Science.gov

Sample records for absorption band intensities

  1. Propane absorption band intensities and band model parameters from 680 to 1580/cm at 296 and 200 K

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Valero, F. P. J.; Varanasi, P.

    1984-01-01

    Band intensities and profiles have been measured for the propane absorption bands from 680 to 1580/cm at 296 and 200 K. This work was stimulated by the discovery of several propane bands in the spectrum of Titan by the Voyager 1 spacecraft. The low temperature laboratory data show that the bands become narrower and the Q branches of the bands somewhat stronger than they are at room temperature. Random band model parameters were determined over the entire region from the 42 spectra obtained at room temperature.

  2. The Rovibrational Intensities of Five Absorption Bands of (12)C(16)O2 Between 5218 and 5349/cm

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Brown, Linda R.; Chackerian, Charles, Jr.; Freedman, Richard S.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Absolute line intensities, band intensities, and Herman-Wallis parameters were measured for the (01(sup 1)2)(sub I) from (00(sup 0)0)(sub I) perpendicular band of (12)C(16)O2 centered at 5315/cm, along with the three nearby associated hot bands: (10(sup 0)2)(sub II) from (01(sup 1)0)(sub I) at 5248/cm, (02(sup 2))(sub I) from (01(sup 1)0)(sub I) at 5291/cm, and (10(sup 0)2)(sub I) from (01(sup 1)0)(sub I) at 5349/cm. The nearby parallel hot band (30(sup 0))(sub I) from (10(sup 0)0)(sub II) at 5218/cm was also included in this study.

  3. Impurity-related nonlinear optical absorption under combined effects of intense laser field and band-edge nonparabolicity on InGaN QW

    NASA Astrophysics Data System (ADS)

    El Ghazi, Haddou; Peter, A. John

    2015-05-01

    Conduction band-edge nonparabolicity effect on linear and nonlinear optical properties related to 1s-1p intra-conduction band transition in unstrained wurtzite (In, Ga)N-GaN symmetric quantum well (QW) is investigated incorporating an additional external probe as well as the nonresonant intense laser field (ILF) effect. Using the compact density matrix approach and the iterative procedure, the analytical expressions of optical absorption coefficients (ACs) are calculated. The numerical results are obtained within the single-band effective mass and the one-parabolic-band approximations under finite potential barrier. It is found that the internal and external perturbations show an important impact on the optical spectrum. A critical value of the laser-dressed parameter (LDP) is obtained by limiting two behaviors. Moreover, the ILF can be used as a way to control the optical properties of the QW structures and to reduce the lift of the conduction band-edge.

  4. Atmospheric Solar Heating in Minor Absorption Bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1998-01-01

    Solar radiation is the primary source of energy driving atmospheric and oceanic circulations. Concerned with the huge computing time required for computing radiative transfer in weather and climate models, solar heating in minor absorption bands has often been neglected. The individual contributions of these minor bands to the atmospheric heating is small, but collectively they are not negligible. The solar heating in minor bands includes the absorption due to water vapor in the photosynthetically active radiation (PAR) spectral region from 14284/cm to 25000/cm, the ozone absorption and Rayleigh scattering in the near infrared, as well as the O2 and CO2 absorption in a number of weak bands. Detailed high spectral- and angular-resolution calculations show that the total effect of these minor absorption is to enhance the atmospheric solar heating by approximately 10%. Depending upon the strength of the absorption and the overlapping among gaseous absorption, different approaches are applied to parameterize these minor absorption. The parameterizations are accurate and require little extra time for computing radiative fluxes. They have been efficiently implemented in the various atmospheric models at NASA/Goddard Space Flight Center, including cloud ensemble, mesoscale, and climate models.

  5. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  6. Absorption characteristics of intermediate band solar cell

    NASA Astrophysics Data System (ADS)

    Tomi?, S.; Harrison, N. M.; Jones, T. S.

    2010-01-01

    Intermediate band solar cells (IBSC) have emerged as an alternative design for solar cells that can dramatically increase power conversion efficiency. Here, it is demonstrated that a k.p multiband theory with periodic boundary conditions can easily be applied to predict electronic and absorption characteristics of the semiconductor QD arrays that produces a mini-band (IB) that is located in the forbidden energy gap of the QD material and is separated from valence and conduction band of the barrier material. Analysis of the electronic and absorption structure suggest that the most promising design for an IB material that will exhibit its own quasi-Fermi level is to employ small QDs (˜6-10 nm QD lateral size) arranged in a periodic array. Using bigger (>20 nm QD lateral size) QDs leads to extension of the absorption spectra into a longer wavelength region but does not provide a separate IB in the forbidden energy gap.

  7. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  8. Absolute integrated intensity for the nu-1 sulfur dioxide band

    NASA Technical Reports Server (NTRS)

    Pilon, P. J.; Young, C.

    1976-01-01

    The absolute integrated intensity of the IR vibration-rotation nu-1 SO2 band was measured using the linear portion of the curve of growth. Infrared spectroscopic-absorption cell measurements were performed on sulfur dioxide at partial pressures less than 0.15 torr with nitrogen added to give a total pressure of 705 torr, the path length being 4 mm. The absolute integrated intensity was determined to be 112.0 plus or minus 2.6/cm/sq (atm cm) at 296 K at the 95% confidence level.

  9. Infrared band intensities of saturated hydrocarbons

    NASA Technical Reports Server (NTRS)

    Pinkley, L. W.; Sethna, P. P.; Williams, D.

    1978-01-01

    Kramers-Kronig analysis is applied to measured values of spectral reflectance at near-normal incidence to determine the real and the imaginary parts of the complex index of refraction for methane, ethane, propane, n-butane, n-hexane, n-heptane, and n-decane in the liquid state. The results indicate that the strengths of the characteristic bands as measured by the integral of the imaginary part are roughly constant for all the liquid alkanes except for methane. The intensity of the CH valence vibration bands in the spectra of the alkanes except methane is directly proportional to the number of CH groups per unit volume. The relations for the intensity of the bands due to CH2 and CH3 deformations are examined. Characteristic band intensities of the type established for NH4(+) and SO4(2-) groups in solutions and crystals cannot be extended to the more closely coupled CH2 and CH3 groups in alkane molecules.

  10. Deconvolution of mineral absorption bands - An improved approach

    NASA Technical Reports Server (NTRS)

    Sunshine, Jessica M.; Pieters, Carle M.; Pratt, Stephen F.

    1990-01-01

    Although visible and near IR reflectance spectra contain absorption bands that are characteristic of the composition and structure of the absorbing species, deconvolving a complex spectrum is nontrivial. An improved approach to spectral deconvolution is presented that accurately represents absorption bands as discrete mathematical distributions and resolves composite absorption features into individual absorption bands. The frequently used Gaussian model of absorption bands is shown to be inappropriate for the Fe(2+) electronic transition absorptions in pyroxene spectra. A modified Gaussian model is derived using a power law relationship of energy to average bond length. The modified Gaussian model is shown to provide an objective and consistent tool for deconvolving individual absorption bands in the more complex orthopyroxene, clinopyroxene, pyroxene mixtures, and olivine spectra.

  11. Saturable absorption of intense hard X-rays in iron.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Yabashi, Makina; Katayama, Tetsuo; Ishikawa, Tetsuya; Ohashi, Haruhiko; Yumoto, Hirokatsu; Yamauchi, Kazuto; Mimura, Hidekazu; Kitamura, Hikaru

    2014-01-01

    In 1913, Maurice de Broglie discovered the presence of X-ray absorption bands of silver and bromine in photographic emulsion. Over the following century, X-ray absorption spectroscopy was established as a standard basis for element analysis, and further applied to advanced investigation of the structures and electronic states of complex materials. Here we show the first observation of an X-ray-induced change of absorption spectra of the iron K-edge for 7.1-keV ultra-brilliant X-ray free-electron laser pulses with an extreme intensity of 10(20)?W?cm(-2). The highly excited state yields a shift of the absorption edge and an increase of transparency by a factor of 10 with an improvement of the phase front of the transmitted X-rays. This finding, the saturable absorption of hard X-rays, opens a promising path for future innovations of X-ray science by enabling novel attosecond active optics, such as lasing and dynamical spatiotemporal control of X-rays. PMID:25270525

  12. Localized surface plasmon resonnance induced terahertz broad absorption band

    NASA Astrophysics Data System (ADS)

    Zhong, Min

    2015-12-01

    A broad band metamaterial absorber is designed and simulated, which constitutes by double circular-patterned metal-dielectric stacks. A absorption band is obtained from 14.1 to 16.4 THz. Electric field distributions reveal that the absorption band is obtained from localized surface plasmon (LSP) modes which are excited both on outside and inside edges of each stack, while the high-frequency absorption peak is excited by LSP modes which are excited only on outside edges. The absorption band width can be tuned by increasing the radius (R) of circular-patterned layers and reducing the thickness of dielectric layers (Hd). Moreover, the designed broad band metamaterial absorber is independent of circular-patterned dielectric layer combination.

  13. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.

    PubMed

    Butun, Serkan; Aydin, Koray

    2014-08-11

    Light absorption is a fundamental optical process playing significantly important role in wide variety of applications ranging from photovoltaics to photothermal therapy. Semiconductors have well-defined absorption bands with low-energy edge dictated by the band gap energy, therefore it is rather challenging to tune the absorption bandwidth of semiconductors. However, resonant absorbers based on plasmonic nanostructures and optical metamaterials emerged as alternative light absorbers due to spectrally selective absorption bands resulting from optical resonances. Recently, a broadband plasmonic absorber design was introduced by Aydin et al. with a reasonably high broadband absorption. Based on that design, here, structurally tunable, broadband absorbers with improved performance are demonstrated. This broadband absorber has a total thickness of 190 nm with 80% average measured absorption (90% simulated absorption) over the entire visible spectrum (400 - 700 nm). Moreover, the effect of the metal and the oxide thicknesses on the absorption spectra are investigated and results indicate that the shorter and the longer band-edge of broadband absorption can be structurally tuned with the metal and the oxide thicknesses, as well as with the resonator size. Detailed numerical simulations shed light on the type of optical resonances that contribute to the broadband absorption response and provide a design guideline for realizing plasmonic absorbers with structurally tunable bandwidths. PMID:25321029

  14. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  15. Polarization-controlling dual-band absorption metamaterial

    NASA Astrophysics Data System (ADS)

    Tuong Pham, Van; Vu, Dinh Lam; Park, Jin Woo; Lee, YoungPak

    2013-09-01

    We investigated sandwich structure of the conventional absorber metamaterials to expand the study on dual-band absorption in our previous work (2013 Appl. Phys. Lett. 102 081122). The advantages of the artificial structuring of plasmonic resonators or ‘meta-atoms’ were exploited to gradually enhance/degrade the absorption peaks by polarization angle of electromagnetic wave. By reshaping the rings at the font of slab, dual- or single-peak absorption is controlled. The absorber is demonstrated in the GHz region.

  16. Concentration measurement of NO using self-absorption spectroscopy of the ? band system in a pulsed corona discharge.

    PubMed

    Zhai, Xiaodong; Ding, Yanjun; Peng, Zhimin; Luo, Rui

    2012-07-10

    Nitric oxide (NO) concentrations were measured using the ? band system spectrum based on the strong self-absorption effect of NO in pulsed corona discharges. The radiative transitional intensities of the NO ? band were simulated based on the theory of molecular spectroscopy. The intensities of some bands, especially ?(0,0) and ?(1,0), are weakened by the self-absorption. The correlations between the spectral self-absorption intensities and NO concentration were validated using a modified Beer-Lambert law with a combined factor K relating the branching ratio and the NO concentration, and a nonlinear index ? that is applicable to the broadband system. Optical emissive spectra in pulsed corona discharges in NO and N2/He mixtures were used to evaluate the two parameters for various conditions. Good agreement between the experimental and theoretical results verifies the self-absorption behavior seen in the UV spectra of the NO ? bands. PMID:22781235

  17. Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon

    PubMed Central

    Zhu, Zhen; Shao, Hezhu; Dong, Xiao; Li, Ning; Ning, Bo-Yuan; Ning, Xi-Jing; Zhao, Li; Zhuang, Jun

    2015-01-01

    We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing. PMID:26012369

  18. Spectroscopic investigation of amber color silicate glasses and factors affecting the amber related absorption bands.

    PubMed

    Morsi, Morsi M; El-Sherbiny, Samya I; Mohamed, Karam M

    2015-06-15

    The effects of carbon, Fe2O3 and Na2SO4 contents on the amber color of glass with composition (wt%) 64.3 SiO2, 25.7 CaO, 10 Na2O were studied. The effect of some additives that could be found in glass batch or cullets on the amber related absorption band(s) was also studied. An amber related absorption band due to the chromophore Fe(3+)O3S(2-) was recorded at 420 nm with shoulder at 440 nm. A second amber related band recorded at 474 nm with shoulder at 483 nm was assigned to FeS. Increasing melting time at 1400°C up to 6h caused fainting of the amber color, decreases the intensities of the amber related bands and shifted the first band to 406 nm. Addition of ZnO, Cu2O and NaNO3 to the glass produced decolorizing effect and vanishing of the amber related bands. The effects of melting time and these additives were explained on the bases of destruction the amber chromophore and its conversion into Fe(3+) in tetrahedral sites or ZnS. Addition of Se intensifies the amber related bands and may cause dark coloration due to the formation of Se° and polyselenide. Amber color can be monitored through measuring the absorption in the range 406-420 nm. PMID:25795612

  19. Spectroscopic investigation of amber color silicate glasses and factors affecting the amber related absorption bands

    NASA Astrophysics Data System (ADS)

    Morsi, Morsi M.; El-sherbiny, Samya I.; Mohamed, Karam M.

    2015-06-01

    The effects of carbon, Fe2O3 and Na2SO4 contents on the amber color of glass with composition (wt%) 64.3 SiO2, 25.7 CaO, 10 Na2O were studied. The effect of some additives that could be found in glass batch or cullets on the amber related absorption band(s) was also studied. An amber related absorption band due to the chromophore Fe3+O3S2- was recorded at 420 nm with shoulder at 440 nm. A second amber related band recorded at 474 nm with shoulder at 483 nm was assigned to FeS. Increasing melting time at 1400 °C up to 6 h caused fainting of the amber color, decreases the intensities of the amber related bands and shifted the first band to 406 nm. Addition of ZnO, Cu2O and NaNO3 to the glass produced decolorizing effect and vanishing of the amber related bands. The effects of melting time and these additives were explained on the bases of destruction the amber chromophore and its conversion into Fe3+ in tetrahedral sites or ZnS. Addition of Se intensifies the amber related bands and may cause dark coloration due to the formation of Se° and polyselenide. Amber color can be monitored through measuring the absorption in the range 406-420 nm.

  20. D band Raman intensity calculation in armchair edged graphene nanoribbons

    E-print Network

    Barros, Eduardo B.

    The D band Raman intensity is calculated for armchair edged graphene nanoribbons using an extended tight-binding method in which the effect of interactions up to the seventh nearest neighbor is taken into account. The ...

  1. Constraints on the absorption band model of Q

    SciTech Connect

    Lundquist, G.M.; Cormier, V.C.

    1980-10-10

    First order models for the combined depth and frequency dependence of Q are derived and tested using several independent constraints. (1) Using a microphysics approach, the adoption of an absorption band as a first-order model for the frequency dependence of Q is justified, and the expected depth behavior of relaxation times in the earth is derived. The significant new parameter in this model of Q is tau/sub 2/, the period at the half-amplitude point of the high frequency end of the absorption band. (2) Using observed body-wave spectra, the existence of a frequency dependence in Q is proved, and the average location of that frequency dependence (i.e., tau/sub 2/) is estimated to be in the range 1 to 2.5 Hz. (3) Under the constraints of Q model ratios, the dept dependence of tau/sub 2/ is estimated by assuming that a free-oscillation and a body-wave Q model both measure Q from the same absorption band. The resulting tau/sub 2/ is about 0.04 s in the upper 200 km and then increases exponentially with depth in the mantle to about 1.9 at the core mantle boundary. The Q model ratios are better satisfied if a second absorption band is hypothesized to operate in the depth range of the asthenosphere. In that case, tau/sub 2/ for the mantle absorption band varies from about 0.09 s in the first 200 km to 4.0 s at 2886 km, and tau/sub 2/ for the asthenosphere absorption band is about 0.005 s in the depth range 35-220 km. (4) Both classes of Q models are tested in the time domain using synthetic seismograms of Russian and American nuclear explosions. Although trade-offs between source and mantle transfer functions preclude further refinement of the models at this time, a compatibility is demonstrated between the double absorption band model and time domain constraints, including arrival time and pulse shape.

  2. Universal EUV in-band intensity detector

    DOEpatents

    Berger, Kurt W.

    2004-08-24

    Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.

  3. The 3? 1+ ? 2Combination Band of HOCl: Assignments, Perturbations, and Line Intensities

    NASA Astrophysics Data System (ADS)

    Charvát, Aleš; Deppe, Sabine F.; Hamann, Hilmar H.; Abel, Bernd

    1997-10-01

    The high-resolution spectra (0.012 cm-1) of the 3?1+ ?2combination band of hypochlorous acid HO35(37)Cl in the near infrared (?11 478 cm-1) have been measured using a titanium:sapphire intracavity laser absorption (ICLA) spectrometer. Line assignments, absolute intensities, and the total band intensity for both isotopomers are reported. In the course of the band analysis twoKabranches (Ka= 2,3) were found to be perturbed via low-order Fermi-type (anharmonic) resonances by a dark perturber which has been identified to be the 2?1+ 2?2+ 3?3state. The data are compared with intensity predictions from simple empirical models and discussed with regard to detection limits for this molecule in the near infrared spectral region of the atmosphere.

  4. Resonant absorption and not-so-resonant absorption in short, intense laser irradiated plasma

    SciTech Connect

    Ge, Z. Y.; Zhuo, H. B.; Ma, Y. Y.; Yang, X. H.; Yu, T. P.; Zou, D. B.; Yin, Y.; Shao, F. Q.; Yu, W.; Luan, S. X.; Zhou, C. T.; Institute of Applied Physics and Computational Mathematics, Beijing 100088 ; Peng, X. J.

    2013-07-15

    An analytical model for laser-plasma interaction during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. Both the resonant absorption and not-so-resonant absorption are self-consistently included. Different from the previous theoretical works, the physics of resonant absorption is found to be valid in more general conditions as the steepening of the electron density profile is considered. Even for a relativistic intensity laser, resonant absorption can still exist under certain plasma scale length. For shorter plasma scale length or higher laser intensity, the not-so-resonant absorption tends to be dominant, since the electron density is steepened to a critical level by the ponderomotive force. The laser energy absorption rates for both mechanisms are discussed in detail, and the difference and transition between these two mechanisms are presented.

  5. Isothermal annealing of a 620 nm optical absorption band in Brazilian topaz crystals

    NASA Astrophysics Data System (ADS)

    Isotani, Sadao; Matsuoka, Masao; Albuquerque, Antonio Roberto Pereira Leite

    2013-04-01

    Isothermal decay behaviors, observed at 515, 523, 562, and 693 K, for an optical absorption band at 620 nm in gamma-irradiated Brazilian blue topaz were analyzed using a kinetic model consisting of O- bound small polarons adjacent to recombination centers (electron traps). The kinetic equations obtained on the basis of this model were solved using the method of Runge-Kutta and the fit parameters describing these defects were determined with a grid optimization method. Two activation energies of 0.52±0.08 and 0.88±0.13 eV, corresponding to two different structural configurations of the O- polarons, explained well the isothermal decay curves using first-order kinetics expected from the kinetic model. On the other hand, thermoluminescence (TL) emission spectra measured at various temperatures showed a single band at 400 nm in the temperature range of 373-553 K in which the 620 nm optical absorption band decreased in intensity. Monochromatic TL glow curve data at 400 nm extracted from the TL emission spectra observed were found to be explained reasonably by using the knowledge obtained from the isothermal decay analysis. This suggests that two different structural configurations of O- polarons are responsible for the 620 nm optical absorption band and that the thermal annealing of the polarons causes the 400 nm TL emission band.

  6. Intensity Measurements of the 01(sup 1)21-00(sup 0)01 Perpendicular CO2 band at 5315 cm (sup -1) and 4 related hot bands

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Chackerian, Charles, Jr.; Spencer, Mark N.; Brown, Linda R.; Wattson, Richard B.; Gore, Warren J. (Technical Monitor)

    1994-01-01

    The near-infrared thermal emission windows in the spectrum of the night-side of Venus have stimulated new determinations of the intensities of weak CO2 bands which are prominent absorption features in Venus spectra. We have previously measured the 31(sup 1)04-00(sup 0)01 band at 4416 cm (sup -1), which dominates a portion of the 2.2 micrometer window, using the 25-meter White absorption cell at Ames. Parameters for many of the unmeasured bands have been recomputed for the HITRAN compilation using direct numerical diagonalization. This procedure has some uncertainties, particularly for higher overtone-combination perpendicular bands, and substantial differences were noted for these bands when comparing the 1986 HITRAN tabulation with the 1992 values. To clarify this situation, we decided to measure the intensities of several of these bands; L.R.B. obtained spectra using the McMath FTS and 6 meter White cell, covering the region 3800 to 7700 cm (sup -1). A table is provided in which we compare our measured intensities and Herman-Wallis al parameters for the 01(sup 1)21-00(sup 0)01 band and 4 associated hot bands with both Hitran tabulations. It is anticipated that these measured values will be useful in further DND calculations of many very weak unmeasurable bands.

  7. Uncertainties of the Intensity of the 1130 nm Band of Water Vapor

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Pilewskie, P.; Gore, W. J.; Chackerian, C., Jr.; Varanasi, P.; Bergstrom, R.; Freedman, R. S.

    2001-01-01

    Belmiloud, et al have recently suggested that the HITRAN line intensities in the 1130 nm water vapor band are much too weak. Giver, et at corrected unit conversion errors to make the HITRAN intensities compatible with the original measurements of Mandin, et al, but Belmiloud, et al believe that many of those line intensity measurements were too weak, and they propose the total intensity of the 1130 nm water vapor band is 38% stronger than the sum of the HITRAN line intensities in this region. We have made independent assessments of this proposal using 2 spectra obtained with the Ames 25 meter base path White cell. The first was made using the moderate resolution (8 nm) solar spectral flux radiometer (SSFR) flight instrument with a White cell absorbing path of 506 meters and 10 torr water vapor pressure. Modeling this spectrum using the HITRAN linelist gives a reasonable match, and the model is not compatible when the HITRAN line intensities are increased by 38%. The second spectrum was obtained with a White cell path of 1106 meters and 12 torr water vapor pressure, using a Bomem FTIR with near Doppler width resolution. This spectrum is useful for measuring intensities of isolated weak lines to compare with the measurements of Mandin, et al. Unfortunately, as Belmiloud et al point out, at these conditions the strong lines are much too saturated for good intensity measurements. Our measurements of the weak lines are in reasonable agreement with those of Mandin, et al. Neither of our spectra supports the proposal of Belmiloud et al for a general 38% increase of the absorption intensity in the 1130 nm water vapor band.

  8. Infrared band intensities in ammonium hydroxide and ammonium salts

    NASA Technical Reports Server (NTRS)

    Sethna, P. P.; Downing, H. D.; Pinkley, L. W.; Williams, D.

    1978-01-01

    We have applied Kramers-Kronig analysis to reflection spectra to determine the optical constants of ammonium hydroxide and of aqueous solutions of ammonium chloride and bromide. From considerations of the absorption indices k(nu) we conclude that ammonium hydroxide consists of a solution of NH3 in water, in which NH3 molecules are hydrogen bonded to neighboring water molecules. The spectrum of ammonium hydroxide differs from the spectra of ammonium salts, in which bands characteristic of NH4(+) ions are prominent. The existence of ammonium hydroxide as an aerosol in planetary atmospheres is briefly discussed

  9. Optical absorption of nanoporous silicon: quasiparticle band gaps and absorption spectra

    NASA Astrophysics Data System (ADS)

    Shi, Guangsha; Kioupakis, Emmanouil

    2013-03-01

    Silicon is an earth-abundant material of great importance in semiconductors electronics, but its photovoltaic applications are limited by the low absorption coefficient in the visible due to its indirect band gap. One strategy to improve the absorbance is to perforate silicon with nanoscale pores, which introduce carrier scattering that enables optical transitions across the indirect gap. We used density functional and many-body perturbation theory in the GW approximation to investigate the electronic and optical properties of porous silicon for various pore sizes, spacings, and orientations. Our calculations include up to 400 atoms in the unit cell. We will discuss the connection of the band-gap value and absorption coefficient to the underlying nanopore geometry. The absorption coefficient in the visible range is found to be optimal for appropriately chosen nanopore size, spacing, and orientation. Our work allows us to predict porous-silicon structures that may have optimal performance in photovoltaic applications. This research was supported as part of CSTEC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Computational resources were provided by the DOE NERSC facility.

  10. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol

    NASA Astrophysics Data System (ADS)

    Cen, Qiongyan; He, Yuhan; Xu, Mei; Wang, Jingjing; Wang, Zhaohui

    2015-03-01

    Resonance broadband stimulated Raman spectroscopy of malachite green in ethanol has been performed. With a tuning picosecond visible laser source and a broadband Raman probe, the Raman gain and loss spectra have been measured simultaneously. By scanning the Raman pump across the first absorption band of the molecule, we found that the resonant Raman bands could be only seen when the pump laser tuned in the range of the red edge of the S1?S0 transition. Dispersive lineshapes of resonant Raman bands have been observed in the Raman loss spectra, while the line shape is normal (same as spontaneous Raman) in the Raman gain spectra. Although, the resonant bands in the loss spectrum are usually stronger than that in the gain spectrum, the band intensities of both loss and gain linearly increase with the pump energy. The relative magnitude of each corresponding resonant band in the Raman loss and gain varies with the pump wavelength. Mode specified Raman excitation profiles have been obtained through broadband stimulated Raman measurement.

  11. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol.

    PubMed

    Cen, Qiongyan; He, Yuhan; Xu, Mei; Wang, Jingjing; Wang, Zhaohui

    2015-03-21

    Resonance broadband stimulated Raman spectroscopy of malachite green in ethanol has been performed. With a tuning picosecond visible laser source and a broadband Raman probe, the Raman gain and loss spectra have been measured simultaneously. By scanning the Raman pump across the first absorption band of the molecule, we found that the resonant Raman bands could be only seen when the pump laser tuned in the range of the red edge of the S1?S0 transition. Dispersive lineshapes of resonant Raman bands have been observed in the Raman loss spectra, while the line shape is normal (same as spontaneous Raman) in the Raman gain spectra. Although, the resonant bands in the loss spectrum are usually stronger than that in the gain spectrum, the band intensities of both loss and gain linearly increase with the pump energy. The relative magnitude of each corresponding resonant band in the Raman loss and gain varies with the pump wavelength. Mode specified Raman excitation profiles have been obtained through broadband stimulated Raman measurement. PMID:25796242

  12. Ultrafast absorption of intense x rays by nitrogen molecules

    SciTech Connect

    Buth, Christian; Liu Jicai; Chen, Mau Hsiung; Cryan, James P.; Fang Li; Hoener, Matthias; Berrah, Nora; Glownia, James M.; Coffee, Ryan N.

    2012-06-07

    We devise a theoretical description for the response of nitrogen molecules (N{sub 2}) to ultrashort and intense x rays from the free electron laser Linac Coherent Light Source (LCLS). We set out from a rate-equation description for the x-ray absorption by a nitrogen atom. The equations are formulated using all one-x-ray-photon absorption cross sections and the Auger and radiative decay widths of multiply-ionized nitrogen atoms. Cross sections are obtained with a one-electron theory and decay widths are determined from ab initio computations using the Dirac-Hartree-Slater (DHS) method. We also calculate all binding and transition energies of nitrogen atoms in all charge states with the DHS method as the difference of two self-consistent field (SCF) calculations ({Delta}SCF method). To describe the interaction with N{sub 2}, a detailed investigation of intense x-ray-induced ionization and molecular fragmentation are carried out. As a figure of merit, we calculate ion yields and the average charge state measured in recent experiments at the LCLS. We use a series of phenomenological models of increasing sophistication to unravel the mechanisms of the interaction of x rays with N{sub 2}: a single atom, a symmetric-sharing model, and a fragmentation-matrix model are developed. The role of the formation and decay of single and double core holes, the metastable states of N{sub 2}{sup 2+}, and molecular fragmentation are explained.

  13. Absorption strength measurement of the nu-1 band of methyl chloride

    NASA Technical Reports Server (NTRS)

    Margolis, J. S.; Toth, R. A.

    1977-01-01

    The absorption strengths of the Q-branch manifolds of the nu-1 band of methyl chloride were measured. The results were used to deduce the band strength, which is 32.1 plus or minus 2.9 per sq cm-atm at 297 K. The P-branch absorptions were investigated to assess the possibility of determining a vibration-rotation factor for the band. This factor is approximately 1.026.

  14. Narrow-Band Emitting Solid Fluorescence Reference Standard with Certified Intensity Pattern.

    PubMed

    Hoffmann, Katrin; Spieles, Monika; Bremser, Wolfram; Resch-Genger, Ute

    2015-07-21

    The development of a lanthanum-phosphate glass doped with several rare-earth-ions for use as solid fluorescence standard is described. The cuvette-shaped reference material which shows a characteristic emission intensity pattern upon excitation at 365 nm consisting of a multitude of relatively narrow emission bands in the wavelength region between 450 and 700 nm is intended for the day-to-day performance validation of fluorescence measuring devices. Evaluation of the fluorescent glass includes the determination of all properties which can affect its relative emission intensity profile or contribute to the uncertainty of the certified values like absorption spectra, fluorescence anisotropy, excitation wavelength, and temperature dependence of the spectroscopic features, homogeneity of fluorophore distribution, and photo- and long-term stability. Moreover, a certification procedure was developed including the normalization of the intensity profile consisting of several narrow emission bands and the calculation of wavelength-dependent uncertainties. Criteria for the design, characterization, and working principle of the new reference material BAM-F012 are presented, and possible applications of this ready-to-use fluorescence standard are discussed. PMID:26077510

  15. Spectroscopy of the Kleinmann-Low nebula - Scattering in a solid absorption band

    NASA Technical Reports Server (NTRS)

    Knacke, R. F.; Mccorkle, S. M.

    1987-01-01

    Spectroscopic observations (2.4-3.6 microns) of BN, IRc 2, 3, and 4, and three scattering locations in the KL reflection nebula are reported. A previous report (Knacke et al., 1982) of a 2.97-micron spectral feature in the BN object is not confirmed in the new data. The 2.97-micron feature is observed in sources in the KL nebula, and the spectrum is distorted by a nearby hydrogen line. All the spectra are dominated by absorption along the radiation path, making scattering effects difficult to separate. Scattering could broaden the 3.1-micron interstellar-ice feature, but the effects appear to be small. Except for a long-wavelength wing, the spectra can be modeled reasonably well with core-mantle, silicate-water-ice grains. The wing position and intensity indicate bands of C-H groups of ammonia-ice mixtures.

  16. The ?6614 diffuse interstellar absorption band: evidence for internal excitation of the carrier

    NASA Astrophysics Data System (ADS)

    Marshall, Charlotte C. M.; Kre?owski, Jacek; Sarre, Peter J.

    2015-11-01

    An analysis of absorption profiles of the ?6614 diffuse interstellar band recorded along the lines of sight towards HD 179406 (20 Aql) and HD 147889 is described. The difference in band shape is attributed to the degree of internal excitation of the carrier, which is principally due to vibrational hot bands although an electronic component may also be present. The results are discussed with respect to other models of diffuse band spectral line shape.

  17. Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration

    NASA Astrophysics Data System (ADS)

    Huang, Yongjun; Tian, Yiran; Wen, Guangjun; Zhu, Weiren

    2013-05-01

    In this paper, we systematically discuss a novel planar metamaterial absorber (PMA) based on asymmetrical snowflake-shaped resonators, which can exhibit two distinctly different absorption states, single- and dual-band absorptions, by controlling the branch lengths of the proposed resonators. Numerical simulations and experimental measurements are employed to investigate these two kinds of absorption characteristic in an X-band rectangular waveguide. Both results indicate that such a PMA exhibits a wide range of controllable operating frequencies for the single- and dual-band conditions. The proposed PMA is simple and easy to make, and it has wide applications in the fields of stealth technologies, thermal detectors, and imaging.

  18. Multi-band near-perfect absorption via the resonance excitation of dark meta-molecules

    NASA Astrophysics Data System (ADS)

    Tung, Bui Son; Khuyen, Bui Xuan; Dung, Nguyen Van; Lam, Vu Dinh; Kim, Yong Hwan; Cheong, Hyeonsik; Lee, YoungPak

    2015-12-01

    We numerically study a multi-band absorption based on electromagnetic-induced-transparency effect of metamaterial. By exploiting the coupling between bright and dark plasmonic modes of cut-wire triplet, which consists of a vertical wire and two horizontal wires, a dual-band absorption is realized at 243 and 266 THz. Then, the absorber structure is improved by adding two new horizontal wires which play role as second dark meta-molecules. Due to the dark-dark coupling, another absorption band arises so that a triple-band absorption is created at 240, 250 and 264 THz. The role of interaction between dark meta-molecules in triple-band absorption is investigated, revealing a specific non-monotonic characteristic of the second absorption peak. Finally, the influence of incident angle of EM wave on multi-band absorbers shows that the absorption of lowest frequency peak is robust while those of higher frequency peaks are strongly weaken with increasing of the incident angle.

  19. An intensity study of the torsional bands of ethane at 35 ?m

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, N.; Norooz Oliaee, J.; Ozier, I.; Wishnow, E. H.; Sung, K.; Crawford, T. J.; Brown, L. R.; Devi, V. M.

    2015-01-01

    Ethane is the second most abundant hydrocarbon detected in the outer planets. Although the torsional mode is not infrared active in the lowest order, the strongest feature in this band can be seen near 289 cm-1 in the CASSINI CIRS spectrum of Titan. Prior laboratory studies have characterized the torsional frequencies to high accuracy and measured the intensities to temperatures as low as 208 K. However, for the interpretation of the far-infrared observations of Titan, further investigation was needed to determine the intensities at lower temperatures and to higher accuracy. The spectrum of C2H6 was investigated from 220 to 330 cm-1 to obtain the band strengths of the torsional fundamental ?4 (near 289 cm-1) and the first torsional hot band (2?4 -?4). Seven laboratory spectra were obtained at resolutions of 0.01 and 0.02 cm-1 using a Bruker IFS-125 Fourier transform spectrometer at the Jet Propulsion Laboratory. The interferometer was coupled to a coolable multi-pass absorption cell set to an optical path length of 52 m. The range of temperatures was 166-292 K with the lower temperatures being most relevant to the stratosphere of Titan. The ethane sample pressures ranged from 35 to 254 Torr. The modeling of the transition intensities required the expansion of the dipole moment operator to higher order; this introduced Herman-Wallis like terms. The fitting process involved five independent dipole constants and a single self-broadening parameter. The results presented should lead to an improved understanding of the methane cycle in planetary atmospheres and permit other molecular features in the CIRS spectra to be identified.

  20. Observation of precursorlike behavior of femtosecond pulses in a dye with a strong absorption band 

    E-print Network

    Springer, Matthew M.; Yang, Wenlong; Kolomenski, Alexandre A.; Schuessler, Hans A.; Strohaber, James; Kattawar, George W.; Sokolov, Alexei V.

    2011-01-01

    REVIEW A 83, 043817 (2011) Observation of precursorlike behavior of femtosecond pulses in a dye with a strong absorption band Matthew M. Springer,* Wenlong Yang, Alexandre A. Kolomenski, Hans A. Schuessler, James Strohaber, George W. Kattawar...

  1. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure. PMID:24105557

  2. Wide-band perfect optical absorption and photo-thermal effect for three-tier nanogate

    NASA Astrophysics Data System (ADS)

    Cai, G. W.; Ding, P.; Wang, J. Q.; Liang, E. J.

    2014-06-01

    This paper designed a perfect optical absorber based on three-tier gate nanostructure, which shows a wide-band perfect absorption in the wavelength range of 200-560 nm as a transverse wave incidents to the nanostructure with the incident angle 35°< ?< 65°. When ? = 45°, a wide absorption band with the absorption rate more than 94% is observed, with the maximum of absorption rate reaching 99.3% at the wavelength of 430 nm. We also analyze the thermal characteristics of the perfect absorber. The band ranging from 560 nm to 1200 nm presents an increasing absorption rate with the increase of temperature. The calculation results of multi-physics analysis indicate that different cooling method causes different temperature distribution for the perfect absorber. This three-tier gate perfect absorber may find applications on broadband visible detectors, microbolometer and thermal imaging.

  3. C{sub 2} swan band emission intensity as a function of C{sub 2} density.

    SciTech Connect

    Goyette, A. N.; Lawler, J. E.; Anderson, L. W.; Gruen, D. M.; McCauley, T. G.; Zhou, D.; Krauss, A. R.; Univ. of Wisconsin

    1998-05-01

    We report the systematic comparison of the optical emission intensity of the d {sup 3}{Pi} {yields} a {sup 3}{Pi} (0, 0) vibrational band of the C{sub 2} Swan system with the absolute C{sub 2} concentration in Ar/H{sub 2}/CH{sub 4} and Ar/H{sub 2}/C{sub 60} microwave plasmas used in the deposition of nanocrystalline diamond. The absolute C{sub 2} concentration is obtained using white-light absorption spectroscopy. Emission intensity correlates linearly with C{sub 2} density for variations of several plasma parameters and across two decades of species concentration. Although optical emission intensity generally is not an accurate quantitative diagnostic for gas phase species concentrations, these results confirm the reliability of the (0,0) Swan band for relative determination of C{sub 2} density with high sensitivity under conditions used for hydrogen-deficient plasma-enhanced chemical vapor deposition of diamond.

  4. Cause of absorption band shift of disperse red-13 attached on silica spheres

    NASA Astrophysics Data System (ADS)

    Kim, Byoung-Ju; Kim, Hyung-Deok; Kim, Na-Rae; Bang, Byeong-Gyu; Park, Eun-Hye; Kang, Kwang-Sun

    2015-08-01

    A reversible color change and large absorption band shift have been observed for the disperse red-13 (DR-13) attached on the surface of the monodisperse silica spheres. Two step synthetic processes including urethane bond formation and hydrolysis-condensation reactions were used to attach the DR-13 on the surface of the silica spheres. After the reaction, the characteristic absorption peak at 2270 cm-1 representing the -N=C=O asymmetric stretching vibration disappeared, and the a new absorption peak at 1700 cm-1 corresponding the C=O stretching vibration appeared. A visual and reversible color change was observed before and after wetting in alcohol. Although the absorption peak of DR-13 in alcohol is at 510 nm, the absorption peak shifts to 788 nm when it is dried. The absorption peak shifts to 718 nm when it is wetted in alcohol. This result can be explained by the formation of intramolecular charge transfer band.

  5. a Comprehensive Intensity Study of the ?_4 Torsional Band of Ethane

    NASA Astrophysics Data System (ADS)

    Norooz Oliaee, Jalal; Moazzen-Ahmadi, Nasser; Ozier, Irving; Sung, Keeyoon; Crawford, Timothy J.; Brown, Linda; Wishnow, Edward H.; Devi, V. Malathy

    2014-06-01

    The torsional spectrum of C_2H_6 has been investigated from 220 to 330 cm-1 to measure the intensity of the fundamental and the first torsional hot band needed for atmospheric studies of Titan. Several spectra were measured at resolutions of 0.01 and 0.02 cm-1 using the JPL Bruker IFS-125 coupled to a coolable multi-pass absorption cell originally developed at University of British Columbia. Spectra were recorded at several temperatures from 293 K to 166 K, with the lower temperatures relevant to the stratosphere of Titan. Because this spectrum is very weak, a long absorption path of 52 m was used along with substantial sample pressures from 35 to 255 Torr. Intensities were analysed using a quantum mechanical model reported previously. The torsional fundamental of C_2H_6 is observed in the CIRS spectra of Titan. Line parameters for the torsional bands are required for accurate characterization of spectral features of Titan's far-infrared region. The current study should lead to a better understanding of the methane cycle in planetary atmospheres and permit the identification of the other molecular features in the CIRS data. E. H. Wishnow, A. Leung, and H. P. Gush, Rev. Sci. Instr., 70, 23 (1999). N. Moazzen-Ahmadi, A.R.W. McKellar, J.W.C. Johns, and I.Ozier, J. Chem. Phys. 97, 3981 (1992). Research described in this paper was performed, in part, at the Jet Propulsion Laboratory, California Institute of Technology under contracts and cooperative agreements with the NASA.The data were obtained using NASA's OPR Grant awarded to the College of William and Mary. The research conducted at the University of Calgary is supported by the Canadian Space Agency.

  6. Water Channel of Horseradish Peroxidase Studied by the Charge-Transfer Absorption Band of Ferric Heme

    E-print Network

    Sharp, Kim

    , the protein was incorporated into trehalose/sucrose glasses and the hydration of the sugar glasses was varied. Absorption spectra of HRP in sugar glasses and in glycerol/water were taken in the range 10-300 K. The CT absorption band shows vibronic fine structure. The peak positions are the same in hydrated sugar and glycerol

  7. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.

  8. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian

    SciTech Connect

    Kolek, Andrzej

    2015-05-04

    The formulas are derived that enable calculations of intersubband absorption coefficient within nonequilibrium Green's function method applied to a single-band effective-mass Hamiltonian with the energy dependent effective mass. The derivation provides also the formulas for the virtual valence band components of the two-band Green's functions which can be used for more exact estimation of the density of states and electrons and more reliable treatment of electronic transport in unipolar n-type heterostructure semiconductor devices.

  9. Possible spinel absorption bands in S-asteroid visible reflectance spectra

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.

    1994-01-01

    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  10. Investigation of locally resonant absorption and factors affecting the absorption band of a phononic glass

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Jiang, Heng; Feng, Yafei; Wang, Yuren

    2014-12-01

    We experimentally and theoretically investigated the mechanisms of acoustic absorption in phononic glass to optimize its properties. First, we experimentally studied its locally resonant absorption mechanism. From these results, we attributed its strong sound attenuation to its locally resonant units and its broadband absorption to its networked structure. These experiments also indicated that the porosity and thickness of the phononic glass must be tuned to achieve the best sound absorption at given frequencies. Then, using lumped-mass methods, we studied how the absorption bandgaps of the phononic glass were affected by various factors, including the porosity and the properties of the coating materials. These calculations gave optimal ranges for selecting the porosity, modulus of the coating material, and ratio of the compliant coating to the stiff matrix to achieve absorption bandgaps in the range of 6-30 kHz. This paper provides guidelines for designing phononic glasses with proper structures and component materials to work in specific frequency ranges.

  11. Dynamic atomic contributions to infrared intensities of fundamental bands.

    PubMed

    Silva, Arnaldo F; Richter, Wagner E; Bassi, Adalberto B M S; Bruns, Roy E

    2015-11-11

    Dynamic atomic intensity contributions to fundamental infrared intensities are defined as the scalar products of dipole moment derivative vectors for atomic displacements and the total dipole derivative vector of the normal mode. Intensities of functional group vibrations of the fluorochloromethanes can be estimated within 6.5 km mol(-1) by displacing only the functional group atoms rather than all the atoms in the molecules. The asymmetric CF2 stretching intensity, calculated to be 126.5 km mol(-1) higher than the symmetric one, is accounted for by an 81.7 km mol(-1) difference owing to the carbon atom displacement and 40.6 km mol(-1) for both fluorine displacements. Within the Quantum Theory of Atoms in Molecules (QTAIM) model differences in atomic polarizations are found to be the most important for explaining the difference in these carbon dynamic intensity contributions. Carbon atom displacements almost completely account for the differences in the symmetric and asymmetric CCl2 stretching intensities of dichloromethane, 103.9 of the total calculated value of 105.2 km mol(-1). Contrary to that found for the CF2 vibrations intramolecular charge transfer provoked by the carbon atom displacement almost exclusively explains this difference. The very similar intensity values of the symmetric and asymmetric CH2 stretching intensities in CH2F2 arise from nearly equal carbon and hydrogen atom contributions for these vibrations. All atomic contributions to the intensities for these vibrations in CH2Cl2 are very small. Sums of dynamic contributions of the individual intensities for all vibrational modes of the molecule are shown to be equal to mass weighted atomic effective charges that can be determined from atomic polar tensors evaluated from experimental infrared intensities and frequencies. Dynamic contributions for individual intensities can also be determined solely from experimental data. PMID:26508036

  12. A study of the structure of the ?1(HF) absorption band of the ?H3?N…HF complex

    NASA Astrophysics Data System (ADS)

    Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.

    2015-09-01

    The ?1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ?1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ?7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.

  13. Collagen absorption bands in heated and rehydrated dentine

    NASA Astrophysics Data System (ADS)

    Bachmann, Luciano; Gomes, Anderson S. L.; Zezell, Denise M.

    2005-12-01

    The objective of this work is identifying changes in the collagen bands in heated and rehydrated dentine. We use bovine dentine slices that were heated in oven between 100 and 300 °C. The sample hydration was conducted in sodium chloride solution at 0.9 wt.%; the spectra were acquired by a Fourier transform infrared spectrometer in the spectral range of 4000-400 cm -1. Our results show a temperature range ( T ? 175 °C) where the dentinal collagen can be partially denatured and reverted to initial conformation; a second region (175 °C < T ? 225 °C) where this process occurs partially and a third region ( T > 225 °C) where the collagen is denatured and no reversion is observed after rehydration. This work identifies an important characteristic that dentinal collagen can assume when the tissue is heated and rehydrated; these results indicate the denaturation temperature of dentinal collagen to be near 175-200 °C.

  14. Spatial dependence of banded chorus intensity near the magnetic equator

    E-print Network

    the magnetic equator out- side the plasmasphere [Dunckel and Helliwell, 1969; Russell et al., 1970]. Chorus; Parrot and Gaye, 1994]. More recently, Meredith et al. [2001] did a detailed study of chorus intensities

  15. Temperature dependence of intensities of the 8-12 micron bands of CFCl3

    NASA Technical Reports Server (NTRS)

    Nanes, R.; Silvaggio, P. M.; Boese, R. W.

    1980-01-01

    The absolute intensities of the 8-12 micron bands from Freon 11 (CFCl3) were measured at temperatures of 294 and 216 K. Intensities of the bands centered at 798, 847, 934, and 1082 per cm are all observed to depend on temperature. The temperature dependence for the 847 and 1082 per cm fundamental regions is attributed to underlying hot bands; for the nu2 + nu5 combination band (934 per cm), the observed temperature dependence is in close agreement with theoretical prediction. The implication of these results on atmospheric IR remote-sensing is briefly discussed.

  16. Nonadiabatic approach for resonant molecular multiphoton absorption processes in intense infrared laser fields

    E-print Network

    Ho, Tak-San; Chu, Shih-I

    1983-07-14

    A nonperturbative approach for efficient and accurate treatment of the molecular multiphoton absorption (MPA) quantum dynamics in intense infrared (IR) laser fields is presented. The approach is based on the adiabatic separation of the fast...

  17. Infrared intensities of liquids XXI: integrated absorption intensities of CH 3OH, CH 3OD, CD 3OH and CD 3OD and dipole moment derivatives of methanol

    NASA Astrophysics Data System (ADS)

    Bertie, John E.; Zhang, Shuliang L.

