such as the ultraviolet, terahertz, and microwave regions. PMID:29558454

  10. In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption

    NASA Astrophysics Data System (ADS)

    Gyawali, M.; Arnott, W. P.; Lewis, K.; Moosmüller, H.

    2009-10-01

    Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for the months of June and July. Comparisons are reported for aerosol optics measurements in Reno, Nevada made during the very smoky month of July and the relatively clean month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption coefficients at wavelengths of 405 nm and 870 nm, revealing a strong variation of aerosol light absorption with wavelength. Insight on fuels burned is gleaned from comparison of Ångström exponents of absorption (AEA) versus single scattering albedo (SSA) of the ambient measurements with laboratory biomass smoke measurements for many fuels. Measurements during the month of August, which were largely unaffected by fire smoke, exhibit surprisingly low AEA for aerosol light absorption when the SSA is highest, again likely as a consequence of the underappreciated wavelength dependence of aerosol light absorption by particles coated with non-absorbing organic and inorganic matter. Coated sphere calculations were used to show that AEA as large as 1.6 are possible for wood smoke even with non-absorbing organic coatings on black carbon cores, suggesting care be exercised when diagnosing AEA.

  11. Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass.

    PubMed

    Budisulistiorini, Sri Hapsari; Riva, Matthieu; Williams, Michael; Chen, Jing; Itoh, Masayuki; Surratt, Jason D; Kuwata, Mikinori

    2017-04-18

    Light-absorbing brown carbon (BrC) constituents of organic aerosol (OA) have been shown to significantly absorb ultraviolet (UV) and visible light and thus impact radiative forcing. However, molecular identification of the BrC constituents is still limited. In this study, we characterize BrC constituents at the molecular level in (i) aerosols emitted by combustion of peat, fern/leaf, and charcoal from Indonesia and (ii) ambient aerosols collected in Singapore during the 2015 haze episode. Aerosols were analyzed using ultra performance liquid chromatography instrument interfaced to a diode array detector and electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in the negative ion mode. In the laboratory-generated aerosols, we identified 41 compounds that can potentially absorb near-UV and visible wavelengths, such as oxygenated-conjugated compounds, nitroaromatics, and S-containing compounds. The sum of BrC constituents in peat, fern/leaf, and charcoal burning aerosols are 16%, 35%, and 28% of the OA mass, respectively, giving an average contribution of 24%. On average, the BrC constituents account for 0.4% of the ambient OA mass; however, large uncertainties in mass closure remain because of the lack of authentic standards. This study highlights the potential of light-absorbing BrC OA constituents from peat, fern/leaf, and charcoal burning and their importance in the atmosphere.

  12. Systems having optical absorption layer for mid and long wave infrared and methods for making the same

    DOEpatents

    Kuzmenko, Paul J

    2013-10-01

    An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.

  13. Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber.

    PubMed

    Chen, Xi; Shi, Yuechun; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min

    2014-10-20

    An optically pumped thermo-optic (TO) silicon ring add-drop filter with fast thermal response is experimentally demonstrated. We propose that metal-insulator-metal (MIM) light absorber can be integrated into silicon TO devices, acting as a localized heat source which can be activated remotely by a pump beam. The MIM absorber design introduces less thermal capacity to the device, compared to conventional electrically-driven approaches. Experimentally, the absorber-integrated add-drop filter shows an optical response time of 13.7 μs following the 10%-90% rule (equivalent to a exponential time constant of 5 μs) and a wavelength shift over pump power of 60 pm/mW. The photothermally tunable add-drop filter may provide new perspectives for all-optical routing and switching in integrated Si photonic circuits.

  14. Toxic wavelength of blue light changes as insects grow.

    PubMed

    Shibuya, Kazuki; Onodera, Shun; Hori, Masatoshi

    2018-01-01

    Short-wavelength visible light (blue light: 400-500 nm) has lethal effects on various insects, such as fruit flies, mosquitoes, and flour beetles. However, the most toxic wavelengths of blue light might differ across developmental stages. Here, we investigate how the toxicity of blue light changes with the developmental stages of an insect by irradiating Drosophila melanogaster with different wavelengths of blue light. Specifically, the lethal effect on eggs increased at shorter light wavelengths (i.e., toward 405 nm). In contrast, wavelengths from 405 to 466 nm had similar lethal effects on larvae. A wavelength of 466 nm had the strongest lethal effect on pupae; however, mortality declined as pupae grew. A wavelength of 417 nm was the most harmful to adults at low photon flux density, while 466 nm was the most harmful to adults at high photon flux density. These findings suggest that, as the morphology of D. melanogaster changes with growth, the most harmful wavelength also changes. In addition, our results indicated that reactive oxygen species influence the lethal effect of blue light. Our findings show that blue light irradiation could be used as an effective pest control method by adjusting the wavelength to target specific developmental stages.

  15. Wavelength independent interferometer

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Page, Norman A. (Inventor)

    1991-01-01

    A polychromatic interferometer utilizing a plurality of parabolic reflective surfaces to properly preserve the fidelity of light wavefronts irrespective of their wavelengths as they pass through the instrument is disclosed. A preferred embodiment of the invention utilizes an optical train which comprises three off-axis parabolas arranged in conjunction with a beam-splitter and a reference mirror to form a Twyman-Green interferometer. An illumination subsystem is provided and comprises a pair of lasers at different preselected wavelengths in the visible spectrum. The output light of the two lasers is coaxially combined by means of a plurality of reflectors and a grating beam combiner to form a single light source at the focal point of the first parabolic reflection surface which acts as a beam collimator for the rest of the optical train. By using visible light having two distinct wavelengths, the present invention provides a long equivalent wavelength interferogram which operates at visible light wherein the effective wavelength is equal to the product of the wavelengths of the two laser sources divided by their difference in wavelength. As a result, the invention provides the advantages of what amounts to long wavelength interferometry but without incurring the disadvantage of the negligible reflection coefficient of the human eye to long wavelength frequencies which would otherwise defeat any attempt to form an interferogram at that low frequency using only one light source.

  16. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  17. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  18. Method of absorbance correction in a spectroscopic heating value sensor

    DOEpatents

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  19. Lethal effects of short-wavelength visible light on insects.

    PubMed

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-09

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  20. Lethal effects of short-wavelength visible light on insects

    NASA Astrophysics Data System (ADS)

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-01

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  1. Role of near ultraviolet wavelength measurements in the detection and retrieval of absorbing aerosols from space

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Fujito, Toshiyuki; Nakata, Makiko; Sano, Itaru

    2017-10-01

    Aerosol remote sensing by ultraviolet (UV) wavelength is established by a Total Ozone Mapping Spectrometer (TOMS) mounted on the long-life satellite Nimbus-7 and continues to make observations using Ozone monitoring instrument (OMI) located on the Aura satellite. For example, TOMS demonstrated that UV radiation (0.331 and 0.360 μm) could easily detect absorbing particles such as mineral dust or smoke aerosols. TOMS-AI (absorbing aerosol index) has been used to identify the absorbing aerosols from space. For an upcoming mission, JAXA/GCOM-C will have the polarization sensor SGLI boarded in December 2017. The SGLI has multi (19)-channels including near UV (0.380 μm) and violet (0.412 μm) wavelengths. This work intends to examine the role of near UV data in the detection of absorbing aerosols similar to TOMS-AI played. In practice, the measurements by GLI mounted on the short Japanese mission JAXA/ADEOS-2, whose data archive period was just 8 months from April to October in 2003, are available for simulation of SGLI data because ADEOS-2/GLI installed near UV and violet channels. First of all, the ratio of data at 0.412 μm to that at 0.380 μm is examined as an indicator to detect absorbing aerosols on a global scale during ADEOS-2 era. It is noted that our research group has developed an efficient algorithm for aerosol retrieval in hazy episodes (dense concentrations of atmospheric aerosols). It can be said that at least this work is an attempt to grasp the biomass burning plumes from the satellite.

  2. Long-wavelength analyte-sensitive luminescent probes and optical (bio)sensors

    PubMed Central

    Staudinger, Christoph; Borisov, Sergey M

    2016-01-01

    Long-wavelength luminescent probes and sensors become increasingly popular. They offer the advantage of lower levels of autofluorescence in most biological probes. Due to high penetration depth and low scattering of red and NIR light such probes potentially enable in vivo measurements in tissues and some of them have already reached a high level of reliability required for such applications. This review focuses on the recent progress in development and application of long-wavelength analyte-sensitive probes which can operate both reversibly and irreversibly. Photophysical properties, sensing mechanisms, advantages and limitations of individual probes are discussed. PMID:27134748

  3. Effect of pinpoint plantar long-wavelength infrared light irradiation on subcutaneous temperature and stress markers

    PubMed Central

    Ryotokuji, Kenji; Ishimaru, Keisou; Kihara, Kazuhiko; Namiki, Yoshihisa; Hozumi, Nobumichi

    2013-01-01

    Background and aims: The current investigation was aimed at the development of a novel non-invasive treatment system, “pinpoint plantar long-wavelength infrared light irradiation (PP-LILI)”, which may be able to relieve mental stress and reduce stress-related hormones. Materials (Subjects) and methods: We compared the subcutaneous temperature, blood pressure, the degree of secretion of stress hormones before and after pinpoint irradiations (wavelength: 8–11 μm; output: 30mW). The study enrolled 15 subjects (Japanese healthy adults; 8 males, 7 females; average age 47.8 ± 14.6 years). Two parts of the planter region were irradiated for 15 min respectively. The stress markers such as ACTH, salivary amylase and cortisol were measured. As well, core body temperature and blood pressure were analyzed before and after the irradiation. Results: A series of experiments revealed increased body temperature, decreased levels of blood pressure and stress markers described above after the irradiation. Conclusions: These results clearly suggest that the PP-LILI system will be quite useful for relieving stress and improvement of homeostatic functions in the body. PMID:24155554

  4. UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation.

    PubMed

    Peacock, Mike; Evans, Chris D; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Jones, Timothy G; Lebron, Inma

    2014-05-01

    Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.

  5. Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates.

    PubMed

    Kahnert, Michael; Nousiainen, Timo; Lindqvist, Hannakaisa

    2013-04-08

    Optical properties of light absorbing carbon (LAC) aggregates encapsulated in a shell of sulfate are computed for realistic model geometries based on field measurements. Computations are performed for wavelengths from the UV-C to the mid-IR. Both climate- and remote sensing-relevant optical properties are considered. The results are compared to commonly used simplified model geometries, none of which gives a realistic representation of the distribution of the LAC mass within the host material and, as a consequence, fail to predict the optical properties accurately. A new core-gray shell model is introduced, which accurately reproduces the size- and wavelength dependence of the integrated and differential optical properties.

  6. Effective long wavelength scalar dynamics in de Sitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, Ian; Rigopoulos, Gerasimos, E-mail: ian.moss@newcastle.ac.uk, E-mail: gerasimos.rigopoulos@ncl.ac.uk

    We discuss the effective infrared theory governing a light scalar's long wavelength dynamics in de Sitter spacetime. We show how the separation of scales around the physical curvature radius k / a ∼ H can be performed consistently with a window function and how short wavelengths can be integrated out in the Schwinger-Keldysh path integral formalism. At leading order, and for time scales Δ t >> H {sup −1}, this results in the well-known Starobinsky stochastic evolution. However, our approach allows for the computation of quantum UV corrections, generating an effective potential on which the stochastic dynamics takes place. Themore » long wavelength stochastic dynamical equations are now second order in time, incorporating temporal scales Δ t ∼ H {sup −1} and resulting in a Kramers equation for the probability distribution—more precisely the Wigner function—in contrast to the more usual Fokker-Planck equation. This feature allows us to non-perturbatively evaluate, within the stochastic formalism, not only expectation values of field correlators, but also the stress-energy tensor of φ.« less

  7. All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors

    NASA Astrophysics Data System (ADS)

    Viskontas, K.; Rusteika, N.

    2016-09-01

    Semiconductor saturable absorber mirror (SESAM) is the key component for many passively mode-locked ultrafast laser sources. Particular set of nonlinear parameters is required to achieve self-starting mode-locking or avoid undesirable q-switch mode-locking for the ultra-short pulse laser. In this paper, we introduce a novel all-fiber wavelength-tunable picosecond pulse duration setup for the measurement of nonlinear properties of saturable absorber mirrors at around 1 μm center wavelength. The main advantage of an all-fiber configuration is the simplicity of measuring the fiber-integrated or fiber-pigtailed saturable absorbers. A tunable picosecond fiber laser enables to investigate the nonlinear parameters at different wavelengths in ultrafast regime. To verify the capability of the setup, nonlinear parameters for different SESAMs with low and high modulation depth were measured. In the operating wavelength range 1020-1074 nm, <1% absolute nonlinear reflectivity accuracy was demonstrated. Achieved fluence range was from 100 nJ/cm2 to 2 mJ/cm2 with corresponding intensity from 10 kW/cm2 to 300 MW/cm2.

  8. Note: Three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water

    NASA Astrophysics Data System (ADS)

    Bhutta, M. Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho

    2014-02-01

    Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.

  9. Note: three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water.

    PubMed

    Bhutta, M Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho

    2014-02-01

    Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.

  10. Use of light absorbers to alter optical interrogation with epi-illumination and transillumination in three-dimensional cardiac models

    NASA Astrophysics Data System (ADS)

    Ramshesh, Venkat K.; Knisley, Stephen B.

    2006-03-01

    Cardiac optical mapping currently provides 2-D maps of transmembrane voltage-sensitive fluorescence localized near the tissue surface. Methods for interrogation at different depths are required for studies of arrhythmias and the effects of defibrillation shocks in 3-D cardiac tissue. We model the effects of coloading with a dye that absorbs excitation or fluorescence light on the radius and depth of the interrogated region with specific illumination and collection techniques. Results indicate radii and depths of interrogation are larger for transillumination versus epi-illumination, an effect that is more pronounced for broad-field excitation versus laser scanner. Coloading with a fluorescence absorber lessens interrogated depth for epi-illumination and increases it for transillumination, which is confirmed with measurements using transillumination of heart tissue slices. Coloading with an absorber of excitation light consistently decreases the interrogated depths. Transillumination and coloading also decrease the intensities of collected fluorescence. Thus, localization can be modified with wavelength-specific absorbers at the expense of a reduction in fluorescence intensity.

  11. Family of BODIPY Photocages Cleaved by Single Photons of Visible/Near-Infrared Light.

    PubMed

    Peterson, Julie A; Wijesooriya, Chamari; Gehrmann, Elizabeth J; Mahoney, Kaitlyn M; Goswami, Pratik P; Albright, Toshia R; Syed, Aleem; Dutton, Andrew S; Smith, Emily A; Winter, Arthur H

    2018-06-13

    Photocages are light-sensitive chemical protecting groups that provide external control over when, where, and how much of a biological substrate is activated in cells using targeted light irradiation. Regrettably, most popular photocages (e.g., o-nitrobenzyl groups) absorb cell-damaging ultraviolet wavelengths. A challenge with achieving longer wavelength bond-breaking photochemistry is that long-wavelength-absorbing chromophores have shorter excited-state lifetimes and diminished excited-state energies. However, here we report the synthesis of a family of BODIPY-derived photocages with tunable absorptions across the visible/near-infrared that release chemical cargo under irradiation. Derivatives with appended styryl groups feature absorptions above 700 nm, yielding photocages cleaved with the highest known wavelengths of light via a direct single-photon-release mechanism. Photorelease with red light is demonstrated in living HeLa cells, Drosophila S2 cells, and bovine GM07373 cells upon ∼5 min irradiation. No cytotoxicity is observed at 20 μM photocage concentration using the trypan blue exclusion assay. Improved B-alkylated derivatives feature improved quantum efficiencies of photorelease ∼20-fold larger, on par with the popular o-nitrobenzyl photocages (εΦ = 50-100 M -1 cm -1 ), but absorbing red/near-IR light in the biological window instead of UV light.

  12. A dual-wavelength light-emitting diode based detector for flow-injection analysis process analysers.

    PubMed

    Huang, J; Liu, H; Tan, A; Xu, J; Zhao, X

    1992-06-01

    In this paper, a small dual-wavelength light-emitting diode (LED) based detector for FIA process analysers is designed. The detector's optical parts include a flow cell, a dual-wavelength LED and a photodiode. Neither mirrors nor lenses are used. The optical paths for the different light beams are almost the same, distinguishing it from previously reported LED based detectors. The detector's electronic components, including a signal amplifier, an A/D and D/A converter, and an Intel 8031 single-chip microcomputer, are integrated on one small board. In order to obtain response signals of approximate intensity for the two colours, the D/A converter and a multiplexer are used to adjust the emission intensity of the two colours respectively. Under microcomputer control, light beams are rapidly electronically modulated. Therefore, dark current and intensity of the light beams are measured almost simultaneously; as a result, the effect of drift is negligible. While a solution of absorbance 0.875 was measured repeatedly, an RSD (relative standard deviation) of 0.24% could be reached. Furthermore, such a detector with a red/yellow LED has been coupled with the FIA technique for the determination of 10(-6)M levels of cobalt.

  13. Novel Ultraviolet Light Absorbing Polymers For Optical Applications

    NASA Astrophysics Data System (ADS)

    Doddi, Namassivaya; Yamada, Akira; Dunks, Gary B.

    1988-07-01

    Ultraviolet light absorbing monomers have been developed that can be copolymerized with acrylates. The composition of the resultant stable copolymers can be adjusted to totally block the transmission of light below about 430 nm. Fabrication of lenses from the materials is accomplished by lathe cutting and injection molding procedures. These ultraviolet light absorbing materials are non-mutagenic and non-toxic and are currently being used in intraocular lenses.

  14. Isolating long-wavelength fluctuation from structural relaxation in two-dimensional glass: cage-relative displacement

    NASA Astrophysics Data System (ADS)

    Shiba, Hayato; Keim, Peter; Kawasaki, Takeshi

    2018-03-01

    It has recently been revealed that long-wavelength fluctuation exists in two-dimensional (2D) glassy systems, having the same origin as that given by the Mermin-Wagner theorem for 2D crystalline solids. In this paper, we discuss how to characterise quantitatively the long-wavelength fluctuation in a molecular dynamics simulation of a lightly supercooled liquid. We employ the cage-relative mean-square displacement (MSD), defined on relative displacement to its cage, to quantitatively separate the long-wavelength fluctuation from the original MSD. For increasing system size the amplitude of acoustic long wavelength fluctuations not only increases but shifts to later times causing a crossover with structural relaxation of caging particles. We further analyse the dynamic correlation length using the cage-relative quantities. It grows as the structural relaxation becomes slower with decreasing temperature, uncovering an overestimation by the four-point correlation function due to the long-wavelength fluctuation. These findings motivate the usage of cage-relative MSD as a starting point for analysis of 2D glassy dynamics.

  15. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers.

    PubMed

    Liu, X M; Yang, H R; Cui, Y D; Chen, G W; Yang, Y; Wu, X Q; Yao, X K; Han, D D; Han, X X; Zeng, C; Guo, J; Li, W L; Cheng, G; Tong, L M

    2016-05-16

    Graphene, whose absorbance is approximately independent of wavelength, allows broadband light-matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light-graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics.

  16. Shedding light on moths: shorter wavelengths attract noctuids more than geometrids

    PubMed Central

    Somers-Yeates, Robin; Hodgson, David; McGregor, Peter K.; Spalding, Adrian; ffrench-Constant, Richard H.

    2013-01-01

    With moth declines reported across Europe, and parallel changes in the amount and spectra of street lighting, it is important to understand exactly how artificial lights affect moth populations. We therefore compared the relative attractiveness of shorter wavelength (SW) and longer wavelength (LW) lighting to macromoths. SW light attracted significantly more individuals and species of moth, either when used alone or in competition with LW lighting. We also found striking differences in the relative attractiveness of different wavelengths to different moth groups. SW lighting attracted significantly more Noctuidae than LW, whereas both wavelengths were equally attractive to Geometridae. Understanding the extent to which different groups of moth are attracted to different wavelengths of light will be useful in determining the impact of artificial light on moth populations. PMID:23720524

  17. Influence of skin type and wavelength on light wave reflectance.

    PubMed

    Fallow, Bennett A; Tarumi, Takashi; Tanaka, Hirofumi

    2013-06-01

    A new application of photoplethysmography (PPG) has emerged recently to provide the possibility of heart rate monitoring without a telemetric chest strap. The aim of this study was to determine if a new device could detect pulsation over a broad range of skin types, and what light wavelength would be most suitable for detecting the signals. A light emitting diode-based PPG system was used to detect changes in pulsatile blood flow on 23 apparently healthy individuals (11 male and 12 female, 20-59 years old) of varying skin types classified according to a questionnaire in combination with digital photographs with a skin type chart. Four different light wavelengths (470, 520, 630, and 880 nm) were tested. Normalized modulation level is calculated as the AC/DC component ratio and represents the change in flow over the underlying constant state of flow or perfusion. In the resting condition, green light wavelength (520 nm) displayed greater modulation (p < 0.001) than all the other wavelengths analyzed regardless of skin types. Type V (dark brown) skin type was significantly lower in modulation than all other skin types. In the exercise condition, both blue (470 nm) and green (520 nm) light wavelengths displayed greater signal-to-noise ratios than red (630 nm) or infrared (880 nm) light wavelengths (p < 0.001). We concluded that a PPG-based device can detect pulsation across all skin types and that a greater resolution was obtained using a green light wavelength at rest and a green or blue light wavelength during exercise.

  18. Protecting the surface of a light absorber in a photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shu; Lewis, Nathan S.

    A photoanode includes a passivation layer on a light absorber. The passivation layer is more resistant to corrosion than the light absorber. The photoanode includes a surface modifying layer that is location on the passivation layer such that the passivation layer is between the light absorber and the surface modifying layer. The surface modifying layer reduces a resistance of the passivation layer to conduction of holes out of the passivation layer.

  19. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    PubMed

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  20. Effects of light wavelength and coherence in structured light sensors

    NASA Astrophysics Data System (ADS)

    Harding, Kevin; Ramamurthy, Rajesh; Zhai, Zirong; Han, Jie; Yang, Dongmin

    2016-05-01

    Structured light methods are used by many commercial products on the market today. Many such systems using white light projectors while many line gages use standard red laser diodes. However, in recent years there has been much claimed about using blue light, polarized light and partially coherent systems to obtain better performance. Unlike interferometers, moving from red to blue light for a system using only geometric shape information does not gain an automatic advantage from the shorter wavelength. The sensitivity metric does not have a wavelength component to it. But there are other factors that can improve gage performance. The ability to measure some feature is also a function of other parameters such as signal to noise ratio, reflectivity variations, and depth-of-field over which a clear pattern can be seen. This paper will explore the theoretical and experimental data relating to what works and what can be expected from variations on the old methods.

  1. Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers.

    PubMed

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-05-23

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.

  2. Wavelength-Versatile Graphene-Gold Film Saturable Absorber Mirror for Ultra-Broadband Mode-Locking of Bulk Lasers

    PubMed Central

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-01-01

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage. PMID:24853072

  3. The physical properties of black carbon and other light-absorbing material emitted from prescribed fires in the United States

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Kreidenweis, S. M.; Yokelson, R. J.; Sullivan, A. P.; Lee, T.; Collett, J. L.; Fortner, E.; Onasch, T. B.; Akagi, S. K.; Taylor, J.; Coe, H.

    2012-12-01

    Black carbon (BC) aerosol emitted from fires absorbs light, leading to visibility degradation as well as regional and global climate impacts. Fires also emit a wide range of trace gases and particulates that can interact with emitted BC and alter its optical properties and atmospheric lifetime. Non-BC particulate species emitted by fires can also scatter and absorb light, leading to additional effects on visibility. Recent work has shown that certain organic species can absorb light strongly at shorter wavelengths, giving it a brown or yellow color. This material has been classified as brown carbon, though it is not yet well defined. Land managers must find a balance between the negative impacts of prescribed fire emissions on visibility and air quality and the need to prevent future catastrophic wildfire as well as manage ecosystems for habitat restoration or other purposes. This decision process requires accurate assessments of the visibility impacts of fire emissions, including BC and brown carbon, which in turn depend on their optical properties. We present recent laboratory and aircraft measurements of black carbon and aerosol optical properties emitted from biomass burning. All measurement campaigns included a single particle soot photometer (SP2) instrument capable of providing size-resolved measurements of BC mass and number distributions and mixing state, which are needed to separate the BC and brown carbon contributions to total light absorption. The laboratory experiments also included a three-wavelength photoacoustic spectrometer that provided accurate measurements of aerosol light absorption. The laboratory systems also characterized emissions after they had been treated with a thermal denuder to remove semi-volatile coatings, allowing an assessment of the role of non-BC coatings on bulk aerosol optical properties. Emissions were also aged in an environmental smog chamber to examine the role of secondary aerosol production on aerosol optical properties.

  4. Measurements of Light Absorbing Particles on Tropical South American Glaciers

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; All, J.; Schwarz, J. P.; Arnott, W. P.; Warthon, J.; Andrade, M.; Celestian, A. J.; Hoffmann, D.; Cole, R. J.; Lapham, E.; Horodyskyj, U. N.; Froyd, K. D.; Liao, J.

    2014-12-01

    Glaciers in the tropical Andes have been losing mass rapidly in recent decades. In addition to the documented increase in temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we present results of measurements of light absorbing particles from glaciers in Peru and Bolivia. Samples have been collected by American Climber Science Program volunteers and scientists at altitudes up to 6770 meters. Collected snow samples were melted and filtered in the field. A new inexpensive technique, the Light Absorption Heating Method (LAHM) has been developed for analysis of light absorbing particles collected on filters. Results from LAHM analysis are calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). For snow samples collected at the same field location LAHM analysis and measurements from the Single Particle Soot Photometer (SP2) instrument are well correlated (r2 = 0.92). Co-located SP2 and LAHM filter analysis suggest that BC could be the dominant absorbing component of the light absorbing particles in some areas.

  5. Photosensitized Protein-Damaging Activity, Cytotoxicity, and Antitumor Effects of P(V)porphyrins Using Long-Wavelength Visible Light through Electron Transfer.

    PubMed

    Hirakawa, Kazutaka; Ouyang, Dongyan; Ibuki, Yuko; Hirohara, Shiho; Okazaki, Shigetoshi; Kono, Eiji; Kanayama, Naohiro; Nakazaki, Jotaro; Segawa, Hiroshi

    2018-05-21

    Photodynamic therapy (PDT) is a less-invasive treatment for cancer through the administration of less-toxic porphyrins and visible-light irradiation. Photosensitized damage of biomacromolecules through singlet oxygen ( 1 O 2 ) generation induces cancer cell death. However, a large quantity of porphyrin photosensitizer is required, and the treatment effect is restricted under a hypoxic cellular condition. Here we report the phototoxic activity of P(V)porphyrins: dichloroP(V)tetrakis(4-methoxyphenyl)porphyrin (CLP(V)TMPP), dimethoxyP(V)tetrakis(4-methoxyphenyl)porphyrin (MEP(V)TMPP), and diethyleneglycoxyP(V)tetrakis(4-methoxyphenyl)porphyrin (EGP(V)TMPP). These P(V)porphyrins damaged the tryptophan residue of human serum albumin (HSA) under the irradiation of long-wavelength visible light (>630 nm). This protein photodamage was barely inhibited by sodium azide, a quencher of 1 O 2 . Fluorescence lifetimes of P(V)porphyrins with or without HSA and their redox potentials supported the electron-transfer-mediated oxidation of protein. The photocytotoxicity of these P(V)porphyrins to HeLa cells was also demonstrated. CLP(V)TMPP did not exhibit photocytotoxicity to HaCaT, a cultured human skin cell, and MEP(V)TMPP and EGP(V)TMPP did; however, cellular DNA damage was barely observed. In addition, a significant PDT effect of these P(V) porphyrins on a mouse tumor model comparable with the traditional photosensitizer was also demonstrated. These findings suggest the cancer selectivity of these P(V)porphyrins and lower carcinogenic risk to normal cells. Electron-transfer-mediated oxidation of biomacromolecules by P(V)porphyrins using long-wavelength visible light should be advantageous for PDT of hypoxic tumor.

  6. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation

    PubMed Central

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-01-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber–based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m−2). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices. PMID:27152335

  7. Role of light wavelengths in synchronization of circadian physiology in songbirds.

    PubMed

    Yadav, G; Malik, S; Rani, S; Kumar, V

    2015-03-01

    This study investigated whether at identical duration and equal energy level birds presented with short (450nm; blue, B) and long (640nm; red, R) light wavelengths would differentially interpret them and exhibit wavelength-dependent circadian behavioral and physiological responses, despite the difference in their breeding latitudes. Temperate migratory blackheaded buntings (Emberiza melanocephala) and subtropical non-migratory Indian weaverbirds (Ploceus philippinus) initially entrained to 12h light:12h darkness (12L:12D; L=0.33μM/m(2)/s, D=0μM/m(2)/s) in two groups of each, groups 1 and 2, were subjected to constant light (LL, 0.33μM/m(2)/s), which rendered them arrhythmic in the activity behavior. They were then exposed for about two weeks each to 12B:12R and 12R:12B (group 1) or 12R:12B and 12B:12R (group 2) at 0.33μM/m(2)/s light energy level. Blue and red light periods were interpreted as the day and night, respectively, with activity and no-activity in non-migratory weaverbirds or activity and intense activity (Zugunruhe, migratory night restlessness) in the migratory buntings. Consistent with this, plasma melatonin levels under B:R, not R:B, light cycle were low and high in blue and red light periods, respectively. A similar diurnal pattern was absent in the cortisol levels, however. These results show an important role of light wavelengths in synchronization of the circadian clock governed behavior and physiology to the photoperiodic environment, and suggest that photoperiodic timing might be a conserved physiological adaptation in many more birds, regardless of the difference in breeding latitudes, than has been generally envisaged. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. On Spectral Invariance of Single Scattering Albedo for Weakly Absorbing Wavelengths

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.

    2011-01-01

    This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda(r))/omega(sub O lambda(r(sub O)) of two single scattering albedo spectra, omega(sub O lambda(r) and omega(sub O lambda(r (sub O)), is a linear function of omega(sub O lambda(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo omega(sub O lambda(r) via one known spectrum omega(sub O lambda(r(sub O)). The note provides a simple physical explanation of the discovered relationship. In addition to water droplets, similar linear relationships were found for the single scattering albedo of non-spherical ice crystals.

  9. Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal.

    PubMed

    Dimovski, Alicia M; Robert, Kylie A

    2018-05-02

    The focus of sustainable lighting tends to be on reduced CO 2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m 2 ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m 2 ), and no lighting (irradiance from sky glow < 0.37 × 10 -3 W/m 2 ), on melatonin production, lipid peroxidation, and circulating antioxidant capacity in the tammar wallaby (Macropus eugenii). Night-time melatonin and oxidative status were determined at baseline and again following 10 weeks exposure to light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts. © 2018 Wiley Periodicals, Inc.

  10. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines

    NASA Astrophysics Data System (ADS)

    Manara, J.; Zipf, M.; Stark, T.; Arduini, M.; Ebert, H.-P.; Tutschke, A.; Hallam, A.; Hanspal, J.; Langley, M.; Hodge, D.; Hartmann, J.

    2017-01-01

    The objective of the EU project "Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)" is the development of a suite of advanced sensors, instrumentation and related systems in order to contribute to the developing of the next generation of green and efficient gas turbine engines. One work package of the project deals with the design and development of a long wavelength infrared (LWIR) radiation thermometer for the non-contact measurement of the surface temperature of thermal barrier coatings (TBCs) during the operation of gas turbine engines. For opaque surfaces (e.g. metals or superalloys) radiation thermometers which are sensitive in the near or short wavelength infrared are used as state-of-the-art method for non-contact temperature measurements. But this is not suitable for oxide ceramic based TBCs (e.g. partially yttria stabilized zirconia) as oxide ceramics are semi-transparent in the near and short wavelength infrared spectral region. Fortunately the applied ceramic materials are non-transparent in the long wavelength infrared and additionally exhibit a high emittance in this wavelength region. Therefore, a LWIR pyrometer can be used for non-contact temperature measurements of the surfaces of TBCs as such pyrometers overcome the described limitation of existing techniques. For performing non-contact temperature measurements in gas turbines one has to know the infrared-optical properties of the applied TBCs as well as of the hot combustion gas in order to properly analyse the measurement data. For reaching a low uncertainty on the one hand the emittance of the TBC should be high (>0.9) in order to reduce reflections from the hot surrounding and on the other hand the absorbance of the hot combustion gas should be low (<0.1) in order to decrease the influence of the gas on the measured signal. This paper presents the results of the work performed by the authors with focus on the implementation of the LWIR pyrometer and the

  11. An Accurate Analytic Approximation for Light Scattering by Non-absorbing Spherical Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Lewis, E. R.

    2017-12-01

    The scattering of light by particles in the atmosphere is a ubiquitous and important phenomenon, with applications to numerous fields of science and technology. The problem of scattering of electromagnetic radiation by a uniform spherical particle can be solved by the method of Mie and Debye as a series of terms depending on the size parameter, x=2πr/λ, and the complex index of refraction, m. However, this solution does not provide insight into the dependence of the scattering on the radius of the particle, the wavelength, or the index of refraction, or how the scattering varies with relative humidity. Van de Hulst demonstrated that the scattering efficiency (the scattering cross section divided by the geometric cross section) of a non-absorbing sphere, over a wide range of particle sizes of atmospheric importance, depends not on x and m separately, but on the quantity 2x(m-1); this is the basis for the anomalous diffraction approximation. Here an analytic approximation for the scattering efficiency of a non-absorbing spherical particle is presented in terms of this new quantity that is accurate over a wide range of particle sizes of atmospheric importance and which readily displays the dependences of the scattering efficiency on particle radius, index of refraction, and wavelength. For an aerosol for which the particle size distribution is parameterized as a gamma function, this approximation also yields analytical results for the scattering coefficient and for the Ångström exponent, with the dependences of scattering properties on wavelength and index of refraction clearly displayed. This approximation provides insight into the dependence of light scattering properties on factors such as relative humidity, readily enables conversion of scattering from one index of refraction to another, and demonstrates the conditions under which the aerosol index (the product of the aerosol optical depth and the Ångström exponent) is a useful proxy for the number of cloud

  12. Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Phipps, C. R., Jr.; Harrison, R. F.; Shimada, T.; York, G. W.; Turner, R. F.

    1990-03-01

    This paper reports measurements of vacuum laser impulse coupling coefficients as large as 90 dyne/W, obtained with single microsec-duration CO2 laser pulses incident on a volume-absorbing, cellulose-nitrate-based plastic. This result is the largest coupling coefficient yet reported at any wavelength for a simple, planar target in vacuum, and partly results from expenditure of internal chemical energy in this material. Enhanced coupling was also observed in several other target materials that are chemically passive, but absorb light in depth at 10- and 3-micron wavelengths. The physical distinctions are discussed between this important case and that of simple, planar surface absorbers (such as metals) which were studied in the same experimental series, in light of the predictions of a simple theoretical model.

  13. Long wavelength gravity and topography anomalies

    NASA Technical Reports Server (NTRS)

    Watts, A. B.; Daly, S. F.

    1981-01-01

    It is shown that gravity and topography anomalies on the earth's surface may provide new information about deep processes occurring in the earth, such as those associated with mantle convection. Two main reasons are cited for this. The first is the steady improvement that has occurred in the resolution of the long wavelength gravity field, particularly in the wavelength range of a few hundred to a few thousand km, mainly due to increased coverage of terrestrial gravity measurements and the development of radar altimeters in orbiting satellites. The second reason is the large number of numerical and laboratory experiments of convection in the earth, including some with deformable upper and lower boundaries and temperature-dependent viscosity. The oceans are thought to hold the most promise for determining long wavelength gravity and topography anomalies, since their evolution has been relatively simple in comparison with that of the continents. It is also shown that good correlation between long wavelength gravity and topography anomalies exists over some portions of the ocean floor

  14. Light-Irradiation Wavelength and Intensity Changes Influence Aflatoxin Synthesis in Fungi

    PubMed Central

    Suzuki, Tadahiro

    2018-01-01

    Fungi respond to light irradiation by forming conidia and occasionally synthesizing mycotoxins. Several light wavelengths, such as blue and red, affect the latter. However, the relationship between light irradiation and mycotoxin synthesis varies depending on the fungal species or strain. This study focused on aflatoxin (AF), which is a mycotoxin, and the types of light irradiation that increase AF synthesis. Light-irradiation tests using the visible region indicated that blue wavelengths in the lower 500 nm region promoted AF synthesis. In contrast, red wavelengths of 660 nm resulted in limited significant changes compared with dark conditions. Irradiation tests with different intensity levels indicated that a low light intensity increased AF synthesis. For one fungal strain, light irradiation decreased the AF synthesis under all wavelength conditions. However, the decrease was mitigated by 525 nm low intensity irradiation. Thus, blue-green low intensity irradiation may increase AF synthesis in fungi. PMID:29304012

  15. Broadband infrared absorbers with stacked double chromium ring resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Huixu; Stan, Liliana; Czaplewski, David A.

    A broadband absorber in the infrared wavelength range from 1 μm up to 5 μm is designed and demonstrated with stacked double chromium ring resonators on a reflective chromium mirror. The near-perfect broadband absorption is realized by combining the multilayer impedance match in the short wavelength range and the double plasmonic resonances in the long wavelength range, which is illustrated with an equivalent circuit model for the impedance analysis. The broadband absorber is proved to be angle-insensitive and polarization-independent due to the geometrical symmetry. Lastly, the thermal analysis for heat generation and temperature distributions inside the absorber structure is alsomore » investigated.« less

  16. Broadband infrared absorbers with stacked double chromium ring resonators

    DOE PAGES

    Deng, Huixu; Stan, Liliana; Czaplewski, David A.; ...

    2017-10-31

    A broadband absorber in the infrared wavelength range from 1 μm up to 5 μm is designed and demonstrated with stacked double chromium ring resonators on a reflective chromium mirror. The near-perfect broadband absorption is realized by combining the multilayer impedance match in the short wavelength range and the double plasmonic resonances in the long wavelength range, which is illustrated with an equivalent circuit model for the impedance analysis. The broadband absorber is proved to be angle-insensitive and polarization-independent due to the geometrical symmetry. Lastly, the thermal analysis for heat generation and temperature distributions inside the absorber structure is alsomore » investigated.« less

  17. Long-wavelength infrared (LWIR) quantum-dot infrared photodetector (QDIP) focal plane array

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Hill, C. J.; Ting, D. Z.; Liu, J. K.; Rafol, S. B.; Blazejewski, E. R.; Mumolo, J. M.; Keo, S. A.; Krishna, S.; Chang, Y. C.; Shott, C. A.

    2006-05-01

    We have exploited the artificial atomlike properties of epitaxially self-assembled quantum dots for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays. Quantum dots are nanometer-scale islands that form spontaneously on a semiconductor substrate due to lattice mismatch. QDIPs are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II-VI material based focal plane arrays. QDIPs are fabricated using robust wide bandgap III-V materials which are well suited to the production of highly uniform LWIR arrays. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR quantum dot structures based on the InAs/InGaAs/GaAs material system. JPL is building on its significant QWIP experience and is basically building a Dot-in-the-Well (DWELL) device design by embedding InAs quantum dots in a QWIP structure. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. In addition the quantum wells can trap electrons and aide in ground state refilling. Recent measurements have shown a 10 times higher photoconductive gain than the typical QWIP device, which indirectly confirms the lower relaxation rate of excited electrons (photon bottleneck) in QDIPs. Subsequent material and device improvements have demonstrated an absorption quantum efficiency (QE) of ~ 3%. Dot-in-the-well (DWELL) QDIPs were also experimentally shown to absorb both 45o and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. JPL has demonstrated wavelength control by progressively growing material and fabricating devices structures that have continuously increased in LWIR response. The most recent devices exhibit peak responsivity out to 8.1 microns. Peak detectivity of the 8.1μm devices has reached ~ 1 x 1010 Jones at 77 K. Furthermore

  18. Long-Wavelength Infrared (LWIR) Quantum Dot Infrared Photodetector (QDIP) Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Shott, C. A.

    2006-01-01

    We have exploited the artificial atomlike properties of epitaxially self-assembled quantum dots for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays. Quantum dots are nanometer-scale islands that form spontaneously on a semiconductor substrate due to lattice mismatch. QDIPs are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II-VI material based focal plane arrays. QDIPs are fabricated using robust wide bandgap III-V materials which are well suited to the production of highly uniform LWIR arrays. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR quantum dot structures based on the InAs/InGaAs/GaAs material system. JPL is building on its significant QWIP experience and is basically building a Dot-in-the-Well (DWELL) device design by embedding InAs quantum dots in a QWIP structure. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. In addition the quantum wells can trap electrons and aide in ground state refilling. Recent measurements have shown a 10 times higher photoconductive gain than the typical QWIP device, which indirectly confirms the lower relaxation rate of excited electrons (photon bottleneck) in QDPs. Subsequent material and device improvements have demonstrated an absorption quantum efficiency (QE) of approx. 3%. Dot-in-the-well (DWELL) QDIPs were also experimentally shown to absorb both 45 deg. and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. JPL has demonstrated wavelength control by progressively growing material and fabricating devices structures that have continuously increased in LWIR response. The most recent devices exhibit peak responsivity out to 8.1 microns. Peak detectivity of the 8.1 micrometer devices has reached approx. 1 x 10(exp 10

  19. Solar Photothermal Disinfection using Broadband-Light Absorbing Gold Nanoparticles and Carbon Black.

    PubMed

    Loeb, Stephanie; Li, Chuanhao; Kim, Jae-Hong

    2018-01-02

    A simple heat treatment, perhaps the most globally recognized point-of-use water sterilization method, is seemingly effective against all major pathogens of concern, but bulk water boiling is not energy efficient or sustainable. Herein, we present the first application of solar-to-thermal converting nanomaterials for the direct inactivation of bacteria and viruses in drinking water through the application of Au nanorods, carbon black, and Au nanorod-carbon black composite materials as light absorbers. With broad absorption bands spanning the visible and near-infrared wavelengths, at sufficient concentrations, these nanoparticles induce multiple scattering events, increasing photon absorption probability and concentrating the light within a small spatial domain, leading to localized, intense heating that inactivates microorganisms in close proximity. Moving toward practical device design, we have developed a facile silane immobilization approach to fabricate films with densely packed layers of photothermal nanomaterials. Our results suggest that upon irraditaion with simulated solar light, these films can thermally inactivate bacteria and viruses, as demonstrated through the inactivation of surrogate organisms Escherichia coli K-12, and bacteriophages MS2 and PR772.

  20. Intracardiac light catheter for rapid scanning transmural absorbance spectroscopy of perfused myocardium: measurement of myoglobin oxygenation and mitochondria redox state.

    PubMed

    Femnou, Armel N; Kuzmiak-Glancy, Sarah; Covian, Raul; Giles, Abigail V; Kay, Matthew W; Balaban, Robert S

    2017-12-01

    Absorbance spectroscopy of intrinsic cardiac chromophores provides nondestructive assessment of cytosolic oxygenation and mitochondria redox state. Isolated perfused heart spectroscopy is usually conducted by collecting reflected light from the heart surface, which represents a combination of surface scattering events and light that traversed portions of the myocardium. Reflectance spectroscopy with complex surface scattering effects in the beating heart leads to difficulty in quantitating chromophore absorbance. In this study, surface scattering was minimized and transmural path length optimized by placing a light source within the left ventricular chamber while monitoring transmurally transmitted light at the epicardial surface. The custom-designed intrachamber light catheter was a flexible coaxial cable (2.42-Fr) terminated with an encapsulated side-firing LED of 1.8 × 0.8 mm, altogether similar in size to a Millar pressure catheter. The LED catheter had minimal impact on aortic flow and heart rate in Langendorff perfusion and did not impact stability of the left ventricule of the working heart. Changes in transmural absorbance spectra were deconvoluted using a library of chromophore reference spectra to quantify the relative contribution of specific chromophores to the changes in measured absorbance. This broad-band spectral deconvolution approach eliminated errors that may result from simple dual-wavelength absorbance intensity. The myoglobin oxygenation level was only 82.2 ± 3.0%, whereas cytochrome c and cytochrome a + a 3 were 13.3 ± 1.4% and 12.6 ± 2.2% reduced, respectively, in the Langendorff-perfused heart. The intracardiac illumination strategy permits transmural optical absorbance spectroscopy in perfused hearts, which provides a noninvasive real-time monitor of cytosolic oxygenation and mitochondria redox state. NEW & NOTEWORTHY Here, a novel nondestructive real-time approach for monitoring intrinsic indicators of cardiac

  1. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers

    PubMed Central

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-01-01

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898

  2. Quantum information processing with long-wavelength radiation

    NASA Astrophysics Data System (ADS)

    Murgia, David; Weidt, Sebastian; Randall, Joseph; Lekitsch, Bjoern; Webster, Simon; Navickas, Tomas; Grounds, Anton; Rodriguez, Andrea; Webb, Anna; Standing, Eamon; Pearce, Stuart; Sari, Ibrahim; Kiang, Kian; Rattanasonti, Hwanjit; Kraft, Michael; Hensinger, Winfried

    To this point, the entanglement of ions has predominantly been performed using lasers. Using long wavelength radiation with static magnetic field gradients provides an architecture to simplify construction of a large scale quantum computer. The use of microwave-dressed states protects against decoherence from fluctuating magnetic fields, with radio-frequency fields used for qubit manipulation. I will report the realisation of spin-motion entanglement using long-wavelength radiation, and a new method to efficiently prepare dressed-state qubits and qutrits, reducing experimental complexity of gate operations. I will also report demonstration of ground state cooling using long wavelength radiation, which may increase two-qubit entanglement fidelity. I will then report demonstration of a high-fidelity long-wavelength two-ion quantum gate using dressed states. Combining these results with microfabricated ion traps allows for scaling towards a large scale ion trap quantum computer, and provides a platform for quantum simulations of fundamental physics. I will report progress towards the operation of microchip ion traps with extremely high magnetic field gradients for multi-ion quantum gates.

  3. Photophoretic trampoline—Interaction of single airborne absorbing droplets with light

    NASA Astrophysics Data System (ADS)

    Esseling, Michael; Rose, Patrick; Alpmann, Christina; Denz, Cornelia

    2012-09-01

    We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids—just like their solid counterparts—can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.

  4. Spectroscopic refractometer for transparent and absorbing liquids by reflection of white light near the critical angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Perez, C.; Garcia-Valenzuela, A.

    2012-11-15

    We propose and evaluate a spectroscopic refractometer device to measure the refractive index dispersion of transparent and absorbing solutions. The angle-dependent reflectivity of a white beam of light in an internal reflection configuration around the critical angle is spectrally analyzed. The refractive index in a wavelength range from 400 nm to 900 nm is obtained from the angle-reflectivity curve around the critical angle at each wavelength. The device does not use angle scanning mechanisms, decreasing considerably the complexity of the instrument in comparison to previous proposals. As a result, the measurements are obtained relatively fast. Nevertheless, a good experimental resolutionmore » in refractive index of about {Delta}n Almost-Equal-To 10{sup -4} at all the wavelengths is achieved in the case of transparent solutions. The calibration procedure of the device is discussed in detail. We also present measurements of the refractive index dispersion of rhodamine 6G-methanol solutions, which has a strong absorption band in the visible spectra.« less

  5. Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Yang, Yue; Wang, Liping, E-mail: liping.wang@asu.edu

    2014-08-18

    We numerically demonstrate a switchable metamaterial absorber/emitter by thermally turning on or off the excitation of magnetic resonance upon the phase transition of vanadium dioxide (VO{sub 2}). Perfect absorption peak exists around the wavelength of 5 μm when the excitation of magnetic resonance is supported with the insulating VO{sub 2} spacer layer. The wavelength-selective absorption is switched off when the magnetic resonance is disabled with metallic VO{sub 2} that shorts the top and bottom metallic structures. The resonance wavelength can be tuned with different geometry, and the switchable metamaterial exhibits diffuse behaviors at oblique angles. The results would facilitate the designmore » of switchable metamaterials for active control in energy and sensing applications.« less

  6. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  7. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators.

    PubMed

    Li, Zhigang; Stan, Liliana; Czaplewski, David A; Yang, Xiaodong; Gao, Jie

    2018-03-05

    Wavelength-selective metamaterial absorbers in the mid-infrared range are demonstrated by using multiple tungsten cross resonators. By adjusting the geometrical parameters of cross resonators in single-sized unit cells, near-perfect absorption with single absorption peak tunable from 3.5 µm to 5.5 µm is realized. The combination of two, three, or four cross resonators of different sizes in one unit cell enables broadband near-perfect absorption at mid-infrared range. The obtained absorption spectra exhibit omnidirectionality and weak dependence on incident polarization. The underlying mechanism of near-perfect absorption with cross resonators is further explained by the optical mode analysis, dispersion relation and equivalent RLC circuit model. Moreover, thermal analysis is performed to study the heat generation and temperature increase in the cross resonator absorbers, while the energy conversion efficiency is calculated for the thermophotovoltaic system made of the cross resonator thermal emitters and low-bandgap semiconductors.

  8. Absorbance and light scattering of lenses organ cultured with glucose.

    PubMed

    Alghamdi, Ali Hendi Sahmi; Mohamed, Hasabelrasoul; Sledge, Samiyyah M; Borchman, Douglas

    2018-06-06

    Purpose/Aim: Diabetes is one of the major factors related to cataract. Our aim was to determine if the attenuation of light through glucose treated lenses was due to light scattering from structural changes or absorbance from metabolic changes. Human and rat lenses were cultured in a medium with and without 55 mM glucose for a period of five days. Absorbance and light scattering were measured using a ultraviolet spectrometer. Aldose reductase and catalase activity, RAGE, and glutathione were measured using classical assays. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes. Glucose treatment caused three absorbance band to appear at 484, 540 to 644 and 657 nm in both the rat and human lens. The optimum time point for equilibration of human lenses was found to be between 2 and 3 days in organ culture. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. Since the levels of glutathione, catalase and aldose reductase were reduced in glucose treated rat lenses compared with untreated lenses, glucose may have caused oxidative stress on the rat lens. The absorbance and light scattering of glucose treated lenses in organ culture were quantitated for the first time which could be important for future studies designed to test the efficacy of agents to ameliorate the opacity. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes and not absorbance from metabolic changes. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. The lens model employed could be used to study the efficacy of agents that potentially ameliorate lens opacity.

  9. Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance.

    PubMed

    Alkozei, Anna; Smith, Ryan; Dailey, Natalie S; Bajaj, Sahil; Killgore, William D S

    2017-01-01

    Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light) exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition) using an abbreviated version of the California Verbal Learning Test (CVLT-II). At delayed recall, individuals who received blue light (n = 12) during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18), while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.

  10. Light Absorbing Particle (LAP) Measurements in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Baumgardner, D.; Raga, G. B.; Anderson, B.; Diskin, G.; Sachse, G.; Kok, G.

    2003-01-01

    This viewgraph presentation covers the capabilities and design of the Single Particle Soot Photometer (SP-2), and reviews its role on the Sage III Ozone Loss Validation Experiment (SOLVE II) field campaign during 2003. On SOLVE II the SP-2 was carried into the Arctic onboard a DC-8 aircraft, in order to determine the size distribution of light-absorbing and non light-absorbing particles in the stratosphere. Graphs and tables relate some of the results from SOLVE II.

  11. On the radiative effects of light-absorbing impurities on snowpack evolution

    NASA Astrophysics Data System (ADS)

    Dumont, M.; Tuzet, F.; Lafaysse, M.; Arnaud, L.; Picard, G.; Lejeune, Y.; Lamare, M.; Morin, S.; Voisin, D.; Di Mauro, B.

    2017-12-01

    The presence of light absorbing impurities in snow strongly decreases snow reflectance leading to an increase in the amount of solar energy absorbed by the snowpack. This effect is also known as impurities direct radiative effect. The change in the amount of energy absorbed by the snowpack modifies the temperature profile inside the snowpack and in turn snow metamorphism (impurities indirect radiative effects). In this work, we used the detailed snowpack model SURFEX/ISBA-Crocus with an explicit representation of snow light-absorbing impurities content (Tuzet et al., 2017) fed by medium-resolution ALADIN-Climate atmospheric model to represent dust and black carbon atmospheric deposition fluxes. The model is used at two sites: Col de Porte (medium elevation site in the French Alps) and Torgnon (high elevation site in the Italian Alps). The simulations are compared to in-situ observations and used to quantify the effects of light-absorbing impurities on snow melt rate and timing. The respective parts of the direct and indirect radiative effects of light-absorbing impurities in snow are also computed for the two sites, emphasizing the need to account for the interactions between snow metamorphism and LAI radiative properties, to accurately predict the effects of light-absorbing impurities in snow. Moreover, we describe how automated hyperspectral reflectance can be used to estimate effective impurities surface content in snow. Finally we demonstrate how these reflectances measurements either from in situ or satellite data can be used via an assimilation scheme to constrain snowpack ensemble simulations and better predict the snowpack state and evolution.