    1997-09-01

    This paper presents the analysis of the complete set of vibrational intensities of four isotopomers of methanol. The absolute infrared absorption intensities of liquid methanol in four isotopic forms have been reported recently. In that work, spectral intensities were separated into the integrated intensities of different transitions by comparing the spectra of different isotopomers, and dipole moment derivatives with respect to valence displacements were calculated under the simplest approximations. For many bands it was not possible to determine the integrated intensity in this way because of overlap of several bands, and for others it was clear that the determination was too subjective. This paper first describes an attempt to improve this situation by using a more objective separation of the contributions to the intensity from different bands, by fitting the imaginary molar polarizability spectra with classical damped harmonic oscillator bands or Gaussian bands and calculating the entire area under each component band. The integrated intensities so obtained are compared with those reported previously, and a set of accepted integrated intensities for all vibrations is presented. These accepted intensities are then converted to transition moments and analyzed to obtain the dipole moment derivatives with respect to symmetry coordinates, {??}/{?S}. The analysis uses the eigenvectors from a normal coordinate calculation that fits the reliably known fundamental wavenumbers of CH 3OH, CH 3OD, CD 3OH and CD 3OD, corrected for anharmonicity where possible, to better than ± 1.5 cm -1 on average, and that also fits the experimental near-identity of the wavenumbers and intensities of the CO stretching bands of CH 3OH and CH 3OD. These calculations were guided by literature ab initio calculations on isolated CH 3OH, but an empirical normal coordinate calculation was preferred because the experimental data show clearly that some of the vibrations are not properties of isolated molecules. For lack of other evidence, the directions of the dipole moment derivatives of the A' modes were taken from Torii and Tasumi's recent ab initio calculation. Dipole moment derivatives with respect to internal coordinates, {??}/{?R}, were calculated from the {??}/{?S}. The resulting values for liquid methanol are compared with values for the isolated molecule calculated with an {MP2 }/{6-31 G} ext basis set by Torii and Tasumi. For the stronger fundamentals the agreement is good except for the OH and OD stretching vibrations. This suggests that the only hydrogen vibration whose intensity is strongly affected by the hydrogen bonding is the stretching vibration. This in turn implies that it is the charge flux, not the effective charge on the hydrogen atom, that is sensitive to hydrogen bonding. The results of this and other work from this laboratory suggest that most vibrational intensities may not be strongly dependent on phase.

  18. Construct and concurrent validation of a new resistance intensity scale for exercise with thera-band® elastic bands.

    PubMed

    Colado, Juan C; Garcia-Masso, Xavier; Triplett, N Travis; Calatayud, Joaquin; Flandez, Jorge; Behm, David; Rogers, Michael E

    2014-12-01

    The construct and concurrent validity of the Thera-Band Perceived Exertion Scale for Resistance Exercise with elastic bands (EB) was examined. Twenty subjects performed two separate sets of 15 repetitions of both frontal and lateral raise exercise over two sessions. The criterion variables were myoelectric activity and heart rate. One set was performed with an elastic band grip width that permitted 15 maximum repetitions in the selected exercise, and another set was performed with a grip width 50% more than the 15RM grip. Following the final repetition of each set, active muscle (AM) and overall body (O) ratings of perceived exertion (RPE) were collected from the Thera-Band® resistance exercise scale and the OMNI-Resistance Exercise Scale of perceived exertion with Thera-Band® resistance bands (OMNI-RES EB). Construct validity was established by correlating the RPE from the OMNI-RES EB with the Thera-Band RPE scale using regression analysis. The results showed significant differences (p ? 0.05) in myoelectric activity, heart rate, and RPE scores between the low- and high-intensity sets. The intraclass correlation coefficient for active muscles and overall RPE scale scores was 0.67 and 0.58, respectively. There was a positive linear relationship between the RPE from the OMNI-RES EB and the Thera-Band scale. Validity coefficients for the RPE AM were r(2) = 0.87 and ranged from r(2) = 0.76 to 0.85 for the RPE O. Therefore, the Thera-Band Perceived Exertion Scale for Resistance Exercise can be used for monitoring elastic band exercise intensity. This would allow the training dosage to be better controlled within and between sessions. Moreover, the construct and concurrent validity indicates that the OMNI-RES EB measures similar properties of exertion as the Thera-Band RPE scale during elastic resistance exercise. Key pointsThis new resistance intensity scale is an appropriate and valid tool for assessing perceived exertion during strength training with elastic bands.This scale can be used without reducing the accuracy of the dosage prescribed during training/rehabilitation sessions and while carrying out medium and/or long-term periodization programs or therapeutic interventions.Populations with specific physical or physiological needs could have access to an easy-to-use resource that allows them to carry out their training/rehabilitation programs with greater efficacy and without any risk to health. PMID:25435767

  19. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  20. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; Shih, C.-Y.

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  1. Intensity redistribution of bending and stretching Raman scattering bands in water upon degassing and crystallisation

    SciTech Connect

    Pershin, Sergei M; Bunkin, Aleksei F; Luk'yanchenko, V A; Zakharov, S D

    2011-01-24

    It is established for the first time that the intensities of deformation and valence Raman scattering (RS) bands in water vary oppositely in the processes of degassing and crystallising. Water degassing shifts the centre of a valence OH band to higher frequencies by approximately 2 cm{sup -1}, which points to a reduced contribution of structural complexes to the RS spectrum. (letters)

  2. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    E-print Network

    Baum, Bryan A.

    Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band GALINA WIND,*,1 spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower

  3. A laboratory Atlas of the 5 nu-1 NH3 absorption band at 6475 A with applications to Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Miller, J. H.; Boese, R. W.

    1975-01-01

    A complete atlas of the 5 nu-1 absorption band of NH3 is presented together with measurements of the total band intensity, line intensities, and self-broadening coefficients. The spectrum, which is displayed in the interval from 6418 to 6550 A, was obtained photoelectrically at a pressure of 0.061 atm, and many more lines were seen in this spectrum than in a previous one obtained at a pressure of 0.39 atm. The band intensity is used to derive the NH3 abundance in the atmospheres of Jupiter and Saturn, and the abundances in a single vertical path are found to be about 10 m amagat for Jupiter and 2 m amagat for Saturn. These results are shown to be in agreement with previous results obtained from higher resolution photographic spectra.

  4. The aggregation effect on the absorption band shift of disperse red-13 attached on the surface of silica spheres

    NASA Astrophysics Data System (ADS)

    Kang, Kwang-Sun

    2013-12-01

    Optical properties of disperse red-13 (DR-13) attached on the surface of the silica spheres have been investigated. Two step synthetic processes have been used to attach the DR-13 on the surface of the silica spheres. The first step is a urethane bond formation between a DR-13 (OH) and a 3-isocyanatopropyl triethoxysilane (ICPTES, NCO) in pyridine at 50 °C. The second step is the hydrolysis and condensation reactions between the resulting compound of the first step reaction (ICPDR) and the silica spheres (ICPDRSS). The absence of a characteristic absorption peak at 2270 cm-1 representing the NCO asymmetric stretching vibration and the existence of a new absorption peat at 1700 cm-1 corresponding the CO stretching vibration indicate the urethane bond formation. The absorption intensity of the DR-13 in methanol, ethanol and 2-propanol linearly increased with the increase of the amount of the DR-13. The ICPDRSS has weak brownish color when it is dried. The field emission scanning electron microscope shows the aggregated ICPDR on the surface of the silica spheres. The average diameter of the spheres is approximately 380 nm. The color of the ICPDRSS changed to intense red when it was wetted in methanol, ethanol and 2-propanol. The absorption peak of the dried ICPDRSS film is at 475 nm. The stopband appears at 788 nm and disappears when the methanol is filled between the spheres due to the low refractive index contrast. New absorption band appears at 718 nm when the methanol is absorbed due to the large aggregation of the ICPDR on the surface of the spheres.

  5. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2? (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2? species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2?, n?>?2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  6. Contrasting levels of absorption of intense femtosecond laser pulses by solids.

    PubMed

    Singh, Prashant Kumar; Cui, Y Q; Adak, Amitava; Lad, Amit D; Chatterjee, Gourab; Brijesh, P; Sheng, Z M; Kumar, G Ravindra

    2015-01-01

    The absorption of ultraintense, femtosecond laser pulses by a solid unleashes relativistic electrons, thereby creating a regime of relativistic optics. This has enabled exciting applications of relativistic particle beams and coherent X-ray radiation, and fundamental leaps in high energy density science and laboratory astrophysics. Obviously, central to these possibilities lies the basic problem of understanding and if possible, manipulating laser absorption. Surprisingly, the absorption of intense light largely remains an open question, despite the extensive variations in target and laser pulse structures. Moreover, there are only few experimental measurements of laser absorption carried out under very limited parameter ranges. Here we present an extensive investigation of absorption of intense 30 femtosecond laser pulses by solid metal targets. The study, performed under varying laser intensity and contrast ratio over four orders of magnitude, reveals a significant and non-intuitive dependence on these parameters. For contrast ratio of 10(-9) and intensity of 2?×?10(19)?W cm(-2), three observations are revealed: preferential acceleration of electrons along the laser axis, a ponderomotive scaling of electron temperature, and red shifting of emitted second-harmonic. These point towards the role of J?×?B absorption mechanism at relativistic intensity. The experimental results are supported by particle-in-cell simulations. PMID:26648399

  7. Contrasting levels of absorption of intense femtosecond laser pulses by solids

    PubMed Central

    Singh, Prashant Kumar; Cui, Y. Q.; Adak, Amitava; Lad, Amit D.; Chatterjee, Gourab; Brijesh, P.; Sheng, Z. M.; Kumar, G. Ravindra

    2015-01-01

    The absorption of ultraintense, femtosecond laser pulses by a solid unleashes relativistic electrons, thereby creating a regime of relativistic optics. This has enabled exciting applications of relativistic particle beams and coherent X-ray radiation, and fundamental leaps in high energy density science and laboratory astrophysics. Obviously, central to these possibilities lies the basic problem of understanding and if possible, manipulating laser absorption. Surprisingly, the absorption of intense light largely remains an open question, despite the extensive variations in target and laser pulse structures. Moreover, there are only few experimental measurements of laser absorption carried out under very limited parameter ranges. Here we present an extensive investigation of absorption of intense 30 femtosecond laser pulses by solid metal targets. The study, performed under varying laser intensity and contrast ratio over four orders of magnitude, reveals a significant and non-intuitive dependence on these parameters. For contrast ratio of 10?9 and intensity of 2?×?1019?W cm?2, three observations are revealed: preferential acceleration of electrons along the laser axis, a ponderomotive scaling of electron temperature, and red shifting of emitted second-harmonic. These point towards the role of J?×?B absorption mechanism at relativistic intensity. The experimental results are supported by particle-in-cell simulations. PMID:26648399

  8. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    SciTech Connect

    Heera, Pawan; Kumar, Anup; Sharma, Raman

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  9. Fitting narrow-band models to temperature-dependent, spectral absorption coefficients of fuel vapors

    NASA Astrophysics Data System (ADS)

    Lecoustre, V. R.; Wakatsuki, K.; Jackson, G. S.

    2014-11-01

    Accurate modeling of infrared radiation transport through fuel rich cores of fires and other non-premixed combustion processes requires computationally efficient processing of temperature-dependent, spectral absorption coefficients for major fuel vapor species. Spectrally resolved transmissivity band measurements in the mid-infrared and near-infrared have been taken in recent years for numerous small fuel molecules including but not limited to ethane, ethylene, and propylene for a range of temperatures relevant for combustion environments. This paper compares the spectral transmissivity measurements using FTIR for both ethane and ethylene with the HITRAN 2012 edition. Narrow band absorption coefficients and overlap parameters are derived by fitting the spectral transmissivity measurements for ethane, ethylene, and propylene with narrow band models for temperatures up to 1000 K. The resulting fits provide a basis for calculating spectrally resolved infrared radiation transport in fuel rich cores of flames and other combustion processes where these species can be prevalent.

  10. Towards absorption enhancement and design optimization of Split-off band infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Shishodia, Manmohan; Unil Perera, A. G.

    2009-11-01

    Room temperature photodetectors operating in infrared (IR) region are important for astronomy, biomedical, defence and security related applications. Recently developed short wavelength infrared (2-5?m) detectors utilizing light absorption through split-off band transitions in mature GaAs/AlGaAs material system may offer an efficient alternative to the intrinsically slow present day microbolometer detectors. The total quantum efficiency of these detectors, defined as the product of absorption efficiency, internal quantum efficiency, and collection efficiency, usually limited by low absorption, can be improved through IR antenna induced surface plasmon enhanced absorption. The antenna induced absorption besides free carrier and split-off absorption should improve the total quantum efficiency (?) and hence the responsivity (R), two being related by R=q??/hc, of these detectors. The optimized detector designs capable of reinforcing absorption due to free carriers and the antenna in the split-off region, and the theoretical results on absorption enhancement and performance improvement will be presented.

  11. Recent Results from Broad-Band Intensity Mapping Measurements of Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Zemcov, Michael B.; CIBER, Herschel-SPIRE

    2016-01-01

    Intensity mapping integrates the total emission in a given spectral band over the universe's history. Tomographic measurements of cosmic structure can be performed using specific line tracers observed in narrow bands, but a wealth of information is also available from broad-band observations performed by instruments capable of capturing high-fidelity, wide-angle images of extragalactic emission. Sensitive to the continuum emission from faint and diffuse sources, these broad-band measurements provide a view on cosmic structure traced by components not readily detected in point source surveys. After accounting for measurement effects and astrophysical foregrounds, the angular power spectra of such data can be compared to predictions from models to yield powerful insights into the history of cosmic structure formation. This talk will highlight some recent measurements of large scale structure performed using broad-band intensity mapping methods that have given new insights on faint, distant, and diffuse components in the extragalactic background light.

  12. Radiation absorption by the C2 band systems for Jupiter entry conditions

    NASA Technical Reports Server (NTRS)

    Sutton, K.; Moss, J. N.

    1979-01-01

    Revised values of the absorption cross sections for seven electronic band systems of C2 have been calculated using recently published experimental data for the electronic transition moments. Using these revised C2 cross section values, computations were made for the radiating flow field over a Jupiter entry probe with coupled ablation injection from a carbon-phenolic heat shield. Results are presented which show that radiation absorption within the ablation layer for the spectral range of 4 to 6 eV is less than that predicted using previous C2 absorption cross section values. The effect of the reduced radiation absorption by the C2 molecule is an increase in the radiative heating rates and ablation mass loss rates for the Jupiter entry conditions considered in the study.

  13. Unusual Scaling Laws of the Band Gap and Optical Absorption of Phosphorene Nanoribbons

    E-print Network

    Tran, Vy

    2014-01-01

    We report the electronic structure and optical absorption spectra of monolayer black phosphorus (phosphorene) nanoribbons (PNRs) via first-principles simulations. The band gap of PNRs is strongly enhanced by quantum confinement. However, differently orientated PNRs exhibit distinct scaling laws for the band gap vs the ribbon width (w). The band gaps of armchair PNRs scale as 1/(w^2), while zigzag PNRs exhibit a 1/w behavior. These distinct scaling laws reflect a significant implication of the band dispersion of phosphorene: electrons and holes behave as classical particles along the zigzag direction, but resemble relativistic particles along the armchair direction. This unexpected merging of classical and relativistic properties in a single material may produce novel electrical and magnetotransport properties of few-layer black phosphorus and its ribbon structures. Finally, the respective PNRs host electrons and holes with markedly different effective masses and optical responses, which are suitable for a wid...

  14. Novel Cross-Band Relative Absorption (CoBRA) technique For Measuring Atmospheric Species

    NASA Astrophysics Data System (ADS)

    Prasad, N. S.; Pliutau, D.

    2013-12-01

    We describe a methodology called Cross-Band Relative Absorption (CoBRA) we have implemented to significantly reduce interferences due to variations in atmospheric temperature and pressure in molecular mixing ration measurements [1-4]. The interference reduction is achieved through automatic compensation based on selecting spectral line pairs exhibiting similar evolution behavior under varying atmospheric conditions. The method is applicable to a wide range of molecules including CO2 and CH4 which can be matched with O2 or any other well-mixed atmospheric molecule. Such matching results in automatic simultaneous adjustments of the spectral line shapes at all times with a high precision under varying atmospheric conditions of temperature and pressure. We present the results of our selected CoBRA analysis based on line-by-line calculations and the Modern Era Retrospective Analysis for Research and Applications (MERRA) dataset including more recent evaluation of the error contributions due to water vapor interference effects. References: 1) N. S. Prasad, D. Pliutau, 'Cross-band relative absorption technique for the measurement of molecular mixing ratios.', Optics Express, Vol. 21, Issue 11, pp. 13279-13292 (2013) 2) D. Pliutau and N. S. Prasad, "Cross-band Relative Absorption Technique for Molecular Mixing Ratio Determination," in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3L.4. 3) Denis Pliutau; Narasimha S. Prasad; 'Semi-empirical validation of the cross-band relative absorption technique for the measurement of molecular mixing ratios',.Proc. SPIE 8731, Laser Radar Technology and Applications XVIII, 87310L (May 20, 2013); doi:10.1117/12.2016661. 4) Denis Pliutau,; Narasimha S. Prasad; 'Comparative analysis of alternative spectral bands of CO2 and O2 for the sensing of CO2 mixing ratios' Proc. SPIE 8718, Advanced Environmental, Chemical, and Biological Sensing Technologies X, 87180L (May 31, 2013); doi:10.1117/12.2016337.

  15. The conduction band absorption spectrum of interdiffused InGaAs/GaAs quantum dot infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Jolley, G.; McKerracher, I.; Fu, L.; Tan, H. H.; Jagadish, C.

    2012-06-01

    We report on a theoretical study of the relationship between interdiffusion and the conduction band optical absorption of In(Ga)As/GaAs quantum dots. Quantum dot geometries are progressively interdiffused based on Fick's model and the quantum dot strain, band structure and optical absorption cross-section are calculated numerically. Quantifying the effects of interdiffusion on quantum dot optical absorption is important for applications that utilize post-growth techniques such as selective area intermixing.

  16. Phase Angle Effects on 3-micron Absorption Band on Ceres: Implications for Dawn Mission

    E-print Network

    Takir, Driss; Sanchez, Juan A; Corre, Lucille Le; Hardersen, Paul S; Nathues, Andreas

    2015-01-01

    Phase angle-induced spectral effects are important to characterize since they affect spectral band parameters such as band depth and band center, and therefore skew mineralogical interpretations of planetary bodies via reflectance spectroscopy. Dwarf planet (1) Ceres is the next target of NASA's Dawn mission, which is expected to arrive in March 2015. The visible and near-infrared mapping spectrometer (VIR) onboard Dawn has the spatial and spectral range to characterize the surface between 0.25-5.0 microns. Ceres has an absorption feature at 3.0 microns due to hydroxyl- and/or water-bearing minerals (e.g. Lebofsky et al. 1981, Rivkin et al. 2003). We analyzed phase angle-induced spectral effects on the 3-micron absorption band on Ceres using spectra measured with the long-wavelength cross-dispersed (LXD: 1.9-4.2 microns) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF). Ceres LXD spectra were measured at different phase angles ranging from 0.7o to 22o. We found that the band...

  17. Broad band free jet absorption mm-wave spectrum of 3-phenyl-1-propanol

    NASA Astrophysics Data System (ADS)

    Maris, Assimo; Ottaviani, Paolo; Giuliano, Barbara M.; Melandri, Sonia; Caminati, Walther

    2012-10-01

    The rotational broad band spectra of the OH and OD isotopologues of 3-phenyl-1-propanol have been investigated by broad band free-jet absorption millimeter-wave spectroscopy in the 60.0-78.3 GHz frequency range. The spectra of the GGt and of the TGt conformers, where the three labels refer to the torsions of the benzyl, phenylethyl and hydroxyl groups, respectively, have been assigned. Ab initio calculations, performed at the MP2/6-311++G** level, were used to characterize the minima of the conformational potential energy surface.

  18. Band structure and broadband compensation of absorption by amplification in layered optical metamaterials

    SciTech Connect

    Rozanov, N. N. Fedorov, S. V.; Savel'ev, R. S.; Sukhorukov, A. A.; Kivshar, Yu. S.

    2012-05-15

    The frequency dependence of the gain required to compensate for absorption is determined for a layered structure consisting of alternating absorbing and amplifying layers. It is shown that the fulfillment of the same conditions is required for the existence of a band structure consisting of alternating bands allowed and forbidden for optical radiation propagation in the frequency-wave vector parametric region. Conditions are found under which the gain required for compensation is smaller than thresholds for absolute (parasitic lasing) and convective (waveguide amplification of radiation) instabilities.

  19. Effect of tropical cyclone intensity and instability on the evolution of spiral bands

    NASA Astrophysics Data System (ADS)

    Huang, Hong; Jiang, Yongqiang; Chen, Zhongyi; Luo, Jian; Wang, Xuezhong

    2014-09-01

    The evolution of spiral-band-like structures triggered by asymmetric heating in three tropical-cyclone-like vortices of different intensities is examined using the Three-Dimensional Vortex Perturbation Analyzer and Simulator (3DVPAS) model. To simulate the spiral bands, asymmetric thermal perturbations are imposed on the radius of maximum wind (RMW) of vortices, which can be considered as the location near the eyewall of real tropical cyclones (TCs). All the three vortices experience a hydrostatic adjustment after the introduction of thermal asymmetries. It takes more time for weaker and stable vortices to finish such a process. The spiral-band-like structures, especially those distant from the vortex centers, form and evolve accompanying this process. In the quasi-balance state, the spiral bands are gradually concentrated to the inner core, the wave behavior of which resembles the features of classic vortex Rossby (VR) waves. The unstable vortices regain nonhydrostatic features after the quasi-balance stage. The spiral bands further from the vortex center, similar to distant spiral bands in real TCs, form and maintain more easily in the moderate basic-state vortex, satisfying the conditions of barotropic instability. The widest radial extent and longest-lived distant bands always exist in weak and stable vortices. This study represents an attempt to determine the role of TC intensity and stability in the formation and evolution of spiral bands via hydrostatic balance adjustment, and provides some valuable insights into the formation of distant spiral rainbands.

  20. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application. PMID:25607485

  1. An alternative model for photodynamic therapy of cancers: Hot-band absorption

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chen, Jiyao

    2013-12-01

    The sulfonated aluminum phthalocyanine (AlPcS), a photosensitizer for photodynamic cancer therapy (PDT), has an absorption tail in the near-infrared region (700-900 nm) which is so-called hot band absorption (HBA). With the HBA of 800 nm, the up-conversion excitation of AlPcS was achieved followed by the anti-Stocks emission (688 nm band) and singlet oxygen production. The HBA PDT of AlPcS seriously damaged the KB and HeLa cancer cells, with a typical light dose dependent mode. Particularly, the in vitro experiments with the AlPcS shielding solutions further showed that the HBA PDT can overcome a self-shielding effect benefiting the PDT applications.

  2. Phase Angle Effects on 3 ?m Absorption Band on Ceres: Implications for Dawn Mission

    NASA Astrophysics Data System (ADS)

    Takir, D.; Reddy, V.; Sanchez, J. A.; Le Corre, L.; Hardersen, P. S.; Nathues, A.

    2015-05-01

    Phase angle-induced spectral effects are important to characterize since they affect spectral band parameters such as band depth and band center, and therefore skew mineralogical interpretations of planetary bodies via reflectance spectroscopy. Dwarf planet (1) Ceres is the next target of NASA’s Dawn mission, which is expected to arrive in 2015 March. The visible and near-infrared mapping spectrometer (VIR) on board Dawn has the spatial and spectral range to characterize the surface between 0.25-5.0 ?m. Ceres has an absorption feature at 3.0 ?m due to hydroxyl- and/or water-bearing minerals. We analyzed phase angle-induced spectral effects on the 3 ?m absorption band on Ceres using spectra measured with the long-wavelength cross-dispersed (LXD: 1.9-4.2 ?m) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Ceres LXD spectra were measured at different phase angles ranging from 0.°7 to 22°. We found that the band center slightly increases from 3.06 ?m at lower phase angles (0.°7 and 6°) to 3.07 ?m at higher phase angles (11° and 22°), the band depth decreases by ˜20% from lower phase angles to higher phase angles, and the band area decreases by ˜25% from lower phase angles to higher phase angles. Our results will have implications for constraining the abundance of OH on the surface of Ceres from VIR spectral data, which will be acquired by Dawn starting spring 2015.

  3. Intensity of the hydrogen peroxide v6/b/ band around 1266 cm

    NASA Technical Reports Server (NTRS)

    Valero, F. P. J.; Goorvitch, D.; Boese, R. W.; Bonomo, F. S.

    1981-01-01

    Laboratory spectra of the V6(b) band of H2O2 at 1266/cm have been obtained at a resolution of 0.06/cm and at temperatures ranging from 278 to 294 K. A total band intensity of 375 + or - 17 per sq cm per amagat is determined from the spectra. Special techniques to handle the H2O2 samples in a way that minimizes abundance determination errors are discussed.

  4. A new k-interval optimization technique for atmospheric upwelling radiance calculation in infrared absorption bands

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Hao, Shijing; Yu, Kun; Cong, Mingyu

    2015-07-01

    A new optimization technique is proposed to generate the k-interval parameters including the quadrature weights and their corresponding equivalent absorption coefficients when using correlated k-distribution method for computations of spectrally integrated atmospheric upwelling radiances in infrared absorption bands. The main feature of this technique is the introduction of the upwelling contribution function (UCF) both in expressing the atmospheric upwelling radiance and in constructing the merit function for fitting, so that the optimization for the band radiance smoothly turns into the optimization for the band UCF of each atmospheric sublayer. The performance of the proposed technique is illustrated by comparing with the ?log(k) technique and the Gauss-Legendre quadrature technique at three different band settings in both the US standard atmosphere and the tropical atmosphere, and the line-by-line results are treated as the reference. Results show that there are less relative errors by the proposed optimization technique than by the other two techniques under the same number of k-intervals. In most cases, the computational efficiency can be improved by more than 10% under the same precision requirement in upwelling radiance calculations, and even 80% in some preferable conditions.

  5. Cross-band relative absorption technique for the measurement of molecular mixing ratios.

    PubMed

    Prasad, Narasimha S; Pliutau, Denis

    2013-06-01

    We describe a new method for the measurement of molecular mixing ratios called Cross-Band Relative Absorption (CoBRA). The proposed method is based on relative measurements in different molecular bands referenced to a band of O2 with properly selected wavelength combinations providing high level of cancelation in temperature sensitivities. The CoBRA approach is particularly promising for satellite based remote sensing of molecular mixing ratios of the atmospheric trace gases. Very low temperature sensitivities and the potential of achieving close weighting function matching for the measurement and reference wavelengths are the main advantages of the method. The effectiveness of CoBRA approach is demonstrated for the retrieval of CO2 mixing ratios (XCO2) with application to the ASCENDS mission. PMID:23736581

  6. Representative wavelengths absorption parameterization applied to satellite channels and spectral bands

    NASA Astrophysics Data System (ADS)

    Gasteiger, J.; Emde, C.; Mayer, B.; Buras, R.; Buehler, S. A.; Lemke, O.

    2014-11-01

    Accurate modeling of wavelength-integrated radiative quantities, e.g. integrated over a spectral band or an instrument channel response function, requires computations for a large number of wavelengths if the radiation is affected by gas absorption which typically comprises a complex line structure. In order to increase computational speed of modeling radiation in the Earth's atmosphere, we parameterized wavelength-integrals as weighted means over representative wavelengths. We parameterized spectral bands of different widths (1 cm-1, 5 cm-1, and 15 cm-1) in the solar and thermal spectral range, as well as a number of instrument channels on the ADEOS, ALOS, EarthCARE, Envisat, ERS, Landsat, MSG, PARASOL, Proba, Sentinel, Seosat, and SPOT satellites. A root mean square relative deviation lower than 1% from a “training data set” was selected as the accuracy threshold for the parameterization of each band and channel. The training data set included high spectral resolution calculations of radiances at the top of atmosphere for a set of highly variable atmospheric states including clouds and aerosols. The gas absorption was calculated from the HITRAN 2004 spectroscopic data set and state-of-the-art continuum models using the ARTS radiative transfer model. Three representative wavelengths were required on average to fulfill the accuracy threshold. We implemented the parameterized spectral bands and satellite channels in the uvspec radiative transfer model which is part of the libRadtran software package. The parameterization data files, including the representative wavelengths and weights as well as lookup tables of absorption cross sections of various gases, are provided at the libRadtran webpage. In the paper we describe the parameterization approach and its application. We validate the approach by comparing modeling results of parameterized bands and channels with results from high spectral resolution calculations for atmospheric states that were not part of the training data set. Irradiances are not only compared at the top of atmosphere but also at the surface for which this parameterization approach was not optimized. It is found that the parameterized bands and channels provide a good compromise between computation time requirements and uncertainty for typical radiative transfer problems. In particular for satellite radiometer simulations the computation time requirement and the parameterization uncertainty is low. Band-integrated irradiances at any level as well as heating and cooling rates below 20 km can also be modeled with low uncertainty.

  7. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  8. Signal to Noise Ratio in Digital Lock-in Detection for Multiple Intensity-Modulated Signals in CO2 Laser Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    CHEN, S.; Lin, B.; Harrison, F. W.; Nehrir, A. R.; Campbell, J. F.; Refaat, T.; Abedin, N. M.; Obland, M. D.; Ismail, S.; Meadows, B. L.

    2013-12-01

    NASA Langley Research Center is investigating Intensity-Modulated, Continuous-Wave Laser Absorption Spectrometers (LASs) for the measurement of atmospheric carbon dioxide (CO2) column mixing ratio from both air- and space-borne platforms. The LAS system uses high-power fiber lasers/amplifiers in the 1.57-um CO2 absorption band and the 1.26-um O2 absorption band in the transmitters and simultaneous digital lock-in detection for the multiple intensity-modulated signals with different modulation waveforms , such as simple sinusoidal waves at different frequencies, associated with different wavelengths in the receivers. The Signal to Noise Ratio (SNR) of the simultaneous digital lock-in detection in the system is of interest for the system designs and the performance prediction of airborne and space-borne implementations in the future. This paper will discuss the properties of the signals and various noises in the LAS system, especially for the simultaneous digital lock-in detection with a single detector for the multiple intensity-modulated signals at different frequencies. The numerical simulation of the SNR for the simultaneous digital lock-in detection in terms of relative intensity of the multiple modulated signals and the integration time, and an initial experimental verification will be presented.

  9. Origins of IR Intensity in Overtones and Combination Bands in Hydrogen Bonded Systems

    NASA Astrophysics Data System (ADS)

    Horvath, Samantha; McCoy, Anne B.

    2010-06-01

    As the infrared spectra of an increasing number of hydrogen bonded and ion/water complexes have been investigated experimentally, we find that they often contain bands with significant intensity that cannot be attributed to fundamental transitions. In this talk, we explore several sources of the intensity of these overtone and combination bands. A common source of intensity is mode-mode coupling, as is often seen between the proton transfer coordinate and the associated heavy atom vibration. A second important mechanism involves large changes in the dipole moment due the loss of a hydrogen bond. This results in intense overtone transitions involving non-totally symmetric vibrations as well as the introduction of intense combination bands involving intramolecular bending coupled to hindered rotations. These effects will be discussed in the context of several systems, including the spectra of complexes of argon atoms with {H}_3{O}^+, F^-\\cdotH_2O, Cl^-\\cdotH_2O, protonated water clusters,^a and HOONO. T. Guasco, S. Olesen and M. A. Johnson, private communication S. Horvath, A. B. McCoy, J. R. Roscioli and M. A. Johnson, J. Phys. Chem. A, 112, 12337-44 (2008) S. Horvath, A. B. McCoy, B. M. Eliot, G. H. Weddle, J. R. Roscioli and M. A. Johnson, J. Phys. Chem. A, 115, 1556-68 (2010). A. B. McCoy, M. K. Sprague and M. Okumura, J. Phys. Chem. A, 115, 1324-33 (2010)

  10. Collisional Induced Absorption (CIA) bands of CO2 and H2 measured in the IR spectral range

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    2015-10-01

    In this paper we present the results on the Collisional Induced Absorption (CIA) bands of CO2 and H2 measured employing two different experimental setup. Each of them allows us to reproduce typical planetary conditions, at a pressure and temperature from 1 up to 50 bar and from 298 up to 500 K respectively. A detailed study on the temperature dependence of the CO2 CIA absorption bands will be presented.

  11. Lunar iron abundance determination using the 2-?m absorption band parameters

    NASA Astrophysics Data System (ADS)

    Bhatt, Megha; Mall, Urs; Bugiolacchi, Roberto; McKenna-Lawlor, Susan; Banaszkiewicz, Marek; Nathues, Andreas; Ullaland, Kjetil

    2012-07-01

    In this work we report the first employment of the 2-?m absorption band parameters to estimate FeO weight percentage (wt.%) abundances from high-resolution Near-Infrared (NIR) lunar data, as measured by the SIR-2 instrument on board Chandrayaan-1. Our method is based on the algorithm originally developed by Le Mouélic et al. (Le Mouélic, S., Langevin, Y., Erard, S., Pinet, P., Chevrel, S., Daydou, Y. [2000]. J. Geophys. Res. 105, 9445-9456) for assessing FeO wt.% in lunar surface materials analyzing Clementine UVVIS and NIR data. A small fresh-looking crater was selected as a test bench to understand the detrimental effect on spectral parameters caused by the prolonged exposure of surface materials to space weather. Using both 1-?m and 2-?m absorption band parameters we found a correlation of about 90% between iron abundances estimated by our method and actual laboratory-measured values (from Apollo and Luna data-sets). Also, Moon Mineralogy Mapper (M3) data collected at the same Coordinated Universal Time (UTC) were used to verify the SIR-2 data-set. Iron abundance estimations based on these instruments were compared with the Clementine iron abundance map produced by the algorithm developed by Lucey et al. (Lucey, P.G., Blewett, D.T., Hawke, B.R. [1998]. J. Geophys. Res. 103, 3679-3699). We selected crater Tycho as a case study for comparing our FeO wt.% estimates against published ones based on Clementine data and found them in good agreement. This study confirms that the 2-?m absorption band can be interrogated effectively to estimate the FeO wt.% content of exposed lunar surface materials through their NIR reflectance characteristics. Applications of this method would potentially be of great interest to those missions to the Moon and other planetary bodies carrying spectrometers ranging above the 0.9 ?m point.

  12. Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption.

    PubMed

    He, Jinna; Ding, Pei; Wang, Junqiao; Fan, Chunzhen; Liang, Erjun

    2015-03-01

    A novel plasmonic metamaterial consisting of the solid (bar) and the inverse (slot) compound metallic nanostructure for electromagnetically induced absorption (EIA) is proposed in this paper, which is demonstrated to achieve an ultra-narrow absorption peak with the linewidth less than 8 nm and the absorptivity exceeding 97% at optical frequencies. This is attributed to the plasmonic EIA resonance arising from the efficient coupling between the magnetic response of the slot (dark mode) and the electric resonance of the bar (bright mode). To the best of our knowledge, this is the first time that the plasmonic EIA is used to realize the narrow-band perfect absorbers. The underlying physics are revealed by applying the two-coupled-oscillator model. The near-perfect-absorption resonance also causes an enhancement of about 50 times in H-field and about 130 times in E-field within the slots. Such absorber possesses potential for applications in filter, thermal emitter, surface enhanced Raman scattering, sensing and nonlinear optics. PMID:25836832

  13. Strong terahertz absorption in long-period InAs/GaSb type-II superlattices with inverted band structures

    NASA Astrophysics Data System (ADS)

    Li, L. L.; Ni, J.; Xu, W.

    2015-04-01

    We present a theoretical investigation on the terahertz (THz) absorption by long-period InAs/GaSb type-II superlattices (SLs) with inverted band structures. It is found that in such SLs the band inversion causes a significant electron-hole hybridization and a strong THz absorption can be induced by this hybridization. The THz absorption coefficient is even larger than mid-infrared absorption coefficient for short-period InAs/GaSb SLs. Moreover, we find that the strong THz absorption can be further improved and optimized by the proper choice of InAs/GaSb layer widths. The interesting absorption features are well manifested in hybridization gaps and optical transition matrix elements. This study is pertinent to the potential application of long-period inverted InAs/GaSb type-II SLs as high-efficiency THz photodetectors.

  14. Wafer-scale metamaterials for polarization-insensitive and dual-band perfect absorption.

    PubMed

    Liu, Jia; Zhu, Maoxia; Zhang, Nan; Zhang, Haitao; Zhou, Yu; Sun, Shang; Yi, Ningbo; Gao, Shang; Song, Qinghai; Xiao, Shumin

    2015-12-01

    Mid-infrared (IR) perfect absorbers have great potential in practical applications such as biomedical sensing and thermal energy and have been successfully demonstrated in a number of plasmonic metallic nanostructures. However, all the experimental realizations of perfect absorbers are strongly dependent on nanofabrication techniques, which usually require high costs and a long time to fabricate a wafer scale device. Here we propose and experimentally demonstrate a wafer scale, polarization independent, wide angle, and dual-band IR perfect absorber. By fabricating double "E"-shaped metallic structures on a ZnSe coated gold film, a dual-band metamaterial absorber has been uniformly realized on a 2'' silicon wafer. Two absorption peaks have been realized at 18 and 27 THz, which are well consistent with the designs. We believe that our research will boost the applications of metamaterial perfect absorbers. PMID:26525777

  15. Wafer-scale metamaterials for polarization-insensitive and dual-band perfect absorption

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Zhu, Maoxia; Zhang, Nan; Zhang, Haitao; Zhou, Yu; Sun, Shang; Yi, Ningbo; Gao, Shang; Song, Qinghai; Xiao, Shumin

    2015-11-01

    Mid-infrared (IR) perfect absorbers have great potential in practical applications such as biomedical sensing and thermal energy and have been successfully demonstrated in a number of plasmonic metallic nanostructures. However, all the experimental realizations of perfect absorbers are strongly dependent on nanofabrication techniques, which usually require high costs and a long time to fabricate a wafer scale device. Here we propose and experimentally demonstrate a wafer scale, polarization independent, wide angle, and dual-band IR perfect absorber. By fabricating double ``E''-shaped metallic structures on a ZnSe coated gold film, a dual-band metamaterial absorber has been uniformly realized on a 2'' silicon wafer. Two absorption peaks have been realized at 18 and 27 THz, which are well consistent with the designs. We believe that our research will boost the applications of metamaterial perfect absorbers.

  16. Study of sub band gap absorption of Sn doped CdSe thin films

    SciTech Connect

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-04-24

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  17. Water vapor measurements in the 0.94 micron absorption band - Calibration, measurements and data applications

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Thome, K.; Herman, B.; Gall, R.

    1987-01-01

    This paper describes methods and presents results for sensing the columnar content of atmospheric water vapor via differential solar transmission measurements in and adjacent to the 0.94-micron water-vapor absorption band. Calibration and measurement techniques are presented for obtaining the water vapor transmission from the radiometer measurements. Models are also presented for retrieving the columnar water vapor amount from the estimated transmission. Example retrievals are presented for radiometer measurements made during the 1986 Arizona Monsoon Season to track temporal variations in columnar water vapor amount.

  18. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  19. Frequency and intensity analysis of the nu3, nu4, and nu6 bands of formaldehyde

    NASA Technical Reports Server (NTRS)

    Reuter, D. C.; Nadler, S.; Daunt, S. J.; Johns, J. W. C.

    1989-01-01

    The infrared spectra of the nu3, nu4, and nu6 bands of formaldehyde in the region from 890/cm to 1580/cm have been obtained at high resolution using tunable diode laser and Fourier transform-infrared spectroscopy. The transition frequencies have been analyzed using a Hamiltonian including terms through sextic in centrifugal distortion and including five interstate vibration-rotation coupling terms. Excited-state pure rotational transitions are also included in the data, and their frequencies are reproduced well. Individual measured line intensities are used to determine dipole derivatives and band strengths using the fully coupled, asymmetric top eigenvectors.

  20. Absorption coefficients for the 6190-A CH4 band between 290 and 100 K with application to Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.

    1990-01-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.

  1. Absorption coefficients for the 6190-A CH sub 4 band between 290 and 100 K with application to Uranus' atmosphere

    SciTech Connect

    Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )

    1990-05-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.

  2. Remote sensing of solar-stimulated phytoplankton chlorophyll fluorescence by differential absorption in the oxygen B-band

    NASA Astrophysics Data System (ADS)

    Frouin, Robert; Deschamps, Pierre-Yves; Dubuisson, Philippe

    2008-12-01

    A new methodology is proposed to estimate from space the solar-induced chlorophyll fluorescence of natural waters. The methodology exploits absorption in the oxygen B-band around 687 nm, located near the peak of fluorescence emission at 685 nm. Inside the oxygen absorption lines, the fluorescence signal enhances the reflected solar radiance. By using a pair of spectral bands inside and outside the absorption region, or more generally spectral bands for which oxygen absorption is sufficiently different, the emitted contribution to the measured radiance can be extracted. Feasibility is demonstrated and retrieval accuracy quantified through simulations of the top-of-atmosphere reflectance by a radiation transfer code that fully accounts for multiple scattering and interactions between scattering and absorption. The differential absorption method works well from just above the surface. Pairs of spectral bands centered on the same wavelength provide the best results. Using spectral bands of 686.8-688.3 nm and 683.1-692.0 nm, the expected accuracy on fluorescence retrievals is <10% for chlorophyll concentrations above 1 mgm-3. Performance is degraded from space, due to the influence of aerosol vertical structure on the oxygen transmittance associated with path reflectance. In this case, knowledge of aerosol reflectance and optical thickness is required, but assuming an average aerosol vertical distribution yields reasonable results. In comparison with the standard baseline technique, significant improvements in retrieval accuracy are expected in Case II waters, especially in the presence of sediments.

  3. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    PubMed Central

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40?GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  4. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    NASA Astrophysics Data System (ADS)

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40?GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  5. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40?GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  6. The gamma 1 and gamma 3 bands of (16)O3: Line positions and intensities

    NASA Technical Reports Server (NTRS)

    Flaud, J.-M.; Camy-Peyret, C.; Devi, V. Malathy; Rinsland, C. P.; Smith, M. A. H.

    1988-01-01

    Using 0.005/cm-resolution Fourier transform spectra of samples of ozone, the gamma 1 and gamma 3 bands of (16)O3 have been reanalyzed to obtain accurate line positions and an extended set of upper state rotational levels (J up to 69, K sub a up to 20). Combined with the available microwave data, these upper state rotational levels were satisfactorily fitted using a Hamiltonian which takes explicitly into account the strong Coriolis interaction affecting the rotational levels of these two interacting states. In addition, 350 relative line intensities were measured from which the rotational expansions of the transition moment operators for the gamma 1 and gamma 3 states have been deduced. Finally, a complete listing of line positions, intensities, and lower state energies of the gamma 1 and gamma 3 bands of (16)O3 has been generated.

  7. Optical absorption of electronic Fe-Ti charge-transfer transition in natural andalusite: the thermal stability of the charge-transfer band

    NASA Astrophysics Data System (ADS)

    Taran, Michail N.; Koch-Müller, Monika

    2011-03-01

    Differently colored natural Brazilian andalusite crystals heat-treated under reducing and oxidizing conditions were analyzed by optical spectroscopy. The intensity of a broad intense band at around 20,500 cm-1 in the optical absorption spectra of all color zones of the sample is proportional to the product of Ti- and Fe-concentrations and herewith proves its attribution to electronic Fe2+/Ti4+ IVCT transition. The band is strictly E|| c-polarized, causing an intense red coloration of the samples in this polarization. The polarization of the Fe2+/Ti4+ IVCT band in andalusite, E|| c, shows that the electronic charge-transfer process takes place in Al-O octahedral groups that share edges with neighbors on either side, forming chains parallel to the c-axis of the andalusite structure. Under thermal treatments in air, the first noticeable change is some intensification of the band at 800°C. However, at higher temperatures its intensity decreases until it vanishes at 1,000°C in lightly colored zones and 1,100°C in darkly colored ones. Under annealing in reducing conditions at 700 and 800°C, the band also slightly increases and maintains its intensity at treatments at higher temperatures up to 1,000°C. These results demonstrate that weakening and disappearance of the Fe2+/Ti4+ IVCT band in spectra of andalusite under annealing in air is caused by oxidization of Fe2+ to Fe3+ in IVCT Fe2+/Ti4+-pairs. Some intensification of the band at 800°C is, most probably, due to thermally induced diffusion of Fe2+ and Ti4+ in the structure that leads to aggregation of "isolated" Ti4+ and Fe2+ ions into Fe2+-Ti4+-pairs. At higher temperatures, the competing process of Fe2+ ? Fe3+ oxidation overcomes such "coupling" and the band continues to decrease. The different thermal stability of the band in lightly and darkly colored zones of the samples evidence some self-stabilization over an interaction of Fe2+/Ti4+-pairs involved in IVCT process.

  8. Intensity profiles of superdeformed bands in Pb isotopes in a two-level mixing model

    SciTech Connect

    Wilson, A. N.; Szigeti, S. S.; Rogers, J. I.; Davidson, P. M.; Cardamone, D. M.

    2009-01-15

    A recently developed two-level mixing model of the decay out of superdeformed bands is applied to examine the loss of flux from the yrast superdeformed bands in {sup 192}Pb, {sup 194}Pb, and {sup 196}Pb. Probability distributions for decay to states at normal deformations are calculated at each level. The sensitivity of the results to parameters describing the levels at normal deformation and their coupling to levels in the superdeformed well is explored. It is found that except for narrow ranges of the interaction strength coupling the states, the amount of intensity lost is primarily determined by the ratio of {gamma} decay widths in the normal and superdeformed wells. It is also found that while the model can accommodate the observed fractional intensity loss profiles for decay from bands at relatively high excitation, it cannot accommodate the similarly abrupt decay from bands at lower energies if standard estimates of the properties of the states in the first minimum are employed.

  9. Structure in the visible absorption bands of jet-cooled phenylperoxy radicals.

    PubMed

    Freel, Keith A; Sullivan, Michael N; Park, J; Lin, M C; Heaven, Michael C

    2013-08-15

    The visible absorption bands of the phenylperoxy radical in the gas phase have been investigated using cavity ring-down spectroscopy. Jet-cooling was used to reduce the spectral congestion. Structured spectra spanning the range from 17,500 to 19,000 cm(-1) are reported for the first time. Analyses of these data have been guided by the results from time-dependent density functional calculations. The observed spectrum was found to be dominated by the bands of the B?(2)A?-X?(2)A? transition. An analysis of the rotational contour for the origin band yielded a homogeneous line width of 2.2 cm(-1), corresponding to a decay rate of 4.1 × 10(11) s(-1). The results provide a rationale for the lack of structure in room temperature spectra that have been previously attributed to phenylperoxy. They also indicate that the lower energy region of the spectrum may show resolvable structure at room temperature. If so, this would provide a more definitive signature for monitoring phenylperoxy in kinetic measurements. PMID:23590572

  10. Measurements of Lorentz air-broadening coefficients and relative intensities in the H2O-16 pure rotational and nu2 bands from long horizontal path atmospheric spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Goldman, Aaron; Malathy Devi, V.

    1991-01-01

    Lorentz air-broadening coefficients and relative intensities have been measured for forty-three lines in the pure rotational band and twenty lines in the nu2 band of H2O-16 between 800 and 1150/cm. The results were derived from analysis of nine 0.017/cm-resolution atmospheric absorption spectra recorded over horizontal paths of 0.5-1.5 km with the McMath Fourier transform spectrometer and main solar telescope operated on Kitt Peak by the National Solar Observatory. A nonlinear least-squares spectral fitting technique was used in the spectral analysis. The results are compared with previous measurements and calculations. In most cases, the measured pressure-broadening coefficients and intensities are significantly different from the values in the 1986 HITRAN line parameters compilation.

  11. Observation of precursorlike behavior of femtosecond pulses in a dye with a strong absorption band

    SciTech Connect

    Springer, Matthew M.; Yang Wenlong; Kolomenski, Alexandre A.; Schuessler, Hans A.; Strohaber, James; Kattawar, George W.; Sokolov, Alexei V.

    2011-04-15

    Recent interest in Sommerfeld-Brillouin optical precursors has brought attention to the possibility of optical precursor observation in bulk matter. We investigate the possible formation of optical precursors in an organic dye solution with a sharp absorption band and anomalous dispersion at a wavelength of approximately 800 nm. We explore this regime experimentally with sub-10-fs pulses with a central wavelength of approximately 800 nm from a Ti : sapphire oscillator. The pulses are passed through a thin layer of the dye solution and characterized by interferometric autocorrelation. The obtained autocorrelation traces are compared with simulations, and we observe important dispersion effects on the shape of the propagated pulses, including precursorlike behavior in their time evolution.

  12. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    SciTech Connect

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-03-10

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H{sub 2}O and O{sub 2} bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H{sub 2}O and O{sub 2} bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H{sub 2}O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  13. Variability of Water and Oxygen Absorption Bands in the Disk-integrated Spectra of Earth

    NASA Astrophysics Data System (ADS)

    Fujii, Yuka; Turner, Edwin L.; Suto, Yasushi

    2013-03-01

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H2O and O2 bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H2O and O2 bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H2O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  14. Investigation of band gap narrowing in nitrogen-doped La2Ti2O7 with transient absorption spectroscopy.

    PubMed

    Yost, Brandon T; Cushing, Scott K; Meng, Fanke; Bright, Joeseph; Bas, Derek A; Wu, Nianqiang; Bristow, Alan D

    2015-11-18

    Doping a semiconductor can extend the light absorption range, however, it usually introduces mid-gap states, reducing the charge carrier lifetime. This report shows that doping lanthanum dititinate (La2Ti2O7) with nitrogen extends the valence band edge by creating a continuum of dopant states, increasing the light absorption edge from 380 nm to 550 nm without adding mid-gap states. The dopant states are experimentally resolved in the excited state by correlating transient absorption spectroscopy with a supercontinuum probe and DFT prediction. The lack of mid-gap states is further confirmed by measuring the excited state lifetimes, which reveal the shifted band edge only increased carrier thermalization rates to the band edge and not interband charge recombination under both ultraviolet and visible excitation. Terahertz (time-domain) spectroscopy also reveals that the conduction mechanism remains unchanged after doping, suggesting the states are delocalized. PMID:26531849

  15. Compensation for Spherical Geometric and Absorption Effects on Lower Thermospheric Emission Intensities Derived from High Earth Orbit Images

    NASA Technical Reports Server (NTRS)

    Swift, W.; Germany, G. A.; Richards, P. G.; Parks, G. K.; Brittnacher, M.; Spann, J. F., Jr.

    1997-01-01

    Remote sensing of the atmosphere from high earth orbit is very attractive due to the large field of view obtained and a true global perspective. This viewpoint is complicated by earth curvature effects so that slant path enhancement and absorption effects, small from low earth orbit, become dominant even at small nadir view angles. The effect is further complicated by the large range of local times and solar zenith angles in a single image leading to a modulation of the image intensity by a significant portion of the diurnal height variation of the absorbing layer. The latter effect is significant in particular for mesospheric, stratospheric and auroral emissions due to their depth in the atmosphere. As a particular case, the emissions from atomic oxygen (130.4 and 135.6 nm) and molecular nitrogen (two LBH bands, LBHS from 140 to 160 nm and LBHL from 160 to 180 nm) as viewed from the Ultraviolet Imager (UVI) are examined. The LBH emissions are of particular interest since LBHS has significant 02 absorption while LBHL does not, In the case of auroral emissions this differential absorption, well examined in the nadir, gives information about the height of the emission and therefore the energy of the precipitating particles. Using simulations of the viewing geometry and images from the UVI we examine these effects and obtain correction factors to adjust to the nadir case with a significant improvement of the derived characteristic energy. There is a surprisingly large effect on the images from the 02 diurnal layer height changes. An empirical compensation to the nadir case is explored based on the local nadir and local zenith angles for each portion of the image. These compensations are demonstrated as applied to the above emissions in both auroral and dayglow images and compared to models. The extension of these findings to other instruments, emissions and spectral regions is examined.

  16. Propagation and absorption of high-intensity femtosecond laser radiation in diamond

    SciTech Connect

    Kononenko, V V; Konov, V I; Gololobov, V M; Zavedeev, E V

    2014-12-31

    Femtosecond interferometry has been used to experimentally study the photoexcitation of the electron subsystem of diamond exposed to femtosecond laser pulses of intensity 10{sup 11} to 10{sup 14} W cm{sup -2}. The carrier concentration has been determined as a function of incident intensity for three harmonics of a Ti : sapphire laser (800, 400 and 266 nm). The results demonstrate that, in a wide range of laser fluences (up to those resulting in surface and bulk graphitisation), a well-defined multiphoton absorption prevails. We have estimated nonlinear absorption coefficients for pulsed radiation at ? = 800 nm (four-photon transition) and at 400 and 266 nm (indirect and direct two-photon transitions, respectively). It has also been shown that, at any considerable path length of a femtosecond pulse in diamond (tens of microns or longer), the laser beam experiences a severe nonlinear transformation, determining the amount of energy absorbed by the lattice, which is important for the development of technology for diamond photostructuring by ultrashort pulses. The competition between wave packet self-focusing and the plasma defocusing effect is examined as a major mechanism governing the propagation of intense laser pulses in diamond. (interaction of laser radiation with matter. laser plasma)

  17. Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappuis absorption band

    NASA Technical Reports Server (NTRS)

    Flittner, D. E.; Herman, B. M.; Thome, K. J.; Simpson, J. M.; Reagan, J. A.

    1993-01-01

    A second-derivative smoothing technique, commonly used in inversion work, is applied to the problem of inferring total columnar ozone amounts and aerosol optical depths. The application is unique in that the unknowns may be solved for directly without employing standard inversion methods. It is shown, however, that by employing inversion constraints, better solutions are normally obtained. The method is quite versatile and able to deal with varying total ozone and various aerosol size distributions. The technique is applied first in simulation, then to 119 days of measurements taken in Tucson, Arizona, that are compared to TOMS values for the same dates. The technique is also applied to two measurements taken at Mauna Loa, Hawaii, for which Dobson ozone values are available in addition to the TOMS values, and the results agree to within 15 percent. It is also shown through simulations that additional information can be obtained from measurements outside the Chappuis band. This approach reduces the bias and spread of the estimated total ozone and is unique in that it uses measurements from both the Chappuis and Huggins absorption bands.

  18. Enhanced optical absorption due to E+-related band transition in GaAs:N ?-doped superlattices

    NASA Astrophysics Data System (ADS)

    Yagi, Shuhei; Noguchi, Shunsuke; Hijikata, Yasuto; Kuboya, Shigeyuki; Onabe, Kentaro; Okada, Yoshitaka; Yaguchi, Hiroyuki

    2014-10-01

    The photoabsorption characteristics of GaAs:N ?-doped superlattices (SLs) are investigated. Periodic insertion of N ?-doped layers into GaAs induces the formation of conduction subbands E+ and E-, and each conduction subband forms SL minibands with the GaAs conduction band between the ?-doped layers. In addition to an optical absorption related to the E- band, an abrupt absorption edge originating from the electron transition between the valence band and an E+-related miniband is observed at 1.6 eV in a photoluminescence excitation (PLE) spectrum, indicating that GaAs:N ?-doped SLs are promising candidates for the absorber of intermediate-band solar cells.

  19. Absorption band oscillator strengths of N2 transitions between 95.8 and 99.4 nm

    NASA Technical Reports Server (NTRS)

    Stark, G.; Smith, Peter L.; Huber, K. P.; Yoshino, K.; Stevens, M. H.; Ito, K.

    1992-01-01

    Molecular nitrogen plays a central role in the energetics of the earth's upper atmosphere and is the major constituent of the atmospheres of the planetary satellites Titan and Triton. This paper reports a new set of absorption oscillator strengths measured at higher resolution for seven bands in the 95.8-99.4 nm region. The results are compared with earlier, lower resolution absorption measurements, electron scattering measurements, and calculations based on a deperturbation analysis of the excited states.

  20. Residual compressive stress and intensity of infrared absorption of cubic BN films prepared by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Hang-Sheng; Jin, Pan-Pan; Xu, Ya-Bo; Li, Hai-Yang

    2014-03-01

    Theoretical and experimental investigations on the dependence of the intensity of infrared (IR) absorption of polycrystalline cubic boron nitride thin films under the residual compressive stress conditions have been performed. Our results indicate that the intensity of the IR absorption is proportional to the total degree of freedom of all the ions in the ordered regions. The reduction of interstitial Ar atom concentration, which causes the increase in the ordered regions of cubic boron nitride (cBN) crystallites, could be one cause for the increase in the intensity of IR absorption after residual compressive stress relaxation. Theoretical derivation is in good agreement with the experimental results concerning the IR absorption intensity and the Ar interstitial atom concentration in cubic boron nitride films measured by energy dispersion X-ray spectroscopy. Our results also suggest that the interstitial Ar is the origin of residual compressive stress accumulation in plasma enhanced cBN film deposition.

  1. Collision induced absorption in the a1?(v = 2) ? X3?g(-)(v = 0) band of molecular oxygen.

    PubMed

    Spiering, Frans R; van der Zande, Wim J

    2012-07-28

    Using cavity ring-down spectroscopy we measured the collision induced absorption spectrum associated with the a(1)?(v = 2) ?X(3)?(g)(-)(v = 0) band of oxygen near 922 nm both in pure oxygen and in mixtures of oxygen and nitrogen. For pure oxygen, we report for this band an integrated absorption of (1.56 - 0.04/+0.40) × 10(-5) cm(-2) amg(-2). We find that collisions between oxygen and nitrogen do not result in any measurable CIA signal. At 1 bar of oxygen, this collision induced transition is much stronger than the allowed magnetic dipole and electric quadrupole transitions. PMID:22699258

  2. Modeling the absorption of intense, short laser pulses in steep density gradients

    SciTech Connect

    Alley, W.E.

    1991-01-28

    A subroutine which calculates the absorption of short pulse electromagnetic radiation in a material has been installed into the laser fusion modeling program called LASNEX. Calculational results show the necessity for NLTE physics to account for ionization, the development of non-exponential density profiles for the expanding plasma and movement of the critical point toward the surface which results in Doppler shifts of the reflected light. Comparison of calculations of local scale lengths with experiments shows not only good agreement but the correct scaling with intensity. 8 refs., 5 figs.

  3. Symmetry-Breaking in Cationic Polymethine Dyes: Part 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field.

    PubMed

    Masunov, Artëm E; Anderson, Dane; Freidzon, Alexandra Ya; Bagaturyants, Alexander A

    2015-07-01

    The electronic absorption spectra of the symmetric cyanines exhibit dramatic dependence on the conjugated chain length: whereas short-chain homologues are characterized by the narrow and sharp absorption bands of high intensity, the long-chain homologues demonstrate very broad, structureless bands of low intensity. Spectra of the intermediate homologues combine both features. These broad bands are often explained using spontaneous symmetry-breaking and charge localization at one of the termini, and the combination of broad and sharp features was interpreted as coexistence of symmetric and asymmetric species in solution. These explanations were not supported by the first principle simulations until now. Here, we employ a combination of time-dependent density functional theory, a polarizable continuum model, and Franck-Condon (FC) approximation to predict the absorption line shapes for the series of 2-azaazulene and 1-methylpyridine-4-substituted polymethine dyes. To simulate inhomogeneous broadening by the solvent, the molecular structures are optimized in the presence of a finite electric field of various strengths. The calculated FC line shapes, averaged with the Boltzmann weights of different field strengths, reproduce the experimentally observed spectra closely. Although the polarizable continuum model accounts for the equilibrium solvent reaction field at absolute zero, the finite field accounts for the thermal fluctuations in the solvent, which break the symmetry of the solute molecule. This model of inhomogeneous broadening opens the possibility for computational studies of thermochromism. The choice of the global hybrid exchange-correlation functional SOGGA11-X, including 40% of the exact exchange, plays the critical role in the success of our model. PMID:26087319

  4. Retrieval of phytoplankton and colored detrital matter absorption coefficients with remote sensing reflectance in an ultraviolet band.

    PubMed

    Wei, Jianwei; Lee, Zhongping

    2015-02-01

    The light absorption of phytoplankton and colored detrital matter (CDM), which includes contribution of gelbstoff and detrital matters, has distinctive yet overlapping features in the ultraviolet (UV) and visible domain. The CDM absorption (a(dg)) increases exponentially with decreasing wavelength while the absorption coefficient of phytoplankton (a(ph)) generally decreases toward the shorter bands for the range of 350-450 nm. It has long been envisioned that including ocean color measurements in the UV range may help the separation of these two components from the remotely sensed ocean color spectrum. An attempt is made in this study to provide an analytical assessment of this expectation. We started with the development of an absorption decomposition model [quasi-analytical algorithm (QAA)-UV], analogous to the QAA, that partitions the total absorption coefficient using information at bands 380 and 440 nm. Compared to the retrieval results relying on the absorption information at 410 and 440 nm of the original QAA, our analyses indicate that QAA-UV can improve the retrieval of a(ph) and a(dg), although the improvement in accuracy is not significant for values at 440 nm. The performance of the UV-based algorithm is further evaluated with in situ measurements. The limited improvement observed with the field measurements highlights that the separation of a(dg) and a(ph) is highly dependent on the accuracy of the ocean color measurements and the estimated total absorption coefficient. PMID:25967770

  5. Dual-band microwave absorption properties of metamaterial absorber composed of split ring resonator on carbonyl iron powder composites

    NASA Astrophysics Data System (ADS)

    Lim, Jun-Hee; Ryu, Yo-Han; Kim, Sung-Soo

    2015-05-01

    This study investigated the dual-band absorption properties of metamaterial absorbers composed of a split ring resonator (SRR) on a grounded magnetic substrate. Polymer composites of carbonyl iron powders (CIP) of high permeability and magnetic loss were used as the substrate material. Computational tools were used to model the interaction between electromagnetic waves and materials with the SRR structure. For perpendicular polarization with an electric field (E) perpendicular to the SRR gap, dualband absorption peaks are predicted in the simulation result of reflection loss. Magnetic resonance resulting from antiparallel currents between the SRR and the ground plane is observed at the frequencies of two absorption peaks. The first strong absorption peak at the lower frequency (3.3 GHz) is due to magnetic resonance at the wire part of the SRR. The second absorption peak at the higher frequency (7.2 GHz) is due to magnetic resonance at the SRR split gap. The decreased capacitance with increased gap spacing moves the second absorption frequency to higher frequencies, while the first absorption peak is invariant with gap spacing. In the case of dual gaps at the opposite sides of the SRR, a single absorption peak is predicted due to the elimination of low-frequency resonance. For parallel polarization with the E-field parallel to the SRR gap, a single absorption peak is predicted, corresponding to magnetic resonance at the SRR wire.[Figure not available: see fulltext.

  6. Advances in the Measurement of CO2 using Swept-Frequency, Intensity-Modulated, Continuous-Wave Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harrison, F. W.; Ismail, S.; Nehrir, A. R.; Lin, B.; Browell, E. V.; McGregor, D.; Kooi, S. A.; Dobler, J. T.; Collins, J. E.; Choi, Y.; Obland, M. D.

    2013-12-01

    Understanding the carbon balance in the environment is critical to projections of the future evolution of the Earth's climate. Large uncertainties in the forecast of future atmospheric carbon dioxide (CO2) concentrations and carbon sources and sinks persist due to the limited set of observations from the current network of in-situ and surface measurements. Global, spaceborne measurements of atmospheric CO2 can reduce these uncertainties. Feasibility studies of space column CO2 mixing ratio (XCO2) measurements using laser remote sensing have been initiated by NASA. The XCO2 measurement requires the simultaneous measurement of both CO2 and O2 number density columns weighted to the near surface and that biases from aerosols or clouds be minimized. This paper discusses the latest flight test results from the Multi-Functional Fiber Laser Lidar (MFLL), a laser absorption spectrometer (LAS) system under development by Exelis, Inc. in partnership with NASA Langley Research Center (LaRC) for the ASCENDS mission. The MFLL uses Intensity-Modulated, Continuous-Wave narrow-band lasers operated on and off of a CO2 absorption feature to measure the differential absorption of atmospheric CO2. By simultaneously modulating the laser beam with range-encoded signals, the retrieval of column CO2 concentrations to the Earth's surface, to the top of optically thick clouds, and through optically thin clouds is enabled. In early 2013, MFLL participated in an intensive flight campaign designed to flight test three ASCENDS prototype instruments onboard the NASA DC-8. The campaign consisted of nine flights of the NASA DC-8 over surfaces of varying reflectivity and in atmospheric conditions including clouds. Here we report on the evaluation of MFLL remote measurements of CO2 column concentrations as compared to the CO2 columns derived from contemporaneous airborne in situ CO2 profile measurements. This paper describes the modulation techniques employed by MFLL, presents algorithms for retrieving lidar path length and column CO2 concentrations, and compares retrievals under clear air conditions and in the presence of thin clouds.

  7. Use of a heated nozzle to locate the hot bands in the 340-260-nm absorption of sulfur dioxide

    SciTech Connect

    Metha, G.F.; McGilvery, D.C.; Morrison, R.J.S.; O'Dwyer, M.F. )

    1990-01-11

    Excitation spectra of sulfur dioxide have been measured in both a room-temperature and a heated (325{degree}C) glass nozzle, in the region from 331-315 nm (30,200-31,740 cm{sup {minus}1}). Twenty-two bands (some not previously recorded in the room-temperature spectrum) have been identified as arising from hot absorption from {nu}{sub 1} (fifteen bands), {nu}{sub 2} (six bands), and 2{nu}{sub 2} (one band) in the ground state. There are also regions of increased activity in the hot spectra, which cannot be recognized as discrete bands. Dispersed emission spectra are reported from a pair of bands (31,203.7 and 31,721.3 cm{sup {minus}1}) with the same upper state level, one arising from hot and one from cold absorption. In another case (31,332.0 nm{sup {minus}1}), hot and cold spectra are shown to indicate the presence of a weak cold band close to a strong hot one.

  8. Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal

    SciTech Connect

    Guo Bin

    2009-04-15

    The photonic band gap structures of obliquely incident electromagnetic waves propagating in a one-dimension plasma photonic crystal with collision have been studied on the basis of electromagnetic theory and transfer matrix approach. The dispersion relations for both the transverse electric wave case and the transverse magnetic wave case are deduced. And the photonic band gap structures, with their function dependence on the microplasma layer density, microplasma width, collision frequency, background material dielectric constant, and incident angle, are computed. The results show that there exist two photonic band gap structures in an adsorptive plasma photonic crystal: one is a normal photonic band gap structure and the other is an absorption photonic band gap structure. Parameter dependence of the effects is calculated and discussed.

  9. Line shapes of narrow optical bands: Infrared absorption by U centers and heavier impurities in alkali halides

    NASA Astrophysics Data System (ADS)

    Lagos, Miguel; Asenjo, Felipe; Hauyón, Roberto; Pastén, Denisse; González, Hernán; Henríquez, Ricardo; Troncoso, Roberto

    2008-03-01

    The shape of the bands for photon absorption and emission by the local constituents of a solid is governed mainly by processes involving many low-energy acoustic phonons. This applies not only to wide bands, such as those exhibited by F centers, but also to narrow ones, as those observed for infrared absorption by local vibration modes of U centers and heavier impurities. The line shapes are theoretically studied on a general basis to show they provide a nice example to illustrate the power of field theory and methods to reproduce experimental facts. To this aim, the phonon induced broadenings of infrared absorption lines by U centers in KCl and KBr, and by substitutional Ag+ in KI, were calculated to compare theoretical predictions with experiment. The agreement obtained between both is remarkable.

  10. Accurate measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  11. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2014-08-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10-18, 10.44 × 10-18, and 11.07 × 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum) of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  12. Rainfall Intensity and Drop Size Measurements with Polarimetric X-band Radar

    NASA Astrophysics Data System (ADS)

    Martner, B. E.; Matrosov, S. Y.; Clark, K. A.; Tokay, A.

    2002-12-01

    Most studies for developing quantitative, scanning radar estimates of rainfall have been conducted using 3-GHz (S-band, 10-cm wavelength) weather surveillance radar systems, in order to avoid attenuation effects that significantly impair reflectivity (Z) measurements at shorter wavelengths. However, the recent extension of polarimetric differential phase methods to shorter-wave systems, including X-band (9 GHz, 3-cm), now allows these generally smaller radars to also be used for quantitative rain estimations. Differential phase offers rainfall estimates that are independent of reflectivity data, as well as a way to adjust for partial attenuation effects in X-band reflectivity data. Rainfall intensity and accumulation measurements based on specific differential phase (KDP) alone offer many advantages over traditional reflectivity-based rain estimates. In this study, rain observations obtained with a polarimetric X-band scanning radar are processed with algorithms that estimate rain rate using differential phase, reflectivity, and a combination of the radar's measurements of differential phase with attenuation-corrected reflectivity and differential reflectivity (ZDR). The attenuation-corrected ZDR measurements are also used to estimate mean raindrop diameter. Demonstration measurements were obtained at Wallops Island, Virginia, in 15 storms with rain rates ranging from very light to heavy. The radar estimates are compared with measurements by tipping bucket rain gauges and raindrop disdrometers located a few kilometers away. It was found that the combined Z-ZDR-KDP estimator provided the closest agreement with gauge measurements, having an overall 22 per cent relative standard deviation of differences. The attenuation-adjusted ZDR estimates of mean drop diameter also compared well with the disdrometer measurements.

  13. Collisionless absorption, hot electron generation, and energy scaling in intense laser-target interaction

    NASA Astrophysics Data System (ADS)

    Liseykina, T.; Mulser, P.; Murakami, M.

    2015-03-01

    Among the various attempts to understand collisionless absorption of intense and superintense ultrashort laser pulses, a whole variety of models and hypotheses has been invented to describe the laser beam target interaction. In terms of basic physics, collisionless absorption is understood now as the interplay of the oscillating laser field with the space charge field produced by it in the plasma. A first approach to this idea is realized in Brunel's model the essence of which consists in the formation of an oscillating charge cloud in the vacuum in front of the target, therefore frequently addressed by the vague term "vacuum heating." The investigation of statistical ensembles of orbits shows that the absorption process is localized at the ion-vacuum interface and in the skin layer: Single electrons enter into resonance with the laser field thereby undergoing a phase shift which causes orbit crossing and braking of Brunel's laminar flow. This anharmonic resonance acts like an attractor for the electrons and leads to the formation of a Maxwellian tail in the electron energy spectrum. Most remarkable results of our investigations are the Brunel like spectral hot electron distribution at the relativistic threshold, the minimum of absorption at I ? 2 ? ( 0.3 - 1.2 ) × 10 21 Wcm - 2 ? m 2 in the plasma target with the electron density of n e ? 2 ˜ 10 23 cm - 3 ? m 2 , the drastic reduction of the number of hot electrons in this domain and their reappearance in the highly relativistic domain, and strong coupling, beyond expectation, of the fast electron jets with the return current through Cherenkov emission of plasmons. The hot electron energy scaling shows a strong dependence on intensity in the moderately relativistic domain I ? 2 ? ( 10 18 - 10 20 ) Wcm - 2 ? m 2 , a scaling in vague accordance with current published estimates in the range I ? 2 ? ( 0.14 - 3.5 ) × 10 21 Wcm - 2 ? m 2 , and again a distinct power increase beyond I = 3.5 × 10 21 Wcm - 2 ? m 2 . The low energy electrons penetrate normally to the target surface, the energetic electrons propagate in laser beam direction.

  14. Band gap tuning and optical absorption in type-II InAs/GaSb mid infrared short period superlattices: 14 bands K Dot-Operator p study

    SciTech Connect

    AbuEl-Rub, Khaled M.

    2012-09-06

    The MBE growth of short-period InAs/GaSb type-II superlattice structures, varied around 20.5 A InAs/24 A GaSb were [J. Applied physics, 96, 2580 (2004)] carried out by Haugan et al. These SLs were designed to produce devices with an optimum mid-infrared photoresponse and a sharpest photoresponse cutoff. We have used a realistic and reliable 14-band k.p formalism description of the superlattice electronic band structure to calculate the absorption coefficient in such short-period InAs/GaSb type-II superlattices. The parameters for this formalism are known from fitting to independent experiments for the bulk materials. The band-gap energies are obtained without any fitting parameters, and are in good agreement with experimental data.

  15. Structural diversity of the 3-micron absorption band in Enceladus’ plume from Cassini VIMS: Insights into subsurface environmental conditions

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger N.

    2015-11-01

    Water ice particles in Enceladus’ plume display their diagnostic 3-micron absorption band in Cassini VIMS data. These near infrared measurements of the plume also exhibit noticeable variations in the character of this band. Mie theory calculations reveal that the shape and location of the 3-micron band are controlled by a number of environmental and structural parameters. Hence, this band provides important insights into the properties of the water ice grains and about the subsurface environmental conditions under which they formed. For example, the position of the 3-micron absorption band minimum can be used to distinguish between crystalline and amorphous forms of water ice and to constrain the formation temperature of the ice grains. VIMS data indicates that the water ice grains in the plume are dominantly crystalline which could indicate formation temperatures above 113 K [e.g. 1, 2]. However, there are slight (but observable) variations in the band minimum position and band shape that may hint at the possibility of varying abundance of amorphous ice particles within the plume. The modeling results further indicate that there are systematic shifts in band minimum position with temperature for any given form of ice but the crystalline and amorphous forms of water ice are still distinguishable at VIMS spectral resolution. Analysis of the eruptions from individual source fissures (tiger stripes) using selected VIMS observations reveal differences in the 3-micron band shape that may reflect differences in the size distributions of the water ice particles along individual fissures. Mie theory models suggest that big ice particles (>3 micron) may be an important component of the plume.[1] Kouchi, A., T. Yamamoto, T. Kozasa, T. Kuroda, and J. M. Greenberg (1994) A&A, 290, 1009-1018 [2] Mastrapa, R. M. E., W. M. Grundy, and M. S. Gudipati (2013) in M. S. Gudipati and J. Castillo-Rogez (Eds.), The Science of Solar System Ices, pp. 371.

  16. High intensity single bunch operation with heavy periodic transient beam loading in wide band rf cavities

    NASA Astrophysics Data System (ADS)

    Tamura, Fumihiko; Hotchi, Hideaki; Schnase, Alexander; Yoshii, Masahito; Yamamoto, Masanobu; Ohmori, Chihiro; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo

    2015-09-01

    The rapid cycling synchrotron (RCS) in the Japan Proton Accelerator Research Complex (J-PARC) was originally designed to accelerate two high intensity bunches, while some of neutron experiments in the materials and life science experimental facility and a muon experiment using main ring beams require a single bunch operation mode, in which one of the two rf buckets is filled and the other is empty. The beam intensity in the single bunch operation has been limited by longitudinal beam losses due to the rf bucket distortions by the wake voltage of the odd harmonics (h =1 ,3 ,5 ) in the wide band magnetic alloy cavities. We installed an additional rf feedforward system to compensate the wake voltages of the odd harmonics (h =1 ,3 ,5 ). The additional system has a similar structure as the existing feedforward system for the even harmonics (h =2 ,4 ,6 ). We describe the function of the feedforward system for the odd harmonics, the commissioning methodology, and the commissioning results. The longitudinal beam losses during the single bunch acceleration disappeared with feedforward for the odd harmonics. We also confirmed that the beam quality in the single bunch acceleration are similar to that of the normal operation with two bunches. Thus, high intensity single bunch acceleration at the intensity of 2.3 ×1013 protons per bunch has been achieved in the J-PARC RCS. This article is a follow-up of our previous article, Phys. Rev. ST Accel. Beams 14, 051004 (2011). The feedforward system extension for single bunch operation was successful.

  17. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    SciTech Connect

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-10-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here two-dimensional atomic dysprosium density profiles are measured by means of laser absorption spectroscopy; the order of magnitude of the density is 10{sup 22} m{sup -3}. The radially resolved atomic density measurements show a hollow density profile. In the outer parts of the lamp molecules dominate, while the center is depleted of dysprosium atoms due to ionization. From the axial profiles the segregation parameter is determined. It is shown that the lamp operates on the right-hand side of the Fischer curve [J. Appl. Phys. 47, 2954 (1976)], i.e., a larger convection leads to less segregation.

  18. Study of molecular iodine, iodate ions, iodide ions, and triiodide ions solutions absorption in the UV and visible light spectral bands

    NASA Astrophysics Data System (ADS)

    Kireev, S. V.; Shnyrev, S. L.

    2015-07-01

    The paper reports on experimental studies concerning the absorption spectra of molecular iodine and its \\text{IO}3- , I-, \\text{I}3- anions in the spectral band of 180-600?nm. Values of the absorption cross-sections of the above mentioned substances have been measured, and relations of absorption coefficients to concentrations have been studied. The results obtained demonstrate that the spectral band under consideration is likely to be successfully used for simultaneous real-time detection of substances containing iodine with an absorption method using laser emission sources in the UV and visible light spectral bands.

  19. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  20. Absorption intensities and emission cross sections of Tb3+ (4f8) in TbAlO3

    NASA Astrophysics Data System (ADS)

    Sardar, Dhiraj K.; Nash, Kelly L.; Yow, Raylon M.; Gruber, John B.; Valiev, Uygun V.; Kokanyan, Edvard P.

    2006-10-01

    Trivalent terbium absorption intensities in single-crystal TbAlO3 are analyzed using the Judd-Ofelt model to assess the crystal's potential as a solid state laser system. The standard Judd-Ofelt model was applied to the room temperature absorption intensities of Tb3+ (4f8) to determine the phenomenological intensity parameters ?2, ?4, and ?6. Seven multiplet manifolds are identified and the absorption intensities of these manifolds are least-squares fitted to the calculated intensities to obtain the intensity parameters: ?2=40.52×10-20cm2, ?4=8.74×10-20cm2, and ?6=2.26×10-20cm2 in TbAlO3. These intensity parameters are then applied to determine the radiative decay rates and branching ratios of Tb3+ transitions from the D45 to the FJ'7 multiplet manifolds. Based on the results, the radiative lifetime of the excited state manifold D45 is determined from the radiative decay rates and found to be 3.5ms. The calculated lifetime is longer than the measured lifetime, reflecting the nonradiative interactions between the Tb3+ ions and the lattice in the pure compound. The intensity parameters, radiative lifetime, and emission cross sections are then compared to those reported in other laser hosts. The quantum efficiency of the laser transition D45?F57 of Tb3+ is approximately 57.0% in TbAlO3.

  1. An analysis for the broad-band absorption enhancement using plasmonic structures on uncooled infrared detector pixels

    NASA Astrophysics Data System (ADS)

    Lulec, Sevil Z.; Kucuk, Seniz E.; Battal, Enes; Okyay, Ali K.; Tanrikulu, M. Yusuf; Akin, Tayfun

    2012-06-01

    This paper introduces an analysis on the absorption enhancement in uncooled infrared pixels using resonant plasmon modes in metal structures, and it reports, for the first time in literature, broad-band absorption enhancement using integrated plasmonic structures in microbolometers for unpolarized long-wave IR detection. Different plasmonic structures are designed and simulated on a stack of layers, namely gold, polyimide, and silicon nitride in order to enhance absorption at the long-wave infrared. The simulated structures are fabricated, and the reflectance measurements are conducted using an FTIR Ellipsometer in the 8-12 ?m wavelength range. Finite difference time domain (FDTD) simulations are compared to experimental measurement results. Computational and experimental results show similar spectral reflection trends, verifying broad-band absorption enhancement in the spectral range of interest. Moreover, this paper computationally investigates pixel-wise absorption enhancement by plasmonic structures integrated with microbolometer pixels using the FDTD method. Special attention is given during the design to be able to implement the integrated plasmonic structures with the microbolometers without a need to modify the pre-determined microbolometer process flow. The optimized structure with plasmonic layer absorbs 84 % of the unpolarized radiation in the 8-12 ?m spectral range on the average, which is a 22 % increase compared to a reference structure with no plasmonic design. Further improvement may be possible by designing multiply coupled resonant structures.

  2. The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab

    E-print Network

    Pachucki, Krzysztof

    The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data Head: The absorption spectrum of H2 up to 35000 cm-1 . Keywords: hydrogen; H2, quadrupole dipole #12;3 1. INTRODUCTION The absorption spectrum of hydrogen up to the visible range consists

  3. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  4. The K-band intensity profile of R Leonis probed by VLTI/VINCI

    E-print Network

    D. Fedele; M. Wittkowski; F. Paresce; M. Scholz; P. R. Wood; S. Ciroi

    2004-11-05

    We present near-infrared K-band interferometric measurements of the Mira star R Leonis obtained in April 2001 and January 2002 with the VLTI, the commissioning instrument VINCI, and the two test siderostats. These epochs correspond to near-maximum stellar variability phases $\\sim$ 0.08 and $\\sim$ 1.02 (one cycle later), respectively. The April 2001 data cover a range of spatial frequencies (31--35 cycles/arcsecond) within the first lobe of the visibility function. These measurements indicate a center-to-limb intensity variation (CLV) that is clearly different from a uniform disk (UD) intensity profile. We show that these measured visibility values are consistent with predictions from recent self-excited dynamic Mira model atmospheres that include molecular shells close to continuum-forming layers. We derive high-precision Rosseland diameters of 28.5 +/- 0.4 mas and 26.2 +/- 0.8 mas for the April 2001 and January 2002 data, respectively. Together with literature estimates of the distance and the bolometric flux, these values correspond to linear radii of 350^{+50}_{-40}R$_\\odot$ and 320^{+50}_{-40}R$_\\odot$, and to effective temperatures of 2930 +/- 270K and 3080 +/- 310K, respectively.

  5. Mapping atomic and diffuse interstellar band absorption across the Magellanic Clouds and the Milky Way

    NASA Astrophysics Data System (ADS)

    Bailey, Mandy; van Loon, Jacco Th.; Sarre, Peter J.; Beckman, John E.

    2015-12-01

    Diffuse interstellar bands (DIBs) trace warm neutral and weakly ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic survey of two of the strongest DIBs, at 5780 and 5797 Å, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na I D and Ca II K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 Å DIB with neutral gas, and the 5780 Å DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na I D line traces the denser ISM whereas the Ca II K line traces the more diffuse, warmer gas. The Ca II K line has an additional component at ˜200-220 km s-1 seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic halo. Both the atomic lines and DIBs show sub-pc-scale structure in the Galactic foreground absorption; the 5780 and 5797 Å DIBs show very little correlation on these small scales, as do the Ca II K and Na I D lines. This suggests that good correlations between the 5780 and 5797 Å DIBs, or between Ca II K and Na I D, arise from the superposition of multiple interstellar structures. Similarity in behaviour between DIBs and Na I in the Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Milky Way suggests the abundance of DIB carriers scales in proportion to metallicity.

  6. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  7. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  8. Multispectrum Analysis of the v4 Band of CH3CN: Positions, Intensities, Self and N2 Broadening and Pressure-Induced Shifts

    SciTech Connect

    Rinsland, Curtis P.; Devi, V. M.; Benner, D. C.; Blake, Thomas A.; Sams, Robert L.; Brown, Linda R.; Kleiner, Isabelle; Dehayem-kamadjeu, A.; Muller, H. S.; Gamache, R. R.; Niles, Danielle L.; Masiello, Tony

    2008-04-01

    A multispectrum nonlinear least squares fitting technique has been applied to measure accurate zero-pressure line center positions, Lorentz self- and N2-broadening coefficients and self- and N2-pressure-induced shift coefficients in the parallel ?4 band of CH3CN near 920 cm-1. Fifteen high-resolution (0.0029 cm-1) laboratory absorption spectra of pure and N2-broadened CH3CN recorded at room temperature using the Bruker IFS 125HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, U.S.A. were analyzed simultaneously. Short spectral intervals containing manifolds of transitions from the same value of J have been fitted together. In all, we have obtained high precision line positions, absolute line intensities, self- and N2-broadening coefficients for P(44) through P(3) and R(0) through R(46) manifolds. All measurements have been fitted successfully assuming a Voigt line shape. Preliminary fits of line intensities up to J = 47 using one principal dipole moment derivative and three Herman-Wallis terms are reported. The results are not fully satisfactory due to perturbations caused by interactions with other bands. The total intensity obtained from this prediction by summing individual line intensities for the v4 band region has been compared with the integrated absorption coefficient reported for the v4 band from lower resolution spectra measured at the same laboratory facility. The variations of N2 broadening, self-broadening, N2- shift and self-shift coefficients with the J and K quantum numbers have been measured for the first time. N2-broadening coefficients decrease with increasing J and K. Some self-broadening coefficients are very large (up to ~2 cm-1 atm-1 at 294 K). Ratios of N2-broadening coefficients to self-broadening coefficients show a compact distribution with rotational quantum number in both the P- and R-branches that range from ~0.45 to 15 with a maxima ratio near J"=13. Pressure-induced shifts for N2 are small (few exceed ?0.006 cm-1 atm-1 at 294 K). In contrast, self-shift coefficients are large (maxima of about ?0.06 cm-1 atm-1) and are both positive and negative with compact and distributions as a function of rotational quantum number. A calculation of the total internal partition function sum has been performed and those results have been made available for addition to the HITRAN and GEISA databases. We discuss the status of assignments for CH3CN that are currently available for other mid- and far infrared regions

  9. The absorption spectrum of 13CH4 in the region of the 2?3 band at 1.66 ?m: Empirical line lists and temperature dependence

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Segovia, J. Lopez; Béguier, S.; Kassi, S.; Mondelain, D.

    2015-02-01

    The absorption spectrum of 13CH4 has been recorded at 296 K and 80 K by differential absorption spectroscopy (DAS) in the high energy part of the tetradecad (5853-6201 cm-1) dominated by the 2?3 band near 5988 cm-1. The achieved noise equivalent absorption of the spectra (?min?1×10-7 cm-1) allowed us to double the number of 13CH4 lines previously measured in the region (our lists include about 7200 and 3700 lines at 296 and 80 K, respectively). Empirical values of the lower state energy level, Eemp, were systematically derived from the intensity ratios of the lines measured at 80 K and 296 K. Overall 2782 Eemp values were determined extending significantly the previous set of about 1200 Eemp values available in the literature. The corresponding empirical values of the rotational quantum number, Jemp, show a clear propensity to be close to an integer, illustrating the validity of the method. The line lists at 296 K and 80 K, provided as Supplementary material, are discussed in relation with line lists and rovibrational assignments available in the literature.

  10. Modelling vibrational-rotational interactions in intensities of v2 band of H2O by Pade approximants

    NASA Astrophysics Data System (ADS)

    Egorov, O. V.; Voitsekhovskaya, O. K.

    2014-11-01

    A semiempirical model in the form of Pade approximants, describing vibrational-rotational (VR) interactions in intensities of VR-lines of v2 water vapor (H2O) band, was developed. The corresponding to the C2v molecular symmetry group matrix elements, involved in the expansion of the transformed dipole moment, was applied to the derivation. The treatment of experimental intensities of v2 H2O band for transitions with ?K = +/-1 and ?K = +/-3 by means of obtained model results in decreasing the root mean square deviation (RMS) about two times (2.82 % instead of 6.20 %) in comparison to the traditional scheme.

  11. Line intensities and collisional-broadening parameters for the nu4 and nu6 bands of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1992-01-01

    Line intensities, air- and self-broadening parameters have been measured for selected lines in the nu4 (1243/cm) and nu6 (774/cm) bands of carbonyl fluoride at 296 and 215 K using a tunable diode-laser spectrometer. Measured line intensities are in good agreement +/- 6 percent with recently reported values derived from rotational analyses of the nu4 and nu6 bands. The measured average air-broadening coefficient at 296 K also agrees well (+/- 5 percent) with N2-broadening coefficients determined from microwave studies, while the average self-broadening coefficient reported here is smaller than a previously reported value by 45 percent.

  12. X2Sigma to B2Sigma absorption band of HgBr - Optically pumped 502-nm laser

    NASA Astrophysics Data System (ADS)

    Greene, D. P.; Killeen, K. P.; Eden, J. G.

    1986-05-01

    The X2Sigma1/2(+) to B2Sigma1/2(+) absorption band of HgBr is observed in the afterglow of a pulsed Ne-N2-HgBr2 discharge for XeF laser fluences below 0.8 MW/sq cm. Direct excitation of the B state from ground with a 351-nm XeF or frequency tripled 355-nm Nd:YAG laser pulse results in a 22 percent UV-to-blue-green conversion efficiency, corresponding to the emission of one 2.5-eV photon for every three absorbed 3.5-eV photons. The breadth of the 350-nm centered absorption spectrum and the large associated absorption coefficient suggest that this four-level system, with 71 percent quantum efficiency, is an excellent candidate for a flashlamp-pumped laser. In this scheme, laser emission only occurs from vibrational levels that are not pumped.

  13. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  14. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer

    Greenwood, R. E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  15. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  16. Absorption in high-Z targets illuminated with 527-nm laser light at high intensity using induced spatial incoherence

    SciTech Connect

    Simpson, J.D.; Bosch, R.A.; Failor, B.H.; Gabl, E. )

    1990-10-20

    We have measured 527-nm absorption for induced spatial incoherence (ISI) and non-ISI illumination of high-Z targets over the 0.5--3.5 {times} 10{sup 14}-W/cm{sup 2} laser intensity range using energy balance with a custom designed 30-cm diam light integrating sphere. Induced spatial incoherence of the laser beam was produced by inserting echelons in the beam path and operating the laser at wide bandwidth (0.2%). To produce ISI and non-ISI data for comparison, we irradiated a large number of 180-{mu}m diam gold disks with 0.5--1.5-ns pulses with echelons in the beam path with and without wide laser bandwidths. Our data show an increase in absorption of 5--11% for the ISI illuminated targets and also suggest a weaker dependence of absorption on laser intensity for ISI illumination than for non-ISI.

  17. Absorption in high-z targets illuminated with 527-nm laser light at high intensity using induced spatial incoherence.

    PubMed

    Simpson, J D; Bosch, R A; Failor, B H; Gabl, E F

    1990-10-20

    We have measured 527-nm absorption for induced spatial incoherence (ISI) and non-ISI illumination of high-Z targets over the 0.5-3.5 x 10(14)-W/cm(2) laser intensity range using energy balance with a custom designed 30-cm diam light integrating sphere. Induced spatial incoherence of the laser beam was produced by inserting echelons in the beam path and operating the laser at wide bandwidth (0.2%). To produce ISI and non-ISI data for comparison, we irradiated a large number of 180-microm diam gold disks with 0.5-1.5-ns pulses with echelons in the beam path with and without wide laser bandwidths. Our data show an increase in absorption of 5-11% for the ISI illuminated targets and also suggest a weaker dependence of absorption on laser intensity for ISI illumination than for non-ISI. PMID:20577408

  18. Line positions and intensities for the gamma 1 + gamma 2 and gamma 2 + gamma 3 bands of (16)O3

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Flaud, J.-M.; Canypeyret, C.; Rinsland, C. P.; Smith, M. A. H.

    1988-01-01

    Using 0.005 cm-resolution Fourier transform spectra of (16)O3, generated by electric discharge from a greater than 99.98 percent pure sample of (16)O3, an extensive analysis of the gamma 1 + gamma 2 and the gamma 2 + gamma 3 bands in the 5.7 micron region was performed. The rotational energy levels of the upper (110) and (011) vibrational states of (16)O3 were reproduced within their experimental uncertainties using a Hamiltonian which takes explicitly into account the Coriolis-type interaction occurring between the rotational energy levels of both states. Improved vibrational energies and rotational and coupling constants were also derived for the (110) and (011) states. Precise transition moment constants for these two bands were deduced from analysis of 220 measured line intensities. Finally, a complete list of line positions, intensities, and lower state energies for both bands has been generated.

  19. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: Shining Light on the Interstellar 3 Micron Emission Bands

    NASA Astrophysics Data System (ADS)

    Maltseva, Elena; Candian, Alessandra; Tielens, Xander; Petrignani, Annemieke; Oomens, J.; Buma, Wybren Jan

    2015-06-01

    Various astronomical objects show distinctive series of IR emission bands indicated as unidentified infrared emission bands. These features are nowadays mainly attributed to the IR fluorescence of Polycyclic Aromatic Hydrocarbons (PAHs) even though an unambiguous identification of which PAHs are involved has not been possible yet. We present here a high-resolution IR absorption study of a number of jet-cooled polycyclic aromatic hydrocarbons in the 3.3 ?m region obtained by IR-UV ion depletion techniques. The experimental spectra display many more bands than expected, and lead to the conclusion that the appearance of the spectrum is dominated by fourth-order vibrational coupling terms. This has far-reaching consequences since up till now the assignment of infrared emission features observed in different types of space objects in this wavelength region -and the conclusions drawn from these assignments on the evolution of interstellar gas- has relied heavily on harmonic quantum chemical calculations. We also observe that the presence of bay-hydrogen sites in a PAH leads to a shift of the overall spectrum to the high-energy side and to a broadening of the 3 ?m band. This observation provides an appealing explanation for previous speculations that the emission of 3 ?m band consists of two components. Moreover, it paves for using this structure to derive the composition of different objects.

  20. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  1. Spectral splitting in the alpha (Q0,0) absorption band of ferrous cytochrome c and other heme proteins.

    PubMed

    Reddy, K S; Angiolillo, P J; Wright, W W; Laberge, M; Vanderkooi, J M

    1996-10-01

    The alpha or Q0,0 absorption band of horse iron(II) cytochrome c splits and shifts to the blue as temperature decreases over the temperature range of 290-10 K. At room temperature, its maximum is at 18 150 cm-1 and the spectral width is 273 cm-1, whereas at 10 K, the two bands of the Q0,0 transition occur at 18 364 and 18 253 cm-1 and the width of the lowest-energy band is 96 cm-1. Temperature dependent splitting also occurs for zinc cytochrome c, a derivative in which Fe has been replaced by Zn; at 10 K, the peaks in the Q0,0 band region occur at 17 106 and 16 996 cm-1. The peak positions are independent of the cryosolvent (aqueous ethylene glycol or glycerol mixtures). The splitting of the Q0,0 band seen in the protein (approximately 110 cm-1 for iron and zinc cytochrome c) is comparable to the crystal field splitting observed for metalloporphyrins in mixed crystals. In contrast, the Q0,0 band of zinc coproporphyrin III in a glassy solvent (dimethylformamide/ethylene glycol) or in poly(vinyl chloride) shows a blue shift with temperature decrease but no evidence of Q0,0 splitting. Available spectral data show that the Q0,0 band is composed of two nearly degenerate electronic transitions and the split is due to the asymmetry in the heme pocket of the protein that arises from the surrounding polypeptide chain. This asymmetry results in the stabilization of one form of the excited state over the other, according to a Jahn-Teller mechanism. PMID:8841125

  2. Multispectrum analysis of the v9 band of 12C2H6: Positions, intensities, self- and N2-broadened half-width coefficients

    SciTech Connect

    Devi, V. Malathy; Rinsland, Curtis P.; Benner, D. C.; Sams, Robert L.; Blake, Thomas A.

    2010-06-01

    Line positions, intensities, Lorentz self- and N2-broadened half-width coefficients have been measured for PQ3, PQ2, PQ1, RQ0,RQ1, RQ2, and RQ3 sub-band transitions in the 9 fundamental band of 12C2H6. A multispectrum nonlinear least-squares fitting technique was used to fit up to 17 high-resolution (~0.00156 cm-1), room temperature absorption spectra of pure (99.99% chemical purity) natural sample of ethane and lean mixtures of the high-purity ethane diluted with N2. A Bruker IFS 120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington was used to record the data. A standard Voigt line shape was assumed to fit all the data since no line mixing or other non Voigt line shapes were required to fit any of the spectra used in the analysis. Short spectral intervals (~2 to 2.5 cm-1) of all 17 spectra covering a specific PQ or RQ sub band were fit simultaneously. For the first time in an ethane band, pressure-broadened half-width coefficients were determined for each of the torsional-split components. Constraints were used such that the half-width coefficients of both torsional-split components were identical for a specific broadening gas. No pressure-induced shift coefficients were necessary to fit the spectra to their noise level. The present study revealed for the first time the dependence of self- and N2-broadened half-width coefficients upon the J, K quantum numbers of the transitions in ethane. A number of transitions belonging to the 9+ 4- 4 and the 9+2 4-2 4 hot bands were also observed in the fitted regions and measurements were made when possible.

  3. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  4. Theoretical modeling of deuteration-induced shifts of the 0-0 bands in absorption spectra of selected aromatic amines: the role of the double-well potential.

    PubMed

    Andrzejak, Marcin; Kolek, Przemys?aw

    2013-12-01

    The harmonic approximation fails for inversion of the NH2 group in the ground state of aromatic amines as this vibration is characterized by a symmetric double-well potential with relatively small energy barrier. In such cases, the standard harmonic vibrational analysis is inapplicable: the inversion frequency calculated for the bottom of the potential well is strongly overestimated, while it attains imaginary values for the planar conformation of the molecule. The model calculations are discussed taking explicitly into account the presence of the double-well potential. The study is initially focused on reproduction of the deuteration-induced shifts of the 0-0 absorption band for anthranilic acid. The (incorrect) harmonic frequency of the NH2 inversion is replaced by a better one, obtained from numerical calculations employing a simple, quartic-quadratic model for the double-well potential, which is parametrized using just the harmonic frequency of the inversion and the height of the energy barrier. This operation brings theoretical results to qualitative agreement with experiment. A still better match is achieved with a modified version of the model that accounts for mixing of the NH2 inversion mode with other normal modes while retaining the initial simplicity of one-dimensional approach. The corrected results show surprisingly good accuracy, with deviations of the calculated shifts from the experimental values reduced to less than 5 cm(-1). In order to test the performance of the model for systems with higher energy barrier for the NH2 inversion, we have measured the LIF excitation spectra of three different amminobenzonitriles. Partial assignment of the 0-0 bands has been achieved based on their relative intensities for samples with different isotopic exchange ratios. Calculated shifts are in excellent agreement with experimental values for the identified bands. Theoretical predictions are used to complete the assignment of the 0-0 bands in the spectra of the studied amminobenzonitriles. PMID:24219819

  5. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements.