  12. Mechanisms and Methods for Selective Wavelength Filtering

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret (Inventor); Brown, Thomas G. (Inventor); Gruhlke, Russell (Inventor)

    2007-01-01

    An optical filter includes a dielectric waveguide layer, supporting waveguide modes at specific wavelengths and receiving incident light, a corrugated film layer, composed of one of a metal and a semiconductor and positioned adjacent to a second surface of the waveguide layer and a sensor layer, wherein the sensor layer is capable of absorbing optical energy and generating a corresponding electrical signal. The metal film layer supports a plurality of plasmons, the plurality of plasmons producing a first field and is excited by a transverse mode of the waveguide modes at a wavelength interval. The first field penetrates the sensor layer and the sensor layer generates an electrical signal corresponding to an intensity of received incident light within the wavelength interval.

  13. Light sheet microscopy reveals more gradual light attenuation in light green versus dark green soybean leaves

    USDA-ARS?s Scientific Manuscript database

    Light wavelengths preferentially absorbed by chlorophyll (chl) often display steep absorption gradients. This oversaturates photosynthesis in upper chloroplasts and deprives lower chloroplasts of blue and red light, causing a steep gradient in carbon fixation. Reducing chl content could create a mor...

  14. Long-wavelength VCSELs: Power-efficient answer

    NASA Astrophysics Data System (ADS)

    Kapon, Eli; Sirbu, Alexei

    2009-01-01

    The commercialization of long-wavelength vertical-cavity surface-emitting lasers (VCSELs) is gaining new momentum as the telecoms market shifts from long-haul applications to local and access networks. These small, power-efficient devices offer several advantages over traditional edge-emitters.

  15. Lack of short-wavelength light during the school day delays dim light melatonin onset (DLMO) in middle school students.

    PubMed

    Figueiro, Mariana G; Rea, Mark S

    2010-01-01

    Circadian timing affects sleep onset. Delayed sleep onset can reduce sleep duration in adolescents required to awake early for a fixed school schedule. The absence of short-wavelength ("blue") morning light, which helps entrain the circadian system, can hypothetically delay sleep onset and decrease sleep duration in adolescents. The goal of this study was to investigate whether removal of short-wavelength light during the morning hours delayed the onset of melatonin in young adults. Dim light melatonin onset (DLMO) was measured in eleven 8th-grade students before and after wearing orange glasses, which removed short-wavelength light, for a five-day school week. DLMO was significantly delayed (30 minutes) after the five-day intervention, demonstrating that short-wavelength light exposure during the day can be important for advancing circadian rhythms in students. Lack of short-wavelength light in the morning has been shown to delay the circadian clock in controlled laboratory conditions. The results presented here are the first to show, outside laboratory conditions, that removal of short-wavelength light in the morning hours can delay DLMO in 8th-grade students. These field data, consistent with results from controlled laboratory studies, are directly relevant to lighting practice in schools.

  16. Multi-wavelength mid-IR light source for gas sensing

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Alajoki, Teemu; Cherchi, Matteo; Ollila, Jyrki; Harjanne, Mikko; Heinilehto, Noora; Suomalainen, Soile; Viheriälä, Jukka; Zia, Nouman; Guina, Mircea; Buczyński, Ryszard; Kasztelanic, Rafał; Kujawa, Ireneusz; Salo, Tomi; Virtanen, Sami; Kluczyński, Paweł; Sagberg, Hâkon; Ratajczyk, Marcin; Kalinowski, Przemyslaw

    2017-02-01

    Cost effective multi-wavelength light sources are key enablers for wide-scale penetration of gas sensors at Mid-IR wavelength range. Utilizing novel Mid-IR Si-based photonic integrated circuits (PICs) filter and wide-band Mid-IR Super Luminescent Light Emitting Diodes (SLEDs), we show the concept of a light source that covers 2.5…3.5 μm wavelength range with a resolution of <1nm. The spectral bands are switchable and tunable and they can be modulated. The source allows for the fabrication of an affordable multi-band gas sensor with good selectivity and sensitivity. The unit price can be lowered in high volumes by utilizing tailored molded IR lens technology and automated packaging and assembling technologies. The status of the development of the key components of the light source are reported. The PIC is based on the use of micron-scale SOI technology, SLED is based on AlGaInAsSb materials and the lenses are tailored heavy metal oxide glasses fabricated by the use of hot-embossing. The packaging concept utilizing automated assembly tools is depicted. In safety and security applications, the Mid-IR wavelength range covered by the novel light source allows for detecting several harmful gas components with a single sensor. At the moment, affordable sources are not available. The market impact is expected to be disruptive, since the devices currently in the market are either complicated, expensive and heavy instruments, or the applied measurement principles are inadequate in terms of stability and selectivity.

  17. Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides.

    PubMed

    Ito, Akinori; Lin, Guangxing; Penner, Joyce E

    2018-05-09

    Iron (Fe) oxides in aerosols are known to absorb sun light and heat the atmosphere. However, the radiative forcing (RF) of light-absorbing aerosols of pyrogenetic Fe oxides is ignored in climate models. For the first time, we use a global chemical transport model and a radiative transfer model to estimate the RF by light-absorbing aerosols of pyrogenetic Fe oxides. The model results suggest that strongly absorbing Fe oxides (magnetite) contribute a RF that is about 10% of the RF due to black carbon (BC) over East Asia. The seasonal average of the RF due to dark Fe-rich mineral particles over East Asia (0.4-1.0 W m -2 ) is comparable to that over major biomass burning regions. This additional warming effect is amplified over polluted regions where the iron and steel industries have been recently developed. These findings may have important implications for the projection of the climate change, due to the rapid growth in energy consumption of the heavy industry in newly developing countries.

  18. Wavelength-tunable light shaping with cholesteric liquid crystal microlenses.

    PubMed

    Bayon, Chloé; Agez, Gonzague; Mitov, Michel

    2014-06-21

    The ability to guide light on the mesoscopic scale is important both scientifically and technologically. Especially relevant is the development of wavelength-tunable light-shaping microdevices. Here we demonstrate the use of cholesteric liquid crystal polygonal textures organized as an array of microlenses for this purpose. The beam shaping is controlled by tuning the wavelength of the incident light in the visible spectrum. By taking advantage of the self-organization property of liquid crystals, the structure of the lens and its optical response are tailored by changing the annealing time of the single layer material during a completely integrated one-step process. The intrinsic helical organization of the layer is the cause of the light shaping and not the shape of the surface as for conventional lenses. A new concept of light manipulation using the structure chirality of liquid crystals is demonstrated, which concerns soft matter photonic circuits to mould the light.

  19. Nocturnal light exposure impairs affective responses in a wavelength-dependent manner.

    PubMed

    Bedrosian, Tracy A; Vaughn, Celynn A; Galan, Anabel; Daye, Ghassan; Weil, Zachary M; Nelson, Randy J

    2013-08-07

    Life on earth is entrained to a 24 h solar cycle that synchronizes circadian rhythms in physiology and behavior; light is the most potent entraining cue. In mammals, light is detected by (1) rods and cones, which mediate visual function, and (2) intrinsically photosensitive retinal ganglion cells (ipRGCs), which primarily project to the suprachiasmatic nucleus (SCN) in the hypothalamus to regulate circadian rhythms. Recent evidence, however, demonstrates that ipRGCs also project to limbic brain regions, suggesting that, through this pathway, light may have a role in cognition and mood. Therefore, it follows that unnatural exposure to light may have negative consequences for mood or behavior. Modern environmental lighting conditions have led to excessive exposure to light at night (LAN), and particularly to blue wavelength lights. We hypothesized that nocturnal light exposure (i.e., dim LAN) would induce depressive responses and alter neuronal structure in hamsters (Phodopus sungorus). If this effect is mediated by ipRGCs, which have reduced sensitivity to red wavelength light, then we predicted that red LAN would have limited effects on brain and behavior compared with shorter wavelengths. Additionally, red LAN would not induce c-Fos activation in the SCN. Our results demonstrate that exposure to LAN influences behavior and neuronal plasticity and that this effect is likely mediated by ipRGCs. Modern sources of LAN that contain blue wavelengths may be particularly disruptive to the circadian system, potentially contributing to altered mood regulation.

  20. Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations.

    PubMed

    Kahnert, Michael; Nousiainen, Timo; Lindqvist, Hannakaisa; Ebert, Martin

    2012-04-23

    Light scattering by light absorbing carbon (LAC) aggregates encapsulated into sulfate shells is computed by use of the discrete dipole method. Computations are performed for a UV, visible, and IR wavelength, different particle sizes, and volume fractions. Reference computations are compared to three classes of simplified model particles that have been proposed for climate modeling purposes. Neither model matches the reference results sufficiently well. Remarkably, more realistic core-shell geometries fall behind homogeneous mixture models. An extended model based on a core-shell-shell geometry is proposed and tested. Good agreement is found for total optical cross sections and the asymmetry parameter. © 2012 Optical Society of America

  1. Acoustic perfect absorber based on metasurface with deep sub-wavelength thickness (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Li, Yong

    2016-04-01

    The concept of the coiling up space, based on which artificial structures could exhibit extreme acoustic properties, such as high refractive index, double negativity, near-zero index, etc., have been investigated intensively recently due to the fascinating underlying physics and diverse potential applications [1-3]. One of the most important functionality is the ability to shrink bulky structures into deep sub-wavelength scale. It is therefore intuitive to prospect that the concept of coiling up space, if could be extended into the perforated system, will benefit to significantly reduce the total thickness while keeping total absorption. Conventional acoustic absorbers require a structure with a thickness comparable to the working wavelength, resulting major obstacles in real applications in low frequency range. We present a metasurface-based perfect absorber capable of achieving the total absorption of acoustic wave in extremely low frequency region. The metasurface possessing a deep sub-wavelength thickness down to a feature size of ~ lambda/223 is composed of a perforated plate and a coiled coplanar air chamber. Simulations based on fully coupled acoustic with thermodynamic equations and theoretical impedance analysis are utilized to reveal the underlying physics and the acoustic performances, showing an excellent agreement. Our realization should have high impact on amount of applications due to the extremely thin thickness, easy fabrication and high efficiency of the proposed structure. References 1. Z. Liang and J. Li, Phys. Rev. Lett. 108, 114301 (2012). 2. Y. Li, B. Liang, X. Tao, X. F. Zhu, X. Y. Zou, and J. C. Cheng, Appl. Phys. Lett. 101, 233508 (2012). 3. Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Nat. Commun. 5, 5553 (2014).

  2. Absorption-enhanced imaging through scattering media using carbon black nano-particles: from visible to near infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Tanzid, Mehbuba; Hogan, Nathaniel J.; Robatjazi, Hossein; Veeraraghavan, Ashok; Halas, Naomi J.

    2018-05-01

    Imaging through scattering media can be improved with the addition of absorbers, since multiply-scattered photons, with their longer path length, are absorbed with a higher probability than ballistic photons. The image resolution enhancement is substantially greater when imaging through isotropic scatterers than when imaging through an ensemble of strongly forward-scattering particles. However, since the angular scattering distribution is determined by the size of the scatterers with respect to the wavelength of incident light, particles that are forward scatterers at visible wavelengths can be isotropic scatterers at infrared (IR) wavelengths. Here, we show that substantial image resolution enhancement can be achieved in the near-infrared wavelength regime for particles that are forward scattering at visible wavelengths using carbon black nanoparticles as a broadband absorber. This observation provides a new strategy for image enhancement through scattering media: by selecting the appropriate wavelength range for imaging, in this case the near-IR, the addition of absorbers more effectively enhances the image resolution.

  3. A black body absorber from vertically aligned single-walled carbon nanotubes

    PubMed Central

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  4. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes.

    PubMed

    Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C T Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei

    2018-02-09

    Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively. Our results provide a novel light source for various applications requiring variable wavelength or pulse duration.

  5. Small band gap superlattices as intrinsic long wavelength infrared detector materials

    NASA Technical Reports Server (NTRS)

    Smith, Darryl L.; Mailhiot, C.

    1990-01-01

    Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.

  6. Ultraviolet light absorbers having two different chromophors in the same molecule

    DOEpatents

    Vogl, O.; Li, S.

    1983-10-06

    This invention relates to novel ultraviolet light absorbers having two chromophors in the same molecule, and more particularly to benzotriazole substituted dihydroxybenzophenones and acetophenones. More particularly, this invention relates to 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxybenzophenone and 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxyacetophenone which are particularly useful as an ultraviolet light absorbers.

  7. The Importance of Long Wavelength Processes in Generating Landscapes

    NASA Astrophysics Data System (ADS)

    Roberts, Gareth G.; White, Nicky

    2017-04-01

    The processes responsible for generating landscapes observed on Earth and elsewhere are poorly understood. For example, the relative importance of long (>10 km) and short wavelength erosional processes in determining the evolution of topography is debated. Much work has focused on developing an observational and theoretical framework for evolution of longitudinal river profiles (i.e. elevation as a function of streamwise distance), which probably sets the pace of erosion in low-mid latitude continents. A large number of geomorphic studies emphasis the importance of short wavelength processes in sculpting topography (e.g. waterfall migration, interaction of biota and the solid Earth, hill slope evolution). However, it is not clear if these processes scale to generate topography observed at longer (>10 km) wavelengths. At wavelengths of tens to thousands of kilometers topography is generated by modification of the lithosphere (e.g. shortening, extension, flexure) and by sub-plate processes (e.g. dynamic support). Inversion of drainage patterns suggests that uplift rate histories can be reliably recovered at these long wavelengths using simple erosional models (e.g. stream power). Calculated uplift and erosion rate histories are insensitive to short wavelength (<10 km) or rapid (<100 ka) environmental changes (e.g. biota, precipitation, lithology). One way to examine the relative importance of short and long wavelength processes in generating topography is to transform river profiles into distance-frequency space. We calculate the wavelet power spectrum of a suite of river profiles and examine their spectral content. Big rivers in North America (e.g. Colorado, Rio Grande) and Africa (e.g. Niger, Orange) have a red noise spectrum (i.e. power inversely proportional to wavenumber-squared) at wavelengths > 100 km. More than 90% of river profile elevations in our inventory are determined at these wavelengths. At shorter wavelengths spectra more closely resemble pink noise

  8. Peripheral detection and resolution with mid-/long-wavelength and short-wavelength sensitive cone systems.

    PubMed

    Zhu, Hai-Feng; Zele, Andrew J; Suheimat, Marwan; Lambert, Andrew J; Atchison, David A

    2016-08-01

    This study compared neural resolution and detection limits of the human mid-/long-wavelength and short-wavelength cone systems with anatomical estimates of photoreceptor and retinal ganglion cell spacings and sizes. Detection and resolution limits were measured from central fixation out to 35° eccentricity across the horizontal visual field using a modified Lotmar interferometer. The mid-/long-wavelength cone system was studied using a green (550 nm) test stimulus to which S-cones have low sensitivity. To bias resolution and detection to the short-wavelength cone system, a blue (450 nm) test stimulus was presented against a bright yellow background that desensitized the M- and L-cones. Participants were three trichromatic males with normal visual functions. With green stimuli, resolution showed a steep central-peripheral gradient that was similar between participants, whereas the detection gradient was shallower and patterns were different between participants. Detection and resolution with blue stimuli were poorer than for green stimuli. The detection of blue stimuli was superior to resolution across the horizontal visual field and the patterns were different between participants. The mid-/long-wavelength cone system's resolution is limited by midget ganglion cell spacing and its detection is limited by the size of the M- and L-cone photoreceptors, consistent with previous observations. We found that no such simple relationships occur for the short-wavelength cone system between resolution and the bistratified ganglion cell spacing, nor between detection and the S-cone photoreceptor sizes.

  9. Ag/BiOBr Film in a Rotating-Disk Reactor Containing Long-Afterglow Phosphor for Round-the-Clock Photocatalysis.

    PubMed

    Yin, Haibo; Chen, Xiaofang; Hou, Rujing; Zhu, Huijuan; Li, Shiqing; Huo, Yuning; Li, Hexing

    2015-09-16

    Ag/BiOBr film coated on the glass substrate was synthesized by a solvothermal method and a subsequent photoreduction process. Such a Ag/BiOBr film was then adhered to a hollow rotating disk filled with long-afterglow phosphor inside the chamber. The Ag/BiOBr film exhibited high photocatalytic activity for organic pollutant degradation owing to the improved visible-light harvesting and the separation of photoinduced charges. The long-afterglow phosphor could absorb the excessive daylight and emit light around 488 nm, activating the Ag/BiOBr film to realize round-the-clock photocatalysis. Because the Ag nanoparticles could extend the light absorbance of the Ag/BiOBr film to wavelengths of around 500 nm via a surface plasma resonance effect, they played a key role in realizing photocatalysis induced by long-afterglow phosphor.

  10. Peculiarities of light absorption by spherical microcapsules

    NASA Astrophysics Data System (ADS)

    Geints, Yurii E.; Panina, Ekaterina K.; Zemlyanov, Alexander A.

    2018-04-01

    Optical radiation absorption in the poly-layer spherical microparticles simulating the inorganic/organic polyshell absorbing microcapsules is considered. With the aim of the finite-difference time-domain technique, the spatial distribution of the absorbed light power in microcapsules of various sizes and internal structure is numerically calculated. For the purpose of light absorption enhancement, we have engineered the optimal structure of a capsule consisting of a strong-refracting transparent outer coating and an absorbing layer which covers a liquid core. The proposed microcapsule prototype provides for a manifold increase in the absorbed light power density in comparison with the usual single-layer absorbing capsule. We show that for light-wavelengths-scaled microcapsules it is optimal to use a material with the refractive index larger than two as an outer shell, for example, titanium dioxide (TiO2). The highest values of the absorbed power density can be obtained in microcapsules with absorbing shell thickness of approximately a tenth of a laser wavelength. When laser radiation is scattered by a dimer constituted by two identical absorbing microcapsules the absorbed power density can be maximized by the choosing of proper dimer spatial configuration. In the case of strongly absorbing particles, the absorption maximum corresponds to a shift of the capsules to a distance of about their diameter, and in the case of weakly absorbing particles the absorption is maximal when particles are in geometrical shades of each other.

  11. The Interior Analysis and 3-D Reconstruction of Internally-Mixed Light-Absorbing Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Collins, S. M.; Anderson, I.; Herzing, A.

    2010-12-01

    Carbon-containing atmospheric particles may either absorb solar or outgoing long-wave radiation or scatter solar radiation, and thus, affect Earth’s radiative balance in multiple ways. Light-absorbing carbon that is common in urban air particles such as industrial coke dust, road dust, and diesel soot, often exists in the same particle with other phases that contain, for example, aluminum, calcium, iron, and sulfur. While the optical properties of atmospheric particles in general depend on overall particle size and shape, the inhomogeneity of chemical phases within internally-mixed particles may also greatly affect particle optical properties. In this study, a series of microscopic approaches were used to identify individual light-absorbing coarse-mode particles and to assess their interior structure and composition. Particle samples were collected in 2004 from one of the U.S. EPA’s Los Angeles Particulate Matter Supersites, and were likely affected substantially by road dust and construction dust. First, bright-field and dark-field light microscopy and computer-controlled scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDX) were used to distinguish predominantly light-absorbing carbonaceous particles from other particle types such as mineral dust, sea salt, and brake wear. Second, high-resolution SEM-EDX elemental mapping of individual carbonaceous particles was used to select particles with additional elemental phases that exhibited spatial inhomogeneity. Third, focused ion-beam SEM (FIB-SEM) with EDX was used to slice through selected particles to expose interior surfaces and to determine the spatial distribution of element phases throughout the particles. Fourth, study of the interior phases of a particle was augmented by the transmission electron microscopy (TEM) of a thin section of the particle prepared by FIB-SEM. Here, electron energy loss spectroscopy with TEM was used to study chemical bonding in the carbonaceous phase

  12. Multiplexed single-mode wavelength-to-time mapping of multimode light

    PubMed Central

    Chandrasekharan, Harikumar K; Izdebski, Frauke; Gris-Sánchez, Itandehui; Krstajić, Nikola; Walker, Richard; Bridle, Helen L.; Dalgarno, Paul A.; MacPherson, William N.; Henderson, Robert K.; Birks, Tim A.; Thomson, Robert R.

    2017-01-01

    When an optical pulse propagates along an optical fibre, different wavelengths travel at different group velocities. As a result, wavelength information is converted into arrival-time information, a process known as wavelength-to-time mapping. This phenomenon is most cleanly observed using a single-mode fibre transmission line, where spatial mode dispersion is not present, but the use of such fibres restricts possible applications. Here we demonstrate that photonic lanterns based on tapered single-mode multicore fibres provide an efficient way to couple multimode light to an array of single-photon avalanche detectors, each of which has its own time-to-digital converter for time-correlated single-photon counting. Exploiting this capability, we demonstrate the multiplexed single-mode wavelength-to-time mapping of multimode light using a multicore fibre photonic lantern with 121 single-mode cores, coupled to 121 detectors on a 32 × 32 detector array. This work paves the way to efficient multimode wavelength-to-time mapping systems with the spectral performance of single-mode systems. PMID:28120822

  13. Wavelength-Selective Light-Responsive DASA-Functionalized Polymersome Nanoreactors.

    PubMed

    Rifaie-Graham, Omar; Ulrich, Sebastian; Galensowske, Nikolas F B; Balog, Sandor; Chami, Mohamed; Rentsch, Daniel; Hemmer, James R; Read de Alaniz, Javier; Boesel, Luciano F; Bruns, Nico

    2018-06-27

    Transient activation of biochemical reactions by visible light and subsequent return to the inactive state in the absence of light is an essential feature of the biochemical processes in photoreceptor cells. To mimic such light-responsiveness with artificial nanosystems, polymersome nanoreactors were developed that can be switched on by visible light and self-revert fast in the dark at room temperature to their inactive state. Donor-acceptor Stenhouse adducts (DASAs), with their ability to isomerize upon irradiation with visible light, were employed to change the permeability of polymersome membranes by switching polarity from a nonpolar triene-enol form to a cyclopentenone with increased polarity. To this end, amphiphilic block copolymers containing poly(pentafluorophenyl methacrylate) in their hydrophobic block were synthesized by reversible addition-fragmentation chain-transfer (RAFT) radical polymerization and functionalized either with a DASA that is based on Meldrum's acid or with a novel fast-switching pyrazolone-based DASA. These polymers were self-assembled into vesicles. Release of hydrophilic payload could be triggered by light and stopped as soon as the light was turned off. The encapsulation of enzymes yielded photoresponsive nanoreactors that catalyzed reactions only if they were irradiated with light. A mixture of polymersome nanoreactors, one that switches in green light, the other switching in red light, permitted specific control of the individual reactions of a reaction cascade in one pot by irradiation with varied wavelengths, thus enabling light-controlled wavelength-selective catalysis. The DASA-based nanoreactors demonstrate the potential of DASAs to switch permeability of membranes and could find application to switch reactions on and off, on demand, e.g., in microfluidics or in drug delivery.

  14. Absorption Ångström exponents of aerosols and light absorbing carbon (LAC) obtained from in situ data in Covilhã, central Portugal.

    PubMed

    Mogo, S; Cachorro, V E; de Frutos, A; Rodrigues, A

    2012-12-01

    A field campaign was conducted from October 2009 to July 2010 at Covilhã, a small town located in the region of Beira Interior (Portugal) in the interior of the Iberian Peninsula. The ambient light-absorption coefficient, σ(a) (522 nm), obtained from a Particle Soot Absorption Photometer (PSAP), presented a daily mean value of 12.1 Mm⁻¹ (StD = 7.3 Mm⁻¹). The wavelength dependence of aerosol light absorption is investigated through the Ångström parameter, α(a). The α(a) values for the pair of wavelengths 470-660 nm ranged from 0.86 to 1.47 during the period of measurements. The PSAP data were used to infer the mass of light absorbing carbon (LAC) and the daily mean varied from 0.1 to 6.8 μg m⁻³. A detailed study of special events with different aerosol characteristics is carried out and, to support data interpretation, air masses trajectory analysis is performed.

  15. Molecular imaging using light-absorbing imaging agents and a clinical optical breast imaging system--a phantom study.

    PubMed

    van de Ven, Stephanie M W Y; Mincu, Niculae; Brunette, Jean; Ma, Guobin; Khayat, Mario; Ikeda, Debra M; Gambhir, Sanjiv S

    2011-04-01

    The aim of the study was to determine the feasibility of using a clinical optical breast scanner with molecular imaging strategies based on modulating light transmission. Different concentrations of single-walled carbon nanotubes (SWNT; 0.8-20.0 nM) and black hole quencher-3 (BHQ-3; 2.0-32.0 µM) were studied in specifically designed phantoms (200-1,570 mm(3)) with a clinical optical breast scanner using four wavelengths. Each phantom was placed in the scanner tank filled with optical matching medium. Background scans were compared to absorption scans, and reproducibility was assessed. All SWNT phantoms were detected at four wavelengths, with best results at 684 nm. Higher concentrations (≥8.0 µM) were needed for BHQ-3 detection, with the largest contrast at 684 nm. The optical absorption signal was dependent on phantom size and concentration. Reproducibility was excellent (intraclass correlation 0.93-0.98). Nanomolar concentrations of SWNT and micromolar concentrations of BHQ-3 in phantoms were reproducibly detected, showing the potential of light absorbers, with appropriate targeting ligands, as molecular imaging agents for clinical optical breast imaging.

  16. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control

    PubMed Central

    2012-01-01

    Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED) technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD). The average photosynthetic PFD (PPFD) in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%), which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD) of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm) grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength), the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg) and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1) was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a graphical user interface

  17. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers

    PubMed Central

    Liu, X. M.; Yang, H. R.; Cui, Y. D.; Chen, G. W.; Yang, Y.; Wu, X. Q.; Yao, X. K.; Han, D. D.; Han, X. X.; Zeng, C.; Guo, J.; Li, W. L.; Cheng, G.; Tong, L. M.

    2016-01-01

    Graphene, whose absorbance is approximately independent of wavelength, allows broadband light–matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light–graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics. PMID:27181419

  18. Semiconductor meta-surface based perfect light absorber

    NASA Astrophysics Data System (ADS)

    Liu, Guiqiang; Nie, Yiyou; Fu, Guolan; Liu, Xiaoshan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2017-04-01

    We numerically proposed and demonstrated a semiconductor meta-surface light absorber, which consists of a silicon patches array on a silicon thin-film and an opaque silver substrate. The Mie resonances of the silicon patches and the fundamental cavity mode of the ultra-thin silicon film couple strongly to the incident optical field, leading to a multi-band perfect absorption. The maximal absorption is above 99.5% and the absorption is polarization-independent. Moreover, the absorption behavior is scalable in the frequency region via tuning the structural parameters. These features hold the absorber platform with wide applications in optoelectronics such as hot-electron excitation and photo-detection.

  19. (C6H13N)2BiI5: A One-Dimensional Lead-Free Perovskite-Derivative Photoconductive Light Absorber.

    PubMed

    Zhang, Weichuan; Tao, Kewen; Ji, Chengmin; Sun, Zhihua; Han, Shiguo; Zhang, Jing; Wu, Zhenyue; Luo, Junhua

    2018-04-16

    Lead-free organic-inorganic hybrid perovskites have recently attracted intense interest as environmentally friendly, low-cost, chemically stable light absorbers. Here, we reported a new one-dimensional (1D) zigzag chainlike light-absorbing hybrid material of (C 6 H 13 N) 2 BiI 5 , in which the corner-sharing octahedral bismuth halide chains are surrounded by organic cations of tetramethylpiperidinium. This unique zigzag 1D hybrid perovskite-derivative material shows a narrow direct band gap of 2.02 eV and long-lived photoluminescence, which is encouraging for optoelectronic applications. Importantly, it behaves as a typical semiconducting material and displays obvious photoresponse in the visible-light range. This work opens a potential pathway for the further application of 1D lead-free hybrids.

  20. Long-reach transmission experiment of a wavelength division multiplexed-passive optical networks transmitter based on reflective semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Jeon, Sie-Wook; Kim, Youngbok; Park, Chang-Soo

    2012-01-01

    We propose and demonstrate a long-reach wavelength division multiplexed-passive optical networks (WDM-PON) based on reflective semiconductor optical amplifiers (RSOAs) with easy maintenance of the optical source. Unlike previous studies the proposed WDM-PON uses two RSOAs: one for wavelength-selected light generation to provide a constant seed light to the second RSOA, the other for active external modulation. This method is free from intensity-fluctuated power penalties inherent to directly modulated single-RSOA sources, making long-reach transmission possible. Also, the wavelength of the modulated signal can easily be changed for the same RSOA by replacing the external feedback reflector, such as a fiber Bragg grating, or via thermal tuning. The seed light has a high-side-mode suppression ratio (SMSR) of 45 dB, and the bit error rate (BER) curve reveals that the upstream 1.25-Gb/s nonreturn-to-zero (NRZ) signal with a pseudo-random binary sequence (PRBS) of length of 215-1 has power penalties of 0.22 and 0.69 dB at BERs of 10-9 after 55-km and 110-km transmission due to fiber dispersion, respectively.

  1. Intersubband absorption in Si(1-x)Ge(x/Si superlattices for long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Rajakarunanayake, Yasantha; Mcgill, Tom C.

    1990-01-01

    Researchers calculated the absorption strengths for intersubband transitions in n-type Si(1-x)Ge(x)/Si superlattices. These transitions can be used for the detection of long-wavelength infrared radiation. A significant advantage in Si(1-x)Ge(x)/Si supperlattice detectors is the ability to detect normally incident light; in Ga(1-x)Al(x)As/GaAs superlattices, intersubband absorption is possible only if the incident light contains a polarization component in the growth direction of the superlattice. Researchers present detailed calculation of absorption coefficients, and peak absorption wavelengths for (100), (111) and (110) Si(1-x)Ge(x)/Si superlattices. Peak absorption strengths of about 2000 to 6000 cm(exp -1) were obtained for typical sheet doping concentrations (approx. equals 10(exp 12)cm(exp -2)). Absorption comparable to that in Ga(1-x)Al(x)As/GaAs superlattice detectors, compatibility with existing Si technology, and the ability to detect normally incident light make these devices promising for future applications.

  2. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    DOEpatents

    Sinclair; Michael B.; Sweatt, William C.

    2010-03-23

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  3. Passively Q-switched wavelength-tunable 1-μm fiber lasers with tapered-fiber-based black phosphorus saturable absorbers

    NASA Astrophysics Data System (ADS)

    Song, Huaqing; Wang, Qi; Wang, Dongdong; Li, Li

    2018-03-01

    In this paper, we demonstrated passively Q-switched wavelength-tunable 1-μm fiber lasers utilizing few-layer black phosphorus saturable absorbers. The few-layer BP was deposited onto the tapered fibers by an optically driven process. The wavelength tunability was achieved with a fiber Sagnac loop comprised of a piece of polarization maintaining fiber and a polarization controller. Stable Q-switching laser operations were observed at wavelengths ranging from 1040.5 to 1044.6 nm at threshold pump power of 220 mW. Maximal pulse energy of 141.27 nJ at a repetition rate of 63 kHz was recorded under pump power of 445 mW.

  4. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  5. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur.

    PubMed

    Shamjad, P M; Tripathi, S N; Thamban, Navaneeth M; Vreeland, Heidi

    2016-11-24

    Atmospheric aerosols influence Earth's radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species.

  6. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur

    PubMed Central

    Shamjad, P. M.; Tripathi, S. N.; Thamban, Navaneeth M.; Vreeland, Heidi

    2016-01-01

    Atmospheric aerosols influence Earth’s radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species. PMID:27883083

  7. III-V semiconductor resonators: A new strategy for broadband light perfect absorbers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoshan; Chen, Jian; Liu, Jiasong; Huang, Zhenping; Yu, Meidong; Pan, Pingping; Liu, Zhengqi

    2017-11-01

    Broadband light perfect absorbers (BPAs) are desirable for applications in numerous optoelectronics devices. In this work, a semiconductor-based broadband light perfect absorber (S-BPA) has been numerically demonstrated by utilizing plasmonlike resonances of high-index semiconductor resonators. A maximal absorption of 99.7% is observed in the near-infrared region. By taking the absorption above 80% into account, the spectral bandwidth reaches 340 nm. The absorption properties mainly originate from the optical cavity modes induced by the cylinder resonators and ultrathin semiconductor film. These optical properties and simple structural features can maintain the absorber platform with wide applications in semiconductor optoelectronics.

  8. Fabrication and long-wavelength characterization of neat and chemically modified graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalugin, Nikolai G.

    2014-03-31

    Graphene, a single- or several layer-thick carbon, attracts significant research activity because of its exceptional material properties. Graphene is a promising material for optoelectronic applications. Neat graphene demonstrates potential as a material for long wavelength photodetectors working at elevated temperatures. Chemical modification of graphene opens up many new applications of this material in electronics, in new composite materials, and in new catalysts for different chemical processes. Chemical vapor deposition-grown large-area graphene can be successfully modified with the creation of benzyne attachments. The investigation of microwave properties is an important part of graphene research. Two variants of near-field long wavelength microscopymore » were found efficient with graphene. Measurements with a probe formed by an electrically open end of a 4 GHz half-lambda parallel-strip transmission line resonator allow the implementation of an electrodynamic model of graphene microwave impedance. The results of near-field scanning superconducting quantum interference device (SQUID) RF microscopy of graphite and graphene at 200 MHz shed light on mechanisms of AC graphene response: screening currents induced in graphene by an external RF magnetic field tend to localize near structural defects.« less

  9. Short-Wavelength Light Enhances Cortisol Awakening Response in Sleep-Restricted Adolescents

    PubMed Central

    Figueiro, Mariana G.; Rea, Mark S.

    2012-01-01

    Levels of cortisol, a hormone produced by the adrenal gland, follow a daily, 24-hour rhythm with concentrations reaching a minimum in the evening and a peak near rising time. In addition, cortisol levels exhibit a sharp peak in concentration within the first hour after waking; this is known as the cortisol awakening response (CAR). The present study is a secondary analysis of a larger study investigating the impact of short-wavelength (λ max ≈ 470 nm) light on CAR in adolescents who were sleep restricted. The study ran over the course of three overnight sessions, at least one week apart. The experimental sessions differed in terms of the light exposure scenarios experienced during the evening prior to sleeping in the laboratory and during the morning after waking from a 4.5-hour sleep opportunity. Eighteen adolescents aged 12–17 years were exposed to dim light or to 40 lux (0.401 W/m2) of 470-nm peaking light for 80 minutes after awakening. Saliva samples were collected every 20 minutes to assess CAR. Exposure to short-wavelength light in the morning significantly enhanced CAR compared to dim light. Morning exposure to short-wavelength light may be a simple, yet practical way to better prepare adolescents for an active day. PMID:22899916

  10. Triple-wavelength passively Q-switched ytterbium-doped fibre laser using zinc oxide nanoparticles film as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Mohsin Al-Hayali, Sarah Kadhim; Hadi Al-Janabi, Abdul

    2018-07-01

    We report on the generation of a triple-wavelength passively Q-switched ytterbium-doped fibre laser using a saturable absorber (SA) based on zinc oxide nanoparticles (ZnO NPs) film. The SA was fabricated by embedding ZnO NPs powder into a polyvinyl alcohol as a host polymer. By properly adjusting the pump power and the polarization state, single-, dual- and triple-wavelength Q-switching are stably generated without additional components (such as optical filter, or fibre grating). For the triple wavelength operation, the fibre laser generates a maximum pulse repetition of 87.9 kHz with the shortest pulse duration of 2.7 μs. To the best of authors' knowledge, it's the first demonstration of triple-wavelength passively Q-switching fibre laser using ZnO NPs as a SA. Our results suggest that ZnO is a promising SA for multi-wavelength laser operation.

  11. Long-Wavelength Rupturing Instability in Surface-Tension-Driven Benard Convection

    NASA Technical Reports Server (NTRS)

    Swift, J. B.; Hook, Stephen J. Van; Becerril, Ricardo; McCormick, W. D.; Swinney, H. L.; Schatz, Michael F.

    1999-01-01

    A liquid layer with a free upper surface and heated from below is subject to thermocapillary-induced convective instabilities. We use very thin liquid layers (0.01 cm) to significantly reduce buoyancy effects and simulate Marangoni convection in microgravity. We observe thermocapillary-driven convection in two qualitatively different modes, short-wavelength Benard hexagonal convection cells and a long-wavelength interfacial rupturing mode. We focus on the long-wavelength mode and present experimental observations and theoretical analyses of the long-wavelength instability. Depending on the depths and thermal conductivities of the liquid and the gas above it, the interface can rupture downwards and form a dry spot or rupture upwards and form a high spot. Linear stability theory gives good agreement to the experimental measurements of onset as long as sidewall effects are taken into account. Nonlinear theory correctly predicts the subcritical nature of the bifurcation and the selection between the dry spot and high spots.

  12. Magic wavelengths of the Ca+ ion for circularly polarized light

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Jiang, Li; Wang, Xia; Zhang, Deng-Hong; Xie, Lu-You; Dong, Chen-Zhong

    2017-10-01

    The dynamic dipole polarizabilities of low-lying states of Ca+ ions for circularly polarized light are calculated by using the relativistic configuration interaction plus core polarization approach. The magic wavelengths are determined for the magnetic sublevel transitions 4 s1/2 ,m→4 pj',m' and 4 s1/2 ,m→3 dj',m' with total angular momentum j' and its components m'. In contrast to the case of linearly polarized light, several additional magic wavelengths are found for these transitions. We suggest that accurate measurements on the magic wavelengths near 851 nm for the 4 s1/2 ,m→4 p3/2 ,m' transitions can be used to determine the ratio of the oscillator strengths for the 4 p3/2→3 d3/2 and 4 p3/2→3 d5/2 transitions.

  13. Solar synthesis: prospects in visible light photocatalysis.

    PubMed

    Schultz, Danielle M; Yoon, Tehshik P

    2014-02-28

    Chemists have long aspired to synthesize molecules the way that plants do-using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light-absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions.

  14. Solar Synthesis: Prospects in Visible Light Photocatalysis

    PubMed Central

    Schultz, Danielle M.; Yoon, Tehshik P.

    2015-01-01

    Chemists have long aspired to synthesize molecules the way that plants do — using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions. PMID:24578578

  15. Estimation of snow albedo reduction by light absorbing impurities using Monte Carlo radiative transfer model

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Gao, L.; Wilcox, E. M.; Beres, N. D.; Moosmüller, H.; Khlystov, A.

    2017-12-01

    Radiative forcing and climate change greatly depends on earth's surface albedo and its temporal and spatial variation. The surface albedo varies greatly depending on the surface characteristics ranging from 5-10% for calm ocean waters to 80% for some snow-covered areas. Clean and fresh snow surfaces have the highest albedo and are most sensitive to contamination with light absorbing impurities that can greatly reduce surface albedo and change overall radiative forcing estimates. Accurate estimation of snow albedo as well as understanding of feedbacks on climate from changes in snow-covered areas is important for radiative forcing, snow energy balance, predicting seasonal snowmelt, and run off rates. Such information is essential to inform timely decision making of stakeholders and policy makers. Light absorbing particles deposited onto the snow surface can greatly alter snow albedo and have been identified as a major contributor to regional climate forcing if seasonal snow cover is involved. However, uncertainty associated with quantification of albedo reduction by these light absorbing particles is high. Here, we use Mie theory (under the assumption of spherical snow grains) to reconstruct the single scattering parameters of snow (i.e., single scattering albedo ῶ and asymmetry parameter g) from observation-based size distribution information and retrieved refractive index values. The single scattering parameters of impurities are extracted with the same approach from datasets obtained during laboratory combustion of biomass samples. Instead of using plane-parallel approximation methods to account for multiple scattering, we have used the simple "Monte Carlo ray/photon tracing approach" to calculate the snow albedo. This simple approach considers multiple scattering to be the "collection" of single scattering events. Using this approach, we vary the effective snow grain size and impurity concentrations to explore the evolution of snow albedo over a wide

  16. Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture.

    PubMed

    Dai, Yu-Jie; Li, Jing; Wei, Shu-Mei; Chen, Nan; Xiao, Yu-Peng; Tan, Zhi-Lei; Jia, Shi-Ru; Yuan, Nan-Nan; Tan, Ning; Song, Yi-Jie

    2013-04-01

    The effects of lights with different wavelengths on the growth and the yield of extracellular polysaccharides of Nostoc flagelliforme cells were investigated in a liquid cultivation. N. flagelliforme cells were cultured for 16 days in 500 ml conical flasks containing BG11 culture medium under 27 micromol·m-2·s-1 of light intensity and 25 degrees C on a rotary shaker (140 rpm). The chlorophyll a, phycocyanin, allophycocyanin, and phycoerythrin contents in N. flagelliforme cells under the lights of different wavelengths were also measured. It was found that the cell biomass and the yield of polysaccharide changed with different wavelengths of light. The biomass and the yield of extracellular polysaccharides under the red or violet light were higher than those under other light colors. Chlorophyll a, phycocyanin, and allophycocyanin are the main pigments in N. flagelliforme cells. The results showed that N. flagelliforme, like other cyanobacteria, has the ability of adjusting the contents and relative ratio of its pigments with the light quality. As a conclusion, N. flagelliforme cells favor red and violet lights and perform the complementary chromatic adaptation ability to acclimate to the changes of the light quality in the environment.

  17. Light absorption of secondary organic aerosol: Composition and contribution of nitro-aromatic compounds

    EPA Science Inventory

    Secondary organic aerosol (SOA) might affect the atmospheric radiation balance through absorbing light at shorter visible and UV wavelengths. However, the composition and optical properties of light-absorbing SOA is poorly understood. In this work, SOA filter samples were collect...

  18. Apparatus for generating coherent infrared energy of selected wavelength

    DOEpatents

    Stevens, C.G.

    A tunable source of coherent infrared energy includes a heat pipe having an intermediate region at which cesium is heated to vaporizing temperature and end regions at which the vapor is condensed and returned to the intermediate region for reheating and recirculation. Optical pumping light is directed along the axis of the heat pipe through a first end window to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window. A porous walled tubulation extends along the axis of the heat pipe and defines a region in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light. Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light.

  19. Light detection and the wavelength shifter deposition in DEAP-3600

    NASA Astrophysics Data System (ADS)

    Broerman, B.; Retière, F.

    2016-02-01

    The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) uses liquid argon as a target medium to perform a direct-detection dark matter search. The 3600 kg liquid argon target volume is housed in a spherical acrylic vessel and viewed by a surrounding array of photomultiplier tubes. Ionizing particles in the argon volume produce scintillation light which must be wavelength shifted to be detected by the photomultiplier tubes. Argon scintillation and wavelength shifting, along with details on the application of the wavelength shifter to the inner surface of the acrylic vessel are presented.

  20. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status.

    PubMed

    Cheng, Tianhai; Wu, Yu; Chen, Hao

    2014-06-30

    Light absorbing carbon aerosols play a substantial role in climate change through radiative forcing, which is the dominant absorber of solar radiation. Radiative properties of light absorbing carbon aerosols are strongly dependent on the morphological factors and the mixing mechanism of black carbon with other aerosol components. This study focuses on the morphological effects on the optical properties of internally mixed light absorbing carbon aerosols using the numerically exact superposition T-matrix method. Three types aerosols with different aging status such as freshly emitted BC particles, thinly coated light absorbing carbon aerosols, heavily coated light absorbing carbon aerosols are studied. Our study showed that morphological factors change with the aging of internally mixed light absorbing carbon aerosols to result in a dramatic change in their optical properties. The absorption properties of light absorbing carbon aerosols can be enhanced approximately a factor of 2 at 0.67 um, and these enhancements depend on the morphological factors. A larger shell/core diameter ratio of volume-equivalent shell-core spheres (S/C), which indicates the degree of coating, leads to stronger absorption. The enhancement of absorption properties accompanies a greater enhancement of scattering properties, which is reflected in an increase in single scattering albedo (SSA). The enhancement of single scattering albedo due to the morphological effects can reach a factor of 3.75 at 0.67 μm. The asymmetry parameter has a similar yet smaller enhancement. Moreover, the corresponding optical properties of shell-and-core model determined by using Lorenz -Mie solutions are presented for comparison. We found that the optical properties of internally mixed light absorbing carbon aerosol can differ fundamentally from those calculated for the Mie theory shell-and-core model, particularly for thinly coated light absorbing carbon aerosols. Our studies indicate that the complex morphology

  1. Long-Wavelength Infrared Views of Messier 81

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The magnificent and dusty spiral arms of the nearby galaxy Messier 81 are highlighted in these NASA Spitzer Space Telescope images. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years.

    The three-panel mosaic is a series of images obtained with the multiband imaging photometer for Spitzer. Thermal infrared emission at 24 microns (top), 70 microns (center) and 160 microns (bottom) is shown in the images. Note that the effective spatial resolution degrades as ones moves to longer wavelengths.

    At these wavelengths, Spitzer sees the dust, rather than the stars, within the disc of silicates and carbonaceous grains. It is well-mixed with gas, which is best seen at radio wavelengths, to form the essential ingredients for future star formation.

  2. Long-distance transmission of light in a scintillator-based radiation detector

    DOEpatents

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  3. Switchable and tunable dual-wavelength Er-doped fiber ring laser with single-frequency lasing wavelengths

    NASA Astrophysics Data System (ADS)

    Zhang, Haiwei; Shi, Wei; Bai, Xiaolei; Sheng, Quan; Xue, Lifang; Yao, Jianquan

    2018-02-01

    We obtain a switchable and tunable dual-wavelength single-frequency Er-doped ring fiber laser. In order to realize single-longitudinal output, two saturable-absorber-based tracking narrow-band filters are formed in 3- meter-long unpumped Er-doped fiber to narrow the linewidth via using the PM-FBG as a reflection filter. The maximum output power is 2.11 mW centered at 1550.16 nm and 1550.54 nm when the fiber laser operates in dual-wavelength mode. The corresponding linewidths of those two wavelengths are measured to be 769 Hz and 673 Hz, respectively. When the temperature around the PM-FBG is changed from 15 °C to 55 °C, the dual-wavelength single-frequency fiber laser can be tuned from 1550.12 nm to 1550.52 nm and from 1550.49 nm to 1550.82 nm, respectively.

  4. Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z. Z.; Wang, P. C.; Xia, X. A.

    2016-10-01

    Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angström exponent (α) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average α of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of α in the heating season was distinctly different from that in non-heating seasons. α peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, α peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while α increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of α on wind speed was found in the heating season, probably due to well mixed

  5. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Chen, Ming; Jian, Shuisheng

    2009-08-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. One fiber Bragg grating (FBG) directly written in a polarization-maintaining and photosensitive erbiumdoped fiber (PMPEDF) as the wavelength-selective component is used in a linear laser cavity. Due to the polarization hole burning (PHB) enhanced by the polarization-maintaining fiber Bragg grating (PMFBG), the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.202 nm by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a saturable absorber (SA). The optical signal-tonoise ratio (OSNR) of the laser is over 40 dB. The amplitude variation in nearly one and half an hour is less than 0.5 dB for both wavelengths.

  6. Dual wavelength multiple-angle light scattering system for cryptosporidium detection

    NASA Astrophysics Data System (ADS)

    Buaprathoom, S.; Pedley, S.; Sweeney, S. J.

    2012-06-01

    A simple, dual wavelength, multiple-angle, light scattering system has been developed for detecting cryptosporidium suspended in water. Cryptosporidium is a coccidial protozoan parasite causing cryptosporidiosis; a diarrheal disease of varying severity. The parasite is transmitted by ingestion of contaminated water, particularly drinking-water, but also accidental ingestion of bathing-water, including swimming pools. It is therefore important to be able to detect these parasites quickly, so that remedial action can be taken to reduce the risk of infection. The proposed system combines multiple-angle scattering detection of a single and two wavelengths, to collect relative wavelength angle-resolved scattering phase functions from tested suspension, and multivariate data analysis techniques to obtain characterizing information of samples under investigation. The system was designed to be simple, portable and inexpensive. It employs two diode lasers (violet InGaN-based and red AlGaInP-based) as light sources and silicon photodiodes as detectors and optical components, all of which are readily available. The measured scattering patterns using the dual wavelength system showed that the relative wavelength angle-resolved scattering pattern of cryptosporidium oocysts was significantly different from other particles (e.g. polystyrene latex sphere, E.coli). The single wavelength set up was applied for cryptosporidium oocysts'size and relative refractive index measurement and differential measurement of the concentration of cryptosporidium oocysts suspended in water and mixed polystyrene latex sphere suspension. The measurement results showed good agreement with the control reference values. These results indicate that the proposed method could potentially be applied to online detection in a water quality control system.

  7. Long-wavelength photonic integrated circuits and avalanche photodetectors

    NASA Astrophysics Data System (ADS)

    Tsou, Yi-Jen D.; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volume require high data communication bandwidth over longer distances. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low-cost, high-speed laser modules at 1310 to 1550 nm wavelengths and avalanche photodetectors are required. The great success of GaAs 850nm VCSEls for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits (PICs), which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform of InP-based PICs compatible with surface-emitting laser technology, as well as a high data rate externally modulated laser module. Avalanche photodetectors (APDs) are the key component in the receiver to achieve high data rate over long transmission distance because of their high sensitivity and large gain- bandwidth product. We have used wafer fusion technology to achieve In

  8. Circularly Polarized Light with Sense and Wavelengths To Regulate Azobenzene Supramolecular Chirality in Optofluidic Medium.

    PubMed

    Wang, Laibing; Yin, Lu; Zhang, Wei; Zhu, Xiulin; Fujiki, Michiya

    2017-09-20

    Circularly polarized light (CPL) as a massless physical force causes absolute asymmetric photosynthesis, photodestruction, and photoresolution. CPL handedness has long been believed to be the determining factor in the resulting product's chirality. However, product chirality as a function of the CPL handedness, irradiation wavelength, and irradiation time has not yet been studied systematically. Herein, we investigate this topic using achiral polymethacrylate carrying achiral azobenzene as micrometer-size aggregates in an optofluidic medium with a tuned refractive index. Azobenzene chirality with a high degree of dissymmetry ratio (±1.3 × 10 -2 at 313 nm) was generated, inverted, and switched in multiple cycles by irradiation with monochromatic incoherent CPL (313, 365, 405, and 436 nm) for 20 s using a weak incoherent light source (≈ 30 μW·cm -2 ). Moreover, the optical activity was retained for over 1 week in the dark. Photoinduced chirality was swapped by the irradiating wavelength, regardless of whether the CPL sense was the same. This scenario is similar to the so-called Cotton effect, which was first described in 1895. The tandem choice of both CPL sense and its wavelength was crucial for azobenzene chirality. Our experimental proof and theoretical simulation should provide new insight into the chirality of CPL-controlled molecules, supramolecules, and polymers.

  9. Optical properties and aging of light-absorbing secondary organic aerosol

    DOE PAGES

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; ...

    2016-10-14

    The light-absorbing organic aerosol (OA) commonly referred to as “brown carbon” (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NO x concentrations, photolysis time, and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NO x concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NO x conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  10. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  11. Light Absorbers and Catalysts for Solar to Fuel Conversion

    NASA Astrophysics Data System (ADS)

    Kornienko, Nikolay I.

    Increasing fossil fuel consumption and the resulting consequences to the environment has propelled research into means of utilizing alternative, clean energy sources. Solar power is among the most promising of renewable energy sources but must be converted into an energy dense medium such as chemical bonds to render it useful for transport and energy storage. Photoelectrochemistry (PEC), the splitting of water into oxygen and hydrogen fuel or reducing CO 2 to hydrocarbon fuels via sunlight is a promising approach towards this goal. Photoelectrochemical systems are comprised of several components, including light absorbers and catalysts. These parts must all synergistically function in a working device. Therefore, the continual development of each component is crucial for the overall goal. For PEC systems to be practical for large scale use, the must be efficient, stable, and composed of cost effective components. To this end, my work focused on the development of light absorbing and catalyst components of PEC solar to fuel converting systems. In the direction of light absorbers, I focused of utilizing Indium Phosphide (InP) nanowires (NWs) as photocathodes. I first developed synthetic techniques for InP NW solution phase and vapor phase growth. Next, I developed light absorbing photocathodes from my InP NWs towards PEC water splitting cells. I studied cobalt sulfide (CoSx) as an earth abundant catalyst for the reductive hydrogen evolution half reaction. Using in situ spectroscopic techniques, I elucidated the active structure of this catalyst and offered clues to its high activity. In addition to hydrogen evolution catalysts, I established a new generation of earth abundant catalysts for CO2 reduction to CO fuel/chemical feedstock. I first worked with molecularly tunable homogeneous catalysts that exhibited high selectivity for CO2 reduction in non-aqueous media. Next, in order to retain molecular tunability while achieving stability and efficiency in aqueous

  12. Wavelength adjustability of frequency conversion light of Yb-doped fiber laser based on FBGs

    NASA Astrophysics Data System (ADS)

    Dobashi, Kazuma; Tomihari, Yasuhiro; Imai, Koichi; Hirohashi, Junji; Makio, Satoshi

    2018-02-01

    We focused on wavelength conversion of simple and compact CW Yb-Doped fiber laser based on FBGs with wavelength adjustable function. By controlling temperatures of FBGs in fiber laser, it was possible to tune oscillated wavelength from 1064.101 nm to 1064.414 nm with more than 20 W in CW operation mode. Based on this fundamental light, frequency converted light (SHG and THG) were generated by utilizing two PP:Mg-SLT devises. We obtained more than 3 W of SHG light with tuning range of 150 pm and more than 35 mW of THG with tuning range of 100 pm. By selecting FBG grating and QPM grating properly, we can realize adjustable wavelength laser with the same scheme from 1040 nm to 1090 nm and their SHG/THG. With this combination of FBG based fiber laser and QPM devices, it is possible to tune the wavelength just by temperature tuning without any changes of beam shape and beam pointing.