    PubMed

    Lin, Bing; Ismail, Syed; Wallace Harrison, F; Browell, Edward V; Nehrir, Amin R; Dobler, Jeremy; Moore, Berrien; Refaat, Tamer; Kooi, Susan A

    2013-10-10

    The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 ?m CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (?d) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the ?d measurements for surfaces similar to the playa of RRV, Nevada, will be better than 0.1% for 10 s averages. For other types of surfaces such as low-reflectivity snow and ice surfaces, the precision and bias errors will be within 0.23% and 0.1%, respectively. Including thin clouds with optical depths up to 1, the SNR of the ?d measurements with 0.1 s integration period for surfaces similar to the playa of RRV, Nevada, will be greater than 94 and 65 for sideline positions placed +3 and +10??pm, respectively, from the CO(2) line center at 1571.112 nm. The CO(2) column bias errors introduced by the thin clouds are ?0.1% for cloud optical depth ?0.4, but they could reach ?0.5% for more optically thick clouds with optical depths up to 1. When the cloud and surface altitudes and scattering amplitudes are obtained from matched filter analysis, the cloud bias errors can be further reduced. These results indicate that the IM-CW LAS instrument approach when implemented in a dawn/dusk orbit can make accurate CO(2) column measurements from space with preferential weighting across the mid to lower troposphere in support of a future ASCENDS mission. PMID:24217721

  6. Energy absorption of free rare gas clusters irradiated by intense VUV pulses of a free electron laser

    NASA Astrophysics Data System (ADS)

    Schulz, J.; Wabnitz, H.; Laarmann, T.; Gürtler, P.; Laasch, W.; Swiderski, A.; Möller, Th.; de Castro, A. R. B.

    2003-07-01

    As one of the first experiments at the free electron laser of the TESLA Test Facility (TTF) the Coulomb explosion of Xenon clusters irradiated with high intensity pulses at a wavelength of 98 nm has been observed. Classical trajectory calculations have been performed in order to illuminate the energy absorption process. Comparison with typical parameters in the infrared regime shows that above barrier ionization is suppressed due to the fast oscillating field and thermionic ionization prevails.

  7. Iron absorption band analysis for the discrimination of iron rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (principal investigator)

    1973-01-01

    The author has identified the following significant results. A lineament study of the Nevada test site is near completion. Two base maps (1:500,000) have been prepared, one of band 7 lineaments and the other of band 5 lineaments. In general, more lineaments and more faults are seen on band 5. About 45% of the lineaments appear to be faults and contacts, the others being predominantly streams, roads, railway tracks, and mountain crests. About 25% of the lineaments are unidentified so far. Special attention is being given to unmapped extensions of faults, groups of unmapped lineaments, and known mineralized areas and alteration zones. Earthquake epicenters recorded from 1869 to 1963 have been plotted on the two base maps. Preliminary examination as yet indicates no basic correlation with the lineaments. Attempts are being made to subtract bands optically, using an I2S viewer, an enlarger, and a data color viewer. Success has been limited so far due to technical difficulties, mainly vignetting and poor light sources, within the machines. Some vegetation and rock type differences, however, have been discerned.

  8. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-28

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  9. Application of surface pressure measurements of O2-band differential absorption radar system in three-dimensional data assimilation on hurricane: Part II - A quasi-observational study

    NASA Astrophysics Data System (ADS)

    Min, Qilong; Gong, Wei; Lin, Bing; Hu, Yongxiang

    2015-01-01

    This is the second part on assessing the impacts of assimilating various distributions of sea-level pressure (SLP) on hurricane simulations, using the Weather and Research Forecast (WRF) three dimensional variational data assimilation system (3DVAR). One key purpose of this series of study is to explore the potential of using remotely sensed sea surface barometric data from O2-band differential absorption radar system currently under development for server weather including hurricane forecasts. In this part II we further validate the conclusions of observational system simulation experiments (OSSEs) in the part I using observed SLP for three hurricanes that passed over the Florida peninsula. Three SLP patterns are tested again, including all available data near the Florida peninsula, and a band of observations either through the center or tangent to the hurricane position. Before the assimilation, a vortex SLP reconstruction technique is employed for the use of observed SLP as discussed in the part I. In agreement with the results from OSSEs, the performance of assimilating SLP is enhanced for the two hurricanes with stronger initial minimum SLP, leading to a significant improvement in the track and position relative to the control where no data are assimilated. On the other hand, however, the improvement in the hurricane intensity is generally limited to the first 24-48 h of integration, while a high resolution nested domain simulation, along with assimilation of SLP in the coarse domain, shows more profound improvement in the intensity. A diagnostic analysis of the potential vorticity suggests that the improved track forecasts are attributed to the combined effects of adjusting the steering wind fields in a consistent manner with having a deeper vortex, and the associated changes in the convective activity.

  10. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.301 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.

  11. Infrared, visible and ultraviolet absorptions of transition metal doped ZnS crystals with spin-polarized bands

    SciTech Connect

    Zhang, J.H.; Ding, J.W.; Cao, J.X.; Zhang, Y.L.

    2011-03-15

    The formation energies, electronic structures and optical properties of TM:ZnS systems (TM=Cr{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Co{sup 2+} and Ni{sup 2+}) are investigated by using the first principles method. It is found that the wurtzite and zinc-blende structures have about the same stability, and thus can coexist in the TM:ZnS system. From the wurtzite TM:ZnS, especially, a partially filled intermediate band (IB) is obtained at TM=Cr{sup 2+}, Ni{sup 2+} and Fe{sup 2+}, while it is absent at TM=Mn{sup 2+} and Co{sup 2+}. The additional absorptions are obtained in infrared, visible and ultraviolet (UV) regions, due to the completely spin-polarized IB at Fermi level. The results are very helpful for both the designs and applications of TM:ZnS opto-electronics devices, such as solar-cell prototype. -- Graphical abstract: Absorption coefficients of w-TM{sub x}Zn{sub 1-x}S crystals (TM=Cr{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Co{sup 2+} and Ni{sup 2+}) at x=0.028. The results may be helpful for the design and applications of TM:ZnS devices, especially for the new high efficiency solar-cell prototype, UV detector and UV LEDs. Display Omitted Research highlights: > It is found that the wurtzite and zinc-blende structures can coexist in TM:ZnS. > An intermediate band is obtained in TM:ZnS at TM=Cr{sup 2+}, Ni{sup 2+} and Fe{sup 2+}. > The absorption coefficients are obtained in infrared, visible and ultraviolet regions.

  12. Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities and complex refractive indices derived from infrared spectra

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.; Zhao, Guizhi

    1986-01-01

    The infrared absorption spectra of thin crystalline films of sulfur dioxide at 90 K are reported in the 2700 to 450/cm region. The observed multiplicity of the spectral features in the regions of fundamentals is attributed to factor group splittings of the modes in a biaxial crystal lattice and the naturally present minor S-34, S-36, and O-18 isotopic species. Complex refractive indices determined by an iterative Kramers-Kronig analysis of the extinction data, and absolute band strengths derived from them, are also reported in this region.

  13. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  14. Hydrogen-Saturated Saline Protects Intensive Narrow Band Noise-Induced Hearing Loss in Guinea Pigs through an Antioxidant Effect

    PubMed Central

    Chen, Liwei; Yu, Ning; Lu, Yan; Wu, Longjun; Chen, Daishi; Guo, Weiwei; Zhao, Lidong; Liu, Mingbo; Yang, Shiming; Sun, Xuejun; Zhai, Suoqiang

    2014-01-01

    The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5–3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect. PMID:24945316

  15. Band Gap Energy of Chalcopyrite Thin Film Solar Cell Absorbers Determined by Soft X-Ray Emission and Absorption Spectroscopy

    SciTech Connect

    Bar, M.; Weinhardt, L.; Pookpanratana, S.; Heske, C.; Nishiwaki, S.; Shafarman, W.; Fuchs, O.; Blum, M.; Yang, W.; Denlinger, J.D.

    2008-05-11

    The chemical and electronic structure of high efficiency chalcopyrite thin film solar cell absorbers significantly differs between the surface and the bulk. While it is widely accepted that the absorber surface exhibits a Cu-poor surface phase with increased band gap (Eg), a direct access to the crucial information of the depth-dependency of Eg is still missing. In this paper, we demonstrate that a combination of x-ray emission and absorption spectroscopy allows a determination of Eg in the surface-near bulk and thus complements the established surface- and bulk-sensitive techniques of Eg determination. As an example, we discuss the determination of Eg for a Cu(In,Ga)Se2 absorber [(1.52 +- 0.20) eV].

  16. Depolarisation of light scattered by disperse systems of low-dimensional potassium polytitanate nanoparticles in the fundamental absorption band

    SciTech Connect

    Zimnyakov, D A; Yuvchenko, S A; Pravdin, A B; Kochubey, V I; Gorokhovsky, A V; Tretyachenko, E V; Kunitsky, A I

    2014-07-31

    The results of experimental studies of depolarising properties of disperse systems on the basis of potassium polytitanate nanoplatelets and nanoribbons in the visible and near-UV spectral regions are presented. It is shown that in the fundamental absorption band of the nanoparticle material the increase in the depolarisation factor takes place for the radiation scattered perpendicularly to the direction of the probing beam. For nanoribbons a pronounced peak of depolarisation is observed, which is caused by the essential anisotropy of the particles shape and the peculiarities of the behaviour of the material dielectric function. The empirical data are compared with the theoretical results for 'nanodiscs' and 'nanoneedles' with the model dielectric function, corresponding to that obtained from optical constants of the titanium dioxide dielectric function. (laser biophotonics)

  17. Performance of Ultrathin Silicon Solar Microcells with Nanostructures of Relief Formed by Soft Imprint Lithography for Broad Band Absorption Enhancement

    SciTech Connect

    Shir, Daniel J.; Yoon, Jongseung; Chanda, Debashis; Ryu, Jae-Ha; Rogers, John A.

    2010-08-11

    Recently developed classes of monocrystalline silicon solar microcells can be assembled into modules with characteristics (i.e., mechanically flexible forms, compact concentrator designs, and high-voltage outputs) that would be impossible to achieve using conventional, wafer-based approaches. This paper presents experimental and computational studies of the optics of light absorption in ultrathin microcells that include nanoscale features of relief on their surfaces, formed by soft imprint lithography. Measurements on working devices with designs optimized for broad band trapping of incident light indicate good efficiencies in energy production even at thicknesses of just a few micrometers. These outcomes are relevant not only to the microcell technology described here but also to other photovoltaic systems that benefit from thin construction and efficient materials utilization.

  18. Europa's ultraviolet absorption band (260 to 320 nm). Temporal and spatial evidence from IUE

    SciTech Connect

    Ockert, M.E.; Nelson, R.M.; Lane, A.L.; Matson, D.L.

    1987-06-01

    An analysis of 33 IUE UV spectra of Europa, obtained from 1978 to 1982 for orbital phase angles of 21 to 343 deg, confirms that the Lane et al. (1981) absorption feature, centered at 280 nm, is most clearly revealed when 223-333 deg orbital phase angle spectra are ratioed to those nearest 90 deg. The feature's strength is noted to have persisted over the 5-year period studied, suggesting that no large endogenically or exogenically generated changes in surface sulfur dioxide concentration have occurred. These results further substantiate the Lane et al. hypothesis that the feature is due to the implantation of Io plasma torus-derived sulfur ions on the Europa trailing side's water-ice surface. 31 references.

  19. Jupiter's atmospheric composition and cloud structure deduced from absorption bands in reflected sunlight

    NASA Technical Reports Server (NTRS)

    Sato, M.; Hansen, J. E.

    1979-01-01

    The spectrum of sunlight reflected by Jupiter is analyzed by comparing observations of Woodman (1979) with multiple-scattering computations. The analysis yields information on the vertical cloud structure at several latitudes and on the abundance of CH4 and NH3 in the atmosphere of Jupiter. The abundances of CH4 and NH3 suggest that all ices and rocks are overabundant on Jupiter by a factor of 2 or more, providing an important constraint on models for the formation of Jupiter from the primitive solar nebula. The pressure level of the clouds, the gaseous NH3 abundance, the mean temperature profile, and the Clausius-Clapeyron relation suggest that these clouds are predominantly ammonia crystals with the cloud bottom at 600-700 mb. A diffuse distribution of aerosols exists between 150 and 500 mb, and the spectral variation of albedo reflects a changing bulk absorption coefficient of the material composing the aerosols and is diagnostic of the aerosol composition.

  20. Optimizing organic photovoltaics using tailored heterojunctions: A photoinduced absorption study of oligothiophenes with low band gaps

    NASA Astrophysics Data System (ADS)

    Schueppel, R.; Schmidt, K.; Uhrich, C.; Schulze, K.; Wynands, D.; Brédas, J. L.; Brier, E.; Reinold, E.; Bu, H.-B.; Baeuerle, P.; Maennig, B.; Pfeiffer, M.; Leo, K.

    2008-02-01

    A power conversion efficiency of 3.4% with an open-circuit voltage of 1V was recently demonstrated in a thin film solar cell utilizing fullerene C60 as acceptor and a new acceptor-substituted oligothiophene with an optical gap of 1.77eV as donor [K. Schulze , Adv. Mater. (Weinheim, Ger.) 18, 2872 (2006)]. This prompted us to systematically study the energy- and electron transfer processes at the oligothiophene:fullerene heterojunction for a homologous series of these oligothiophenes. Cyclic voltammetry and ultraviolet photoelectron spectroscopy data show that the heterojunction is modified due to tuning of the highest occupied molecular orbital energy for different oligothiophene chain lengths, while the lowest unoccupied molecular orbital energy remains essentially fixed due to the presence of electron-withdrawing end groups (dicyanovinyl) attached to the oligothiophene. Use of photoinduced absorption (PA) allows the study of the electron transfer process at the heterojunction to C60 . Quantum-chemical calculations performed at the density functional theory and/or time-dependent density functional theory level and cation absorption spectra of diluted DCVnT provide an unambiguous identification of the transitions observed in the PA spectra. Upon increasing the effective energy gap of the donor-acceptor pair by increasing the ionization energy of the donor, photoinduced electron transfer is eventually replaced with energy transfer, which alters the photovoltaic operation conditions. The optimum open-circuit voltage of a solar cell is thus a trade-off between efficient charge separation at the interface and maximized effective gap. It appears that the open-circuit voltages of 1.0-1.1V in our solar cell devices have reached an optimum since higher voltages result in a loss in charge separation efficiency.

  1. Comparison of line-by-line and band models of near-IR methane absorption applied to outer planet atmospheres

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Fry, P. M.; Boudon, V.; Campargue, A.; Nikitin, A.

    2012-03-01

    Recent improvements in high spectral resolution measurements of methane absorption at wavenumbers between 4800 cm-1 and 7919 cm-1 have greatly increased the number of lines with known lower state energies, the number of weak lines, and the number of lines observed at low temperatures (Campargue, A., Wang, L., Kassi, S., Mašát, M., Votava, O. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 1141-1151; Campargue, A., Wang, L., Liu, A.W., Hu, S.M., Kassi, S. [2010]. Chem. Phys. 373, 203-210; Mondelain, D., Kassi, S., Wang, L.C. [2011]. Phys. Chem. Chem. Phys. 13, 7985-7996; Nikitin, A.V. et al. [2011a]. J. Mol. Spectrosc. 268, 93-106; Nikitin, A.V. et al. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 2211-2224; Wang, L., Kassi, S., Campargue, A. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 1130-1140; Wang, L., Kassi, S., Liu, A.W., Hu, S.M., Campargue, A. [2011]. J. Quant. Spectrosc. Radiat. Trans. 112, 937-951), making it possible to fit near-IR spectra of Titan using line-by-line calculations instead of band models (Bailey, J., Ahlsved, L., Meadows, V.S. [2011]. Icarus 213, 218-232; de Bergh, C. et al. [2011]. Planet. Space Sci. doi:10.1016/j.pss.2011.05.003). Using these new results, we compiled an improved line list relative that used by Bailey et al. by updating several spectral regions with either calculated or more recently measured line parameters, revising lower state energy estimates for lines lacking them, and adding room temperature lines to make the list applicable over a wider range of temperatures. We compared current band models with line-by-line calculations using this new line list, both to assess the behavior of band models, and to identify remaining issues with line-by-line calculations when applied to outer planet atmospheres and over a wider range of wavelengths. Comparisons were made for a selection of uniform paths representing outer planet conditions and for representative non-uniform paths within the atmospheres of Uranus, Saturn, and Jupiter, as well as comparisons with 77 K lab measurements of McKellar (McKellar, A.R.W. [1989]. Can. J. Phys. 67, 1027-1035). At room temperatures and pressures band models and new line-by-line calculations generally agree within 1.6-3% RMS between 1800 cm-1 and 7919 cm-1, but disagree more significantly near 3200-3500 cm-1 and in the region where CH3D line data are missing between 5200 cm-1 and 5600 cm-1, and also at band edges near 3250 cm-1 and 5600 cm-1, where far wing line shapes may need improvement. For intermediate temperatures and methane paths, the Irwin et al. (Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Bowles, N., Calcutt, S.B., Remedios, J.J. [2006]. Icarus 181, 309-319) band model agrees best with the line-by-line calculations at wavenumbers less than 5000 cm-1. At low temperatures and long path lengths the band models diverge more seriously, with that of Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2010]. Icarus 205, 309-319) providing the best agreement with line-by-line calculations. Model spectra computed from the band and line-by-line models were also compared with a Keck/NIRC2 H-band spectrum of Uranus (Sromovsky, L.A., Fry, P.M. [2008]. Icarus 193, 252-266), which could be fit well with either of the two band models, but the main aerosol layer required an optical depth five times smaller using the Irwin et al. band model than for either line-by-line calculations or the Karkoschka and Tomasko band model. By far the best fit to the Uranus H-band spectrum was obtained using line-by-line absorption calculations with a far wing line shape intermediate between that of Hartmann et al. (Hartmann, J.-M., Boulet, C., Brodbeck, C., van Thanh, N., Fouchet, T., Drossart, P. [2002]. J. Quant. Spectrosc. Radiat. Trans. 72, 117-122) and that of de Bergh et al. (de Bergh, C. et al. [2011]. Planet. Space Sci. doi:10.1016/j.pss.2011.05.003).

  2. IR ? s(XH) Absorption band shape in H-bonded complex. I. Theory

    NASA Astrophysics Data System (ADS)

    Abramczyk, Halma

    1990-07-01

    The IR band shape theory of the stretching mode ? s (XH…Y) in H-bonded complexes is presented. The proton in the H-bond involves motion in the Born-Oppenheimer energy potential which is accompanied by the anharmonic coupling to the low-frequency hydrogen-bridge stretching motion ? ?. Both the energy potential well and the anharmonic coupling are randomly modulated with time. The fluctuations of the energy potential arising from the direct coupling to the bath obey the stochastic Liouville equation. The time evolution of the anharmonic coupling constant is governed by the resonance energy exchange between the ? ? mode and the bath. The theory can be applied both to weak and strong H-bonds.

  3. Visible-band (390-940nm) monitoring of the Pluto absorption spectrum during the New Horizons encounter

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Marchant, Jonathan M.

    2015-11-01

    Whilst Earth-based observations obviously cannot compete with New Horizons’ on-board instrumentation in most regards, the New Horizons data set is essentially a snapshot of Pluto in July 2015. The New Horizons project team therefore coordinated a broad international observing campaign to provide temporal context and to take advantage of the once-in-a-lifetime opportunity to directly link our Earth-based view of Pluto with “ground truth” provided by in situ measurements. This both adds value to existing archival data sets and forms the basis of long term, monitoring as we watch Pluto recede from the Sun over the coming years. We present visible-band (390-940nm) monitoring of the Pluto absorption spectrum over the period July - October 2015 from the Liverpool Telescope (LT). In particular we wished to understand the well-known 6-day fluctuation in the methane ice absorption spectrum which is observable from Earth in relation to the never-before-available high resolution maps of the Pluto surface. The LT is a fully robotic 2.0m optical telescope that automatically and dynamically schedules observations across 30+ observing programmes with a broad instrument suite. It is ideal for both reactive response to dynamic events (such as the fly-by) and long term, stable monitoring with timing constraints individually optimised to the science requirements of each programme. For example past studies of the observed CH4 absorption variability have yielded ambiguity of whether they were caused by real physical changes or geometric observation constraints, in large part because of the uneven time sampling imposed by traditional telescope scheduling.

  4. Temperature dependent infrared absorption, crystal-field and intensity analysis of Ce3+ doped LiYF4

    NASA Astrophysics Data System (ADS)

    Wells, Jon-Paul R.; Horvath, Sebastian P.; Reid, Michael F.

    2015-09-01

    Infrared absorption has been used to determine the crystal-field levels of the 2F7/2 excited multiplet of trivalent cerium doped into scheelite structure LiYF4 single crystals. A crystal-field analysis well accounts for a total of six experimentally observed energy levels and the ground state g-values as previously determined by electron paramagnetic resonance, whilst intensity simulations confirm the experimentally assigned level symmetries. Temperature dependent spectral line broadening measurements highlight the importance of coupling to low frequency phonon modes of the YF8 tetrahedron.

  5. Modeling of collision-induced infrared absorption spectra of H2 pairs in the first overtone band at temperatures from 20 to 500 K

    NASA Technical Reports Server (NTRS)

    Zheng, Chunguang; Borysow, Aleksandra

    1995-01-01

    A simple formalism is presented that permits quick computations of the low-resolution, rotovibrational collision-induced absorption (RV CIA) spectra of H2 pairs in the first overtone band of hydrogen, at temperatures from 20 to 500 K. These spectra account for the free-free transitions. The sharp dimer features, originating from the bound-free, free-bound, and bound-bound transitions are ignored, though their integrated intensities are properly accounted for. The method employs spectral model line- shapes with parameters computed from the three lowest spectral moments. The moments are obtained from first principles expressed as analytical functions of temperature. Except for the sharp dimer features, which are absent in this model, the computed spectra reproduce closely the results of exact quantum mechanical lineshape computations. Comparisons of the computed spectra with existing experimental data also show good agreement. The work interest for the modeling of the atmospheres of the outer planets in the near-infrared region of the spectrum. The user-friendly Fortran program developed here is available on request from the authors.

  6. Genetic engineering of band-egde optical absorption in Si/Ge superlattices

    NASA Astrophysics Data System (ADS)

    D'Avezac, Mayeul; Luo, Jun-Wei; Chanier, Thomas; Zunger, Alex

    2012-02-01

    Integrating optoelectronic functionalities directly into the mature Silicon-Germanium technology base would prove invaluable for many applications. Unfortunately, both Si and Ge display indirect band-gaps unsuitable for optical applications. It was previously shown (Zachai et al. PRL 64 (1990)) that epitaxially grown [(Si)n(Ge)m]p (i. e. a single repeat unit) grown on Si can form direc-gap heterostructures with weak optical transitions as a result of zone folding and quantum confinement. The much richer space of multiple-period superlattices [(Si)n1(Ge)n2(Si)n3(Ge)n4GenN]p has not been considered. If M=?ni is the total number of monolayers, then there are, roughly, 2^M different possible superlattices. To explore this large space, we combine a (i) genetic algorithm for effective configurational search with (ii) empirical pseudopotential designed to accurately reproduce the inter-valley and spin-orbit splittings, as well as hydrostatic and biaxial strains. We will present multiple-period SiGe superlattices with large electric dipole moments and direct gaps at ? yielded by this search. We show this pattern is robust against known difficulties during experimental synthesis.

  7. Modelling of Collision Induced Absorption Spectra Of H2-H2 Pairs for the Planetary Atmospheres Structure: The Second Overtone Band

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra; Borysow, Jacek I.

    1998-01-01

    The main objective of the proposal was to model the collision induced, second overtone band of gaseous hydrogen at low temperatures. The aim of this work is to assist planetary scientists in their investigation of planetary atmospheres, mainly those of Uranus and Neptune. The recently completed extended database of collision induced dipole moments of hydrogen pairs allowed us, for the first time, to obtain dipole moment matrix elements responsible for the roto-vibrational collision induced absorption spectra of H2-H2 in the second overtone band. Despite our numerous attempts to publish those data, the enormous volume of the database did not allow us to do this. Instead, we deposited the data on a www site. The final part of this work has been partially supported by NASA, Division for Planetary Atmospheres. In order to use our new data for modelling purpose, we first needed to test how well we can reproduce the existing experimental data from theory, when using our new input data. Two papers resulted from this work. The obtained agreement between theoretical results and the measurements appeared to be within 10-30%. The obviously poorer agreement than observed for the first H2 overtone, the fundamental, and the rototranslational bands can be attributed to the fact that dipole moments responsible for the second overtone are much weaker, therefore susceptible to larger numerical uncertainties. At the same time, the intensity of the second overtone band is much weaker and therefore it is much harder to be measured accurately in the laboratory. We need to point out that until now, no dependable model of the 2nd overtone band was available for modelling of the planetary atmospheres. The only one, often referred to in previous works on Uranian and Neptune's atmospheres, uses only one lineshape, with one (or two) parameter(s) deduced at the effective temperature of Uranus (by fitting the planetary observation). After that, the parameter(s) was(were) made temperature dependent according to some very simple relation. Summarizing, no reliable temperature-dependent model has been available yet. Our approach was a bit different from similar attempts done earlier, on account of the poorer agreement of theory with experiment. We needed to resort to some semi-empirical procedure. While we were in a favourable position to be able to rely on the physical input data, these, apparently, did not supply the most dependable predictions (simply because the results did not agree well enough with experimental data). On the other hand, the relative deviations between the theory and experiment were comparable at 77 and at 298 K. That fact indicated that theory is capable of predicting the temperature dependence of the absorption spectra well. We have thus chosen the "middle way". We have fitted the existing measurements with many 3- parameter lineshapes, in order to achieve the closest fit.

  8. Light absorption in blood during low-intensity laser irradiation of skin

    SciTech Connect

    Barun, V V; Ivanov, A P

    2010-06-23

    An analytical procedure is proposed for describing optical fields in biological tissues inhomogeneous in the depth direction, such as human skin, with allowance for multiple scattering. The procedure is used to investigate the depth distribution of the optical power density in homogeneous and multilayer dermis when the skin is exposed to a laser beam. We calculate the absorbed laser power spectra for oxy- and deoxyhaemoglobin at different depths in relation to the absorption selectivity of these haemoglobin derivatives and the spectral dependence of the optical power density and demonstrate that the spectra vary considerably with depth. A simple exponential approximation is proposed for the depth distribution of the power density in the epidermis and dermis. (laser methods in medicine)

  9. Collision-Induced Absorption by H2 Pairs in the Second Overtone Band at 298 and 77.5 K: Comparison between Experimental and Theoretical Results

    NASA Technical Reports Server (NTRS)

    Brodbeck, C.; Bouanich, J.-P.; van-Thanh, Nguyen; Fu, Y.; Borysow, A.

    1999-01-01

    The collision-induced spectra of hydrogen in the region of the second overtone at 0.8 microns have been recorded at temperatures of 298 and 77.5 K and for gas densities ranging from 100 to 800 amagats. The spectral profile defined by the absorption coefficient per squared density varies significantly with the density, so that the binary absorption coefficient has been determined by extrapolations to zero density of the measured profiles. Our extrapolated measurements and our recent ab initio quantum calculation are in relatively good agreement with one another. Taking into account the very weak absorption of the second overtone band, the agreement is, however, not as good as it has become (our) standard for strong bands.

  10. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  11. The Infrared Spectra and Absorption Intensities of Amorphous Ices: Methane and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark J.

    2015-11-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and the interstellar medium, with an emphasis on amorphous and crystalline ices below ~70 K. Our goal is to add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on two of the simplest and most abundant components of icy bodies in the solar system - methane (CH4) and carbon dioxide (CO2). Infrared spectra from ˜ 4500 to 500 cm?1 have been measured for each of these molecules in ?m-thick films at temperatures from 10 to 70 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  12. Efficient Calculation of Electronic Absorption Spectra by Means of Intensity-Selected Time-Dependent Density Functional Tight Binding.

    PubMed

    Rüger, Robert; van Lenthe, Erik; Lu, You; Frenzel, Johannes; Heine, Thomas; Visscher, Lucas

    2015-01-13

    During the last two decades density functional based linear response approaches have become the de facto standard for the calculation of optical properties of small- and medium-sized molecules. At the heart of these methods is the solution of an eigenvalue equation in the space of single-orbital transitions, whose quickly increasing number makes such calculations costly if not infeasible for larger molecules. This is especially true for time-dependent density functional tight binding (TD-DFTB), where the evaluation of the matrix elements is inexpensive. For the relatively large systems that can be studied the solution of the eigenvalue equation therefore determines the cost of the calculation. We propose to do an oscillator strength based truncation of the single-orbital transition space to reduce the computational effort of TD-DFTB based absorption spectra calculations. We show that even a sizable truncation does not destroy the principal features of the absorption spectrum, while naturally avoiding the unnecessary calculation of excitations with small oscillator strengths. We argue that the reduced computational cost of intensity-selected TD-DFTB together with its ease of use compared to other methods lowers the barrier of performing optical property calculations of large molecules and can serve to make such calculations possible in a wider array of applications. PMID:26574214

  13. Calculation of vibrational (J=0) excitation energies and band intensities of formaldehyde using the recursive residue generation method

    NASA Astrophysics Data System (ADS)

    Poulin, Nicolas M.; Bramley, Matthew J.; Carrington, Tucker, Jr.; Kjaergaard, Henrik G.; Henry, Bryan R.

    1996-05-01

    We use the recursive residue generation method (RRGM) with an exact kinetic energy operator to calculate vibrational excitation energies and band intensities for formaldehyde. The basis is a product of one-dimensional potential optimized discrete variable representation (PO-DVR) functions for each coordinate. We exploit the symmetry by using symmetry adapted basis functions obtained by taking linear combinations of PO-DVR functions. Our largest basis set consists of 798 600 functions (per symmetry block). The Lanczos tridiagonal representation of the Hamiltonian is generated iteratively (without constructing matrix elements explicitly) by sequential transformations. We determine a six-dimensional dipole moment function from the ab initio dipole moment values computed at the QCISD level with a 6-311++G(d,p) basis set. We converged all A1, B2 and B1 vibrational states up to the combination band with two quanta in the C-O stretch and one quantum in a C-H stretch at about 6 350 cm-1 above zero point energy. We present a simulated (J=0) infrared spectrum of CH2O for transitions from the ground state.

  14. Indirect optical absorption and origin of the emission from {beta}-FeSi{sub 2} nanoparticles: Bound exciton (0.809 eV) and band to acceptor impurity (0.795 eV) transitions

    SciTech Connect

    Lang, R.; Amaral, L.

    2010-05-15

    We investigated the optical absorption of the fundamental band edge and the origin of the emission from {beta}-FeSi{sub 2} nanoparticles synthesized by ion-beam-induced epitaxial crystallization of Fe{sup +} implanted SiO{sub 2}/Si(100) followed by thermal annealing. From micro-Raman scattering and transmission electron microscopy measurements it was possible to attest the formation of strained {beta}-FeSi{sub 2} nanoparticles and its structural quality. The optical absorption near the fundamental gap edge of {beta}-FeSi{sub 2} nanoparticles evaluated by spectroscopic ellipsometry showed a step structure characteristic of an indirect fundamental gap material. Photoluminescence spectroscopy measurements at each synthesis stage revealed complex emissions in the 0.7-0.9 eV spectral region, with different intensities and morphologies strongly dependent on thermal treatment temperature. Spectral deconvolution into four transition lines at 0.795, 0.809, 0.851, and 0.873 eV was performed. We concluded that the emission at 0.795 eV may be related to a radiative direct transition from the direct conduction band to an acceptor level and that the emission at 0.809 eV derives from a recombination of an indirect bound exciton to this acceptor level of {beta}-FeSi{sub 2}. Emissions 0.851 and 0.873 eV were confirmed to be typical dislocation-related photoluminescence centers in Si. From the energy balance we determined the fundamental indirect and direct band gap energies to be 0.856 and 0.867 eV, respectively. An illustrative energy band diagram derived from a proposed model to explain the possible transition processes involved is presented.

  15. Airborne measurements of NO3 and N2O5 using broad band cavity enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ouyang, B.; Kennedy, O. J.; Jones, R.

    2010-12-01

    Active night time chemistry can occur when the concentrations of certain species build up as a result of the weakening of their sinks in the night time. Of this class, NO3 and N2O5 (the latter in equilibrium with NO3 and NO2) are important as they not only control the night-time oxidative capacities of the atmosphere, via reactions between NO3 with VOCs, but can also determine the removal rate of NOx, via heterogeneous deposition of N2O5 to form HNO3 and/or its reaction with some inorganic aerosol components such as Cl-. In this study, a three-channel instrument was constructed and deployed on the British FAAM BAe 146 atmospheric research aircraft to simultaneously measure concentrations of NO3, N2O5 and NO2 in the atmosphere, using the technique of broad band cavity enhanced absorption spectroscopy (BBCEAS) with high power light emitting diodes (LED) as the light source. Spatially highly resolved measurements were achieved by recording the spectra using 0.2 - 0.6 second integration times. Mixing ratios of up to 2 ppbv of N2O5 and 200 pptv of NO3 were observed for the first time in a typical European atmospheric environment. Vertical profiles of these species were captured from altitudes of a few tens of metres, the lowest accessible altitude during missed approaches of the aircraft, to up to 5 km. Analysis of the data suggested highly variable horizontal and vertical profiles of NO3 and N2O5 which were attributable to their very reactive nature in the atmosphere. Finally, comparison is made between these measurements and those previously reported over Eastern USA using cavity ring-down spectroscopy.

  16. Absolute intensity measurements of the (11/1/0)II-00/0/0 band of (C-12)(O-16)2 at 5.2 microns

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Benner, D. C.; Richardson, D. J.; Toth, R. A.

    1983-01-01

    A nonlinear least-squares fitting procedure has been used to derive absolute intensities for lines in the P, R, and Q branches of the (11/1/0)II-00/0/0 band of (C-12)(O-16)2 (band center = 1932/cm) from long-path 0.01/cm resolution laboratory spectra. The spectral data were recorded at room temperature and low pressure (less than 10 torr) with the Fourier transform spectrometer in the McMath solar telescope complex at Kitt Peak National Observatory. The observed line intensities were analyzed to derive the vibrational band intensity and F-factor coefficients. To obtain a good fit to the data, it was necessary to include terms in the expression for the F factor, which account for Coriolis-type and Fermi-type interactions and centrifugal distortion effects.

  17. Electronic spectra of pure uranyl(V) complexes: characteristic absorption bands due to a U(V)O2+ core in visible and near-infrared regions.

    PubMed

    Mizuoka, Koichiro; Tsushima, Satoru; Hasegawa, Miki; Hoshi, Toshihiko; Ikeda, Yasuhisa

    2005-09-01

    To clarify the electronic spectral properties of uranyl(V) complexes systematically, we measured absorption spectra of three types of pure uranyl(V) complexes: [U(V)O2(dbm)2DMSO]-, [U(V)O2(saloph)DMSO]-, and [U(V)O2(CO3)3]5- (dbm = dibenzoylmethanate, saloph = N,N'-disalicylidene-o-phenylenediaminate, DMSO = dimethyl sulfoxide). As a result, it was found that these uranyl(V) complexes have characteristic absorption bands in the visible-near-infrared (NIR) region, i.e., at around 640, 740, 860, 1470, and 1890 nm (molar absorptivity, epsilon = 150-900 M(-1).cm(-1)) for [U(V)O2(dbm)2DMSO]-, 650, 750, 900, 1400, and 1875 nm (epsilon = 100-300 M(-1).cm(-1)) for [U(V)O2(saloph)DMSO]-, and 760, 990, 1140, 1600, and 1800 nm (epsilon = 0.2-3.6 M(-1).cm(-1)) for [U(V)O2(CO3)3]5-. These characteristic absorption bands of the uranyl(V) complexes are attributable to the electronic transitions in the U(V)O2+ core because the spectral features are similar to each other despite the differences in the ligands coordinated to the equatorial plane of the U(V)O2+ moiety. On the other hand, the epsilon values of [U(V)O2(CO3)3]5- are quite smaller than those of [U(V)O2(dbm)2DMSO]- and [U(V)O2(saloph)DMSO]-. Such differences can be explained by the different coordination geometries around the center uranium in these uranyl(V) complexes. Consequently, the absorption bands of the uranyl(V) complexes in visible-NIR region were assigned to f-f transitions in the 5f1 configuration. PMID:16124798

  18. Optical absorption and band gap reduction in (Fe1-xCrx)2O3 solid solutions: A first-principles study

    SciTech Connect

    Wang, Yong; Lopata, Kenneth A.; Chambers, Scott A.; Govind, Niranjan; Sushko, Petr V.

    2013-12-02

    We provide a detailed theoretical analysis of the character of optical transitions and band gap reduction in (Fe1-xCrx)2O3 solid solutions using extensive periodic model and embedded cluster calculations. Optical absorption bands for x = 0.0, 0.5, and 1.0 are assigned on the basis of timedependent density functional theory (TDDFT) calculations. A band-gap reduction of as much as 0.7 eV with respect to that of pure ?-Fe2O3 is found. This result can be attributed to predominantly two effects: (i) the higher valence band edge for x ? 0.5, as compared to those in pure ?-Fe2O3 and ?-Cr2O3, and, (ii) the appearance of Cr ? Fe d–d transitions in the solid solutions. Broadening of the valence band due to hybridization of the O 2p states with Fe and Cr 3d states also contributes to band gap reduction.

  19. Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations

    NASA Technical Reports Server (NTRS)

    Reagan, John A.; Pilewskie, Peter A.; Scott-Fleming, Ian C.; Herman, Benjamin M.; Ben-David, Avishai

    1987-01-01

    Techniques for extrapolating earth-based spectral band measurements of directly transmitted solar irradiance to equivalent exoatmospheric signal levels were used to aid in determining system gain settings of the Halogen Occultation Experiment (HALOE) sunsensor being developed for the NASA Upper Atmosphere Research Satellite and for the Stratospheric Aerosol and Gas (SAGE) 2 instrument on the Earth Radiation Budget Satellite. A band transmittance approach was employed for the HALOE sunsensor which has a broad-band channel determined by the spectral responsivity of a silicon detector. A modified Langley plot approach, assuming a square-root law behavior for the water vapor transmittance, was used for the SAGE-2 940 nm water vapor channel.

  20. Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Pilewskie, P. A.; Scott-Fleming, I. C.; Hermann, B. M.

    1986-01-01

    Techniques for extrapolating Earth-based spectral band measurements of directly transmitted solar irradiance to equivalent exoatmospheric signal levels were used to aid in determining system gain settings of the Halogen Occultation Experiment (HALOE) sunsensor system being developed for the NASA Upper Atmosphere Research Satellite and for the Stratospheric Aerosol and Gas (SAGE) 2 instrument on the Earth Radiation Budget Satellite. A band transmittance approach was employed for the HALOE sunsensor which has a broad-band channel determined by the spectral responsivity of a silicon detector. A modified Langley plot approach, assuming a square-root law behavior for the water vapor transmittance, was used for the SAGE-2 940 nm water vapor channel.

  1. Clay composition and swelling potential estimation of soils using depth of absorption bands in the SWIR (1100-2500 nm) spectral domain

    NASA Astrophysics Data System (ADS)

    Dufréchou, Grégory; Granjean, Gilles; Bourguignon, Anne

    2014-05-01

    Swelling soils contain clay minerals that change volume with water content and cause extensive and expensive damage on infrastructures. Presence of clay minerals is traditionally a good estimator of soils swelling and shrinking behavior. Montmorillonite (i.e. smectite group), illite, kaolinite are the most common minerals in soils and are usually associated to high, moderate, and low swelling potential when they are present in significant amount. Characterization of swelling potential and identification of clay minerals of soils using conventional analysis are slow, expensive, and does not permit integrated measurements. SWIR (1100-2500 nm) spectral domain are characterized by significant spectral absorption bands related to clay content that can be used to recognize main clay minerals. Hyperspectral laboratory using an ASD Fieldspec Pro spectrometer provides thus a rapid and less expensive field surface sensing that permits to measure soil spectral properties. This study presents a new laboratory reflectance spectroscopy method that used depth of clay diagnostic absorption bands (1400 nm, 1900 nm, and 2200 nm) to compare natural soils to synthetic montmorillonite-illite-kaolinite mixtures. We observe in mixtures that illite, montmorillonite, and kaolinite content respectively strongly influence the depth of absorption bands at 1400 nm (D1400), 1900 nm (D1900), and 2200 nm (D2200). To attenuate or removed effects of abundance and grain size, depth of absorption bands ratios were thus used to performed (i) 3D (using D1900/D2200, D1400/D1900, and D2200/D1400 as axis), and (ii) 2D (using D1400/D1900 and D1900/D2200 as axis) diagrams of synthetic mixtures. In this case we supposed that the overall reduction or growth of depth absorption bands should be similarly affected by the abundance and grain size of materials in soil. In 3D and 2D diagrams, the mixtures define a triangular shape formed by two clay minerals as external envelop and the three clay minerals mixtures are located inside of the triangular shape. Clay composition of natural soils were estimated using 3D and 2D diagrams used as standard template from: (i) the average clay composition of the three closer mixtures when soil samples were plotted inside the triangular distribution of mixtures; and (ii) the closer mixture when the soil sample were plotted outside of the triangular distribution of mixtures. Comparison with X-ray diffraction analysis show reliable prediction of montmorillonite content that were used to estimate the swelling potential of soils. This method allows a simple, fast, and low cost method that classes soils into four swelling classes based on comparison with Methylene Blue test, and could be used as complementary or alternative method to traditional geotechnical analysis.

  2. Intensity-Modulated Continuous-Wave Laser Absorption Spectrometer at 1.57 Micrometer for Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Lin, Bing

    2014-01-01

    Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc. proposes to use the intensity-modulated, continuous-wave (IM-CW) laser absorption spectrometer (LAS) approach for the ASCENDS mission. Prototype LAS instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space LAS systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW LAS system for the active space CO2 mission ASCENDS.

  3. Effects of rapid thermal annealing conditions on GaInNAs band gap blueshift and photoluminescence intensity

    SciTech Connect

    Liverini, V.; Rutz, A.; Keller, U.; Schoen, S.

    2006-06-01

    We have studied the effects of various conditions of rapid thermal annealing (RTA) on 10 nm GaInNAs/GaAs single quantum wells (SQWs) with fixed indium concentration and increasing nitrogen content to obtain photoluminescence (PL) in the telecom wavelength regime of 1.3 and 1.5 {mu}m. Specifically, we analyzed the results of annealing for a fixed short time but at different temperatures and for longer times at a fixed temperature. In all experiments, InGaAs SQWs with the same In concentration were used as references. For both RTA conditions, the well-known blueshift of the band gap energy and the PL intensity improvement show trends that reveal that these are unrelated effects. At high RTA temperatures the PL efficiency reaches a maximum and then drops independently of N content. On the contrary, the blueshift experiences a rapid increase up to 700 deg. C (strong blueshift regime) and it saturates above this temperature (weak blueshift regime). Both these blueshift regimes are related to the nitrogen content in the SQWs but in different ways. In the strong blueshift regime, we could obtain activation energy for the blueshift process in the range of 1.25 eV, which increases with N content. Analysis with high-resolution x-ray diffraction (HRXRD) shows that the blueshift experienced in this regime is not due to a stoichiometric change in the QW. In the weak blueshift regime, the blueshift, which is only partly due to In outdiffusion, saturates more slowly the higher the N content. Annealing at the same temperature (600 deg. C) for a longer time shows that the blueshift saturates earlier than the PL intensity and that samples with higher nitrogen experience a larger blueshift. Only a small In outdiffusion for annealing at high temperatures (>650 deg. C) and long duration was observed. However, this modest stoichiometric change does not explain the large blueshift experienced by the GaInNAs SQWs. We conclude that the mechanism responsible for the drastic blueshift after annealing is related to the N content in the QW, while the improvement in PL integrated intensity is uniquely related to the annealing conditions.

  4. Time-dependent density functional theory treatment of the first UV absorption band in all-transoid permethyloligosilanes SinMe2n + 2 (n = 2-8, 10).

    PubMed

    Rooklin, David W; Schepers, Thorsten; Raymond-Johansson, Mary K; Michl, Josef

    2003-05-01

    The TD B3LYP/6-311G(d,p) method slightly overestimates the excitation energies of the first UV absorption band of the all-transoid conformers of SinMe2n + 2 (n = 2-8, 10), deduced from temperature-dependent measurements on conformer mixtures in hydrocarbon solvents, by a nearly constant amount (approximately 2000 cm-1). The TD B3LYP/6-31G(d) results are less satisfactory. The first band is calculated to be due to a sigma pi * excitation in Si2Me6 and to a superposition of overlapping sigma sigma * and sigma pi * excitations in the longer oligosilanes. The sigma pi * excitation is calculated to lie a little below the sigma sigma * excitation up to Si4Me10, the two transitions are nearly degenerate in Si5Me12, and the sigma sigma * excitation drops increasingly below the sigma pi * as the chain length is extended. The dipole strength of the sigma sigma * excitation grows by 4.8 D2 (D = debye) per added SiSi bond (more slowly up to n = 5) and the calculation overestimates it by a factor of about three. The sigma pi * excitation is computed to carry no or almost no oscillator strength, but as noted earlier by others, its presence is critical for the interpretation of the observed thermochromism. Upon cooling below room temperature, the first absorption maximum is blue-shifted in short chains and red-shifted in long chains. Unlike the prior investigators, we attribute the blue shift to the disappearance of hot bands built on the sigma pi * origin using intensity borrowing sigma-pi mixing vibrations (b1 in Si3Me8). As usual, the red shift is attributed to the disappearance of twisted conformers, which have higher calculated sigma sigma * excitation energies. PMID:12803073

  5. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. I. OBSERVATIONS OF ROTATIONALLY EXCITED CH AND CH{sup +} ABSORPTION AND STRONG, EXTENDED REDWARD WINGS ON SEVERAL DIBs

    SciTech Connect

    Dahlstrom, Julie; York, Donald G.; Welty, Daniel E.; Oka, Takeshi; Johnson, Sean; Jiang Zihao; Sherman, Reid; Hobbs, L. M.; Friedman, Scott D.; Sonnentrucker, Paule; Rachford, Brian L.; Snow, Theodore P.

    2013-08-10

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 A are found in absorption along the line of sight to Herschel 36, the star illuminating the bright Hourglass region of the H II region Messier 8. Interstellar absorption from excited CH{sup +} in the J = 1 level and from excited CH in the J = 3/2 level is also seen. To our knowledge, neither those excited molecular lines nor such strongly extended DIBs have previously been seen in absorption from interstellar gas. These unusual features appear to arise in a small region near Herschel 36 which contains most of the neutral interstellar material in the sight line. The CH{sup +} and CH in that region are radiatively excited by strong far-IR radiation from the adjacent infrared source Her 36 SE. Similarly, the broadening of the DIBs toward Herschel 36 may be due to radiative pumping of closely spaced high-J rotational levels of relatively small, polar carrier molecules. If this picture of excited rotational states for the DIB carriers is correct and applicable to most DIBs, the 2.7 K cosmic microwave background may set the minimum widths (about 0.35 A) of known DIBs, with molecular processes and/or local radiation fields producing the larger widths found for the broader DIBs. Despite the intense local UV radiation field within the cluster NGC 6530, no previously undetected DIBs stronger than 10 mA in equivalent width are found in the optical spectrum of Herschel 36, suggesting that neither dissociation nor ionization of the carriers of the known DIBs by this intense field creates new carriers with easily detectable DIB-like features. Possibly related profile anomalies for several other DIBs are noted.

  6. Application of surface pressure measurements from O2-band differential absorption radar system in three-dimensional data assimilation on hurricane: Part I - An observing system simulation experiments study

    NASA Astrophysics Data System (ADS)

    Min, Qilong; Gong, Wei; Lin, Bing; Hu, Yongxiang

    2015-01-01

    Sea level pressure (SLP) is an important variable in regulating hurricane motion. However, SLP generally cannot be measured in open oceans due to limited buoys. Because of the potential availability of an O2-band differential absorption radar for sea surface barometry, we investigate the value of assimilating various patterns of SLP from such a system on hurricane prediction using the Weather Research and Forecasting (WRF) three-dimensional variational data assimilation system (3DVAR) based on Observing System Simulation Experiments (OSSEs). An important objective of this series of study is to explore the potential to use space and airborne sea surface air pressure measurements from an O2-band differential absorption radar currently under development for server weather including hurricane forecasts. The surface pressure patterns include an area of SLP, and a band of SLP either through the center or tangent to the hurricane position; the latter two distributions are similar to what could be obtained from the differential absorption radar system, which could be installed on spaceborne satellites and/or mounted on reconnaissance aircraft. In the banded pressure cases, we propose a vortex reconstruction technique based on surface pressure field. Assimilating observations from the reconstructed surface pressure leads to a better representation of initial SLP and vertical cross-section of wind, relative to the control where no data is assimilated and to the assimilation without vortex reconstruction. In eight of the nine OSSEs simulations on three hurricanes with three leading times of integration, which cover a wide range of initial minimum SLP from 951 to 1011 hPa, substantial improvements are found not only in the hurricane track and position, but also in the hurricane intensity, in terms of the SLP and maximum surface wind. The only case without significant improvement is resulted from the very weak initial condition (SLP 1011 hPa), which had no clear indication of tropical disturbance at the stage for initialization. The improvements of assimilation are generally enhanced for the stronger hurricanes whose differences in initial minimum SLP between nature run and control are larger.

  7. Simultaneous generation of the 7.6-eV optical absorption band and F2 molecule in fluorine doped silica glass under annealing

    NASA Astrophysics Data System (ADS)

    Awazu, Koichi; Kawazoe, Hiroshi; Muta, Ken-ichi

    1991-04-01

    We examined chemical state of fluorine doped silica glasses and its thermal behavior. Almost all of the fluorine atoms were found to have the ?SiF structure with Raman spectroscopy. No optical absorption in the region of 3-9 eV was detected in the glass. When the glasses were annealed in a He atmosphere at 1000 °C, absorption bands peaking at 7.6 and 4.3 eV appeared. These two bands are attributed to the ?SiSi? structure and to F2 molecules, respectively. We proposed a thermal decomposition reaction expressed as ?SiF+FSi???SiSi?+F2. The concentrations of the reaction products, ?SiSi? and F2, estimated from the absorption cross sections were equal to each other within the errors of measurements. We also examined the radiation damage with ? ray. The concentration of E' center was almost the same for the same dose in silica glasses having different concentrations of FSi? and ?SiSi?. We suggest that FSi? and ?SiSi? were found to be stable for ?-irradiation at room temperature.

  8. Temperature Dependence of Individual Absorptions Bands in Olivine: Implications for Inferring Compositions of Asteroid Surfaces from Spectra

    NASA Technical Reports Server (NTRS)

    Sunshine, J. M.; Hinrichs, J. L.; Lucey, P. G.

    2000-01-01

    The temperature variations of individual absorptions in olivine are modeled and found to narrow, move slightly in position, and change in relative strength as predicted by theory. These thermal changes may be confused with compositional differences.

  9. Proposal for direct measurement of intense-field induced polarization in the continuum on the attosecond time scale using transient absorption

    NASA Astrophysics Data System (ADS)

    McCurdy, C. William; Haxton, Daniel; Li, Xuan

    2015-05-01

    A procedure is proposed for using transient absorption spectroscopy above the ionization threshold to measure the polarization of the continuum induced by an intense optical pulse. In this way transient absorption measurement can be used to probe sub-femtosecond intense field dynamics in atoms and molecules and extract the high frequency polarization that plays a central role in high harmonic generation. The method is based on a robust approximation to the dependence of these spectra on time-delay between an attosecond XUV probe pulse and an intense pump pulse that is verified over a wide range of intensities and time delays by all-electrons-active calculations using the Multiconfiguration Time-Dependent Hartree Fock method. To demonstrate the extraction of the field-induced polarization, we study the transient absorption spectrum of atomic Neon. Work at LBNL supported by USDOE, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, and work at UC Davis supported by USDOE grant No. DESC0007182.

  10. Effects of pressure and solvents on the infrared absorption intensity of the O-H stretching mode of phenol in solutions.

    PubMed

    Isogai, Hideto; Kato, Minoru; Taniguchi, Yoshihiro

    2004-11-01

    Effects of pressure and solvents on the infrared spectrum of phenol in solutions have been investigated using a hydrostatic high-pressure cell with synthetic diamond windows. For the first time, we performed a quantitative investigation of the effect of pressure on the absolute intensity of O-H stretching mode up to 150 MPa (in CCl4) and 200 MPa (in CS2). For comparison, we measured the effect of solvents on the absorption intensity. The Polo-Wilson theory, which is the most traditional theory for medium effects on the intensity, was tested for present results. The pressure dependence was in sufficient agreement with their formula, while the solvent dependence is unsatisfactory. This suggests that the traditional intensity correction by Polo-Wilson's formula is practically valid for pressure-tuning infrared experiments. PMID:15477156

  11. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    SciTech Connect

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  12. Cloud and precipitation features of Super Typhoon Neoguri revealed from dual oxygen absorption band sounding instruments on board FengYun-3C satellite

    NASA Astrophysics Data System (ADS)

    Han, Yang; Zou, Xiaolei; Weng, Fuzhong

    2015-02-01

    A new methodology is developed to detect the cloud structures at different vertical levels using the dual oxygen absorption bands located near 60 GHz and 118 GHz, respectively. Observations from Microwave Temperature Sounder (MWTS) and Microwave Humidity Sounder (MWHS) on board the recently launched Chinese FengYun-3C satellite are used to prove the concept. It is shown that a paired oxygen MWTS and MWHS sounding channel with the same peak weighting function altitude allows for detecting the vertically integrated cloud water path above that level. A cloud emission and scattering index (CESI) is defined using dual oxygen band measurements to indicate the amounts of cloud liquid and ice water paths. The CESI distributions from three paired channels reveal unique three-dimensional structures of clouds and precipitation within Super Typhoon Neoguri that occurred in July 2014.

  13. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    DOE PAGESBeta

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  14. Infrared spectra of thin CO2 crystal at 7-77 K: the band shape in the ?313CO2 absorption region

    NASA Astrophysics Data System (ADS)

    Kataeva, Tatjana S.; Kolomiitsova, Tatjana D.; Shchepkin, Dmitrii N.; Asfin, Ruslan E.

    2015-11-01

    The IR spectra of reflection from a mirror covered with thin CO2 crystal layers are obtained in the temperature interval T = 7-77 K. The spectra in the ?3 and ?2 regions of the 12CO2 and 13CO2 molecules and their dependence on temperature and the layer thickness are discussed. The complex shape of the ?3 band in the region of 13CO2 absorption is explained by the resonance dipole-dipole interaction between two 13CO2 molecules located in the first or second coordination sphere of each other in the regular crystal.

  15. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  16. Intensive two-photon absorption induced decay pathway in a ZnO crystal: Impact of light-induced defect state

    SciTech Connect

    Li, Zhong-guo; Wei, Tai-Huei; Yang, Jun-yi; Song, Ying-lin; School of Physical Science and Technology, Soochow University, Suzhou 215006

    2013-12-16

    Using the pump-probe with phase object technique with 20 ps laser pulses at 532?nm, we investigated the carrier relaxation process subsequent to two-photon absorption (TPA) in ZnO. As a result, we found that an additional subnanosecond decay pathway is activated when the pump beam intensity surpasses 0.4?GW/cm{sup 2}. We attributed this intensity-dependent pathway to a TPA induced bulk defect state and our results demonstrate that this photo induced defect state has potential applications in ZnO based optoelectronic and spintronic devices.

  17. (derivative-like) and 2.7 eV (absorption band), which are similar to those in disordered films

    E-print Network

    Aeschbach-Hertig, Werner

    by the oxygen attack on the polymer chains (Fig. 4). In conclusion, we studied and compared long measure t in polymer films by optical means. In addition, the relatively weak transitions the exciton-stimulated emission band; so far, this has been an acute problem in the field of plastic lasers

  18. Evaluation of minority and majority spin band energies of ferromagnetic GdN thin film using optical absorption spectroscopy

    SciTech Connect

    Vidyasagar, R.; Yoshitomi, H.; Kitayama, S.; Kita, T.; Ohta, H.; Sakurai, T.

    2013-12-04

    Temperature dependent optical Tauc plots of AlN/GdN/AlN heterostructures have showed two optically induced transitions, and those optical transitions could be attributed to the minority and majority spin band energy. In contrast, temperature dependent magnetization measurements of GdN thin film provide direct evidence of spin ordering below 39 K, and which is also evidenced by Arrott plots.

  19. Electronic band gap reduction and intense luminescence in Co and Mn ion-implanted SiO{sub 2}

    SciTech Connect

    Green, R. J. St Onge, D. J.; Moewes, A.; Zatsepin, D. A.; Kurmaev, E. Z.; Gavrilov, N. V.; Zatsepin, A. F.

    2014-03-14

    Cobalt and manganese ions are implanted into SiO{sub 2} over a wide range of concentrations. For low concentrations, the Co atoms occupy interstitial locations, coordinated with oxygen, while metallic Co clusters form at higher implantation concentrations. For all concentrations studied here, Mn ions remain in interstitial locations and do not cluster. Using resonant x-ray emission spectroscopy and Anderson impurity model calculations, we determine the strength of the covalent interaction between the interstitial ions and the SiO{sub 2} valence band, finding it comparable to Mn and Co monoxides. Further, we find an increasing reduction in the SiO{sub 2} electronic band gap for increasing implantation concentration, due primarily to the introduction of Mn- and Co-derived conduction band states. We also observe a strong increase in a band of x-ray stimulated luminescence at 2.75?eV after implantation, attributed to oxygen deficient centers formed during implantation.

  20. Near band edge optical absorption and photoluminescence dynamics in bulk InAsN dilute-nitride materials

    NASA Astrophysics Data System (ADS)

    Wang, D.; Svensson, S. P.; Shterengas, L.; Belenky, G.

    2010-09-01

    Dilute-nitride InAs bulk materials with up to 2.25% of nitrogen were grown by molecular beam epitaxy on InAs substrates. Photoluminescence (PL) and optical absorption measurements demonstrate a bandgap reduction by up to 150 meV with increasing nitrogen incorporation. Close correspondence of the energies of the photoluminescence peak and absorption edges indicate limited Moss-Burstein shift. Minority carrier lifetimes in the nanosecond range are measured using an ultra-fast PL up-conversion technique for the samples with up to 2% of nitrogen. Orders of magnitude advance of the carrier relaxation lifetimes as compared to GaSbN encourage development of the InAsN as a potential material for mid-IR detector applications.

  1. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  2. LINE ABSORPTION OSCILLATOR STRENGTHS FOR THE c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) BANDS IN N{sub 2}

    SciTech Connect

    Lavin, C.; Velasco, A. M.

    2011-09-20

    Theoretical absorption oscillator strengths and emission branching ratios for rotational lines of the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) bands of molecular nitrogen are reported. The calculations have been performed with the molecular quantum defect orbital method, which has proved to be reliable in previous studies of rovibronic transitions in diatomic molecules. The strong interaction between c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) and b' {sup 1}{Sigma}{sup +}{sub u}(10) states has been analyzed through an interaction matrix that includes rotational terms. Owing to the perturbation, the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0), c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(1), and c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(5) bands are not weak, in contrast to what would be expected on the basis of the Franck-Condon principle. Moreover, the intensity distribution of the rotational lines within each of the vibronic bands deviates from considerations based on Hoenl-London factors. In this work, we provide data that may be useful to interpret spectra from atmospheres of the Earth, Titan, and Triton, in which transitions from the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) level have been detected.

  3. Polarization signatures and brightness temperatures caused by horizontally oriented snow particles at microwave bands: Effects of atmospheric absorption

    NASA Astrophysics Data System (ADS)

    Xie, Xinxin; Crewell, Susanne; Löhnert, Ulrich; Simmer, Clemens; Miao, Jungang

    2015-06-01

    This study analyzes the effects of atmospheric absorption and emission on the polarization difference (PD) and brightness temperature (TB) generated by horizontally oriented snow particles. A three-layer plane-parallel atmosphere model is used in conjunction with a simplified radiative transfer (RT) scheme to illustrate the combined effects of dichroic and nondichroic media on microwave signatures observed by ground-based and spaceborne sensors. Based on idealized scenarios which encompass a dichroic snow layer and adjacent nondichroic layers composed of supercooled liquid water (SCLW) droplets and water vapor, we demonstrate that the presence of atmospheric absorption/emission enhances TB and damps PD when observed from the ground. From a spaceborne perspective, however, TB can be reduced or enhanced by an absorbing/emitting layer above the snow layer, while a strong absorbing/emitting layer below the dichroic snow layer may even enhance PD. The induced PD and TB, which rely on snow microphysical assumptions, can vary up to 2 K and 10 K, respectively, due to the temperature-dependent absorption of SCLW. RT calculations based on 223 snowfall profiles selected from European Centre for Medium-Range Weather Forecasts data sets indicate that the existence of SCLW has a noticeable impact on PD and TB at three window frequencies (150 GHz, 243 GHz, and 664 GHz) during snowfall. Our results imply that while polarimetric channels at the three window channels have the potential for snowfall characterization, accurate information on liquid water is required to correctly interpret the polarimetric observations.

  4. Tandem Regioselective Substitution and Palladium-Catalyzed Ring Fusion Reaction for Core-Expanded Boron Dipyrromethenes with Red-Shifted Absorption and Intense Fluorescence.

    PubMed

    Zhou, Xin; Wu, Qinghua; Feng, Yuanmei; Yu, Yang; Yu, Changjiang; Hao, Erhong; Wei, Yun; Mu, Xiaolong; Jiao, Lijuan

    2015-09-01

    A selective method for the core-extension of boron dipyrromethene (BODIPY) with two annulated indole rings with exclusive syn-connectivity is reported. The method is based on a regioselective nucleophilic substitution reaction of 2,3,5,6-tetrabromoBODIPY with aryl amines, followed by palladium-catalyzed intramolecular C-C coupling ring fusion. The unsymmetrical core-expanded BODIPY with annulated indole and benzofuran rings was also synthesized by stepwise and regioselective nucleophilic substitution and palladium-catalyzed intramolecular C-C coupling reaction. The diindole-annulated BODIPY was unambiguously characterized by single-crystal X-ray analysis. The optical properties of the present core-expanded BODIPYs were studied, revealing clearly red-shifted absorption and emission bands and enhanced absorption coefficients upon annulation. PMID:26083775

  5. Microwave absorption properties of LiNb3O8 in X-band prepared by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Goud, J. Pundareekam; Sindam, Bashaiah; Tumuluri, Anil; Raju, K. C. James

    2015-08-01

    Single phase LiNb3O8 powders were prepared using combustion synthesis technique. The powders were prepared by heat treating Li2CO3+Nb2O5/urea mixture in 1:3 ratio. Structural and morphological details have been done to confirm the presence of LiNb3O8. The S-parameters were measured using rectangular waveguide method in the X-band frequency (8.2GHz to 12.4GHz) by Vector Network Analyzer. The dielectric characteristics like dielectric constant (?') and dielectric loss (??) were calculated using Nicolson-Ross-Weir algorithm. Complex permittivity of 28-0.2j and 26-1.0j at 8.2GHz and 12.4GHz respectively are observed. Reflection loss was derived with permittivity and permeability as input parameters. Microwave absorber thickness is optimized and the RL< -20dB is obtained in the X-band frequency.

  6. Defect Band Luminescence Intensity Reversal as Related to Application of Anti-Reflection Coating on mc-Si PV Cells: Preprint

    SciTech Connect

    Guthrey, H.; Johnston, S.; Yan, F.; Gorman, B.; Al-Jassim, M.

    2012-06-01

    Photoluminescence (PL) imaging is widely used to identify defective regions within mc-Si PV cells. Recent PL imaging investigations of defect band luminescence (DBL) in mc-Si have revealed a perplexing phenomenon. Namely, the reversal of the DBL intensity in various regions of mc-Si PV material upon the application of a SiNx:H anti-reflective coating (ARC). Regions with low DBL intensity before ARC application often exhibit high DBL intensity afterwards, and the converse is also true. PL imaging alone cannot explain this effect. We have used high resolution cathodoluminescence (CL) spectroscopy and electron beam induced current (EBIC) techniques to elucidate the origin of the DBL intensity reversal. Multiple sub-bandgap energy levels were identified that change in peak position and intensity upon the application of the ARC. Using this data, in addition to EBIC contrast information, we provide an explanation for the DBL intensity reversal based on the interaction of the detected energy levels with the SiNx:H ARC application. Multiple investigations have suggested that this is a global problem for mc-Si PV cells. Our results have the potential to provide mc-Si PV producers a pathway to increased efficiencies through defect mitigation strategies.

  7. L(alpha)-induced two-photon absorption of visible light emitted from an O-type star by H2(+) ions located near the surface of the Stromgren sphere surrounding the star: A possible explanation for the diffuse interstellar absorption bands (DIDs)

    NASA Technical Reports Server (NTRS)

    Glownia, James H.; Sorokin, Peter P.

    1994-01-01

    In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).

  8. Efficient tissue ablation using a laser tunable in the water absorption band at 3 microns with little collateral damage

    NASA Astrophysics Data System (ADS)

    Nierlich, Alexandra; Chuchumishev, Danail; Nagel, Elizabeth; Marinova, Kristiana; Philipov, Stanislav; Fiebig, Torsten; Buchvarov, Ivan; Richter, Claus-Peter

    2014-03-01

    Lasers can significantly advance medical diagnostics and treatment. At high power, they are typically used as cutting tools during surgery. For lasers that are used as knifes, radiation wavelengths in the far ultraviolet and in the near infrared spectral regions are favored because tissue has high contents of collagen and water. Collagen has an absorption peak around 190 nm, while water is in the near infrared around 3,000 nm. Changing the wavelength across the absorption peak will result in significant differences in laser tissue interactions. Tunable lasers in the infrared that could optimize the laser tissue interaction for ablation and/or coagulation are not available until now besides the Free Electron Laser (FEL). Here we demonstrate efficient tissue ablation using a table-top mid-IR laser tunable between 3,000 to 3,500 nm. A detailed study of the ablation has been conducted in different tissues. Little collateral thermal damage has been found at a distance above 10-20 microns from the ablated surface. Furthermore, little mechanical damage could be seen in conventional histology and by examination of birefringent activity of the samples using a pair of cross polarizing filters.

  9. The fundamental vibration—rotational band of gaseous DCl in absorption at 297 K and at 12 K

    NASA Astrophysics Data System (ADS)

    Klee, S.; Ogilvie, J. F.

    1993-03-01

    Infrared spectra of gaseous deuterium chloride have been measured with an interferometric spectrometer in the region of the fundamental vibration—rotational band with resolution 0.23 m -1. For these measurements the conditions were either a static sample of DCl in a conventional cell of length 0.27 m at 297 K or DCl in admixture with CO and argon flowing through a slit nozzle into an evacuated chamber. By means of adiabatic expansion the latter conditions produced a supersonic jet, in which the effective rotational temperature of both DCl and CO at the region of the measurements was (12 ± 1.5) K. The relative precision 0.004 m -1 and absolute accuracy 0.04 m -1 of the measurements of the bands of 2H 35Cl and 2H 37Cl of the static gas make the lines suitable as secondary standards for calibration of the scale of spectrometers in the range of wavenumber 189,000< overline?m -1<224,000.

  10. OH density measurement by time-resolved broad band absorption spectroscopy in an Ar-H2O dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Dilecce, G.; Ambrico, P. F.; Simek, M.; De Benedictis, S.

    2012-03-01

    We report results of a novel time-resolved broad-band absorption spectroscopy experiment for OH density measurement applied to a pulsed dielectric barrier discharge in Ar/H2O mixtures. The measurement is aimed at the calibration of our previous OH LIF measurements in the same discharge. The apparatus is simple and cheap, being based on a UV LED light source and a non-intensified, non-cooled, gateable linear CCD array as a detector. The set-up is capable of ruling out both medium/long-term drifts of the UV source and of the discharge, and discharge emission from the measurement. Performances of the set-up are discussed, together with possible improvements for its use as a standalone technique.

  11. A Methodology for Estimating the Effect of Solar Spectrum on Photovoltaic Module Performance by Using Average Photon Energy and a Water Absorption Band

    NASA Astrophysics Data System (ADS)

    Ishii, Tetsuyuki; Otani, Kenji; Itagaki, Akihiko; Utsunomiya, Kenji

    2012-10-01

    Various photovoltaic (PV) technologies are commercially available today. The effect of solar spectrum on the performance of PV modules should be evaluated quantitatively in order to estimate the module performance with high accuracy and precision. Average photon energy (APE) has been frequently applied to evaluate the effect of solar spectrum. The purpose of this study is to enhance the precision and accuracy by introducing other indexes. In this study, we select solar spectra, the integrated spectral irradiance (ISI) and APE of which are equivalent to those of the standard AM1.5G spectrum. There is a slight difference in shape, although the shapes are approximately similar. We introduce one more index, which defines the spectral irradiance at the atmospheric window or the depth of the water absorption band. The introduction would further improve the accuracy and precision of the evaluation of the effect of solar spectrum.

  12. Confinement effect of laser ablation plume in liquids probed by self-absorption of C{sub 2} Swan band emission

    SciTech Connect

    Sakka, Tetsuo; Saito, Kotaro; Ogata, Yukio H.

    2005-01-01

    The (0,0) Swan band of the C{sub 2} molecules in a laser ablation plume produced on the surface of graphite target submerged in water was used as a probe to estimate the density of C{sub 2} molecules in the plume. Observed emission spectra were reproduced excellently by introducing a self-absorption parameter to the theoretical spectral profile expected by a rotational population distribution at a certain temperature. The optical density of the ablation plume as a function of time was determined as a best-fit parameter by the quantitative fitting of the whole spectral profile. The results show high optical densities for the laser ablation plume in water compared with that in air. It is related to the plume confinement or the expansion, which are the important phenomena influencing the characteristics of laser ablation plumes in liquids.

  13. Imaging the photodissociation of CH3SH in the first and second absorption bands: The CH3(X~ 2A1)+SH(X 2?) channel

    NASA Astrophysics Data System (ADS)

    Amaral, G. A.; Ausfelder, F.; Izquierdo, J. G.; Rubio-Lago, L.; Bañares, L.

    2007-01-01

    The CH3(X˜A12)+SH(X?2) channel of the photodissociation of CH3SH has been investigated at several wavelengths in the first 1A?1?X˜A'1 and second 2A?1?X˜A'1 absorption bands by means of velocity map imaging of the CH3 fragment. A fast highly anisotropic (? =-1±0.1) CH3(X˜A12) signal has been observed in the images at all the photolysis wavelengths studied, which is consistent with a direct dissociation process from an electronically excited state by cleavage of the C-S bond in the parent molecule. From the analysis of the CH3 images, vibrational populations of the SH(X?2) counterfragment have been extracted. In the second absorption band, the SH fragment is formed with an inverted vibrational distribution as a consequence of the forces acting in the crossing from the bound 2A?1 second excited state to the unbound 1A?1 first excited state. The internal energy of the SH radical increases as the photolysis wavelength decreases. In the case of photodissociation via the first excited state, the direct production of CH3 leaves the SH counterfragment with little internal excitation. Moreover, at the longer photolysis wavelengths corresponding to excitation to the 1A?1 state, a slower anisotropic CH3 channel has been observed (? =-0.8±0.1) consistent with a two step photodissociation process, where the first step corresponds to the production of CH3S(X˜E2) radicals via cleavage of the S-H bond in CH3SH, followed by photodissociation of the nascent CH3S radicals yielding CH3(X˜A12)+S(XP0,1,23).

  14. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni-Zn ferrite and carbon formulation in polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Gupta, K. K.; Abbas, S. M.; Goswami, T. H.; Abhyankar, A. C.

    2014-08-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni-Zn ferrite (Ni 0.5Zn0.5Fe2O4) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8-18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6-1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2-12.4 GHz) and Ku (12-18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to ?/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense.

  15. Absorption intensities and complex refractive indices of crystalline HCN, HC3N, and C4N2 in the infrared region

    NASA Technical Reports Server (NTRS)

    Masterson, C. M.; Khanna, R. K.

    1990-01-01

    IR absorption intensities are presented for thin crystalline films of HCN, HC3N, and C4N2, together with n and k complex refractive indices determined on the basis of an iterative program for the Kramers-Konig integral via a least-squares, point-by-point fitting of the experimental transmission data. It is established that the transmission spectra generated by means of these n and k values can reproduce the experimental transmission observation values to within + or - 2 percent.

  16. Absorption of surface acoustic waves by graphene

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Xu, W.

    2011-06-01

    We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs). We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

  17. Optimization of terahertz generation from LiNbO3 under intense laser excitation with the effect of three-photon absorption.

    PubMed

    Zhong, Sen-Cheng; Zhai, Zhao-Hui; Li, Jiang; Zhu, Li-Guo; Li, Jun; Meng, Kun; Liu, Qiao; Du, Liang-Hui; Zhao, Jian-Heng; Li, Ze-Ren

    2015-11-30

    We proposed a three-dimensional model to simulate terahertz generation from LiNbO3 crystal under intense laser excition (up to ~50 mJ/cm2). The impact of three-photon absorption, which leads to free carrier generation and free carrier saturation (when pump fluence above ~10 mJ/cm2) on terahertz generation was investigated. And further with this model, we stated the optimized experimental conditions (incident postion, beam diameter, and pulse duration, etc) for maximum generation efficiency in commonly-used tilted-pulse-front scheme. Red shift of spectrum, spatial distribution "splitting" effects of emitted THz beam, and primilary experimental verification under intense laser excitation are given. PMID:26698758

  18. Resonant peaks of the linear optical absorption and rectification coefficients in GaAs/GaAlAs quantum well: Combined effects of intense laser, electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Ozturk, Emine; Sokmen, Ismail

    2015-11-01

    In this study, the resonant peaks of the linear optical absorption (OA) and rectification coefficients in GaAs/GaAlAs quantum well are calculated as dependent on the applied electric field (F), the magnetic field (B) and the laser field intensity parameter (?0). Our results show that the shape of confined potential profile, the energy levels and the dipole moment matrix elements are changed as dependent on the F, B and ?0. Also, the resonant peaks of the OA and rectification coefficients depend on the applied external field effects. Therefore, the variation of the resonant peaks of these coefficients which can be appropriate for various optical modulators and infrared optical device applications can be smoothly obtained by the alteration electric, magnetic and intense laser field.

  19. TiO and VO broad band absorption features in the optical spectrum of the atmosphere of the hot-Jupiter HD 209458b

    NASA Astrophysics Data System (ADS)

    Désert, J.-M.; Vidal-Madjar, A.; Lecavelier Des Etangs, A.; Sing, D.; Ehrenreich, D.; Hébrard, G.; Ferlet, R.

    2008-12-01

    Aims: The presence of titanium oxide (TiO) and vanadium oxide (VO) gas phase species is searched for in the atmosphere of the hot Jupiter HD 209458b. Methods: We compared a model for the planet's transmitted spectrum to multi-wavelength eclipse-depth measurements (from 3000 to 10 000 Å) using archived HST-STIS time series spectra. We make use of these observations to search for spectral signatures from extra absorbers in the planet atmosphere between 6000 and 8000 Å. Results: Along with sodium depletion and Rayleigh scattering recently published for this exoplanet atmosphere, an extra absorber of uncertain origin, redward of the sodium lines, is present in the atmosphere of the planet. Furthermore, this planet has a stratosphere experiencing a thermal inversion caused by the capture of optical stellar flux by absorbers at altitude. Recent models have predicted that the presence of TiO and VO in the atmosphere of HD 209458b may be responsible for this temperature inversion. Although no specific TiO and VO spectral band head signatures have been identified unambiguously in the observed spectrum, we suggest here that the opacities of those molecules are possible candidates to explain the remaining continuous broad band absorption observed between 6200 and 8000 Å. To match the data reasonably well, the abundances of TiO and VO molecules are evaluated from ten to one thousand times below solar. This upper limit result is in agreement with expected variations with altitude due to depletion effects such as condensation.

  20. Strain and temperature dependent absorption spectra studies for identifying the phase structure and band gap of EuTiO3 perovskite films.

    PubMed

    Jiang, Kai; Zhao, Run; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Li, Wenwu; Hu, Zhigao; Yang, Hao; Chu, Junhao

    2015-12-21

    Post-annealing has been approved to effectively relax the out-of-plane strain in thin films. Epitaxial EuTiO3 (ETO) thin films, with and without strain, have been fabricated on (001) LaAlO3 substrates by pulsed laser deposition. The absorption and electronic transitions of the ETO thin films are investigated by means of temperature dependent transmittance spectra. The antiferrodistortive phase transition can be found at about 260-280 K. The first-principles calculations indicate there are two interband electronic transitions in ETO films. Remarkably, the direct optical band gap and higher interband transition for ETO films show variation in trends with different strains and temperatures. The strain leads to a band gap shrinkage of about 240 meV while the higher interband transition an expansion of about 140 meV. The hardening of the interband transition energies in ETO films with increasing temperature can be attributed to the Fröhlich electron-phonon interaction. The behavior can be linked to the strain and low temperature modified valence electronic structure, which is associated with rotations of the TiO6 octahedra. PMID:26568432

  1. A heuristic approach to precisely represent optical absorption and refractive index data for photon energies below, at, and above the band gap of semiconductors: The case of high-purity GaAs. Part I

    NASA Astrophysics Data System (ADS)

    Reinhart, F. K.

    2005-06-01

    The existence of band tails even in nominally undoped and uncompensated GaAs, and the nonparabolic absorption shape above the band gap are the prime examples for the discrepancy between theory and experiments. To overcome this difficulty, we propose a heuristic approach that is guided by the fundamental theoretical aspects and the experimental facts. For this reason, we fit the available absorption data with exponential functions over a photon energy interval from below the band gap to 3eV. This analytical representation remains well within the known experimental uncertainties over a temperature range from cryogenic to room temperature and beyond. The fitting functions are interpreted to represent the absorption contributions by the band tails, the continuum, and the excitons. This descriptive absorption function implicitly results from a perturbation of the imaginary part of the dielectric function that takes a host of unspecified contributions into account. The real part of the dielectric function due to the high-energy critical points is represented by Lorentzian functions with critical energies taken at 3 and 5eV. Its square root defines the refractive index due to these critical points, nh. The refractive index, n, is represented by the sum of nh and the truncated Kramers-Krönig transformation of the absorption function. The determination of nh is made by fitting n to the precise refractive index data of Marple [J. Appl. Phys. 35, 1241 (1964)]. This procedure yields a very precise description (<0.1% below and within experimental uncertainty at and above the band gap) of the published refractive index data from 0to2.2eV (except for the narrow reststrahl band near 0.033eV) over a temperature range similar to that mentioned for the absorption function. We feel confident to predict the refractive index for temperatures as low as 4K. An analytical expression for the refractive index describes the temperature and energy dependences very precisely below the band gap. The analytic expression is also very precise in the band-gap region for a temperature range estimated from 80to400K. We also compare the form of the absorption function derived from photoluminescence spectra. We find that low quasiequilibrium carrier densities lead to important modifications of the absorption function. These experimental findings together with the fitting procedures serve as a basis for a heuristic theory to calculate the electronic and optical properties under injection.

  2. Voltage induced intensity changes in surface raman bands from a 2-chromophore probe, 4-benzyl pyridine adsorbed on roughened silver electrodes and their variation with excitation frequency

    NASA Astrophysics Data System (ADS)

    Busby, C. C.

    1984-05-01

    Voltage induced intensity changes in the surface enhanced Raman bands of 4-benzyl pyridine adsorbed on variously roughened silver electrode surfaces peak at different voltages for different excitation wavelengths. This behaviour, which is known to occur for pyridine and the picolines, is shown to occur for both the pyridyl and benzyl residues, though benzene itself does not exhibit enhancement under the same conditions. Results obtained on conventionally prepared, anodised electrodes are compared with those from novel magic array electrodes and results are consistent with the hypothesis that these latter electrodes are more suited for Raman studies of adsorbates in electrochemical systems. This is because they do not have the excess quantities of surface complexes present on them: these are probably responsible for much of the signal from the anodised electrodes. Explanations for the excitation frequency dependence of the voltage/intensity curves are discussed in relation to electrode specific effects as well as to charge transfer.

  3. Acne phototherapy using UV-free high-intensity narrow-band blue light: a three-center clinical study

    NASA Astrophysics Data System (ADS)

    Shalita, Alan R.; Harth, Yoram; Elman, Monica; Slatkine, Michael; Talpalariu, Gerry; Rosenberg, Yitzhak; Korman, Avner; Klein, Arieh

    2001-05-01

    Propionibacterium. acnes is a Gram positive, microaerophilic bacterium which takes a part in the pathogenesis of inflammatory acne. P. acnes is capable to produce high amounts endogenic porphyrins with no need of any trigger molecules. Light in the violet-blue range (407-420 nm) has been shown to exhibit a phototoxic effect on Propionibacterium acnes when irradiated in vitro. The purpose of our study was to test the clinical effects of a high intensity narrowband blue light source on papulo pustular acne. A total of 35 patients in 3 centers were treated twice a week with a high intensity metal halide lamp illuminating the entire face (20x20 cm2) or the back with visible light in the 407-420 nm range at an intensity of 90 mW/cm2 (CureLight Ltd.) for a total of 4 weeks. UV is totally cut off. In each treatment the patient was exposed to light for 8-15 minutes. After 8 treatments, 80% of the patients with mild to moderate papulo-pustular acne showed significant improvement at reducing the numbers of non- inflammatory, inflammatory and total facial lesions. Inflammatory lesion count decrease by a mean of 68%. No side effects to the treatment were noticed. In conclusion, full face or back illumination with the high intensity pure blue light we used exhibits a rapid significant decrease in acne lesions counts in 8 biweekly treatments.

  4. Retrieval of optical depth and vertical distribution of atmospheric aerosols from light intensity and polarization in O2 A and B bands

    NASA Astrophysics Data System (ADS)

    Ding, S.; Wang, J.; Xu, X.; Spurr, R. J. D.

    2014-12-01

    Although UV radiance at the top-of-atmosphere (TOA) is known to be sensitive to the centroid height of absorbing aerosols, several methods were proposed recently to retrieve centroid height of aerosols (in particular, scattering aerosols) from hyperspectral radiation measurements in and around the O2 A and B bands. However, most such retrievals ignore polarization effects in the reflected radiation and are limited to dark surface scenarios. Here, we evaluate the feasibility of combining intensity and polarization measurements in the O2 A and B bands for retrieving aerosol optical depth and aerosol height, especially over bright surfaces. The feasibility study is conducted in two steps. The first step comprises a theoretical analysis of the effects of various aerosols on the behavior of the degree of linear polarization (DOLP) of light in the O2 A and B bands under different surface conditions. We use the Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) to simulate the full Stokes vector and its Jacobians with respect to the aerosol optical depth and parameters characterizing the aerosol vertical profile. In order to identify the most sensitive spectral wavelengths, the concepts of 'Shannon information content (SIC)' and 'degree of freedom for signal (DFS)' are used to examine the information contained in each individual wavelength in both O2 bands. In the second step, case studies are conducted to retrieve the optical depth and vertical distribution of aerosols. Here, we use GOME-2 and/or SCIAMACHY backscatter measurements at selected most sensitive wavelengths in both O2 bands. The retrieval method is based upon non-linear optimal estimation theory. We compare the retrieved aerosol parameters (optical depth and height of aerosols) directly with CALIPSO observations. We also estimate the error of the retrieved parameters due to various sources of uncertainty.

  5. A search for formic acid in the upper troposphere - A tentative identification of the 1105-per cm nu-6 band Q branch in high-resolution balloon-borne solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02-per cm resolution during a balloon flight from Alamogordo, NM (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105 per cm has been tentatively identified in upper tropospheric spectra as due to the nu-6 band Q branch. A preliminary analysis indicates a concentration of about 0.6 ppbv and 0.4 ppbv near 8 and 10 km, respectively.

  6. TAKING ANOTHER LOOK AT THE 3-MICRON ABSORPTION BAND ON ASTEROIDS. E. S. Howell, Arecibo Obser-vatory, HC 3 Box 53995, Arecibo PR 00612, USA, (ehowell@naic.edu), A. S. Rivkin, Department of Earth, Atmospheric, and

    E-print Network

    Cohen, Barbara Anne

    TAKING ANOTHER LOOK AT THE 3-MICRON ABSORPTION BAND ON ASTEROIDS. E. S. Howell, Arecibo Obser asteroids have hydrated minerals on the surface. This has been interpreted as evidence of aqueous alteration, and suggests that these asteroids may be related to meteorites rich in serpentine and/or saponite. However

  7. Using OMEGA Data to Determine the Optical Depths of Water Vapor Absorption Bands in the Martian Atmosphere Earth and Environmental Sciences, The University of Texas at San Antonio, San

    E-print Network

    Texas at San Antonio, University of

    Using OMEGA Data to Determine the Optical Depths of Water Vapor Absorption Bands in the Martian approaches based on different data, such as the IRIS [2], Martian Atmospheric Water Detector (MAWD) [3 atmosphere. Recently, OMEGA data has also been used to study water vapor abundance [7], in which the water

  8. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

    NASA Astrophysics Data System (ADS)

    Ungan, F.; Restrepo, R. L.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. A.

    2014-02-01

    The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga0.7Al0.3As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga0.7Al0.3As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications.

  9. TiO and VO broad band absorption features in the optical spectrum of the atmosphere of the hot-Jupiter HD209458b

    E-print Network

    J. -M. Desert; A. Vidal-Madjar; A. Lecavelier des Etangs; D. Sing; D. Ehrenreich; G. Hebrard; R. Ferlet

    2008-09-10

    The presence of titanium oxide (TiO) and vanadium oxide (VO) gas phase species is searched for in the atmosphere of the hot Jupiter HD209458b. We compared a model for the planets transmitted spectrum to multi-wavelength eclipse-depth measurements (from 3000 to 10000 Angstrom), obtained by Sing et al. (2008a) using archived HST-STIS time series spectra. We make use of these observations to search for spectral signatures from extra absorbers in the planet atmosphere between 6000 and 8000 Angstrom. Along with sodium depletion and Rayleigh scattering recently published for this exoplanet atmosphere, an extra absorber of uncertain origin, redward of the sodium lines, resides in the atmosphere of the planet. Furthermore, this planet has a stratosphere experiencing a thermal inversion caused by the capture of optical stellar flux by absorbers that resides at altitude. Recent models have predicted that the presence of TiO and VO in the atmosphere of HD209458b may be responsible for this temperature inversion. Although no specific TiO and VO spectral band head signatures have been identified unambiguously in the observed spectrum, we suggest here that the opacities of those molecules are possible candidates to explain the remaining continuous broad band absorption observed between 6200 and 8000 Angstrom. To match reasonably well the data, the abundances of TiO and VO molecules are evaluated from ten to one thousand times below solar. This upper limit result is in agreement with expected variations with altitude due to depletion effects such as condensation.

  10. Mapping sound intensities by seating position in a university concert band: A risk of hearing loss, temporary threshold shifts, and comparisons with standards of OSHA and NIOSH

    NASA Astrophysics Data System (ADS)

    Holland, Nicholas Vedder, III

    Exposure to loud sounds is one of the leading causes of hearing loss in the United States. The purpose of the current research was to measure the sound pressure levels generated within a university concert band and determine if those levels exceeded permissible sound limits for exposure according to criteria set by the Occupational Safety and Health Administration (OSHA) and the National Institute of Occupational Safety and Health (NIOSH). Time-weighted averages (TWA) were obtained via a dosimeter during six rehearsals for nine members of the ensemble (plus the conductor), who were seated in frontal proximity to "instruments of power" (trumpets, trombones, and percussion; (Backus, 1977). Subjects received audiometer tests prior to and after each rehearsal to determine any temporary threshold shifts (TTS). Single sample t tests were calculated to compare TWA means and the maximum sound intensity exposures set by OSHA and NIOSH. Correlations were calculated between TWAs and TTSs, as well as TTSs and the number of semesters subjects reported being seated in proximity to instruments of power. The TWA-OSHA mean of 90.2 dBA was not significantly greater than the specified OSHA maximum standard of 90.0 dBA (p > .05). The TWA-NIOSH mean of 93.1 dBA was, however, significantly greater than the NIOSH specified maximum standard of 85.0 dBA (p < .05). The correlation between TWAs and TTSs was considered weak (r = .21 for OSHA, r = .20 for NIOSH); the correlation between TTSs and semesters of proximity to instruments of power was also considered weak (r = .13). TWAs cumulatively exceeded both association's sound exposure limits at 11 specified locations (nine subjects and both ears of the conductor) throughout the concert band's rehearsals. In addition, hearing acuity, as determined by TTSs, was substantially affected negatively by the intensities produced in the concert band. The researcher concluded that conductors, as well as their performers, must be aware of possible damaging sound intensities in rehearsals or performances.

  11. Proposal of high efficiency solar cells with closely stacked InAs/In{sub 0.48}Ga{sub 0.52}P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediate–band

    SciTech Connect

    Yoshikawa, H. Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C.

    2014-07-07

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using wide–gap matrix material, InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs, for realizing intermediate–band solar cells (IBSCs) with two–step photon–absorption. The plane–wave expanded Burt–Foreman operator ordered 8–band k·p theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of two–step photon–absorption can be shifted to higher energy region by using In{sub 0.48}Ga{sub 0.52}P, which is lattice–matched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In{sub 0.48}Ga{sub 0.52}P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of two–step photon–absorption by the sunlight occur efficiently. These results indicate that InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  12. X-ray relative intensities at incident photon energies across the L{sub i} (i=1–3) absorption edges of elements with 35?Z?92

    SciTech Connect

    Puri, Sanjiv

    2014-07-15

    The intensity ratios, I{sub Lk}/I{sub L?1} (k=l,?,?{sub 2},?{sub 1},?{sub 2,15},?{sub 3},?{sub 4},?{sub 5,7},?{sub 6},?{sub 9,10},?{sub 1,5},?{sub 6,8},?{sub 2,3},?{sub 4}) and I{sub Lj}/I{sub L?} (j=?,?), have been evaluated at incident photon energies across the L{sub i} (i=1–3) absorption edge energies of all the elements with 35?Z?92. Use is made of what are currently considered to be more reliable theoretical data sets of different physical parameters, namely, the L{sub i} (i=1–3) sub-shell photoionization cross sections based on the relativistic Hartree–Fock–Slater (RHFS) model, the X-ray emission rates based on the Dirac–Fock model, and the fluorescence and Coster–Kronig yields based on the Dirac–Hartree–Slater model. In addition, the L?{sub 1} X-ray production cross sections for different elements at various incident photon energies have been tabulated so as to facilitate the evaluation of production cross sections for different resolved L X-ray components from the tabulated intensity ratios. Further, to assist evaluation of the prominent (L{sub i}?S{sub j}) (S{sub j}=M{sub j}, N{sub j} and i=1–3, j=1–7) resonant Raman scattered (RRS) peak energies for an element at a given incident photon energy (below the L{sub i} sub-shell absorption edge), the neutral-atom electron binding energies based on the relaxed orbital RHFS calculations are also listed so as to enable identification of the RRS peaks, which can overlap with the fluorescent X-ray lines. -- Highlights: •The L X-ray relative intensities and L?{sub 1} XRP cross sections are evaluated using physical parameters based on the IPA models. •Comparison of the intensity ratios evaluated using the DHS and DF models based photoionization cross sections is presented. •Importance of many body effects including electron exchange effects is highlighted.

  13. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO{sub 2}

    SciTech Connect

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2014-10-21

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic ?-quartz and amorphous SiO{sub 2} (a?SiO{sub 2}) exposed to {sup 60}Co ?-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in ?-quartz and a?SiO{sub 2}, and the peak energy is larger for ?-quartz than that for a?SiO{sub 2}. The full width at half maximum for a?SiO{sub 2} is larger by ?40-60% than that for ?-quartz, and it increases with an increase in the disorder of the a?SiO{sub 2} network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a?SiO{sub 2}.

  14. The relationship of temperature rise to specific absorption rate and current in the human leg for exposure to electromagnetic radiation in the high frequency band

    NASA Astrophysics Data System (ADS)

    Wainwright, P. R.

    2003-10-01

    Of the biological effects of human exposure to radiofrequency and microwave radiation, the best-established are those due to elevation of tissue temperature. To prevent harmful levels of heating, restrictions have been proposed on the specific absorption rate (SAR). However, the relationship between SAR and temperature rise is not an invariant, since not only the heat capacity but also the efficiency of heat dissipation varies between different tissues and exposure scenarios. For small enough SAR, the relationship is linear and may be characterized by a 'heating factor' DgrT/SAR. Under whole-body irradiation the SAR may be particularly high in the ankles due to the concentration of current flowing through a relatively small cross-sectional area. In a previous paper, the author has presented calculations of the SAR distribution in a human leg in the high frequency (HF) band. In this paper, the heating factor for this situation is derived using a finite element approximation of the Pennes bio-heat equation. The sensitivity of the results to different blood perfusion rates is investigated, and a simple local thermoregulatory model is applied. Both time-dependent and steady-state solutions are considered. Results confirm the appropriateness of the ICNIRP reference level of 100 mA on current through the leg, but suggest that at higher currents significant thermoregulatory adjustments to muscle blood flow will occur.

  15. Is actinometry reliable for monitoring Si and silicone halides produced in silicon etching plasmas? A comparison with their absolute densities measured by UV broad band absorption

    NASA Astrophysics Data System (ADS)

    Kogelschatz, M.; Cunge, G.; Sadeghi, N.

    2006-03-01

    SiCl{x} radicals, the silicon etching by-products, are playing a major role in silicon gate etching processes because their redeposition on the wafer leads to the formation of a SiOCl{x} passivation layer on the feature sidewalls, which controls the final shape of the etching profile. These radicals are also the precursors to the formation of a similar layer on the reactor walls, leading to process drifts. As a result, the understanding and modelling of these processes rely on the knowledge of their densities in the plasma. Actinometry technique, based on optical emission, is often used to measure relative variations of the density of the above mentioned radicals, even if it is well known that the results obtained with this technique might not always be reliable. To determine the validity domain of actinometry in industrial silicon-etching high density plasmas, we measure the RF source power and pressure dependences of the absolute densities of SiCl{x} (x=0{-}2), SiF and SiBr radicals, deduced from UV broad band absorption spectroscopy. These results are compared to the evolution of the corresponding actinometry signals from these radicals. It is shown that actinometry predicts the global trends of the species density variations when the RF power is changed at constant pressure (that is to say when only the electron density changes) but it completely fails if the gas pressure, hence the electron temperature, changes.

  16. Measurements of the ClO radical vibrational band intensity and the ClO + ClO + M reaction product

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Orlando, John J.; Hammer, Philip D.; Howard, Carleton J.; Goldman, Aaron

    1988-01-01

    There is considerable interest in the kinetics and concentrations of free radicals in the stratosphere. Chlorine monoxide is a critically important radical because of its role in catalytic cycles for ozone depletion. Depletion occurs under a wide variety of conditions including the Antarctic spring when unusual mechanisms such as the BrO sub x/ClO sub x, ClO dimer (Cl sub 2 O sub 2), and ClO sub x/HO sub x cycles are suggested to operate. Infrared spectroscopy is one of the methods used to measure ClO in the stratosphere (Menzies 1979 and 1983; Mumma et al., 1983). To aid the quantification of such infrared measurements, researchers measured the ClO ground state fundamental band intensity.

  17. Electronic structure of an [FeFe] hydrogenase model complex in solution revealed by X-ray absorption spectroscopy using narrow-band emission detection.