  13. Light Scattering by Wavelength-Sized Particles "Dusted" with Subwavelength-Sized Grains

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.

    2011-01-01

    The numerically exact superposition T-matrix method is used to compute the scattering cross sections and the Stokes scattering matrix for polydisperse spherical particles covered with a large number of much smaller grains. We show that the optical effect of the presence of microscopic dust on the surfaces of wavelength-sized, weakly absorbing particles is much less significant than that of a major overall asphericity of the particle shape.

  14. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications.

    PubMed

    Cao, Duyen H; Stoumpos, Constantinos C; Farha, Omar K; Hupp, Joseph T; Kanatzidis, Mercouri G

    2015-06-24

    We report on the fabrication and properties of the semiconducting 2D (CH3(CH2)3NH3)2(CH3NH3)(n-1)Pb(n)I(3n+1) (n = 1, 2, 3, and 4) perovskite thin films. The band gaps of the series decrease with increasing n values, from 2.24 eV (CH3(CH2)3NH3)2PbI4 (n = 1) to 1.52 eV CH3NH3PbI3 (n = ∞). The compounds exhibit strong light absorption in the visible region, accompanied by strong photoluminescence at room temperature, rendering them promising light absorbers for photovoltaic applications. Moreover, we find that thin films of the semi-2D perovskites display an ultrahigh surface coverage as a result of the unusual film self-assembly that orients the [Pb(n)I(3n+1)](-) layers perpendicular to the substrates. We have successfully implemented this 2D perovskite family in solid-state solar cells, and obtained an initial power conversion efficiency of 4.02%, featuring an open-circuit voltage (V(oc)) of 929 mV and a short-circuit current density (J(sc)) of 9.42 mA/cm(2) from the n = 3 compound. This result is even more encouraging considering that the device retains its performance after long exposure to a high-humidity environment. Overall, the homologous 2D halide perovskites define a promising class of stable and efficient light-absorbing materials for solid-state photovoltaics and other applications.

  15. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light.

    PubMed

    Huang, Jianfeng; Liu, Changxu; Zhu, Yihan; Masala, Silvia; Alarousu, Erkki; Han, Yu; Fratalocchi, Andrea

    2016-01-01

    Engineering broadband light absorbers is crucial to many applications, including energy-harvesting devices and optical interconnects. The performances of an ideal absorber are that of a black body, a dark material that absorbs radiation at all angles and polarizations. Despite advances in micrometre-thick films, the absorbers available to date are still far from an ideal black body. Here, we describe a disordered nanostructured material that shows an almost ideal black-body absorption of 98-99% between 400 and 1,400 nm that is insensitive to the angle and polarization of the incident light. The material comprises nanoparticles composed of a nanorod with a nanosphere of 30 nm diameter attached. When diluted into liquids, a small concentration of nanoparticles absorbs on average 26% more than carbon nanotubes, the darkest material available to date. By pumping a dye optical amplifier with nanosecond pulses of ∼100 mW power, we harness the structural darkness of the material and create a new type of light source, which generates monochromatic emission (∼5 nm wide) without the need for any resonance. This is achieved through the dynamics of light condensation in which all absorbed electromagnetic energy spontaneously generates single-colour energy pulses.

  16. Modeling the role of mid-wavelength cones in circadian responses to light

    PubMed Central

    Dkhissi-Benyahya, Ouria; Gronfier, Claude; De Vanssay, Wena; Flamant, Frédéric; Cooper, Howard M.

    2007-01-01

    Summary Non-visual responses to light, such as photic entrainment of the circadian clock, involve intrinsically light sensitive melanopsin-expressing ganglion cells as well as rod and cone photoreceptors. However, previous studies have been unable to demonstrate a specific contribution of cones in the photic control of circadian responses to light. Using a mouse model that specifically lacks mid-wavelength (MW) cones we show that these photoreceptors play a significant role in light entrainment and in phase shifting of the circadian oscillator. The contribution of MW cones is mainly observed for light exposures of short duration and towards the longer wavelength region of the spectrum, consistent with the known properties of this opsin. Modelling the contributions of the various photoreceptors stresses the importance of considering the particular spectral, temporal and irradiance response domains of the photopigments when assessing their role and contribution in circadian responses to light. PMID:17329208

  17. Long-wavelength macromolecular crystallography - First successful native SAD experiment close to the sulfur edge

    NASA Astrophysics Data System (ADS)

    Aurelius, O.; Duman, R.; El Omari, K.; Mykhaylyk, V.; Wagner, A.

    2017-11-01

    Phasing of novel macromolecular crystal structures has been challenging since the start of structural biology. Making use of anomalous diffraction of natively present elements, such as sulfur and phosphorus, for phasing has been possible for some systems, but hindered by the necessity to access longer X-ray wavelengths in order to make most use of the anomalous scattering contributions of these elements. Presented here are the results from a first successful experimental phasing study of a macromolecular crystal structure at a wavelength close to the sulfur K edge. This has been made possible by the in-vacuum setup and the long-wavelength optimised experimental setup at the I23 beamline at Diamond Light Source. In these early commissioning experiments only standard data collection and processing procedures have been applied, in particular no dedicated absorption correction has been used. Nevertheless the success of the experiment demonstrates that the capability to extract phase information can be even further improved once data collection protocols and data processing have been optimised.

  18. Examination of Surface Roughness on Light Scattering by Long Ice Columns by Use of a Two-Dimensional Finite-Difference Time-Domain Algorithm

    NASA Technical Reports Server (NTRS)

    Sun, W.; Loeb, N. G.; Videen, G.; Fu, Q.

    2004-01-01

    Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional micro-roughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 mum, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than similar to 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than similar to 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than similar to 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.

  19. Long-Wavelength Beam Steerer Based on a Micro-Electromechanical Mirror

    PubMed Central

    Kos, Anthony B; Gerecht, Eyal

    2013-01-01

    Commercially available mirrors for scanning long-wavelength beams are too large for high-speed imaging. There is a need for a smaller, more agile pointing apparatus to provide images in seconds, not minutes or hours. A fast long-wavelength beam steerer uses a commercial micro-electro-mechanical system (MEMS) mirror controlled by a high-performance digital signal processor (DSP). The DSP allows high-speed raster scanning of the incident radiation, which is focused to a small waist onto the 9mm2, gold-coated, MEMS mirror surface, while simultaneously acquiring an undistorted, high spatial-resolution image of an object. The beam steerer hardware, software and performance are described. The system can also serve as a miniaturized, high-performance long-wavelength beam chopper for lock-in detection. PMID:26401426

  20. Long-Wavelength Instability in Marangoni Convection

    NASA Technical Reports Server (NTRS)

    VanHook, Stephen J.; Schatz, Michael F.; Swift, Jack B.; McCormick, W. D.; Swinney, Harry L.

    1996-01-01

    Our experiments in thin liquid layers (approximately 0.1 mm thick) heated from below reveal a well-defined long-wavelength instability: at a critical temperature difference across the layer, the depth of the layer in the center of the cell spontaneously decreases until the liquid-air interface ruptures and a dry spot forms. The onset of this critical instability occurs at a temperature difference across the liquid layer that is 35% smaller than that predicted in earlier theoretical studies of a single layer model. Our analysis of a two-layer model yields predictions in accord with the observations for liquid layer depths greater than or equal to 0.15 mm, but for smaller depths there is an increasing difference between our predictions and observations (the difference is 25% for a layer 0.06 mm thick). In microgravity environments the long-wavelength instability observed in our terrestrial experiments is expected to replace cellular convection as the primary instability in thick as well as thin liquid layers heated quasistatically from below.

  1. Far-red light is needed for efficient photochemistry and photosynthesis.

    PubMed

    Zhen, Shuyang; van Iersel, Marc W

    2017-02-01

    The efficiency of monochromatic light to drive photosynthesis drops rapidly at wavelengths longer than 685nm. The photosynthetic efficiency of these longer wavelengths can be improved by adding shorter wavelength light, a phenomenon known as the Emerson enhancement effect. The reverse effect, the enhancement of photosynthesis under shorter wavelength light by longer wavelengths, however, has not been well studied and is often thought to be insignificant. We quantified the effect of adding far-red light (peak at 735nm) to red/blue or warm-white light on the photosynthetic efficiency of lettuce (Lactuca sativa). Adding far-red light immediately increased quantum yield of photosystem II (Φ PSII ) of lettuce by an average of 6.5 and 3.6% under red/blue and warm-white light, respectively. Similar or greater increases in Φ PSII were observed after 20min of exposure to far-red light. This longer-term effect of far-red light on Φ PSII was accompanied by a reduction in non-photochemical quenching of fluorescence (NPQ), indicating that far-red light reduced the dissipation of absorbed light as heat. The increase in Φ PSII and complementary decrease in NPQ is presumably due to preferential excitation of photosystem I (PSI) by far-red light, which leads to faster re-oxidization of the plastoquinone pool. This facilitates reopening of PSII reaction centers, enabling them to use absorbed photons more efficiently. The increase in Φ PSII by far-red light was associated with an increase in net photosynthesis (P n ). The stimulatory effect of far-red light increased asymptotically with increasing amounts of far-red. Overall, our results show that far-red light can increase the photosynthetic efficiency of shorter wavelength light that over-excites PSII. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Multiple-Path-Length Optical Absorbance Cell

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,

  3. Liquid argon scintillation detection utilizing wavelength-shifting plates and light guides

    NASA Astrophysics Data System (ADS)

    Howard, B.

    2018-02-01

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.

  4. Molecular long-wavelength lasers and their future prospects (review)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molevich, N.E.; Oraevskii, A.N.

    A review is given of the main types of molecular lasers emitting at wavelengths lambda> or =15 ..mu.. as a result of electric-discharge, optical, or chemical excitation. Attention is drawn to new developments in long-wavelength lasers based on the VRT relaxation mechanism of a series of diatomic molecules containing hydrogen.

  5. Light Absorptive Properties of Articular Cartilage, ECM Molecules, Synovial Fluid, and Photoinitiators as Potential Barriers to Light-Initiated Polymer Scaffolding Procedures.

    PubMed

    Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A

    2017-06-01

    Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.

  6. General design method of ultra-broadband perfect absorbers based on magnetic polaritons.

    PubMed

    Liu, Yuanbin; Qiu, Jun; Zhao, Junming; Liu, Linhua

    2017-10-02

    Starting from one-dimensional gratings and the theory of magnetic polaritons (MPs), we propose a general design method of ultra-broadband perfect absorbers. Based on the proposed design method, the obtained absorber can keep the spectrum-average absorptance over 99% at normal incidence in a wide range of wavelengths; this work simultaneously reveals the robustness of the absorber to incident angles and polarization angles of incident light. Furthermore, this work shows that the spectral band of perfect absorption can be flexibly extended to near the infrared regime by adjusting the structure dimension. The findings of this work may facilitate the active design of ultra-broadband absorbers based on plasmonic nanostructures.

  7. [Research on the temperature field detection method of hot forging based on long-wavelength infrared spectrum].

    PubMed

    Zhang, Yu-Cun; Wei, Bin; Fu, Xian-Bin

    2014-02-01

    A temperature field detection method based on long-wavelength infrared spectrum for hot forging is proposed in the present paper. This method combines primary spectrum pyrometry and three-stage FP-cavity LCTF. By optimizing the solutions of three group nonlinear equations in the mathematical model of temperature detection, the errors are reduced, thus measuring results will be more objective and accurate. Then the system of three-stage FP-cavity LCTF was designed on the principle of crystal birefringence. The system realized rapid selection of any wavelength in a certain wavelength range. It makes the response of the temperature measuring system rapid and accurate. As a result, without the emissivity of hot forging, the method can acquire exact information of temperature field and effectively suppress the background light radiation around the hot forging and ambient light that impact the temperature detection accuracy. Finally, the results of MATLAB showed that the infrared spectroscopy through the three-stage FP-cavity LCTF could meet the requirements of design. And experiments verified the feasibility of temperature measuring method. Compared with traditional single-band thermal infrared imager, the accuracy of measuring result was improved.

  8. Light-absorbing carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions

    EPA Science Inventory

    Carbonaceous aerosols are ubiquitous in the atmosphere and can directly affect Earth’s climate by absorbing and scattering incoming solar radiation. Both field and laboratory measurements have confirmed that biomass burning (BB) is an important primary source of light absorbing o...

  9. On Spectral Invariance of Single Scattering Albedo for Water Droplets and Ice Crystals at Weakly Absorbing Wavelengths

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.

    2012-01-01

    The single scattering albedo omega(sub O lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda)(r)/omega(sub O lambda)(r (sub O)) of two single scattering albedo spectra is a linear function of omega(sub O lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(sub O lambda)(r) via one known spectrum omega(sub O lambda)(r (sub O)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.

  10. Low-Dose, Long-Wave UV Light Does Not Affect Gene Expression of Human Mesenchymal Stem Cells

    PubMed Central

    Wong, Darice Y.; Ranganath, Thanmayi; Kasko, Andrea M.

    2015-01-01

    Light is a non-invasive tool that is widely used in a range of biomedical applications. Techniques such as photopolymerization, photodegradation, and photouncaging can be used to alter the chemical and physical properties of biomaterials in the presence of live cells. Long-wave UV light (315 nm–400 nm) is an easily accessible and commonly used energy source for triggering biomaterial changes. Although exposure to low doses of long-wave UV light is generally accepted as biocompatible, most studies employing this wavelength only establish cell viability, ignoring other possible (non-toxic) effects. Since light exposure of wavelengths longer than 315 nm may potentially induce changes in cell behavior, we examined changes in gene expression of human mesenchymal stem cells exposed to light under both 2D and 3D culture conditions, including two different hydrogel fabrication techniques, decoupling UV exposure and radical generation. While exposure to long-wave UV light did not induce significant changes in gene expression regardless of culture conditions, significant changes were observed due to scaffold fabrication chemistry and between cells plated in 2D versus encapsulated in 3D scaffolds. In order to facilitate others in searching for more specific changes between the many conditions, the full data set is available on Gene Expression Omnibus for querying. PMID:26418040

  11. Apparatus for generating coherent infrared energy of selected wavelength

    DOEpatents

    Stevens, Charles G.

    1985-01-01

    A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

  12. Time-dependent scattering of incident light of various wavelengths in ferrofluids under external magnetic field

    NASA Astrophysics Data System (ADS)

    Jin, Jingyu; Song, Dongxing; Geng, Jiafeng; Jing, Dengwei

    2018-02-01

    Ferrofluids can exhibit the anisotropic thermodynamic properties under magnetic fields. The dynamic optical properties of ferrofluids in the presence of magnetic fields are of particular interest due to their potential application as various optical devices. Although time-dependent light scattering by ferrofluids have been extensively studied, the effect of wavelength of incident light have been rarely considered. Here, for the first time, we investigated both the time- and wavelength-dependent light scattering in water based ferrofluids containing Fe3O4 nanoparticles under an external magnetic field. The field-induced response behavior of the prepared ferrofluid samples was determined and verified first by thermal conductivity measurement and numerical simulation. Double-beam UV-Vis spectrophotometer was employed to record the temporal evolution of transmitted intensity of incident light of various wavelengths passing through the ferrofluid sample and propagating parallel to the applied field. As expected, the light intensity decreases to a certain value right after the field is turned on due to the thermal fluctuation induced disorder inside the flexible particle chains. Then the light intensity further decreases with time until the appearance of a minimum at time τ0 followed by an inversed increase before finally reaches equilibrium at a particular time. More importantly, the characteristic inversion time τ0 was found to follow a power law increase with the wavelength of incident light (τ0 ∼ λα, where α = 2.07). A quantitative explanation for the wavelength dependence of characteristic time was proposed based on the finite-difference time-domain (FDTD) method. The simulation results are in good agreement with our experimental observations. The time-dependent light scattering in ferrofluids under different incident wavelengths was rationalized by considering both the coarsening process of the particle chains and the occurrence of resonance within the

  13. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme.

    PubMed

    Han, Pei-pei; Sun, Ying; Jia, Shi-ru; Zhong, Cheng; Tan, Zhi-lei

    2014-05-25

    The influences of different wavelengths of light (red 660nm, yellow 590nm, green 520nm, blue 460nm, purple 400nm) and white light on extracellular polysaccharide (EPS) and capsular polysaccharide (CPS) production by Nostoc flagelliforme in liquid culture were demonstrated in this study. The results showed that, compared with white light, red and blue lights significantly increased both EPS and CPS production while yellow light reduced their production; purple and green lights stimulated EPS production but inhibited CPS formation. Nine constituent monosaccharides and one uronic acid were detected in both EPS and CPS, and their ratios showed significant differences among treatment with different light wavelengths. However, the advanced structure of EPS and CPS from various light conditions did not present obvious difference through Fourier transform infrared spectroscopy and X-ray diffraction characterization. These findings establish a basis for development of high-yielding polysaccharide production process and understanding their regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Characterization of single particle aerosols by elastic light scattering at multiple wavelengths

    NASA Astrophysics Data System (ADS)

    Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.

    2018-03-01

    We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.

  15. Passively Q-switched and mode-locked dual-wavelength Nd:GGG laser with Cr4+:YAG as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Chu, Hongwei; Zhao, Shengzhi; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Qiao, Wenchao; Li, Tao; Feng, Chuansheng; Zhang, Haijuan

    2014-03-01

    By using neodymium-doped gadolinium gallium garnet (Nd:GGG) as a laser medium, a simultaneously passively Q-switched and mode-locked (QML) dual-wavelength laser with Cr4+:YAG as a saturable absorber is presented. The laser simultaneously oscillated at 1061 nm and 1063 nm, corresponding to a frequency difference of 0.53 THz. QML pulses with nearly 100% modulation depth were observed. The mode-locked pulse duration underneath the Q-switched envelope was estimated to be about 908 ps. The experimental results indicated that the dual-wavelength QML Nd:GGG laser can be an excellent candidate for the generation of THz waves.

  16. Measured Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon with Absorbing and Nonabsorbing Materials.

    PubMed

    You, Rian; Radney, James G; Zachariah, Michael R; Zangmeister, Christopher D

    2016-08-02

    Optical absorption spectra of laboratory generated aerosols consisting of black carbon (BC) internally mixed with nonabsorbing materials (ammonium sulfate, AS, and sodium chloride, NaCl) and BC with a weakly absorbing brown carbon surrogate derived from humic acid (HA) were measured across the visible to near-IR (550 to 840 nm). Spectra were measured in situ using a photoacoustic spectrometer and step-scanning a supercontinuum laser source with a tunable wavelength and bandwidth filter. BC had a mass-specific absorption cross section (MAC) of 7.89 ± 0.25 m(2) g(-1) at λ = 550 nm and an absorption Ångström exponent (AAE) of 1.03 ± 0.09 (2σ). For internally mixed BC, the ratio of BC mass to the total mass of the mixture was chosen as 0.13 to mimic particles observed in the terrestrial atmosphere. The manner in which BC mixed with each material was determined from transmission electron microscopy (TEM). AS/BC and HA/BC particles were fully internally mixed, and the BC was both internally and externally mixed for NaCl/BC particles. The AS/BC, NaCl/BC, and HA/BC particles had AAEs of 1.43 ± 0.05, 1.34 ± 0.06, and 1.91 ± 0.05, respectively. The observed absorption enhancement of mixed BC relative to the pure BC was wavelength dependent for AS/BC and decreased from 1.5 at λ = 550 nm with increasing wavelength while the NaCl/BC enhancement was essentially wavelength independent. For HA/BC, the enhancement ranged from 2 to 3 and was strongly wavelength dependent. Removal of the HA absorption contribution to enhancement revealed that the enhancement was ≈1.5 and independent of wavelength.

  17. Impact of long-pass interferential filters on dark current and background light rejection in Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Mazzillo, M.; Sciuto, A.; Libertino, S.; Lombardo, S.; Fallica, G.

    2018-02-01

    There is an increasing interest in using Silicon Photomultipliers (SiPMs) in emerging applications where the detectors have to operate in ambient environment with high sensitivity and fast timing response in combination with narrow bandwidth light emitting sources like LEDs or VCSELs. The need to use large area detectors for optimizing the light collection efficiency, due to the low optical fluxes to be usually detected, imposes the optimization of the SiPM performance in specific wavelength ranges (usually visible or near infrared), to fully exploit the single photon sensitivity of these detectors and not to reduce at the same time their dynamic range. The use of proper optical long-pass filters on the detector's package can represent a suitable way to reach both these targets, through the reduction of environmental light absorption. Here we present the preliminary results obtained from the characterization of n+-p SiPMs with commercial long-pass filters with increasing cut-on wavelength in the range 500 nm-900 nm glued on the top side of the detector's package. The performance of the detectors has been evaluated in terms of dark current variation induced by the use of the filters and background light rejection under the illumination of white fluorescent lamps. The relevant reduction observed in the dark current (up to 90% at 13 V overvoltage) and the consistent reduction of stray light absorption (up to 90% at 3 V overvoltage with a 900 nm cut-on wavelength long-pass filter) are the main characterization results obtained and shown in this paper.

  18. Broad-band absorbers for reduction of parasitic light: two alternative solutions

    NASA Astrophysics Data System (ADS)

    Giovannini, Hughes; Lemarquis, F.; Akhouayri, H.; Cathelinaud, Michel; Torchio, Philippe; Amra, C.; Cousin, Bernard; Laubier, D.; Otrio, Georges

    2018-04-01

    This paper, "Broad-band absorbers for reduction of parasitic light: two alternative solutions," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  19. Portable Long-Wavelength Infrared Camera for Civilian Application

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Krabach, T. N.; Bandara, S. V.; Liu, J. K.

    1997-01-01

    In this paper, we discuss the performance of this portable long-wavelength infrared camera in quantum efficiency, NEAT, minimum resolvable temperature differnce (MRTD), uniformity, etc. and its application in science, medicine and defense.

  20. Imaging Spectrometer on a Chip

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Zheng, Xinyu

    2007-01-01

    A proposed visible-light imaging spectrometer on a chip would be based on the concept of a heterostructure comprising multiple layers of silicon-based photodetectors interspersed with long-wavelength-pass optical filters. In a typical application, this heterostructure would be replicated in each pixel of an image-detecting integrated circuit of the active-pixel-sensor type (see figure). The design of the heterostructure would exploit the fact that within the visible portion of the spectrum, the characteristic depth of penetration of photons increases with wavelength. Proceeding from the front toward the back, each successive long-wavelength-pass filter would have a longer cutoff wavelength, and each successive photodetector would be made thicker to enable it to absorb a greater proportion of incident longer-wavelength photons. Incident light would pass through the first photodetector and encounter the first filter, which would reflect light having wavelengths shorter than its cutoff wavelength and pass light of longer wavelengths. A large portion of the incident and reflected shorter-wavelength light would be absorbed in the first photodetector. The light that had passed through the first photodetector/filter pair of layers would pass through the second photodetector and encounter the second filter, which would reflect light having wavelengths shorter than its cutoff wavelength while passing light of longer wavelengths. Thus, most of the light reflected by the second filter would lie in the wavelength band between the cutoff wavelengths of the first and second filters. Thus, further, most of the light absorbed in the second photodetector would lie in this wavelength band. In a similar manner, each successive photodetector would detect, predominantly, light in a successively longer wavelength band bounded by the shorter cutoff wavelength of the preceding filter and the longer cutoff wavelength of the following filter.

  1. Upconverting device for enhanced recogntion of certain wavelengths of light

    DOEpatents

    Kross, Brian; McKIsson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zorn, Carl

    2013-05-21

    An upconverting device for enhanced recognition of selected wavelengths is provided. The device comprises a transparent light transmitter in combination with a plurality of upconverting nanoparticles. The device may a lens in eyewear or alternatively a transparent panel such as a window in an instrument or machine. In use the upconverting device is positioned between a light source and the eye(s) of the user of the upconverting device.

  2. Multispectral cross-polarization reflectance measurements suggest high contrast of demineralization on tooth surfaces at wavelengths beyond 1300 nm due to reduced light scattering in sound enamel.

    PubMed

    Chan, Kenneth H; Fried, Daniel

    2018-06-01

    The enamel scattering coefficient decreases markedly with increasing wavelength from the visible to the near-infrared (NIR). However, beyond 1300 nm, the scattering coefficient is difficult to measure, and it is not known whether light scattering continues to decrease significantly at longer wavelengths. It is hypothesized that water absorption is a major contributor to the contrast between sound and demineralized enamel beyond 1300 nm since deeply penetrating photons in sound enamel are likely absorbed by water. Reflectance images of demineralization on tooth surfaces were acquired at wavelengths near 1450, 1860, 1880, and 1950 nm. The magnitude of water absorption is similar at 1450 and 1880 nm but varies markedly between 1860, 1880, and 1950 nm. Multispectral comparisons of lesion contrast provide insight into the mechanism responsible for higher contrast at longer NIR wavelengths. The highest contrast was at 1950 nm; however, the markedly higher contrast at 1880 compared to 1450 nm and similar contrast between 1860 and 1880 nm suggests that the enamel scattering coefficient continues to decrease beyond 1300 nm, and that reduced light scattering in sound enamel is most responsible for the higher lesion contrast at longer NIR wavelengths. This has important implications for the choice of wavelengths for caries detection and diagnostic devices, including the performance of optical coherence tomography beyond 1300 nm. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Dual-wavelength recording, a simple algorithm to eliminate interferences due to UV-absorbing substances in capillary electrophoresis.

    PubMed

    Seaux, Liesbeth; Van Houcke, Sofie; Dumoulin, Els; Fiers, Tom; Lecocq, Elke; Delanghe, Joris R

    2014-08-01

    Analytical interferences have been described due to the presence of various exogenous UV-absorbing substances in serum. Iodine-based X-ray contrast agents and various antibiotics have been reported to interfere with interpretation of serum protein pherograms, resulting in false diagnosis of paraproteinemia. In the present study, we have explored the possibility of measuring UV absorbance at two distinct wavelengths (210 and 246 nm) to distinguish between true and false paraproteins on a Helena V8 clinical electrophoresis instrument. This study demonstrates that most substances potentially interfering with serum protein electrophoresis show UV-absorption spectra that are distinct from those of serum proteins. Scanning at 246 nm allows detection of all described interfering agents. Comparing pherograms recorded at both wavelengths (210 and 246 nm) enables to distinguish paraproteins from UV-absorbing substances. In case of a true paraprotein, the peak with an electrophoretic mobility in the gamma-region decreases, whereas the X-ray contrast media and antibiotics show an increased absorption when compared to the basic setting (210 nm). The finding of iodine-containing contrast media interfering with serum protein electrophoresis is not uncommon. In a clinical series, interference induced by contrast media was reported in 54 cases (of 13 237 analyses), corresponding with a prevalence of 0.4%. In the same series, 1631 true paraproteins (12.3%) were detected. Implementation of the proposed algorithm may significantly improve the interpretation of routine electrophoresis results. However, attention should still be paid to possible interference due to presence of atypical proteins fractions (e.g., tumor markers, C3). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Investigating the contribution of short wavelengths in the alerting effect of bright light.

    PubMed

    Sasseville, Alexandre; Martin, Jeanne Sophie; Houle, Jérôme; Hébert, Marc

    2015-11-01

    Short-wavelengths can have an acute impact on alertness, which is allegedly due to their action on intrinsically photosensitive retinal ganglion cells. Classical photoreceptors cannot, however, be excluded at this point in time as contributors to the alerting effect of light. The objective of this study was to compare the alerting effect at night of a white LED light source while wearing blue-blockers or not, in order to establish the contribution of short-wavelengths. 20 participants stayed awake under dim light (< 5 lx) from 23:00 h to 04:00 h on two consecutive nights. On the second night, participants were randomly assigned to one light condition for 30 min starting at 3:00 h. Group A (5M/5F) was exposed to 500 μW/cm(2) of unfiltered LED light, while group B (4M/6F) was required to wear blue-blocking glasses, while exposed to 1500 μW/cm(2) from the same light device in order to achieve 500 μW/cm(2) at eye level (as measured behind the glasses). Subjective alertness, energy, mood and anxiety were assessed for both nights at 23:30 h, 01:30 h and 03:30 h using a visual analog scale (VAS). Subjective sleepiness was assessed with the Stanford Sleepiness Scale (SSS). Subjects also performed the Conners' Continuous Performance Test II (CPT-II) in order to assess objective alertness. Mixed model analysis was used to compare VAS, SSS and CPT-II parameters. No difference between group A and group B was observed for subjective alertness, energy, mood, anxiety and sleepiness, as well as CPT-II parameters. Subjective alertness (p < 0.001), energy (p < 0.001) and sleepiness (p < 0.05) were, however improved after light exposure on the second night independently of the light condition. The current study shows that when sleepiness is high, the alerting effect of light can still be triggered at night in the absence of short-wavelengths with a 30 minute light pulse of 500 μW/cm(2). This suggests that the underlying mechanism by which a brief polychromatic light exposure

  5. Uncertainty of InSAR velocity fields for measuring long-wavelength displacement

    NASA Astrophysics Data System (ADS)

    Fattahi, H.; Amelung, F.

    2014-12-01

    Long-wavelength artifacts in InSAR data are the main limitation to measure long-wavelength displacement; they are traditionally attributed mainly to the inaccuracy of the satellite orbits (orbital errors). However, most satellites are precisely tracked resulting in uncertainties of orbits of 2-10 cm. Orbits of these satellites are thus precise enough to obtain precise velocity fields with uncertainties better than 1 mm/yr/100 km for older satellites (e.g. Envisat) and better than 0.2 mm/yr/100 km for modern satellites (e.g. TerraSAR-X and Sentinel-1) [Fattahi & Amelung, 2014]. Such accurate velocity fields are achievable if long-wavelength artifacts from sources other than orbital errors are identified and corrected for. We present a modified Small Baseline approach to measure long-wavelength deformation and evaluate the uncertainty of these measurements. We use a redundant network of interferograms for detection and correction of unwrapping errors to ensure the unbiased estimation of phase history. We distinguish between different sources of long-wavelength artifacts and correct those introduced by atmospheric delay, topographic residuals, timing errors, processing approximations and hardware issues. We evaluate the uncertainty of the velocity fields using a covariance matrix with the contributions from orbital errors and residual atmospheric delay. For contributions from the orbital errors we consider the standard deviation of velocity gradients in range and azimuth directions as a function of orbital uncertainty. For contributions from the residual atmospheric delay we use several approaches including the structure functions of InSAR time-series epochs, the predicted delay from numerical weather models and estimated wet delay from optical imagery. We validate this InSAR approach for measuring long-wavelength deformation by comparing InSAR velocity fields over ~500 km long swath across the southern San Andreas fault system with independent GPS velocities and

  6. Light-absorbing organic carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions.

    PubMed

    Xie, Mingjie; Hays, Michael D; Holder, Amara L

    2017-08-04

    Light-absorbing organic carbon (OC), also termed brown carbon (BrC), from laboratory-based biomass burning (BB) has been studied intensively to understand the contribution of BB to radiative forcing. However, relatively few measurements have been conducted on field-based BB and even fewer measurements have examined BrC from anthropogenic combustion sources like motor vehicle emissions. In this work, the light absorption of methanol-extractable OC from prescribed and laboratory BB and gasoline vehicle emissions was examined using spectrophotometry. The light absorption of methanol extracts showed a strong wavelength dependence for both BB and gasoline vehicle emissions. The mass absorption coefficients at 365 nm (MAC 365 , m 2 g -1 C) - used as a measurement proxy for BrC - were significantly correlated (p < 0.05) to the elemental carbon (EC)/OC ratios when examined by each BB fuel type. No significant correlation was observed when pooling fuels, indicating that both burn conditions and fuel types may impact BB BrC characteristics. The average MAC 365 of gasoline vehicle emission samples is 0.62 ± 0.76 m 2  g -1 C, which is similar in magnitude to the BB samples (1.27 ± 0.76 m 2  g -1 C). These results suggest that in addition to BB, gasoline vehicle emissions may also be an important BrC source in urban areas.

  7. Effect of multi-wavelength irradiation on color characterization with light-emitting diodes (LEDs)

    NASA Astrophysics Data System (ADS)

    Park, Hyeong Ju; Song, Woosub; Lee, Byeong-Il; Kim, Hyejin; Kang, Hyun Wook

    2017-06-01

    In the current study, a multi-wavelength light-emitting diode (LED)-integrated CMOS imaging device was developed to investigate the effect of various wavelengths on multiple color characterization. Various color pigments (black, red, green, and blue) were applied on both white paper and skin phantom surfaces for quantitative analysis. The artificial skin phantoms were made of polydimethylsiloxane (PDMS) mixed with coffee and TiO2 powder to emulate the optical properties of the human dermis. The customized LED-integrated imaging device acquired images of the applied pigments by sequentially irradiating with the LED lights in the order of white, red, green, and blue. Each color pigment induced a lower contrast during illumination by the light with the equivalent color. However, the illumination by light with the complementary (opposite) color increased the signal-to-noise ratio by up to 11-fold due to the formation of a strong contrast ( i.e., red LED = 1.6 ± 0.3 vs. green LED = 19.0 ± 0.6 for red pigment). Detection of color pigments in conjunction with multi-wavelength LEDs can be a simple and reliable technique to estimate variations in the color pigments quantitatively.

  8. Lidar remote sensing of laser-induced incandescence on light absorbing particles in the atmosphere.

    PubMed

    Miffre, Alain; Anselmo, Christophe; Geffroy, Sylvain; Fréjafon, Emeric; Rairoux, Patrick

    2015-02-09

    Carbon aerosol is now recognized as a major uncertainty on climate change and public health, and specific instruments are required to address the time and space evolution of this aerosol, which efficiently absorbs light. In this paper, we report an experiment, based on coupling lidar remote sensing with Laser-Induced-Incandescence (LII), which allows, in agreement with Planck's law, to retrieve the vertical profile of very low thermal radiation emitted by light-absorbing particles in an urban atmosphere over several hundred meters altitude. Accordingly, we set the LII-lidar formalism and equation and addressed the main features of LII-lidar in the atmosphere by numerically simulating the LII-lidar signal. We believe atmospheric LII-lidar to be a promising tool for radiative transfer, especially when combined with elastic backscattering lidar, as it may then allow a remote partitioning between strong/less light absorbing carbon aerosols.

  9. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocer, Hasan; Department of Electrical Engineering, Turkish Military Academy, 06654 Ankara; Butun, Serkan

    2015-04-20

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20%more » and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68 °C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.« less

  10. Epitaxial approaches to long-wavelength vertical-cavity lasers

    NASA Astrophysics Data System (ADS)

    Hall, Eric Michael

    The success of short-wavelength (850 nm) vertical-cavity surface-emitting lasers (VCSELs) as low-cost components in fiber optic networks has created a strong demand for similar low-cost devices at longer wavelengths (1.3--1.55mum), which are even more important in telecommunications systems. Extending the success of VCSELs to these longer wavelengths, however, has been slowed by the absence of a mature technology that incorporates all of the necessary components on one substrate without sacrificing the inexpensive and manufacturable nature of VCSELs. Although InAlGaAs active regions on InP substrates have been developed extensively, the other components of vertical-cavity lasers, especially epitaxially-grown distributed Bragg reflectors (DBRs), are less mature on these substrates. This thesis examines the materials and technologies that enable long-wavelength VCSELs to be grown in a single, epitaxial, lattice-matched step on InP substrates. The advantages and shortcomings of each material system are identified and the impact on devices examined. Additionally, processing technologies that rely on the properties of these materials are developed. From these studies, a InP-based, lattice-matched VCSEL design is presented that utilizes AlGaAsSb for high reflectivity DBRs, InAlGaAs for high quality active regions, InP for heat and current spreading, and a materials selective etch for electrical and optical confinement. In short, the design avoids the shortcomings of each material system while emphasizing the advantages. The resulting devices, showing low threshold currents, high efficiencies and powers, and high operating temperatures, not only validate this approach but demonstrate that such lattice-matched, InP-based devices may be a low-cost, manufacturable answer to this long-wavelength VCSEL demand.

  11. Wavelength-Resolved Photon Fluxes of Indoor Light Sources: Implications for HOx Production

    NASA Astrophysics Data System (ADS)

    Kowal, S.; Kahan, T.

    2017-12-01

    Only a handful of studies have considered photolytic reactions indoors because photon fluxes at short wavelengths are generally considered to be negligible. We have measured wavelength resolved photon fluxes from indoor light sources including incandescent, halogen, compact fluorescent (CFL), and light emitting diodes (LED). In addition, fluorescent tubes, used in many offices and industrial buildings, and sunlight through windows were measured. The measured photon fluxes were used to calculate photolysis rate constants for potential indoor hydroxyl and peroxy radical (OH and HO2, "HOx") precursors: acetaldehyde (CH3CHO), formaldehyde (HCHO), hydrogen peroxide (H2O2), nitrous acid (HONO) and ozone (O3). Rate constants in conjunction with typical indoor concentrations were used to predict HOx production rates under various lighting conditions. Our results illustrate that all light sources except LEDs emit light at high enough energy to photolyze HOx precursors. Under typical lighting conditions only fluorescent tubes and sunlight will initiate significant photochemical HOx formation, and HONO and HCHO will be the only molecules that will have a strong influence on HOx levels indoors. Data from our experiments can be used in indoor air models to better predict HOx levels indoors.

  12. Chip-integrated nearly perfect absorber at telecom wavelengths by graphene coupled with nanobeam cavity.

    PubMed

    Xu, W; Zhu, Z H; Liu, K; Zhang, J F; Yuan, X D; Lu, Q S; Qin, S Q

    2015-07-15

    We exploit the concept of critical coupling to graphene based chip-integrated applications and numerically demonstrate that a chip-integrated nearly perfect graphene absorber at wavelengths around 1.55 μm can be obtained by graphene nearly critical coupling with a nanobeam cavity. The key points are reducing the radiation loss and transmission possibly, together with controlling the coupling rate of the cavity to the input waveguide to be equal to the absorption rate of the cavity caused by graphene. Simulation results show that the absorption of monolayer graphene with a total length of only a few microns is raised up to 97%. Our study may have potential applications in chip-integrated photodetectors.

  13. White light-emitting organic electroluminescent devices

    DOEpatents

    Shiang, Joseph John; Duggal, Anil Raj; Parthasarathy, Gautam

    2006-06-20

    A light-emitting device comprises a light-emitting member, which comprises two electrodes, at least two organic electroluminescent ("EL") materials disposed between the electrodes, a charge blocking material disposed between the electrodes, and at least one photoluminescent ("PL") material. The light-emitting member emits electromagnetic ("EM") radiation having a first spectrum in response to a voltage applied across the two electrodes. The PL material absorbs a portion of the EM radiation emitted by the light-emitting member and emits EM radiation having second spectrum different than the first spectrum. Each of the organic EL materials emits EM radiation having a wavelength range selected from the group consisting of blue and red wavelength ranges.

  14. Linear response to long wavelength fluctuations using curvature simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldauf, Tobias; Zaldarriaga, Matias; Seljak, Uroš

    2016-09-01

    We study the local response to long wavelength fluctuations in cosmological N -body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the responsemore » of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naïve derivation assuming a universal mass function by approximately 8–20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.« less

  15. Long-wavelength microinstabilities in toroidal plasmas*

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Rewoldt, G.

    1993-07-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 29] L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities.

  16. Attenuation of near-IR light through dentin at wavelengths from 1300–1650-nm

    PubMed Central

    Chan, Andrew C.; Darling, Cynthia L.; Chan, Kenneth H.; Fried, Daniel

    2014-01-01

    Light scattering in dental enamel decreases markedly from the UV to the near-IR and recent studies employing near-IR transillumination and reflectance imaging including optical coherence tomography indicate that this wavelength region is ideally suited for imaging dental caries due to the high transparency of enamel. The opacity of dentin is an important factor in optimizing the contrast of demineralization in reflectance measurements. It also influences the contrast of occlusal lesions in transillumination. Light scattering in dentin is an order of magnitude larger than in enamel, it is highly anisotropic and has a different spectral light scattering dependence than enamel. The objective of this study was to measure the optical attenuation of near-IR light through dentin at near-IR wavelengths from 1300–1650-nm. In this study the collimated transmission of near-IR light through polished thin sections of dentin of 0.05 to 0.6 mm thickness was measured. Beer-Lambert plots show that the attenuation coefficients range in magnitude from 20 to 40 cm−1. Attenuation increased significantly with increasing wavelength and the increases were not entirely consistent with increased water absorption. PMID:24839373

  17. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating.

    PubMed

    He, Xiaoying; Liu, Zhi-bo; Wang, D N

    2012-06-15

    We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.

  18. Semiconductor light source with electrically tunable emission wavelength

    DOEpatents

    Belenky, Gregory [Port Jefferson, NY; Bruno, John D [Bowie, MD; Kisin, Mikhail V [Centereach, NY; Luryi, Serge [Setauket, NY; Shterengas, Leon [Centereach, NY; Suchalkin, Sergey [Centereach, NY; Tober, Richard L [Elkridge, MD

    2011-01-25

    A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

  19. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season

    NASA Astrophysics Data System (ADS)

    Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang; Walter, David; Lavric, Jost; Moran-Zuloaga, Daniel; Ditas, Florian; Pöhlker, Christopher; Brito, Joel; Carbone, Samara; Artaxo, Paulo; Andreae, Meinrat

    2017-04-01

    We use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January-April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of < 3 days for regional fires and 11 days for African plumes arriving at ATTO during the wet season. The model performance of long-range transport of African plumes is also evaluated with observations from AERONET, MODIS, and CALIOP. Simulated absorption aerosol optical depth (AAOD) averaged over the wet season is lower than 0.0015 over the central Amazon, including the ATTO site. We find that more than 50% of total absorption at 550 nm is from BC, except for the northeastern Amazon and the Guianas, where the influence of dust becomes significant (up to 35 %). The brown carbon contribution is generally between 20 and 30 %. The distribution of absorption Ångström exponents (AAE) suggests more influence from fossil fuel combustion in the southern part of the basin (AAE 1) but more open fire and dust influence in the northern part

  20. Photothermal effects in phase shifted FBG with varied light wavelength and intensity.

    PubMed

    Ding, Meng; Chen, Dijun; Fang, Zujie; Wang, Di; Zhang, Xi; Wei, Fang; Yang, Fei; Ying, Kang; Cai, Haiwen

    2016-10-31

    The intensity enhancement effect of a phase-shifted fiber Bragg grating (PSFBG) is investigated theoretically and experimentally in this paper. Due to the effect, both of the FBG reflection bands and the transmission peak show red-shift with the increase of pump light wavelength from the shorter side to the longer side of the Bragg wavelength. The transmission peak shifts in pace with the pump's wavelength, which is much faster than the reflection band. The maximum shift increases with the pump power. In contrast, the red-shift is very small when the pump light deceases from the longer side of the Bragg wavelength. Such asymmetric behavior is checked dynamically by using a frequency modulated laser in a serrated wave, showing push-pull behavior. The effect of the characteristics of thermal dissipation conditions is also measured. The fiber loss coefficient of FBG being tested is estimated from the measured data to be about 0.001 mm-1, which may be attributed to the H2-loading and UV exposure in FBG fabrication. The observed phenomena are believed of importance in application where PSFBG is utilized as a narrow linewidth filter.

  1. In situ calibration of a light source in a sensor device

    DOEpatents

    Okandan, Murat; Serkland, Darwin k.; Merchant, Bion J.

    2015-12-29

    A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.

  2. Broadband planar multilayered absorbers tuned by VO2 phase transition

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Ji, Chunhui; Lu, Lulu; Li, Zhe; Li, Haoyang; Wang, Jun; Wu, Zhiming; Jiang, Yadong; Xu, Jimmy; Liu, Zhijun

    2017-08-01

    The metal-insulator transition makes vanadium dioxide an attractive material for developing reconfigurable optoelectronic components. Here we report on dynamically tunable broadband absorbers consisting of planar multilayered thin films. By thermally triggering the phase transition of vanadium dioxide, the effective impedance of multilayered structures is tuned in or out of the condition of impedance matching to free-space, leading to switchable broadband absorptions. Two types of absorbers are designed and demonstrated by using either the insulating or metallic state of vanadium dioxide at the impedance matched condition. The planar multilayered absorbers exhibit tunable absorption bands over the wavelength ranges of 5-9.3 μm and 3.9-8.2 μm, respectively. A large modulation depth up to 88% is measured. The demonstrated broadband absorbance tunability is of potential interest for reconfigurable bolometric sensing, camouflaging, and modulation of mid-infrared lights.

  3. Backward Raman amplification in the long-wavelength infrared

    NASA Astrophysics Data System (ADS)

    Johnson, L. A.; Gordon, D. F.; Palastro, J. P.; Hafizi, B.

    2017-03-01

    The wealth of work in backward Raman amplification in plasma has focused on the extreme intensity limit; however, backward Raman amplification may also provide an effective and practical mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation (LWIR). An electromagnetic simulation coupled with a relativistic cold fluid plasma model is used to demonstrate the generation of picosecond pulses at a wavelength of 10 μm with terawatt powers through backward Raman amplification. The effects of collisional damping, Landau damping, pump depletion, and wave breaking are examined, as well as the resulting design considerations for an LWIR Raman amplifier.

  4. Polarization Control of Morphological Pattern Orientation During Light-Mediated Synthesis of Nanostructured Se–Te Films

    DOE PAGES

    Carim, Azhar I.; Batara, Nicolas A.; Premkumar, Anjali; ...

    2015-11-23

    The template-free growth of well ordered, highly anisotropic lamellar structures has been demonstrated during the photoelectrodeposition of Se–Te films, wherein the orientation of the pattern can be directed by orienting the linear polarization of the incident light. This control mechanism was investigated further herein by examining the morphologies of films grown photoelectrochemically using light from two simultaneous sources that had mutually different linear polarizations. Photoelectrochemical growth with light from two nonorthogonally polarized same-wavelength sources generated lamellar morphologies in which the long axes of the lamellae were oriented parallel to the intensity-weighted average polarization orientation. Simulations of light scattering at themore » solution–film interface were consistent with this observation. Computer modeling of these growths using combined full-wave electromagnetic and Monte Carlo growth simulations successfully reproduced the experimental morphologies and quantitatively agreed with the pattern orientations observed experimentally by considering only the fundamental light-material interactions during growth. Deposition with light from two orthogonally polarized same-wavelength as well as different-wavelength sources produced structures that consisted of two intersecting sets of orthogonally oriented lamellae in which the relative heights of the two sets could be varied by adjusting the relative source intensities. Simulations of light absorption were performed in analogous, idealized intersecting lamellar structures and revealed that the lamellae preferentially absorbed light polarized with the electric field vector along their long axes. In conclusion, these data sets cumulatively indicate that anisotropic light scattering and light absorption generated by the light polarization produces the anisotropic morphology and that the resultant morphology is a function of all illumination inputs despite differing

  5. Multi-Wavelength Monitoring of GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.

    1997-01-01

    Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here first results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8 m Perkins telescope at Lowell Observatory. The first long-term well-sampled IR light curve of GRS 1915+105 is presented herein and is consistent with the interpretation of this source as a long-period binary. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.

  6. Mushroom plasmonic metamaterial infrared absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke; Hata, Hisatoshi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved bymore » isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.« less

  7. Liquid Argon Scintillation Detection Utilizing Wavelength-Shifting Plates and Light Guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, B.

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this lightmore » and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.« less

  8. Long Wavelength Ripples in the Nearshore

    NASA Astrophysics Data System (ADS)

    Alcinov, T.; Hay, A. E.

    2008-12-01

    Sediment bedforms are ubiquitous in the nearshore environment, and their characteristics and evolution have a direct effect on the hydrodynamics and the rate of sediment transport. The focus of this study is long wavelength ripples (LWR) observed at two locations in the nearshore at roughly 3m water depth under combined current and wave conditions in Duck, North Carolina. LWR are straight-crested bedforms with wavelengths in the range of 20-200cm, and steepness of about 0.1. They occur in the build up and decay of storms, in a broader range of values of the flow parameters compared to other ripple types. The main goal of the study is to test the maximum gross bedform-normal transport (mGBNT) hypothesis, which states that the orientation of ripples in directionally varying flows is such that the gross sediment transport normal to the ripple crest is maximized. Ripple wavelengths and orientation are measured from rotary fanbeam images and current and wave conditions are obtained from electromagnetic (EM) flowmeters and an offshore pressure gauge array. Preliminary tests in which transport direction is estimated from the combined flow velocity vectors indicate that the mGBNT is not a good predictor of LWR orientation. Results from tests of the mGBNT hypothesis using a sediment transport model will be presented.

  9. Contrast-enhanced photoacoustic imaging with an optical wavelength of 1064 nm

    NASA Astrophysics Data System (ADS)

    Kim, Jeesu; Park, Sara; Park, Gyeong Bae; Choi, Wonseok; Jeong, Unyong; Kim, Chulhong

    2018-02-01

    Photoacoustic (PA) imaging is a biomedical imaging method that can provide both structural and functional information of living tissues beyond the optical diffusion limit by combining the concepts of conventional optical and ultrasound imaging methods. Although endogenous chromophores can be utilized to acquire PA images of biological tissues, exogenous contrast agents that absorb near-infrared (NIR) lights have been extensively explored to improve the contrast and penetration depth of PA images. Here, we demonstrate Bi2Se3 nanoplates, that strongly absorbs NIR lights, as a contrast agent for PA imaging. In particularly, the Bi2Se3 nanoplates produce relatively strong PA signals with an optical wavelength of 1064 nm, which has several advantages for deep tissue imaging including: (1) relatively low absorption by other intrinsic chromophores, (2) cost-effective light source using Nd:YAG laser, and (3) higher available energy than other NIR lights according to American National Standards Institute (ANSI) safety limit. We have investigated deep tissue imaging capability of the Bi2Se3 nanoplates by acquiring in vitro PA images of microtubes under chicken breast tissues. We have also acquired in vivo PA images of bladders, gastrointestinal tracts, and sentinel lymph nodes in mice after injection of the Bi2Se3 nanoplates to verify their applicability to a variety of biomedical research. The results show the promising potential of the Bi2Se3 nanoplates as a PA contrast agent for deep tissue imaging with an optical wavelength of 1064 nm.

  10. Semiclassical Wheeler-DeWitt equation: Solutions for long-wavelength fields

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.; Stewart, J. M.; Parry, J.

    1993-07-01

    In the long-wavelength approximation, a general set of semiclassical wave functionals is given for gravity and matter interacting in 3+1 dimensions. In the long-wavelength theory, one neglects second-order spatial gradients in the energy constraint. These solutions satisfy the Hamilton-Jacobi equation, the momentum constraint, and the equation of continuity. It is essential to introduce inhomogeneities to discuss the role of time. The time hypersurface is chosen to be a homogeneous field in the wave functional. It is shown how to introduce tracer particles through a dust field χ into the dynamical system. The formalism can be used to describe stochastic inflation.

  11. Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures.

    PubMed

    Biswas, Rana; Timmons, Erik

    2013-09-09

    A critical step to achieving higher efficiency solar cells is the broad band harvesting of solar photons. Although considerable progress has recently been achieved in improving the power conversion efficiency of organic solar cells, these cells still do not absorb upto ~50% of the solar spectrum. We have designed and developed an organic solar cell architecture that can boost the absorption of photons by 40% and the photo-current by 50% for organic P3HT-PCBM absorber layers of typical device thicknesses. Our solar cell architecture is based on all layers of the solar cell being patterned in a conformal two-dimensionally periodic photonic crystal architecture. This results in very strong diffraction of photons- that increases the photon path length in the absorber layer, and plasmonic light concentration near the patterned organic-metal cathode interface. The absorption approaches the Lambertian limit. The simulations utilize a rigorous scattering matrix approach and provide bounds of the fundamental limits of nano-photonic light absorption in periodically textured organic solar cells. This solar cell architecture has the potential to increase the power conversion efficiency to 10% for single band gap organic solar cells utilizing long-wavelength absorbers.

  12. Light absorption of organic aerosol from pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  13. [2+2] cycloaddition of 1,3-dienes by visible light photocatalysis.