    PubMed

    Leidel, Nils; Chernev, Petko; Havelius, Kajsa G V; Schwartz, Lennart; Ott, Sascha; Haumann, Michael

    2012-08-29

    High-resolution X-ray absorption spectroscopy with narrow-band X-ray emission detection, supported by density functional theory calculations (XAES-DFT), was used to study a model complex, ([Fe(2)(?-adt)(CO)(4)(PMe(3))(2)] (1, adt = S-CH(2)-(NCH(2)Ph)-CH(2)-S), of the [FeFe] hydrogenase active site. For 1 in powder material (1(powder)), in MeCN solution (1'), and in its three protonated states (1H, 1Hy, 1HHy; H denotes protonation at the adt-N and Hy protonation of the Fe-Fe bond to form a bridging metal hydride), relations between the molecular structures and the electronic configurations were determined. EXAFS analysis and DFT geometry optimization suggested prevailing rotational isomers in MeCN, which were similar to the crystal structure or exhibited rotation of the (CO) ligands at Fe1 (1(CO), 1Hy(CO)) and in addition of the phenyl ring (1H(CO,Ph), 1HHy(CO,Ph)), leading to an elongated solvent-exposed Fe-Fe bond. Isomer formation, adt-N protonation, and hydride binding caused spectral changes of core-to-valence (pre-edge of the Fe K-shell absorption) and of valence-to-core (Kß(2,5) emission) electronic transitions, and of K? RIXS data, which were quantitatively reproduced by DFT. The study reveals (1) the composition of molecular orbitals, for example, with dominant Fe-d character, showing variations in symmetry and apparent oxidation state at the two Fe ions and a drop in MO energies by ~1 eV upon each protonation step, (2) the HOMO-LUMO energy gaps, of ~2.3 eV for 1(powder) and ~2.0 eV for 1', and (3) the splitting between iron d(z(2)) and d(x(2)-y(2)) levels of ~0.5 eV for the nonhydride and ~0.9 eV for the hydride states. Good correlations of reduction potentials to LUMO energies and oxidation potentials to HOMO energies were obtained. Two routes of facilitated bridging hydride binding thereby are suggested, involving ligand rotation at Fe1 for 1Hy(CO) or adt-N protonation for 1HHy(CO,Ph). XAES-DFT thus enables verification of the effects of ligand substitutions in solution for guided improvement of [FeFe] catalysts. PMID:22860512

  18. Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Ashraful Ghani; Sugita, Kenichi; Kasashima, Ken; Hashimoto, Akihiro; Yamamoto, Akio; Davydov, Valery Yu.

    2003-12-01

    Single crystalline InN films with an absorption edge between 0.7 and 2 eV have been grown using a variety of different techniques, including conventional metal-organic vapor-phase epitaxy (MOVPE), ArF-laser assisted MOVPE (la-MOVPE), and plasma-assisted molecular-beam epitaxy (pa-MBE). Analysis of samples grown using different methods has led to important evidence for determining the actual band gap energy of InN. In an effort to find the origin of the change in absorption edge, this evaluation was focused on the la-MOVPE of InN. This deposition technique enables InN film deposition over a wide range of growth temperatures, ranging from room temperature to a very high temperature (700 °C). Characterization of InN films grown over a wide range of temperatures strongly suggests that oxygen contamination leads to a larger band gap absorption energy value than the actual value, even in the case of single crystalline films. In films grown at low temperatures, oxygen appeared to form an alloy, resulting in a larger absorption edge, whereas, in films grown at high temperatures oxygen was present as a donor, which resulted in a larger absorption edge due to a Burstein-Moss shift.

  19. Absorption Bands at 4300 and 6000-8000Å as Signs of Silicate and Organic Matter Separation and Formation of Hydrated Silicates in KBOs and Similar Bodies

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.; Dorofeeva, V. A.; Makalkin, A. B.

    2004-12-01

    Recent spectral observations of some Kuiper Belt Objects (KBOs) (Boehnhardt et al.: 2002, Proc. of ACM 2002, 47-50; Fornasier S. et al., 2004, Astron. Astrophys. 421, 353-363) discovered characteristic absorption bands at 4300 and 6000-8000Å in reflectance spectra of the bodies. Spectral positions and other parameters of the features are similar to those found in reflectance spectra of terrestrial phyllosilicates (e. g., Clark et al., 1990, J. Geophys. Res. 95, 12653-12680; Busarev et al., 2004, The new ROSETTA targets (L. Colangeli et al., eds.), 79-83), CI- and CM-carbonaceous chondrites (e. g., Busarev and Taran, 2002, Proc. of ACM 2002, 933-936), primitive C-, P-, D-, F- and G-class asteroids (Vilas and Gaffey, 1989, Science 246, 790-792) and hydrated M-, S- and E-class asteroids (Busarev and Taran, 2002, Proc. of ACM 2002, 933-936). Hence, these absorption bands may be considered as universal indicators of hydrated silicates on celestial solid bodies including KBOs. However, before phyllosilicates were formed, an aqueous media should spring up and exist a considerable time in the bodies. One more important factor for the spectral features of hydrated silicates to be observed, it is probably an aqueous separation of silicate and darkening CHON (PAH plus more light organic compounds) components in the bodies. To check the assumptions we have performed some calculations (Busarev et al., 2003, Earth, Moon, and Planets 92, 345-357) applicable to KBOs and analogous silicate-icy bodies existed for the first time in the formation zones of neighbouring giant planets. According to the calculations, the decay of the short-lived 26Al at the early stage of the bodies' evolution and their mutual collisions (at velocities >1.5 km s-1) at the subsequent stage were probably the main sources of heating sufficient for melting water ice in their interiors. Because of these processes, an internal ocean of liquid water covered with ˜10-km crust of dirty ice could originate in large KBOs (R>100 km) for about 106 yr and exist a few Myr till their freezing. The water ocean would be vigorously convective (Ra ˜1021) and the temperature should stabilize near 277-280K owing to the rapid radial heat transport through the ocean. A thin nonconvective layer could exist only at the top of the ocean because of the negative thermal expansion coefficient of water between 273 and 277K. As a result, dissolution and/or floating of the main part of a CHON component and sedimentation of silicate particles could occur. It probably finished in large KBOs by formation of a silicate core ( ˜0.7 radius of a body) covered with a water-ice shell enriched with organics. Crushing and removing icy covers under collisions and exposing KBOs' interiors with increased silicate content could facilitate detection of phyllosilicate spectral features.

  20. Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: implications of the interfacial charge transfer (IFCT).

    PubMed

    Rtimi, S; Sanjines, R; Pulgarin, C; Houas, A; Lavanchy, J-C; Kiwi, J

    2013-09-15

    This study reports the design, preparation, testing and surface characterization of uniform films deposited by sputtering Ag and Ta on non-heat resistant polyester to evaluate the Escherichia coli inactivation by TaON, TaN/Ag, Ag and TaON/Ag polyester. Co-sputtering for 120 s Ta and Ag in the presence of N? and O? led to the faster E. coli inactivation by a TaON/Ag sample within ?40 min under visible light irradiation. The deconvolution of TaON/Ag peaks obtained by X-ray photoelectron spectroscopy (XPS) allowed the assignment of the Ta?O? and Ag-species. The shifts observed for the XPS peaks have been assigned to AgO to Ag?O and Ag(0), and are a function of the applied sputtering times. The mechanism of interfacial charge transfer (IFCT) from the Ag?O conduction band (cb) to the lower laying Ta?O? (cb) is discussed suggesting a reaction mechanism. The optical absorption of the TaON and TaON/Ag samples found by diffuse reflectance spectroscopy (DRS) correlated well with the kinetics of E. coli inactivation. The TaON/Ag sample microstructure was characterized by contact angle (CA) and by atomic force microscopy (AFM). Self-cleaning of the TaON/Ag polyester after each disinfection cycle enabled repetitive E. coli inactivation. PMID:23867967

  1. EL2 deep level defects and above-band gap two-photon absorption in high gain lateral semi-insulating GaAs photoconductive switch

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wang, Wei; Niu, Hongjian; Zhang, Xianbin; Ji, Weili

    2005-01-01

    Experiments of a lateral semi-insulating GaAs photoconductive switch, both linear and nonlinear mode of the switch were observed when the switch was triggered by 1064 nm laser pulses, with energy of 1.9 mJ and the pulse width of 60 ns, and operated at biased electric field of 4.37 kV/cm. It"s wavelength is longer than 876nm, but the experiments indicate that the semi-insulating GaAs photoconductive switches can absorb 1064 nm laser obviously, which is out of the absorption range of the GaAs material. It is not possible to explain this behavior by using intrinsic absorption mechanism. We think that there are two mostly kinds of absorption mechanisms play a key part in absorption process, they are the two-steps-single-photon absorption that based on the EL2 energy level and two-photon absorption.

  2. Infrared intensities of liquids. XVII. Infrared refractive indices from 8000 to 350 cm - 1, absolute integrated absorption intensities, transition moments, and dipole moment derivatives of methan-d3-ol and methanol-d4 at 25 °C

    NASA Astrophysics Data System (ADS)

    Bertie, John E.; Zhang, Shuliang L.

    1994-11-01

    This paper reports absolute infrared absorption intensities of liquids methan-d3-ol (CD3OH) and methanol-d4 (CD3OD) at 25 °C between 8000 and 350 cm-1. Measurements were made by multiple attenuated total reflection spectroscopy with the CIRCLE cell, and by transmission spectroscopy with transmission cells fitted with calcium fluoride windows. In both cases, the spectra were converted to infrared real and imaginary refractive index spectra. The refractive indices obtained by these two methods agreed excellently and were combined to yield an imaginary refractive index spectrum k(?˜) between 7244 and 350 cm-1 for CD3OH and between 5585 and 350 cm-1 for CD3OD. The imaginary refractive index spectrum was arbitrarily set to zero from 8000 to 7244 cm-1 (CD3OH) or 5585 cm-1 (CD3OD), where k is always less than 4×10-6, in order that the real refractive index can be calculated below 8000 cm-1 by Kramers-Krönig transformation. The results are reported as graphs and tables of the refractive indices between 8000 and 350 cm-1, from which all other infrared properties of the two liquids can be calculated. The estimated accuracy, not precision, of the imaginary refractive index is ±3%, except for ±10%, where k is less than 4×10-5. The estimated accuracy of the real refractive index is better than ±0.5%. In order to obtain molecular information from the measurements, the spectra of the imaginary polarizability multiplied by wave number ?˜?m` were calculated under the assumption of the Lorentz local field. The area under these ?˜?m` spectra was separated into the integrated intensities of different vibrations. The magnitudes of the transition moments were calculated from the integrated intensities, and the double harmonic approximation was used to calculate the magnitudes of the dipole moment derivatives of the liquid-state molecules with respect to the normal coordinates. Dipole moment derivatives with respect to internal coordinates were calculated under the simplest approximations, the validity of which is demonstrated by the experimental data in many cases. The consistency of the dipole moment derivatives with respect to internal coordinates obtained for different isotopomers is shown through their relative rotational corrections. Results are presented for the O-H, O-D, C-H, and C-D stretches; the C-O-H in-plane bending; and the D-C-O-H and D-C-O-D torsion vibrations.

  3. An Amphiphilic BODIPY-Porphyrin Conjugate: Intense Two-Photon Absorption and Rapid Cellular Uptake for Two-Photon-Induced Imaging and Photodynamic Therapy.

    PubMed

    Zhang, Tao; Lan, Rongfeng; Gong, Longlong; Wu, Baoyan; Wang, Yuzhi; Kwong, Daniel W J; Wong, Wai-Kwok; Wong, Ka-Leung; Xing, Da

    2015-11-01

    The new amphiphilic BODPY-porphyrin conjugate BZnPP and its precursor BZnPH were synthesised, and their linear and two-photon photophysical properties, together with their cellular uptake and photo-cytotoxicity, were studied. This amphiphilic conjugate consists of a hydrophobic BODIPY moiety and a hydrophilic tetra(ethylene glycol) chain bridging a cationic triphenylphosphonium group to an amphiphilic porphyrin ZnP through acetylide linkers at its meso positions. A large two-photon absorption cross-section (?=1725?GM) and a high singlet oxygen quantum yield (0.52) were recorded. Intense linear- and two-photon-induced red emissions were also observed for both BZnPP and BZnPH. Further in vitro studies showed that BZnPP exhibited very efficient cellular uptake and strong photocytotoxic but weak dark cytotoxic properties towards human breast carcinoma MCF-7 cells. In summary, the two-photon-induced emission and the potent photo-cytotoxicity of BZnPP make it an efficacious dual-purpose tumour-imaging and photodynamic therapeutic agent in the tissue-transparent spectral windows. PMID:26345273

  4. Advances In Cryogenic Monolithic Millimeter-wave Integrated Circuit (MMIC) Low Noise Amplifiers For CO Intensity Mapping and ALMA Band 2

    NASA Astrophysics Data System (ADS)

    Samoska, Lorene; Cleary, Kieran; Church, Sarah E.; Cuadrado-Calle, David; Fung, Andy; gaier, todd; gawande, rohit; Kangaslahti, Pekka; Lai, Richard; Lawrence, Charles R.; Readhead, Anthony C. S.; Sarkozy, Stephen; Seiffert, Michael D.; Sieth, Matthew

    2016-01-01

    We will present results of the latest InP HEMT MMIC low noise amplifiers in the 30-300 GHz range, with emphasis on LNAs and mixers developed for CO intensity mapping in the 40-80 GHz range, as well as MMIC LNAs suitable for ALMA Band 2 (67-90 GHz). The LNAs have been developed together with NGC in a 35 nm InP HEMT MMIC process. Recent results and a summary of best InP low noise amplifier data will be presented. This work describes technologies related to the detection and study of highly redshifted spectral lines from the CO molecule, a key tracer for molecular hydrogen. One of the most promising techniques for observing the Cosmic Dawn is intensity mapping of spectral-spatial fluctuations of line emission from neutral hydrogen (H I), CO, and [C II]. The essential idea is that instead of trying to detect line emission from individual galaxies, one measures the total line emission from a number of galaxies within the volume defined by a spectral-spatial pixel. Fluctuations from pixel to pixel trace large scale structure, and the evolution with redshift is revealed as a function of receiver frequency. A special feature of CO is the existence of multiple lines with a well-defined frequency relationship from the rotational ladder, which allows the possibility of cleanly separating the signal from other lines or foreground structure at other redshifts. Making use of this feature (not available to either HI or [C II] measurements) requires observing multiple frequencies, including the range 40-80 GHz, much of which is inaccessible from the ground or balloons.Specifically, the J=1->0 transition frequency is 115 GHz; J=2->1 is 230 GHz; J=3->2 is 345 GHz, etc. At redshift 7, these lines would appear at 14.4, 28.8, and 43.2 GHz, accessible from the ground. Over a wider range of redshifts, from 3 to 7, these lines would appear at frequencies from 14 to 86 GHz. A ground-based CO Intensity mapping experiment, COMAP, will utilize InP-based HEMT MMIC amplifier front ends in the 30 GHz range. Higher frequencies which are difficult to observe from the ground will be necessary to realize the full scientific potential of redshifted CO emission, and results from the latest MMIC LNAs above 40 GHz will be presented here

  5. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio R? of the instrument response to linearly polarized light at the angle ? relative to parallel from the slit, for increments of ? from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of ?, and divided by the respective R? showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geoCARB depolarizer or polarizer. Enabled by measurement of the geoCARB grating efficiencies the simulated intensities Ism include the slow polarization induced spectral change across the band. These Ism are input to the retrieval SW that was used in the original study. There is no significant change to the very positive previous results for the mission objective of gas column retrieval.

  6. Signal to Noise Ratio Estimation for a Space-borne Swept-Frequency Intensity-Modulated CO2 Laser Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    Chen, S.; Lin, B.; Petway, L. B.; Ismail, S.; Campbell, J. F.; Bai, Y.; Harrison, F. W.; Refaat, T. F.; Obland, M. D.; Meadows, B.; Browell, E. V.

    2014-12-01

    The Signal to Noise Ratio (SNR) in the digital lock-in detection for a space-borne swept-frequency Intensity-Modulated Continuous-Wave (IM-CW) CO2 Laser Absorption Spectrometer (LAS) has a direct influence on the accuracy of the CO2 measurement. According to the Maximum Likelihood Estimation (MLE) method, we have theoretically analyzed a linear swept-frequency sine wave signal in an additive high Gaussian-distributed noise with a constant variance, which is a good approximation for the detector-noise-limited system or the solar background noise dominated space-borne IM-CW CO2 LAS. The general MLE equations for the amplitude and the phase of the swept-frequency IM_CW signal have been generated and solved by a nonlinear optimization procedure. The variances of the amplitude and the phase have been obtained by using the Cramer-Rao lower bound, a lower bound on the variance of the estimated parameters. Under the large sampling numbers, the SNR, signal amplitude divided by the square-root of the amplitude variance, increases as the square-root of the total sampling numbers. Thousands of numerical simulations with randomly generated uniform distributed Gaussian noise were completed for the statistical verification of the estimation. The estimation has also been applied to a space-borne IM-CW CO2 LAS with typical parameters under averaged daytime solar background to confirm the feasibilities of the instrument design of the space-borne IM-CW CO2 LAS.

  7. Absolute Rovibrational Intensities, Self-Broadening and Self-Shift Coefficients for the X(sup 1) Sigma(+) V=3 (left arrow) V=0 Band (C-12)(O-16)

    NASA Technical Reports Server (NTRS)

    Chackerian, Charles, Jr.; Freedman, R.; Giver, L. P.; Brown, L. R.

    2001-01-01

    The rotationless transition moment squared for the x(sup 1) sigma (sup +) v=3 (left arrow) v=0 band of CO is measured to be the absolute value of R (sub 3-0) squared = 1.7127(25)x 10(exp -7) Debye squared. This value is about 8.6 percent smaller than the value assumed for HITRAN 2000. The Herman-Wallis intensity factor of this band is F=1+0.01168(11)m+0.0001065(79)m squared. The determination of self-broadening coefficients is improved with the inclusion of line narrowing; self-shifts are also reported.

  8. The two-photon absorptivity of rotational transitions in the A2 Sigma hyperon + (v prime = O) - X-2 pion (v prime prime = O) gamma band of nitric oxide

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1982-01-01

    A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.

  9. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  10. Absorption of surface acoustic waves by topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Li, L. L.; Xu, W.

    2014-08-01

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  11. On the origin of a very close similarity between the spectra of the supernova type 1 in NGC 3198 and the absorption of DQ HeR

    NASA Technical Reports Server (NTRS)

    Mustel, E. R.

    1979-01-01

    The type 1 supernova discovered late in 1966 in NGC 3198 has broad minima in its spectrum break down into a number of significantly narrower absorption bands. The broad minima of tau, sigma and mu, which usually show no details in the spectra of type supernovas, contain a number of narrow absorption bands. The reality of most of these absorption bands is demonstrated by comparison of recordings of spectra of the supernova presented for two moments in time. These minima (particularly of tau and mu,) are a result of blending of several broad absorption bands. The minimum of tau should be a blend of intensive and very broad Fe absorption lines, in which the lower level is metastable. The wavelengths of these line are: 5169, 5198, 5235, 5276, 5317, 5363A.

  12. Absolute intensities and self-, N2-, and air-broadened Lorentz halfwidths for selected lines in the nu3 band of (C-12)H3D from measurements with a tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    Malathy Devi, V.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.; Thakur, K. B.

    1986-01-01

    Absolute intensities and self-, air- and N2-broadened half-widths have been determined for the first time for individual lines in the nu3(A1) band of (C-12)H3D near 7.6 microns from measurements of individual vibration-rotation lines using a tunable diode laser spectrometer. The intensity measurements are believed to be accurate to within three percent. Within experimental uncertainties, equal broadening efficiencies are found for both air and nitrogen. Self-broadened half-widths determined for three transitions yield an average half-width value of 0.803 + or -0.0010/cm/atm at 296 K.

  13. Involvement of crystallinity in various luminescent bands in yttrium aluminate

    NASA Astrophysics Data System (ADS)

    Morimoto, Takaaki; Harima, Masayuki; Horii, Yosuke; Ohki, Yoshimichi

    2016-01-01

    When single crystal YAlO3 was implanted with P+ or B+ ions, optical absorption increases significantly at energies slightly lower than the band gap energy, indicating that localized electronic states were induced. Furthermore, the ion implantation decreases the intensity of an X-ray diffraction peak and changes its position randomly, which indicates that the crystalline structure of the sample was deformed. The intensities of photoluminescence (PL) bands due to impurities of Cr3+ and Er3+ and those originating in self-trapped excitons and antisites become smaller or disappear after the ion implantation. On the other hand, the intensity of the PL due to oxygen vacancies does not change. Such contrasting effects of the sample's crystallinity on the luminescence intensity are explained by the different manners of involvement of the crystal structure in the luminescence mechanism among these PLs in YAlO3.

  14. Expanding the chemical space for push-pull chromophores by non-concerted [2+2] and [4+2] cycloadditions: access to a highly functionalised 6,6-dicyanopentafulvene with an intense, low-energy charge-transfer band.

    PubMed

    Jayamurugan, Govindasamy; Gisselbrecht, Jean-Paul; Boudon, Corinne; Schoenebeck, Franziska; Schweizer, W Bernd; Bernet, Bruno; Diederich, François

    2011-04-21

    Non-concerted [2+2] and [4+2] cycloadditions between N,N-dimethylanilino-substituted 1,1,2,4,4-pentacyanobuta-1,3-diene and 4-ethynyl-N,N-dimethylaniline are controlled by solvent polarity and provide access to a highly functionalised 6,6-dicyanopentafulvene featuring an intense, low-energy charge-transfer band and to an unusual spirocyclic zwitterion, characterised by X-ray analysis. PMID:21399785

  15. Matrix-assisted laser desorption and ionization in the O---H and C=O absorption bands of aliphatic and aromatic matrices: dependence on laser wavelength and temporal beam profile

    NASA Astrophysics Data System (ADS)

    Cramer, Rainer; Haglund, Richard F.; Hillenkamp, Franz

    1997-12-01

    A tunable free-electron laser (FEL) was used to initiate infrared (IR) matrix-assisted laser desorption and ionization (MALDI) of small proteins in aliphatic and aromatic matrices. The laser wavelength was scanned from 2.65 to 4.2 [mu]m and from 5.5 to 6.5 [mu]m, covering the absorption bands of the O---H and C=O stretching vibrations found in such commonly used IR matrices as succinic, fumaric and nicotinic acids. The temporal profile of the laser pulse was also varied using a broadband electro-optic switch (Pockels cell) to study the effects of fluence and irradiance. Although there are absorption peaks at 3.3 [mu]m for succinic acid and fumaric acid, and at 4.1 [mu]m for nicotinic acid, the lowest threshold-fluence for IR MALDI in this region was around 2.94 [mu]m for all matrices. Moreover, the threshold-fluence increased with increasing absorption up to a value five times that of the 2.94 [mu]m value. This result raises questions about the relative contributions of the different sample constitutents to the absorption and the role of resonant absorption in IR MALDI. The threshold-fluences are typically one order of magnitude higher than those for ultraviolet (UV) MALDI, while extinction coefficients of the IR matrices are 100-1000 times smaller than for UV matrices. Therefore, the absorbed energies per unit volume at the MALDI threshold are 10-100 times smaller than in UV MALDI. All these facts clearly indicate that a different desorption/ionization process must be operative in IR MALDI. Variations in temporal profile of the FEL pulse also revealed that ion desorption depends on laser irradiance rather than laser fluence, a result which cannot be explained simply by energy loss due to heat conduction. Two possible models for IR desorption are suggested based on these observations.

  16. High-resolution absorption cross sections of carbon monoxide bands at 295 K between 91.7 and 100.4 nanometers

    NASA Technical Reports Server (NTRS)

    Stark, G.; Yoshino, K.; Smith, Peter L.; Ito, K.; Parkinson, W. H.

    1991-01-01

    Theoretical descriptions of the abundance and excitation of carbon monoxide in interstellar clouds require accurate data on the vacuum-ultraviolet absorption spectrum of the molecule. The 6.65 m spectrometer at the Photon Factory synchrotron light source was used to measure photoabsorption cross sections of CO features between 91.2 and 100.4 nm. These data were recorded at a resolving power of 170,000, more than 20 times greater than that used in previous work.

  17. Spectroscopic ellipsometry study of the free-carrier and band-edge absorption in ZnO thin films: Effect of non-stoichiometry

    NASA Astrophysics Data System (ADS)

    Singh, Chaman; Nozaki, Shinji; Rath, Shyama

    2015-11-01

    The effect of stoichiometry on the complex dielectric function (?(E) = ?1(E) + i?2(E)), and thereby on the optical and electrical properties, of rf-sputtered polycrystalline ZnO films was investigated using spectroscopic ellipsometry in the UV-VIS-NIR range. The stoichiometry and the density of the films were quantified by Rutherford backscattering spectroscopy. The lineshape of the dielectric function was fitted using the Tauc-Lorentz multi-oscillator and Drude models. The stoichiometric as well as the sub-stoichiometric films showed a high optical transparency in the visible and a bandgap absorption in the UV region. In the NIR region, however, the sub-stoichiometric films showed a significant increase in absorption with decreasing energy while the absorption was negligible for the stoichiometric films. This difference in behavior is attributed to the presence of free-carriers in the sub-stoichiometric films, whose concentration was determined to be around 4 × 1020 cm-3 from spectroscopic ellipsometry. The high carrier concentration induced by non-stoichiometry is also manifested in a larger value of the optical bandgap. This study shows the power of spectroscopic ellipsometry for the simultaneous determination of the electrical and optical properties of ZnO films and is applicable for a wide range of film thickness.

  18. Relation of molecular structure to Franck-Condon bands in the visible-light absorption spectra of symmetric cationic cyanine dyes

    NASA Astrophysics Data System (ADS)

    Lin, Katrina Tao Hua; Silzel, John W.

    2015-05-01

    A Franck-Condon (FC) model is used to study the solution-phase absorbance spectra of a series of seven symmetric cyanine dyes having between 22 and 77 atoms. Electronic transition energies were obtained from routine visible-light absorbance and fluorescence emission spectra. Harmonic normal modes were computed using density functional theory (DFT) and a polarizable continuum solvent model (PCM), with frequencies corrected using measured mid-infrared spectra. The model predicts the relative energies of the two major vibronic bands to within 5% and 11%, respectively, and also reproduces structure-specific differences in vibronic band shapes. The bands themselves result from excitation of two distinct subsets of normal modes, one with frequencies between 150 and 625 cm-1, and the other between 850 and 1480 cm-1. Vibronic transitions excite symmetric in-plane bending of the polymethine chain, in-plane bends of the polymethine and aromatic C-H bonds, torsions and deformations of N-alkyl substituents, and in the case of the indocyanines, in-plane deformations of the indole rings. For two dyes, the model predicts vibronic coupling into symmetry-breaking torsions associated with trans-cis photoisomerization.

  19. Intensive visible-light photoactivity of Bi- and Fe-containing pyrochlore nanoparticles.

    PubMed

    Bencina, Metka; Valant, Matjaz; Pitcher, Michael W; Fanetti, Mattia

    2014-01-21

    Bi-Fe-Nb-O pyrochlore nanoparticles were synthesized by a facile coprecipitation reaction. They exhibit intense visible-light absorption due to a narrow band gap and high visible-light photocatalytic activity for degradation of methyl orange. PMID:24306495

  20. Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K. [Planetary atmospheres

    SciTech Connect

    Borysow, A. )

    1991-08-01

    The 20-300 K free-free rotovibrational collision-induced absorption (RV CIA) spectra of H2-H2 pairs are presently obtained by a numerical method which, in addition to closely matching known CIA spectra of H2-H2, can reproduce the results of the quantum-mechanical computations to within a few percent. Since the spectral lineshape parameters are derivable by these means from the lowest three quantum-mechanical spectral moments, these outer-planet atmosphere-pertinent model spectra may be computed on even small computers. 35 refs.

  1. Coloration and oxygen vacancies in wide band gap oxide semiconductors: Absorption at metallic nanoparticles induced by vacancy clustering—A case study on indium oxide

    SciTech Connect

    Albrecht, M. Schewski, R.; Irmscher, K.; Galazka, Z.; Markurt, T.; Naumann, M.; Schulz, T.; Uecker, R.; Fornari, R.; Meuret, S.; Kociak, M.

    2014-02-07

    In this paper, we show by optical and electron microscopy based investigations that vacancies in oxides may cluster and form metallic nanoparticles that induce coloration by extinction of visible light. Optical extinction in this case is caused by generation of localized surface plasmon resonances at metallic particles embedded in the dielectric matrix. Based on Mie's approach, we are able to fit the absorption due to indium nanoparticles in In{sub 2}O{sub 3} to our absorption measurements. The experimentally found particle distribution is in excellent agreement with the one obtained from fitting by Mie theory. Indium particles are formed by precipitation of oxygen vacancies. From basic thermodynamic consideration and assuming theoretically calculated activation energies for vacancy formation and migration, we find that the majority of oxygen vacancies form just below the melting point. Since they are ionized at this temperature they are Coulomb repulsive. Upon cooling, a high supersaturation of oxygen vacancies forms in the crystal that precipitates once the Fermi level crosses the transition energy level from the charged to the neutral charge state. From our considerations we find that the ionization energy of the oxygen vacancy must be higher than 200?meV.

  2. Preliminary comparison of the methane absorption latitudinal distribution on Saturn

    NASA Astrophysics Data System (ADS)

    Tejfel, V.; Karimov, A.; Kharitonova, G.

    2009-04-01

    The study of the methane absorption bands variations on disks of Jupiter and Saturn has a long history in Fessenkov Astrophysical Institute beginning of 1960-th. From 1995 the CCD-cameras are using for planetary photometry and spectrophotmetry and in the last years these observations served as a part of the ground based astrophysical accompaniment of "Cassini" space mission to Saturn. The methane absorption as well as other optical properties of Saturn's visible atmosphere and clouds cover shows clearly expressed North-South asymmetry even at the time of the "edge-on" rings and equator orientation. During this event in 1995 we have found that the CH4 absorption bands are significantly more intense at the temperate latitudes of S-hemisphere in comparison with N-hemisphere.. During next years till 2008 the latitudinal absorption distribution was changing according the changes of the equator tilt and for Southern temperate latitudes there was noted a regular increase of the methane bands intensity. . The CH4 725 nm band depth changed from 0.53 in 1995 to 0.74 in 2007-2008. but next growth of the absorption was finished in the beginning of new observational season 2008-2009. Last observations were accomplished 13-14.12.2008 and 5-6.01.2009.by consequent zonal scanning of Saturn's disk . Each series consisted of 80-90 CCD-spectra. The spectra of central meridian of Saturn were recorded also. The view of the latitudinal variations of the methane absorption is not simply reciprocal to observed in 1995 as it may be waiting. The CH4 band 725 nm shows near symmetric distribution in both hemispheres . Weaker absorption bands 619 nm and 670 nm do not show that symmetry and they are stronger in the Northern hemisphere. More detailed study of these peculiarities is in progress. Preliminary the structural atmospheric changes, which are imaging in the methane absorption variations, may be connected with nonsimilar insolation regimes near 1995 and 2009 because the heliocentric longitudes and distances of Saturn from the Sun were significantly different in that times.

  3. 440 Biophysical Journal Volume 84 January 2003 440449 Low-Intensity Pump-Probe Measurements on the B800 Band of

    E-print Network

    van Stokkum, Ivo

    at 77 K. The excitation/detection wavelength was tuned through the B800 band. A single B800 molecule, takes ;0.5 ps at 77 K. This transfer time increases with the excitation/detection cluster of weakly coupled pigments. In the global target analysis, the transfer time from B800 to B850

  4. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J. (Nesconset, NY); Lin, Horn-Bond (Manorville, NY)

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  5. On the Ammonia Absorption on Saturn

    NASA Astrophysics Data System (ADS)

    Tejfel, Victor G.; Karimov, A. M.; Lyssenko, P. G.; Kharitonova, G. A.

    2015-11-01

    The ammonia absorption bands centered at wavelengths of 645 and 787 nm in the visible spectrum of Saturn are very weak and overlapped with more strong absorption bands of methane. Therefore, the allocation of these bands is extremely difficult. In fact, the NH3 band 787 nm is completely masked by methane. The NH3 645 nm absorption band is superimposed on a relatively weak shortwave wing of CH4 band, in which the absorption maximum lies at the wavelength of 667 nm. In 2009, during the equinox on Saturn we have obtained the series of zonal spectrograms by scanning of the planet disk from the southern to the northern polar limb. Besides studies of latitudinal variation of the methane absorption bands we have done an attempt to trace the behavior of the absorption of ammonia in the band 645 nm. Simple selection of the pure NH3 profile of the band was not very reliable. Therefore, after normalizing to the ring spectrum and to the level of the continuous spectrum for entire band ranging from 630 to 680 nm in the equivalent widths were calculated for shortwave part of this band (630-652 nm), where the ammonia absorption is present, and a portion of the band CH4 652-680 nm. In any method of eliminating the weak part of the methane uptake in the short wing show an increased ammonia absorption in the northern hemisphere compared to the south. This same feature is observed also in the behavior of weak absorption bands of methane in contrast to the more powerful, such as CH4 725 and 787 nm. This is due to the conditions of absorption bands formation in the clouds at multiple scattering. Weak absorption bands of methane and ammonia are formed on the large effective optical depths and their behavior reflects the differences in the degree of uniformity of the aerosol component of the atmosphere of Saturn.

  6. Optical absorption and thermoluminescence in single NaCl:Cu crystals exposed to 60Co and UV light.

    PubMed

    Cruz-Zaragoza, E; Barboza-Flores, M; Chernov, V; Meléndrez, R; Ramos B, S; Negrón-Mendoza, A; Hernández, J M; Murrieta, H

    2006-01-01

    Optical absorption (OA) and thermally stimulated luminescence measurements were performed on NaCl:Cu+(0.04 and 0.08%) crystals blocks grown by the Czochralski technique. The NaCl:Cu+ crystals were exposed to gamma rays from a 60Co source (0.954-30 kGy) as well as UV radiation. The radiation-induced defects were mainly F, Cu- and Cu+ centres, with absorption bands located at 464, 256.7 and 236 nm, respectively. The absorption bands were found to be independent of the Cu impurity concentration. As the gamma-dose irradiation increased, the absorption band at 256.7 nm decreased while the band at 236.3 nm increased highly along with the 256.7 nm band. The F-centres produced at high gamma-radiation dose while thermally bleached showed an increase of the Cu+ OA bands with a simultaneous decrease of Cu- absorption band. The bleaching with F-light showed the participation of the F centre generated by gamma radiation on the ion valence changes of the doping impurity as well as on the TL phenomenon. The TL measurements in NaCl:Cu crystals with both impurity concentrations demonstrated that the Cu+ concentration has a strong influence on the intensity and shape of the glow peaks. PMID:16868016

  7. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  8. H + O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Pi) radical - An experimental dipole moment function and state-to-state Einstein A coefficients

    NASA Technical Reports Server (NTRS)

    Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.

    1990-01-01

    FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.

  9. Absorption and photoluminescence of ternary nanostructured Ge-S-Ga(In)glassy semiconductor systems

    SciTech Connect

    Babaev, A. A.; Kudoyarova, V. Kh.

    2013-07-15

    The photoluminescence and luminescence excitation spectra and the edge and IR absorption of Ge-S-Ga(In) glassy semiconductor systems are studied. The observed shifts of the optical-absorption edge, photoluminescence spectra (a decrease in their full width at half-maximum), and luminescence excitation spectra to lower energies upon the introduction of Ga or In into Ge-S binary systems are due to the fact that Ga or In tend to interact with sulfur, rather than with germanium. As the content of Ga(In) in the system increases, the intensity of the absorption band associated with vibrations of the Ge-S bond decreases.

  10. Structural imperfections in silicon dioxide films identified with vacuum ultraviolet optical absorption measurements

    NASA Astrophysics Data System (ADS)

    Awazu, Koichi; Kawazoe, Hiroshi; Saito, Yasutoshi; Watanabe, Kikuo; Ando, Toshio

    1991-07-01

    The optical absorption of silicon dioxide films fabricated by dry oxidation at 1000 or 1100 °C was studied by measurements in the vacuum ultraviolet region. Two clear absorption bands at 7.6 and 6.7 eV were found for the films. Intensities of the bands decreased following heat treatment in a H2 ambient. The absorption band at 7.6 eV is considered to be caused by the defect having the structure of 3O?SiSi?O3. The concentration of the 3O?SiSi?O3 structure was estimated to be 6×1019 cm-3 and 5×1018 cm-3 for the films fabricated at 1000 and 1100 °C, respectively.

  11. Acoustic power absorption and enhancement generated by slow and fast MHD waves. Evidence of solar cycle velocity/intensity amplitude changes consistent with the mode conversion theory

    NASA Astrophysics Data System (ADS)

    Simoniello, R.; Finsterle, W.; García, R. A.; Salabert, D.; Jiménez, A.; Elsworth, Y.; Schunker, H.

    2010-06-01

    We used long duration, high quality, unresolved (Sun-as-a star) observations collected by the ground based network BiSON and by the instruments GOLF and VIRGO on board the ESA/NASA SOHO satellite to search for solar-cycle-related changes in mode characteristics in velocity and continuum intensity for the frequency range between 2.5 mHz intensity data between 2.5 mHz intensity observations. Over the range of 4.5 mHz intensity amplitudes. At still higher frequencies, in the so called High-frequency Interference Peaks (HIPs) between 5.8 mHz intensity observations we found a rather smaller enhancement of about 5 ± 2 per cent in the same interval. There is evidence that the frequency dependence of solar-cycle velocity amplitude changes is consistent with the theory behind the mode conversion of acoustic waves in a non-vertical magnetic field, but there are some problems with the intensity data, which may be due to the height in the solar atmosphere at which the VIRGO data are taken.

  12. Band models and correlations for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1975-01-01

    Absorption of infrared radiation by various line and band models are briefly reviewed. Narrow band model relations for absorptance are used to develop 'exact' formulations for total absorption by four wide band models. Application of a wide band model to a particular gas largely depends upon the spectroscopic characteristic of the absorbing-emitting molecule. Seven continuous correlations for the absorption of a wide band model are presented and each one of these is compared with the exact (numerical) solutions of the wide band models. Comparison of these results indicate the validity of a correlation for a particular radiative transfer application. In radiative transfer analyses, use of continuous correlations for total band absorptance provides flexibilities in various mathematical operations.

  13. UV intensity measurement for a novel 222 nm excimer lamp using chemical actinometer

    NASA Astrophysics Data System (ADS)

    Zhang, J.-Y.; Boyd, I. W.; Esrom, H.

    1997-02-01

    Photohydrate of uridine in neutral aqueous solution is used for the determination of the ultraviolet (UV) intensity of a novel excimer lamp, employing a dielectric barrier discharge in krypton chloride to provide intense narrow band radiation at ?=222 nm (KrCl*). The intensity measurement is based on UV spectral absorption data. A photokinetic model is presented for the reaction which is generally applicable for any photochemical system. The electrical power dependence of the UV intensity generated as well as the efficiency of the lamps was investigated.

  14. MRI-detected bone marrow changes within 3 weeks after initiation of high-dose corticosteroid therapy: a possible change preceding the subsequent appearance of low-intensity band in femoral head osteonecrosis.

    PubMed

    Kubo, Yusuke; Yamamoto, Takuaki; Motomura, Goro; Tsukamoto, Nobuaki; Karasuyama, Kazuyuki; Sonoda, Kazuhiko; Hatanaka, Hiroyuki; Utsunomiya, Takeshi; Iwamoto, Yukihide

    2015-11-01

    Osteonecrosis of the femoral head is considered to occur early during the course of corticosteroid treatment. However, it remains unclear exactly how early it can develop after initiation of corticosteroid treatment. We report a case of osteonecrosis of the femoral head in which abnormal findings were observed on short-tau inversion recovery (STIR) sequence image performed 2 weeks and 4 days after initiation of high-dose corticosteroid therapy. A 45-year-old man with hemophagocytic syndrome was started on prednisolone, with a maximum dose of 40 mg/day. On day 13 after initiation of this corticosteroid therapy, he transiently experienced left hip pain with no apparent cause. STIR sequence image 5 days after the onset of pain revealed high-intensity bone marrow lesions at the femoral neck of both hips. At 3 months after initiation of corticosteroid therapy, T1-weighted magnetic resonance imaging revealed concave-shaped low-intensity bands, which corresponded to the preceding high-intensity lesions on both hips. Because of the subsequent progression to collapse of the left femoral head, he underwent prosthetic replacement surgery. The high-intensity lesions on STIR sequence image indicate the possibility that osteonecrosis can occur within 3 weeks after initiation of high-dose corticosteroid therapy. PMID:26297517

  15. Comparison of HITRAN Calculated Spectra with Laboratory Measurements of the 820, 940, 1130, and 1370 nm Water Vapor Bands

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Pilewskie, P.; Gore, Warren J.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    Several groups have recently been working to improve the near-infrared spectrum of water vapor on HITRAN. The unit-conversion errors found by Giver, et al have now been corrected on the recently released HITRAN-2000. The most important aspect of this article for atmospheric absorption was increasing all the HITRAN-1996 intensities of the 940 nm band by nearly 15%. New intensity measurements of this band by Brown, et al (submitted to J. Mol. Spec.) have now been included in the latest HITRAN. However, Belmiloud, et al discuss new data in the 633-1175 nm region which they expect will substantially increase the calculated absorption of solar radiation by water vapor. They suggest the 4 bands at 725, 820, 940, and 1130 nm are all stronger than the sum of the line intensities currently on HITRAN. For the 725 and 820 nm bands, their recommended intensity increases are 10% and 15%, about the same as previously noted by Grossmann and Browell and Ponsardin and Browell. Belmiloud, et al only suggest a 6% increase for the 940 nm. band over the corrected HITRAN-1996 intensities, but a large 38% increase for the 1130 nm band. The new data discussed by Belmiloud, et al have now been published in greater detail by Schermaul, et al. The intensity increase for the 1130 nm band discussed by Belmiloud, et al is very substantial; it is important to quickly determine if the HITRAN intensity values are in error by as much as they claim. Only intensity errors for the strong lines could result in the total band intensity being in error by such a large amount. To quickly get a number of spectra of the entire near-infrared region from 650 to 1650 nm, we used the Solar Spectral Flux Radiometer with our 25-meter base path White absorption cell. This moderate resolution spectrometer is a flight instrument that has flown on the Sandia Twin Otter for the ARESE 11 experiment. The measured band profiles were then compared to calculated spectra using the latest HITRAN line intensities, convolved with the instrumental resolution. Our spectra for the 725 and 820 nm bands show somewhat more absorption than the HITRAN simulations, about as expected by Belmiloud, el al. The total absorption for our spectra of the 940 nm band agrees well with the HITRAN simulations; this HITRAN spectral region now has the new measurements of Brown, et al. Our spectra of the 1130 nm band have somewhat more absorption than the HITRAN simulations, but not as much as the 38% intensity increase for this band suggested by Belmiloud, et al. An intensity increase of about 20% on average would be more compatible with our data. Finally, our spectra of the 1370 nm band are fairly well modeled by the HITRAN simulations, despite the known problems of the older HITRAN data in this region.

  16. Effects of ?-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities.

    PubMed

    Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T

    2014-11-17

    The effects of ?-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after ?-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO??? centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under ?-irradiation of KDP crystals are discussed. PMID:25402141

  17. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation.

    PubMed

    Passarella, Salvatore; Karu, Tiina

    2014-11-01

    In addition to the major functions performed by in the cell, mitochondria play a major role in cell-light interaction. Accordingly it is generally accepted that mitochondria are crucial in cell photobiomodulation; however a variety of biomolecules themselves proved to be targets of light irradiation. We describe whether and how mitochondria can interact with monochromatic and narrow band radiation in the red and near IR optical regions with dissection of both structural and functional effects likely leading to photobiostimulation. Moreover we also report that a variety of biomolecules localized in mitochondria and/or in other cell compartments including cytochrome c oxidase, some proteins, nucleic acids and adenine nucleotides are light sensitive with major modifications in their biochemistry. All together the reported investigations show that the elucidation of the mechanism of the light interaction with biological targets still remains to be completed, this needing further research, however the light sensitivity of a variety of molecules strongly suggests that photobiomodulation could be used in both in photomedicine and in biotechnology. PMID:25226343

  18. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    NASA Astrophysics Data System (ADS)

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-08-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20?nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing.

  19. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    PubMed Central

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-01-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20?nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing. PMID:26294085

  20. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films.

    PubMed

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-01-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20?nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing. PMID:26294085

  1. Effect of photon-assisted absorption on the thermodynamics of hot electrons interacting with an intense optical field in bulk GaAs

    SciTech Connect

    Huang, Danhong; Alsing, P.M.; Apostolova, T.; Cardimona, D.A.

    2005-01-15

    The use of a Boltzmann transport equation with a drift term is physically incorrect for optical-field frequencies. Also, the use of a simple energy-balance equation is found to lead to an inaccurate estimation of electron temperature. Therefore, we have established a Boltzmann-scattering equation for the accurate description of the relative scattering motion of electrons interacting with an incident optical field by including impurity- and phonon-assisted photon absorption as well as Coulomb scattering between two electrons. Multiple peaks on the high-energy tail of a Fermi-Dirac distribution are predicted and the effect of pair scattering is analyzed. Moreover, the effective electron temperature is calculated as a function of both the incident-field amplitude and the photon energy so that the thermodynamics of hot electrons may be investigated.

  2. A study of the absorption features of Makemake

    NASA Astrophysics Data System (ADS)

    Alvarez-Candal, A.; Pinilla-Alonso, N.; Ortiz, J.; Duffard, R.; Carvano, J.; de Pra, M.

    2014-07-01

    Most transneptunian objects do not show prominent absorption features due to the size and location [1]. Nevertheless, absorption due to water ice and volatile ices do appear on a few large objects, particularly those that have good signal-to-noise-ratio spectra. In particular, methane appears in three dwarf planets (Pluto, Eris, and Makemake), as well as in some smaller objects, such as Quaoar and probably Sedna, and in Neptune's satellite Triton. Methane has such intense absorption features that even small amounts of methane on the surface dominate the reflectance spectra in the visible and near-infrared range, making it a great tool to probe surfaces, especially, considering that the depth of the bands could be used as a proxy for physical depths and that shifts in the bands with respect to laboratory measurements could point to possible dilutions (as seen in Pluto and Eris; for instance [3] and references therein). Aiming at gaining a deeper insight into Makemake's surface through its methane absorption bands, we have observed it with X-Shooter at the VLT with a medium spectral resolution in the range of 0.4--1.8 microns. In this work, we present the results of comparing these features with those of methane in the laboratory and the same features in Eris and Pluto, within the context of methane-dominated spectra of dwarf planets.

  3. SF_6: the Forbidden Band Unveiled

    NASA Astrophysics Data System (ADS)

    Boudon, V.; Manceron, L.; Kwabia-Tchana, F.; Roy, P.

    2013-06-01

    Sulfur hexafluoride (SF_6) is a greenhouse gas of anthropogenic origin, whose strong infrared absorption in the ?_3 S-F stretching region near 948 cm^{-1} induces a global warming potential 23900 times bigger than CO_2. This heavy species features many hot bands at room temperature (at which the ground state population is only 30 %), especially those originating from the v_6=1 state. Unfortunately, the ?_6 band itself (near 347 cm^{-1}) being, in first approximation, both infrared and Raman inactive, no reliable information could be obtained about it up to now. A long time ago, some authors suggested that this band may be slightly activated through Coriolis interaction and may appear as a very faint band, with an integrated intensity about 2 millionths of that of ?_3. Using a new cryogenic multipass cell with 93 m optical path length and regulated at 165± 2 K temperature, we recorded a spectrum of the ?_6 far-infrared region thanks to the performances of the AILES Beamline at the SOLEIL french synchrotron facility. Low temperature was used to avoid the presence of the 2?_6-?_6 hot band and to reduce the neighboring, stronger ?_4-?_2 difference band. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution is indeed ?_6. We present its fully resolved spectrum. It appears to be activated thanks to unidentified faint interactions resulting in the presence of a first-order dipole moment term that induces unusual selection rules. This spectrum was analyzed thanks to the XTDS software package, leading to accurate molecular spectroscopic parameters that should be useful to model the hot bands of SF_6. W. B. Person, B. J. Krohn, J. Mol. Spectrosc. {98}, 229-257 (1983), C. Chappados, G. Birnbaum, J. Mol. Spectrosc. {105}, 206-214 (1984). Ch. Wenger, V. Boudon, M. Rotger, M. Sanzharov and J.-P. Champion, J. Mol. Spectrosc., {251} 102-113 (2008).