    PubMed

    Hurtley, Anna E; Lu, Zhan; Yoon, Tehshik P

    2014-08-18

    [2+2] photocycloadditions of 1,3-dienes represent a powerful yet synthetically underutilized class of reactions. We report that visible light absorbing transition metal complexes enable the [2+2] cycloaddition of a diverse range of 1,3-dienes. The ability to use long-wavelength visible light is attractive because these reaction conditions tolerate the presence of sensitive functional groups that might be readily decomposed by the high-energy UVC radiation required for direct photoexcitation of 1,3-dienes. The resulting vinylcyclobutane products are poised for a variety of further diversification reactions, and this method is consequently expected to be powerfully enabling in the synthesis of complex organic targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Light absorbing organic carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions

    EPA Science Inventory

    The light absorption of carbonaceous aerosols plays an important role in the atmospheric radiation balance. Light-absorbing organic carbon (OC), also called brown carbon (BrC), from laboratory-based biomass burning (BB) has been studied intensively to understand the contribution ...

  15. Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; All, J. D.; Schwarz, J. P.; Arnott, W. P.; Cole, R. J.; Lapham, E.; Celestian, A.

    2015-02-01

    Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in temperature, increases in light-absorbing particles deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light-absorbing particles sampled from glaciers during three surveys in the Cordillera Blanca Mountains in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, 240 snow samples were collected from 15 mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the 3 years and some mountains were sampled multiple times during the same year. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particles on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective black carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the LAHM analysis and the SP2 refractory black carbon (rBC) results were well correlated (r2 = 0.92). These results indicate that a substantial portion of the light-absorbing particles in the more polluted regions were likely BC. The 3 years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g-1) than remote glaciers (as low as 2.0 ng g-1 eBC), indicating that population centers can influence local glaciers by sourcing BC.

  16. Measurements of light absorbing particulates on the glaciers in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; All, J. D.; Schwarz, J. P.; Arnott, W. P.; Cole, R. J.; Lapham, E.; Celestian, A.

    2014-10-01

    Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in air temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light absorbing particulates sampled from glaciers during three surveys in the Cordillera Blanca in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, two hundred and forty snow samples were collected from fifteen mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the three expeditions and some mountains were sampled multiple times during the same expedition. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particulates on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective Black Carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the filter analysis and the SP2 refractory Black Carbon (rBC) results were well correlated (r2 = 0.92). These results indicate that a substantial portion of the light absorbing particulates in the more polluted areas were likely BC. The three years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g-1) than remote glaciers (as low as 2.0 ng g-1 eBC), indicating that population centers can influence local glaciers by sourcing BC.

  17. High Throughput Light Absorber Discovery, Part 2: Establishing Structure-Band Gap Energy Relationships.

    PubMed

    Suram, Santosh K; Newhouse, Paul F; Zhou, Lan; Van Campen, Douglas G; Mehta, Apurva; Gregoire, John M

    2016-11-14

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4 V 1.5 Fe 0.5 O 10.5 as a light absorber with direct band gap near 2.7 eV. The strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platform for identifying new optical materials.

  18. Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters

    NASA Astrophysics Data System (ADS)

    2008-10-01

    (Washington, DC. 08)- A team of scientists, including astronomers from the Naval Research Laboratory (NRL), have detected long wavelength radio emission from a colliding, massive galaxy cluster which, surprisingly, is not detected at the shorter wavelengths typically seen in these objects. The discovery implies that existing radio telescopes have missed a large population of these colliding objects. It also provides an important confirmation of the theoretical prediction that colliding galaxy clusters accelerate electrons and other particles to very high energies through the process of turbulent waves. The team revealed their findings in the October 16, 2008 edition of Nature. This new population of objects is most easily detected at long wavelengths. Professor Greg Taylor of the University of New Mexico and scientific director of the Long Wavelength Array (LWA) points out, "This result is just the tip of the iceberg. When an emerging suite of much more powerful low frequency telescopes, including the LWA in New Mexico, turn their views to the cosmos, the sky will 'light up' with hundreds or even thousands of colliding galaxy clusters." NRL has played a key role in promoting the development of this generation of new instruments and is currently involved with the development of the LWA. NRL radio astronomer and LWA Project Scientist Namir Kassim says "Our discovery of a previously hidden class of low frequency cluster-radio sources is particularly important since the study of galaxy clusters was a primary motivation for development of the LWA." The discovery of the emission in the galaxy cluster Abell 521 (or A521 for short) was made using the Giant Metrewave Radiotelescope (GMRT) in India, and its long wavelength nature was confirmed by the National Science Foundation's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. The attached image shows the radio emission at a wavelength of 125cm in red superimposed on a blue image made from data taken by the

  19. Temperature effect of natural organic extraction upon light absorbance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Ahmad Hambali, Nor Azura Malini; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Natural organic dyes contain pigments which when safely extracted from plants have the potential to be used as a sensitizer while promising a low-cost fabrication, environmental friendly dye-sensitized solar cells (DSSCs). Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella showed different absorption peaks when the extraction process were carried out at different temperatures. Hence, these were used as the basis to determine the conversion efficiency against the dyes extracting temperature. In this study, all dyes extracted in water have shown the best performance at a temperature of 100°C except for Harum Manis mango, while in ethanol, the optimum temperature was obtained between the room temperature, 25°C and 50°C. The absorption spectrum in water showed a broader absorption wavelength vis-à-vis ethanol solvent that resulted in the absorption peak for Ardisia, Harum Manis mango and Rosella between 450 nm and 550 nm. The highest conversion efficiency is observed to be achieved by Oxalis Triangularis extracted in water solution at 100°C, which was approximately 0.96% which corresponds to the broader absorbance trends in the literature. Thus, the optimum condition for extracting temperature for dyes in water and ethanol is room temperature and boiling points of water. Hence, Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella can be an as alternative source for photosensitizer, and the impacts of temperature upon the light absorbance can be further investigated to produce the ultimate natural dye based solar cells.

  20. Effect of light wavelength on hot spring microbial mat biodiversity.

    PubMed

    Nishida, Akifumi; Thiel, Vera; Nakagawa, Mayuko; Ayukawa, Shotaro; Yamamura, Masayuki

    2018-01-01

    Hot spring associated phototrophic microbial mats are purely microbial communities, in which phototrophic bacteria function as primary producers and thus shape the community. The microbial mats at Nakabusa hot springs in Japan harbor diverse photosynthetic bacteria, mainly Thermosynechococcus, Chloroflexus, and Roseiflexus, which use light of different wavelength for energy conversion. The aim of this study was to investigate the effect of the phototrophs on biodiversity and community composition in hot spring microbial mats. For this, we specifically activated the different phototrophs by irradiating the mats with different wavelengths in situ. We used 625, 730, and 890 nm wavelength LEDs alone or in combination and confirmed the hypothesized increase in relative abundance of different phototrophs by 16S rRNA gene sequencing. In addition to the increase of the targeted phototrophs, we studied the effect of the different treatments on chemotrophic members. The specific activation of Thermosynechococcus led to increased abundance of several other bacteria, whereas wavelengths specific to Chloroflexus and Roseiflexus induced a decrease in >50% of the community members as compared to the dark conditions. This suggests that the growth of Thermosynechococcus at the surface layer benefits many community members, whereas less benefit is obtained from an increase in filamentous anoxygenic phototrophs Chloroflexus and Roseiflexus. The increases in relative abundance of chemotrophs under different light conditions suggest a relationship between the two groups. Aerobic chemoheterotrophs such as Thermus sp. and Meiothermus sp. are thought to benefit from aerobic conditions and organic carbon in the form of photosynthates by Thermosynechococcus, while the oxidation of sulfide and production of elemental sulfur by filamentous anoxygenic phototrophs benefit the sulfur-disproportionating Caldimicrobium thiodismutans. In this study, we used an experimental approach under controlled

  1. Effect of light wavelength on hot spring microbial mat biodiversity

    PubMed Central

    Nishida, Akifumi; Thiel, Vera; Nakagawa, Mayuko; Ayukawa, Shotaro

    2018-01-01

    Hot spring associated phototrophic microbial mats are purely microbial communities, in which phototrophic bacteria function as primary producers and thus shape the community. The microbial mats at Nakabusa hot springs in Japan harbor diverse photosynthetic bacteria, mainly Thermosynechococcus, Chloroflexus, and Roseiflexus, which use light of different wavelength for energy conversion. The aim of this study was to investigate the effect of the phototrophs on biodiversity and community composition in hot spring microbial mats. For this, we specifically activated the different phototrophs by irradiating the mats with different wavelengths in situ. We used 625, 730, and 890 nm wavelength LEDs alone or in combination and confirmed the hypothesized increase in relative abundance of different phototrophs by 16S rRNA gene sequencing. In addition to the increase of the targeted phototrophs, we studied the effect of the different treatments on chemotrophic members. The specific activation of Thermosynechococcus led to increased abundance of several other bacteria, whereas wavelengths specific to Chloroflexus and Roseiflexus induced a decrease in >50% of the community members as compared to the dark conditions. This suggests that the growth of Thermosynechococcus at the surface layer benefits many community members, whereas less benefit is obtained from an increase in filamentous anoxygenic phototrophs Chloroflexus and Roseiflexus. The increases in relative abundance of chemotrophs under different light conditions suggest a relationship between the two groups. Aerobic chemoheterotrophs such as Thermus sp. and Meiothermus sp. are thought to benefit from aerobic conditions and organic carbon in the form of photosynthates by Thermosynechococcus, while the oxidation of sulfide and production of elemental sulfur by filamentous anoxygenic phototrophs benefit the sulfur-disproportionating Caldimicrobium thiodismutans. In this study, we used an experimental approach under controlled

  2. Long-wavelength Instability in Surface-tension-driven Bénard Convection

    NASA Astrophysics Data System (ADS)

    van Hook, Stephen J.

    1997-03-01

    Laboratory experiments and numerical simulations reveal that a liquid layer heated from below and possessing a free upper surface can undergo a long-wavelength deformational instability that causes rupture of the interface.(S. J. VanHook, M. F. Schatz, W. D. McCormick, J. B. Swift, and H. L. Swinney, Phys. Rev. Lett.) 75, 4397 (1995). Depending on the depth and thermal conductivity of the liquid and the overlying gas layer, the interface can rupture downwards and form a dry spot or rupture upwards and form a high spot. This long-wavelength instability competes with the formation of Bénard hexagons for thin or viscous liquid layers, or for liquid layers in microgravity.

  3. Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.

    PubMed

    Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin

    2016-07-01

    Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.

    PubMed

    Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki

    2006-05-18

    Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.

  5. Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Shen, Junling; Liu, Xiaolian; Ni, Lu; Wang, Saili

    2017-09-01

    The relative coupling efficiency of two-dimensional (2D) grating based on surface plasmon for very long wavelength quantum well infrared detector is analyzed by using the three-dimensional finite-difference time domain (3D-FDTD) method algorithm. The relative coupling efficiency with respect to the grating parameters, such as grating pitch, duty ratio, and grating thickness, is analyzed. The calculated results show that the relative coupling efficiency would reach the largest value for the 14.5 μm incident infrared light when taking the grating pitch as 4.4 μm, the duty ratio as 0.325, and the grating thickness as 0.07 μm, respectively.

  6. Multi-wavelength analysis of Ellerman Bomb Light Curves

    NASA Astrophysics Data System (ADS)

    Herlender, M.; Berlicki, A.

    We present the results of a multi-wavelength photometric analysis of Ellerman Bomb (EB) observations obtained from the Dutch Open Telescope. In our data we have found 6 EBs located in the super-penumbra of the main spot in the active region NOAA 10781. We present light curves of EB observed in the Hα line centre and wing +0.7 Å, in the Ca II H line centre and wing~+2.35 Å, in the G-band and in the TRACE 1600 Å filter. We have shown that EBs were visible in the G-band and moreover, there was a good correlation between the light curves in the G-band and in the Hα line wings. We also found quasi-periodic oscillations of EBs brightness in the G-band, CaII H line and TRACE 1600 Å filter.

  7. Measuring of nonlinear properties of spatial light modulator with different wavelengths

    NASA Astrophysics Data System (ADS)

    Khalid, Farah G.; Younis Al-Dabagh, Samar; Ahmed, Sudad S.; Mahmood, Aseel I.; Al-Naimee, Kais

    2018-05-01

    The non-linear optical properties of Spatial Light Modulator(SLM) represented by Nonlinear Refractive Index (NLR) and nonlinear Absorption coefficient has been measured in this work using highly sensitive method known as Z-scan technique for different wavelengths (red and green). The capability to do instant measurements of different nonlinear optical parameters lead to consider these techniques as a one of the most desired and effective methods that could apply for different materials. The results showed that the NLR were in the same power for the different wavelengths while the nonlinear absorption is higher in case of green laser.

  8. Effect of light wavelength on motility and magnetic sensibility of the magnetotactic multicellular prokaryote 'Candidatus Magnetoglobus multicellularis'.

    PubMed

    de Azevedo, Lyvia Vidinho; de Barros, Henrique Lins; Keim, Carolina Neumann; Acosta-Avalos, Daniel

    2013-09-01

    'Candidatus Magnetoglobus multicellularis' is a magnetotactic microorganism composed of several bacterial cells. Presently, it is the best known multicellular magnetotactic prokaryote (MMP). Recently, it has been observed that MMPs present a negative photoresponse to high intensity ultraviolet and violet-blue light. In this work, we studied the movement of 'Candidatus Magnetoglobus multicellularis' under low intensity light of different wavelengths, measuring the average velocity and the time to reorient its trajectory when the external magnetic field changes its direction (U-turn time). Our results show that the mean average velocity is higher for red light (628 nm) and lower for green light (517 nm) as compared to yellow (596 nm) and blue (469 nm) light, and the U-turn time decreased for green light illumination. The light wavelength velocity dependence can be understood as variation in flagella rotation speed, being increased by the red light and decreased by the green light relative to yellow and blue light. It is suggested that the dependence of the U-turn time on light wavelength can be considered a form of light-dependent magnetotaxis, because this time represents the magnetic sensibility of the magnetotactic microorganisms. The cellular and molecular mechanisms for this light-dependent velocity and magnetotaxis are unknown and deserve further studies to understand the biochemical interactions and the ecological roles of the different mechanisms of taxis in MMPs.

  9. Structure Optimization of 21,23-Core-Modified Porphyrins Absorbing Long-Wavelength Light as Potential Photosensitizers Against Breast Cancer Cells

    DTIC Science & Technology

    2006-04-01

    recording singlet oxygen emission spectra. A diode -pumped solid-state laser (Millenia X, Spectra-Physics) at 532 nm was the excitation source. The sample...biological properties in vitro Youngjae You,a,* Scott L. Gibsonb and Michael R. Dettya aInstitute for Lasers , Photonics, and Biophotonics, Department...relative to the exciting laser beam. An additional long-pass filter (850LP) was used to attenuate the excitation laser and the fluorescence from the

  10. Wavelength-Selective Photovoltaics for Power-generating Greenhouses

    NASA Astrophysics Data System (ADS)

    Carter, Sue; Loik, Michael; Shugar, David; Corrado, Carley; Wade, Catherine; Alers, Glenn

    2014-03-01

    While photovoltaic (PV) technologies are being developed that have the potential for meeting the cost target of 0.50/W per module, the cost of installation combined with the competition over land resources could curtail the wide scale deployment needed to generate the Terrawatts per year required to meet the world's electricity demands. To be cost effective, such large scale power generation will almost certainly require PV solar farms to be installed in agricultural and desert areas, thereby competing with food production, crops for biofuels, or the biodiversity of desert ecosystems. This requirement has put the PV community at odds with both the environmental and agricultural groups they would hope to support through the reduction of greenhouse gas emissions. A possible solution to this challenge is the use of wavelength-selective solar collectors, based on luminescent solar concentrators, that transmit wavelengths needed for plant growth while absorbing the remaining portions of the solar spectrum and converting it to power. Costs are reduced through simultaneous use of land for both food and power production, by replacing the PV cells by inexpensive long-lived luminescent materials as the solar absorber, and by integrating the panels directly into existing greenhouse or cold frames. Results on power generation and crop yields for year-long trials done at academic and commercial greenhouse growers in California will be presented.

  11. Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese

    PubMed Central

    Kim, Soo-Ji; Kim, Do-Kyun

    2015-01-01

    UVC light is a widely used sterilization technology. However, UV lamps have several limitations, including low activity at refrigeration temperatures, a long warm-up time, and risk of mercury exposure. UV-type lamps only emit light at 254 nm, so as an alternative, UV light-emitting diodes (UV-LEDs) which can produce the desired wavelengths have been developed. In this study, we validated the inactivation efficacy of UV-LEDs by wavelength and compared the results to those of conventional UV lamps. Selective media inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated using UV-LEDs at 266, 270, 275, and 279 nm in the UVC spectrum at 0.1, 0.2, 0.5, and 0.7 mJ/cm2, respectively. The radiation intensity of the UV-LEDs was about 4 μW/cm2, and UV lamps were covered with polypropylene films to adjust the light intensity similar to those of UV-LEDs. In addition, we applied UV-LED to sliced cheese at doses of 1, 2, and 3 mJ/cm2. Our results showed that inactivation rates after UV-LED treatment were significantly different (P < 0.05) from those of UV lamps at a similar intensity. On microbiological media, UV-LED treatments at 266 and 270 nm showed significantly different (P < 0.05) inactivation effects than other wavelength modules. For sliced cheeses, 4- to 5-log reductions occurred after treatment at 3 mJ/cm2 for all three pathogens, with negligible generation of injured cells. PMID:26386061

  12. Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  13. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    PubMed

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  14. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    DOE PAGES

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan; ...

    2016-09-23

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4V 1.5Fe 0.5O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platformmore » for identifying new optical materials.« less

  15. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4V 1.5Fe 0.5O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platformmore » for identifying new optical materials.« less

  16. Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization

    NASA Astrophysics Data System (ADS)

    Al-Hayali, S. K. M.; Al-Janabi, A. H.

    2018-03-01

    We have experimentally demonstrated the operation of a dual-wavelength passively Q-switched ytterbium-doped fiber laser by using a saturable absorber (SA) based on Fe3O4 nanoparticles in a magnetic fluid. The SA was fabricated by depositing magnetic fluid at the end of an optical fiber ferrule. By performing adjustments to the pump power and polarization controller state in the cavity, a stable dual-wavelength lasing operation was generated without intracavity spectral filters or modulation elements. The Q-switched laser output was achieved at a pump threshold of 80 mW with a maximum output pulse energy of 38.8 nJ, a repetition rate of 73.4 kHz and a minimum pulse width of 3.4 µs. To the best of the authors’ knowledge, this is the first demonstration of a dual-wavelength passively Q-switched fiber laser using Fe3O4 nanoparticles as the SA in the 1.0 µm operation region.

  17. An assessment of prewhitening in estimating power spectra of atmospheric turbulence at long wavelengths

    NASA Technical Reports Server (NTRS)

    Keisler, S. R.; Rhyne, R. H.

    1976-01-01

    Synthetic time histories were generated and used to assess the effects of prewhitening on the long wavelength portion of power spectra of atmospheric turbulence. Prewhitening is not recommended when using the narrow spectral windows required for determining power spectral estimates below the 'knee' frequency, that is, at very long wavelengths.

  18. Ultraviolet and short wavelength visible light exposure: why ultraviolet protection alone is not adequate.

    PubMed

    Reichow, Alan W; Citek, Karl; Edlich, Richard F

    2006-01-01

    The danger of exposure to ultraviolet (UV) radiation in both the natural environment and artificial occupational settings has long been recognized by national and international standards committees and worker safety agencies. There is an increasing body of literature that suggests that protection from UV exposure is not enough. Unprotected exposure to the short wavelengths of the visible spectrum, termed the "blue light hazard", is gaining acceptance as a true risk to long-term visual health. Global standards and experts in the field are now warning that those individuals who spend considerable time outdoors should seek sun filter eyewear with high impact resistant lenses that provide 100% UV filtration, high levels of blue light filtration, and full visual field lens/frame coverage as provided by high wrap eyewear. The Skin Cancer Foundation has endorsed certain sunglasses as "product[s]...effective [as] UV filter[s] for the eyes and surrounding skin". However, such endorsement does not necessarily mean that the eyewear meets all the protective needs for outdoor use. There are several brands that offer products with such protective characteristics. Performance sun eyewear by Nike Vision, available in both corrective and plano (nonprescription) forms, is one such brand incorporating these protective features.

  19. Enhancement of near-infrared detectability from InGaZnO thin film transistor with MoS2 light absorbing layer.

    PubMed

    Pak, Sang Woo; Chu, Dongil; Song, Da Ye; Lee, Seung Kyo; Kim, Eun Kyu

    2017-11-24

    We report an enhancement of near-infrared (NIR) detectability from amorphous InGaZnO (α-IGZO) thin film transistor in conjunction with randomly distributed molybdenum disulfide (MoS 2 ) flakes. The electrical characteristics of the α-IGZO grown by radio-frequency magnetron sputtering exhibit high effective mobility exceeding 15 cm 2 V -1 s -1 and current on/off ratio up to 10 7 . By taking advantages of the high quality α-IGZO and MoS 2 light absorbing layer, photodetection spectra are able to extend from ultra-violet to NIR range. The α-IGZO channel detector capped by MoS 2 show a photo-responsivity of approximately 14.9 mA W -1 at 1100 nm wavelength, which is five times higher than of the α-IGZO device without MoS 2 layer.

  20. Enhancement of near-infrared detectability from InGaZnO thin film transistor with MoS2 light absorbing layer

    NASA Astrophysics Data System (ADS)

    Pak, Sang Woo; Chu, Dongil; Song, Da Ye; Kyo Lee, Seung; Kim, Eun Kyu

    2017-11-01

    We report an enhancement of near-infrared (NIR) detectability from amorphous InGaZnO (α-IGZO) thin film transistor in conjunction with randomly distributed molybdenum disulfide (MoS2) flakes. The electrical characteristics of the α-IGZO grown by radio-frequency magnetron sputtering exhibit high effective mobility exceeding 15 cm2 V-1 s-1 and current on/off ratio up to 107. By taking advantages of the high quality α-IGZO and MoS2 light absorbing layer, photodetection spectra are able to extend from ultra-violet to NIR range. The α-IGZO channel detector capped by MoS2 show a photo-responsivity of approximately 14.9 mA W-1 at 1100 nm wavelength, which is five times higher than of the α-IGZO device without MoS2 layer.

  1. Phase response of the Arabidopsis thaliana circadian clock to light pulses of different wavelengths.

    PubMed

    Ohara, Takayuki; Fukuda, Hirokazu; Tokuda, Isao T

    2015-04-01

    Light is known as one of the most powerful environmental time cues for the circadian system. The quality of light is characterized by its intensity and wavelength. We examined how the phase response of Arabidopsis thaliana depends on the wavelength of the stimulus light and the type of light perturbation. Using transgenic A. thaliana expressing a luciferase gene, we monitored the rhythm of the bioluminescence signal. We stimulated the plants under constant red light using 3 light perturbation treatments: (1) increasing the red light intensity, (2) turning on a blue light while turning off the red light, and (3) turning on a blue light while keeping the red light on. To examine the phase response properties, we generated a phase transition curve (PTC), which plots the phase after the perturbation as a function of the phase before the perturbation. To evaluate the effect of the 3 light perturbation treatments, we simulated PTCs using a mathematical model of the plant circadian clock and fitted the simulated PTCs to the experimentally measured PTCs. Among the 3 treatments, perturbation (3) provided the strongest stimulus. The results indicate that the color of the stimulus light and the type of pulse administration affect the phase response in a complex manner. Moreover, the results suggest the involvement of interaction between red and blue light signaling pathways in resetting of the plant circadian clock. © 2015 The Author(s).

  2. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  3. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light

    PubMed Central

    Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S.

    2016-01-01

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. PMID:27659906

  4. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light.

    PubMed

    Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S

    2016-09-23

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture.

  5. Backward Raman Amplification in the Long-wavelength Infrared

    DTIC Science & Technology

    2016-12-29

    mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation. An electromagnetic finite-difference time-domain simulation...couples a finite-difference time-domain electromagnetic solver with a collisional, relativistic cold fluid plasma model [30]. The simulation domain... electromagnetic simulations coupled to a relativistic cold fluid plasma model with electron- ion collisions. Using a pump pulse that could be generated by a CO

  6. Broadband infrared metamaterial absorber based on anodic aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Yang, Jingfan; Qu, Shaobo; Ma, Hua; Wang, Jiafu; Yang, Shen; Pang, Yongqiang

    2018-05-01

    In this work, a broadband infrared metamaterial absorber is proposed based on trapezoid-shaped anodic aluminum oxide (AAO) template. Unlike traditional metamaterial absorber constructed from metal-dielectric-metal sandwich structure, our proposed absorber is composed of trapezoid-shaped AAO template with metallic nanowires inside. The infrared absorption efficiency is numerically calculated and the mechanism analysis is given in the paper. Owing to the superposition of multiple resonances produced by the nanowires with different heights, the infrared metamatrial absorber can keep high absorption efficiency during broad working wavelength band from 3.4 μm to 6.1 μm. In addition, the resonance wavelength is associated with the height of nanowires, which indicates that the resonance wavelength can be modulated flexibly through changing the heights of nanowires. This kind of design can also be adapted to other wavelength regions.

  7. Easier detection of invertebrate "identification-key characters" with light of different wavelengths

    PubMed Central

    2011-01-01

    The marine α-taxonomist often encounters two problems. Firstly, the "environmental dirt" that is frequently present on the specimens and secondly the difficulty in distinguishing key-features due to the uniform colours which fixed animals often adopt. Here we show that illuminating animals with deep-blue or ultraviolet light instead of the normal white-light abrogates both difficulties; dirt disappears and important details become clearly visible. This light regime has also two other advantages. It allows easy detection of very small, normally invisible, animals (0.1 μm range). And as these light wavelengths can induce fluorescence, new identification markers may be discovered by this approach. PMID:22040277

  8. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ning, Tigang; Jian, Shuisheng

    2009-06-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.

  9. Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber

    PubMed Central

    Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin

    2017-01-01

    Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies. PMID:28256599

  10. Far-ultraviolet absorbance detection of sugars and peptides by high-performance liquid chromatography.

    PubMed

    Uchiho, Yuichi; Goto, Yusuke; Kamahori, Masao; Aota, Toshimichi; Morisaki, Atsuki; Hosen, Yusuke; Koda, Kimiyoshi

    2015-12-11

    A far-ultraviolet (FUV)-absorbance detector with a transmission flow cell was developed and applied to detect absorbance of sugars and peptides by HPLC. The main inherent limitation of FUV-absorbance detection is the strong absorptions of solvents and atmospheric oxygen in the optical system as well as dissolved oxygen in the solvent. High absorptivity of the solvent and oxygen decreases transmission-light intensity in the flow cell and hinders the absorbance measurement. To solve the above drawbacks, the transmission-light intensity in the flow cell was increased by introducing a new optical system and a nitrogen-purging unit to remove the atmospheric oxygen. The optical system has a photodiode for detecting the reference light at a position of the minus-first-order diffracted light. In addition, acetonitrile and water were selected as usable solvents because of their low absorptivity in the FUV region. As a result of these implementations, the detectable wavelength of the FUV-absorbance detector (with a flow cell having an effective optical path length of 0.5mm) can be extended down to 175nm. Three sugars (glucose, fructose, and sucrose) were successfully detected with the FUV-absorbance detector. These detection results reveal that the absorption peak of sugar in liquid phase lies at around 178nm. The detection limit (S/N=3) in absorbance with a 0.5-mm flow cell at 180nm was 21μAU, which corresponds to 33, 60 and 60μM (198, 360, and 360pmol) for fructose, glucose, and sucrose, respectively. Also, the peptide Met-enkephalin could be detected with a high sensitivity at 190nm. The estimated detection limit (S/N=3) for Met-enkephalin is 29nM (0.29pmol), which is eight times lower than that at 220nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Broad-band and polarization-independent perfect absorption in graphene-gold cylinder arrays at visible and near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Zhou, P.; Zheng, G. G.; Xu, L. H.; Xian, F. L.; Lai, M.

    2018-07-01

    A wavelength tunable perfect absorber with graphene-hexagonal gold (Au) cylinder array on a ground plate is investigated theoretically. The interactions between electromagnetic (EM) waves and monolayer graphene are analyzed through the field distributions and spectral responses in detail. The finite-difference-time-domain (FDTD) method is used to investigate the tunable properties of the absorber. It is demonstrated that in an optimized configuration, monolayer graphene can interact with light via critical coupling, and the absorptance can be greatly enhanced and reach to 100% for both transverse magnetic (TM) and transverse electronic (TE) polarizations. Furthermore, the influence of geometrical parameters of the structure on the response of the hybrid structure is studied. It is expected that the proposed graphene perfect absorbers can be applied for many applications in the visible (VIS) and the near-infrared (NIR) spectral ranges such as wavelength selective infrared photodetectors and plasmonic sensors.

  12. Innovative Long Wavelength Infrared Detector Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.

    1990-01-01

    The focus of the workshop was on innovative long wavelength (lambda less than 17 microns) infrared (LWIR) detectors with the potential of meeting future NASA and DoD long-duration space application needs. Requirements are for focal plane arrays which operate near 65K using active refrigeration with mission lifetimes of five to ten years. The workshop addressed innovative concepts, new material systems, novel device physics, and current progress in relation to benchmark technology. It also provided a forum for discussion of performance characterization, producibility, reliability, and fundamental limitations of device physics. It covered the status of the incumbent HgCdTe technology, which shows encouraging progress towards LWIR arrays, and provided a snapshot of research and development in several new contender technologies.

  13. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhong, Qiwen

    photosynthesis. Photosynthesis uses light from the sun to drive a series of chemical reactions. Most natural photosynthetic systems utilize chlorophylls to absorb light energy and carry out photochemical charge separation that stores energy in the form of chemical bonds. The sun produces a broad spectrum of light output that ranges from gamma rays to radio waves. The entire visible range of light (400-700 nm) and some wavelengths in the NIR (700-1000 nm), are highly active in driving photosynthesis. Although the most familiar chlorophyll-containing organisms, such as plants, algae and cyanobacteria, cannot use light longer than 700 nm, anoxygenic bacterium containing bacteriochlorophylls can use the NIR part of the solar spectrum. No organism is known to utilize light of wavelength longer than about 1000 nm for photosynthesis. NIR light has a very low-energy content in each photon, so that large numbers of these low-energy photons would have to be used to drive the chemical reactions of photosynthesis. This is thermodynamically possible but would require a fundamentally different molecular mechanism that is more akin to a heat engine than to photochemistry. Early work on developing light absorbing materials for OPVs was inspired by photosynthesis in which light is absorbed by chlorophyll. Structurally related to chlorophyll is the porphyrin family, which has accordingly drawn much interest as the potential light absorbing component in OPV applications. In this dissertation, the design and detail studies of several porphyrin-based NIR absorbing materials, including pi--extended perylenyl porphryins and pyrazole-containing carbaporphyrins, as well as porphyrin modified single-walled carbon nanotube hybrids, will be presented, dedicating efforts to develop novel and application-oriented materials for efficient utilization of sustainable solar energy.

  14. Development of absorber coupled TES polarimeter at millimeter wavelengths.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.; Yefremenko, V.; Novosad, V.

    2009-06-01

    We report an absorber coupled TES bolometric polarimeter, consisting of an absorptive metal grid and a Mo/Au bi-layer TES on a suspended silicon nitride membrane disk. The electromagnetic design of the polarization sensitive absorbers, the heat transport modeling of the detector, the thermal response of the TES, and the micro-fabrication processes are presented. We also report the results of laboratory tests of a single pixel prototype detector, and compare with theoretical expectations.

  15. Long-wavelength Instability of Trailing Vortices Behind a Delta Wing

    NASA Astrophysics Data System (ADS)

    Miller, G. D.; Williamson, C. H. K.

    1996-11-01

    The long-wavelength instability of a vortex pair is studied in the wake of a delta wing. While many previous studies of the instability exist, almost none are accompanied by accurate measurements of the vortex core parameters upon which the theoretical predictions depend. The present measurements of wavelength and maximum growth rate from visualization images are accompanied by extensive DPIV measurements of the distributions of vorticity and axial velocity. Axial velocity was found to be wake-like, with a velocity deficit. The vorticity distribution in the cores is well modeled by an Oseen vortex, as is the downstream growth of the core. The naturally occuring wavelength was measured to be 4.5 times the inter-vortex spacing, which compares very well with the wavelength of maximum growth rate predicted by theory using measured core parameters. Also, the measured value of the growth rate and the lower stability limit correspond well with theory. The response of the wake to forcing is also examined, and reveals that the wake is receptive to forcing at wavelengths near the natural wavelength. We demonstrate control over the rate at which the wake decays by hastening the action of the instabilty with initial forcing. Supported by NDSEG Fellowship for first author.

  16. Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

    PubMed Central

    Farhat, Mohamed; Cheng, Tsung-Chieh; Le, Khai. Q.; Cheng, Mark Ming-Cheng; Bağcı, Hakan; Chen, Pai-Yen

    2016-01-01

    We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness and air-filling fraction of nanoporous alumina, according to the Maxwell-Garnet mixture theory, a large-area dark alumina can be made with excellent photothermal properties and absorption larger than 93% over a wide wavelength range spanning from near-infrared to ultraviolet light, i.e. 250 nm–2500 nm. The measured absorption is orders of magnitude greater than other reported anodized porous alumina, typically semi-transparent at similar wavelengths. This simple yet effective approach, however, does not require any lithography, nano-mixture deposition, pre- and post-treatment. Here, we also envisage and theoretically investigate the practical use of proposed absorbers and/or photothermal converters in integrated thermoelectronic and/or thermophotovoltaic energy conversion devices, which make efficient use of the entire spectrum of ambient visible to near-infrared radiation. PMID:26817710

  17. Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Cheng, Tsung-Chieh; Le, Khai. Q.; Cheng, Mark Ming-Cheng; Bağcı, Hakan; Chen, Pai-Yen

    2016-01-01

    We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness and air-filling fraction of nanoporous alumina, according to the Maxwell-Garnet mixture theory, a large-area dark alumina can be made with excellent photothermal properties and absorption larger than 93% over a wide wavelength range spanning from near-infrared to ultraviolet light, i.e. 250 nm-2500 nm. The measured absorption is orders of magnitude greater than other reported anodized porous alumina, typically semi-transparent at similar wavelengths. This simple yet effective approach, however, does not require any lithography, nano-mixture deposition, pre- and post-treatment. Here, we also envisage and theoretically investigate the practical use of proposed absorbers and/or photothermal converters in integrated thermoelectronic and/or thermophotovoltaic energy conversion devices, which make efficient use of the entire spectrum of ambient visible to near-infrared radiation.

  18. Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms

    DOE PAGES

    Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng

    2016-03-04

    Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less

  19. A novel screen design for anti-ambient light front projection display with angle-selective absorber

    NASA Astrophysics Data System (ADS)

    Liao, Tianju; Chen, Weigang; He, Kebo; Zhang, Zhaoyu

    2016-03-01

    Ambient light is destructive to the reflective type projection system's contrast ratio which has great influence on the image quality. In contrast to the conventional front projection, short-throw projection has its advantage to reject the ambient light. Fresnel lens-shaped reflection layer is adapted to direct light from a large angle due to the low lens throw ratio to the viewing area. The structure separates the path of the ambient light and projection light, creating the chance to solve the problem that ambient light is mixed with projection light. However, with solely the lens-shaped reflection layer is not good enough to improve the contrast ratio due to the scattering layer, which contributes a necessarily wide viewing angle, could interfere with both light paths before hitting the layer. So we propose a new design that sets the draft angle surface with absorption layer and adds an angle-selective absorber to separate these two kinds of light. The absorber is designed to fit the direction of the projection light, leading to a small absorption cross section for the projection light and respectfully big absorption cross section for the ambient light. We have calculated the design with Tracepro, a ray tracing program and find a nearly 8 times contrast ratio improvement against the current design in theory. This design can hopefully provide efficient display in bright lit situation with better viewer satisfaction.

  20. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    NASA Astrophysics Data System (ADS)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  1. Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese.

    PubMed

    Kim, Soo-Ji; Kim, Do-Kyun; Kang, Dong-Hyun

    2016-01-01

    UVC light is a widely used sterilization technology. However, UV lamps have several limitations, including low activity at refrigeration temperatures, a long warm-up time, and risk of mercury exposure. UV-type lamps only emit light at 254 nm, so as an alternative, UV light-emitting diodes (UV-LEDs) which can produce the desired wavelengths have been developed. In this study, we validated the inactivation efficacy of UV-LEDs by wavelength and compared the results to those of conventional UV lamps. Selective media inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated using UV-LEDs at 266, 270, 275, and 279 nm in the UVC spectrum at 0.1, 0.2, 0.5, and 0.7 mJ/cm(2), respectively. The radiation intensity of the UV-LEDs was about 4 μW/cm(2), and UV lamps were covered with polypropylene films to adjust the light intensity similar to those of UV-LEDs. In addition, we applied UV-LED to sliced cheese at doses of 1, 2, and 3 mJ/cm(2). Our results showed that inactivation rates after UV-LED treatment were significantly different (P < 0.05) from those of UV lamps at a similar intensity. On microbiological media, UV-LED treatments at 266 and 270 nm showed significantly different (P < 0.05) inactivation effects than other wavelength modules. For sliced cheeses, 4- to 5-log reductions occurred after treatment at 3 mJ/cm(2) for all three pathogens, with negligible generation of injured cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Long-term effects of UV light on contractility of rat arteries in vivo.

    PubMed

    Morimoto, Yuji; Kohyama, Shinya; Nakai, Kanji; Matsuo, Hirotaka; Karasawa, Fujio; Kikuchi, Makoto

    2003-10-01

    Several studies have shown that UV irradiation may be effective for preventing vascular restenosis or vasopasm. However, the long-term effects of UV light on the physiological properties of vessels such as arterial tension have not been elucidated. We therefore studied the long-term effects of UV using rat carotid arteries treated with UV-B light (wavelength = 313 nm, total energy = 14 mJ/mm2). The animals were sacrificed at 1, 7 and 14 days after UV light exposure, and the carotid arteries were studied by light microscopy and the contractile responses of isolated arterial rings were recorded under isometric tension. UV treatment had induced a substantial loss of smooth muscle cells (SMC) along the entire circumference of the media on days 7 and 14, whereas loss of SMC on day 1 was negligible. Contractile responses of arteries that had been exposed to UV light were significantly reduced on days, 1, 7 and 14. The susceptibility of UV-treated arteries to phenylephrine and prostaglandin F2 alpha was significantly decreased on days 1 and 7, but decreased susceptibility was not seen on day 14. Acetylcholine-induced relaxations were not altered by UV treatment. These results suggest that the long-term effect of UV light is an attenuation of smooth muscle contractility without impairment of endothelial function.

  3. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris.

    PubMed

    Kim, Dae Geun; Lee, Changsu; Park, Seung-Moon; Choi, Yoon-E

    2014-05-01

    LEDs light offer several advantages over the conventional lamps, thereby being considered as the optimal light sources for microalgal cultivation. In this study, various light-emitting diodes (LEDs) especially red and blue color with different light wavelengths were employed to explore the effects of light source on phototrophic cultivation of Chlorella vulgaris. Blue light illumination led to significantly increased cell size, whereas red light resulted in small-sized cell with active divisions. Based on the discovery of the effect of light wavelengths on microalgal biology, we then applied appropriate wavelength at different growth stages; blue light was illuminated first and then shifted to red light. By doing so, biomass and lipid productivity of C. vulgaris could be significantly increased, compared to that in the control. These results will shed light on a novel approach using LED light for microalgal biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths.

    PubMed

    Rucker, Frances J; Wallman, Josh

    2008-09-01

    Chick eyes compensate for defocus imposed by spectacle lenses by making compensatory changes in eye length and choroidal thickness, a laboratory model of emmetropization. To investigate the roles of longitudinal chromatic aberration and of chromatic mechanisms in emmetropization, we examined the participation of different cone classes, and we compared the efficacy of lens compensation under monochromatic illumination with that under white light of the same illuminance to the chick eye. Chicks wore positive or negative 6D or 8D lenses on one eye for 3 days, under either blue (460 nm) or red (620 nm) light at 0.67 lux or under white light at 0.67 or 0.2 lux (all measures are corrected for chick photopic sensitivity). The illumination conditions were chosen to differentially stimulate either the short-wavelength and ultraviolet cones or the long-wavelength and double cones. Measurements are expressed as the relative change: the inter-ocular difference in the amount of change over the 3 days of lens wear. We find that under this low illumination the two components of lens compensation were differentially affected by the monochromatic illumination: in blue light lens compensation was mainly due to changes in eye length, whereas in red light lens compensation was mainly due to changes in choroidal thickness. In general, white light produced better lens compensation than monochromatic illumination. NEGATIVE LENSES: Under white light negative lenses caused an increase in eye length (60 microm) together with a decrease in choroidal thickness (-51 microm) relative to the fellow eye. Under blue light, although there was an increase in eye length (32 microm), there was no change in choroidal thickness (5 microm). In contrast, under red light there was a decrease in choroidal thickness (-62 microm) but no increase in eye length (8 microm). Relative ocular elongation was the same in white and monochromatic light. POSITIVE LENSES: Under white light positive lenses caused a

  5. Photodetector with absorbing region having resonant periodic absorption between reflectors

    DOEpatents

    Bryan, R.P.; Olbright, G.R.; Brennan, T.M.; Tsao, J.Y.

    1995-02-14

    A photodetector is disclosed that is responsive to a wavelength or wavelengths of interest which have heretofore been unrealized. The photodetector includes a resonant cavity structure bounded by first and second reflectors, the resonant cavity structure being resonant at the wavelength or wavelengths of interest for containing a plurality of standing waves therein. The photodetector further includes a radiation absorbing region disposed within the resonant cavity structure, the radiation absorbing region including a plurality of radiation absorbing layers spaced apart from one another by a distance substantially equal to a distance between antinodes of adjacent ones of the standing waves. Each of radiation absorbing layers is spatially positioned at a location of one of the antinodes of one of the standing waves such that radiation absorption is enhanced. The radiation absorbing layers may be either bulk layers or quantum wells includes a plurality of layers, each of which is comprised of a strained layer of InGaAs. Individual ones of the InGaAs layers are spaced apart from one another by a GaAs barrier layer. 11 figs.

  6. Photodetector with absorbing region having resonant periodic absorption between reflectors

    DOEpatents

    Bryan, Robert P.; Olbright, Gregory R.; Brennan, Thomas M.; Tsao, Jeffrey Y.

    1995-02-14

    A photodetector that is responsive to a wavelength or wavelengths of interest which have heretofore been unrealized. The photodetector includes a resonant cavity structure bounded by first and second reflectors, the resonant cavity structure being resonant at the wavelength or wavelengths of interest for containing a plurality of standing waves therein. The photodetector further includes a radiation absorbing region disposed within the resonant cavity structure, the radiation absorbing region including a plurality of radiation absorbing layers spaced apart from one another by a distance substantially equal to a distance between antinodes of adjacent ones of the standing waves. Each of radiation absorbing layers is spatially positioned at a location of one of the antinodes of one of the standing waves such that radiation absorption is enhanced. The radiation absorbing layers may be either bulk layers or quantum wells includes a plurality of layers, each of which is comprised of a strained layer of InGaAs. Individual ones of the InGaAs layers are spaced apart from one another by a GaAs barrier layer.

  7. LONG-TERM LIGHT CURVE OF HIGHLY VARIABLE PROTOSTELLAR STAR GM CEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Limin; Kroll, Peter; Henden, Arne A.

    2010-04-15

    We present data from the archival plates at Harvard College Observatory and Sonneberg Observatory showing the field of the solar-type pre-main-sequence star GM Cep. A total of 186 magnitudes of GM Cep have been measured on these archival plates, with 176 in blue sensitivity, six in visible, and four in red. We combine our data with data from the literature and from the American Association of Variable Star Observers to depict the long-term light curves of GM Cep in both B and V wavelengths. The light curves span from 1895 until now, with two densely sampled regions (1935-1945 in themore » B band, and 2006 until now in the V band). The long-term light curves do not show any fast rise behavior as predicted by an accretion mechanism. Both the light curves and the magnitude histograms confirm the conclusion that the light curves are dominated by dips (possibly from extinction) superposed on some quiescence state, instead of outbursts caused by accretion flares. Our result excludes the possibility of GM Cep being a FUor, EXor, or McNeil's Nebula-type star. Several special cases of T Tauri stars were checked, but none of these light curves were compatible with that of GM Cep. The lack of periodicity in the light curve excludes the possibility of GM Cep being a KH 15D system.« less

  8. Measurement of thin films using very long acoustic wavelengths

    NASA Astrophysics Data System (ADS)

    Clement, G. T.; Nomura, H.; Adachi, H.; Kamakura, T.

    2013-12-01

    A procedure for measuring material thickness by means of necessarily long acoustic wavelengths is examined. The approach utilizes a temporal phase lag caused by the impulse time of wave momentum transferred through a thin layer that is much denser than its surrounding medium. In air, it is predicted that solid or liquid layers below approximately 1/2000 of the acoustic wavelength will exhibit a phase shift with an arctangent functional dependence on thickness and layer density. The effect is verified for thin films on the scale of 10 μm using audible frequency sound (7 kHz). Soap films as thin as 100 nm are then measured using 40 kHz air ultrasound. The method's potential for imaging applications is demonstrated by combining the approach with near-field holography, resulting in reconstructions with sub-wavelength resolution in both the depth and lateral directions. Potential implications at very high and very low acoustic frequencies are discussed.

  9. Multi-Wavelength Monitoring of GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.

    1997-01-01

    Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here preliminary results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8m Perkins telescope at Lowell Observatory. The K-band data presented herein provide the first long-term well-sampled IR light curve of GRS 1915+105. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.

  10. MOVPE prepared InAs/GaAs quantum dots covered by GaAsSb layer with long wavelength emission at 1.8 μm

    NASA Astrophysics Data System (ADS)

    Zíková, Markéta; Hospodková, Alice; Pangrác, Jiří; Oswald, Jiří; Krčil, Pavel; Hulicius, Eduard; Komninou, Philomela; Kioseoglou, Joseph

    2015-03-01

    Preparation and properties of InAs/GaAs quantum dots (QDs) prepared by the MOVPE technology covered by GaAsSb strain reducing layer (SRL) with extremely long emission wavelength at 1.8 μm will be presented. Increase of the emission wavelength was achieved by the introduction of GaAsSb SRL with Sb content of about 30% in the solid phase. The high Sb concentration in the SRL causes the preservation of QD size, which is about 15 nm wide at the base and 5 nm high. Increased QD size increases the photoluminescence (PL) wavelength. Furthermore, high content of antimony leads to a creation of type II heterostructure for which a redshift of the PL wavelength and decrease of the PL intensity are typical. Low PL intensity may complicate light emitting applications; however fast separation of carriers in the type II structure is an advantage for detector or solar cell application, especially with the long working wavelength. With respect to the perspective application of this structure, the photocurrent (PC) measurement was chosen as the complementary characterization method. A depression of PC for quantum well wavelength region (approximately 900-1200 nm) was observed for positive bias, while the PC from QDs (over 1200 nm) is not sensitive to the electric field orientation at all. An explanation of this unexpected phenomenon is suggested.

  11. Recovering Long-wavelength Velocity Models using Spectrogram Inversion with Single- and Multi-frequency Components

    NASA Astrophysics Data System (ADS)

    Ha, J.; Chung, W.; Shin, S.

    2015-12-01

    Many waveform inversion algorithms have been proposed in order to construct subsurface velocity structures from seismic data sets. These algorithms have suffered from computational burden, local minima problems, and the lack of low-frequency components. Computational efficiency can be improved by the application of back-propagation techniques and advances in computing hardware. In addition, waveform inversion algorithms, for obtaining long-wavelength velocity models, could avoid both the local minima problem and the effect of the lack of low-frequency components in seismic data. In this study, we proposed spectrogram inversion as a technique for recovering long-wavelength velocity models. In spectrogram inversion, decomposed frequency components from spectrograms of traces, in the observed and calculated data, are utilized to generate traces with reproduced low-frequency components. Moreover, since each decomposed component can reveal the different characteristics of a subsurface structure, several frequency components were utilized to analyze the velocity features in the subsurface. We performed the spectrogram inversion using a modified SEG/SEGE salt A-A' line. Numerical results demonstrate that spectrogram inversion could also recover the long-wavelength velocity features. However, inversion results varied according to the frequency components utilized. Based on the results of inversion using a decomposed single-frequency component, we noticed that robust inversion results are obtained when a dominant frequency component of the spectrogram was utilized. In addition, detailed information on recovered long-wavelength velocity models was obtained using a multi-frequency component combined with single-frequency components. Numerical examples indicate that various detailed analyses of long-wavelength velocity models can be carried out utilizing several frequency components.

  12. Tunable broadband near-infrared absorber based on ultrathin phase-change material

    NASA Astrophysics Data System (ADS)

    Hu, Er-Tao; Gu, Tong; Guo, Shuai; Zang, Kai-Yan; Tu, Hua-Tian; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Wang, Song-You; Zhang, Rong-Jun; Lee, Young-Pak; Chen, Liang-Yao

    2017-11-01

    In this work, a tunable broadband near-infrared light absorber was designed and fabricated with a simple and lithography free approach by introducing an ultrathin phase-change material Ge2Sb2Te5 (GST) layer into the metal-dielectric multilayered film structure with the structure parameters as that: SiO2 (72.7 nm)/Ge2Sb2Te5 (6.0 nm)/SiO2 (70.2 nm)/Cu (>100.0 nm). The film structure exhibits a modulation depth of ∼72.6% and an extinction ratio of ∼8.8 dB at the wavelength of 1410 nm. The high light absorption (95%) of the proposed film structure at the wavelength of 450 nm in both of the amorphous and crystalline phase of GST, indicates that the intensity of the reflectance in the infrared region can be rapidly tuned by the blue laser pulses. The proposed planar layered film structure with layer thickness as the only controllable parameter and large reflectivity tuning range shows the potential for practical applications in near-infrared light modulation and absorption.

  13. Wavelength-dependent visible light response in vertically aligned nanohelical TiO2-based Schottky diodes

    NASA Astrophysics Data System (ADS)

    Kwon, Hyunah; Sung, Ji Ho; Lee, Yuna; Jo, Moon-Ho; Kim, Jong Kyu

    2018-01-01

    Enhancements in photocatalytic performance under visible light have been reported by noble metal functionalization on nanostructured TiO2; however, the non-uniform and discrete distribution of metal nanoparticles on the TiO2 surface makes it difficult to directly clarify the optical and electrical mechanisms. Here, we investigate the light absorption and the charge separation at the metal/TiO2 Schottky junctions by using a unique device architecture with an array of TiO2 nanohelixes (NHs) forming Schottky junctions both with Au-top and Pt-bottom electrodes. Wavelength-dependent photocurrent measurements through the Pt/TiO2 NHs/Au structures revealed that the origin of the visible light absorption and the separation of photogenerated carriers is the internal photoemission at the metal/nanostructured TiO2 Schottky junctions. In addition, a huge persistent photoconductivity was observed by the time-dependent photocurrent measurement, implying a long lifetime of the photogenerated carriers before recombination. We believe that the results help one to understand the role of metal functionalization on TiO2 and hence to enhance the photocatalytic efficiency by utilizing appropriately designed Schottky junctions.

  14. High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory, J.; Soibel, Alexander; Bandara, Sumith V.; Gunapala, Sarath D.

    2011-01-01

    A mid-wavelength infrared (MWIR) barrier photodetector is capable of operating at higher temperature than the prevailing MWIR detectors based on InSb. The standard high-operating-temperature barrier infrared detector (HOT-BIRD) is made with an InAsSb infrared absorber that is lattice-matched to a GaSb substrate, and has a cutoff wavelength of approximately 4 microns. To increase the versatility and utility of the HOT-BIRD, it is implemented with IR absorber materials with customizable cutoff wavelengths. The HOT-BIRD can be built with the quaternary alloy GaInAsSb as the absorber, GaAlSbAs as the barrier, on a lattice-matching GaSb substrate. The cutoff wavelength of the GaInAsSb can be tailored by adjusting the alloy composition. To build a HOT-BIRD requires a matching pair of absorber and barrier materials with the following properties: (1) their valence band edges must be approximately the same to allow unimpeded hole flow, while their conduction band edges should have a large difference to form an electron barrier; and (2) the absorber and the barrier must be respectively lattice-matched and closely lattice-matched to the substrate to ensure high material quality and low defect density. To make a HOT-BIRD with cutoff wavelength shorter than 4 microns, a GaInAsSb quaternary alloy was used as the absorber, and a matching GaAlSbAs quaternary alloy as the barrier. By changing the alloy composition, the band gap of the quaternary alloy absorber can be continuously adjusted with cutoff wavelength ranging from 4 microns down to the short wavelength infrared (SWIR). By carefully choosing the alloy composition of the barrier, a HOT-BIRD structure can be formed. With this method, a HOT-BIRD can be made with continuously tailorable cutoff wavelengths from 4 microns down to the SWIR. The HOT-BIRD detector technology is suitable for making very-large-format MWIR/SWIR focal plane arrays that can be operated by passive cooling from low Earth orbit. High-operating temperature

  15. Purifying synthetic high-strength wastewater by microalgae chlorella vulgaris under various light emitting diode wavelengths and intensities

    PubMed Central

    2013-01-01

    The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity. PMID:24499586

  16. Long wavelength propagation capacity, version 1.1 (computer diskette)

    NASA Astrophysics Data System (ADS)

    1994-05-01

    File Characteristics: software and data file. (72 files); ASCII character set. Physical Description: 2 computer diskettes; 3 1/2 in.; high density; 1.44 MB. System Requirements: PC compatible; Digital Equipment Corp. VMS; PKZIP (included on diskette). This report describes a revision of the Naval Command, Control and Ocean Surveillance Center RDT&E Division's Long Wavelength Propagation Capability (LWPC). The first version of this capability was a collection of separate FORTRAN programs linked together in operation by a command procedure written in an operating system unique to the Digital Equipment Corporation (Ferguson & Snyder, 1989a, b). A FORTRAN computer program named Long Wavelength Propagation Model (LWPM) was developed to replace the VMS control system (Ferguson & Snyder, 1990; Ferguson, 1990). This was designated version 1 (LWPC-1). This program implemented all the features of the original VMS plus a number of auxiliary programs that provided summaries of the files and graphical displays of the output files. This report describes a revision of the LWPC, designated version 1.1 (LWPC-1.1)

  17. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    PubMed

    Olofsson, Martin; Vallin, Adrian; Jakobsson, Sven; Wiklund, Christer

    2010-05-24

    Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function. Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head. In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  18. Highly photoresponsive and wavelength-selective circularly-polarized-light detector based on metal-oxides hetero-chiral thin film.

    PubMed

    Lee, Seung Hee; Singh, Dhruv Pratap; Sung, Ji Ho; Jo, Moon-Ho; Kwon, Ki Chang; Kim, Soo Young; Jang, Ho Won; Kim, Jong Kyu

    2016-01-22

    A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of ~15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses.

  19. Highly photoresponsive and wavelength-selective circularly-polarized-light detector based on metal-oxides hetero-chiral thin film

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hee; Singh, Dhruv Pratap; Sung, Ji Ho; Jo, Moon-Ho; Kwon, Ki Chang; Kim, Soo Young; Jang, Ho Won; Kim, Jong Kyu

    2016-01-01

    A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of ~15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses.

  20. Multi Source Remote Sensing for Monitoring Light-Absorbing Impurities on Snow and Ice in the European Alps

    NASA Astrophysics Data System (ADS)

    Colombo, R.; Baccolo, G.; Garzonio, R.; Massabò, D.; Julitta, T.; Rossini, M.; Ferrero, L.; Delmonte, B.; Maggi, V.; Mattavelli, M.; Panigada, C.; Cogliati, S.; Cremonese, E.; Di Mauro, B.

    2016-12-01

    The European Alps are located close to one of the most industrialized areas of the planet and they are 3.000 km from the largest desert of the Earth. Light-absorbing impurities (LAI) emitted from these sources can reach the Alpine chain and deposit on snow covered areas and mountain glaciers. Although several studies show that LAI have important impacts on the optical properties of snow and ice, reducing the albedo and promoting the melt, this impact has been poorly characterized in the Alps. In this contribution, we present the results of a multisource remote sensing approach aimed to study the LAI impact on snow and ice properties in the Alpine area. This process has been observed by means of remote and proximal sensing methods, using satellite (Landsat 8, Hyperion and MODIS data), field spectroscopy (ASD measurements), Automatic Weather Stations, aerial surveys (Unmanned Aerial Vehicle), radiative transfer modeling (SNICAR and TARTES) and laboratory analysis (hyperspectral imaging system). Furthermore, particle size (Coulter Counter), geochemical (Instrumental Neutron Activation Analysis, INAA) and optical (Multi-Wavelength Absorbance Analyzer, MWAA) analyses have been applied to determine the nature and radiative properties of particulate material deposited on snow and ice or aggregated into cryoconite holes. Our results demonstrate that LAI can be monitored from remote sensing at different scale. LAI showed to have a strong impact on the Alpine cryosphere, paving the way for the assessment of their role in melting processes.

  1. Design of the Extreme Ultraviolet Explorer long-wavelength grazing incidence telescope optics

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1988-01-01

    Designing optics for photometry in the long-wavelength portion of the EUV spectrum (400-900) A) poses different problems from those arising for optics, operating shortward of 400 A. The available filter materials which transmit radiation longward of 400 A are also highly transparent at wavelengths shortward of 100 A. Conventional EUV optics, with grazing engles of less than about 10 deg, have very high throughput in the EUV, which persists to wavelengths shortward of 100 A. Use of such optics with the longer-wavelength EUV filters thus results in an unacceptably large soft X-ray leak. This problem is overcome by developing a mirror design with larger graze angles of not less than 20 deg, which has high throughput at wavelengths longer than 400 A but at the same time very little throughput shortward of 100 A.

  2. Robust sensor for turbidity measurement from light scattering and absorbing liquids.

    PubMed

    Kontturi, Ville; Turunen, Petri; Uozumi, Jun; Peiponen, Kai-Erik

    2009-12-01

    Internationally standardized turbidity measurements for probing solid particles in liquid are problematic in the case of simultaneous light scattering and absorption. A method and a sensor to determine the turbidity in the presence of light absorption are presented. The developed sensor makes use of the total internal reflection of a laser beam at the liquid-prism interface, and the turbidity is assessed using the concept of laser speckle pattern. Using average filtering in speckle data analyzing the observed dynamic speckle pattern, which is due to light scattering from particles and the static speckle due to stray light of the sensor, can be separated from each other. Good correlation between the standard deviation of dynamic speckle and turbidity value for nonabsorbing and for absorbing liquids was observed. The sensor is suggested, for instance, for the measurement of ill-behaved as well as small-volume turbid liquids in both medicine and process industry.

  3. High Sensitivity Long-Wavelength Infrared QWIP Focal Plane Array Based Instrument for Remote Sensing of Icy Satellites

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Ivanov, A.

    2003-01-01

    GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.

  4. Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples

    NASA Astrophysics Data System (ADS)

    Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.

    2014-12-01

    Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.

  5. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Onck, Patrick R.

    2017-08-01

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015)., 10.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  6. [Application of mid-infrared wavelength tunable laser in glucose determination].

    PubMed

    Yu, Song-Lin; Li, Da-Chao; Zhong, Hao; Sun, Chang-Yue; Xu, Ke-Xin

    2013-04-01

    The authors proposed a method of control and stabilization for laser emission wavelengths and power, and presented the mid-infrared wavelength tunable laser with broad emission spectrum band of 9.19-9.77 microm, half wave width of 4 cm(-1), spectral resolution of 2.7 x 10(4) and max power of 800 mW with fluctuation < 0.8% in the present paper. The tunable laser was employed as the light source in combination with ATR sensor for glucose measurement in PBS solution. In our experiments, absorbance at the five laser emission wavelengths, including 1 081, 1 076, 1 051, 1 041 and 1 037 cm(-1) in the 9R and 9P band of the laser emission spectrum, all correlates well with the glucose concentration (R2 > 0.99, SD < 0.0004, P < 0.000 1). Especially, the sensitivity of this laser spectroscopy system is about 4 times as high as that of traditional FTIR spectrometer.

  7. Highly photoresponsive and wavelength-selective circularly-polarized-light detector based on metal-oxides hetero-chiral thin film

    PubMed Central

    Lee, Seung Hee; Singh, Dhruv Pratap; Sung, Ji Ho; Jo, Moon-Ho; Kwon, Ki Chang; Kim, Soo Young; Jang, Ho Won; Kim, Jong Kyu

    2016-01-01

    A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of ~15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses. PMID:26795601

  8. Wavelength-dependent degradation of ochratoxin and citrinin by light in vitro and in vivo and its implications on Penicillium.

    PubMed

    Schmidt-Heydt, Markus; Cramer, Benedikt; Graf, Irina; Lerch, Sandra; Humpf, Hans-Ulrich; Geisen, Rolf

    2012-12-14

    It has previously been shown that the biosynthesis of the mycotoxins ochratoxin A and B and of citrinin by Penicillium is regulated by light. However, not only the biosynthesis of these mycotoxins, but also the molecules themselves are strongly affected by light of certain wavelengths. The white light and blue light of 470 and 455 nm are especially able to degrade ochratoxin A, ochratoxin B and citrinin after exposure for a certain time. After the same treatment of the secondary metabolites with red (627 nm), yellow (590 nm) or green (530 nm) light or in the dark, almost no degradation occurred during that time indicating the blue light as the responsible part of the spectrum. The two derivatives of ochratoxin (A and B) are degraded to certain definitive degradation products which were characterized by HPLC-FLD-FTMS. The degradation products of ochratoxin A and B did no longer contain phenylalanine however were still chlorinated in the case of ochratoxin A. Citrinin is completely degraded by blue light. A fluorescent band was no longer visible after detection by TLC suggesting a higher sensitivity and apparently greater absorbance of energy by citrinin. The fact that especially blue light degrades the three secondary metabolites is apparently attributed to the absorption spectra of the metabolites which all have an optimum in the short wave length range. The absorption range of citrinin is, in particular, broader and includes the wave length of blue light. In wheat, which was contaminated with an ochratoxin A producing culture of Penicillium verrucosum and treated with blue light after a pre-incubation by the fungus, the concentration of the preformed ochratoxin A reduced by roughly 50% compared to the control and differed by > 90% compared to the sample incubated further in the dark. This indicates that the light degrading effect is also exerted in vivo, e.g., on food surfaces. The biological consequences of the light instability of the toxins are discussed.

  9. Light sensitive memristor with bi-directional and wavelength-dependent conductance control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, P.; Hartmann, F., E-mail: fabian.hartmann@physik.uni-wuerzburg.de; Emmerling, M.

    2016-07-11

    We report the optical control of localized charge on positioned quantum dots in an electro-photo-sensitive memristor. Interband absorption processes in the quantum dot barrier matrix lead to photo-generated electron-hole-pairs that, depending on the applied bias voltage, charge or discharge the quantum dots and hence decrease or increase the conductance. Wavelength-dependent conductance control is observed by illumination with red and infrared light, which leads to charging via interband and discharging via intraband absorption. The presented memristor enables optical conductance control and may thus be considered for sensory applications in artificial neural networks as light-sensitive synapses or optically tunable memories.

  10. Measurements of the light-absorbing material inside cloud droplets and its effect on cloud albedo

    NASA Technical Reports Server (NTRS)

    Twohy, C. H.; Clarke, A. D.; Warren, Stephen G.; Radke, L. F.; Charleson, R. J.

    1990-01-01

    Most of the measurements of light-absorbing aerosol particles made previously have been in non-cloudy air and therefore provide no insight into aerosol effects on cloud properties. Here, researchers describe an experiment designed to measure light absorption exclusively due to substances inside cloud droplets, compare the results to related light absorption measurements, and evaluate possible effects on the albedo of clouds. The results of this study validate those of Twomey and Cocks and show that the measured levels of light-absorbing material are negligible for the radiative properties of realistic clouds. For the measured clouds, which appear to have been moderately polluted, the amount of elemental carbon (EC) present was insufficient to affect albedo. Much higher contaminant levels or much larger droplets than those measured would be necessary to significantly alter the radiative properties. The effect of the concentrations of EC actually measured on the albedo of snow, however, would be much more pronounced since, in contrast to clouds, snowpacks are usually optically semi-infinite and have large particle sizes.

  11. Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.

    PubMed

    Weiss, Manfred S

    2017-01-01

    For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.

  12. Forward Modelling of Long-wavelength Magnetic Anomaly Contributions from the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Idoko, C. M.; Conder, J. A.; Ferre, E. C.; Friedman, S. A.

    2016-12-01

    Towards the interpretation of the upcoming results from SWARM satellite survey, we develop a MATLAB-based geophysical forward-modeling of magnetic anomalies from tectonic regions with different upper mantle geotherms including subduction zones (Kamchaka island arcs), cratons (Siberian craton), and hotspots (Hawaii hotspots and Massif-central plumes). We constrain the modeling - using magnetic data measured from xenoliths collected across these regions. Over the years, the potency of the upper mantle in contributing to long-wavelength magnetic anomalies has been a topic of debate among geoscientists. However, recent works show that some low geotherm tectonic environments such as forearcs and cratons contain mantle xenoliths which are below the Curie-Temperature of magnetite and could potentially contribute to long-wavelength magnetic anomalies. The modeling pursued here holds the prospect of better understanding the magnetism of the upper mantle, and the resolution of the mismatch between observed long-wavelength anomalies and surface field anomaly upward continued to satellite altitude. The SWARM satellite survey provides a unique opportunity due to its capacity to detect more accurately the depth of magnetic sources. A preliminary model of a hypothetical craton of size 2000km by 1000km by 500km discretized into 32 equal and uniformly distributed prism blocks, using magnetic data from Siberian craton with average natural remanent magnetization value of 0.0829 A/m (randomnly oriented) for a magnetized mantle thickness of 75km, and induced magnetization, varying according to the Curie-Weiss law from surface to 500km depth with an average magnetization of 0.02 A/m, shows that the contributions of the induced and remanent phases of magnetizations- with a total-field anomaly amplitude of 3 nT may impart a measurable signal to the observed long-wavelength magnetic anomalies in low geotherm tectonic environments.

  13. Aperture Mask for Unambiguous Parity Determination in Long Wavelength Imagers

    NASA Technical Reports Server (NTRS)

    Bos, Brent

    2011-01-01

    A document discusses a new parity pupil mask design that allows users to unambiguously determine the image space coordinate system of all the James Webb Space Telescope (JWST) science instruments by using two out-of-focus images. This is an improvement over existing mask designs that could not completely eliminate the coordinate system parity ambiguity at a wavelength of 5.6 microns. To mitigate the problem of how the presence of diffraction artifacts can obscure the pupil mask detail, this innovation has been created with specifically designed edge features so that the image space coordinate system parity can be determined in the presence of diffraction, even at long wavelengths.

  14. Significance of dual polarized long wavelength radar for terrain analysis

    NASA Technical Reports Server (NTRS)

    Macdonald, H. C.; Waite, W. P.

    1978-01-01

    Long wavelength systems with improved penetration capability have been considered to have the potential for minimizing the vegetation contribution and enhancing the surface return variations. L-band imagery of the Arkansas geologic test site provides confirmatory evidence of this effect. However, the increased wavelength increases the sensitivity to larger scale structure at relatively small incidence angles. The regularity of agricultural and urban scenes provides large components in the low frequency-large scale portion of the roughness spectrum that are highly sensitive to orientation. The addition of a cross polarized channel is shown to enable the interpreter to distinguish vegetation and orientational perturbations in the surface return.

  15. A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging

    PubMed Central

    Zhou, Yang; Wang, Depeng; Zhang, Yumiao; Chitgupi, Upendra; Geng, Jumin; Wang, Yuehang; Zhang, Yuzhen; Cook, Timothy R.; Xia, Jun; Lovell, Jonathan F.

    2016-01-01

    Although photoacoustic computed tomography (PACT) operates with high spatial resolution in biological tissues deeper than other optical modalities, light scattering is a limiting factor. The use of longer near infrared wavelengths reduces scattering. Recently, the rational design of a stable phosphorus phthalocyanine (P-Pc) with a long wavelength absorption band beyond 1000 nm has been reported. Here, we show that when dissolved in liquid surfactants, P-Pc can give rise to formulations with absorbance of greater than 1000 (calculated for a 1 cm path length) at wavelengths beyond 1000 nm. Using the broadly accessible Nd:YAG pulse laser emission output of 1064 nm, P-Pc could be imaged through 11.6 cm of chicken breast with PACT. P-Pc accumulated passively in tumors following intravenous injection in mice as observed by PACT. Following oral administration, P-Pc passed through the intestine harmlessly, and PACT could be used to non-invasively observe intestine function. When the contrast agent placed under the arm of a healthy adult human, a PACT transducer on the top of the arm could readily detect P-Pc through the entire 5 cm limb. Thus, the approach of using contrast media with extreme absorption at 1064 nm readily enables high quality optical imaging in vitro and in vivo in humans at exceptional depths. PMID:27022416

  16. Instrumentation and method for measuring NIR light absorbed in tissue during MR imaging in medical NIRS measurements

    NASA Astrophysics Data System (ADS)

    Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.

    2011-07-01

    Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.

  17. Wavelength-Agile Optical Sensor for Exhaust Plume and Cryogenic Fluid Interrogation

    NASA Technical Reports Server (NTRS)

    Sanders, Scott T.; Chiaverini, Martin J.; Gramer, Daniel J.

    2004-01-01

    Two optical sensors developed in UW-Madison labs were evaluated for their potential to characterize rocket engine exhaust plumes and liquid oxygen (LOX) fluid properties. The plume sensor is based on wavelength-agile absorption spectroscopy A device called a chirped white pulse emitter (CWPE) is used to generate the wavelength agile light, scanning, for example, 1340 - 1560 nm every microsecond. Properties of the gases in the rocket plume (for example temperature and water mole fraction) can be monitored using these wavelength scans. We have performed preliminary tests in static gas cells, a laboratory GOX/GH2 thrust chamber, and a solid-fuel hybrid thrust chamber, and these initial tests demonstrate the potential of the CWPE for monitoring rocket plumes. The LOX sensor uses an alternative to wavelength agile sensing: two independent, fixed-wavelength lasers are combined into a single fiber. One laser is absorbed by LOX and the other not: by monitoring the differential transmission the LOX concentration in cryogenic feed lines can be inferred. The sensor was successful in interrogating static LOX pools in laboratory tests. Even in ice- and bubble-laden cryogenic fluids, LOX concentrations were measured to better than 1% with a 3 microsec time constant.

  18. Bubble-driven light-absorbing hydrogel microrobot for the assembly of bio-objects.

    PubMed

    Hu, Wenqi; Fan, Qihui; Tonaki, Wade; Ohta, Aaron T

    2013-01-01

    Microrobots made of light-absorbing hydrogel material were actuated by optically induced thermocapillary flow and move at up to 700 µm/s. The micro-assembly capabilities of the microrobots were demonstrated by assembling polystyrene beads and yeast cells into various patterns on standard glass microscope slides. Two microrobots operating independently in parallel were also used to assemble micro-hydrogel structures.

  19. Energy, Electron Transfer and Photocatalytic Reactions of Visible Light Absorbing Transition Metal Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmehl, Russell H.

    2016-03-02

    This is the final technical report for a project carried out at Tulane University of New Orleans that describes the development of light induced (solar) reactions geared toward decomposing water into its component elements : hydrogen and oxygen. Much of the work involved optimizing systems for absorbing visible light and undergoing light promoted reactions to generate very strong reducing agents that are capable of reacting with water to produce hydrogen. Additional portions of the research were collaborative efforts to put the strong reducing agents to work in reaction with hydrogen generation catalysts prepared elsewhere. Time resolved laser spectroscopic methods weremore » used to evaluate the light induced reactions and characterize very reactive intermediate substances formed during the reactions.« less

  20. All-silicon-based nano-antennas for wavelength and polarization demultiplexing.

    PubMed

    Panmai, Mingcheng; Xiang, Jin; Sun, Zhibo; Peng, Yuanyuan; Liu, Hongfeng; Liu, Haiying; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2018-05-14

    We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.

  1. Post passivation light trapping back contacts for silicon heterojunction solar cells.

    PubMed

    Smeets, M; Bittkau, K; Lentz, F; Richter, A; Ding, K; Carius, R; Rau, U; Paetzold, U W

    2016-11-10

    Light trapping in crystalline silicon (c-Si) solar cells is an essential building block for high efficiency solar cells targeting low material consumption and low costs. In this study, we present the successful implementation of highly efficient light-trapping back contacts, subsequent to the passivation of Si heterojunction solar cells. The back contacts are realized by texturing an amorphous silicon layer with a refractive index close to the one of crystalline silicon at the back side of the silicon wafer. As a result, decoupling of optically active and electrically active layers is introduced. In the long run, the presented concept has the potential to improve light trapping in monolithic Si multijunction solar cells as well as solar cell configurations where texturing of the Si absorber surfaces usually results in a deterioration of the electrical properties. As part of this study, different light-trapping textures were applied to prototype silicon heterojunction solar cells. The best path length enhancement factors, at high passivation quality, were obtained with light-trapping textures based on randomly distributed craters. Comparing a planar reference solar cell with an absorber thickness of 280 μm and additional anti-reflection coating, the short-circuit current density (J SC ) improves for a similar solar cell with light-trapping back contact. Due to the light trapping back contact, the J SC is enhanced around 1.8 mA cm -2 to 38.5 mA cm -2 due to light trapping in the wavelength range between 1000 nm and 1150 nm.

  2. Experimental study of near-field light collection efficiency of aperture fiber probe at near-infrared wavelengths.

    PubMed

    Tsumori, Nobuhiro; Takahashi, Motoki; Sakuma, Yoshiki; Saiki, Toshiharu

    2011-10-10

    We examined the near-field collection efficiency of near-infrared radiation for an aperture probe. We used InAs quantum dots as ideal point light sources with emission wavelengths ranging from 1.1 to 1.6 μm. We experimentally investigated the wavelength dependence of the collection efficiency and compared the results with computational simulations that modeled the actual probe structure. The observed degradation in the collection efficiency is attributed to the cutoff characteristics of the gold-clad tapered waveguide, which approaches an ideal conductor at near-infrared wavelengths. © 2011 Optical Society of America

  3. Long-wavelength instabilities in a system of interacting active particles

    NASA Astrophysics Data System (ADS)

    Fazli, Zahra; Najafi, Ali

    2018-02-01

    Based on a microscopic model, we develop a continuum description for a suspension of microscopic self-propelled particles. With this continuum description we study the role of long-range interactions in destabilizing macroscopic ordered phases that are developed by short-range interactions. Long-wavelength fluctuations can destabilize both isotropic and symmetry-broken polar phases in a suspension of dipolar particles. The instabilities in a suspension of pullers (pushers) arise from splay (bend) fluctuations. Such instabilities are not seen in a suspension of quadrupolar particles.

  4. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing.

    PubMed

    Dungel, Peter; Hartinger, Joachim; Chaudary, Sidrah; Slezak, Paul; Hofmann, Anna; Hausner, Thomas; Strassl, Martin; Wintner, Ernst; Redl, Heinz; Mittermayr, Rainer

    2014-12-01

    Low-level light therapy (LLLT) has been revealed as a potential means to improve wound healing. So far, most studies are being performed with irradiation in the red to near-infrared spectra. Recently, we showed that blue light (470 nm) can significantly influence biological systems such as nitric oxide (NO) metabolism and is able to release NO from nitrosyl-hemoglobin or mitochondrial protein complexes. Therefore, the aim of this study was to evaluate and compare the therapeutic value of blue or red light emitting diodes (LEDs) on wound healing in an ischemia disturbed rodent flap model. An abdominal flap was rendered ischemic by ligation of one epigastric bundle and subjected to LED illumination with a wavelength of 470 nm (blue, n = 8) or 629 nm (red, n = 8) each at 50 mW/cm(2) and compared to a non-treated control group (n = 8). Illumination was performed for 10 minutes on five consecutive days. LED therapy with both wavelengths significantly increased angiogenesis in the sub-epidermal layer and intramuscularly (panniculus carnosus muscle) which was associated with significantly improved tissue perfusion 7 days after the ischemic insult. Accordingly, tissue necrosis was significantly reduced and shrinkage significantly less pronounced in the LED-treated groups of both wavelengths. LED treatment of ischemia challenged tissue improved early wound healing by enhancing angiogenesis irrespective of the wavelength thus delineating this noninvasive means as a potential, cost effective tool in complicated wounds. © 2014 Wiley Periodicals, Inc.

  5. Gallium nitride light sources for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goldberg, Graham R.; Ivanov, Pavlo; Ozaki, Nobuhiko; Childs, David T. D.; Groom, Kristian M.; Kennedy, Kenneth L.; Hogg, Richard A.

    2017-02-01

    The advent of optical coherence tomography (OCT) has permitted high-resolution, non-invasive, in vivo imaging of the eye, skin and other biological tissue. The axial resolution is limited by source bandwidth and central wavelength. With the growing demand for short wavelength imaging, super-continuum sources and non-linear fibre-based light sources have been demonstrated in tissue imaging applications exploiting the near-UV and visible spectrum. Whilst the potential has been identified of using gallium nitride devices due to relative maturity of laser technology, there have been limited reports on using such low cost, robust devices in imaging systems. A GaN super-luminescent light emitting diode (SLED) was first reported in 2009, using tilted facets to suppress lasing, with the focus since on high power, low speckle and relatively low bandwidth applications. In this paper we discuss a method of producing a GaN based broadband source, including a passive absorber to suppress lasing. The merits of this passive absorber are then discussed with regards to broad-bandwidth applications, rather than power applications. For the first time in GaN devices, the performance of the light sources developed are assessed though the point spread function (PSF) (which describes an imaging systems response to a point source), calculated from the emission spectra. We show a sub-7μm resolution is possible without the use of special epitaxial techniques, ultimately outlining the suitability of these short wavelength, broadband, GaN devices for use in OCT applications.

  6. Zodiacal light as an indicator of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Weinberg, J. L.; Sparrow, J. G.

    1978-01-01

    The most striking feature of the night sky in the tropics is the zodiacal light, which appears as a cone in the west after sunset and in the east before sunrise. It is caused by sunlight scattered or absorbed by particles in the interplanetary medium. The zodiacal light is the only source of information about the integrated properties of the whole ensemble of interplanetary dust. The brightness and polarization in different directions and at different colors can provide information on the optical properties and spatial distribution of the scattering particles. The zodiacal light arises from two independent physical processes related to the scattering of solar continuum radiation by interplanetary dust and to thermal emission which arises from solar radiation that is absorbed by interplanetary dust and reemitted mainly at infrared wavelengths. Attention is given to observational parameters of zodiacal light, the methods of observation, errors and absolute calibration, and the observed characteristics of zodiacal light.

  7. Polarization study of a supercontinuum light source for different wavelengths through a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Valle-Atilano, F. J.; Estudillo-Ayala, J. M.; Filoteo-Razo, J. D.; Hernández-Garcia, J. C.; Lauterio-Cruz, J. P.; Jáuregui-Vázquez, D.; Ibarra-Escamilla, B.; Rojas-Laguna, R.; Pottiez, O.; Kuzin, E. A.

    2016-03-01

    In this work we show the changes of polarization at different wavelengths in the end of a photonic crystal fiber (PCF) by means bandpass filters in a supercontinuum light source. A linear and circular polarization was introduced in a piece of PCF, showing the changes of the polarization for each wavelength of each one of the filters from 450 to 700nm. We used a microchip laser as pumping source with wavelength of 532nm and short pulses of 650ps with repetition rate of 5kHz. We obtained a continuous spectrum in the visible spectral region, showing a comparison of the polarization state at the fiber input with respect to polarization state in the fiber output for different wavelengths by rotating the axes of the PCF.

  8. Research on temperature characteristics of laser energy meter absorber irradiated by ms magnitude long pulse laser

    NASA Astrophysics Data System (ADS)

    Li, Nan; Qiao, Chunhong; Fan, Chengyu; Zhang, Jinghui; Yang, Gaochao

    2017-10-01

    The research on temperature characteristics for large-energy laser energy meter absorber is about continuous wave (CW) laser before. For the measuring requirements of millisecond magnitude long pulse laser energy, the temperature characteristics for absorber are numerically calculated and analyzed. In calculation, the temperature field distributions are described by heat conduction equations, and the metal cylinder cavity is used for absorber model. The results show that, the temperature of absorber inwall appears periodic oscillation with pulse structure, the oscillation period and amplitude respectively relate to the pulse repetition frequency and single pulse energy. With the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and rises gradually with time. The factors to affect the temperature rise of absorber are single pulse energy, pulse width and repetition frequency. When the laser irradiation stops, the temperature between absorber inwall and outerwall will reach agreement rapidly. After special technology processing to enhance the capacity of resisting laser damage for absorber inwall, the ms magnitude long pulse laser energy can be obtained with the method of measuring the temperature of absorber outerwall. Meanwhile, by optimization design of absorber structure, when the repetition frequency of ms magnitude pulse laser is less than 10Hz, the energy of every pulse for low repetition frequency pulse sequence can be measured. The work offers valuable references for the design of ms magnitude large-energy pulse laser energy meter.

  9. Aerosol source apportionment based on multi-wavelength photoacoustic light absorption measurements: a simulation method for system's optimisation

    NASA Astrophysics Data System (ADS)

    Simon, Károly; Ajtai, Tibor; Kiss-Albert, Gergely; Utry, Noémi; Pintér, Máté; Szabó, Gábor; Bozóki, Zoltán

    2017-04-01

    Aerosol source apportionment is currently one of the outstanding challenges for environmental monitoring. In most cases atmospheric aerosol is a heterogeneous mixture as it typically originates from various sources. Consequently, each aerosol type has distinct chemical and physical properties. Contrary to chemical properties, optical absorption and size distribution of airborne particles can be measured in real time with high time resolution i.e. their measurement facilitates real time source apportionment (Favez et al (2009), Ajtai et al (2011), Favez et al (2010)). The wavelength dependency of the optical absorption coefficient (OAC) is usually characterised by the Absorption Angström Exponent (AAE). So far, the selection of light sources (lasers) into a photoacoustic aerosol measuring system was based on rule of thumb type estimations only. Recently, we proposed a simulation method that can be used to estimate the accuracy of aerosol source apportionment in case of a dual wavelength photoacoustic system (Simon et al., (2017)). This simulation is based on the assumption that the atmospheric aerosol load is dominated by two distinct sources and each of them is strongly light absorbing with specific AAE values. This is a typical scenario e.g. for urban measurements under wintry conditions when dominating aerosol sources are fossil fuel and wood burning with characteristic AAE 1 and 2, respectively. The wavelength pair of 405 and 1064 nm was found to be optimal for source apportionment in this case. In the presented study we investigated the situation when there are aerosol components with only slightly different AAE values and searched for a photoacoustic system which is optimal for distinguishing these components. Ajtai, T.; Filep, Á.; Utry, N.; Schnaiter, M.; Linke, C.; Bozóki, Z.; Szabó, G. and Leisner T. (2011) Journal of Aerosol Science 42, 859-866. Favez, O.; Cachier, H.; Sciare, J.; Sarda-Estève, R. and Martinon, L. (2009) Atmospheric Environment 43

  10. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model.

    PubMed

    Liu, Ling; Onck, Patrick R

    2017-08-04

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015).NCAOBW2041-172310.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  11. Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US

    NASA Astrophysics Data System (ADS)

    Devi, J. Jai; Bergin, Michael H.; Mckenzie, Michael; Schauer, James J.; Weber, Rodney J.

    2016-07-01

    Measurements of wavelength dependent aerosol light absorption coefficients were carried out as part of the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013 to determine the contribution of light absorbing organic carbon (BrC) to total aerosol light absorption in a rural location (Centreville, AL) and an urban area (Atlanta, GA). The light absorption coefficients in the near UV and visible wavelengths were measured for both ambient air, as well as ambient air heated in a thermal denuder to 200 °C to remove the semi-volatile organic compounds. Atlanta measurements show dominance of semi-volatile brown carbon with an average absorption angstrom exponent (AAE) of 1.4 before heating and about 1.0 after heating. In urban Atlanta, a decrease of about ∼35% in the light absorption coefficient at 370 nm after heating indicates that light absorbing organic compounds are a substantial fraction of the light absorption budget. Furthermore, a considerable increase in the fraction of light absorption by the semi-volatile aerosol occurs during the daytime, likely linked with photochemistry. Measurements at rural Centerville, on the other hand, do not show any major change in AAE with values before and after heating of 0.99 and 0.98, respectively. Overall the results suggest that photochemical aged urban emissions result in the presence of light absorbing BrC, while at rural locations which are dominated by aged aerosol and local biogenic emissions (based on measurements of Angstrom exponents) BrC does not significantly contribute to light absorption.

  12. Comparing Wavelengths

    NASA Image and Video Library

    2015-12-12

    This side-by-side rendering of the Sun at the same time in two different wavelengths of extreme ultraviolet light helps to visualize the differing features visible in each wavelength (Dec. 10-11, 2015). Most prominently, we can see much finer strands of plasma looping above the surface in the 171 Angstrom wavelength (gold) than in the 304 Angstrom wavelength (red), which captures cooler plasma closer to the Sun's surface. SDO observes the Sun in 10 different wavelengths with each one capturing somewhat different features at various temperatures and elevations above the Sun. http://photojournal.jpl.nasa.gov/catalog/PIA20214

  13. High Operating Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Seibel, Alexander (Inventor); Bandara, Sumith Y. (Inventor); Gunapala, Sarath D. (Inventor)

    2015-01-01

    A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.

  14. Wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion.

    PubMed

    Ivanov, Oleg V; Wang, Lon A

    2003-05-01

    A finite deformation theory of elasticity and a theory of nonlinear photoelasticity are applied to describe the wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion. The deformation of fiber is found by use of the Murnaghan model of a solid elastic body. The quadratic photoelastic effect that is proportional to the second-order displacement gradient is investigated and compared with the classical photoelastic effect. The electromagnetic field in the twisted corrugated structure is presented as a superposition of circularly polarized modes of the etched fiber section. The wavelength shift is found to be proportional to the square of the twist angle. As predicted by our theory, a wavelength shift of the same nature has been found in a conventionally photoinduced long-period fiber grating.

  15. Hemispherical Reflectance and Emittance Properties of Carbon Nanotubes Coatings at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Hagopian, John G.; Getty, Stephanie; Kinzer, Raymond (Robin) E., Jr.; Wollack, Edward

    2011-01-01

    Recent visible wavelength observations of Multiwalled Carbon Nanotubes (MWCNT) coatings have revealed that they represent the blackest materials known in nature with a Total Hemispherical Reflectance (THR) less than .25%. This makes them as exceptionally good absorbers, with the potential to provide order-of-magnitude improvement in stray-light suppression over current black surface treatments when used in an optical system. Here we extend the characterization of this class of materials into the infrared spectral region to further evaluate their potential for use on instrument baffles for stray-light suppression and to manage spacecraft thermal properties to dissipate heat through radiant heat transfer process. These characterizations will include the wavelength-dependent Total Hemispherical Reflectance properties in the mid-IR and far-infrared spectral regions (2-100 micrometers). Determination of the temperature-dependent emittance will be investigated in the temperature range of 20 to 300 K. These results will be compared against other more conventional black coatings such as Acktar Fractal Black or Z-306 coatings among others.

  16. Crash compatibility between cars and light trucks: benefits of lowering front-end energy-absorbing structure in SUVs and pickups.

    PubMed

    Baker, Bryan C; Nolan, Joseph M; O'Neill, Brian; Genetos, Alexander P

    2008-01-01

    Passenger vehicles are designed to absorb crash energy in frontal crashes through deformation or crush of energy-absorbing structures forward of the occupant compartment. In collisions between cars and light trucks (i.e., pickups and SUVs), however, the capacity of energy-absorption structures may not be fully utilized because mismatches often exist between the heights of these structures in the colliding vehicles. In 2003 automakers voluntarily committed to new design standards aimed at reducing the height mismatches between cars and light trucks. By September 2009 all new light trucks will have either the primary front structure (typically the frame rails) or a secondary structure connected to the primary structure low enough to interact with the primary structures in cars, which for most cars is about the height of the front bumper. To estimate the overall benefit of the voluntary commitment, the real-world crash experience of light trucks already meeting the height-matching criteria was compared with that of light trucks not meeting the criteria for 2000-2003 model light trucks in collisions with passenger cars during calendar years 2001-2004. The estimated benefits of lower front energy-absorbing structure were a 19 percent reduction (p<0.05) in fatality risk to belted car drivers in front-to-front crashes with light trucks and a 19 percent reduction (p<0.05) in fatality risk to car drivers in front-to-driver-side crashes with light trucks.

  17. Wavelength, beam size and type dependences of cerebral low-level light therapy: A Monte Carlo study on visible Chinese human

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhao, Yue; Duan, Meixue; Sun, Yunlong; Li, Kai

    2014-02-01

    Low level light therapy (LLLT) has been clinically utilized for many indications in medicine requiring protection from cell/tissue death, stimulation of healing and repair of injuries, pain reduction, swelling and inflammation. Presently, use of LLLT to treat stroke, traumatic brain injury, and cognitive dysfunction is attracting growing interest. Near-infrared light can penetrate into the brain tissue, allowing noninvasive treatment to be carried out with few treatment-related adverse events. Optimization of LLLT treatment effect is one key issue of the field; however, only a few experimental tests on mice for wavelength selection have been reported. We addressed this issue by low-cost, straightforward and quantitative comparisons on light dosage distribution in Visible Chinese human head with Monte Carlo modeling of light propagation. Optimized selection in wavelength, beam type and size were given based on comparisons among frequently-used setups (i.e., wavelengths: 660 nm, 810 nm, 980 nm; beam type: Gaussian and flat beam; beam diameter: 2 cm, 4 cm, 6cm).This study provided an efficient way to guide optimization of LLLT setup and selection on wavelength, beam type and size for clinical brain LLLT.

  18. Ultra-thin enhanced-absorption long-wave infrared detectors

    NASA Astrophysics Data System (ADS)

    Wang, Shaohua; Yoon, Narae; Kamboj, Abhilasha; Petluru, Priyanka; Zheng, Wanhua; Wasserman, Daniel

    2018-02-01

    We propose an architecture for enhanced absorption in ultra-thin strained layer superlattice detectors utilizing a hybrid optical cavity design. Our detector architecture utilizes a designer-metal doped semiconductor ground plane beneath the ultra-subwavelength thickness long-wavelength infrared absorber material, upon which we pattern metallic antenna structures. We demonstrate the potential for near 50% detector absorption in absorber layers with thicknesses of approximately λ0/50, using realistic material parameters. We investigate detector absorption as a function of wavelength and incidence angle, as well as detector geometry. The proposed device architecture offers the potential for high efficiency detectors with minimal growth costs and relaxed design parameters.

  19. Near infrared laser-tissue welding using nanoshells as an exogenous absorber.

    PubMed

    Gobin, Andre M; O'Neal, D Patrick; Watkins, Daniel M; Halas, Naomi J; Drezek, Rebekah A; West, Jennifer L

    2005-08-01

    Gold nanoshells are a new class of nanoparticles that can be designed to strongly absorb light in the near infrared (NIR). These particles provide much larger absorption cross-sections and efficiency than can be achieved with currently used chemical chromophores without photobleaching. In these studies, we have investigated the use of gold nanoshells as exogenous NIR absorbers to facilitate NIR laser-tissue welding. Gold nanoshells with peak extinction matching the NIR wavelength of the laser being used were manufactured and suspended in an albumin solder. Optimization work was performed on ex vivo muscle samples and then translated into testing in an in vivo rat skin wound-healing model. Mechanical testing of the muscle samples was immediately performed and compared to intact tissue mechanical properties. In the in vivo study, full thickness incisions in the dorsal skin of rats were welded, and samples of skin were excised at 0, 5, 10, 21, and 32 days for analysis of strength and wound healing response. Mechanical testing of nanoshell-solder welds in muscle revealed successful fusion of tissues with tensile strengths of the weld site equal to the uncut tissue. No welding was accomplished with this light source when using solder formulations without nanoshells. Mechanical testing of the skin wounds showed sufficient strength for closure and strength increased over time. Histological examination showed good wound-healing response in the soldered skin. The use of nanoshells as an exogenous absorber allows the usage of light sources that are minimally absorbed by tissue components, thereby, minimizing damage to surrounding tissue and allowing welding of thicker tissues. (c) 2005 Wiley-Liss, Inc.

  20. Secondary brown carbon - Formation of light-absorbing compounds in atmospheric particulates from selected dicarbonyls and amines

    NASA Astrophysics Data System (ADS)

    Kampf, Christopher; Filippi, Alexander; Hoffmann, Thorsten

    2015-04-01

    One of the main open questions regarding organic compounds in atmospheric chemistry today is related to the formation of optically-active compounds and the occurrence of so called brown carbon (Andreae and Gelencsér, 2006). While organic compounds in ambient fine particles for decades have been assumed to not absorb solar radiation, thus resulting in a net cooling effect on climate (IPCC, 2007), it is now generally accepted that a continuum of light-absorbing carbonaceous species is present in fine aerosols (Pöschl, 2003). In this study, light-absorbing compounds from reactions between dicarbonyl compounds, i.e., glyoxal, methylglyoxal, acetylacetone, 2,3-butanedione, 2,5-hexanedione, and glutaraldehyde, and amine species, i.e., ammonia and glycine, were investigated at atmospherically relevant concentrations in bulk solution experiments mimicking atmospheric particulates. Product analyses were performed using UV/Vis spectrophotometry and (ultra) high performance liquid chromatography coupled to diode array detection and ion trap mass spectrometry (HPLC-DAD-ESI-MS/MS), as well as ultra-high resolution (Orbitrap) mass spectrometry (UHPLC-ESI-HRMS/MS). We demonstrate that light-absorbing compounds are formed from a variety of atmospherically relevant dicarbonyls via particle phase reactions with amine nucleophiles. Single dicarbonyl and mixed dicarbonyl experiments were performed and products were analyzed. The reaction products are suggested to be cyclic nitrogen containing compounds such as imidazoles or dihydropyridines as well as open chain compounds resulting from aldol condensation reactions. Further, the reactive turnover was found to be higher at increasing pH values. The aforementioned processes may be of higher relevance in regions with high aerosol pH, e.g., resulting from high ammonia emissions as for example in northern India (Clarisse et al., 2009). References Andreae, M.O., and Gelencsér, A. (2006): Black carbon or brown carbon? The nature of light-absorbing

  1. Effects of a chronic reduction of short-wavelength light input on melatonin and sleep patterns in humans: evidence for adaptation.

    PubMed

    Giménez, Marina C; Beersma, Domien G M; Bollen, Pauline; van der Linden, Matthijs L; Gordijn, Marijke C M

    2014-06-01

    Light is an important environmental stimulus for the entrainment of the circadian clock and for increasing alertness. The intrinsically photosensitive ganglion cells in the retina play an important role in transferring this light information to the circadian system and they are elicited in particular by short-wavelength light. Exposure to short wavelengths is reduced, for instance, in elderly people due to yellowing of the ocular lenses. This reduction may be involved in the disrupted circadian rhythms observed in aged subjects. Here, we tested the effects of reduced blue light exposure in young healthy subjects (n = 15) by using soft orange contact lenses (SOCL). We showed (as expected) that a reduction in the melatonin suppressing effect of light is observed when subjects wear the SOCL. However, after chronic exposure to reduced (short wavelength) light for two consecutive weeks we observed an increase in sensitivity of the melatonin suppression response. The response normalized as if it took place under a polychromatic light pulse. No differences were found in the dim light melatonin onset or in the amplitude of the melatonin rhythms after chronic reduced blue light exposure. The effects on sleep parameters were limited. Our results demonstrate that the non-visual light system of healthy young subjects is capable of adapting to changes in the spectral composition of environmental light exposure. The present results emphasize the importance of considering not only the short-term effects of changes in environmental light characteristics.

  2. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.

    PubMed

    Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui

    2014-09-20

    This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.

  3. LWPC: Long Wavelength Propagation Capability

    NASA Astrophysics Data System (ADS)

    U. S. Navy; Ferguson, J. A.; Hutchins, Michael

    2018-03-01

    Long Wavelength Propagation Capability (LWPC), written as a collection of separate programs that perform unique actions, generates geographical maps of signal availability for coverage analysis. The program makes it easy to set up these displays by automating most of the required steps. The user specifies the transmitter location and frequency, the orientation of the transmitting and receiving antennae, and the boundaries of the operating area. The program automatically selects paths along geographic bearing angles to ensure that the operating area is fully covered. The diurnal conditions and other relevant geophysical parameters are then determined along each path. After the mode parameters along each path are determined, the signal strength along each path is computed. The signal strength along the paths is then interpolated onto a grid overlying the operating area. The final grid of signal strength values is used to display the signal-strength in a geographic display. The LWPC uses character strings to control programs and to specify options. The control strings have the same meaning and use among all the programs.

  4. Effects of melatonin and green-wavelength LED light on the physiological stress and immunity of goldfish, Carassius auratus, exposed to high water temperature.

    PubMed

    Jung, Seo Jin; Kim, Na Na; Choi, Young Jae; Choi, Ji Yong; Choi, Young-Ung; Heo, Youn Seong; Choi, Cheol Young

    2016-10-01

    This study investigated the effects of increasing water temperature (22-30 °C) on the physiological stress response and immunity of goldfish, Carassius auratus, and the ability of green light-emitting diode (LED) irradiation or melatonin injections to mitigate this temperature-induced stress. To evaluate the effects of either green-wavelength LED light or melatonin on stress in goldfish, we measured plasma triiodothyronine (T3), thyroxine (T4), and thyroid hormone receptor (TR) mRNA expression; plasma cortisol and glucose; and immunoglobulin M (IgM) and lysozyme mRNA expression. The thyroid hormone activities, TR mRNA expression, and plasma cortisol and glucose were higher in goldfish exposed to high-temperature water, but were lower after exposure to melatonin or green-wavelength LED light. Lysozyme mRNA expression and plasma IgM activity and protein expression were lower after exposure to high water temperatures and higher after melatonin or green-wavelength LED light treatments. Therefore, high water temperature induced stress and decreased immunity; however, green-wavelength LED light and melatonin treatments mitigated the effects of stress and enhanced immunity. The benefits of melatonin decreased with time, whereas those of green-wavelength LED treatment did not.

  5. A THz plasmonics perfect absorber and Fabry-Perot cavity mechanism (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Jiangfeng; Bhattarai, Khagendra; Silva, Sinhara; Jeon, Jiyeon; Kim, Junoh; Lee, Sang Jun; Ku, Zahyun

    2016-10-01

    Light Modulator for THz Applications," Advanced Optical Materials, vol. 2, pp. 275-279, 2014. [7] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, vol. 16, pp. 7181-7188, May 12 2008. [8] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Applied Physics Letters, vol. 96, p. 251104, 2010. [9] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, "Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters," Physical Review Letters, vol. 107, p. 045901, 07/18/ 2011. [10] T. Maier and H. Brückl, "Wavelength-tunable microbolometers with metamaterial absorbers," Optics Letters, vol. 34, pp. 3012-3014, 2009/10/01 2009. [11] A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, "Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing," Nano Letters, vol. 11, pp. 4366-4369, 2011/10/12 2011. [12] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared Perfect Absorber and Its Application As Plasmonic Sensor," Nano Letters, vol. 10, pp. 2342-2348, Jul 2010. [13] G. H. Li, X. S. Chen, O. P. Li, C. X. Shao, Y. Jiang, L. J. Huang, et al., "A novel plasmonic resonance sensor based on an infrared perfect absorber," Journal of Physics D-Applied Physics, vol. 45, p. 205102, May 23 2012.

  6. Long period grating refractive-index sensor: optimal design for single wavelength interrogation.

    PubMed

    Kapoor, Amita; Sharma, Enakshi K

    2009-11-01

    We report the design criteria for the use of long period gratings (LPGs) as refractive-index sensors with output power at a single interrogating wavelength as the measurement parameter. The design gives maximum sensitivity in a given refractive-index range when the interrogating wavelength is fixed. Use of the design criteria is illustrated by the design of refractive-index sensors for specific application to refractive-index variation of a sugar solution with a concentration and detection of mole fraction of xylene in heptane (paraffin).

  7. Microtextured metals for stray-light suppression in the Clementine startracker

    NASA Technical Reports Server (NTRS)

    Johnson, E. A.

    1993-01-01

    Anodized blacks for suppressing stray light in optical systems can now be replaced by microscopically textured metal surfaces. An application of these black surfaces to the Clementine star-tracker navigational system, which will be launched in early 1994 to examine the Moon, en route to intercept an asteroid, is detailed. Rugged black surfaces with Lambertian BRDF less than 10(exp -2) srad(sup -1) are critical for suppressing stray light in the star-tracker optical train. Previously available materials spall under launch vibrations to contaminate mirrors and lenses. Microtextured aluminum is nearly as dark, but much less fragile. It is made by differential ion beam sputtering, which generates light-trapping pores and cones slightly smaller than the wavelength to be absorbed. This leaves a sturdy but light-absorbing surface that can survive challenging conditions without generating debris or contaminants. Both seeded ion beams and plasma immersion (from ECR plasmas) extraction can produce these microscopic textures without fragile interfaces. Process parameters control feature size, spacing, and optical effects (THR, BRDF). Both broad and narrow absorption bands can be engineered with tuning for specific wavelengths and applications. Examples are presented characterized by FTIR in reflection librators (0.95 normal emissivity), heat rejection, and enhanced nucleate boiling.

  8. Freshwater DOM quantity and quality from a two-component model of UV absorbance

    USGS Publications Warehouse

    Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John

    2012-01-01

    We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).

  9. Reducing uncertainties associated with filter-based optical measurements of light absorbing carbon particles with chemical information

    NASA Astrophysics Data System (ADS)

    Engström, J. E.; Leck, C.

    2011-08-01

    The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC) can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed. One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter. Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season) or pristine air from the Southern Indian Ocean (summer monsoon). The two ways of correction (optical and chemical) lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm-1. Corresponding values for the South Indian Ocean data were 69 and 97 % (0.38 and 0.02 Mm-1). A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter-based determinations of BC, before even the sign on the

  10. Wavelength Comparison

    NASA Image and Video Library

    2016-10-27

    The difference in features that are visible in different wavelengths of extreme ultraviolet light can be stunning as we see when we compare very large coronal holes, easily seen in the AIA 171 image (colorized bronze) yet hardly perceptible in the AIA 304 image (colorized red). Both were taken at just about the same time (Oct. 27, 2016). Coronal holes are areas of open magnetic field that carry solar wind out into space. In fact, these holes are currently causing a lot of geomagnetic activity here on Earth. The bronze image wavelength captures material that is much hotter and further up in the corona than the red image. The comparison dramatizes the value of observing the sun in multiple wavelengths of light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA15377

  11. Phyllosphere Methylobacterium bacteria contain UVA-absorbing compounds.

    PubMed

    Yoshida, Shigenobu; Hiradate, Syuntaro; Koitabashi, Motoo; Kamo, Tsunashi; Tsushima, Seiya

    2017-02-01

    Microbes inhabiting the phyllosphere encounter harmful ultraviolet rays, and must develop adaptive strategies against this irradiation. In this study, we screened bacterial isolates originating from the phyllosphere of various plants which harbored absorbers of ultraviolet A (UVA), a wavelength range which is recognized as harmful to human skin. Of the 200 phyllosphere bacterial isolates we screened, methanol extracts from bacterial cells of seventeen isolates absorbed wavelengths in the range of 315-400nm. All of the UVA-absorbing strains belonged to Methylobacterium species based on 16S ribosomal RNA gene sequences, suggesting that cells of this bacterial genus contain specific UVA-absorbing compounds. When cells of a representative Methylobacterium strain were extracted using various solvents, UVA absorption was observed in the extracts obtained using several aqueous solvents, indicating that the UVA-absorbing compounds were highly polar. A compound was purified using solid columns and HPLC separation, and comparative analysis revealed that the absorption strength and spectrum of the compound were similar to those of the known UVA filter, avobenzone. The compound was also verified to be stable under UVA exposure for at least 480min. Based on these results, the UVA-absorbing compound harbored by Methylobacterium has potential to be used as a novel sunscreen ingredient. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Near-infrared tunable multiple broadband perfect absorber base on VO2 semi-shell arrays photonic microstructure and gold reflector

    NASA Astrophysics Data System (ADS)

    Liang, Jiran; Li, Peng; Zhou, Liwei; Guo, Jinbang; Zhao, Yirui

    2018-01-01

    We proposed a metamaterial absorber which is aimed to achieve a multiple broadband absorption and tunable absorption peak in the near-infrared region. The absorber is based on VO2 semi-shell coated on the top of silica nano-particle array supported on the gold-reflective layer. Measured results show that the absorber has the multiple broadband with the absorption magnitudes more than 95% in the near infrared region. The absorption peaks can be tuned through the VO2 phase transition from metallic phase to insulator phase in the short wavelength (before λ = 1500 nm), when VO2 is at the metallic state, an absorption band appears in the long wavelength (after λ = 1500 nm). The simulation results closely match those of measured. The absorption intensity becomes stronger and absorption peaks have red shift with the increase of thickness of VO2 semi-shell. Thus, this designed tunable absorption intensity and position absorber based on VO2 can be a good choice for enhancing the performance of multiple band, this would be beneficial to the field of photo detectors, sensor and solar cell.

  13. Quasi-distributed and wavelength selective addressing of optical micro-resonators based on long period fiber gratings.