  4. Neuron absorption study and mid-IR optical excitations

    NASA Astrophysics Data System (ADS)

    Guo, Dingkai; Chen, Xing; Vadala, Shilpa; Leach, Jennie; Kostov, Yordan; Bewley, William W.; Kim, Chul-Soo; Kim, Mijin; Canedy, Chadwick L.; Merritt, Charles D.; Vurgaftman, Igor; Meyer, Jerry R.; Choa, Fow-Sen

    2012-02-01

    Neuronal optical excitation can provide non-contacting tools to explore brain circuitry and a durable stimulation interface for cardiac pacing and visual as well as auditory sensory neuronal stimulation. To obtain accurate absorption spectra, we scan the transmission of neurons in cell culture medium, and normalize it by subtracting out the absorption spectrum of the medium alone. The resulting spectra show that the main neuronal absorption peaks are in the 3000- 6000nm band, although there is a smaller peak near 1450nm. By coupling the output of a 3?m interband cascade laser (ICL) into a mid-IR fluorozirconate fiber, we can effectively deliver more than 1J/cm2 photon intensity to the excitation site for neuronal stimulation.

  5. A search for diffuse bands in fullerene planetary nebulae: evidence of diffuse circumstellar bands

    NASA Astrophysics Data System (ADS)

    Díaz-Luis, J. J.; García-Hernández, D. A.; Kameswara Rao, N.; Manchado, A.; Cataldo, F.

    2015-01-01

    Large fullerenes and fullerene-based molecules have been proposed as carriers of diffuse interstellar bands (DIBs). The recent detection of the most common fullerenes (C60 and C70) around some planetary nebulae (PNe) now enable us to study the DIBs towards fullerene-rich space environments. We search DIBs in the optical spectra towards three fullerene-containing PNe (Tc 1, M 1-20, and IC 418). Special attention is given to DIBs which are found to be unusually intense towards these fullerene sources. In particular, an unusually strong 4428 Å absorption feature is a common charateristic of fullerene PNe. Similar to Tc 1, the strongest optical bands of neutral C60 are not detected towards IC 418. Our high-quality (S/N > 300) spectra for PN Tc 1, together with its large radial velocity, permit us to search for the presence of diffuse bands of circumstellar origin, which we refer to as diffuse circumstellar bands (DCBs). We report the first tentative detection of two DCBs at 4428 and 5780 Å in the fullerene-rich circumstellar environment around the PN Tc 1. Laboratory and theoretical studies of fullerenes in their multifarious manifestations (carbon onions, fullerene clusters, or even complex species formed by fullerenes and other molecules like PAHs or metals) may help solve the mystery of some of the diffuse band carriers. Appendix A is available in electronic form at http://www.aanda.org

  6. Band-filling of solution-synthesized CdS nanowires.

    PubMed

    Puthussery, James; Lan, Aidong; Kosel, Thomas H; Kuno, Masaru

    2008-02-01

    The band edge optical characterization of solution-synthesized CdS nanowires (NWs) is described. Investigated wires are made through a solution-liquid-solid approach that entails the use of low-melting bimetallic catalyst particles to seed NW growth. Resulting diameters are approximately 14 nm, and lengths exceed 1 microm. Ensemble diameter distributions are approximately 13%, with corresponding intrawire diameter variations of approximately 5%. High-resolution transmission electron micrographs show that the wires are highly crystalline and have the wurtzite structure with growth along at least two directions: [0001] and [1010]. Band edge emission is observed with estimated quantum yields between approximately 0.05% and 1%. Complementary photoluminescence excitation spectra show structure consistent with the linear absorption. Carrier cooling dynamics are subsequently examined through ensemble lifetime and transient differential absorption measurements. The former reveals unexpectedly long band edge decays that extend beyond tens of nanoseconds. The latter indicates rapid intraband carrier cooling on time scales of 300-400 fs. Subsequent recovery at the band edge contains significant Auger contributions at high intensities which are usurped by other, possibly surface-related, carrier relaxation pathways at lower intensities. Furthermore, an unusual intensity-dependent transient broadening is seen, connected with these long decays. The effect likely stems from band-filling on the basis of an analysis of observed spectral shifts and line widths. PMID:19206638

  7. 5 × 5 cm² silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields.

    PubMed

    Becker, C; Wyss, P; Eisenhauer, D; Probst, J; Preidel, V; Hammerschmidt, M; Burger, S

    2014-01-01

    Crystalline silicon photonic crystal slabs are widely used in various photonics applications. So far, the commercial success of such structures is still limited owing to the lack of cost-effective fabrication processes enabling large nanopatterned areas (? 1?cm(2)). We present a simple method for producing crystalline silicon nanohole arrays of up to 5 × 5?cm(2) size with lattice pitches between 600 and 1000?nm on glass and flexible plastic substrates. Exclusively up-scalable, fast fabrication processes are applied such as nanoimprint-lithography and silicon evaporation. The broadband light trapping efficiency of the arrays is among the best values reported for large-area experimental crystalline silicon nanostructures. Further, measured photonic crystal resonance modes are in good accordance with light scattering simulations predicting strong near-field intensity enhancements greater than 500. Hence, the large-area silicon nanohole arrays might become a promising platform for ultrathin solar cells on lightweight substrates, high-sensitive optical biosensors, and nonlinear optics. PMID:25073935

  8. 5 × 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields

    NASA Astrophysics Data System (ADS)

    Becker, C.; Wyss, P.; Eisenhauer, D.; Probst, J.; Preidel, V.; Hammerschmidt, M.; Burger, S.

    2014-07-01

    Crystalline silicon photonic crystal slabs are widely used in various photonics applications. So far, the commercial success of such structures is still limited owing to the lack of cost-effective fabrication processes enabling large nanopatterned areas (>> 1 cm2). We present a simple method for producing crystalline silicon nanohole arrays of up to 5 × 5 cm2 size with lattice pitches between 600 and 1000 nm on glass and flexible plastic substrates. Exclusively up-scalable, fast fabrication processes are applied such as nanoimprint-lithography and silicon evaporation. The broadband light trapping efficiency of the arrays is among the best values reported for large-area experimental crystalline silicon nanostructures. Further, measured photonic crystal resonance modes are in good accordance with light scattering simulations predicting strong near-field intensity enhancements greater than 500. Hence, the large-area silicon nanohole arrays might become a promising platform for ultrathin solar cells on lightweight substrates, high-sensitive optical biosensors, and nonlinear optics.

  9. Photodissociation of carbon dioxide in singlet valence electronic states. II. Five state absorption spectrum and vibronic assignment

    E-print Network

    Grebenshchikov, Sergy Yu

    2013-01-01

    The absorption spectrum of CO$_2$ in the wavelength range 120\\,nm --- 160\\,nm is analyzed by means of quantum mechanical calculations performed using vibronically coupled PESs of five singlet valence electronic states and the coordinate dependent transition dipole moment vectors. The thermally averaged spectrum, calculated for T=190\\,K via Boltzmann averaging of optical transitions from many initial rotational states, accurtely reproduces the experimental spectral envelope, consisting of a low and a high energy band, the positions of the absorption maxima, their FWHMs, peak intensities, and frequencies of diffuse structures in each band. Contributions of the vibronic interactions due to Renner-Teller coupling, conical intersections, and the Herzberg-Teller effect are isolated and the calculated bands are assigned in terms of adiabatic electronic states. Finally, diffuse structures in the calculated bands are vibronically assigned using wave functions of the underlying resonance states. It is demonstrated that...

  10. Fluorescence enhancement of CdSe Q-Dots with intense femtosecond laser irradiation.

    PubMed

    Narayana Rao, D; Venkatram, N

    2007-11-01

    Effects of intense femtosecond (fs) laser irradiation on the optical properties of cadmium selenide (CdSe) nanocrystals are studied. We present the changes in emission and absorption of laser (800 nm, 110 fs, Ti-Sapphire) irradiated CdSe nanocrystals dispersed in dimethylformamide (DMF). It is observed that the absorbance of CdSe nanocrystals capped with trioctylphosphine (TOP) increases with the number of laser pulses. The trap state luminescence intensity of these crystals degrades, whereas the band edge luminescence intensity shows an increase as a function of the fs laser irradiation. We also report strong two photon absorption and reduction in the trap state luminescence intensity after irradiation with the laser pulses. PMID:17703350

  11. Bird Banding

    USGS Multimedia Gallery

    Bird Banding - Elizabeth Sellers points out identification characteristics in the plumage of a male common yellowthroat to John P. Mosesso during a capture-recapture study at a Monitoring Avian Productivity and Survivorship (MAPS) program bird banding station....

  12. A reward band study of mallards to estimate band reporting rates

    USGS Publications Warehouse

    Henny, C.J.; Burnham, K.P.

    1976-01-01

    Reward bands ($10) were placed on 2,122 hatching-year mallards (Anas platyrhynchos), and an additional 11,490 received conventional bands (controls) to estimate band reporting rates. An analysis of band recoveries indicated that the reporting rate was dependent primarily upon three factors: (1) the distance banded birds were recovered from the banding site, (2) band collecting activities of conservation agencies (usually near banding sites), and ( 3) the intensity of banding effort in the region (frequency of banded birds in the population of the region). Reporting rates were uniformly depressed near the banding sites, but they showed an east-west cline at distances greater than 80 km from the banding sites. The reporting rate was highest in the west. Limited data on historical band reporting rates were compiled. Recommendations are given for adjusting band recoveries to account for the nonreporting of bands for 1957-73.

  13. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    SciTech Connect

    Brauer, Carolyn S.; Blake, Thomas A.; Guenther, Alex B.; Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.

    2014-11-19

    The OH- and O3- initiated oxidations of isoprene, which is one of the primary volatile organic compounds produced by vegetation, are a major source of atmospheric formaldehyde and other oxygenated organics, yet little quantitative IR data exists for isoprene. We thus report absorption coefficients and integrated band intensities for isoprene in the 600 - 6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm-1 resolution, using a Bruker 66V FTIR. Composite spectra are derived from a minimum of seven pressures at each temperature.

  14. A search of diffuse bands in fullerene planetary nebulae: evidence for diffuse circumstellar bands

    E-print Network

    Diaz-Luis, J J; Rao, N Kameswara; Manchado, A; Cataldo, F

    2014-01-01

    Large fullerenes and fullerene-based molecules have been proposed as carriers of diffuse interstellar bands (DIBs). The recent detection of the most common fullerenes (C60 and C70) around some Planetary Nebulae (PNe) now enable us to study the DIBs towards fullerene-rich space environments. We search DIBs in the optical spectra towards three fullerene-containing PNe (Tc 1, M 1-20, and IC 418). Special attention is given to DIBs which are found to be unusually intense towards these fullerene sources. In particular, an unusually strong 4428A absorption feature is a common charateristic to fullerene PNe. Similarly to Tc 1, the strongest optical bands of neutral C60 are not detected towards IC 418. Our high-quality (S/N > 300) spectra for PN Tc 1 together with its large radial velocity permits us to search for the presence of diffuse bands of circumstellar origin which we refer to as diffuse circumstellar bands (DCBs). We report the first tentative detection of two DCBs at 4428 and 5780 A in the fullerene-rich ci...

  15. Collision-induced vibrational absorption in molecular hydrogens

    SciTech Connect

    Reddy, S.P.

    1993-05-01

    Collision induced absorption (CIA) spectra of the first overtone bands of H{sub 2}, D{sub 2}, and HD have been recorded for gas densities up to 500 amagat at 77-300 K. Analyses of these spectra reveal that (1) contrary to the observations in the fundamental bands, the contribution of the isotropic overlap interaction to the first overtone bands is negligible, (2) the squares of the matrix elements B{sub 32}(R)/ea{sub o} [= {lambda}{sub 32} exp(-(R-{sigma})/{rho}{sub 32}) + 3 (R/a{sub o}){sup -4}] where the subscripts 3 and 2 represent L and {lambda}, respectively, account for the absorption intensity of the bands and (3) the mixed term, 2,3 {lambda}{sub 32} exp (-(R-{sigma})/{rho}{sub 32}) <{vert_bar}Q{vert_bar}> <{alpha}> (R/a){sup -4}, gives a negative contribution. In the CIA spectra of H{sub 2} in its second overtone region recorded at 77, 201 and 298 K for gas densities up to 1000 amagat, a dip in the Q branch with characteristic Q{sub p} and Q{sub R} components has been observed. The analysis of the absorption profiles reveals, in addition to the previously known effects, the occurrence of the triple-collision transitions of H{sub 2} of the type Q{sub 1}(J) + Q{sub 1}(J) + Q{sub 1}(J) for the first time. From the profile analysis the absorption coefficient of these transitions is obtained.

  16. Resolving the forbidden band of SF6.

    PubMed

    Boudon, V; Manceron, L; Kwabia Tchana, F; Loëte, M; Lago, L; Roy, P

    2014-01-28

    Sulfur hexafluoride is an important molecule for modeling thermophysical and polarizability properties. It is also a potent greenhouse gas of anthropogenic origin, whose concentration in the atmosphere, although very low is increasing rapidly; its global warming power is mostly conferred by its strong infrared absorption in the ?3 S-F stretching region near 948 cm(-1). This heavy species, however, features many hot bands at room temperature (at which only 31% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v6 = 1 vibrational state. Unfortunately, the ?6 band itself (near 347 cm(-1)), in the first approximation, is both infrared- and Raman-inactive, and no reliable spectroscopic information could be obtained up to now and this has precluded a correct modeling of the hot bands. It has been suggested theoretically and experimentally that this band might be slightly activated through Coriolis interaction with infrared-active fundamentals and appears in high pressure measurements as a very faint, unresolved band. Using a new cryogenic multipass cell with 93 m optical path length and regulated at 163 ± 2 K temperature, coupled to synchrotron radiation and a high resolution interferometer, the spectrum of the ?6 far-infrared region has been recorded. Low temperature was used to avoid the presence of hot bands. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution, is indeed ?6. The fully resolved spectrum has been analyzed, thanks to the XTDS software package. The band appears to be activated by faint Coriolis interactions with the strong ?3 and ?4 fundamental bands, resulting in the appearance of a small first-order dipole moment term, inducing unusual selection rules. The band center (?6 = 347.736707(35) cm(-1)) and rovibrational parameters are now accurately determined for the v6 = 1 level. The ?6 perturbation-induced dipole moment is estimated to be 33 ± 3 ?D and the ?6 integrated intensity to be 0.0035 km mol(-1). PMID:24297100

  17. Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures.

    PubMed

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-01-26

    We design an ultra-thin terahertz metamaterial absorber based on graphene/MgF(2) multilayer stacking unit cells arrayed on an Au film plane and theoretically demonstrate a dual-band total absorption effect. Due to strong anisotropic permittivity, the graphene/MgF(2) multilayer unit cells possess a hyperbolic dispersion. The strong electric and magnetic dipole resonances between unit cells make the impedance of the absorber match to that of the free space, which induces two total absorption peaks in terahertz range. These absorption peaks are insensitive to the polarization and nearly omnidirectional for the incident angle. But the absorption intensity and frequency depend on material and geometric parameters of the multilayer structure. The absorbed electromagnetic waves are finally converted into heat and, as a result, the absorber shows a good nanosecond photothermal effect. PMID:25835924

  18. The effect of dimethylsulfoxide on absorption and fluorescence spectra of aqueous solutions of acridine orange base.

    PubMed

    Markarian, Shiraz A; Shahinyan, Gohar A

    2015-12-01

    The photophysical properties of aqueous solutions of acridine orange base (AOB) in wide concentration range of dimethylsulfoxide (DMSO) were studied by using absorption and steady-state fluorescence spectroscopy techniques at room temperature. The absorption spectrum of acridine orange in water shows two bands at 468 and 490 nm which were attributed to the dimer ((AOBH)2(2+)) and monomer (AOBH(+)) species respectively. In DMSO solution for the same AOB concentration only the basic form was detected with the band at 428 nm. The addition of DMSO to AOB aqueous solution leads to the decrease of absorption band at 490 nm and the new absorption band increases at 428 nm due to deprotonated (basic) form of AO and the first isosbestic point occurs at 450 nm. The evolution of isosbestic point reveals that an other equilibrium, due to the self-association of DMSO molecules takes place. From the steady-state fluorescence spectra Stokes shifts were calculated for AOB in aqueous and DMSO solutions. The addition of DMSO into the aqueous solution induced the enhancement in the fluorescence intensity of the dye compared to those in water. PMID:26163789

  19. Noninvasive detection of glucose concentration by differential absorption OCI with two wavelengths

    NASA Astrophysics Data System (ADS)

    Li, Yao; He, Yonghong; Dai, Xiangsong; Li, Peng; Duan, Lian; Zhou, Yong; Zeng, Nan

    2009-08-01

    We present a new method of glucose concentration detection with a differential absorption optical low-coherent interferometry (DAOCI) technique. In our system, we uses two OCI signals recorded by turns in one period with the same detector. Two different light sources are selected corresponding to the different absorption coefficient of the glucose absorption band. The ratio of the two intensities depends on the concentration of the glucose in samples. With the known difference in the absorption cross section or experimental data, it is possible to calculate the mean glucose concentration of samples. In our experiment, we measured a series of glucose solution in a cuvette, and the systemic resolution we got is 16.14mg/dL which achieves the required accuracy(20mg/dL) for practical application. The results prove the feasibility of this method to be used for no-invasive detection of glucose in the aqueous humor.

  20. Light absorption efficiencies of photosynthetic pigments: the dependence on spectral types of central stars

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Umemura, Masayuki; Shoji, Mitsuo; Kayanuma, Megumi; Yabana, Kazuhiro; Shiraishi, Kenji

    2015-07-01

    For detecting life from reflection spectra on extrasolar planets, trace of photosynthesis is one of the indicators. However, it is not yet clear what kind of radiation environments is acceptable for photosynthesis. Light absorption in photosystems on the Earth occurs using limited photosynthetic pigments such as chlorophylls (Chls) and bacteriochlorophylls (BChls). Efficiencies of light absorption for the pigments were evaluated by calculating the specific molecular absorption spectra at the high accuracy-quantum mechanical level. We used realistic stellar radiation spectra such as F, G, K and M-type stars to investigate the efficiencies. We found that the efficiencies are increased with the temperature of stars, from M to F star. Photosynthetic pigments have two types of absorption bands, the Q y and Soret. In higher temperature stars like F star, contributions from the Soret region of the pigments are dominant for the efficiency. On the other hand, in lower temperature stars like M stars, the Q y band is crucial. Therefore, differences on the absorption intensity and the wavelength between the Q y and Soret band are the most important to characterize the photosynthetic pigments. Among photosynthetic pigments, Chls tend to be efficient in higher temperature stars, while BChls are efficient for M stars. Blueward of the 4000 Å break, the efficiencies of BChls are smaller than Chls in the higher temperature stars.

  1. Mechanism of enhancement in absorbance of vibrational bands of adsorbates at a metal mesh with subwavelength hole arrays.

    PubMed

    Etou, Junji; Ino, Daisuke; Furukawa, Daisuke; Watanabe, Kazuya; Nakai, Ikuyo F; Matsumoto, Yoshiyasu

    2011-04-01

    We have investigated the mechanism of enhanced absorption intensities of vibrational bands of adsorbates on copper meshes with subwavelength holes by measuring and simulating temporal profiles of infrared pulses transmitted through the meshes. As reported previously [Williams et al., J. Phys. Chem. B, 2003, 107, 11871], the absorption intensities of CH stretching bands of alkanethiolate adsorbed on the mesh increase substantially with decreasing hole size. The enhancements of absorption intensities are associated with temporal delays of infrared pulses transmitted through the mesh. Finite difference time domain calculations reproduce the observed pulse delays as a function of hole size. These facts indicate that the delays of transmitted pulses are not caused by coupling of infrared radiation to surface plasmon polaritons propagating on the front and rear surfaces of the mesh, but they are caused by the reduction in group velocity owing to coupling to waveguide modes of mesh holes. Consequently, the strong enhancements of the absorption intensities are attributed to adsorbates inside the holes rather than to those on the mesh surfaces that have been proposed previously. PMID:21327205

  2. Electronic absorption spectra and energy gap studies of Er3+ ions in different chlorophosphate glasses.

    PubMed

    Ratnakaram, Y C; Reddy, A Viswanadha; Chakradhar, R P Sreekanth

    2002-06-01

    Spectroscopic properties of Er3+ ions in different chlorophosphate glasses 50P2O5-30Na2HPO4-19.8RCl (R = Li, Na, K, Ca and Pb) are studied. The direct and indirect optical band gaps (Eopt) and the various spectroscopic parameters (E1, E2, E3, and zeta4f and alpha) are reported. The oscillator strengths of the transitions in the absorption spectrum are parameterized in terms of three Judd-Ofelt intensity parameters (omega2, omega4 and omega6). These intensity parameters are used to predict the transition probabilities (A), radiative lifetimes (tauR), branching ratios (beta) and integrated cross sections (sigma) for stimulated emission. Attention has been paid to the trend of the intensity parameters over hypersensitive transitions and optical band gaps. The lifetimes and branching ratios of certain transitions are compared with other glass matrices. PMID:12166752

  3. High sensitivity Cavity Ring Down Spectroscopy of N2O near 1.22 ?m: (I) Rovibrational assignments and band-by-band analysis

    NASA Astrophysics Data System (ADS)

    Karlovets, E. V.; Campargue, A.; Kassi, S.; Perevalov, V. I.; Tashkun, S. A.

    2016-01-01

    The absorption spectrum of nitrous oxide (N2O) in natural isotopic abundance has been recorded near 1.22 ?m by Cavity Ring Down Spectroscopy using an External Cavity Diode Laser (ECDL) as light source. The room temperature recordings were performed at a pressure of 10.0 Torr in the 7915-8334 cm-1 spectral range (1.26-1.19 ?m). The typical noise equivalent absorption of the spectra, on the order of ?min~2×10-11 cm-1, allowed for the detection of lines with intensities on the order of 5×10-29 cm/molecule. More than 3300 transitions belonging to 64 bands of five nitrous oxide isotopologues (14N216O, 14N15N16O, 15N14N16O, 14N218O and 14N217O) have been rovibrationally assigned on the basis of the predictions of the effective Hamiltonian models developed for each isotopologue. For comparison, only 13 bands were previously measured by Fourier Transform spectroscopy in the studied region. All identified bands belong to the ?P=13 and 14 series of transitions, where P=2V1+V2+4V3 is the polyad number (Vi are vibrational quantum numbers). The line positions and intensities are provided for all assigned lines. The maximum deviations between the measured position values and those predicted by the effective Hamiltonian models are about 0.2 cm-1 for the main isotopologue but reach values larger than 1 cm-1 for the less abundant minor isotopologues. The band-by-band analysis led to the determination of the rovibrational parameters of a total of 62 bands. The typical rms value of the (?obs-?fit) differences is 0.7×10-3 cm-1. Among the 62 bands, 49 are newly measured, for 13 others the rotational analysis is significantly improved and extended. A few resonance perturbations due to intra- and inter-polyad couplings are identified and discussed.

  4. Optical and infrared absorption spectra of 3d transition metal ions-doped sodium borophosphate glasses and effect of gamma irradiation.

    PubMed

    Abdelghany, A M; ElBatal, F H; Azooz, M A; Ouis, M A; ElBatal, H A

    2012-12-01

    Undoped and transition metals (3d TM) doped sodium borophosphate glasses were prepared. UV-visible absorption spectra were measured in the region 200-900nm before and after gamma irradiation. Experimental optical data indicate that the undoped sodium borophosphate glass reveals before irradiation strong and broad UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within the raw materials used for preparation of this base borophosphate glass. The TMs-doped glasses show absorption bands within the UV and/or visible regions which are characteristic to each respective TM ion in addition to the UV absorption observed from the host base glass. Infrared absorption spectra of the undoped and TMs-doped glasses reveal complex FTIR consisting of extended characteristic vibrational bands which are specific for phosphate groups as a main constituent but with the sharing of some vibrations due to the borate groups. This criterion was investigated and approved using DAT (deconvolution analysis technique). The effects of different TMs ions on the FTIR spectra are very limited due to the low doping level (0.2%) introduced in the glass composition. Gamma irradiation causes minor effect on the FTIR spectra specifically the decrease of intensities of some bands. Such behavior is related to the change of bond angles and/or bond lengths of some structural building units upon gamma irradiation. PMID:22995547

  5. UV intensity measurement of 308 nm excimer lamp using chemical actinometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Ying; Esrom, Hilmar; Boyd, Ian W.

    1999-01-01

    Photohydrolysis of 3,4-dimethoxynitrobenzene in alkaline media is used for the determination of the ultraviolet (UV) intensity from a xenon chloride excimer lamp providing intense narrow band radiation at ?=308 nm (XeCl *). The intensity measurement is based on UV spectral absorption measurement of the 2-methoxy-5-nitrophenolate anion formation from photohydrolysis of 3,4-dimethoxynitrobenzene. This actinometer is convenient for photolysis studies and measurements of UV intensities at wavelengths between 200-450 nm. A photokinetic model is presented for the reaction which is generally applicable for any two component photochemical system. The electrical power and distance dependence of the conversion degree and the UV intensity of the lamps was investigated.

  6. Tremor bands sweep Cascadia

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Vidale, J. E.; Sweet, J. R.; Creager, K. C.; Wech, A.; Houston, H.

    2009-12-01

    In the last few years, the spatiotemporal distribution of non-volcanic tremor (NVT) activity has been watched with intense curiosity in Cascadia, Japan, and San Andreas Fault. During an episodic tremor and slip (ETS) event in the Cascadia Subduction Zone (CSZ), the dominant tremor migration pattern is characterized by along-strike marching of tremor at a rate of 10 km/day. Spatiotemporal evolution gives critical clues on the physical mechanism of NVT, and the evolving state of stress in the fault. However, tremor migration, its variations over different time-scales, and its underlying physics remain poorly understood. We recorded the May 2008 ETS event in Cascadia with a dense small-aperture seismic array, and beamformed to detect and locate tremor with unparalleled resolution [Ghosh et al., GRL, 2009]. The beams reveal that tremor occurs in elongated bands that extend ~50 km in the direction parallel to the convergence of CSZ and only 10-15 km in the along-strike direction. This is in contrast to the wider blobs of tremor locations seen using a conventional envelope cross-correlation method. The peak activities of the tremor bands are well separated in space and time. Each band remains active for a good part of a day, and fades away while the adjacent band is slowly peaking up. During the 2008 ETS event, these convergence-parallel tremor bands swept the Cascadia megathrust from SE to NW in the region most clearly imaged by our array, producing the long-term tremor migration. Embedded within the bands lie long streaks of tremor that show steady and rapid migration on time-scales of several minutes to an hour at velocities of several tens of km/hr. These tremor streaks also propagate mostly convergence-parallel, along a particular band, both up- and down-dip. The elongated shape of the tremor bands may cause by the tendency of the tremor streaks to align parallel to the direction of subduction. We propose that each tremor band is the result of failure of a section of the megathrust with slow slip. The sweeping bands may indicate progressive stress transfer on the subduction fault. One band releases stress from a section of the fault, and loads the adjacent region, which promotes failure and activates the next band. The physical mechanism causing the streaks, however, is not clear. The velocity of migration within the tremor streaks may suggests fluid pressure waves advancing along the linear corrugated weak features on the fault.

  7. Two-Photon Absorption in Organometallic Bromide Perovskites.

    PubMed

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics. PMID:26196162

  8. Underwater measurements of muon intensity

    NASA Technical Reports Server (NTRS)

    Fedorov, V. M.; Pustovetov, V. P.; Trubkin, Y. A.; Kirilenkov, A. V.

    1985-01-01

    Experimental measurements of cosmic ray muon intensity deep underwater aimed at determining a muon absorption curve are of considerable interest, as they allow to reproduce independently the muon energy spectrum at sea level. The comparison of the muon absorption curve in sea water with that in rock makes it possible to determine muon energy losses caused by nuclear interactions. The data available on muon absorption in water and that in rock are not equivalent. Underground measurements are numerous and have been carried out down to the depth of approx. 15km w.e., whereas underwater muon intensity have been measured twice and only down to approx. 3km deep.

  9. Anisotropic optical absorption of organic rubrene single nanoplates and thin films studied by ?-mapping absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Hyunsoo; Kim, Ji Hyun; Dhakal, Krishna P.; Lee, Jin Woo; Jung, Jin Sun; Joo, Jinsoo; Kim, Jeongyong

    2012-09-01

    Local absorption spectra and absorption coefficients were obtained from organic rubrene single nanoplates. Absorption along the b-axis was higher than along the a-axis for polarized illumination on an ab-faced single-crystal rubrene nanoplate, and the lowest crystal transition peak (˜530 nm) relatively increased in size with an increasing incidence angle due to the anisotropic absorption strength along the crystal axes. Rubrene thin films grown by organic molecular beam deposition displayed microscopically varying absorption spectra; the relative peak height of the M-polarized band and the overall absorption strength were strongest with polarized illumination along the c-axis.

  10. Repetition of the shape of the ultrafast self-modulation of the optical absorption spectrum upon varying the energy of pulse of GaAs pumping

    SciTech Connect

    Ageeva, N. N.; Bronevoi, I. L. Zabegaev, D. N.; Krivonosov, A. N.

    2010-10-15

    Ultrafast self-modulation of the fundamental optical absorption emerges during intense picosecond optical pumping of GaAs and, according to the main assumption, reflects self-oscillations of depletion of electron populations in the conduction band. In this study, the quantitatively confirmed explanation of previously experimentally found cyclic repetition of the form of ultrafast self-modulation of the absorption spectrum upon varying the energy of the pumping pulse and fixed delay between pumping and probing (the measurement of absorption) is given. Repetition of the shape is explained by varying the phase of self-oscillations of the optical absorption. The explanation is based on the previously found experimentally dependence of the frequency of self-oscillations of absorption on the pumping energy. Therefore, this is also a new confirmation of the mentioned dependence (which satisfactorily coincides with a similar calculated dependence of the frequency of self-oscillations of depletion of populations).

  11. Comparative investigation of infrared optical absorption properties of silicon oxide, oxynitride and nitride films

    NASA Astrophysics Data System (ADS)

    Zhou, Shun; Liu, Weiguo; Cai, Changlong; Liu, Huan

    2011-02-01

    Amorphous silicon oxide, silicon oxynitride and silicon nitride films were deposited in a PECVD reactor using silane (SiH4),ammonia (NH3) and nitrous oxide (N2O) as precursor gases. The N2O/NH3 flow ratio was varied in order to obtain different oxynitride compositions. The films were characterized by spectroscopic ellipsometry, XPS and FTIR spectroscopy. The compositions and infrared optical absorption properties of the three different types of films were investigated and compared. Special attention was paid to analyze the Si-O/Si-N bond stretching absorption including the absorption band intensity. It was found that the silicon oxynitride films show a dominant infrared stretching band due to the Si-O/Si-N bond , with the infrared absorption peak located between 860cm-1(11.6?m) for Si-N bond in silicon nitride and 1063cm-1(9.4?m) for Si-O bond in silicon oxide. The position of peak also shifts to a shorter wavelength when increasing the N2O/NH3 flow ratio. The infrared optical absorption properties of the silicon oxynitride films make them well suited for the absorber of uncooled microbolometer detectors

  12. Comparative investigation of infrared optical absorption properties of silicon oxide, oxynitride and nitride films

    NASA Astrophysics Data System (ADS)

    Zhou, Shun; Liu, Weiguo; Cai, Changlong; Liu, Huan

    2010-10-01

    Amorphous silicon oxide, silicon oxynitride and silicon nitride films were deposited in a PECVD reactor using silane (SiH4),ammonia (NH3) and nitrous oxide (N2O) as precursor gases. The N2O/NH3 flow ratio was varied in order to obtain different oxynitride compositions. The films were characterized by spectroscopic ellipsometry, XPS and FTIR spectroscopy. The compositions and infrared optical absorption properties of the three different types of films were investigated and compared. Special attention was paid to analyze the Si-O/Si-N bond stretching absorption including the absorption band intensity. It was found that the silicon oxynitride films show a dominant infrared stretching band due to the Si-O/Si-N bond , with the infrared absorption peak located between 860cm-1(11.6?m) for Si-N bond in silicon nitride and 1063cm-1(9.4?m) for Si-O bond in silicon oxide. The position of peak also shifts to a shorter wavelength when increasing the N2O/NH3 flow ratio. The infrared optical absorption properties of the silicon oxynitride films make them well suited for the absorber of uncooled microbolometer detectors

  13. Measurements of line strengths in the 2nu1 band of the HO2 radical using laser photolysis/continuous wave cavity ring-down spectroscopy (cw-CRDS).

    PubMed

    Thiebaud, Jérôme; Crunaire, Sabine; Fittschen, Christa

    2007-08-01

    Absolute absorption cross sections of the absorption spectrum of the 2nu1 band of the HO2 radical in the near-IR region were measured by continuous wave cavity ring-down spectroscopy (cw-CRDS) coupled to laser photolysis in the wavelength range 6604-6696 cm(-1) with a resolution better than 0.003 cm(-1). Absolute absorption cross sections were obtained by measuring the decay of the HO2 self-reaction, and they are given for the 100 most intense lines. The most important absorption feature in this wavelength range was found at 6638.20 cm(-1), exhibiting an absorption cross section of sigma = 2.72 x 10(-19) cm2 at 50 Torr He. Using this absorption line, we obtain a detection limit for the HO2 radical at 50 Torr of 6.5 x 10(10) cm(-3). PMID:17608391

  14. Optical absorption components of light-modulated absorption spectrum of CdS

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Long, E. R.

    1975-01-01

    The amplitude and decay coefficient of light-induced modulation of absorption (LIMA) was measured as a function of wavelength from 535 to 850 nm for single-crystal CdS. The decay coefficient exhibited a discontinuous resonance at 710 nm which was due to the overlap and cancellation of two opposing absorption changes. A method was developed to separate these opposing absorption changes using the measured decay coefficients. The discrete-level-to-band energy for one absorption change was found to be 1.64 eV. An improved model was developed which contains two associated levels in the band gap separated by 0.32 eV.

  15. Vibronic Structures in Absorption and Fluorescence Spectra of Firefly Oxyluciferin in Aqueous Solutions.

    PubMed

    Hiyama, Miyabi; Noguchi, Yoshifumi; Akiyama, Hidefumi; Yamada, Kenta; Koga, Nobuaki

    2015-01-01

    To elucidate the factors determining the spectral shapes and widths of the absorption and fluorescence spectra for keto and enol oxyluciferin and their conjugate bases in aqueous solutions, the intensities of vibronic transitions between their ground and first electronic excited states were calculated for the first time via estimation of the vibrational Franck-Condon factors. The major normal modes, overtones and combination tones in absorption and fluorescence spectra are similar for all species. The theoretical full widths at half maximum of absorption spectra are 0.4-0.7 eV and those for the fluorescence spectra are 0.4-0.5 eV, except for phenolate-keto that exhibits exceptionally sharp peak widths due to the dominance of the 0-0' or 0'-0 band. These spectral shapes and widths explain many relevant features of the experimentally observed spectra. PMID:25946599

  16. Optical absorption of silicon nanowires

    SciTech Connect

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stievenard, D.; Leveque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-08-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  17. Complementary cavity-enhanced spectrometers to investigate the OH + CH combination band in trans-formic acid.

    PubMed

    Golebiowski, D; Földes, T; Vanfleteren, T; Herman, M; Perrin, A

    2015-07-01

    We have used continuous-wave cavity ring-down and femto-Fourier transform-cavity-enhanced absorption spectrometers to record the spectrum of the OH-stretching + CH-stretching (?1 + ?2) combination band in trans-formic acid, with origin close to 6507 cm(-1). They, respectively, allowed resolving and simplifying the rotational structure of the band near its origin under jet-cooled conditions (Trot = 10 K) and highlighting the overview of the band under room temperature conditions. The stronger B-type and weaker A-type subbands close to the band origin could be assigned, as well as the main B-type Q branches. The high-resolution analysis was hindered by numerous, severe perturbations. Rotational constants are reported with, however, limited physical meaning. The ?1 + ?2 transition moment is estimated from relative intensities to be 24° away from the principal b-axis of inertia. PMID:26156476

  18. Theoretical study of the AlO blue-green (B2Sigma + - X2Sigma +) band system

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Langhoff, S. R.; Lengsfield, B. H., III; Liu, B.

    1983-01-01

    Two independent, extensive theoretical calculations are reported for the relative band strengths of the AlO (B2Sigma + - X2Sigma +) blue-green system and for the radiative lifetimes of the lowest few vibrational levels of the B2Sigma(+) state. The theoretical lifetimes, which include a small (less than -.5 percent) contribution from bound-bound transitions into the A2Pi state, are in excellent agreement with laser fluorescence studies. The theoretical lifetimes increase monotonically and very slowly with increasing vibrational quantum number. The relative band strengths for the blue-green system derived from the two theoretical calculations are in excellent agreement, but differ systematically from the relative band strengths of Linton and Nicholls (1969). The present results suggest that their self-absorption corrections are not large enough, resulting in relative intensities that are too large, especially for the weak bands with r centroids less than 1.5 A.

  19. Complementary cavity-enhanced spectrometers to investigate the OH + CH combination band in trans-formic acid

    NASA Astrophysics Data System (ADS)

    Golebiowski, D.; Földes, T.; Vanfleteren, T.; Herman, M.; Perrin, A.

    2015-07-01

    We have used continuous-wave cavity ring-down and femto-Fourier transform-cavity-enhanced absorption spectrometers to record the spectrum of the OH-stretching + CH-stretching (?1 + ?2) combination band in trans-formic acid, with origin close to 6507 cm-1. They, respectively, allowed resolving and simplifying the rotational structure of the band near its origin under jet-cooled conditions (Trot = 10 K) and highlighting the overview of the band under room temperature conditions. The stronger B-type and weaker A-type subbands close to the band origin could be assigned, as well as the main B-type Q branches. The high-resolution analysis was hindered by numerous, severe perturbations. Rotational constants are reported with, however, limited physical meaning. The ?1 + ?2 transition moment is estimated from relative intensities to be 24° away from the principal b-axis of inertia.

  20. Temperature activated absorption during laser-induced damage: The evolution of laser-supported solid-state absorption fronts

    SciTech Connect

    Carr, C W; Bude, J D; Shen, N; Demange, P

    2010-10-26

    Previously we have shown that the size of laser induced damage sites in both KDP and SiO{sub 2} is largely governed by the duration of the laser pulse which creates them. Here we present a model based on experiment and simulation that accounts for this behavior. Specifically, we show that solid-state laser-supported absorption fronts are generated during a damage event and that these fronts propagate at constant velocities for laser intensities up to 4 GW/cm{sup 2}. It is the constant absorption front velocity that leads to the dependence of laser damage site size on pulse duration. We show that these absorption fronts are driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport, and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. In addition to the practical application of selecting an optimal laser for pre-initiation of large aperture optics, this work serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  1. Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Li, Z.; Nemtchinov, V.; Cherukuri, A.

    1994-01-01

    Spectral absorption-coefficients (cross-sections) kappa(sub nu) (/cm/atm) have been measured in the 7.62, 8.97, and 12.3 micrometer bands of HCFC-22 (CHClF2) and the 10.6 micrometer bands of SF6 employing a high-resolution Fourier-transform spectrometer. Temperature and total pressure have been varied to simulate conditions corresponding to tropospheric and stratospheric layers in the atmosphere. The kappa(sub nu) are compared with values measured by us previously using a tunable diode laser spectrometer and with the appropriate entries in HITRAN and GEISA, two of the databases known to the atmospheric scientist. The measured absolute intensities of the bands are compared with previously published values.

  2. Band Together!

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    After nearly a decade as band director at St. James High School in St. James, Missouri, Derek Limback knows that the key to building a successful program is putting the program itself above everything else. Limback strives to augment not only his students' musical prowess, but also their leadership skills. Key to his philosophy is instilling a…

  3. Selective coherent perfect absorption in metamaterials

    SciTech Connect

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  4. High Pressure Oxygen A-Band Spectra

    NASA Astrophysics Data System (ADS)

    Drouin, Brian; Sung, Keeyoon; Yu, Shanshan; Lunny, Elizabeth M.; Bui, Thinh Quoc; Okumura, Mitchio; Rupasinghe, Priyanka; Bray, Caitlin; Long, David A.; Hodges, Joseph; Robichaud, David; Benner, D. Chris; Devi, V. Malathy; Hoo, Jiajun

    2015-06-01

    Composition measurements from remote sensing platforms require knowledge of air mass to better than the desired precision of the composition. Oxygen spectra allow determination of air mass since the mixing ratio of oxygen is fixed. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for air mass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the state-of-the-art for oxygen spectroscopy. To produce atmospheric pressure A-band cross-sections with this accuracy requires a sophisticated line-shape model (Galatry or Speed-Dependent) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, but an integrated self-consistent model must be developed to ensure accuracy. This presentation will describe the ongoing effort to parameterize these phenomena on a representative data set created from complementary experimental techniques. The techniques include Fourier transform spectroscopy (FTS), photo-acoustic spectroscopy (PAS) and cavity ring-down spectroscopy (CRDS). CRDS data allow long-pathlength measurements with absolute intensities, providing lineshape information as well as LM and CIA, however the subtleties of the lineshape are diminished in the saturated line-centers. Conversely, the short paths and large dynamic range of the PAS data allow the full lineshape to be discerned, but with an arbitrary intensity axis. Finally, the FTS data provides intermediate paths and consistency across a broad pressure range. These spectra are all modeled with the Labfit software using first the spectral line database HITRAN, and then model values are adjusted and fitted for better agreement with the data.

  5. Atmospheric Pressure Measurements using the Oxygen A Band

    NASA Astrophysics Data System (ADS)

    Stephen, M. A.; Riris, H.; Rodriguez, M.; Mao, J.; Weaver, C. J.; Abshire, J. B.

    2009-12-01

    We report on the atmospheric pressure measurements using a fiber-based laser system using the oxygen A-band. Remote measurements of atmospheric temperature and pressure are required for a number of scientific applications including trace gas detection, weather prediction, and climate modeling. Recently there has been intense interest to provide accurate measurements of tropospheric CO2 abundance with global-coverage, high spatial and temporal resolution in order to quantify processes that regulate CO2 storage by the land and oceans. It is becoming increasingly important to understand the nature and processes of the CO2 sinks and sources, on a global scale, in order to make predictions of future climate change. The ultimate goal of CO2 remote sensing is to derive CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is stable and uniformly mixed in the atmosphere. The measurement of O2 absorption in the atmosphere can thus be used to infer dry air number of molecules and then be used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can further estimate the total surface pressure that can be used to better define both O2 and CO2 line shape for better retrievals, as both CO2 and O2 absorptions in the near infrared are a function of pressure as well as temperature. Our technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure using two absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station at Andrews Air Force base.

  6. Near-infrared studies of glucose and sucrose in aqueous solutions: water displacement effect and red shift in water absorption from water-solute interaction

    E-print Network

    Jung, Youngeui

    2013-01-01

    We use near infrared spectroscopy to obtain concentration dependent glucose absorption spectra in their aqueous solutions in the near-infrared range (3800 - 7500 cm^{-1}). We introduce a new method to obtain reliable glucose absorption bands from aqueous glucose solutions without measuring the water displacement coefficients of glucose separately. Additionally, we are able to extract the water displacement coefficients of glucose, and this may give a new general method using spectroscopy techniques applicable to other water soluble materials. We also observe red shifts in the absorption bands of water in the hydration shell around solute molecules, which comes from contribution of the interacting water molecules around the glucose molecules in solutions. The intensity of the red shift get larger as the concentration increases, which indicates that as the concentration increases more water molecules are involved in the interaction. However, the red shift in frequency does not seem to depend significantly on th...

  7. EXTINCTION AND POLYCYCLIC AROMATIC HYDROCARBON INTENSITY VARIATIONS ACROSS THE H II REGION IRAS 12063-6259

    SciTech Connect

    Stock, D. J.; Peeters, E.; Otaguro, J. N.; Tielens, A. G. G. M.; Bik, A.

    2013-07-01

    The spatial variations in polycyclic aromatic hydrocarbon (PAH) band intensities are normally attributed to the physical conditions of the emitting PAHs, however in recent years it has been suggested that such variations are caused mainly by extinction. To resolve this question, we have obtained near-infrared (NIR), mid-infrared (MIR), and radio observations of the compact H II region IRAS 12063-6259. We use these data to construct multiple independent extinction maps and also to measure the main PAH features (6.2, 7.7, 8.6, and 11.2 {mu}m) in the MIR. Three extinction maps are derived: the first using the NIR hydrogen lines and case B recombination theory; the second combining the NIR data with radio data; and the third making use of the Spitzer/IRS MIR observations to measure the 9.8 {mu}m silicate absorption feature using the Spoon method and PAHFIT (as the depth of this feature can be related to overall extinction). The silicate absorption over the bright, southern component of IRAS 12063-6259 is almost absent while the other methods find significant extinction. While such breakdowns of the relationship between the NIR extinction and the 9.8 {mu}m absorption have been observed in molecular clouds, they have never been observed for H II regions. We then compare the PAH intensity variations in the Spitzer/IRS data after dereddening to those found in the original data. It was found that in most cases, the PAH band intensity variations persist even after dereddening, implying that extinction is not the main cause of the PAH band intensity variations.

  8. Near-Infrared Band Strengths of Molecules Diluted in N2 and H2O Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, Christina Rae; Gerakines, P.A.

    2012-01-01

    The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H2O and N2. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H2O- and N2-dominated mixtures of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), and NH3 (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 per centimeter, 1-2.5 micrometers) with better-known mid-infrared features (4000-400 per centimeter, 2.5-25 micrometers) at longer wavelengths.

  9. Wurtzite CuGaO2: a new direct and narrow band gap oxide semiconductor applicable as a solar cell absorber.

    PubMed

    Omata, Takahisa; Nagatani, Hiraku; Suzuki, Issei; Kita, Masao; Yanagi, Hiroshi; Ohashi, Naoki

    2014-03-01

    An oxide semiconductor ?-CuGaO2 with a wurtzite-derived ?-NaFeO2 structure has been synthesized. Structural characterization has been carried out by Rietveld analysis using XRD and SAED, and it was shown that the lattice size is very close to that of zinc oxide. The optical absorption spectrum indicated that the band gap is 1.47 eV, which matches the band gap required to achieve the theoretical maximum conversion efficiency for a single-junction solar cell. The thermoelectromotive force indicated p-type conduction in its intrinsic state. Density functional theory calculations were performed to understand the electronic structure and optical properties of the semiconductor. These calculations indicated that ?-CuGaO2 is a direct semiconductor and intense absorption of light occurs near the band edge. These properties render this new material promising as an absorber in solar cells. PMID:24555768

  10. Band gap enhancement of glancing angle deposited TiO{sub 2} nanowire array

    SciTech Connect

    Chinnamuthu, P.; Mondal, A.; Singh, N. K.; Dhar, J. C.; Chattopadhyay, K. K.; Bhattacharya, Sekhar

    2012-09-01

    Vertically oriented TiO{sub 2} nanowire (NW) arrays were fabricated by glancing angle deposition technique. Field emission-scanning electron microscopy shows the formation of two different diameters {approx}80 nm and {approx}40 nm TiO{sub 2} NW for 120 and 460 rpm azimuthal rotation of the substrate. The x-ray diffraction and Raman scattering depicted the presence of rutile and anatase phase TiO{sub 2}. The overall Raman scattering intensity decreased with nanowire diameter. The role of phonon confinement in anatase and rutile peaks has been discussed. The red (7.9 cm{sup -1} of anatase E{sub g}) and blue (7.4 cm{sup -1} of rutile E{sub g}, 7.8 cm{sup -1} of rutile A{sub 1g}) shifts of Raman frequencies were observed. UV-vis absorption measurements show the main band absorption at 3.42 eV, 3.48 eV, and {approx}3.51 eV for thin film and NW prepared at 120 and 460 rpm, respectively. Three fold enhance photon absorption and intense light emission were observed for NW assembly. The photoluminescence emission from the NW assembly revealed blue shift in main band transition due to quantum confinement in NW structures.

  11. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  12. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, Michael E. (Bedford, MA); Bien, Fritz (Concord, MA); Bernstein, Lawrence S. (Bedford, MA)

    1986-01-01

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined.