    PubMed

    Farnesi, D; Chiavaioli, F; Baldini, F; Righini, G C; Soria, S; Trono, C; Conti, G Nunzi

    2015-08-10

    A novel all-in-fiber method for coupling light to high-Q silica whispering gallery mode (WGM) optical micro-resonators is presented, which is based on a pair of long period fiber gratings (LPGs) written in the same silica fiber, along with a thick fiber taper (15-18 μm in waist) in between the LPGs. The proposed coupling structure is robust and can be replicated many times along the same fiber simply cascading LPGs with different bands. Typical Q-factors of the order of 10(8) and total coupling efficiency up to 60% were measured collecting the resonances of microspheres or microbubbles at the fiber end. This approach uniquely allows quasi-distributed and wavelength selective addressing of different micro-resonators along the same fiber.

  14. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it; Ongarello, T.

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  15. Dependence of light transmission through human skin on incident beam diameter at different wavelengths

    NASA Astrophysics Data System (ADS)

    Zhao, ZhongQuan; Fairchild, Paul W.

    1998-05-01

    For many skin treatments with light, it is important to have deep photon penetration into the skin. Because of absorption and scattering of photons by skin tissue, both the color and the diameter of the incident beam affect the penetration depth of photons. In this study, the dependence of light transmission through human skin tissues (ear lobs and between the fingers) has been measured in-vivo at six wavelengths (532 nm, 632 nm, 675 nm, 810 nm, 911 nm, and 1064 nm). The same measurement was also made on pig skin in-vitro for comparison. It was observed that (1) the photons at 1064 nm penetrate deeper than the other colors studied for a given incident beam diameter; and (2) the transmittance at a particular wavelength increases asymptotically with incident beam diameter. For some skin tissues, the transmittance flattens at about 8 mm for 532 nm photons and approaches saturation at about 12 mm for all other colors. The results on pig skin is similar.

  16. Analytical modeling of light transport in scattering materials with strong absorption.

    PubMed

    Meretska, M L; Uppu, R; Vissenberg, G; Lagendijk, A; Ijzerman, W L; Vos, W L

    2017-10-02

    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength range between 420 and 700 nm through silicone plates filled with YAG:Ce 3+ phosphor particles, that even re-emit absorbed light at different wavelengths. We measure the total transmission, the total reflection, and the ballistic transmission of light through these plates. We obtain average single particle properties namely the scattering cross-section σ s , the absorption cross-section σ a , and the anisotropy factor µ using an analytical approach, namely the P3 approximation to the radiative transfer equation. We verify the extracted transport parameters using Monte-Carlo simulations of the light transport. Our approach fully describes the light propagation in phosphor diffuser plates that are used in white LEDs and that reveal a strong absorption (L/l a > 1) up to L/l a = 4, where L is the slab thickness, l a is the absorption mean free path. In contrast, the widely used diffusion theory fails to describe this parameter range. Our approach is a suitable analytical tool for industry, since it provides a fast yet accurate determination of key transport parameters, and since it introduces predictive power into the design process of white light emitting diodes.

  17. Vertical Profiles of Light-Absorbing Aerosol: A Combination of In-situ and AERONET Observations during NASA DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Crumeyrolle, S.; Giles, D. M.; Holben, B. N.; Hudgins, C.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2014-12-01

    Understanding the vertical profile of atmospheric aerosols plays a vital role in utilizing spaceborne, column-integrated satellite observations. The properties and distribution of light-absorbing aerosol are particularly uncertain despite significant air quality and climate ramifications. Advanced retrieval algorithms are able to derive complex aerosol properties (e.g., wavelength-dependent absorption coefficient and single scattering albedo) from remote-sensing measurements, but quantitative relationships to surface conditions remain a challenge. Highly systematic atmospheric profiling during four unique deployments for the NASA DISCOVER-AQ project (Baltimore, MD, 2011; San Joaquin Valley, CA, 2013; Houston, TX, 2013; Denver, CO, 2014) allow statistical assessment of spatial, temporal, and source-related variability for light-absorbing aerosol properties in these distinct regions. In-situ sampling in conjunction with a dense network of AERONET sensors also allows evaluation of the sensitivity, limitations, and advantages of remote-sensing data products over a wide range of conditions. In-situ aerosol and gas-phase observations were made during DISCOVER-AQ aboard the NASA P-3B aircraft. Aerosol absorption coefficients were measured by a Particle Soot Absorption Photometer (PSAP). Approximately 200 profiles for each of the four deployments were obtained, from the surface (25-300m altitude) to 5 km, and are used to calculate absorption aerosol optical depths (AAODs). These are quantitatively compared to AAOD derived from AERONET Level 1.5 retrievals to 1) explore discrepancies between measurements, 2) quantify the fraction of AAOD that exists directly at the surface and is often missed by airborne sampling, and 3) evaluate the potential for deriving ground-level black carbon (BC) concentrations for air quality prediction. Aerosol size distributions are used to assess absorption contributions from mineral dust, both at the surface and aloft. SP2 (Single Particle Soot

  18. Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands

    NASA Astrophysics Data System (ADS)

    Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.

    2017-12-01

    With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.

  19. Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for High-Performance Perovskite Photovoltaic Cells with Stability.

    PubMed

    Moon, Byeong Cheul; Park, Jung Hyo; Lee, Dong Ki; Tsvetkov, Nikolai; Ock, Ilwoo; Choi, Kyung Min; Kang, Jeung Ku

    2017-08-01

    CH 3 NH 3 PbI 3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI 2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ < 500 nm) to the perovskite along with enhanced absorption of long-wavelength photons (500 nm < λ < 780 nm). Moreover, the light-driven electric field is proven to allow efficient charge extraction upon light absorption, thereby leading to the increased photocurrent density as well as the fill factor prompted by the slow recombination rate. Additionally, the photocurrent density of the cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantitative impact of small angle forward scatter on whole blood oximetry using a Beer-Lambert absorbance model.

    PubMed

    LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean

    2011-04-21

    It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.

  1. Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies

    PubMed Central

    Morehouse, Nathan I; Vukusic, Peter; Rutowski, Ron

    2006-01-01

    A small but growing literature indicates that many animal colours are produced by combinations of structural and pigmentary mechanisms. We investigated one such complex colour phenotype: the highly chromatic wing colours of pierid butterflies including oranges, yellows and patterns which appear white to the human eye, but strongly absorb the ultraviolet (UV) wavelengths visible to butterflies. Pierids produce these bright colours using wing scales that contain collections of minute granules. However, to date, no work has directly characterized the molecular composition or optical properties of these granules. We present results that indicate these granules contain pterin pigments. We also find that pterin granules increase light reflection from single wing scales, such that wing scales containing denser granule arrays reflect more light than those with less dense granule collections. As male wing scales contain more pterin granules than those of females, the sexual dichromatism found in many pierid species can be explained by differences in wing scale pterin deposition. Additionally, the colour pattern elements produced by these pterins are known to be important during mating interactions in a number of pierid species. Therefore, we discuss the potential relevance of our results within the framework of sexual selection and colour signal evolution. PMID:17164199

  2. Light absorbing carbon emissions from commercial shipping

    NASA Astrophysics Data System (ADS)

    Lack, Daniel; Lerner, Brian; Granier, Claire; Baynard, Tahllee; Lovejoy, Edward; Massoli, Paola; Ravishankara, A. R.; Williams, Eric

    2008-07-01

    Extensive measurements of the emission of light absorbing carbon aerosol (LAC) from commercial shipping are presented. Vessel emissions were sampled using a photoacoustic spectrometer in the Gulf of Mexico region. The highest emitters (per unit fuel burnt) are tug boats, thus making significant contributions to local air quality in ports. Emission of LAC from cargo and non cargo vessels in this study appears to be independent of engine load. Shipping fuel consumption data (2001) was used to calculate a global LAC contribution of 133(+/-27) Ggyr-1, or ~1.7% of global LAC. This small fraction could have disproportionate effects on both air quality near port areas and climate in the Arctic if direct emissions of LAC occur in that region due to opening Arctic sea routes. The global contribution of this LAC burden was investigated using the MOZART model. Increases of 20-50 ng m-3 LAC (relative increases up to 40%) due to shipping occur in the tropical Atlantic, Indonesia, central America and the southern regions of South America and Africa.

  3. Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes.

    PubMed

    Wilson, Jeremy D; Cottrell, William J; Foster, Thomas H

    2007-01-01

    Angularly resolved light scattering and wavelength-resolved darkfield scattering spectroscopy measurements were performed on intact, control EMT6 cells and cells stained with high-extinction lysosomal- or mitochondrial-localizing dyes. In the presence of the lysosomal-localizing dye NPe6, we observe changes in the details of light scattering from stained and unstained cells, which have both wavelength- and angular-dependent features. Analysis of measurements performed at several wavelengths reveals a reduced scattering cross section near the absorption maximum of the lysosomal-localizing dye. When identical measurements are made with cells loaded with a similar mitochondrial-localizing dye, HPPH, we find no evidence that staining mitochondria had any effect on the light scattering. Changes in the scattering properties of candidate populations of organelles induced by the addition of an absorber are modeled with Mie theory, and we find that any absorber-induced scattering response is very sensitive to the inherent refractive index of the organelle population. Our measurements and modeling are consistent with EMT6-cell-mitochondria having refractive indices close to those reported in the literature for organelles, approximately 1.4. The reduction in scattering cross section induced by NPe6 constrains the refractive index of lysosomes to be significantly higher. We estimate the refractive index of lysosomes in EMT6 cells to be approximately 1.6.

  4. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  5. Analysis of complex samples using a portable multi-wavelength light emitting diode (LED) fluorescence spectrometer

    USDA-ARS?s Scientific Manuscript database

    Spectroscopic analysis of chemically complex samples often requires an increase n the dimensionality of the measured response surface. This often involves the measurement of emitted light intensities as functions of both wavelengths of excitation and emission resulting in the generation of an excita...

  6. Short-Wavelength Infrared Views of Messier 81

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The magnificent spiral arms of the nearby galaxy Messier 81 are highlighted in this NASA Spitzer Space Telescope image. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years from Earth.

    Because of its proximity, M81 provides astronomers with an enticing opportunity to study the anatomy of a spiral galaxy in detail. The unprecedented spatial resolution and sensitivity of Spitzer at infrared wavelengths show a clear separation between the several key constituents of the galaxy: the old stars, the interstellar dust heated by star formation activity, and the embedded sites of massive star formation. The infrared images also permit quantitative measurements of the galaxy's overall dust content, as well as the rate at which new stars are being formed.

    The infrared image was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). Winding outward from the bluish-white central bulge of the galaxy, where old stars predominate and there is little dust, the grand spiral arms are dominated by infrared emission from dust. Dust in the galaxy is bathed by ultraviolet and visible light from the surrounding stars. Upon absorbing an ultraviolet or visible-light photon, a dust grain is heated and re-emits the energy at longer infrared wavelengths. The dust particles, composed of silicates (which are chemically similar to beach sand) and polycyclic aromatic hydrocarbons, trace the gas distribution in the galaxy. The well-mixed gas (which is best detected at radio wavelengths) and dust provide a reservoir of raw materials for future star formation.

    The infrared-bright clumpy knots within the spiral arms denote where massive stars are being born in giant H

  7. Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, Brian M., E-mail: bmhaines@lanl.gov

    2015-08-15

    In this paper, we perform a series of high-resolution 3D simulations of an OMEGA-type inertial confinement fusion (ICF) capsule implosion with varying levels of initial long-wavelength asymmetries in order to establish the physical energy loss mechanism for observed yield degradation due to long-wavelength asymmetries in symcap (gas-filled capsule) implosions. These simulations demonstrate that, as the magnitude of the initial asymmetries is increased, shell kinetic energy is increasingly retained in the shell instead of being converted to fuel internal energy. This is caused by the displacement of fuel mass away from and shell material into the center of the implosion duemore » to complex vortical flows seeded by the long-wavelength asymmetries. These flows are not fully turbulent, but demonstrate mode coupling through non-linear instability development during shell stagnation and late-time shock interactions with the shell interface. We quantify this effect by defining a separation lengthscale between the fuel mass and internal energy and show that this is correlated with yield degradation. The yield degradation shows an exponential sensitivity to the RMS magnitude of the long-wavelength asymmetries. This strong dependence may explain the lack of repeatability frequently observed in OMEGA ICF experiments. In contrast to previously reported mechanisms for yield degradation due to turbulent instability growth, yield degradation is not correlated with mixing between shell and fuel material. Indeed, an integrated measure of mixing decreases with increasing initial asymmetry magnitude due to delayed shock interactions caused by growth of the long-wavelength asymmetries without a corresponding delay in disassembly.« less

  8. Device for wavelength-selective imaging

    DOEpatents

    Frangioni, John V.

    2010-09-14

    An imaging device captures both a visible light image and a diagnostic image, the diagnostic image corresponding to emissions from an imaging medium within the object. The visible light image (which may be color or grayscale) and the diagnostic image may be superimposed to display regions of diagnostic significance within a visible light image. A number of imaging media may be used according to an intended application for the imaging device, and an imaging medium may have wavelengths above, below, or within the visible light spectrum. The devices described herein may be advantageously packaged within a single integrated device or other solid state device, and/or employed in an integrated, single-camera medical imaging system, as well as many non-medical imaging systems that would benefit from simultaneous capture of visible-light wavelength images along with images at other wavelengths.

  9. The 3.5 micron light curves of long period variable stars. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Strecker, D. W.

    1973-01-01

    Infrared observations at an effective wavelength of 3.5 microns of a selected group of long period variable (LPV) stars are presented. Mira type and semiregular stars of M, S, and C spectral classifications were monitored throughout the full cycle of variability. Although the variable infrared radiation does not exactly repeat in intensity or time, the regularity is sufficient to produce mean 3.5 micron light curves. The 3.5 micron maximum radiation lags the visual maximum by about one-seventh of a cycle, while the minimum 3.5 micron intensity occurs nearly one-half cycle after infrared maximum. In some stars, there are inflections or humps on the ascending portion of the 3.5 micron light curve which may also be seen in the visual variations.

  10. Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees.

    PubMed

    Vasas, Vera; Hanley, Daniel; Kevan, Peter G; Chittka, Lars

    2017-04-01

    Many pollinating insects acquire their entire nutrition from visiting flowers, and they must therefore be efficient both at detecting flowers and at recognizing familiar rewarding flower types. A crucial first step in recognition is the identification of edges and the segmentation of the visual field into areas that belong together. Honeybees and bumblebees acquire visual information through three types of photoreceptors; however, they only use a single receptor type-the one sensitive to longer wavelengths-for edge detection and movement detection. Here, we show that these long-wavelength receptors (peak sensitivity at ~544 nm, i.e., green) provide the most consistent signals in response to natural objects. Using our multispectral image database of flowering plants, we found that long-wavelength receptor responses had, depending on the specific scenario, up to four times higher signal-to-noise ratios than the short- and medium-wavelength receptors. The reliability of the long-wavelength receptors emerges from an intricate interaction between flower coloration and the bee's visual system. This finding highlights the adaptive significance of bees using only long-wavelength receptors to locate flowers among leaves, before using information provided by all three receptors to distinguish the rewarding flower species through trichromatic color vision.

  11. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination

    NASA Astrophysics Data System (ADS)

    Guo, Zhenzhen; Ming, Xin; Wang, Gang; Hou, Baofei; Liu, Xinghang; Mei, Tao; Li, Jinhua; Wang, Jianying; Wang, Xianbao

    2018-02-01

    Solar steam technology is one of the simplest, most direct and effective ways to harness solar energy through water evaporation. Here, we report the development using super-hydrophilic copper sulfide (CuS) films with double-layer structures as light absorbers for solar steam generation. In the double-layer structure system, a porous mixed cellulose ester (MCE) membrane is used as a supporting layer, which enables water to get into the CuS light absorbers through a capillary action to provide continuous water during solar steam generation. The super-hydrophilic property of the double-layer system (CuS/MCE) leads to a thinner water film close to the air-water interface where the surface temperature is sufficiently high, leading to more efficient evaporation (˜80 ± 2.5%) under one sun illumination. Furthermore, the evaporation efficiencies still keep a steady value after 15 cycles of testing. The super-hydrophilic CuS film is promising for practical application in water purification and evaporation as a light absorption material.

  12. Long-wavelength fluctuations and the glass transition in two dimensions and three dimensions

    PubMed Central

    Vivek, Skanda; Kelleher, Colm P.; Chaikin, Paul M.

    2017-01-01

    Phase transitions significantly differ between 2D and 3D systems, but the influence of dimensionality on the glass transition is unresolved. We use microscopy to study colloidal systems as they approach their glass transitions at high concentrations and find differences between two dimensions and three dimensions. We find that, in two dimensions, particles can undergo large displacements without changing their position relative to their neighbors, in contrast with three dimensions. This is related to Mermin–Wagner long-wavelength fluctuations that influence phase transitions in two dimensions. However, when measuring particle motion only relative to their neighbors, two dimensions and three dimensions have similar behavior as the glass transition is approached, showing that the long-wavelength fluctuations do not cause a fundamental distinction between 2D and 3D glass transitions. PMID:28137847

  13. Long-wavelength fluctuations and the glass transition in two dimensions and three dimensions.

    PubMed

    Vivek, Skanda; Kelleher, Colm P; Chaikin, Paul M; Weeks, Eric R

    2017-02-21

    Phase transitions significantly differ between 2D and 3D systems, but the influence of dimensionality on the glass transition is unresolved. We use microscopy to study colloidal systems as they approach their glass transitions at high concentrations and find differences between two dimensions and three dimensions. We find that, in two dimensions, particles can undergo large displacements without changing their position relative to their neighbors, in contrast with three dimensions. This is related to Mermin-Wagner long-wavelength fluctuations that influence phase transitions in two dimensions. However, when measuring particle motion only relative to their neighbors, two dimensions and three dimensions have similar behavior as the glass transition is approached, showing that the long-wavelength fluctuations do not cause a fundamental distinction between 2D and 3D glass transitions.

  14. Measurement of wavelength-dependent refractive indices of liquid scintillation cocktails.

    PubMed

    Kossert, Karsten

    2013-12-01

    Refractive indices of several commercial liquid scintillation cocktails were measured by means of an automatic critical-angle dispersion refractometer in the wavelength range from 404.7 nm to 706.5 nm. The results are needed for various applications. In particular, detailed Monte Carlo simulations of liquid scintillation counters that include the computation of optical light require these data. In addition, the refractive index is an important parameter for studies of micelle sizes by means of dynamic light scattering. In this work, the refractive indices were determined for Ultima Gold™, Ultima Gold™ F, Ultima Gold™ LLT, Ultima Gold™ AB, Hionic Fluor™, Permafluor(®)E+, Mineral Oil Scintillator, Insta-Gel Plus, OptiPhase HiSafe 2, OptiPhase HiSafe 3, Ultima Gold™ XR, Insta-Gel Plus, AquaLight, MaxiLight and Ultima Gold™ MV at 16°C, 18°C, 20°C and 22°C. The carbon dioxide absorber Carbo-Sorb(®)E was also analyzed. For some scintillators, various batches were compared and mixtures with water or nitromethane were studied. © 2013 Published by Elsevier Ltd.

  15. A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow

    NASA Astrophysics Data System (ADS)

    Tuzet, Francois; Dumont, Marie; Lafaysse, Matthieu; Picard, Ghislain; Arnaud, Laurent; Voisin, Didier; Lejeune, Yves; Charrois, Luc; Nabat, Pierre; Morin, Samuel

    2017-11-01

    Light-absorbing impurities (LAIs) decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive and direct impact is to accelerate snowmelt. Enhanced energy absorption in snow also modifies snow metamorphism, which can indirectly drive further variations of snow albedo in the near-infrared part of the solar spectrum because of the evolution of the near-surface snow microstructure. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities' deposition and evolution within the snowpack and their direct and indirect impacts. Once deposited, the model computes impurities' mass evolution until snow melts out, accounting for scavenging by meltwater. Taking advantage of the recent inclusion of the spectral radiative transfer model TARTES (Two-stream Analytical Radiative TransfEr in Snow model) in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. The model was evaluated at the Col de Porte experimental site (French Alps) during the 2013-2014 snow season against in situ standard snow measurements and spectral albedo measurements. In situ meteorological measurements were used to drive the snowpack model, except for aerosol deposition fluxes. Black carbon (BC) and dust deposition fluxes used to drive the model were extracted from simulations of the atmospheric model ALADIN-Climate. The model simulates snowpack evolution reasonably, providing similar performances to our reference Crocus version in terms of snow depth, snow water equivalent (SWE), near-surface specific surface area (SSA) and shortwave albedo. Since the reference empirical albedo scheme was calibrated at the Col de Porte, improvements were not expected to be significant in this study. We show that the deposition fluxes from the ALADIN-Climate model provide a reasonable estimate of the amount of light-absorbing impurities deposited on the

  16. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    DOE PAGES

    van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; ...

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less

  17. Multi-Wavelength Views of Messier 81

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Click on individual images below for larger view

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    The magnificent spiral arms of the nearby galaxy Messier 81 are highlighted in this image from NASA's Spitzer Space Telescope. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years.

    The main image is a composite mosaic obtained with the multiband imaging photometer for Spitzer and the infrared array camera. Thermal infrared emission at 24 microns detected by the photometer (red, bottom left inset) is combined with camera data at 8.0 microns (green, bottom center inset) and 3.6 microns (blue, bottom right inset).

    A visible-light image of Messier 81, obtained at Kitt Peak National Observatory, a ground-based telescope, is shown in the upper right inset. Both the visible-light picture and the 3.6-micron near-infrared image trace the distribution of stars, although the Spitzer image is virtually unaffected by obscuring dust. Both images reveal a very smooth stellar mass distribution, with the spiral arms relatively subdued.

    As one moves to longer wavelengths, the spiral arms become the dominant feature of the galaxy. The 8-micron emission is dominated by infrared light radiated by hot dust that has been heated by nearby luminous stars. Dust in the galaxy is bathed by ultraviolet and visible light from nearby stars. Upon absorbing an ultraviolet or visible-light photon, a dust grain is heated and re-emits the energy at longer infrared wavelengths. The dust particles are composed of silicates (chemically similar to beach sand), carbonaceous grains and polycyclic aromatic hydrocarbons and

  18. Entanglement of light-shift compensated atomic spin waves with telecom light.

    PubMed

    Dudin, Y O; Radnaev, A G; Zhao, R; Blumoff, J Z; Kennedy, T A B; Kuzmich, A

    2010-12-31

    Entanglement of a 795 nm light polarization qubit and an atomic Rb spin-wave qubit for a storage time of 0.1 s is observed by measuring the violation of Bell's inequality (S=2.65±0.12). Long qubit storage times are achieved by pinning the spin wave in a 1064 nm wavelength optical lattice, with a magic-valued magnetic field superposed to eliminate lattice-induced dephasing. Four-wave mixing in a cold Rb gas is employed to perform light qubit conversion between near infrared (795 nm) and telecom (1367 nm) wavelengths, and after propagation in a telecom fiber, to invert the conversion process. Observed Bell inequality violation (S=2.66±0.09), at 10 ms storage, confirms preservation of memory-light entanglement through the two stages of light qubit frequency conversion.

  19. Light-absorbing oligomer formation in secondary organic aerosol from reactive uptake of isoprene epoxydiols.

    PubMed

    Lin, Ying-Hsuan; Budisulistiorini, Sri Hapsari; Chu, Kevin; Siejack, Richard A; Zhang, Haofei; Riva, Matthieu; Zhang, Zhenfa; Gold, Avram; Kautzman, Kathryn E; Surratt, Jason D

    2014-10-21

    Secondary organic aerosol (SOA) produced from reactive uptake and multiphase chemistry of isoprene epoxydiols (IEPOX) has been found to contribute substantially (upward of 33%) to the fine organic aerosol mass over the Southeastern U.S. Brown carbon (BrC) in rural areas of this region has been linked to secondary sources in the summer when the influence of biomass burning is low. We demonstrate the formation of light-absorbing (290 < λ < 700 nm) SOA constituents from reactive uptake of trans-β-IEPOX onto preexisting sulfate aerosols as a potential source of secondary BrC. IEPOX-derived BrC generated in controlled chamber experiments under dry, acidic conditions has an average mass absorption coefficient of ∼ 300 cm(2) g(-1). Chemical analyses of SOA constituents using UV-visible spectroscopy and high-resolution mass spectrometry indicate the presence of highly unsaturated oligomeric species with molecular weights separated by mass units of 100 (C5H8O2) and 82 (C5H6O) coincident with the observations of enhanced light absorption, suggesting such oligomers as chromophores, and potentially explaining one source of humic-like substances (HULIS) ubiquitously present in atmospheric aerosol. Similar light-absorbing oligomers were identified in fine aerosol collected in the rural Southeastern U.S., supporting their atmospheric relevance and revealing a previously unrecognized source of oligomers derived from isoprene that contributes to ambient fine aerosol mass.

  20. Surface leakage current in 12.5  μm long-wavelength HgCdTe infrared photodiode arrays.

    PubMed

    Qiu, Weicheng; Hu, Weida; Lin, Chun; Chen, Xiaoshuang; Lu, Wei

    2016-02-15

    Long-wavelength (especially >12  μm) focal plane array (FPA) infrared detection is the cutting edge technique for third-generation infrared remote sensing. However, dark currents, which are very sensitive to the growth of small Cd composition HgCdTe, strongly limits the performance of long wavelength HgCdTe photodiode arrays in FPAs. In this Letter, 12.5 μm long-wavelength Hg1-xCdxTe (x≈0.219) infrared photodiode arrays are reported. The variable-area and variable-temperature electrical characteristics of the long-wavelength infrared photodiodes are measured. The characteristics of the extracted zero-bias resistance-area product (l/R0A) varying with the perimeter-to-area (P/A) ratio clearly show that surface leakage current mechanisms severely limit the overall device performance. A sophisticated model has been developed for investigating the leakage current mechanism in the photodiodes. Modeling of temperature-dependent I-V characteristic indicates that the trap-assisted tunneling effect dominates the dark current at 50 K resulting in nonuniformities in the arrays. The extracted trap density, approximately 1013-1014  cm-3, with an ionized energy of 30 meV is determined by simulation. The work described in this Letter provides the basic mechanisms for a better understanding of the leakage current mechanism for long-wavelength (>12  μm) HgCdTe infrared photodiode arrays.

  1. Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength.

    PubMed

    Bharadwaj, Reshma; Sai, V V R; Thakare, Kamini; Dhawangale, Arvind; Kundu, Tapanendu; Titus, Susan; Verma, Pradeep Kumar; Mukherji, Soumyo

    2011-03-15

    A novel label-free technique for the detection of pathogens based on evanescent wave absorbance (EWA) changes at 280 nm from a U-bent optical fiber sensor is demonstrated. Bending a decladded fiber into a U-shaped structure enhances the penetration depth of evanescent waves and hence sensitivity of the probe. We show that the enhanced EWA response from such U-bent probes, caused by the inherent optical absorbance properties of bacterial cells or biomolecules specifically bound to the sensor surface, can be exploited for the detection of pathogens. A portable optical set-up with a UV light emitting diode, a spectrometer and U-bent fiber optic probe of 200 μm core diameter, 0.75 mm bend radius and effective probe length of 1cm demonstrated an ability to detect less than 1000 cfu/ml. Copyright © 2011. Published by Elsevier B.V.

  2. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.

    PubMed

    Jiang, Zhi Hao; Yun, Seokho; Toor, Fatima; Werner, Douglas H; Mayer, Theresa S

    2011-06-28

    Metamaterials offer a new approach to create surface coatings with highly customizable electromagnetic absorption from the microwave to the optical regimes. Thus far, efficient metamaterial absorbers have been demonstrated at microwave frequencies, with recent efforts aimed at much shorter terahertz and infrared wavelengths. The present infrared absorbers have been constructed from arrays of nanoscale metal resonators with simple circular or cross-shaped geometries, which provide a single band response. In this paper, we demonstrate a conformal metamaterial absorber with a narrow band, polarization-independent absorptivity of >90% over a wide ±50° angular range centered at mid-infrared wavelengths of 3.3 and 3.9 μm. The highly efficient dual-band metamaterial was realized by using a genetic algorithm to identify an array of H-shaped nanoresonators with an effective electric and magnetic response that maximizes absorption in each wavelength band when patterned on a flexible Kapton and Au thin film substrate stack. This conformal metamaterial absorber maintains its absorption properties when integrated onto curved surfaces of arbitrary materials, making it attractive for advanced coatings that suppress the infrared reflection from the protected surface.

  3. All-fiber passively Q-switched thulium-doped fiber laser by using a holmium-doped fiber as saturable absorber

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez-Tamayo, R. I.; Posada-Ramírez, B.; Alaniz-Baylón, J.; Bravo-Huerta, E.; Santiago-Hernández, H.; Hernández-Arriaga, M. V.; Bello-Jiménez, Miguel; Ibarra-Escamilla, B.; Kuzin, E. A.

    2018-02-01

    We report a linear cavity all-fiber passive Q-switched thulium-doped fiber laser operating at the 2 μm wavelength range. The laser configuration is based on a thulium-doped fiber used as a gain medium and an unpumped segment of holmium-doped fiber which acts as a fiber saturable absorber. The cavity is formed by a fiber optical loop mirror and the flat end facet of the holmium-doped fiber. The fiber segments as saturable absorber is a 1-m long single mode doubleclad holmium-doped fiber. Q-switched pulses are obtained at the wavelength of 2024.5 nm with a pulse width of 1.1 μs. The pulse repetition rate increases as a linear function of the applied pump power. The maximum pulse repetition rate of 100 kHz was obtained with a pump power of 2.4 W.

  4. Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Moody, J.; Yang, S. T.

    2018-05-01

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light-changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.

  5. Interannual variations of light-absorbing particles in snow on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Doherty, Sarah J.; Steele, Michael; Rigor, Ignatius; Warren, Stephen G.

    2015-11-01

    Samples of snow on sea ice were collected in springtime of the 6 years 2008-2013 in the region between Greenland, Ellesmere Island, and the North Pole (82°N -89°N, 0°W-100°W). The meltwater was passed through filters, whose spectral absorption was then measured to determine the separate contributions by black carbon (BC) and other light-absorbing impurities. The median mixing ratio of BC across all years' samples was 4 ± 3 ng g-1, and the median fraction of absorption due to non-BC absorbers was 36 ± 11%. Variances represent both spatial and interannual variability; there was no interannual trend in either variable. The absorption Ångström exponent, however, decreased with latitude, suggesting a transition from dominance by biomass-burning sources in the south to an increased influence by fossil-fuel-burning sources in the north, consistent with earlier measurements of snow in Svalbard and at the North Pole.

  6. Electronic and thermally tunable infrared metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Shrekenhamer, David; Miragliotta, Joseph A.; Brinkley, Matthew; Fan, Kebin; Peng, Fenglin; Montoya, John A.; Gauza, Sebastian; Wu, Shin-Tson; Padilla, Willie J.

    2016-09-01

    In this paper, we report a computational and experimental study using tunable infrared (IR) metamaterial absorbers (MMAs) to demonstrate frequency tunable (7%) and amplitude modulation (61%) designs. The dynamic tuning of each structure was achieved through the addition of an active material—liquid crystals (LC) or vanadium dioxide (VO2)-within the unit cell of the MMA architecture. In both systems, an applied stimulus (electric field or temperature) induced a dielectric change in the active material and subsequent variation in the absorption and reflection properties of the MMA in the mid- to long-wavelength region of the IR (MWIR and LWIR, respectively). These changes were observed to be reversible for both systems and dynamic in the LC-based structure.

  7. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength.

    PubMed

    Kang, Zion; Kim, Byung-Hyuk; Ramanan, Rishiram; Choi, Jong-Eun; Yang, Ji-Won; Oh, Hee-Mock; Kim, Hee-Sik

    2015-01-01

    Open raceway ponds are cost-efficient for mass cultivation of microalgae compared with photobioreactors. Although low-cost options like wastewater as nutrient source is studied to overcome the commercialization threshold for biodiesel production from microalgae, a cost analysis on the use of wastewater and other incremental increases in productivity has not been elucidated. We determined the effect of using wastewater and wavelength filters on microalgal productivity. Experimental results were then fitted into a model, and cost analysis was performed in comparison with control raceways. Three different microalgal strains, Chlorella vulgaris AG10032, Chlorella sp. JK2, and Scenedesmus sp. JK10, were tested for nutrient removal under different light wavelengths (blue, green, red, and white) using filters in batch cultivation. Blue wavelength showed an average of 27% higher nutrient removal and at least 42% higher chemical oxygen demand removal compared with white light. Naturally, the specific growth rate of microalgae cultivated under blue wavelength was on average 10.8% higher than white wavelength. Similarly, lipid productivity was highest in blue wavelength, at least 46.8% higher than white wavelength, whereas FAME composition revealed a mild increase in oleic and palmitic acid levels. Cost analysis reveals that raceways treating wastewater and using monochromatic wavelength would decrease costs from 2.71 to 0.73 $/kg biomass. We prove that increasing both biomass and lipid productivity is possible through cost-effective approaches, thereby accelerating the commercialization of low-value products from microalgae, like biodiesel.

  8. Light Emitting Diodes (LEDs)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  9. Recent advances in IR liquid crystal spatial light modulators

    NASA Astrophysics Data System (ADS)

    Peng, Fenglin; Twieg, Robert J.; Wu, Shin-Tson

    2015-09-01

    Liquid crystal (LC) is an amazing class of electro-optic media; its applications span from visible to infrared, millimeter wave, and terahertz regions. In the visible and short-wavelength infrared (SWIR) regions, most LCs are highly transparent. However, to extend the electro-optic application of LCs into MWIR and LWIR, several key technical challenges have to be overcome: (1) low absorption loss, (2) high birefringence, (3) low operation voltage, and (4) fast response time. In the MWIR and LWIR regions, several fundamental molecular vibration bands and overtones exist, which contribute to high absorption loss. The absorbed light turns to heat and then alters the birefringence locally, which in turns causes spatially non-uniform phase modulation. To suppress the optical loss, several approaches have been investigated: (1) Employing thin cell gap by choosing a high birefringence LC mixture; (2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination, or chlorination; (3) Reducing the overtone absorption by using a short alkyl chain. In this paper, we report some recently developed chlorinated LC compounds and mixtures with low absorption loss in the SWIR and MWIR regions. To achieve fast response time, we demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms. Approaches to extend such a liquid crystal spatial light modulator to long-wavelength infrared will be discussed.

  10. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats.

    PubMed

    Opperhuizen, Anne-Loes; Stenvers, Dirk J; Jansen, Remi D; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2017-07-01

    Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse health effects with an increased risk of metabolic disorders, including type 2 diabetes. It is well-known that acute exposure to LAN affects biological clock function, hormone secretion and the activity of the autonomic nervous system, but data on the effects of LAN on glucose homeostasis are lacking. This study aimed to investigate the acute effects of LAN on glucose metabolism. Male Wistar rats were subjected to i.v. glucose or insulin tolerance tests while exposed to 2 h of LAN in the early or late dark phase. In subsequent experiments, different light intensities and wavelengths were used. LAN exposure early in the dark phase at ZT15 caused increased glucose responses during the first 20 min after glucose infusion (p < 0.001), whereas LAN exposure at the end of the dark phase, at ZT21, caused increased insulin responses during the first 10 min (p < 0.01), indicating that LAN immediately induces glucose intolerance in rats. Subsequent experiments demonstrated that the effect of LAN was both intensity- and wavelength-dependent. White light of 50 and 150 lx induced greater glucose responses than 5 and 20 lx, whereas all intensities other than 5 lx reduced locomotor activity. Green light induced glucose intolerance, but red and blue light did not, suggesting the involvement of a specific retina-brain pathway. Together, these data show that exposure to LAN has acute adverse effects on glucose metabolism in a time-, intensity- and wavelength-dependent manner.

  11. A new optical method coupling light polarization and Vis-NIR spectroscopy to improve the measured absorbance signal's quality of soil samples.

    NASA Astrophysics Data System (ADS)

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2014-05-01

    Visible - Near-infrared spectroscopy (Vis-NIRS) is now commonly used to measure different physical and chemical parameters of soils, including carbon content. However, prediction model accuracy is insufficient for Vis-NIRS to replace routine laboratory analysis. One of the biggest issues this technique is facing up to is light scattering due to soil particles. It causes departure in the assumed linear relationship between the Absorbance spectrum and the concentration of the chemicals of interest as stated by Beer-Lambert's Law, which underpins the calibration models. Therefore it becomes essential to improve the metrological quality of the measured signal in order to optimize calibration as light/matter interactions are at the basis of the resulting linear modeling. Optics can help to mitigate scattering effect on the signal. We put forward a new optical setup coupling linearly polarized light with a Vis-NIR spectrometer to free the measured spectra from multi-scattering effect. The corrected measured spectrum was then used to compute an Absorbance spectrum of the sample, using Dahm's Equation in the frame of the Representative Layer Theory. This method has been previously tested and validated on liquid (milk+ dye) and powdered (sand + dye) samples showing scattering (and absorbing) properties. The obtained Absorbance was a very good approximation of the Beer-Lambert's law absorbance. Here, we tested the method on a set of 54 soil samples to predict Soil Organic Carbon content. In order to assess the signal quality improvement by this method, we built and compared calibration models using Partial Least Square (PLS) algorithm. The prediction model built from new Absorbance spectrum outperformed the model built with the classical Absorbance traditionally obtained with Vis-NIR diffuse reflectance. This study is a good illustration of the high influence of signal quality on prediction model's performances.

  12. Structured light generation by magnetic metamaterial half-wave plates at visible wavelength

    NASA Astrophysics Data System (ADS)

    Zeng, Jinwei; Luk, Ting S.; Gao, Jie; Yang, Xiaodong

    2017-12-01

    Metamaterial or metasurface unit cells functioning as half-wave plates play an essential role for realizing ideal Pancharatnam-Berry phase optical elements capable of tailoring light phase and polarization as desired. Complex light beam manipulation through these metamaterials or metasurfaces unveils new dimensions of light-matter interactions for many advances in diffraction engineering, beam shaping, structuring light, and holography. However, the realization of metamaterial or metasurface half-wave plates in visible spectrum range is still challenging mainly due to its specific requirements of strong phase anisotropy with amplitude isotropy in subwavelength scale. Here, we propose magnetic metamaterial structures which can simultaneously exploit the electric field and magnetic field of light for achieving the nanoscale half-wave plates at visible wavelength. We design and demonstrate the magnetic metamaterial half-wave plates in linear grating patterns with high polarization conversion purity in a deep subwavelength thickness. Then, we characterize the equivalent magnetic metamaterial half-wave plates in cylindrical coordinate as concentric-ring grating patterns, which act like an azimuthal half-wave plate and accordingly exhibit spatially inhomogeneous polarization and phase manipulations including spin-to-orbital angular momentum conversion and vector beam generation. Our results show potentials for realizing on-chip beam converters, compact holograms, and many other metamaterial devices for structured light beam generation, polarization control, and wavefront manipulation.

  13. [Remote system of natural gas leakage based on multi-wavelength characteristics spectrum analysis].

    PubMed

    Li, Jing; Lu, Xu-Tao; Yang, Ze-Hui

    2014-05-01

    In order to be able to quickly, to a wide range of natural gas pipeline leakage monitoring, the remote detection system for concentration of methane gas was designed based on static Fourier transform interferometer. The system used infrared light, which the center wavelength was calibrated to absorption peaks of methane molecules, to irradiated tested area, and then got the interference fringes by converging collimation system and interference module. Finally, the system calculated the concentration-path-length product in tested area by multi-wavelength characteristics spectrum analysis algorithm, furthermore the inversion of the corresponding concentration of methane. By HITRAN spectrum database, Selected wavelength position of 1. 65 microm as the main characteristic absorption peaks, thereby using 1. 65 pm DFB laser as the light source. In order to improve the detection accuracy and stability without increasing the hardware configuration of the system, solved absorbance ratio by the auxiliary wave-length, and then get concentration-path-length product of measured gas by the method of the calculation proportion of multi-wavelength characteristics. The measurement error from external disturbance is caused by this innovative approach, and it is more similar to a differential measurement. It will eliminate errors in the process of solving the ratio of multi-wavelength characteristics, and can improve accuracy and stability of the system. The infrared absorption spectrum of methane is constant, the ratio of absorbance of any two wavelengths by methane is also constant. The error coefficients produced by the system is the same when it received the same external interference, so the measured noise of the system can be effectively reduced by the ratio method. Experimental tested standards methane gas tank with leaking rate constant. Using the tested data of PN1000 type portable methane detector as the standard data, and were compared to the tested data of the system

  14. Evaluation of Wavelength Detuning to Mitigate Cross-Beam Energy Transfer Using the Nike Laser

    NASA Astrophysics Data System (ADS)

    McKenty, P. W.; Marozas, J. A.; Weaver, J.; Obenschain, S. P.; Schmitt, A. J.

    2015-11-01

    Cross-beam energy transfer (CBET) has become a serious threat to the overall success of direct-drive experiments, and especially for polar-direct-drive (PDD) ignition experiments. CBET redirects incident laser light before it can be absorbed into the target, thereby degrading overall target performance. CBET is particularly detrimental over the equator of the target, which is hydrodynamically very sensitive to such losses in the PDD configuration. A promising solution uses laser wavelength detuning between beams to shift the resonance, thereby reducing the interaction cross section between them. Testing this process for direct drive is now underway at the Nike laser at the Naval Research Laboratory. Calculations evaluating the effect CBET has on the scattered-light signals indicate such an experiment will demonstrate the benefits of wavelength detuning for direct-drive implosions. Two-dimensional simulation results will be presented, predicting the effect for both spherical and cylindrical experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Algorithm for protecting light-trees in survivable mesh wavelength-division-multiplexing networks

    NASA Astrophysics Data System (ADS)

    Luo, Hongbin; Li, Lemin; Yu, Hongfang

    2006-12-01

    Wavelength-division-multiplexing (WDM) technology is expected to facilitate bandwidth-intensive multicast applications such as high-definition television. A single fiber cut in a WDM mesh network, however, can disrupt the dissemination of information to several destinations on a light-tree based multicast session. Thus it is imperative to protect multicast sessions by reserving redundant resources. We propose a novel and efficient algorithm for protecting light-trees in survivable WDM mesh networks. The algorithm is called segment-based protection with sister node first (SSNF), whose basic idea is to protect a light-tree using a set of backup segments with a higher priority to protect the segments from a branch point to its children (sister nodes). The SSNF algorithm differs from the segment protection scheme proposed in the literature in how the segments are identified and protected. Our objective is to minimize the network resources used for protecting each primary light-tree such that the blocking probability can be minimized. To verify the effectiveness of the SSNF algorithm, we conduct extensive simulation experiments. The simulation results demonstrate that the SSNF algorithm outperforms existing algorithms for the same problem.

  16. Quantification of Material Fluorescence and Light Scattering Cross Sections Using Ratiometric Bandwidth-Varied Polarized Resonance Synchronous Spectroscopy.

    PubMed

    Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao

    2018-05-25

    Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.

  17. Long-wavelength asymptotics of unstable crossflow modes, including the effect of surface curvature

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1994-01-01

    Stationary vortex instabilities with wavelengths significantly larger than the thickness of the underlying three-dimensional boundary layer are studied with asymptotic methods. The long-wavelength Rayleigh modes are locally neutral and are aligned with the direction of the local inviscid streamline. For a spanwise wave number Beta much less than 1, the spatial growth rate of these vortices is O(Beta(exp 3/2)). When Beta becomes O(R(exp -1/7)), the viscous correction associated with a thin sublayer near the surface modifies the inviscid growth rate to the leading order. As Beta is further decreased through this regime, viscous effects assume greater significance and dominate the growth-rate behavior. The spatial growth rate becomes comparable to the real part of the wave number when Beta = O(R(exp -1/4)). At this stage, the disturbance structure becomes fully viscous-inviscid interactive and is described by the triple-deck theory. For even smaller values of Beta, the vortex modes become nearly neutral again and align themselves with the direction of the wall-shear stress. Thus, the study explains the progression of the crossflow-vortex structure from the inflectional upper branch mode to nearly neutral long-wavelength modes that are aligned with the wall-shear direction.

  18. Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles.

    PubMed

    Macke, A; Mishchenko, M I

    1996-07-20

    We ascertain the usefulness of simple ice particle geometries for modeling the intensity distribution of light scattering by atmospheric ice particles. To this end, similarities and differences in light scattering by axis-equivalent, regular and distorted hexagonal cylindric, ellipsoidal, and circular cylindric ice particles are reported. All the results pertain to particles with sizes much larger than a wavelength and are based on a geometrical optics approximation. At a nonabsorbing wavelength of 0.55 µm, ellipsoids (circular cylinders) have a much (slightly) larger asymmetry parameter g than regular hexagonal cylinders. However, our computations show that only random distortion of the crystal shape leads to a closer agreement with g values as small as 0.7 as derived from some remote-sensing data analysis. This may suggest that scattering by regular particle shapes is not necessarily representative of real atmospheric ice crystals at nonabsorbing wavelengths. On the other hand, if real ice particles happen to be hexagonal, they may be approximated by circular cylinders at absorbing wavelengths.

  19. Light absorbing material (soot) in rainwater and in aerosol particles in the Maldives

    NASA Astrophysics Data System (ADS)

    Granat, L.; EngströM, J. E.; Praveen, S.; Rodhe, H.

    2010-08-01

    Simultaneous measurements of soot (absorbing material at 528 nm) and inorganic ions in aerosol and precipitation at the Maldives Climate Observatory Hanimaadhoo during the period May 2005 to February 2007 have made it possible to calculate the washout ratio (WR) of these components as a measure of how efficiently they are scavenged by precipitation. On the basis of air trajectories the data have been separated into days with polluted air arriving from the Indian subcontinent in a northeasterly sector during winter and clean monsoon days with southerly flow from the Indian Ocean. The average soot concentration was a factor of 10 higher in the former situations. Despite considerable scatter for individual days, a systematic pattern emerged when the WR for the different components were compared with each other. During the monsoon season the WR for soot was similar to that of sulfate and other fine mode aerosol components, indicating that soot containing particles in these situations were efficient as cloud condensation nuclei. The origin of the light absorbing material during the monsoon season is unclear. During the polluted winter days, on the other hand, the WR for soot was three times smaller than that of sulfate. This indicates that, even after a travel time of several days, the soot containing particles from India have retained much of their hydrophobic property. The low WR and the infrequent rain during this season probably contribute to extending the atmospheric lifetime of soot well beyond several days. Surprisingly high concentrations of non-sea-salt calcium were measured during the monsoon season, substantially higher than during the winter season. The origin of these high values could be long-range transport from the Australian or African continents. Another possibility might be exopolymer gels derived from the ocean surface microlayer.

  20. Effects of melatonin injection or green-wavelength LED light on the antioxidant system in goldfish (Carassius auratus) during thermal stress.

    PubMed

    Jung, Seo Jin; Choi, Young Jae; Kim, Na Na; Choi, Ji Yong; Kim, Bong-Seok; Choi, Cheol Young

    2016-05-01

    We tested the mitigating effects of melatonin injections or irradiation from green-wavelength light-emitting diodes (LEDs) on goldfish (Carassius auratus) exposed to thermal stress (high water temperature, 30 °C). The effects of the two treatments were assessed by measuring the expression and activity levels of the antioxidant enzymes, superoxide dismutase and catalase, plasma hydrogen peroxide, lipid hydroperoxide, and lysozyme. In addition, a comet assay was conducted to confirm that high water temperature damaged nuclear DNA. The expression and activity of the antioxidant enzymes, plasma hydrogen peroxide, and lipid hydroperoxide were significantly higher after exposure to high temperature and were significantly lower in fish that received melatonin or LED light than in those that received no mitigating treatment. Plasma lysozyme was significantly lower after exposure to high temperature and was significantly higher after exposure to melatonin or LED light. The comet assay revealed that thermal stress caused a great deal of damage to nuclear DNA; however, treatment with melatonin or green-wavelength LED light prevented a significant portion of this damage from occurring. These results indicate that, although high temperatures induce oxidative stress and reduce immune system strength in goldfish, both melatonin and green-wavelength LED light inhibit oxidative stress and boost the immune system. LED treatment increased the antioxidant and immune system activity more significantly than did melatonin treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Light-absorbing Aerosol Properties in the Kathmandu Valley during SusKat-ABC Field Campaign

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; Kim, J.; Cho, C.; Jung, J.

    2013-12-01

    Light-absorbing aerosols, such as black carbon (BC), are major contributors to the atmospheric heating and the reduction of solar radiation reaching at the earth's surface. In this study, we investigate light-absorption and scattering properties of aerosols (i.e., BC mass concentration, aerosol solar-absorption/scattering efficiency) in the Kathmandu valley during Sustainable atmosphere for the Kathmandu valley (SusKat)-ABC campaign, from December 2012 to February 2013. Kathmandu City is among the most polluted cities in the world. However, there are only few past studies that provide basic understanding of air pollution in the Kathmandu Valley, which is not sufficient for designing effective mitigation measures (e.g., technological, financial, regulatory, legal and political measures, planning strategies). A distinct diurnal variation of BC mass concentration with two high peaks observed during wintertime dry monsoon period. BC mass concentration was found to be maximum around 09:00 and 20:00 local standard time (LST). Increased cars and cooking activities including substantial burning of wood and other biomass in the morning and in the evening contributed to high BC concentration. Low BC concentrations during the daytime can be explain by reduced vehicular movement and cooking activities. Also, the developmements of the boundary layer height and mountain-valley winds in the Kathmandu Valley paly a crucial role in the temproal variation of BC mass concentrations. Detailed radiative effects of light-absorbing aerosols will be presented.

  2. Formation of light absorbing organo-nitrogen species from evaporation of droplets containing glyoxal and ammonium sulfate.

    PubMed

    Lee, Alex K Y; Zhao, Ran; Li, Richard; Liggio, John; Li, Shao-Meng; Abbatt, Jonathan P D

    2013-11-19

    In the atmosphere, volatile organic compounds such as glyoxal can partition into aqueous droplets containing significant levels of inorganic salts. Upon droplet evaporation, both the organics and inorganic ions become highly concentrated, accelerating reactions between them. To demonstrate this process, we investigated the formation of organo-nitrogen and light absorbing materials in evaporating droplets containing glyoxal and different ammonium salts including (NH4)2SO4, NH4NO3, and NH4Cl. Our results demonstrate that evaporating glyoxal-(NH4)2SO4 droplets produce light absorbing species on a time scale of seconds, which is orders of magnitude faster than observed in bulk solutions. Using aerosol mass spectrometry, we show that particle-phase organics with high N:C ratios were formed when ammonium salts were used, and that the presence of sulfate ions promoted this chemistry. Since sulfate can also significantly enhance the Henry's law partitioning of glyoxal, our results highlight the atmospheric importance of such inorganic-organic interactions in aqueous phase aerosol chemistry.

  3. Near-Infrared Spectroscopy Using a Supercontinuum Laser: Application to Long Wavelength Transmission Spectra of Barley Endosperm and Oil.

    PubMed

    Ringsted, Tine; Dupont, Sune; Ramsay, Jacob; Jespersen, Birthe Møller; Sørensen, Klavs Martin; Keiding, Søren Rud; Engelsen, Søren Balling

    2016-07-01

    The supercontinuum laser is a new type of light source, which combines the collimation and intensity of a laser with the broad spectral region of a lamp. Using such a source therefore makes it possible to focus the light onto small sample areas without losing intensity and thus facilitate either rapid or high-intensity measurements. Single seed transmission analysis in the long wavelength (LW) near-infrared (NIR) region is one area that might benefit from a brighter light source such as the supercontinuum laser. This study is aimed at building an experimental spectrometer consisting of a supercontinuum laser source and a dispersive monochromator in order to investigate its capability to measure the barley endosperm using transmission experiments in the LW NIR region. So far, barley and wheat seeds have only been studied using NIR transmission in the short wavelength region up to 1100 nm. However, the region in the range of 2260-2380 nm has previously shown to be particularly useful in differentiating barley phenotypes using NIR spectroscopy in reflectance mode. In the present study, 350 seeds (consisting of 70 seeds from each of five barley genotypes) in 1 mm slices were measured by NIR transmission in the range of 2235-2381 nm and oils from the same five barley genotypes were measured in a cuvette with a 1 mm path length in the range of 2003-2497 nm. The spectra of the barley seeds could be classified according to genotypes by principal component analysis; and spectral covariances with reference analysis of moisture, β-glucan, starch, protein and lipid were established. The spectral variations of the barley oils were compared to the fatty acid compositions as measured using gas chromotography-mass spectrometry (GC-MS). © The Author(s) 2016.

  4. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  5. Multiple wavelength spectral system simulating background light noise environment in satellite laser communications

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren

    2017-08-01

    Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:

  6. Spectral characteristics of light sources for S-cone stimulation.

    PubMed

    Schlegelmilch, F; Nolte, R; Schellhorn, K; Husar, P; Henning, G; Tornow, R P

    2002-11-01

    Electrophysiological investigations of the short-wavelength sensitive pathway of the human eye require the use of a suitable light source as a S-cone stimulator. Different light sources with their spectral distribution properties were investigated and compared with the ideal S-cone stimulator. First, the theoretical background of the calculation of relative cone energy absorption from the spectral distribution function of the light source is summarized. From the results of the calculation, the photometric properties of the ideal S-cone stimulator will be derived. The calculation procedure was applied to virtual light sources (computer generated spectral distribution functions with different medium wavelengths and spectrum widths) and to real light sources (blue and green light emitting diodes, blue phosphor of CRT-monitor, multimedia projector, LCD monitor and notebook display). The calculated relative cone absorbencies are compared to the conditions of an ideal S-cone stimulator. Monochromatic light sources with wavelengths of less than 456 nm are close to the conditions of an ideal S-cone stimulator. Spectrum widths up to 21 nm do not affect the S-cone activation significantly (S-cone activation change < 0.2%). Blue light emitting diodes with peak wavelength at 448 nm and spectrum bandwidth of 25 nm are very useful for S-cone stimulation (S-cone activation approximately 95%). A suitable display for S-cone stimulation is the Trinitron computer monitor (S-cone activation approximately 87%). The multimedia projector has a S-cone activation up to 91%, but their spectral distribution properties depends on the selected intensity. LCD monitor and notebook displays have a lower S-cone activation (< or = 74%). Carefully selecting the blue light source for S-cone stimulation can reduce the unwanted L-and M-cone activation down to 4% for M-cones and 1.5% for L-cones.

  7. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber

    DOE PAGES

    Yang, Yuanmu; Kelley, Kyle; Sachet, Edward; ...

    2017-05-01

    Ultrafast control of the polarization state of light may enable a plethora of applications in optics, chemistry and biology. However, conventional polarizing elements, such as polarizers and waveplates, are either static or possess only gigahertz switching speeds. Here, with the aid of high-mobility indium-doped cadmium oxide (CdO) as the gateway plasmonic material, we realize a high-quality factor Berreman-type perfect absorber at a wavelength of 2.08 μm. On sub-bandgap optical pumping, the perfect absorption resonance strongly redshifts because of the transient increase of the ensemble-averaged effective electron mass of CdO, which leads to an absolute change in the p-polarized reflectance frommore » 1.0 to 86.3%. As a result, by combining the exceedingly high modulation depth with the polarization selectivity of the perfect absorber, we experimentally demonstrate a reflective polarizer with a polarization extinction ratio of 91 that can be switched on and off within 800 fs.« less

  8. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuanmu; Kelley, Kyle; Sachet, Edward

    Ultrafast control of the polarization state of light may enable a plethora of applications in optics, chemistry and biology. However, conventional polarizing elements, such as polarizers and waveplates, are either static or possess only gigahertz switching speeds. Here, with the aid of high-mobility indium-doped cadmium oxide (CdO) as the gateway plasmonic material, we realize a high-quality factor Berreman-type perfect absorber at a wavelength of 2.08 μm. On sub-bandgap optical pumping, the perfect absorption resonance strongly redshifts because of the transient increase of the ensemble-averaged effective electron mass of CdO, which leads to an absolute change in the p-polarized reflectance frommore » 1.0 to 86.3%. As a result, by combining the exceedingly high modulation depth with the polarization selectivity of the perfect absorber, we experimentally demonstrate a reflective polarizer with a polarization extinction ratio of 91 that can be switched on and off within 800 fs.« less

  9. Interpretation of long- and short-wavelength magnetic anomalies

    USGS Publications Warehouse

    DeNoyer, John M.; Barringer, Anthony R.

    1980-01-01

    Magset was launched on October 30, 1979. More than a decade of examining existing data, devising appropriate models of the global magnetic field, and extending methods for interpreting long-wavelength magnetic anomalies preceded this launch Magnetic data collected by satellite can be interrupted by using a method of analysis that quantitively describes the magnetic field resulting from three-dimensional geologic structures that are bounded by an arbitrary number of polygonal faces, Each face my have any orientation and three or more sides. At each point of the external field, the component normal to each face is obtained by using an expression for the solid angle subtended by a generalized polygon. The "cross" of tangential components are relatively easy to obtain for the same polygons. No approximations have been made related to orbit height that restrict the dimensions of the polygons relative to the distance from the external field points. This permits the method to be used to model shorter wavelength anomalies obtained from aircraft or ground surveys. The magnetic fields for all the structures considered are determine in the same rectangular coordinate system. The coordinate system is in depended from the orientation of geologic trends and permits multiple structures or bodies to be included in the same magnetic field calculations. This single reference system also simplified adjustments in position and direction to account for earth curvature in regional interpretation.

  10. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Jones, Alan (Inventor); Thomas, Nathan A. (Inventor); Todd, Paul W. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  11. Attosecond control of electron beams at dielectric and absorbing membranes

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Ultrashort electron pulses are crucial for time-resolved electron diffraction and microscopy of the fundamental light-matter interaction. In this work, we study experimentally and theoretically the generation and characterization of attosecond electron pulses by optical-field-driven compression and streaking at dielectric or absorbing interaction elements. The achievable acceleration and deflection gradient depends on the laser-electron angle, the laser's electric and magnetic field directions, and the foil orientation. Electric and magnetic fields have similar contributions to the final effect and both need to be considered. Experiments and theory agree well and reveal the optimum conditions for highly efficient, velocity-matched electron-field interactions in the longitudinal or transverse direction. We find that metallic membranes are optimum for light-electron control at mid-infrared or terahertz wavelengths, but dielectric membranes are excellent in the visible and near-infrared regimes and are therefore ideal for the formation of attosecond electron pulses.

  12. Coherent nonlinear coupling between a long-wavelength mode and small-scale turbulence in the TEXT tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsui, H.Y.W.; Rypdal, K.; Ritz, C.P.

    1993-04-26

    Bispectral analysis of Langmuir probe data indicates that coherent nonlinear coupling, in addition to the noncoherent turbulent interactions, exists in the edge plasma of the tokamak TEXT. Not all the modes involved reside within the spectral region of the usual broadband turbulence. At a major resonant surface the small-scale turbulent activity interacts [ital coherently] with a localized long-wavelength mode; a signature of regular or coherent structure. By the observed coupling to the transport related turbulence, the long-wavelength mode can influence plasma confinement indirectly. These observations signify the influence of low-order resonant surfaces on the edge turbulence in tokamaks.

  13. Dye-binding protein assay using a long-wave-absorbing cyanine probe.

    PubMed

    Zheng, Hong; Mao, Yu Xia; Li, Dong Hui; Zhu, Chang Qing

    2003-07-01

    A simple and fast protein assay that involves the binding of water-soluble sulfonate heptamethylene cyanine to protein is described. The binding of the dye to protein causes a shift in the absorption maximum of the dye from 778 to 904 nm, and the increase in absorption at 904 nm is monitored. This assay is very reproducible, of good color stability for at least 80 min, and sensitive at the 100 ng/mL level of human serum albumin (HSA) when a spectrophotometer with near-infrared wavelength is used to measure absorbance. Few chemicals except ionic surfactants such as cetyltrimethylammonium bromide and sodium dodecyl sulfonate interfere with the assay. Purified proteins have different capacities to interact with the dye; under the experimental conditions, the linear ranges of bovine serum albumin (BSA), HSA and gamma-IgG were 200-2000, 100-2400, and 200-3000 ng/mL, respectively. The relative standard deviation for the five replicate determinations of 1200 ng/mL BSA is 2.1%.

  14. Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth

    PubMed Central

    Sharma, Utkarsh; Chang, Ernest W.; Yun, Seok H.

    2009-01-01

    Multiple scattering in a sample presents a significant limitation to achieve meaningful structural information at deeper penetration depths in optical coherence tomography (OCT). Previous studies suggest that the spectral region around 1.7 µm may exhibit reduced scattering coefficients in biological tissues compared to the widely used wavelengths around 1.3 µm. To investigate this long-wavelength region, we developed a wavelength-swept laser at 1.7 µm wavelength and conducted OCT or optical frequency domain imaging (OFDI) for the first time in this spectral range. The constructed laser is capable of providing a wide tuning range from 1.59 to 1.75 µm over 160 nm. When the laser was operated with a reduced tuning range over 95 nm at a repetition rate of 10.9 kHz and an average output power of 12.3 mW, the OFDI imaging system exhibited a sensitivity of about 100 dB and axial and lateral resolution of 24 µm and 14 µm, respectively. We imaged several phantom and biological samples using 1.3 µm and 1.7 µm OFDI systems and found that the depth-dependent signal decay rate is substantially lower at 1.7 µm wavelength in most, if not all samples. Our results suggest that this imaging window may offer an advantage over shorter wavelengths by increasing the penetration depths as well as enhancing image contrast at deeper penetration depths where otherwise multiple scattered photons dominate over ballistic photons. PMID:19030057

  15. Performance of PHOTONIS' low light level CMOS imaging sensor for long range observation

    NASA Astrophysics Data System (ADS)

    Bourree, Loig E.

    2014-05-01

    Identification of potential threats in low-light conditions through imaging is commonly achieved through closed-circuit television (CCTV) and surveillance cameras by combining the extended near infrared (NIR) response (800-10000nm wavelengths) of the imaging sensor with NIR LED or laser illuminators. Consequently, camera systems typically used for purposes of long-range observation often require high-power lasers in order to generate sufficient photons on targets to acquire detailed images at night. While these systems may adequately identify targets at long-range, the NIR illumination needed to achieve such functionality can easily be detected and therefore may not be suitable for covert applications. In order to reduce dependency on supplemental illumination in low-light conditions, the frame rate of the imaging sensors may be reduced to increase the photon integration time and thus improve the signal to noise ratio of the image. However, this may hinder the camera's ability to image moving objects with high fidelity. In order to address these particular drawbacks, PHOTONIS has developed a CMOS imaging sensor (CIS) with a pixel architecture and geometry designed specifically to overcome these issues in low-light level imaging. By combining this CIS with field programmable gate array (FPGA)-based image processing electronics, PHOTONIS has achieved low-read noise imaging with enhanced signal-to-noise ratio at quarter moon illumination, all at standard video frame rates. The performance of this CIS is discussed herein and compared to other commercially available CMOS and CCD for long-range observation applications.

  16. GHRS Cycle 5 Echelle Wavelength Monitor

    NASA Astrophysics Data System (ADS)

    Soderblom, David

    1995-07-01

    This proposal defines the spectral lamp test for Echelle A. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. This proposal defines the spectral lamp test for Echelle B. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. It will be run every 4 months. The wavelengths may be out of range according to PEPSI or TRANS. Please ignore the errors.

  17. Depth distributions of light action spectra for skin chromophores

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2010-03-01

    Light action spectra over wavelengths of 300-1000 nm are calculated for components of the human cutaneous covering: melanin, basal (bloodless) tissue, and blood oxy- and deoxyhemoglobin. The transformation of the spectra with depth in biological tissue results from two factors. The first is the wavelength dependence of the absorption coefficient corresponding to a particular skin chromophore and the second is the spectral selectivity of the radiation flux in biological tissue. This factor is related to the optical properties of all chromophores. A significant change is found to take place in the spectral distribution of absorbed radiant power with increasing depth. The action spectrum of light for the molecular oxygen contained in all components of biological tissue is also studied in the 625-645 nm range. The spectra are found to change with both the volume fraction of blood vessels and the degree of oxygenation of the blood. These results are useful for analyzing processes associated with optical absorption that are possible mechanisms for the interaction of light with biological tissues: photodissociation of oxyhemoglobin and the light-oxygen effect.

  18. Silver and palladium alloy nanoparticle catalysts: reductive coupling of nitrobenzene through light irradiation.

    PubMed

    Peiris, Sunari; Sarina, Sarina; Han, Chenhui; Xiao, Qi; Zhu, Huai-Yong

    2017-08-15

    Silver-palladium (Ag-Pd) alloy nanoparticles strongly absorb visible light and exhibit significantly higher photocatalytic activity compared to both pure palladium (Pd) and silver (Ag) nanoparticles. Photocatalysts of Ag-Pd alloy nanoparticles on ZrO 2 and Al 2 O 3 supports are developed to catalyze the nitroaromatic coupling to the corresponding azo compounds under visible light irradiation. Ag-Pd alloy NP/ZrO 2 exhibited the highest photocatalytic activity for nitrobenzene coupling to azobenzene (yield of ∼80% in 3 hours). The photocatalytic efficiency could be optimized by altering the Ag : Pd ratio of the alloy nanoparticles, irradiation light intensity, temperature and wavelength. The rate of the reaction depends on the population and energy of the excited electrons, which can be improved by increasing the light intensity or by using a shorter wavelength. The knowledge developed in this study may inspire further studies on Ag alloy photocatalysts and organic syntheses using Ag-Pd nanoparticle catalysts driven under visible light Irradiation.

  19. Long-wavelength Radar Studies of the Lunar Maria

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Hawke, B. Ray; Thompson, Thomas W.

    1995-01-01

    Radar measurements at 70 cm and 7.5 m wavelengths provide insight into the structure and chemical properties of the upper 5-100 m of the lunar regolith and crust. Past work has identified a number of anomalous regions and changes in echo strength, some attributed to differences in titanium content. There has been little opportunity, however, to compare calibrated long-wavelength backscatter among different units or to theoretical model results. We combine recent high-resolution (3-5 km) 70-cm radar data for the nearside with earlier calibrated full-disk observations to provide a reasonable estimate of the true lunar backscatter coefficient. These data are tested against models for quasi-specular scattering from the surface, echoes from a buried substrate, and Mie scattering from surface and buried rocks. We find that 70 cm echoes likely arise from Mie scattering by distributed rocks within the soil, consistent with earlier hypotheses. Returns from a buried substrate would provide a plausible fit to the observations only if the regolith depth were approx.3 m or less and varied little across the maria. Depolarized echoes are due to some combination of single and multiple scattering events, but it appears that single scattering alone could account for the observed echo power, based on comparisons with terrestrial rocky surfaces. Backscatter strength from the regolith is most strongly affected by the loss tangent, whose variation with mineral content is still poorly defined. We compared the backscatter values for the mare deposits to the oxide contents inferred from spectral ratio methods, and found that in general the unit boundaries evident in radar images closely follow those seen in color difference images. The 70-cm data are not well correlated with TiO2 values found using the Charette relationship nor with Fe abundances derived from Clementine observations. The lack of a relationship between radar echo and Fe content is reasonable given the distribution of iron

  20. Long-wavelength Radar Studies of the Lunar Maria

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Hawke, B. Ray; Thompson, Thomas W.

    1995-01-01

    Radar measurements at 70 cm and 7.5 m wavelengths provide insight into the structure and chemical properties of the upper 5-100 m of the lunar regolith and crust. Past work has identified a number of anomalous regions and changes in echo strength, some attributed to differences in titanium content. There has been little opportunity, however, to compare calibrated long-wavelength backscatter among different units or to theoretical model results. We combine recent high-resolution (3-5 km) 70-cm radar data for the nearside with earlier calibrated full-disk observations to provide a reasonable estimate of the true lunar backscatter coefficient. These data are tested against models for quasi-specular scattering from the surface, echoes from a buried substrate, and Mie scattering from surface and buried rocks. We find that 70 cm echoes likely arise from Mie scattering by distributed rocks within the soil, consistent with earlier hypotheses. Returns from a buried substrate would provide a plausible fit to the observations only if the regolith depth were 3 m or less and varied little across the maria. Depolarized echoes are due to some combination of single and multiple scattering events, but it appears that single scattering alone could account for the observed echo power, based on comparisons with terrestrial rocky surfaces. Backscatter strength from the regolith is most strongly affected by the loss tangent, whose variation with mineral content is still poorly defined. We compared the backscatter values for the mare deposits to the oxide contents inferred from spectral ratio methods, and found that in general the unit boundaries evident in radar images closely follow those seen in color difference images. The 70-cm data are not well correlated with TiO2 values found using the Charette relationship nor with Fe abundances derived from Clementine observations. The lack of a relationship between radar echo and Fe content is reasonable given the distribution of iron among

  1. A high-speed, eight-wavelength visible light-infrared pyrometer for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Wang, Rongbo; Li, Shengfu; Zhou, Weijun; Luo, Zhen-Xiong; Meng, Jianhua; Tian, Jianhua; He, Lihua; Cheng, Xianchao

    2017-09-01

    An eight-channel, high speed pyrometer for precise temperature measurement is designed and realized in this work. The addition of longer-wavelength channels sensitive at lower temperatures highly expands the measured temperature range, which covers the temperature of interest in shock physics from 1500K-10000K. The working wavelength range is 400-1700nm from visible light to near-infrared (NIR). Semiconductor detectors of Si and InGaAs are used as photoelectric devices, whose bandwidths are 50MHz and 150MHz respectively. Benefitting from the high responsivity and high speed of detectors, the time resolution of the pyrometer can be smaller than 10ns. By combining the high-transmittance beam-splitters and narrow-bandwidth filters, the peak spectrum transmissivity of each channel can be higher than 60%. The gray-body temperatures of NaI crystal under shock-loading are successfully measured by this pyrometer.

  2. Dopants concentration effects on the wavelength shift of long-period fiber gratings used as liquid level detectors

    NASA Astrophysics Data System (ADS)

    Mao, Barerem-Melgueba; Zhou, Bin

    2011-12-01

    Two liquid level sensors based on different long-period fiber gratings are proposed and compared. The long-period gratings have the same characteristics (length, grating period) but are fabricated in different optical fibers (photosensitive B-Ge codoped optical fibers with different dopants concentrations). The principle of this type of sensor is based on the refractive index sensitivity of long-period fiber gratings. By monitoring the resonant wavelength shifts of a given attenuation band, one can measure the immersed lengths of long-period fiber gratings and then the liquid level. The levels of two different solutions are measured. The maximum shift (7.69 nm) of the investigated resonance wavelength was observed in LPG1 (fabricated in Fibercore PS1250/1500). By controlling the fiber dopants concentrations one can improve the readouts of a fiber-optic liquid level sensor based on long-period fiber gratings.

  3. Photochemical aging of light-absorbing secondary organic aerosol material.

    PubMed

    Sareen, Neha; Moussa, Samar G; McNeill, V Faye

    2013-04-11

    Dark reactions of methylglyoxal with NH4(+) in aqueous aerosols yield light-absorbing and surface-active products that can influence the physical properties of the particles. Little is known about how the product mixture and its optical properties will change due to photolysis as well as oxidative aging by O3 and OH in the atmosphere. Here, we report the results of kinetics and product studies of the photochemical aging of aerosols formed by atomizing aqueous solutions of methylglyoxal and ammonium sulfate. Experiments were performed using aerosol flow tube reactors coupled with an aerosol chemical ionization mass spectrometer (Aerosol-CIMS) for monitoring gas- and particle-phase compositions. Particles were also impacted onto quartz windows in order to assess changes in their UV-visible absorption upon oxidation. Photooxidation of the aerosols leads to the formation of small, volatile organic acids including formic acid, acetic acid, and glyoxylic acid. The atmospheric lifetime of these species during the daytime is predicted to be on the order of minutes, with photolysis being an important mechanism of degradation. The lifetime with respect to O3 oxidation was observed to be on the order of hours. O3 oxidation also leads to a net increase in light absorption by the particles due to the formation of additional carbonyl compounds. Our results are consistent with field observations of high brown carbon absorption in the early morning.

  4. Two chemically distinct light-absorbing pools of urban organic aerosols: A comprehensive multidimensional analysis of trends.

    PubMed

    Paula, Andreia S; Matos, João T V; Duarte, Regina M B O; Duarte, Armando C

    2016-02-01

    The chemical and light-absorption dynamics of organic aerosols (OAs), a master variable in the atmosphere, have yet to be resolved. This study uses a comprehensive multidimensional analysis approach for exploiting simultaneously the compositional changes over a molecular size continuum and associated light-absorption (ultraviolet absorbance and fluorescence) properties of two chemically distinct pools of urban OAs chromophores. Up to 45% of aerosol organic carbon (OC) is soluble in water and consists of a complex mixture of fluorescent and UV-absorbing constituents, with diverse relative abundances, hydrophobic, and molecular weight (Mw) characteristics between warm and cold periods. In contrast, the refractory alkaline-soluble OC pool (up to 18%) is represented along a similar Mw and light-absorption continuum throughout the different seasons. Results suggest that these alkaline-soluble chromophores may actually originate from primary OAs sources in the urban site. This work shows that the comprehensive multidimensional analysis method is a powerful and complementary tool for the characterization of OAs fractions. The great diversity in the chemical composition and optical properties of OAs chromophores, including both water-soluble and alkaline-soluble OC, may be an important contribution to explain the contrasting photo-reactivity and atmospheric behavior of OAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer.

    PubMed

    Jung, Joo-Yun; Song, Kyungjun; Choi, Jun-Hyuk; Lee, Jihye; Choi, Dae-Geun; Jeong, Jun-Ho; Neikirk, Dean P

    2017-03-27

    We demonstrate an infrared broadband metasurface absorber that is suitable for increasing the response speed of a microbolometer by reducing its thermal mass. A large fraction of holes are made in a periodic pattern on a thin lossy metal layer characterised with a non-dispersive effective surface impedance. This can be used as a non-resonant metasurface that can be integrated with a Salisbury screen absorber to construct an absorbing membrane for a microbolometer that can significantly reduce the thermal mass while maintaining high infrared broadband absorption in the long wavelength infrared (LWIR) band. The non-dispersive effective surface impedance can be matched to the free space by optimising the surface resistance of the thin lossy metal layer depending on the size of the patterned holes by using a dc approximation method. In experiments a high broadband absorption was maintained even when the fill factor of the absorbing area was reduced to 28% (hole area: 72%), and it was theoretically maintained even when the fill factor of the absorbing area was reduced to 19% (hole area: 81%). Therefore, a metasurface with a non-dispersive effective surface impedance is a promising solution for reducing the thermal mass of infrared microbolometer pixels.

  6. Honeybees (Apis mellifera) Learn Color Discriminations via Differential Conditioning Independent of Long Wavelength (Green) Photoreceptor Modulation

    PubMed Central

    Wijesekara Witharanage, Randika; Rosa, Marcello G. P.

    2012-01-01

    Background Recent studies on colour discrimination suggest that experience is an important factor in how a visual system processes spectral signals. In insects it has been shown that differential conditioning is important for processing fine colour discriminations. However, the visual system of many insects, including the honeybee, has a complex set of neural pathways, in which input from the long wavelength sensitive (‘green’) photoreceptor may be processed either as an independent achromatic signal or as part of a trichromatic opponent-colour system. Thus, a potential confound of colour learning in insects is the possibility that modulation of the ‘green’ photoreceptor could underlie observations. Methodology/Principal Findings We tested honeybee vision using light emitting diodes centered on 414 and 424 nm wavelengths, which limit activation to the short-wavelength-sensitive (‘UV’) and medium-wavelength-sensitive (‘blue’) photoreceptors. The absolute irradiance spectra of stimuli was measured and modelled at both receptor and colour processing levels, and stimuli were then presented to the bees in a Y-maze at a large visual angle (26°), to ensure chromatic processing. Sixteen bees were trained over 50 trials, using either appetitive differential conditioning (N = 8), or aversive-appetitive differential conditioning (N = 8). In both cases the bees slowly learned to discriminate between the target and distractor with significantly better accuracy than would be expected by chance. Control experiments confirmed that changing stimulus intensity in transfers tests does not significantly affect bee performance, and it was possible to replicate previous findings that bees do not learn similar colour stimuli with absolute conditioning. Conclusion Our data indicate that honeybee colour vision can be tuned to relatively small spectral differences, independent of ‘green’ photoreceptor contrast and brightness cues. We thus show that colour vision

  7. Dim-light photoreceptor of chub mackerel Scomber japonicus and the photoresponse upon illumination with LEDs of different wavelengths.

    PubMed

    Jang, Jun-Chul; Choi, Mi-Jin; Yang, Yong-Soo; Lee, Hyung-Been; Yu, Young-Moon; Kim, Jong-Myoung

    2016-06-01

    To study the absorption characteristics of rhodopsin, a dim-light photoreceptor, in chub mackerel (Scomber japonicus) and the relationship between light wavelengths on the photoresponse, the rod opsin gene was cloned into an expression vector, pMT4. Recombinant opsin was transiently expressed in COS-1 cells and reconstituted with 11-cis-retinal. Cells containing the regenerated rhodopsin were solubilized and subjected to UV/Vis spectroscopic analysis in the dark and upon illumination. Difference spectra from the lysates indicated an absorption maximum of mackerel rhodopsin around 500 nm. Four types of light-emitting diode (LED) modules with different wavelengths (red, peak 627 nm; cyan, 505 nm; blue, 442 nm; white, 447 + 560 nm) were constructed to examine their effects on the photoresponse in chub mackerel. Behavioral responses of the mackerels, including speed and frequencies acclimated in the dark and upon LED illumination, were analyzed using an underwater acoustic camera. Compared to an average speed of 22.25 ± 1.57 cm/s of mackerel movement in the dark, speed increased to 22.97 ± 0.29, 24.66 ± 1.06, 26.28 ± 2.28, and 25.19 ± 1.91 cm/s upon exposure to red, blue, cyan, and white LEDs, respectively. There were increases of 103.48 ± 1.58, 109.37 ± 5.29, 118.48 ± 10.82, and 109.43 ± 3.92 %, respectively, in the relative speed of the fishes upon illumination with red, blue, cyan, and white LEDs compared with that in the dark (set at 100 %). Similar rate of wavelength-dependent responses was observed in a frequency analysis. These results indicate that an LED emitting a peak wavelength close to an absorption maximum of rhodopsin is more effective at eliciting a response to light.

  8. Structured Metal Film as Perfect Absorber

    NASA Astrophysics Data System (ADS)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  9. Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm

    PubMed Central

    Li, Jianfeng; Luo, Hongyu; Wang, Lele; Liu, Yong; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Turistsyn, Sergei K.

    2015-01-01

    Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched ~3 μm and gain-switched ~2 μm pulses in a shared cavity was demonstrated with a Ho3+-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of ~2 μm pulses can be tuned between half and same as that of ~3 μm pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas. PMID:26041105

  10. Qubit transfer between photons at telecom and visible wavelengths in a slow-light atomic medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogyan, A.

    We propose a method that enables efficient conversion of the quantum information frequency between different regions of a spectrum of light based on recently demonstrated strong parametric coupling between two narrow-band single-photon pulses propagating in a slow-light atomic medium [N. Sisakyan and Yu. Malakyan, Phys. Rev. A, 75, 063831 (2007)]. We show that an input qubit at telecom wavelength is transformed into another at a visible domain in a lossless and shape-conserving manner while keeping the initial quantum coherence and entanglement. These transformations can be realized with a quantum efficiency close to its maximum value.

  11. Dr. Harry Whelan With the Light Emitting Diode Probe

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  12. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction

    PubMed Central

    Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae

    2018-01-01

    To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals—that require complicated optical equipment for the analysis—into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure

  13. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction.

    PubMed

    Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae; Yoon, Hyun C

    2018-03-06

    To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals-that require complicated optical equipment for the analysis-into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure the

  14. Exposure to blue wavelength light modulates anterior cingulate cortex activation in response to 'uncertain' versus 'certain' anticipation of positive stimuli.

    PubMed

    Alkozei, Anna; Smith, Ryan; Killgore, William D S

    2016-03-11

    Blue wavelength light has been used as an effective treatment for some types of mood disorders and circadian rhythm related sleep problems. We hypothesized that acute exposure to blue wavelength light would directly affect the functioning of neurocircuity implicated in emotion regulation (i.e., ventromedial prefrontal cortex, amygdala, insula, and anterior cingulate cortex [ACC]) during 'certain' and 'uncertain' anticipation of negative and positive stimuli. Thirty-five healthy adults were randomized to receive a thirty-minute exposure to either blue (active) or amber (placebo) light, immediately followed by an emotional anticipation task during functional magnetic resonance imaging (fMRI). In contrast to placebo, participants in the blue light group showed significantly reduced activation within the rostral ACC during 'uncertain' anticipation (i.e., uncertainty regarding whether a positive or negative stimulus would be shown) in comparison to 'certain' anticipation of a positive stimulus. These findings may be explicable in terms of interactions between blue light exposure and the influence of specific neuromodulators on ACC-mediated decision-making mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    NASA Astrophysics Data System (ADS)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  16. Investigations on laser transmission welding of absorber-free thermoplastics

    NASA Astrophysics Data System (ADS)

    Mamuschkin, Viktor; Olowinsky, Alexander; Britten, Simon W.; Engelmann, Christoph

    2014-03-01

    Within the plastic industry laser transmission welding ranks among the most important joining techniques and opens up new application areas continuously. So far, a big disadvantage of the process was the fact that the joining partners need different optical properties. Since thermoplastics are transparent for the radiation of conventional beam sources (800- 1100 nm) the absorbance of one of the joining partners has to be enhanced by adding an infrared absorber (IR-absorber). Until recently, welding of absorber-free parts has not been possible. New diode lasers provide a broad variety of wavelengths which allows exploiting intrinsic absorption bands of thermoplastics. The use of a proper wavelength in combination with special optics enables laser welding of two optically identical polymer parts without absorbers which can be utilized in a large number of applications primarily in the medical and food industry, where the use of absorbers usually entails costly and time-consuming authorization processes. In this paper some aspects of the process are considered as the influence of the focal position, which is crucial when both joining partners have equal optical properties. After a theoretical consideration, an evaluation is carried out based on welding trials with polycarbonate (PC). Further aspects such as gap bridging capability and the influence of thickness of the upper joining partner are investigated as well.

  17. The Effects of Different Wavelength UV Photofunctionalization on Micro-Arc Oxidized Titanium

    PubMed Central

    Zhou, Lei; Guo, Zehong; Rong, Mingdeng; Liu, Xiangning; Lai, Chunhua; Ding, Xianglong

    2013-01-01

    Many challenges exist in improving early osseointegration, one of the most critical factors in the long-term clinical success of dental implants. Recently, ultraviolet (UV) light-mediated photofunctionalization of titanium as a new potential surface treatment has aroused great interest. This study examines the bioactivity of titanium surfaces treated with UV light of different wavelengths and the underlying associated mechanism. Micro-arc oxidation (MAO) titanium samples were pretreated with UVA light (peak wavelength of 360 nm) or UVC light (peak wavelength of 250 nm) for up to 24 h. UVC treatment promoted the attachment, spread, proliferation and differentiation of MG-63 osteoblast-like cells on the titanium surface, as well as the capacity for apatite formation in simulated body fluid (SBF). These biological influences were not observed after UVA treatment, apart from a weaker effect on apatite formation. The enhanced bioactivity was substantially correlated with the amount of Ti-OH groups, which play an important role in improving the hydrophilicity, along with the removal of hydrocarbons on the titanium surface. Our results showed that both UVA and UVC irradiation altered the chemical properties of the titanium surface without sacrificing its excellent physical characteristics, suggesting that this technology has extensive potential applications and merits further investigation. PMID:23861853

  18. A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum.

    PubMed

    Huang, Yijia; Liu, Ling; Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang

    2018-05-03

    In this paper, efficient ultra-broadband absorption from ultraviolet (UV) to near infrared (NIR) is achieved using a metamaterial perfect absorber (MPA) with refractory constituents. Both simulated and experimental results indicate that this proposed MPA exhibits an average absorption over 95% at wavelengths ranging from 200 nm to 900 nm. Besides, owing to the ultrathin thickness and symmetrical topology of this device, it exhibits great angular tolerance up to 60° independent of the incident polarizations. Excellent thermal stability is also demonstrated at high operation temperatures. The physical origin of the ultra-broadband characteristics is mainly based on diffraction/interference engineering at short wavelengths and the anti-reflection effect at long wavelengths. We believe that such a device may find potential applications ranging from photodetection and photothermal energy conversion to ultraviolet protection and thermophotovoltaics.

  19. Reflection and Refraction of Light in Absorbing Media

    NASA Astrophysics Data System (ADS)

    Katsumata, Koichi; Sasaki, Shosuke

    2018-05-01

    The results of a rigorous calculation of optical phenomena in absorbing media based on Maxwell's equations are reported. In the case of an absorbing dielectric, we assume a complex dielectric constant. We find an expression for the angle of refraction as a function of the incident angle and the real and imaginary parts of the complex dielectric constant, all of which are real. The amplitudes of the reflected and transmitted waves are calculated on the same footing. These amplitudes are shown to be complex, from which we deduce the magnitude and phase change of the reflection and transmission coefficients. The same argument applies to an absorbing magnetic material if we replace the complex dielectric constant by a complex magnetic permeability.

  20. Raman Spectroscopy of Single Light-Absorbing Carbonaceous Particles Levitated in Air Using an Annular Laser Beam.

    PubMed

    Uraoka, Masaru; Maegawa, Keisuke; Ishizaka, Shoji

    2017-12-05

    A laser trapping technique is a powerful means to investigate the physical and chemical properties of single aerosol particles in a noncontact manner. However, optical trapping of strongly light-absorbing particles such as black carbon or soot is quite difficult because the repulsive force caused by heat is orders of magnitude larger than the attractive force of radiation pressure. In this study, a laser trapping and Raman microspectroscopy system using an annular laser beam was constructed to achieve noncontact levitation of single light-absorbing particles in air. Single acetylene carbon black or candle soot particles were arbitrarily selected with a glass capillary connected to a three-axis oil hydraulic micromanipulator and introduced into a minute space surrounded by a repulsive force at the focal point of an objective lens. Using the developed system, we achieved optical levitation of micrometer-sized carbonaceous particles and observation of their Raman spectra in air. Furthermore, we demonstrated in situ observations of changes in the morphology and chemical composition of optically trapped carbonaceous particles in air, which were induced by heterogeneous oxidation reactions with ozone and hydroxyl radicals.

  1. Slow light in saturable absorbers: Progress in the resolution of a controversy

    NASA Astrophysics Data System (ADS)

    Macke, Bruno; Razdobreev, Igor; Ségard, Bernard

    2017-06-01

    There are two opposing models in the analysis of the slow transmission of light pulses through saturable absorbers. The canonical incoherent bleaching model simply explains the slow transmission by combined effects of saturation and of noninstantaneous response of the medium resulting in absorption of the front part of the incident pulse larger than that of its rear. The second model, referred to as the coherent-population-oscillations (CPO) model, considers light beams whose intensity is slightly pulse modulated and attributes the time delay of the transmitted pulse to a reduction of the group velocity. We point out some inconsistencies in the CPO model and show that the two models lie in reality on the same hypotheses, the equations derived in the duly rectified CPO model being local expressions of the integral equations obtained in the incoherent bleaching model. When intense pulses without background are used, the CPO model, based on linearized equations, breaks down. The incoherent bleaching model then predicts that the transmitted light should vanish when the intensity of the incident light is strictly zero. This point is confirmed by the experiments that we have performed on ruby with square-wave incident pulses and we show that the whole shape of the observed pulses agrees with that derived analytically by means of the incoherent bleaching model. We also determine in this model the corresponding evolution of the fluorescence light, which seems to have been evidenced in other experiments.

  2. Webinar Presentation: Black Carbon and Other Light-absorbing Particles in Snow in Central North America and North China

    EPA Pesticide Factsheets

    This presentation, Black Carbon and Other Light-absorbing Particles in Snow in Central North America and North China, was given at the STAR Black Carbon 2016 Webinar Series: Accounting for Impact, Emissions, and Uncertainty held on Nov. 7, 2016.

  3. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  4. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  5. 1 Mixing state and absorbing properties of black carbon during Arctic haze

    NASA Astrophysics Data System (ADS)

    Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi

    2016-04-01

    The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass

  6. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue.

    PubMed

    Tedford, Clark E; DeLapp, Scott; Jacques, Steven; Anders, Juanita

    2015-04-01

    Photobiomodulation (PBM) also known as low-level light therapy has been used successfully for the treatment of injury and disease of the nervous system. The use of PBM to treat injury and diseases of the brain requires an in-depth understanding of light propagation through tissues including scalp, skull, meninges, and brain. This study investigated the light penetration gradients in the human cadaver brain using a Transcranial Laser System with a 30 mm diameter beam of 808 nm wavelength light. In addition, the wavelength-dependence of light scatter and absorbance in intraparenchymal brain tissue using 660, 808, and 940 nm wavelengths was investigated. Intact human cadaver heads (n = 8) were obtained for measurement of light propagation through the scalp/skull/meninges and into brain tissue. The cadaver heads were sectioned in either the transverse or mid-sagittal. The sectioned head was mounted into a cranial fixture with an 808 nm wavelength laser system illuminating the head from beneath with either pulsed-wave (PW) or continuous-wave (CW) laser light. A linear array of nine isotropic optical fibers on a 5 mm pitch was inserted into the brain tissue along the optical axis of the beam. Light collected from each fiber was delivered to a multichannel power meter. As the array was lowered into the tissue, the power from each probe was recorded at 5 mm increments until the inner aspect of the dura mater was reached. Intraparenchymal light penetration measurements were made by delivering a series of wavelengths (660, 808, and 940 nm) through a separate optical fiber within the array, which was offset from the array line by 5 mm. Local light penetration was determined and compared across the selected wavelengths. Unfixed cadaver brains provide good anatomical localization and reliable measurements of light scatter and penetration in the CNS tissues. Transcranial application of 808 nm wavelength light penetrated the scalp, skull, meninges, and brain

  7. Influence of multiple light-scattering on TiO2 nanoparticles imbedded into stratum corneum on light transmittance in UV and visible wavelength regions

    NASA Astrophysics Data System (ADS)

    Popov, Alexey P.; Priezzhev, Alexander V.; Lademann, Jürgen; Myllylä, Risto

    2007-05-01

    This paper focuses on the simulation of propagation of radiation in UV and visible wavelength regions within a superficial skin layer (stratum corneum, SC) partially filled with titanium dioxide (TiO II) nanoparticles. Volume concentrations of the particles (0.67% - 2.25%) correspond to the maximal concentrations of the considered particles in the frames of independent scattering. Transmittance of 307-, 400-, and 500-nm light through a 20-μm thick SC is calculated. The effect of the TiO II nanoparticles on the contribution of photons undergone different numbers of scattering acts into transmittance is considered. It is shown that administration of the nanoparticles results in the broadening of the distribution of transmitted photons over undergone scattering acts. It also results in the shift of the maximum location of this distribution to larger number of scattering acts for the wavelengths of 400 and 500 nm being the latter the most pronounced. The increase of undergone scattering acts leads to the elongation of photon trajectories within the medium and results in the increase of the diffuse reflected light and the transmittance decrease.

  8. Coherent perfect absorbers: linear control of light with light

    NASA Astrophysics Data System (ADS)

    Baranov, Denis G.; Krasnok, Alex; Shegai, Timur; Alù, Andrea; Chong, Yidong

    2017-12-01

    The absorption of electromagnetic energy by a material is a phenomenon that underlies many applications, including molecular sensing, photocurrent generation and photodetection. Typically, the incident energy is delivered to the system through a single channel, for example, by a plane wave incident on one side of an absorber. However, absorption can be made much more efficient by exploiting wave interference. A coherent perfect absorber is a system in which the complete absorption of electromagnetic radiation is achieved by controlling the interference of multiple incident waves. Here, we review recent advances in the design and applications of such devices. We present the theoretical principles underlying the phenomenon of coherent perfect absorption and give an overview of the photonic structures in which it can be realized, including planar and guided-mode structures, graphene-based systems, parity-symmetric and time-symmetric structures, 3D structures and quantum-mechanical systems. We then discuss possible applications of coherent perfect absorption in nanophotonics, and, finally, we survey the perspectives for the future of this field.

  9. The Tropospheres of Uranus and Neptune as seen at Microwave Wavelengths

    NASA Astrophysics Data System (ADS)

    Hofstadter, Mark D.; Butler, B. J.; Gurwell, M. A.; Hesman, B. E.; Devaraj, K.

    2008-09-01

    Brightness patterns seen at centimeter wavelengths are used to study the deep tropospheres of Uranus and Neptune (pressures from 1 to 50 bars). Early examples are Briggs and Andrew 1980 for Uranus (Icarus 41, 269-277) and Hofstadter et al. 1993 for Neptune (BAAS 25, 1077). We recently collected high-resolution Neptune data with the VLA at 1.3 and 2 cm under excellent conditions, allowing us to make a better comparison of the two ice-giants. As was known, the planets are grossly similar. The polar regions are the brightest (by tens of Kelvin, 20% brighter than the disk average), and both planets have less prominent, bright, mid-latitude bands. We can now say with confidence that Neptune's polar brightening covers a much smaller area than Uranus’ (at least in the south---Neptune's far north is not currently visible). Neptune's bright spot extends from -90 to about -75 degrees latitude, while Uranus’ extends down to -45 degrees at all times of the year. This, combined with Neptune's atmosphere being more opaque than Uranus', supports the idea that Neptune's deep troposphere is more convectively active. Convection brings absorbers (H2O, NH3, H2S) up to high altitudes, making some regions appear dim. Cloud formation in rising air depletes absorbers, changing the vertical opacity structure and making regions of subsidence absorber-free and bright. On Neptune, convective activity extends further towards the poles than it does on Uranus. We will discuss our results in light of recent observations of both planets at shorter wavelengths, and will present a re-analysis of older Neptune data in a search for temporal variability. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We acknowledge the support of NASA's Planetary Astronomy program, and of the VLA observatory.

  10. In vitro evaluation of color change in maxillofacial elastomer through the use of an ultraviolet light absorber and a hindered amine light stabilizer.

    PubMed

    Tran, Ngoc H; Scarbecz, Mark; Gary, John J

    2004-05-01

    External prostheses composed of silicone elastomers exhibit an unwanted color change over time. This study evaluated color stability when an ultraviolet light absorber and hindered amine light stabilizer were mixed in the maxillofacial elastomer containing either organic or inorganic pigments. The materials used were an RTV silicone elastomer, 1 natural inorganic dry-earth pigment (burnt sienna) and 2 synthesized organic pigments (hansa yellow and alizarin red), ultraviolet light absorber (UVA) and hindered amine light stabilizer (HALS). Specimens (n=160) were fabricated in a custom mold and randomly assigned and exposed to weathering sites in Miami and Phoenix for approximately 3 months. Eight test groups (2 of each 4 material types with or without additives) of 10 specimens each were assigned to each site. L*, a*, b* readings were obtained before and after weathering from a spectrocolorimeter. Nonpigmented elastomers served as the control. Three-factor ANOVA was conducted to examine interaction effects between weathering sites, specimen type, and the presence of additive (alpha=.05). Overall color change (Delta E) and change in color coordinates (Delta L*, Delta a*, Delta b*) of specimen groups with and without additive were analyzed with independent sample t tests. In specimen groups with the additives (UVA and HALS), color change decreased significantly (P<.05) in burnt sienna and hansa yellow in Phoenix and in the control and hansa yellow in Miami. Additives did not affect color change in the alizarin red group. UVA and HALS were shown to be effective in retarding color change in some circumstances.

  11. Simultaneous multiple wavelength upconversion in a core-shell nanoparticle for enhanced near infrared light harvesting in a dye-sensitized solar cell.

    PubMed

    Yuan, Chunze; Chen, Guanying; Li, Lin; Damasco, Jossana A; Ning, Zhijun; Xing, Hui; Zhang, Tianmu; Sun, Licheng; Zeng, Hao; Cartwright, Alexander N; Prasad, Paras N; Ågren, Hans

    2014-10-22

    The efficiency of most photovoltaic devices is severely limited by near-infrared (NIR) transmission losses. To alleviate this limitation, a new type of colloidal upconversion nanoparticles (UCNPs), hexagonal core-shell-structured β-NaYbF4:Er(3+)(2%)/NaYF4:Nd(3+)(30%), is developed and explored in this work as an NIR energy relay material for dye-sensitized solar cells (DSSCs). These UCNPs are able to harvest light energy in multiple NIR regions, and subsequently convert the absorbed energy into visible light where the DSSCs strongly absorb. The NIR-insensitive DSSCs show compelling photocurrent increases through binary upconversion under NIR light illumination either at 785 or 980 nm, substantiating efficient energy relay by these UCNPs. The overall conversion efficiency of the DSSCs was improved with the introduction of UCNPs under simulated AM 1.5 solar irradiation.

  12. Broadband ultrafast nonlinear absorption and ultra-long exciton relaxation time of black phosphorus quantum dots.

    PubMed

    Chen, Runze; Zheng, Xin; Jiang, Tian

    2017-04-03

    Black phosphorus (BP) has recently attracted significant attention for its brilliant physical and chemical features. The remarkable strong light-matter interaction and tunable direct wide range band-gap make it an ideal candidate in various application regions, especially saturable absorbers. In this paper, ultrasmall black phosphorus quantum dots (BPQDs), a unique form of phosphorus nanostructures, with average size of 5.7 ± 0.8 nm are synthesized. Compared with BP nanosheets (BPNs) with similar thickness, the ultrafast nonlinear optical (NLO) absorption properties and excited carrier dynamics are investigated in wide spectra. Beyond the saturation absorption (SA), giant two photon absorption (TPA) is observed in BPQDs. BPQDs exhibit quite different excitation intensity and wavelength dependent nonlinear optical (NLO) response from BPNs, which is attributed to the quantum confinement and edge effects. The BPQDs show broadband photon-induced absorption (PIA) under the probe wavelength from 470 nm to 850 nm and a fast and a slow decay time are obtained as long as 92 ± 10 ps and 1100 ± 100 ps, respectively. The substantial independence for ultra-long time scales of pump intensity and temperature reveals that the carrier recombination mechanism may be attributed to a defect-assisted Auger capture process. These findings will help to develop optoelectronic and photonic devices operating in the infrared and visible wavelength region.

  13. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument

    Treesearch

    Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold

    2008-01-01

    A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...

  14. Imaging of tissue using a NIR supercontinuum laser light source with wavelengths in the second and third NIR optical windows

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Lindwasser, Lukas; Budansky, Yury; Leproux, Philippe; Alfano, R. R.

    2015-03-01

    Supercontinuum light (SC) at wavelengths in the second (1,100 nm to 1,350 nm) and third (1,600 nm to 1,870 nm) NIR optical windows can be used to improve penetration depths of light through tissue and produce clearer images. Image quality is increased due to a reduction in scattering (inverse wavelength power dependence 1/λn, n≥1). We report on the use of a compact Leukos supercontinuum laser (model STM-2000-IR), which utilizes the spectral range from 700 nm to 2,400 nm and offers between 200 - 500 microwatt/nm power in the second and third NIR windows, with an InGaAs detector to image abnormalities hidden beneath thick tissue.

  15. Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long

    NASA Technical Reports Server (NTRS)

    Czeisler, Charles A.; Barger, Laura K.; Wright, Kenneth P., Jr.; Ronda, Joseph

    2009-01-01

    Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crew members during long-duration stays on the space station.

  16. Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle

    NASA Astrophysics Data System (ADS)

    Dasri, Thananchai; Chingsungnoen, Artit

    2018-06-01

    Surface plasmon in nano-sized particles, such as gold, silver, copper and their composites, has recently attracted a great deal of attention due to its possible uses in many applications, especially in life sciences. It is desirable for application devices with a tenability of surface plasmon wavelength and optical properties enhancement. This article presents enhanced optical light absorption and tunable wavelength in gold-coated magnetite (Fe3O4@Au core-shell) nanoparticles embedded in water using the theoretical method of discrete dipole approximation (DDA). The absorption spectra in the wavelengths from 350 to 900 nm were found to be the spectra obtained from Fe3O4@Au core-shell nanoparticles, and when compared with pure Fe3O4 nanoparticles, the surface plasmon resonance can be enhanced and tuned over the entire visible spectrum (viz. 350-800 nm) of the electromagnetic spectrum by varying the Au shell thickness (2-5 nm). Similarly, the Faraday rotation spectra can also be obtained.

  17. Method for measuring thermal properties using a long-wavelength infrared thermal image

    DOEpatents

    Walker, Charles L [Albuquerque, NM; Costin, Laurence S [Albuquerque, NM; Smith, Jody L [Albuquerque, NM; Moya, Mary M [Albuquerque, NM; Mercier, Jeffrey A [Albuquerque, NM

    2007-01-30

    A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

  18. Reduction of patulin in apple juice products by UV light of different wavelengths in the UVC range.

    PubMed

    Zhu, Yan; Koutchma, Tatiana; Warriner, Keith; Zhou, Ting

    2014-06-01

    This study evaluated three UVC wavelengths (222, 254, and 282 nm) to degrade patulin introduced into apple juice or apple cider. The average UV fluences of 19.6, 84.3, 55.0, and 36.6 mJ·cm(-2) achieved through exposure to UV lamps at 222-, 254-, and 282-nm wavelengths and the combination of these wavelengths, respectively, resulted in 90% reduction of patulin in apple juice. Therefore, the order of efficiency of the three wavelength lamps was as follows: far UVC (222 nm) > far UVC plus (282 nm) > UVC (254 nm). In terms of color, treatment of apple juice with 222 nm resulted in an increase in the L* (lightness) value but decreases in a* (redness) and b* (yellowness) values, although the changes were insignificantly different from the values for nontreated controls based on a sensory evaluation. The ascorbic acid loss in juice treated at 222 nm to support 90% reduction of patulin was 36.5%, compared with ascorbic acid losses of 45.3 and 36.1% in samples treated at 254 and 282 nm, respectively. The current work demonstrated that the 222-nm wavelength possesses the highest efficiency for patulin reduction in apple juice when compared with the reductions by 254 and 282 nm, with no benefit gained from using a combination of wavelengths.

  19. A contribution of black and brown carbon to the aerosol light absorption

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin

    2017-04-01

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of

  20. Passively mode-locked pulse generation in a c-cut Nd:LuVO4 laser at 1086 nm with a semiconductor saturable-absorber mirror

    NASA Astrophysics Data System (ADS)

    Lin, Ja-Hon; Yang, Pao-Keng; Lin, Wei-Cheng

    2012-04-01

    We demonstrate a diode-pumped passively mode-locked (ML) c-cut Nd:LuVO4 laser with central wavelength at 1086 nm by shifting the reflectance band of the SESAM into a longer wavelength to result in larger loss around 1068 nm. At 15 W absorbed pump power, the highest output power of the ML pulse was about 2.6 W that corresponded to the 17.3% optical-to-optical conversion efficiency and the slope efficiency of laser was about 22.9%. Using our ML laser as the light source, we have also successfully measured the saturation fluence of the SESAM at 1086 nm.

  1. Dual-Wavelength InGaAsSb/AlGaAsSb Quantum-Well Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien Dai; Hwang, Jehwan; Kim, Yeongho; Kim, Eui-Tae; Kim, Jun Oh; Lee, Sang Jun

    2018-05-01

    We have investigated the structural characteristics and the device performance of three-stack InGaAsSb/AlGaAsSb quantum-well (QW) light-emitting diodes (LEDs) grown by using molecular beam epitaxy. The QW LED structure with an 8-nm well thickness had a single peak emission wavelength of 2.06 μm at an injection current of 0.3 A at room temperature. However, the QWLEDs with three different well thicknesses of 5-, 10-, and 15-nm had double peak emission wavelengths of 1.97 and 2.1 μm at an injection current of 1.1 A, which were associated with the radiative recombination in the QW with a 5-nm well thickness and the overlapped emission from the QWs with 10- and 15-nm well thicknesses, respectively.

  2. A fiber optic, ultraviolet light-emitting diode-based, two wavelength fluorometer for monitoring reactive adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granz, Christopher D.; Whitten, James E., E-mail: James-Whitten@uml.edu; Schindler, Bryan J.

    Construction and use of an ultraviolet light-emitting diode-based fluorometer for measuring photoluminescence (PL) from powder samples with a fiber optic probe is described. Fluorescence at two wavelengths is detected by miniature photomultiplier tubes, each equipped with a different band pass filter, whose outputs are analyzed by a microprocessor. Photoluminescent metal oxides and hydroxides, and other semiconducting nanoparticles, often undergo changes in their emission spectra upon exposure to reactive gases, and the ratio of the PL intensities at two wavelengths is diagnostic of adsorption. Use of this instrument for reactive gas sensing and gas filtration applications is illustrated by measuring changesmore » in the PL ratio for zirconium hydroxide and zinc oxide particles upon exposure to air containing low concentrations of sulfur dioxide.« less

  3. Simulation of the Chang'E-5 mission contribution in lunar long wavelength gravity field improvement

    NASA Astrophysics Data System (ADS)

    Yan, Jianguo; Yang, Xuan; Ping, Jinsong; Ye, Mao; Liu, Shanhong; Jin, Weitong; Li, Fei; Barriot, Jean-Pierre

    2018-06-01

    The precision of lunar gravity field estimation has improved by means of three to five orders of magnitude since the successful GRAIL lunar mission. There are still discrepancies however, in the low degree coefficients and long wavelength components of the solutions developed by two space research centers (JPL and GSFC). These discrepancies hint at the possibilities for improving the accuracy in the long wavelength part of the lunar gravity field. In the near future, China will launch the Chang'E-5 lunar mission. In this sample-return mission, there will be a chance to do KBRR measurements between an ascending module and an orbiting module. These two modules will fly around lunar at an inclination of ˜49 degrees, with an orbital height of 100 km and an inter-satellite distance of 200 km. In our research, we simulated the contribution of the KBRR tracking mode for different GRAIL orbital geometries. This analysis indicated possible deficiencies in the low degree coefficient solutions for the polar satellite-to-satellite tracking mode at various orbital heights. We also investigated the potential contributions of the KBRR to the Chang'E-5 mission goal of lunar gravity field recovery, especially in the long wavelength component. Potential improvements were assessed using various power spectrums of the lunar gravity field models. In addition, we also investigated possible improvements in solving lunar tidal Love number K2. These results may assist the implementation of the Chang'E-5 mission.

  4. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; ...

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  5. Sub-200 femtosecond dispersion-managed soliton ytterbium-doped fiber laser based on carbon nanotubes saturable absorber.

    PubMed

    Hou, Lei; Guo, Hongyu; Wang, Yonggang; Sun, Jiang; Lin, Qimeng; Bai, Yang; Bai, Jintao

    2018-04-02

    Ultrafast fiber laser light sources attract enormous interest due to the booming applications they are enabling, including long-distance communication, optical metrology, detecting technology of infra-biophotons, and novel material processing. In this paper, we demonstrate 175 fs dispersion-managed soliton (DMS) mode-locked ytterbium-doped fiber (YDF) laser based on single-walled carbon nanotubes (SWCNTs) saturable absorber (SA). The output DMSs have been achieved with repetition rate of 21.2 MHz, center wavelength of 1025.5 nm, and a spectral width of 32.7 nm. The operation directly pulse duration of 300 fs for generated pulse is the reported shortest pulse width for broadband SA based YDF lasers. By using an external grating-based compressor, the pulse duration could be compressed down to 175 fs. To the best of our knowledge, it is the shortest pulse duration obtained directly from YDF laser based on broadband SAs. In this paper, SWCNTs-SA has been utilized as the key optical component (mode locker) and the grating pair providing negative dispersion acts as the dispersion controller.

  6. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  7. Analysis of periodically patterned metallic nanostructures for infrared absorber

    NASA Astrophysics Data System (ADS)

    Peng, Sha; Yuan, Ying; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    With rapid advancement of infrared detecting technology in both military and civil domains, the photo-electronic performances of near-infrared detectors have been widely concerned. Currently, near-infrared detectors demonstrate some problems such as low sensitivity, low detectivity, and relatively small array scale. The current studies show that surface plasmons (SPs) stimulated over the surface of metallic nanostructures by incident light can be used to break the diffraction limit and thus concentrate light into sub-wavelength scale, so as to indicate a method to develop a new type of infrared absorber or detector with very large array. In this paper, we present the design and characterization of periodically patterned metallic nanostructures that combine nanometer thickness aluminum film with silicon wafer. Numerical computations show that there are some valleys caused by surface plasmons in the reflection spectrum in the infrared region, and both red shift and blue shift of the reflection spectrum were observed through changing the nanostructural parameters such as angle α and diameters D. Moreover, the strong E-field intensity is located at the sharp corner of the nano-structures.

  8. Large-Format HgCdTe Dual-Band Long-Wavelength Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    Smith, E. P. G.; Venzor, G. M.; Gallagher, A. M.; Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Randolph, J. E.

    2011-08-01

    Raytheon Vision Systems (RVS) continues to further its capability to deliver state-of-the-art high-performance, large-format, HgCdTe focal-plane arrays (FPAs) for dual-band long-wavelength infrared (L/LWIR) detection. Specific improvements have recently been implemented at RVS in molecular-beam epitaxy (MBE) growth and wafer fabrication and are reported in this paper. The aim of the improvements is to establish producible processes for 512 × 512 30- μm-unit-cell L/LWIR FPAs, which has resulted in: the growth of triple-layer heterojunction (TLHJ) HgCdTe back-to-back photodiode detector designs on 6 cm × 6 cm CdZnTe substrates with 300-K Fourier-transform infrared (FTIR) cutoff wavelength uniformity of ±0.1 μm across the entire wafer; demonstration of detector dark-current performance for the longer-wavelength detector band approaching that of single-color liquid-phase epitaxy (LPE) LWIR detectors; and uniform, high-operability, 512 × 512 30- μm-unit-cell FPA performance in both LWIR bands.

  9. A study of doping influences on transmission of large-diameter gallium antimonide substrates for long-wave (LWIR) to very long wavelength (VLWIR) infra-red applications

    NASA Astrophysics Data System (ADS)

    Martinez, Rebecca; Tybjerg, Marius; Smith, Brian; Mowbray, Andrew; Furlong, Mark J.

    2015-06-01

    Gallium antimonide (GaSb) is an important Group III-V compound semiconductor for infra-red (IR) photodetectors used in sensing and imaging applications. Operating in the mid (3-5 μm) to long wavelength region (8-12 μm) of the IR spectrum, the application of GaSb detectors is extensive, encompassing military, industrial, medical and environmental uses. A significant developing technology for GaSb based detectors are those effective in the very long wavelength (VLWIR) infra-red region (13 μm and beyond) which are advantageous in space and stealth based applications which necessitate high operating temperatures. In this study different doping levels of GaSb are considered and the IR transmission spectra examined by Fourier Transform IR analysis. GaSb n-type doped material consistent in delivering long to very long wavelength transmission is demonstrated which is preferable to p-type material which requires backside thinning for IR transmission. Czochralski (Cz) grown GaSb wafers are assessed for electrical quality and uniformity results, on Hall mobility, resistivity and carrier level reported. Results of this work will establish the carrier concentration that ultimately results in high transparency substrates. In summary enhancements in IR transmission will be shown to be achieved in GaSb bulk crystals by tellurium (Te) compensation.

  10. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-01

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.

  11. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    PubMed Central

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-01-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing. PMID:26294085

  12. Light alters nociceptive effects of magnetic field shielding in mice: intensity and wavelength considerations

    PubMed Central

    Prato, Frank S; Desjardins-Holmes, Dawn; Keenliside, Lynn D; McKay, Julia C; Robertson, John A; Thomas, Alex W

    2008-01-01

    Previous experiments with mice have shown that repeated 1 hour daily exposure to an ambient magnetic field-shielded environment induces analgesia (antinociception). The exposures were carried out in the dark (less than 2.0×1016 photons s−1 m−2) during the mid-light phase of the diurnal cycle. However, if the mice were exposed in the presence of visible light (2.0×1018 photons s−1 m−2, 400–750 nm), then the analgesic effects of shielding were eliminated. Here, we show that this effect of light is intensity and wavelength dependent. Introduction of red light (peak at 635 nm) had little or no effect, presumably because mice do not have photoreceptors sensitive to red light above 600 nm in their eyes. By contrast, introduction of ultraviolet light (peak at 405 nm) abolished the effect, presumably because mice do have ultraviolet A receptors. Blue light exposures (peak at 465 nm) of different intensities demonstrate that the effect has an intensity threshold of approximately 12% of the blue light in the housing facility, corresponding to 5×1016 photons s−1 m−2 (integral). This intensity is similar to that associated with photoreceptor-based magnetoreception in birds and in mice stimulates photopic/cone vision. Could the detection mechanism that senses ambient magnetic fields in mice be similar to that in bird navigation? PMID:18583276

  13. In orbit degradation of EUV optical components in the wavelength range 10-40 nm AO 138-3

    NASA Technical Reports Server (NTRS)

    Delaboudiniere, J. P.; Carabetian, C.; Hochedez, J. F.

    1993-01-01

    A complement of EUV optical components, including mirrors and thin film filters, was flown as part of the Long Duration Exposure Facility (LDEF) AO 138-3. The most original amongst these components were multilayered interference reflectors for the 10-40 nm wavelength range. Very moderate degradation was observed for those components which were exposed to the sun. The degradation is compatible with the deposition of a few nanometers of absorbing material on the surface of the samples.

  14. Development of a real-time reflectance and transmittance monitoring system for the manufacturing of metaldielectric light absorbers

    NASA Astrophysics Data System (ADS)

    Badoil, Bruno; Cathelinaud, Michel; Lemarchand, Fabien; Lemarquis, Frédéric; Lequime, Michel

    2017-11-01

    Metal-dielectric light absorbers are of great interest for suppressing stray light in optical systems. Such coatings can give an absorption level greater than 99.9% over a broad spectral range provided that the complex refractive index of metallic films is accurately known. For this purpose we developed a new real-time monitoring system that allows to measure in situ both reflectance and transmittance of the coating during manufacturing in the deposition chamber. This paper describes the system design and its characteristics and gives some preliminary results concerning metallic thin film characterizations.

  15. Formation of the bulge of Iapetus through long-wavelength folding of the lithosphere

    NASA Astrophysics Data System (ADS)

    Kay, Jonathan P.; Dombard, Andrew J.

    2018-03-01

    Previous models that attempted to explain the formation of the pronounced oblate shape of Iapetus suggested that it was a preserved rotational bulge. These models found that heating was provided by short-lived radioactive isotopes that decayed rapidly and allowed the excess flattening of the lithosphere to be locked in by a thickening lithosphere, but placed severe timing constraints on the formation of Iapetus and its bulge. Here, we show that finite element simulations with an elastic-viscous-plastic rheology indicate it is possible to form the bulge through long-wavelength folding of the lithosphere of Iapetus during an epoch of contraction combined with a latitudinal surface temperature gradient. In contrast to models of a frozen rotational bulge, heat generated by long-lived radioactive isotopes warms the interior, which causes porosity loss and forces Iapetus to compact by ∼10%. Our simulations are most successful when there is a 30 K temperature difference between the pole and the equator. Tectonic growth of the bulge is not sensitive to the time scale over which the moon contracts, and lithospheric thickness primarily controls whether a fold can form, not fold wavelength. In addition, long term simulations show that when no stress is applied, the mechanical lithosphere is strong enough to support the bulge, with negligible relaxation over billion year time scales.

  16. Chemometric Approach to the Calibration of Light Emitting Diode Based Optical Gas Sensors Using High-Resolution Transmission Molecular Absorption Data.

    PubMed

    Mahbub, Parvez; Leis, John; Macka, Mirek

    2018-05-15

    Modeling the propagation of light from LED sources is problematic since the emission covers a broad range of wavelengths and thus cannot be considered as monochromatic. Furthermore, the lack of directivity of such sources is also problematic. Both attributes are characteristic of LEDs. Here we propose a HITRAN ( high-resolution transmission molecular absorption database) based chemometric approach that incorporates not-perfect-monochromaticity and spatial directivity of near-infrared (NIR) LED for absorbance calculations in 1-6% methane (CH 4 ) in air, considering CH 4 as a model absorbing gas. We employed the absorbance thus calculated using HITRAN to validate the experimentally measured absorbance of CH 4 . The maximum error between the measured and calculated absorbance values were within 1%. The approach can be generalized as a chemometric calibration technique for measuring gases and gas mixtures that absorb emissions from polychromatic or not-perfect-monochromatic sources, provided the gas concentration, optical path length, as well as blank and attenuated emission spectra of the light source are incorporated into the proposed chemometric approach.

  17. Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer.

    PubMed

    Wang, Qingkai; Chen, Yu; Miao, Lili; Jiang, Guobao; Chen, Shuqing; Liu, Jun; Fu, Xiquan; Zhao, Chujun; Zhang, Han

    2015-03-23

    Topological insulators have been theoretically predicted as promising candidates for broadband photonics devices due to its large bulk band gap states in association with the spin-momentum-locked mass-less Dirac edge/surface states. Unlike the bulk counterpart, few-layer topological insulators possess some intrinsic optical advantages, such as low optical loss, low saturation intensity and high concentration of surface state. Herein, we use a solvothermal method to prepare few-layer Bi₂Te₃ flakes. By sandwiching few-layer Bi₂Te₃ flakes with polymethyl methacrylate (PMMA) polymer, a novel light modulation device had been successfully fabricated with high chemical and thermal stabilities as well as excellent mechanical durability, originating from the contribution of PMMA acting as buffer layers that counteract excessive mechanical bending within the fragile Bi₂Te₃ flakes. The incorporation of the as-fabricated PMMA-TI-PMMA as saturable absorber, which could bear long-term mechanical loadings, into the fiber laser cavity generated the stable dissipative soliton mode-locking with a 3-dB spectral bandwidth up to 51.62 nm and tunable wavelength range of 22 nm. Our work provides a new way of fabricating PMMA-TI-PMMA sandwiched composite structure as saturable absorber with promising applications for laser operation.

  18. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  19. Pupillary behavior in relation to wavelength and age

    PubMed Central

    Lobato-Rincón, Luis-Lucio; Cabanillas-Campos, Maria del Carmen; Bonnin-Arias, Cristina; Chamorro-Gutiérrez, Eva; Murciano-Cespedosa, Antonio; Sánchez-Ramos Roda, Celia

    2014-01-01

    Pupil light reflex can be used as a non-invasive ocular predictor of cephalic autonomic nervous system integrity. Spectral sensitivity of the pupil's response to light has, for some time, been an interesting issue. It has generally, however, only been investigated with the use of white light and studies with monochromatic wavelengths are scarce. This study investigates the effects of wavelength and age within three parameters of the pupil light reflex (amplitude of response, latency, and velocity of constriction) in a large sample of younger and older adults (N = 97), in mesopic conditions. Subjects were exposed to a single light stimulus at four different wavelengths: white (5600°K), blue (450 nm), green (510 nm), and red (600 nm). Data was analyzed appropriately, and, when applicable, using the General Linear Model (GLM), Randomized Complete Block Design (RCBD), Student's t-test and/or ANCOVA. Across all subjects, pupillary response to light had the greatest amplitude and shortest latency in white and green light conditions. In regards to age, older subjects (46–78 years) showed an increased latency in white light and decreased velocity of constriction in green light compared to younger subjects (18–45 years old). This study provides data patterns on parameters of wavelength-dependent pupil reflexes to light in adults and it contributes to the large body of pupillometric research. It is hoped that this study will add to the overall evaluation of cephalic autonomic nervous system integrity. PMID:24795595

  20. Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit

    2018-02-01

    Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.

  1. Comparison of short-wavelength blue-light autofluorescence and conventional blue-light autofluorescence in geographic atrophy.

    PubMed

    Borrelli, Enrico; Nittala, Muneeswar Gupta; Abdelfattah, Nizar Saleh; Lei, Jianqin; Hariri, Amir H; Shi, Yue; Fan, Wenying; Cozzi, Mariano; Sarao, Valentina; Lanzetta, Paolo; Staurenghi, Giovanni; Sadda, SriniVas R

    2018-06-05

    To systematically compare the intermodality and inter-reader agreement for two blue-light confocal fundus autofluorescence (FAF) systems. Thirty eyes (21 patients) with a diagnosis of geographic atrophy (GA) were enrolled. Eyes were imaged using two confocal blue-light FAF devices: (1) Spectralis device with a 488 nm excitation wavelength (488-FAF); (2) EIDON device with 450 nm excitation wavelength and the capability for 'colour' FAF imaging including both the individual red and green components of the emission spectrum. Furthermore, a third imaging modality (450-RF image) isolating and highlighting the red emission fluorescence component (REFC) was obtained and graded. Each image was graded by two readers to assess inter-reader variability and a single image for each modality was used to assess the intermodality variability. The 95% coefficient of repeatability (1.35 mm 2 for the 488-FAF-based grading, 8.13 mm 2 for the 450-FAF-based grading and 1.08 mm 2 for the 450-RF-based grading), the coefficient of variation (1.11 for 488-FAF, 2.05 for 450-FAF, 0.92 for 450-RF) and the intraclass correlation coefficient (0.994 for 488-FAF, 0.711 for 450-FAF, 0.997 for 450-RF) indicated that 450-FAF-based and 450-RF-based grading have the lowest and highest inter-reader agreements, respectively. The GA area was larger for 488-FAF images (median (IQR) 2.1 mm 2  (0.8-6.4 mm 2 )) than for 450-FAF images (median (IQR) 1.0 mm 2  (0.3-4.3 mm 2 ); p<0.0001). There was no significant difference in lesion area measurement between 488-FAF-based and 450-RF-based grading (median (IQR) 2.6 mm 2  (0.8-6.8 mm 2 ); p=1.0). The isolation of the REFC from the 450-FAF images allowed for a reproducible quantification of GA. This assessment had good comparability with that obtained with 488-FAF images. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise

  2. Controlling electronic couplings with tunable long wavelength pulses: Study of Autler-Townes splitting and XUV emission spectra

    NASA Astrophysics Data System (ADS)

    Harkema, Nathan; Liao, Chen-Ting; Sandhu, Arvinder

    2017-04-01

    Attosecond transient absorption spectroscopy (ATAS) enables the study of excited electron dynamics with unprecedented temporal and energy resolution. Many ATAS experiments use an extreme ultraviolet (XUV) pump pulse and a near-infrared (NIR) probe fixed at the fundamental laser frequency ( 800 nm) to study the light induced effects on electronic structure of atoms and molecules. We extend the technique by using an optical parametric amplifier in one arm of our setup, which allows us to independently tune the frequency of the probe pulse from 1200 to 1800 nm. These long-wavelength pulses allow us to explore a new regime, where we can control the couplings between nearby electronic states to alter the transient absorption lineshapes in atoms. We use this technique to investigate the 4p-3s detuning dependent Autler-Townes splitting of the 4p state in Helium. Light induced Floquet structures extending into the continuum are observed in our study. We demonstrate new tunable XUV emission channels from four-wave mixing processes, and the efficiency of these emissions can be strongly enhanced through resonant couplings. The tunable IR induced electronic couplings are also used to influence the autoionization dynamics in Argon. This work is supported by NSF Grant No. PHY-1505556 and ARO Grant No. W911NF-14-1-0383.

  3. Gravity fields of the terrestrial planets - Long-wavelength anomalies and tectonics

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Lambeck, K.

    1980-01-01

    The paper discusses the gravity and topography data available for four terrestrial planets (earth, moon, Mars, and Venus), with particular emphasis on drawing inferences regarding the relationship of long-wavelength anomalies to tectonics. The discussion covers statistical analyses of global planetary gravity fields, relationship of gravity anomalies to elastic and viscoelastic models, relationship of gravity anomalies to convection models, finite strength, and isostasy (or the state of isostatic compensation). The cases of the earth and the moon are discussed in some detail. A summary of comparative planetology is presented.

  4. Single-shot thermal ghost imaging using wavelength-division multiplexing

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Suo, Jinli; Wang, Yuwang; Zhang, Zhili; Dai, Qionghai

    2018-01-01

    Ghost imaging (GI) is an emerging technique that reconstructs the target scene from its correlated measurements with a sequence of patterns. Restricted by the multi-shot principle, GI usually requires long acquisition time and is limited in observation of dynamic scenes. To handle this problem, this paper proposes a single-shot thermal ghost imaging scheme via a wavelength-division multiplexing technique. Specifically, we generate thousands of correlated patterns simultaneously by modulating a broadband light source with a wavelength dependent diffuser. These patterns carry the scene's spatial information and then the correlated photons are coupled into a spectrometer for the final reconstruction. This technique increases the speed of ghost imaging and promotes the applications in dynamic ghost imaging with high scalability and compatibility.

  5. Dual-wavelength pump-probe microscopy analysis of melanin composition

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.

    2016-11-01

    Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry.

  6. Dual-wavelength pump-probe microscopy analysis of melanin composition

    PubMed Central

    Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.

    2016-01-01

    Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry. PMID:27833147

  7. Discrete wavelength-locked external cavity laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)

    2005-01-01

    An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.

  8. Long wavelength gravity anomalies over India: Crustal and lithospheric structures and its flexure

    NASA Astrophysics Data System (ADS)

    Tiwari, V. M.; Ravi Kumar, M.; Mishra, D. C.

    2013-07-01

    Long wavelength gravity anomalies over India were obtained from terrestrial gravity data through two independent methods: (i) wavelength filtering and (ii) removing crustal effects. The gravity fields due to the lithospheric mantle obtained from two methods were quite comparable. The long wavelength gravity anomalies were interpreted in terms of variations in the depth of the lithosphere-asthenosphere boundary (LAB) and the Moho with appropriate densities, that are constrained from seismic results at certain points. Modeling of the long wavelength gravity anomaly along a N-S profile (77°E) suggest that the thickness of the lithosphere for a density contrast of 0.05 g/cm3 with the asthenosphere is maximum of ˜190 km along the Himalayan front that reduces to ˜155 km under the southern part of the Ganga and the Vindhyan basins increasing to ˜175 km south of the Satpura Mobile belt, reducing to ˜155-140 km under the Eastern Dharwar craton (EDC) and from there consistently decreasing south wards to ˜120 km under the southernmost part of India, known as Southern Granulite Terrain (SGT). The crustal model clearly shows three distinct terrains of different bulk densities, and thicknesses, north of the SMB under the Ganga and the Vindhyan basins, and south of it the Eastern Dharwar Craton (EDC) and the Southern Granulite Terrain (SGT) of bulk densities 2.87, 2.90 and 2.96 g/cm3, respectively. It is confirmed from the exposed rock types as the SGT is composed of high bulk density lower crustal rocks and mafic/ultramafic intrusives while the EDC represent typical granite/gneisses rocks and the basement under the Vindhyan and Ganga basins towards the north are composed of Bundelkhand granite massif of the lower density. The crustal thickness along this profile varies from ˜37-38 km under the EDC, increasing to ˜40-45 km under the SGT and ˜40-42 km under the northern part of the Ganga basin with a bulge up to ˜36 km under its southern part. Reduced lithospheric and

  9. Long-wavelength emission in photo-pumped GaAs{sub 1−x}Bi{sub x} laser with low temperature dependence of lasing wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuyuki, Takuma; Yoshioka, Ryo; Yoshida, Kenji

    2013-11-11

    This study demonstrates long-wavelength emission of up to 1204 nm in photo-pumped GaAs{sub 1−x}Bi{sub x} lasers grown by molecular beam epitaxy under low temperature conditions. The characteristic temperature (T{sub 0}) between 20 and 80 °C in the GaAs{sub 1−x}Bi{sub x} lasers with Al{sub 0.3}Ga{sub 0.7}As electron blocking layer is approximately 100 K, which is larger than that of the typical 1.3-μm InGaAsP Fabry-Perot laser diodes (FP-LDs; T{sub 0} = 66 K). The temperature coefficient of the lasing wavelength is approximately 40% of that of InGaAsP FP-LDs.

  10. Short-wavelength light beam in situ monitoring growth of InGaN/GaN green LEDs by MOCVD

    PubMed Central

    2012-01-01

    In this paper, five-period InGaN/GaN multiple quantum well green light-emitting diodes (LEDs) were grown by metal organic chemical vapor deposition with 405-nm light beam in situ monitoring system. Based on the signal of 405-nm in situ monitoring system, the related information of growth rate, indium composition and interfacial quality of each InGaN/GaN QW were obtained, and thus, the growth conditions and structural parameters were optimized to grow high-quality InGaN/GaN green LED structure. Finally, a green LED with a wavelength of 509 nm was fabricated under the optimal parameters, which was also proved by ex situ characterization such as high-resolution X-ray diffraction, photoluminescence, and electroluminescence. The results demonstrated that short-wavelength in situ monitoring system was a quick and non-destroyed tool to provide the growth information on InGaN/GaN, which would accelerate the research and development of GaN-based green LEDs. PMID:22650991

  11. MEMS infrared approaches to detector based on nonlinear oscillation and wavelength selective emitter using surface plasmon polariton

    NASA Astrophysics Data System (ADS)

    Sasaki, Minoru; Kumagai, Shinya

    2014-03-01

    The suspended MEMS structure is suitable for reducing the energy loss due to the thermal conduction. There is the possibility that IR photon energy can be well-controlled to generate some physical effects. A new method bases on the nonlinear oscillation for the detector. The thin film torsional spring exhibits a large hard spring effect when the deflection occurs in the out-of-plane direction of the film. When IR is absorbed, the resonator bends due to the thermal expansion. The torsional spring becomes harder increasing the resonant frequency. The frequency measurement is suited for the precise sensing. The device response is measured using the laser (wavelength of 650nm). The resonant frequency is 88-94kHz. Q factor is about 1600 in vacuum (1Pa). The sensitivity is -0.144[kHz/(kW/m2)]. As for the emitter, nondispersive IR gas sensor is considered. The molecules have their intrinsic absorptions. CO2 absorbs the wavelength 4.2- 4.3μm. The major incandescent light bulbs have the broad spectrum emitting IR which is not used for gas sensing. The wavelength selectivity at the gas bandwidth will improve the efficiency. A new principle uses the microheater placed facing to the grating. SPP is excited carrying IR energy on the grating surface. IR emission is the reverse process of excitation occurring at the output end. The emission spectra show SPP related peak having the width of 190nm. When the input power increases from 0.3 to 1.9W, the peak at wavelength of 3.5μm becomes clearer.

  12. Fabrication of a nano-cone array on a p-GaN surface for enhanced light extraction efficiency from GaN-based tunable wavelength LEDs.

    PubMed

    Soh, C B; Wang, B; Chua, S J; Lin, Vivian K X; Tan, Rayson J N; Tripathy, S

    2008-10-08

    We report on the fabrication of a nano-cone structured p-GaN surface for enhanced light extraction from tunable wavelength light emitting diodes (LEDs). Prior to p-contact metallization, self-assembled colloidal particles are deposited and used as a mask for plasma etching to create nano-cone structures on the p-GaN layer of LEDs. A well-defined periodic nano-cone array, with an average cone diameter of 300 nm and height of 150 nm, is generated on the p-GaN surface. The photoluminescence emission intensity recorded from the regions with the nano-cone array is increased by two times as compared to LEDs without surface patterning. The light output power from the LEDs with surface nano-cones shows significantly higher electroluminescence intensity at an injection current of 70 mA. This is due to the internal multiple scattering of light from the nano-cone sidewalls. Furthermore, we have shown that with an incorporation of InGaN nanostructures in the quantum well, the wavelength of these surface-patterned LEDs can be tuned from 517 to 488 nm with an increase in the injection current. This methodology may serve as a practical approach to increase the light extraction efficiency from wavelength tunable LEDs.

  13. Supercontinuum white light lasers for flow cytometry

    PubMed Central

    Telford, William G.; Subach, Fedor V.; Verkhusha, Vladislav V.

    2009-01-01

    Excitation of fluorescent probes for flow cytometry has traditionally been limited to a few discrete laser lines, an inherent limitation in our ability to excite the vast array of fluorescent probes available for cellular analysis. In this report, we have used a supercontinuum (SC) white light laser as an excitation source for flow cytometry. By selectively filtering the wavelength of interest, almost any laser wavelength in the visible spectrum can be separated and used for flow cytometric analysis. The white light lasers used in this study were integrated into a commercial flow cytometry platform, and a series of high-transmission bandpass filters used to select wavelength ranges from the blue (~480 nm) to the long red (>700 nm). Cells labeled with a variety of fluorescent probes or expressing fluorescent proteins were then analyzed, in comparison with traditional lasers emitting at wavelengths similar to the filtered SC source. Based on a standard sensitivity metric, the white light laser bandwidths produced similar excitation levels to traditional lasers for a wide variety of fluorescent probes and expressible proteins. Sensitivity assessment using fluorescent bead arrays confirmed that the SC laser and traditional sources resulted in similar levels of detection sensitivity. Supercontinuum white light laser sources therefore have the potential to remove a significant barrier in flow cytometric analysis, namely the limitation of excitation wavelengths. Almost any visible wavelength range can be made available for excitation, allowing access to virtually any fluorescent probe, and permitting “fine-tuning” of excitation wavelength to particular probes. PMID:19072836

  14. Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength.

    PubMed

    Paskin, Taylor R; Jellies, John; Bacher, Jessica; Beane, Wendy S

    2014-01-01

    Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli), planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green), as well as ultraviolet (UV) and infrared (IR) which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV) causing the most intense photophobic responses while longer wavelengths produce no effect (red) or an apparent attraction (IR). In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength) and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment.

  15. Mechanically Robust, Stretchable Solar Absorbers with Submicron-Thick Multilayer Sheets for Wearable and Energy Applications.

    PubMed

    Lee, Hye Jin; Jung, Dae-Han; Kil, Tae-Hyeon; Kim, Sang Hyeon; Lee, Ki-Suk; Baek, Seung-Hyub; Choi, Won Jun; Baik, Jeong Min

    2017-05-31

    A facile method to fabricate a mechanically robust, stretchable solar absorber for stretchable heat generation and an enhanced thermoelectric generator (TEG) is demonstrated. This strategy is very simple: it uses a multilayer film made of titanium and magnesium fluoride optimized by a two-dimensional finite element frequency-domain simulation, followed by the application of mechanical stresses such as bending and stretching to the film. This process produces many microsized sheets with submicron thickness (∼500 nm), showing great adhesion to any substrates such as fabrics and polydimethylsiloxane. It exhibits a quite high light absorption of approximately 85% over a wavelength range of 0.2-4.0 μm. Under 1 sun illumination, the solar absorber on various stretchable substrates increased the substrate temperature to approximately 60 °C, irrespective of various mechanical stresses such as bending, stretching, rubbing, and even washing. The TEG with the absorber on the top surface also showed an enhanced output power of 60%, compared with that without the absorber. With an incident solar radiation flux of 38.3 kW/m 2 , the output power significantly increased to 24 mW/cm 2 because of the increase in the surface temperature to 141 °C.

  16. Competitive light absorbers in photoactive dental resin-based materials.

    PubMed

    Hadis, Mohammed A; Shortall, Adrian C; Palin, William M

    2012-08-01

    The absorbance profile of photoinitiators prior to, during and following polymerization of light curable resin-based materials will have a significant effect on the cure and color properties of the final material. So-called "colorless" photoinitiators are used in some light-activated resin-based composite restorative materials to lessen the yellowing effect of camphoroquinone (CQ) in order to improve the esthetic quality of dental restorations. This work characterizes absorption properties of commonly used photoinitiators, an acylphosphine oxide (TPO) and CQ, and assesses their influence on material discoloration. Dimethacrylate resin formulations contained low (0.0134 mol/dm(3)), intermediate (0.0405 mol/dm(3)) or high (0.0678 mol/dm(3)) concentrations of the photoinitiators and the inhibitor, butylated hydroxytoluene (BHT) at 0, 0.1 or 0.2% by mass. Disc shaped specimens (n = 3) of each resin were polymerized for 60s using a halogen light curing unit. Dynamic measurements of photoinitiator absorption, polymer conversion and reaction temperature were performed. A spectrophotometer was used to measure the color change before and after cure. GLM three-way analysis of variance revealed significant differences (p<0.001), where photoinitiator concentration (df = 2; F = 618.83)>photoinitiator type (df = 1; F = 176.12)>% BHT (df = 2, F = 13.17). BHT concentration affected the rate of polymerization and produced lower conversion in some of the CQ-based resins. Significant differences between photoinitiator type and concentrations were seen in color (where TPO resins became yellower and camphoroquinone resins became less yellow upon irradiation). Reaction temperature, kinetics and conversion also differed significantly for both initiators (p<0.001). Despite TPO-based resins producing a visually perceptible color change upon polymerization, the color change was significantly less than that produced with CQ-based resins. Although some photoinitiators such as TPO may be a

  17. Transmittance of semitransparent windows with absorbing cap-shaped droplets condensed on their backside

    NASA Astrophysics Data System (ADS)

    Zhu, Keyong; Pilon, Laurent

    2017-11-01

    This study aims to investigate systematically light transfer through semitransparent windows with absorbing cap-shaped droplets condensed on their backside as encountered in greenhouses, solar desalination plants, photobioreactors and covered raceway ponds. The Monte Carlo ray-tracing method was used to predict the normal-hemispherical transmittance, reflectance, and normal absorptance accounting for reflection and refraction at the air/droplet, droplet/window, and window/air interfaces and absorption in both the droplets and the window. The droplets were monodisperse or polydisperse and arranged either in an ordered hexagonal pattern or randomly distributed on the backside with droplet contact angle θc ranging between 0 and 180° The normal-hemispherical transmittance was found to be independent of the spatial distribution of droplets. However, it decreased with increasing droplet diameter and polydispersity. The normal-hemispherical transmittance featured four distinct optical regimes for semitransparent window supporting nonabsorbing droplets. These optical regimes were defined based on contact angle and critical angle for internal reflection at the droplet/air interface. However, for strongly absorbing droplets, the normal-hemispherical transmittance (i) decreased monotonously with increasing contact angle for θc <90° and (ii) remained constant and independent of droplet absorption index kd, droplet mean diameter dm, and contact angle θc for θc ≥ 90° Analytical expressions for the normal-hemispherical transmittance were provided in the asymptotic cases when (1) the window was absorbing but the droplets were nonabsorbing with any contact angles θc, and (2) the droplets were strongly absorbing with contact angle θc >90° Finally, the spectral normal-hemispherical transmittance of a 3 mm-thick glass window supporting condensed water droplets for wavelength between 0.4 and 5 μm was predicted and discussed in light of the earlier parametric study and

  18. Long-term reduction in infrared autofluorescence caused by infrared light below the maximum permissible exposure.

    PubMed

    Masella, Benjamin D; Williams, David R; Fischer, William S; Rossi, Ethan A; Hunter, Jennifer J

    2014-05-20

    Many retinal imaging instruments use infrared wavelengths to reduce the risk of light damage. However, we have discovered that exposure to infrared illumination causes a long-lasting reduction in infrared autofluorescence (IRAF). We have characterized the dependence of this effect on radiant exposure and investigated its origin. A scanning laser ophthalmoscope was used to obtain IRAF images from two macaques before and after exposure to 790-nm light (15-450 J/cm(2)). Exposures were performed with either raster-scanning or uniform illumination. Infrared autofluorescence images also were obtained in two humans exposed to 790-nm light in a separate study. Humans were assessed with direct ophthalmoscopy, Goldmann visual fields, multifocal ERG, and photopic microperimetry to determine whether these measures revealed any effects in the exposed locations. A significant decrease in IRAF after exposure to infrared light was seen in both monkeys and humans. In monkeys, the magnitude of this reduction increased with retinal radiant exposure. Partial recovery was seen at 1 month, with full recovery within 21 months. Consistent with a photochemical origin, IRAF decreases caused by either raster-scanning or uniform illumination were not significantly different. We were unable to detect any effect of the light exposure with any measure other than IRAF imaging. We cannot exclude the possibility that changes could be detected with more sensitive tests or longer follow-up. This long-lasting effect of infrared illumination in both humans and monkeys occurs at exposure levels four to five times below current safety limits. The photochemical basis for this phenomenon remains unknown. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  19. Light intensity compressor

    DOEpatents

    Rushford, Michael C.

    1990-02-06

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  20. Light intensity compressor

    DOEpatents

    Rushford, Michael C.

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  1. Can short-wavelength depleted bright light during single simulated night shifts prevent circadian phase shifts?

    PubMed

    Regente, J; de Zeeuw, J; Bes, F; Nowozin, C; Appelhoff, S; Wahnschaffe, A; Münch, M; Kunz, D

    2017-05-01

    In single night shifts, extending habitual wake episodes leads to sleep deprivation induced decrements of performance during the shift and re-adaptation effects the next day. We investigated whether short-wavelength depleted (=filtered) bright light (FBL) during a simulated night shift would counteract such effects. Twenty-four participants underwent a simulated night shift in dim light (DL) and in FBL. Reaction times, subjective sleepiness and salivary melatonin concentrations were assessed during both nights. Daytime sleep was recorded after both simulated night shifts. During FBL, we found no melatonin suppression compared to DL, but slightly faster reaction times in the second half of the night. Daytime sleep was not statistically different between both lighting conditions (n = 24) and there was no significant phase shift after FBL (n = 11). To conclude, our results showed positive effects from FBL during simulated single night shifts which need to be further tested with larger groups, in more applied studies and compared to standard lighting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Penetration of UV-A, UV-B, blue, and red light into leaf tissues of pecan measured by a fiber optic microprobe system

    NASA Astrophysics Data System (ADS)

    Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.

    2003-11-01

    The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.

  3. The influence of femtosecond laser pulse wavelength on embryonic stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience

    2012-10-01

    Stem cells are rich in proteins, carbohydrates, deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and various other cellular components which are responsible for a diversity of functions. Mostly the building blocks of these intracellular entities play an active role in absorbing ultra-violet (UV) and visible light sources. Light-matter interactions in biomaterials are a complex situation and subsequent damage may not always amount only from wavelength dependent effects but may also be driven by a wealth of other optical parameters which may lead to a variety photochemical reactions. Previously, literature has reported efficient photo-transfection and differentiation of pluripotent stem cells via near infrared (NIR) femtosecond (fs) laser pulses with minimum compromise to their viability. Therefore, in this study the influence of using different fs laser wavelengths on optical stem cell transfection and differentiation is investigated. A potassium titanyl phosphate (KTP) crystal was employed in frequency doubling a 1064 nm fs laser beam. The newly generated 532 nm fs pulsed beam was then utilized for the first time in transient photo-transfection of ES-E14TG2a mouse embryonic stem (mES) cells. Compared to using 1064 nm fs pulses which non-invasively introduce plasmid DNA and other macromolecules into mES cells, our results showed a significant decline in the photo-transfection efficiency following transfecting with a pulsed fs visible green beam.

  4. Synthesis and properties of Asante Calcium Red--a novel family of long excitation wavelength calcium indicators.

    PubMed

    Hyrc, Krzysztof L; Minta, Akwasi; Escamilla, P Rogelio; Chan, Patrick P L; Meshik, Xenia A; Goldberg, Mark P

    2013-10-01

    Although many synthetic calcium indicators are available, a search for compounds with improved characteristics continues. Here, we describe the synthesis and properties of Asante Calcium Red-1 (ACR-1) and its low affinity derivative (ACR-1-LA) created by linking BAPTA to seminaphthofluorescein. The indicators combine a visible light (450-540 nm) excitation with deep-red fluorescence (640 nm). Upon Ca2+ binding, the indicators raise their fluorescence with longer excitation wavelengths producing higher responses. Although the changes occur without any spectral shifts, it is possible to ratio Ca(2+)-dependent (640 nm) and quasi-independent (530 nm) emission when using visible (< 490 nm) or multiphoton (∼780 nm) excitation. Therefore, both probes can be used as single wavelength or, less dynamic, ratiometric indicators. Long indicator emission might allow easy [Ca2+]i measurement in GFP expressing cells. The indicators bind Ca2+ with either high (Kd = 0.49 ± 0.07 μM; ACR-1) or low affinity (Kd = 6.65 ± 0.13 μM; ACR-1-LA). Chelating Zn2+ (Kd = 0.38 ± 0.02 nM) or Mg2+ (Kd∼5mM) slightly raises and binding Co2+ quenches dye fluorescence. New indicators are somewhat pH-sensitive (pKa = 6.31 ± 0.07), but fairly resistant to bleaching. The probes are rather dim, which combined with low AM ester loading efficiency, might complicate in situ imaging. Despite potential drawbacks, ACR-1 and ACR-1-LA are promising new calcium indicators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Design of broadband absorber using 2-D materials for thermo-photovoltaic cell application

    NASA Astrophysics Data System (ADS)

    Agarwal, Sajal; Prajapati, Y. K.

    2018-04-01

    Present study is done to analyze a nano absorber for thermo-photovoltaic cell application. Optical absorbance of two-dimensional materials is exploited to achieve high absorbance. It is found that few alternating layers of graphene/transition metal dichalcogenide provide high absorbance of electromagnetic wave in visible as well as near infrared region. Four transition metal dichalcogenides are considered and found that most of these provide perfect absorbance for almost full considered wavelength range i.e. 200-1000 nm. Demonstrated results confirm the extended operating region and improved absorbance of the proposed absorber in comparison to the existing absorbers made of different materials. Further, absorber performance is improved by using thin layers of gold and chromium. Simple geometry of the proposed absorber also ensures easy fabrication.

  6. Pigment organization in the photosynthetic apparatus of Roseiflexus castenholzii.

    PubMed

    Collins, Aaron M; Xin, Yueyong; Blankenship, Robert E

    2009-08-01

    The light-harvesting-reaction center (LHRC) complex from the chlorosome-lacking filamentous anoxygenic phototroph (FAP), Roseiflexus castenholzii (R. castenholzii) was purified and characterized for overall pigment organization. The LHRC is a single complex that is comprised of light harvesting (LH) and reaction center (RC) polypeptides as well as an attached c-type cytochrome. The dominant carotenoid found in the LHRC is keto-gamma-carotene, which transfers excitation to the long wavelength antenna band with 35% efficiency. Linear dichroism and fluorescence polarization measurements indicate that the long wavelength antenna pigments absorbing around 880 nm are perpendicular to the membrane plane, with the corresponding Q(y) transition dipoles in the plane of the membrane. The antenna pigments absorbing around 800 nm, as well as the bound carotenoid, are oriented at a large angle with respect to the membrane. The antenna pigments spectroscopically resemble the well-studied LH2 complex from purple bacteria, however the close association with the RC makes the light harvesting component of this complex functionally more like LH1.

  7. Light-absorbing aerosol properties retrieved from the sunphotometer observation over the Yangtze River Delta, China.

    PubMed

    Wang, Jing; Niu, Shengjie; Xu, Dan

    2018-02-10

    In this study, aerosol optical depth (AOD) and extinction Ångström exponent (EAE) are derived from ground-based sunphotometer observations between 2007 and 2014 at urban sites of Nanjing over the Yangtze River Delta. In addition, the present study aims to investigate aerosol light-absorbing properties such as single-scattering albedo (SSA), absorption Ångström exponent (AAE), and the aerosol-absorbing optical depth (AAOD). The retrieval of aerosol properties is compared with AERONET inversion products. The results demonstrate that the retrieved AOD has a good agreement with the AERONET Level 1.5 data, with the root mean square error being 0.068, 0.065, and 0.026 for total, fine mode, and coarse mode at 440 nm, respectively. The SSA values indicate similar accuracies in the results, which are about 0.003, -0.009, -0.008, and 0.010 different from AERONET at 440, 670, 870, and 1020 nm, respectively. The occurrence frequency of background level AOD (AOD<0.10) at 440 nm in this region is limited (1%). Monthly mean AOD, SSA, the effective radius (R eff ), and the volume concentration at 440 nm were 0.6-1.3, 0.85-0.92, 0.24-0.40 μm, and 0.18-0.28  μm 3  μm -2 , respectively. The mean value of AAOD at 440 nm (AAOD 440 ) was the highest in both summer (0.095±0.041) and autumn (0.094±0.042), but was the lowest in winter (0.079±0.036). It was also noted that SSA was found to be higher during summer (0.89±0.05). The spectral variation of SSA was observed to be strongly wavelength-dependent during all seasons. The seasonal mean AAE440-870 is the highest in winter (0.86±0.41) and lowest in spring (0.49±0.29). In winter, the cumulative frequency for AAE between 1.0 and 1.2 was about 87%. The peak in the AAE distribution was close to 1.0, indicating that the aerosol column was dominated by urban-industrial aerosols and absorption species other than black carbon. Analysis of the relationship between EAE and SSA showed that the aerosol populations could be

  8. Long Persistent Light Emitting Diode Indicators

    ERIC Educational Resources Information Center

    Jia, Dongdong; Ma, Yiwei; Hunter, D. N.

    2007-01-01

    An undergraduate laboratory was designed for undergraduate students to make long persistent light emitting diode (LED) indicators using phosphors. Blue LEDs, which emit at 465 nm, were characterized and used as an excitation source. Long persistent phosphors, SrAl[subscript 2]O[subscript 4]:Eu[superscript 2+],Dy[superscript 3+] (green) and…

  9. Atmospheric turbulence power spectral measurements to long wavelengths for several meteorological conditions

    NASA Technical Reports Server (NTRS)

    Rhyne, R. H.; Murrow, H. N.; Sidwell, K.

    1976-01-01

    Use of power spectral design techniques for supersonic transports requires accurate definition of atmospheric turbulence in the long wavelength region below the knee of the power spectral density function curve. Examples are given of data obtained from a current turbulence flight sampling program. These samples are categorized as (1) convective, (2) wind shear, (3) rotor, and (4) mountain-wave turbulence. Time histories, altitudes, root-mean-square values, statistical degrees of freedom, power spectra, and integral scale values are shown and discussed.

  10. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    ERIC Educational Resources Information Center

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  11. Intrascleral outflow after deep sclerectomy with absorbable and non-absorbable implants in the rabbit eye.

    PubMed

    Kałużny, Jakub J; Grzanka, Dariusz; Wiśniewska, Halina; Niewińska, Alicja; Kałużny, Bartłomiej J; Grzanka, Alina

    2012-10-01

    The purpose of the study is an analysis of intrascleral drainage vessels formed in rabbits' eyes after non-penetrating deep sclerectomy (NPDS) with absorbable and non-absorbable implants, and comparison to eyes in which surgery was performed without implanted material. NPDS was carried out in 12 rabbits, with implantation of non-absorbable methacrylic hydrogel (N=10 eyes) or absorbable cross-linked sodium hyaluronate (N=6 eyes), or without any implant (N=8 eyes). All the animals were euthanized 1 year after surgery. Twenty-one eyeballs were prepared for light microscopy and 3 were prepared for transmission electron microscope (TEM) analysis. Aqueous humour pathways were stained with ferritin in 6 eyeballs. By light microscopy, small vessels adjacent to the areas of scarring were the most common abnormality. Vessel density was significantly higher in operated sclera compared to normal, healthy tissue, regardless of the type of implant used. The average vessel densities were 2.18±1.48 vessels/mm2 in non-implanted sclera, 2.34±1.69 vessels/mm2 in eyes with absorbable implants, and 3.64±1.78 vessels/mm2 in eyes with non-absorbable implants. Analysis of iron distribution in ferritin-injected eyes showed a positive reaction inside new aqueous draining vessels in all groups. TEM analysis showed that the ultrastructure of new vessels matched the features of the small veins. Aqueous outflow after NPDS can be achieved through the newly formed network of small intrascleral veins. Use of non-absorbable implants significantly increases vessel density in the sclera adjacent to implanted material compared to eyes in which absorbable implants or no implants were used.

  12. Syntheses, structures and photoelectrochemical properties of three water-stable, visible light absorbing mental-organic frameworks based on tetrakis(4-carboxyphenyl)silane and 1,4-bis(pyridyl)benzene mixed ligands

    NASA Astrophysics Data System (ADS)

    Guo, Tiantian; Yang, Xiaowei; Li, Ruyan; Liu, Xiaoyu; Gao, Yanling; Dai, Zhihui; Fang, Min; Liu, Hong-Ke; Wu, Yong

    2017-09-01

    Photovoltaics (PV), which directly convert solar energy into electricity generally using semiconductors, offer a practical and sustainable solution to the current energy shortage and environmental pollution crisis. Photovoltaic applications of metal-organic frameworks (MOFs) belong to a relatively new area of research. Given that UV light accounts for only 4% while visible light contributes 43% of solar energy, it is rather imperative to develop semiconductors with narrow band gaps so that they could absorb visible light. In this work, three water-stable, narrow band semiconducting MOFs of [Cu(H2TCS)(H2O)] (1), [Co(H2TCS)(BPB)] (2) and [Ni(H2TCS)(BPB)] (3) were synthesized using tetrakis(4-carboxyphenyl)silane (H4TCS) and 1,4-bis (pyridyl)benzene (BPB) in water, and structurally characterized by single-crystal X-ray diffractions. MOF 1 has a 2D structure. MOF 2 and 3 are isostructrual and have 3D frameworks formed by interwoven 2D layers. All three MOFs are stable in acidic water solutions and can be stable in water for 7 days. MOFs 1-3 absorb UV and visible light and have band gaps of 0.50, 1.77 and 1.49 eV, respectively. Rapid and stable photocurrent responses of MOFs 1-3 under UV and visible light illuminations are observed. This work demonstrates that using electron rich Cu2+, Co2+, or Ni2+ as metal nodes can effectively decrease the band gaps of MOFs to make them absorbing visible light. To increase the conjugation in the linker is generally considered to be the method to decrease the band gap of MOFs. The conjugation in H4TCS is not significant and this ligand basically only absorbs UV light. However, by using electron rich Cu2+ ions as metal nodes, the prepared [Cu(H2TCS)(H2O)]·H2O (1) absorbs broadly in the visible light region. Thus, this work suggests that by using electron rich Cu2+, many narrow-band semiconductor MOFs can be prepared even by using ligands which only absorbs UV light.

  13. Enhanced UV light detection using a p-terphenyl wavelength shifter

    NASA Astrophysics Data System (ADS)

    Joosten, S.; Kaczanowicz, E.; Ungaro, M.; Rehfuss, M.; Johnston, K.; Meziani, Z.-E.

    2017-10-01

    UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths below 300 nm due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below 300 nm. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between 200 nm and 400 nm. The gain factor ranges up to 5 . 4 ± 0 . 5 at a wavelength of 215 nm, with a material load of 110 ± 10 μg /cm2 (894 nm). The wavelength shifter was found to be fully transparent for wavelengths greater than 300 nm. The resulting gain in detection efficiency, when used in a typical C̆erenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold C̆erenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.

  14. Contrast-enhancement in organic light-emitting diodes.

    PubMed

    Wu, Zhaoxin; Wang, Liduo; Qiu, Yong

    2005-03-07

    A high-contrast organic light-emitting diode (OLED) structure is presented. Because of poor contrast of conventional OLED resulting from high reflective metal cathode, the hybrid cathode structure was developed for low reflectivity. It consists the semitransparent cathode layers, passivation layers and a thick light-absorbing film. By optical reflectivity measurement and OLED electrical characterization tests for both OLED with the hybrid cathode and conventional OLED, it was found that the spectrum reflectance of OLED with hybrid cathode is among 8%-12%, about eight times lower than the conventional one when the two types of devices have similar turn-on voltages and current-voltage characteristics. The hybrid cathode for the high-contrast OLED is easily fabricated and its optical reflectance is slightly dependent on wavelength.

  15. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  16. Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Dongwei; Guo, Fengyun, E-mail: guowen@hit.edu.cn; Li, Xiaochao

    2016-03-21

    The authors report the dependence of the quantum efficiency on beryllium concentration in the active region of type-II InAs/GaSb superlattice infrared detector with a cutoff wavelength around 21 μm. It is found that the quantum efficiency and responsivity show a clear delineation in comparison to the doping concentration. The quantum efficiency is further improved by gradually doping in the absorbing region. At 77 K, the 50% cutoff wavelength of the VLWIR detector is 18 μm, and the R{sub 0}A is kept at a stable value of 6 Ω cm{sup 2}. Different beryllium concentration leads to an increase of an average quantum efficiency in the 8–15 μmmore » window from 35% to 55% with a π-region thickness of 3.0 μm, for U{sub bias} = −0.3 V, and no anti-reflection coating. As for a further result, the quantum efficiency reaches at a maximum value of 66% by gradually doping in the absorbing region with the peak detectivity of 3.33 × 10{sup 10 }cm Hz{sup 1/2}/W at 15 μm.« less

  17. Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber

    NASA Astrophysics Data System (ADS)

    Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-01-01

    We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.

  18. Shedding light on proteins, nucleic acids, cells, humans and fish

    NASA Technical Reports Server (NTRS)

    Setlow, Richard B.

    2002-01-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  19. Light trapping in thin-film solar cells measured by Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledinský, M., E-mail: ledinsky@fzu.cz; Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering; Moulin, E.

    2014-09-15

    In this study, Raman spectroscopy is used as a tool to determine the light-trapping capability of textured ZnO front electrodes implemented in microcrystalline silicon (μc-Si:H) solar cells. Microcrystalline silicon films deposited on superstrates of various roughnesses are characterized by Raman micro-spectroscopy at excitation wavelengths of 442 nm, 514 nm, 633 nm, and 785 nm, respectively. The way to measure quantitatively and with a high level of reproducibility the Raman intensity is described in details. By varying the superstrate texture and with it the light trapping in the μc-Si:H absorber layer, we find significant differences in the absolute Raman intensity measured in the near infraredmore » wavelength region (where light trapping is relevant). A good agreement between the absolute Raman intensity and the external quantum efficiency of the μc-Si:H solar cells is obtained, demonstrating the validity of the introduced method. Applications to thin-film solar cells, in general, and other optoelectronic devices are discussed.« less

  20. 1 × 4 MMI visible light wavelength demultiplexer based on a GaN slot-waveguide structure

    NASA Astrophysics Data System (ADS)

    Shoresh, Tamir; Katanov, Nadav; Malka, Dror

    2018-07-01

    High transmission losses are the key problem that limits the performance of visible light communication systems, which work on wavelength division multiplexing (WDM) technology. To overcome this problem, we propose a novel design for a 1 × 4 optical demultiplexer based on the multimode interference in a slot-waveguide structure that operates at 547 nm, 559 nm, 566 nm, and 584 nm. Gallium nitride and silicon oxide were found to be excellent materials for the slot-waveguide structure. Simulation results showed that the proposed device can transmit four channels that work in the visible light range with a low transmission loss of 0.983-1.423 dB, crosstalk of 13.8-18.3 dB, and bandwidth of 1.8-3.2 nm. Thus, this device can be very useful in visible light networking systems, which work on the WDM technology.