  13. Observation of intermediate bands in Eu3+ doped YPO4 host: Li+ ion effect and blue to pink light emitter

    NASA Astrophysics Data System (ADS)

    Parchur, Abdul Kareem; Prasad, Amresh Ishawar; Rai, Shyam Bahadur; Tewari, Raghvendra; Sahu, Ranjan Kumar; Okram, Gunadhor Singh; Singh, Ram Asaray; Ningthoujam, Raghumani Singh

    2012-09-01

    This article explores the tuning of blue to pink colour generation from Li+ ion co-doped YPO4:5Eu nanoparticles prepared by polyol method at ˜100-120 °C with ethylene glycol (EG) as a capping agent. Interaction of EG molecules capped on the surface of the nanoparticles and/or created oxygen vacancies induces formation of intermediate/mid gap bands in the host structure, which is supported by UV-Visible absorption data. Strong blue and pink colors can be observed in the cases of as-prepared and 500 °C annealed samples, respectively. Co-doping of Li+ enhances the emission intensities of intermediate band as well as Eu3+. On annealing as-prepared sample to 500 °C, the intermediate band emission intensity decreases, whereas Eu3+ emission intensity increases suggesting increase of extent of energy transfer from the intermediate band to Eu3+ on annealing. Emission intensity ratio of electric to magnetic dipole transitions of Eu3+ can be varied by changing excitation wavelength. The X-ray photoelectron spectroscopy (XPS) study of as-prepared samples confirms the presence of oxygen vacancies and Eu3+ but absence of Eu2+. Dispersed particles in ethanol and polymer film show the strong blue color, suggesting that these materials will be useful as probes in life science and also in light emitting device applications.

  14. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm

    NASA Astrophysics Data System (ADS)

    John, Pauline; Manoj, Murali; Sujatha, N.; Vasa, Nilesh J.; Rao, Suresh R.

    2015-07-01

    This work presents a combination of differential absorption technique and frequency domain optical coherence tomography for detection of glucose, which is an important analyte in medical diagnosis of diabetes. Differential absorption technique is used to detect glucose selectively in the presence of interfering species especially water and frequency domain optical coherence tomography (FDOCT) helps to obtain faster acquisition of depth information. Two broadband super-luminescent diode (SLED) sources with centre wavelengths 1586 nm (wavelength range of 1540 to 1640 nm) and 1312 nm (wavelength range of 1240 to 1380 nm) and a spectral width of ? 60 nm (FWHM) are used. Preliminary studies on absorption spectroscopy using various concentrations of aqueous glucose solution gave promising results to distinguish the absorption characteristics of glucose at two wavelengths 1310 nm (outside the absorption band of glucose) and 1625 nm (within the absorption band of glucose). In order to mimic the optical properties of biological skin tissue, 2% and 10% of 20% intralipid with various concentrations of glucose (0 to 4000 mg/dL) was prepared and used as sample. Using OCT technique, interference spectra were obtained using an optical spectrum analyzer with a resolution of 0.5 nm. Further processing of the interference spectra provided information on reflections from the surfaces of the cuvette containing the aqueous glucose sample. Due to the absorption of glucose in the wavelength range of 1540 nm to 1640 nm, a trend of reduction in the intensity of the back reflected light was observed with increase in the concentration of glucose.

  15. ABSORPTIONS IN THE VISIBLE OF PROTONATED PYRENE COLLISIONALLY COOLED TO 15 K

    SciTech Connect

    Hardy, F.-X.; Gause, O.; Rice, C. A.; Maier, J. P.

    2013-12-01

    Protonated polycyclic hydrocarbons have been added to the list of suggested carriers of diffuse interstellar absorptions. To test this proposition requires laboratory spectra measured under interstellar conditions, in particular with the rotational and vibrational degrees of freedom equilibrated to low temperatures. This has been achieved for protonated pyrene with absorption bands in the visible, using an ion trap and collisional cooling to ?15 K. A two-photon excitation-dissociation scheme was employed to record the (1) {sup 1} A' ? X {sup 1} A' electronic spectrum on around 10{sup 5} ions per duty cycle. The origin band of the absorption spectrum of this relatively large polycyclic aromatic species with 27 atoms is located at 4858.86 Å. Two further comparably intense spectral features are present at 4834.48 and 4809.32 Å. This is one of the largest protonated aromatics studied in the gas phase and compared to astronomical observations; however, it is not a carrier of known diffuse interstellar bands.

  16. Shear band structure in ballistically tested bainitic steels

    E-print Network

    Fielding, L. C. D.; Bhadeshia, H. K. D. H.

    Adiabatic shear bands represent intense plastic deformation that is localised because the rate at which the heat generated by deformation is greater than that at which it is dissipated. The structure of such bands generated by ballistic testing...

  17. Line Intensities of Isotopic Carbonyl Sulfide (ocs) at 2.5 Micrometer

    NASA Astrophysics Data System (ADS)

    Toth, Robert A.; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.

    2009-06-01

    We have measured line intensities of ^{16}O^{12}C^{32}S, ^{16}O^{13}C^{32}S, ^{16}O^{12}C^{33}S, ^{16}O^{12}C^{34}S, and ^{18}O^{12}C^{32}S in the 2.5 ?m region for the first time to support planetary studies of the Venus atmosphere. Laboratory absorption spectra of OCS were recorded at 0.0033 cm^{-1} resolution at room temperature using a Bruker IFS 125-HR Fourier transform spectrometer at the Jet Propulsion Laboratory. Normal samples of OCS were used in this study, and sample impurities and isotopic abundances were determined from mass spectrum analysis. Optical densities sufficient to observe isotopic bands and weaker hot bands were achieved by using a multi-pass White cell and single pass gas cells in various path lengths, which were validated by analyzing near-IR CO_2 spectra. We present line intensities for almost 30 bands of the OCS isotopes excluding ground state bands of ^{16}O^{12}C^{32}S, which we have reported recently. We have Herman-Wallis factors determined for the individual bands. In some cases, it has been observed that band intensities normalized to 100% isotopic species show a significant deviation from that of the primary isotopic species (up to by 12.5%). No earlier measurements have been reported for these bands. Measurement precision and accuracies will be discussed. Research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. We thank Drs. Stojan Madzunkov, John A. MacAskill, and Murray R. Darrach from the Atomic and Molecular Collision Group at Jet Propulsion Laboratory for recording mass spectrum of the OCS sample used in this work.

  18. Broadband activation by white-opsin lowers intensity threshold for cellular stimulation.

    PubMed

    Batabyal, Subrata; Cervenka, Gregory; Birch, David; Kim, Young-Tae; Mohanty, Samarendra

    2015-01-01

    Photoreceptors, which initiate the conversion of ambient light to action potentials via retinal circuitry, degenerate in retinal diseases such as retinitis pigmentosa and age related macular degeneration leading to loss of vision. Current prosthetic devices using arrays consisting of electrodes or LEDs (for optogenetic activation of conventional narrow-band opsins) have limited spatial resolution and can cause damage to retinal circuits by mechanical or photochemical (by absorption of intense narrow band light) means. Here, we describe a broad-band light activatable white-opsin for generating significant photocurrent at white light intensity levels close to ambient daylight conditions. White-opsin produced an order of magnitude higher photocurrent in response to white light as compared to narrow-band opsin channelrhodopsin-2, while maintaining the ms-channel kinetics. High fidelity of peak-photocurrent (both amplitude and latency) of white-opsin in response to repetitive white light stimulation of varying pulse width was observed. The significantly lower intensity stimulation required for activating white-opsin sensitized cells may facilitate ambient white light-based restoration of vision for patients with widespread photoreceptor degeneration. PMID:26658483

  19. Broadband activation by white-opsin lowers intensity threshold for cellular stimulation

    PubMed Central

    Batabyal, Subrata; Cervenka, Gregory; Birch, David; Kim, Young-tae; Mohanty, Samarendra

    2015-01-01

    Photoreceptors, which initiate the conversion of ambient light to action potentials via retinal circuitry, degenerate in retinal diseases such as retinitis pigmentosa and age related macular degeneration leading to loss of vision. Current prosthetic devices using arrays consisting of electrodes or LEDs (for optogenetic activation of conventional narrow-band opsins) have limited spatial resolution and can cause damage to retinal circuits by mechanical or photochemical (by absorption of intense narrow band light) means. Here, we describe a broad-band light activatable white-opsin for generating significant photocurrent at white light intensity levels close to ambient daylight conditions. White-opsin produced an order of magnitude higher photocurrent in response to white light as compared to narrow-band opsin channelrhodopsin-2, while maintaining the ms-channel kinetics. High fidelity of peak-photocurrent (both amplitude and latency) of white-opsin in response to repetitive white light stimulation of varying pulse width was observed. The significantly lower intensity stimulation required for activating white-opsin sensitized cells may facilitate ambient white light-based restoration of vision for patients with widespread photoreceptor degeneration. PMID:26658483

  20. New assignments in the 2 ?m transparency window of the 12CH4 Octad band system

    NASA Astrophysics Data System (ADS)

    Daumont, L.; Nikitin, A. V.; Thomas, X.; Régalia, L.; Von der Heyden, P.; Tyuterev, Vl. G.; Rey, M.; Boudon, V.; Wenger, Ch.; Loëte, M.; Brown, L. R.

    2013-02-01

    This paper reports new assignments of rovibrational transitions of 12CH4 bands in the range 4600-4887 cm-1 which is usually referred to as a part of the 2 ?m methane transparency window. Several experimental data sources for methane line positions and intensities were combined for this analysis. Three long path Fourier transform spectra newly recorded in Reims with 1603 m absorption path length and pressures of 1, 7 and 34 hPa for samples of natural abundance CH4 provided new measurements of 12CH4 lines. Older spectra for 13CH4 (90% purity) from JPL with 73 m absorption path length were used to identify the corresponding lines. Most of the lines in this region belong to the Octad system of 12CH4. The new spectra allowed us to assign 1014 new line positions and to measure 1095 line intensities in the cold bands of the Octad. These new line positions and intensities were added to the global fit of Hamiltonian and dipole moment parameters of the Ground State, Dyad, Pentad and Octad systems. This leads to a noticeable improvement of the theoretical description in this methane transparency window and a better global prediction of the methane spectrum.

  1. Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands

    NASA Astrophysics Data System (ADS)

    Subhash, N.; Mallia, J. R.; Thomas, S. S.; Mathews, A.; Sebastian, P.; Madhaven, J.

    2006-01-01

    A low-cost, fast, and noninvasive method for early diagnosis of malignant lesions of oral mucosa based on diffuse reflectance spectral signatures is presented. In this technique, output of a tungsten halogen lamp is guided to the tissue through the central fiber of a reflection probe whose surrounding six fibers collects tissue reflectance. Ex vivo diffuse reflectance spectra in the 400 to 600-nm region is measured from surgically removed oral cavity lesions using a miniature fiber optic spectrometer connected to a computer. Reflectance spectral intensity is higher in malignant tissues and shows dips at 542 and 577 nm owing to absorption from oxygenated hemoglobin (HbO2). Measurements carried out, within an hour of surgical excision, on malignant lesion and adjoining uninvolved mucosa show that these absorption features are more prominent in neoplastic tissues owing to increased microvasculature and blood content. It is observed that reflectance intensity ratio of hemoglobin bands, R540/R575, from malignant sites are always lower than that from normal sites and vary according to the histological grade of malignancy. The diffuse reflectance intensity ratio R540/R575 of the hemoglobin bands appears to be a useful tool to discriminate between malignant lesions and normal mucosa of the oral cavity in a clinical setting.

  2. Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications.

    PubMed

    Werblinski, Thomas; Engel, Sascha R; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2013-06-01

    The first supercontinuum (SC) absorption spectroscopy measurements showing the feasibility of quantitative temperature evaluation are presented to the best of the authors' knowledge. Temperature and multi-species measurements were carried out at a detection rate of ~2 MHz in a high-temperature flow cell within a temperature range from 450 K to 750 K at 0.22 MPa, representing conditions during the suction and compression stroke in an internal combustion (IC) engine. The broadband SC pulses were temporally dispersed into fast wavelength sweeps, covering the overtone absorption bands 2?(1), 2?(3), ?(1) + ?(3) of H2O and 3?(3) of CO2 in the near-infrared region from 1330 nm to 1500 nm. The temperature information is inferred from the peak ratio of a temperature sensitive (1362.42 nm) and insensitive (1418.91 nm) absorption feature in the ?(1) + ?(3) overtone bands of water. The experimental results are in very good agreement with theoretical intensity ratios calculated from absorption spectra based on HiTran data. PMID:23736618

  3. Pioneer 11 observations of trapped particle absorption by the Jovian ring and the satellites 1979, J1, J2, and J3

    NASA Technical Reports Server (NTRS)

    Pyle, K. R.; Mckibben, R. B.; Simpson, J. A.

    1983-01-01

    Pioneer 11 low energy telescope observation of charged particles around the Jovian satellites Amalthea, 1979 J1, J2, and J3, and the Jupiter ring are examined in the light of Voyager optical data from the same region. Good agreement was found in the absorption features of 0.5-8.7 MeV protons, electrons with energies of 3.4 MeV or more, and medium-Z nuclei. The heavier nuclei are suggested to be oxygen and sulfur particles with energies exceeding 70 MeV/nucleon. The observed intensity features in the regularly spaced radiation bands are interpreted as ring and satellite absorption.

  4. Analysis of several high-resolution infrared bands of spiropentane, C5H8

    NASA Astrophysics Data System (ADS)

    Maki, A.; Price, J. E.; Harzan, J.; Nibler, J. W.; Weber, A.; Masiello, T.; Blake, T. A.

    2015-06-01

    The high-resolution infrared absorption spectrum of spiropentane (C5H8) has been measured from 200 to 4000 cm-1, and a detailed analysis is presented for eight bands in the region from 700 to 2200 cm-1. Two fundamental perpendicular bands were analyzed, ?22 and ?24 near 1050 and 780 cm-1, respectively, along with two fundamental parallel bands, ?14 and ?16 near 1540 and 990 cm-1, respectively. Two other fundamentals, ?17 and ?23, are seen as intense overlapping bands near 880 cm-1 and are Coriolis-coupled, producing a complex mixture in which only P-branch transitions could be tentatively assigned for ?17. In addition, three binary combination bands were fit at about 1570, 2082, and 2098 cm-1 which are assigned as either 2?24 or ?5 + ?16 in the first case, ?4 + ?22 in the second case, and 2?22 in the latter case. The two l-type resonance constants, q+ and q-, were determined for each of the two perpendicular fundamentals ?22 and ?24. Those two constants were also responsible for splittings observed in the K = 3 levels of ?24. For the ground state the order of the split K = 2 B1/B2 levels has been reversed from that reported previously, based on the measurements and assignments for the ?24 band. Rovibrational parameters deduced from the analyses are compared with those obtained from density functional Gaussian calculations at the anharmonic level.

  5. Optical Absorption, Stability and Structure of NpO2+ Complexeswith Dicarboxylic Acids

    SciTech Connect

    Guoxin Tian; Linfeng Rao

    2006-01-04

    Complexation of NpO2+ with oxalic acid (OX),2,2'-oxydiacetic acid (ODA), 2,2'-iminodiacetic acid (IDA) and 2,2'-thiodiacetic acid (TDA), has been studied using spectrophotometry in1 M NaClO4. Both the position and the intensity of the absorption band of NpO2+ at 980 nm are affected by the formation of NpO2+/dicarboxylate complexes, providing useful information on the complexation strength, the coordination mode and the structure of the complexes.

  6. Absorption into fluorescence. A method to sense biologically relevant gas molecules

    NASA Astrophysics Data System (ADS)

    Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato

    2011-01-01

    In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection ofanalytes related to climate change. In particular, we focused our attention on the detection ofnitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.

  7. Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure

    SciTech Connect

    Asahi, S.; Teranishi, H.; Kasamatsu, N.; Kada, T.; Kaizu, T.; Kita, T.

    2014-08-14

    We investigated the effects of an increase in the barrier height on the enhancement of the efficiency of two-step photo-excitation in InAs quantum dot (QD) solar cells with a dot-in-well structure. Thermal carrier escape of electrons pumped in QD states was drastically reduced by sandwiching InAs/GaAs QDs with a high potential barrier of Al{sub 0.3}Ga{sub 0.7}As. The thermal activation energy increased with the introduction of the barrier. The high potential barrier caused suppression of thermal carrier escape and helped realize a high electron density in the QD states. We observed efficient two-step photon absorption as a result of the high occupancy of the QD states at room temperature.

  8. X-ray absorption holography.

    PubMed

    Kopecky, M; Lausi, A; Busetto, E; Kub, J; Savoia, A

    2002-05-01

    The transmission of monochromatic x rays through a CoO single crystal was measured for different orientations of the sample. The small variations in the linear absorption coefficient were considered as a hologram and the real-space image of the local atomic environment was successfully reconstructed. The holographic signal constituted about 1% of the detected intensity. Besides other benefits, the use of the absorption holography can increase the signal-to-background ratio by more than 1 order compared with the fluorescence holography. PMID:12005695

  9. The Fourier transform absorption spectrum of acetylene between 7000 and 7500 cm-1

    NASA Astrophysics Data System (ADS)

    Lyulin, O. M.; Vander Auwera, J.; Campargue, A.

    2015-07-01

    High resolution (0.011 cm-1) room temperature (295 K) Fourier transform absorption spectra (FTS) of acetylene have been recorded between 7000 and 7500 cm-1. Line parameters (positions, intensities and self broadening coefficients) have been measured using a multispectrum treatment of three FTS spectra, recorded at 3.84, 8.04 and 56.6 hPa. As a result, a list of 3788 lines was constructed with intensities ranging between about 10-26 and 10-22 cm/molecule. Comparison with accurate predictions provided by a global effective operator model (Lyulin OM, Perevalov VI, Teffo JL, Proc. SPIE 2004;5311:134-43) led to the assignment of 2471 of these lines to 12C2H2. The assigned lines belong to 29 12C2H2 bands, 12 of them being newly reported. Spectroscopic parameters of the upper vibrational levels were derived from band-by-band fits of the line positions (typical rms values are on the order of 0.001 cm-1). About half of the analyzed bands were found to be affected by rovibrational perturbations. Line parameters obtained in this work were compared with those available for about 350 transitions in the HITRAN 2012 database. The large set of new data will be valuable to refine the parameters of the global effective Hamiltonian and dipole moments of 12C2H2.

  10. Ab initio calculations for the far infrared collision induced absorption by N2 gas

    NASA Astrophysics Data System (ADS)

    Bussery-Honvault, Béatrice; Hartmann, Jean-Michel

    2014-02-01

    We present (far-infrared) Collision Induced Absorption (CIA) spectra calculations for pure gaseous N2 made for the first time, from first-principles. They were carried out using classical molecular dynamics simulations based on ab initio predictions of both the intermolecular potential and the induced-dipole moment. These calculations reproduce satisfactory well the experimental values (intensity and band profile) with agreement within 3% at 149 K. With respect to results obtained with only the long range (asymptotic) dipole moment (DM), including the short range overlap contribution improves the band intensity and profile at 149 K, but it deteriorates them at 296 K. The results show that the relative contribution of the short range DM to the band intensity is typically around 10%. We have also examined the sensitivity of the calculated CIA to the intermolecular potential anisotropy, providing a test of the so-called isotropic approximation used up to now in all N2 CIA calculations. As all these effects interfere simultaneously with quantitatively similar influences (around 10%), it is rather difficult to assert which one could explain remaining deviations with the experimental results. Furthermore, the rather large uncertainties and sometimes inconsistencies of the available measurements forbid any definitive conclusion, stressing the need for new experiments.

  11. Ultra Wide Band ULTRA WIDE BAND

    E-print Network

    Tourneret, Jean-Yves

    Ultra Wide Band ULTRA WIDE BAND Martial COULON ENSEEIHT - 3 ann´ee T´el´ecom-R´eseaux - option Mobilit´e ann´ee 2007-2008 1/ 108 #12;Ultra Wide Band Plan du cours Introduction D´efinition Historique et;Ultra Wide Band Plan du cours Introduction D´efinition Historique et R´eglementations Applications Sp

  12. Propionaldehyde infrared cross-sections and band strengths

    NASA Astrophysics Data System (ADS)

    Köro?lu, Batikan; Loparo, Zachary; Nath, Janardan; Peale, Robert E.; Vasu, Subith S.

    2015-02-01

    The use of oxygenated biofuels reduces the greenhouse gas emissions; however, they also result in increased toxic aldehyde by-products, mainly formaldehyde, acetaldehyde, acrolein, and propionaldehyde. These aldehydes are carcinogenic and/or toxic and therefore it is important to understand their formation and destruction pathways in combustion and atmospheric systems. Accurate information about their infrared cross-sections and integrated strengths are crucially needed for development of quantitative detection schemes and modeling tools. Critical to the development of such diagnostics are accurate characterization of the absorption features of these species. In this study, the gas phase infrared spectra of propionaldehyde (also called propanal, CH3-CH2-CHO), a saturated three carbon aldehyde found in the exhaust emissions of biodiesel or diesel fuels, was studied using high resolution Fourier Transform Infrared (FTIR) spectroscopy over the wavenumber range of 750-3300 cm-1 and at room temperature 295 K. The absorption cross sections of propionaldehyde were recorded at resolutions of 0.08 and 0.096 cm-1 and at seven different pressures (4-33 Torr). The calculated band-strengths were reported and the integrated band intensity results were compared with values taken from the Pacific Northwest National Laboratory (PNNL) database (showing less than 2% discrepancy). The peak positions of the 19 different vibrational bands of propionaldehyde were also compared with previous studies taken at a lower resolution of 1 cm-1. To the best of our knowledge, the current FTIR measurements provide the first highest resolution infrared cross section data for propionaldehyde.

  13. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  14. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  15. High-Frequency Absorption Properties of Three Kinds of Hollow Multiphase Ceramic Microspheres

    NASA Astrophysics Data System (ADS)

    Lou, Hongfei; Wang, Jianjiang; Hou, Yongshen; He, Ming; Zhao, Zhining

    2014-02-01

    Al-TiO2-Fe2O3-MnO2-Fe-Sucrose-Epoxy Resin as reaction system and self-reactive quenching technology which combines flame thermal spraying, self-propagating high-temperature synthesis and rapid solidification, were used to prepare three kinds of hollow multiphase ceramic microspheres (HMCMs) in different feeding gas (N2, O2) and dimension (coarse, fine). The characteristic results of three kinds of HMCMs indicated that various process parameters containing feeding gas and initial agglomerate size in this study can result in the change of surface organization, composition, morphology, and dimension. Investigation of microwave electromagnetic (EM) characteristics of three kinds of HMCMs showed that intrinsic characteristics play an important role in the determining the resulting properties. At 10-14.5 GHz, No. 3 HMCMs possess weak absorption intensity and narrow effective bandwidth (<-10 dB) owing to smaller dimension, but in higher-frequency band (14.5-17 GHz), an obvious absorption peak appears due to good EM match and nano-effects. Compared with No. 1 (O2 coarse) and No. 3 (O2 fine) HMCMs, enhanced absorption intensity and effective bandwidth (<-10 dB) were observed in No. 2 (N2 coarse) HMCMs. Enhancements of absorption intensity and effective bandwidth are associated with extra nitride (AlN, FeN), partial open microspheres, M-hexagonal crystal and micro-nano thick dendrite. No. 2 HMCMs presented excellent microwave-absorption property, with the minimum reflectivity ( R L) of -27.7 dB at 12.9 GHz. The effective bandwidth (<-10 dB) could reach to 4.1 GHz (10.9-15 GHz). This may be ascribed to the increased conductance loss, multiple scattering, magnetocrystalline anisotropy, and shape anisotropy.

  16. Multi-photon Absorption in Optical Pumping of Rubidium

    E-print Network

    Xu, Xinyi

    2015-01-01

    In optical pumping of rubidium, a new kind of absorption occurs with a higher amplitude of radio frequency current. From measurement of the corresponding magnetic field value where this absorption occurs, there is a conclusion that it is multi-photon absorption. Both the degeneracy and energy of photons contribute to the intensity.

  17. Synthesis, crystal structures, and two-photon absorption of a series of cyanoacetic acid triphenylamine derivatives.

    PubMed

    Hao, Fuying; Li, Dandan; Zhang, Qiong; Li, Shengli; Zhang, Shengyi; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2015-11-01

    A specific series of chromophores (CN1, CN2, CN3, and CN4) have been synthesized, in which contained a triphenylamine moiety as the electron donor (D), a cyanoacetic acid moiety as the electron acceptor (A), vinylene or phenylethyne as the ?-bridge, and ethyoxyl groups as auxiliary electron donor (D') to construct the D-?-A or D'-D-?-A molecular configuration. Photophysical properties of them were systematically investigated. These results show that the chromophores display a solvatochromism (blue shift) and large Stokes shifts for their absorption bands with increasing polarity of the solvent. Furthermore, the chromophore CN4 shows the strongest intensity of two-photon excited fluorescence and largest two-photon absorption cross section (2783 GM) in the near infrared region. Finally, the connections between the structures and properties are systematically investigated relying on the information from linear and nonlinear optical properties, crytsal structures and quantum chemical calculation. PMID:26119354

  18. Pressure-induced absorption by H2 in the atmospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Martin, T. Z.; Cruikshank, D. P.; Pilcher, C. B.; Sinton, W. M.

    1976-01-01

    Observations of the S(1) line of the pressure-induced fundamental band of H2 in the spectra of Saturn and Jupiter are analyzed by comparing the observed line shape with predictions of both a reflecting-layer model and a homogeneous-scattering model of the atmospheres. Upper and lower limits are derived for the values of relative intensity that occur between 5000 and 5100 kaysers, the percent absorption due to H2 at 5100 kaysers is estimated, and it is established that methane and ammonia cannot account for the broad absorption attributed to hydrogen. The comparison with the model atmospheres shows that the reflecting-layer model appears to give the best fit to the Saturn line profile for temperatures near 150 K, while both models provide good fits to the Jupiter data, but for widely differing temperatures. Difficulties encountered in determining the true continuum level, especially for Jupiter, are discussed.

  19. Interpretation of the Minkowski bands in Grw + 70 deg 8247.

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.

    1972-01-01

    Demonstration on the basis of the spectral structure of circular polarization in Grw + 70 deg 8247, that the absorption bands are at least in part molecular in origin. The spectrum of molecular helium has strong bands coincident with several of the Minkowski bands and, in particular, at high temperature shows a strong band head at about 4125 A. Helium molecules could be formed in sufficient density to give the absorption features in the star if it has a pure helium atmosphere. The Zeeman effect in molecular helium can explain in general the observed spectral features in the polarization and also may be responsible for the continuum polarization.

  20. Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices

    E-print Network

    Karin I. Oberg; Helen J. Fraser; A. C. Adwin Boogert; Suzanne E. Bisschop; Guido W. Fuchs; Ewine F. van Dishoeck; Harold Linnartz

    2006-10-25

    H2O is the most abundant component of astrophysical ices. In most lines of sight it is not possible to fit both the H2O 3 um stretching, the 6 um bending and the 13 um libration band intensities with a single pure H2O spectrum. Recent Spitzer observations have revealed CO2 ice in high abundances and it has been suggested that CO2 mixed into H2O ice can affect relative strengths of the 3 um and 6 um bands. We used laboratory infrared transmission spectroscopy of H2O:CO2 ice mixtures to investigate the effects of CO2 on H2O ice spectral features at 15-135 K. We find that the H2O peak profiles and band strengths are significantly different in H2O:CO2 ice mixtures compared to pure H2O ice. In all H2O:CO2 mixtures, a strong free-OH stretching band appears around 2.73 um, which can be used to put an upper limit on the CO2 concentration in the H2O ice. The H2O bending mode profile also changes drastically with CO2 concentration; the broad pure H2O band gives way to two narrow bands as the CO2 concentration is increased. This makes it crucial to constrain the environment of H2O ice to enable correct assignments of other species contributing to the interstellar 6 um absorption band. The amount of CO2 present in the H2O ice of B5:IRS1 is estimated by simultaneously comparing the H2O stretching and bending regions and the CO2 bending mode to laboratory spectra of H2O, CO2, H2O:CO2 and HCOOH.

  1. Perceiving the Intensity of Light

    ERIC Educational Resources Information Center

    Purves, Dale; Williams, S. Mark; Nundy, Surajit; Lotto, R. Beau

    2004-01-01

    The relationship between luminance (i.e., the photometric intensity of light) and its perception (i.e., sensations of lightness or brightness) has long been a puzzle. In addition to the mystery of why these perceptual qualities do not scale with luminance in any simple way, "illusions" such as simultaneous brightness contrast, Mach bands,…

  2. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications

    NASA Astrophysics Data System (ADS)

    Sun, Rui-Nan; Peng, Kui-Qing; Hu, Bo; Hu, Ya; Zhang, Fu-Qiang; Lee, Shuit-Tong

    2015-07-01

    Both photonic and plasmonic nanostructures are key optical components of photoactive devices for light harvesting, enabling solar cells with significant thickness reduction, and light detectors capable of detecting photons with sub-band gap energies. In this work, we study the plasmon enhanced broadband light absorption and electrical properties of silicon nanobowl (SiNB) arrays. The SiNB-metal photonic-plasmonic nanostructure-based devices exhibited superior light-harvesting ability across a wide range of wavelengths up to the infrared regime well below the band edge of Si due to effective optical coupling between the SiNB array and incident sunlight, as well as electric field intensity enhancement around metal nanoparticles due to localized surface plasmon resonance. The photonic-plasmonic nanostructure is expected to result in infrared-light detectors and high-efficiency solar cells by extending light-harvesting to infrared frequencies.

  3. Elastic band-to-band registration for airborne multispectral scanners with large field of view

    NASA Astrophysics Data System (ADS)

    Li, Feng; Li, ChuanRong; Tang, LingLi; Guo, Yi

    2012-11-01

    Multispectral line scanners with large field of view improve efficiency in Earth observation. Small volume of the instruments born with a short focal length, however, may bring a problem: there are different none-linear warping and local transformation between bands. Alignment accuracy of bands is a criteria factor impacting product quality in remote sensing. In this paper, a new elastic band-to-band image registration method is proposed for solving the problem. Rather than carry out registration between bands straightforwardly, corresponding featured images of each band are constructed and used to conduct an intensity based elastic image registration. In this method, the idea of the inverse compositional algorithm is borrowed and expended when dealing with local warping, and a smoothness constraint is also added in the procedure. Experimental results show that the proposed band-to-band registration method works well both visually and quantitatively.

  4. Band gap effects of hexagonal boron nitride using oxygen plasma

    SciTech Connect

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6?eV of pristine h-BN to 4.31?eV when exposed to oxygen plasma for 12?s. The narrowing of band gap causes the reduction in electrical resistance by ?100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  5. Strong terahertz absorption using thin metamaterial structures

    SciTech Connect

    Alves, Fabio; Kearney, Brian; Grbovic, Dragoslav; Lavrik, Nickolay V; Karunasiri, Gamani

    2012-01-01

    Metamaterial absorbers with nearly 100% absorption in the terahertz (THz) spectral band have been designed and fabricated using a periodic array of aluminum (Al) squares and an Al ground plane separated by a thin silicon dioxide (SiO{sub 2}) dielectric film. The entire structure is less than 1.6 mm thick making it suitable for the fabrication of microbolometers or bi-material sensors for THz imaging. Films with different dielectric layer thicknesses exhibited resonant absorption at 4.1, 4.2, and 4.5 THz with strengths of 98%, 95%, and 88%, respectively. The measured absorption spectra are in good agreement with simulations using finite element modeling.

  6. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    NASA Astrophysics Data System (ADS)

    Sellberg, Jonas A.; Kaya, Sarp; Segtnan, Vegard H.; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G. M.; Nilsson, Anders

    2014-07-01

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

  7. Comparison of x-ray absorption spectra between water and ice: new ice data with low pre-edge absorption cross-section.

    PubMed

    Sellberg, Jonas A; Kaya, Sarp; Segtnan, Vegard H; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G M; Nilsson, Anders

    2014-07-21

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed. PMID:25053326

  8. Ultrafast band-gap oscillations in iron pyrite

    E-print Network

    Kolb, Brian

    With its combination of favorable band gap, high absorption coefficient, material abundance, and low cost, iron pyrite, FeS[subscript 2], has received a great deal of attention over the past decades as a promising material ...

  9. The effect of ionization on the infrared absorption spectra of PAHs: A preliminary report

    NASA Technical Reports Server (NTRS)

    Defrees, Doug J.; Miller, M. D.

    1989-01-01

    The emission lines observed in many interstellar IR sources at 3.28, 6.2, 7.7, 8.7, and 11.3 microns are theorized to originate from polycyclic aromatic hydrocarbons (PAHs). These assignments are based on analyses of lab IR spectra of neutral PAHs. However, it is likely that in the interstellar medium that PAHs are ionized, i.e., are positively charged. Besides, as pointed out by Allamandola et al., although the IR emission band spectrum resembles what one might expect from a mixture of PAHs, it does not match in details such as frequency, band profile, or relative intensities predicted from the absorption spectra of any known PAH molecule. One source of more information to test the PAH theory is ab initio molecular orbital theory. It can be used to compute, from first principles, the geometries, vibrational frequencies, and vibrational intensities for model PAH compounds which are difficult to study in the lab. The Gaussian 86 computer program was used to determine the effect of ionization on the infrared absorption spectra of several small PAHs: naphthalene and anthracene. A preliminary report is presented of the results of these calculations.

  10. Visible to deep ultraviolet range optical absorption of electron irradiated borosilicate glass

    NASA Astrophysics Data System (ADS)

    Wang, Tie-Shan; Duan, Bing-Huang; Tian, Feng; Peng, Hai-Bo; Chen, Liang; Zhang, Li-Min; Yuan, Wei

    2015-07-01

    To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet (UV) optical absorption (OA) spectra were measured. Two characteristic bands were revealed before irradiation, and they were attributed to silicon dangling bond (E’-center) and Fe3+ species, respectively. The existence of Fe3+ was confirmed by electron paramagnetic resonance (EPR) measurements. After irradiation, the absorption spectra revealed irradiation-induced changes, while the content of E’-center did not change in the deep ultraviolet (DUV) region. The slightly reduced OA spectra at 4.9 eV was supposed to transform Fe3+ species to Fe2+ species and this transformation leads to the appearance of 4.3 eV OA band. By calculating intensity variation, the transformation of Fe was estimated to be about 5% and the optical absorption cross section of Fe2+ species is calculated to be 2.2 times larger than that of Fe3+ species. Peroxy linkage (POL, ?Si-O-O-Si?), which results in a 3.7 eV OA band, is speculated not to be from Si-O bond break but from Si-O-B bond, Si-O-Al bond, or Si-O-Na bond break. The co-presence defect with POL is probably responsible for 2.9-eV OA band. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. lzujbky-2014-16).

  11. Enhancing intermediate state absorption of resonance-mediated multiphoton absorption process.

    PubMed

    Lu, Chenhui; Yao, Yunhua; Xu, Shuwu; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong

    2014-06-26

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in (1+2) resonance-mediated multiphoton absorption process by shaping the femosecond laser pulse. A theoretical model is proposed to investigate the intermediate state absorption of (1+2) resonance-mediated three-photon absorption process in the molecular system, and an analytical solution is obtained on the basis of time-dependent perturbation theory. Our theoretical results show that the intermediate state absorption can be enhanced by controlling the laser spectral phase due to final state absorption reduction, and this absorption enhancement efficiency increases with the increase of the laser intensity. These theoretical results are experimentally confirmed in IR144 dye by varying the laser spectral phase with a sinusoidal modulation function. PMID:24892503

  12. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.

    PubMed

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-01-01

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55??m was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42??m. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5??m. PMID:26563679

  13. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-11-01

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55??m was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42??m. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5??m.

  14. Improvement of the Database on the 1.13-microns Band of Water Vapor

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Schwenke, David W.; Chackerian, Charles, Jr.; Varanasi, Prasad; Freedman, Richard S.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    Corrections have recently been reported (Giver et al.) on the short-wave (visible and near-infrared) line intensities of water vapor that were catalogued in the spectroscopic database known as HITRAN. These updates have been posted on www.hitran.com, and are being used to reanalyze the polar stratospheric absorption in the 0.94 microns band as observed in POAM. We are currently investigating additional improvement in the 1.13 microns band using data obtained by us with an absorption path length of 1.107 km and 4 torr of water vapor and the ab initio line list of Partridge and Schwenke (needs ref). We are proposing the following four types of improvement of the HITRAN database in this region: 1) HITRAN has nearly 200 lines in this region without proper assignments of rotational quantum levels. Nearly all of them can now be assigned. 2) We have measured positions of the observable H2O-17 and H2O-18 lines. These lines in HITRAN currently have approximate positions based upon rather aged computations. 3) Some additional lines are observed and assigned which should be included in the database. 4) Corrections are necessary for the lower state energies E" for the HITRAN lines of the 121-010 "hot" band.

  15. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths

    PubMed Central

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-01-01

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55??m was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42??m. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5??m. PMID:26563679

  16. Analysis of the Visible Absorption Spectrum of I_2 in Inert Solvents Using a Physical Model

    NASA Astrophysics Data System (ADS)

    Tellinghuisen, J.

    2012-06-01

    Absorption spectra of I_2 dissolved in n-heptane and CCl_4 are analyzed with a quantum gas-phase model, in which spectra at four temperatures between 15C and 50C are least-squares fitted by bound-free spectral simulations to obtain estimates of the excited-state potential energy curves and transition moment functions for the three component bands: A-X, B-X, and C-X. Compared with a phenomenological band-fitting model used previously on these spectra, the physical model (1) is better statistically, and (2) yields component bands with less variability. The results support the earlier tentative conclusion that most of the 20 percent gain in intensity in solution is attributable to the C-X transition. The T-dependent changes in the spectrum are accounted for by potential energy shifts that are linear in T and negative (giving red shifts in the spectra) and about twice as large for CCl_4 as for heptane. The derived upper potentials resemble those in the gas phase, with one major exception: In the statistically best convergence mode, the A potential is much lower and steeper, with a strongly varying transition moment function. This observation leads to the realization that two markedly different potential curves can give nearly identical absorption spectra.

  17. Absorption and scattering in photo-thermo-refractive glass induced by UV-exposure and thermal development

    NASA Astrophysics Data System (ADS)

    Lumeau, Julien; Glebova, Larissa; Glebov, Leonid B.

    2014-01-01

    Photo-thermo-refractive (PTR) glass is a multicomponent photosensitive silicate glass that, after successive UV-exposure and thermal treatment, exhibits a refractive index change that results from the precipitation of nano-crystalline NaF. This glass is successfully used for the fabrication of holographic optical elements (volume Bragg gratings) that dramatically enhance properties of numerous laser systems and spectrometers. In this paper, induced absorption and scattering that determine efficiency of such elements were studied. It is found that the main contribution to induced absorption is produced by several types of silver containing particles having absorption bands with maxima in the blue-green region with exponential tails extending to the near IR spectral region. Evolution of all absorption bands was studied for different conditions of UV exposure and thermal development. Complex mechanisms of interconversion of silver containing particles is demonstrated as well as the fact that some of these particles can be associated with catalyzers of the nucleation process. It is also found that induced scattering obeys the classic Rayleigh law with an intensity depending on the conditions of UV exposure and thermal development. For short development times, scattering increases with dosage because of increased volume fraction of crystalline phase. For long development times, scattering decreases with dosage because of decreased size of individual crystals.

  18. Attosecond band-gap dynamics in silicon

    NASA Astrophysics Data System (ADS)

    Schultze, Martin; Ramasesha, Krupa; Pemmaraju, C. D.; Sato, S. A.; Whitmore, D.; Gandman, A.; Prell, James S.; Borja, L. J.; Prendergast, D.; Yabana, K.; Neumark, Daniel M.; Leone, Stephen R.

    2014-12-01

    Electron transfer from valence to conduction band states in semiconductors is the basis of modern electronics. Here, attosecond extreme ultraviolet (XUV) spectroscopy is used to resolve this process in silicon in real time. Electrons injected into the conduction band by few-cycle laser pulses alter the silicon XUV absorption spectrum in sharp steps synchronized with the laser electric field oscillations. The observed ~450-attosecond step rise time provides an upper limit for the carrier-induced band-gap reduction and the electron-electron scattering time in the conduction band. This electronic response is separated from the subsequent band-gap modifications due to lattice motion, which occurs on a time scale of 60 ± 10 femtoseconds, characteristic of the fastest optical phonon. Quantum dynamical simulations interpret the carrier injection step as light-field-induced electron tunneling.

  19. Solvent effects on the absorption maxima of fullerenes C{sub 60} and C{sub 70}

    SciTech Connect

    Renge, I.

    1995-10-26

    Absorption spectra of fullerenes C{sub 60} and C{sub 70} have been recorded between 200 and 700 nm in liquid n-alkanes at room temperature. Solvent shifts (-p) of band maxima vary from 900 cm{sup -1} (the 636 nm band in C{sub 70}) to 18000-19000 cm{sup -1} (the 209 nm band in C{sub 60} and the 210 nm band in C{sub 70}) per unit Lorentz-Lorenz function {phi}(n{sup 2}). The dispersive shift of the equally intense 256 nm band in C{sub 60} and 235 nm band in C{sub 70} yields {Delta}{alpha} values of 41 {+-} 2 and 79 {+-} 10 A{sup 3}, respectively. Allowed transitions between 300 and 400 nm possess a relatively small solvent shift and {Delta}{alpha}: -p = 2000-2500 cm{sup -1} and {Delta}{alpha} = 20-25 A{sup 3}. Published values of absorption and fluorescence maxima in cold jets, vapors, solid inert gases, solvent and polymer glasses, and doped and neat crystals have been plotted as a function of {phi}(n{sup 2}). A purely thermal bathochromic shift of 50-100 cm{sup -1} between low (4-77K) and ambient temperatures could be established for 620, 404 (C{sub 60}), and 636 nm (C{sub 70}) bands. The large bandwidth of allowed transitions(<400 nm) has been accounted for in terms of a much stronger Franck-Condon coupling to higher harmonics of intramolecular vibrations than that in planar aromatic hydrocarbons. 61 refs., 8 figs., 8 tabs.

  20. Collective oblate bands in [sup 196]Pb

    SciTech Connect

    Hughes, J.R.; Liang, Y.; Janssens, R.V.F.; Kuhnert, A.; Becker, J.A.; Ahmad, I.; Bearden, I.G.; Brinkman, M.J.; Burde, J.; Carpenter, M.P.; Cizewski, J.A.; Daly, P.J.; Deleplanque, M.A.; Diamond, R.M.; Draper, J.E.; Duyar, C.; Fornal, B.; Garg, U.; Grabowski, Z.W.; Henry, E.A.; Henry, R.G.; Hesselink, W.; Kalantar-Nayestanaki, N.; Kelly, W.H.; Khoo, T.L.; Lauritsen, T.; Mayer, R.H.; Nissius, D.; Oliveira, J.R.B.; Plompen, A.J.M.; Reviol, W.; Rubel, E.; Soramel, F.; Stephens, F.S.; Stoyer, M.A.; Vo, D.; Wang, T.F. Argonne National Laboratory, Argonne, Illinois 60439 Purdue University, West Lafayette, Indiana 47907 Lawrence Berkeley Laboratory, Berkeley, California 94720 Rutgers University, New Brunswick, New Jersey 08903 Physics Department, University of California, Davis, California 95616 University of Notre Dame, Notre Da

    1993-04-01

    Evidence for collective oblate behavior in [sup 196]Pb is presented. One irregular and two regular bands of [ital M]1 transitions have been observed following the [sup 170]Er([sup 30]Si,4[ital n]) and [sup 176]Yb([sup 26]Mg,6[ital n]) reactions. Transitions linking the most intense regular band to the low-lying negative-parity yrast levels are observed, establishing excitation energies, spins, and probable parities of the band members. In contrast, no such transitions have been found for the irregular band and the weaker regular band. The bands are interpreted as corresponding to collective oblate rotation, arising mainly from deformation-aligned high-[ital j], shape-driving quasiproton excitations across the [ital Z]=82 shell gap, coupled to rotation-aligned quasineutrons.

  1. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree

    2014-04-01

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k?) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  2. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup ?}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1?x}Cd{sub x}Te, and In{sub 1?x}Ga{sub x}As{sub y}P{sub 1?y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  3. Infrared absorption of gaseous CH{sub 2}BrOO detected with a step-scan Fourier-transform absorption spectrometer

    SciTech Connect

    Huang, Yu-Hsuan; Lee, Yuan-Pern

    2014-10-28

    CH{sub 2}BrOO radicals were produced upon irradiation, with an excimer laser at 248 nm, of a flowing mixture of CH{sub 2}Br{sub 2} and O{sub 2}. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved infrared (IR) absorption spectra of reaction intermediates. Transient absorption with origins at 1276.1, 1088.3, 961.0, and 884.9 cm{sup ?1} are assigned to ?{sub 4} (CH{sub 2}-wagging), ?{sub 6} (O–O stretching), ?{sub 7} (CH{sub 2}-rocking mixed with C–O stretching), and ?{sub 8} (C–O stretching mixed with CH{sub 2}-rocking) modes of syn-CH{sub 2}BrOO, respectively. The assignments were made according to the expected photochemistry and a comparison of observed vibrational wavenumbers, relative IR intensities, and rotational contours with those predicted with the B3LYP/aug-cc-pVTZ method. The rotational contours of ?{sub 7} and ?{sub 8} indicate that hot bands involving the torsional (?{sub 12}) mode are also present, with transitions 7{sub 0}{sup 1}12{sub v}{sup v} and 8{sub 0}{sup 1}12{sub v}{sup v}, v = 1–10. The most intense band (?{sub 4}) of anti-CH{sub 2}BrOO near 1277 cm{sup ?1} might have a small contribution to the observed spectra. Our work provides information for directly probing gaseous CH{sub 2}BrOO with IR spectroscopy, in either the atmosphere or laboratory experiments.

  4. Effects of induced spatial incoherence on laser light absorption and x-ray conversion at 0. 53. mu. m

    SciTech Connect

    Bosch, R.A. ); Gabl, E.F. ); Simpson, J.D.; Armentrout, C.J.; Failor, B.H. ); Kania, D.R.; Bell, P.M. )

    1991-01-15

    Gold disk targets were irradiated with and without induced spatial incoherence (ISI) at {lambda}=0.526 {mu}m and intensities of (1--5){times}10{sup 14} W/cm{sup 2}. The distribution of laser energy on target and {ital M}-band x-ray (2--4 keV) pinhole images of the target were smoothed with ISI. Absorption of laser energy was increased by 5--10 % with ISI. Soft-x-ray conversion efficiency with and without ISI were equal within the data scatter and uncertainty of {similar to}10%.

  5. Electromagnetically induced absorption via incoherent collisions

    SciTech Connect

    Yang Xihua; Sheng Jiteng; Xiao Min

    2011-10-15

    We conduct theoretical studies on electromagnetically induced absorption via incoherent collisions in an inhomogeneously broadened ladder-type three-level system with the density-matrix approach. The effects of the collision-induced coherence decay rates as well as the probe laser field intensity on the probe field absorption are examined. It is shown that with the increase of the collisional decay rates in a moderate range, a narrow dip due to electromagnetically induced transparency superimposed on the Doppler-broadened absorption background can be turned into a narrow peak under the conditions that the probe field intensity is not very weak as compared to the pump field, which results from the enhancement of constructive interference and suppression of destructive interference between one-photon and multiphoton transition pathways. The physical origin of the collision-assisted electromagnetically induced absorption is analyzed with a power-series solution of the density-matrix equations.

  6. Ultraviolet absorption studies of germanium silicate glasses.

    PubMed

    Yuen, M J

    1982-01-01

    The absorptions of pure and codoped germanium silicate preforms made by modified chemical vapor deposition (MCVD) have been studied from 170 to 400 nm. Three bands with maxima at 185, 242, and 325 nm have been observed. The shortest wavelength band is attributed to GeO(2), while the other bands are assigned to GeO. The 242- and 325-nm bands are correlated with a singlet-singlet and a triplet-singlet transition of GeO, respectively. The GeO content is found to increase with processing temperature, because higher temperature allows the greater dissociation of GeO(2) to GeO. The amount of GeO incorporated is determined to be of the order of 10(-2) wt. %. The 325-nm band of GeO should have no effect on fiber loss in the IR region. PMID:20372417

  7. Perfect and broad absorption by the active control of electric resonance in metamaterial

    NASA Astrophysics Data System (ADS)

    Dung, N. V.; Tuong, P. V.; Yoo, Y. J.; Kim, Y. J.; Tung, B. S.; Lam, V. D.; Rhee, J. Y.; Kim, K. W.; Kim, Y. H.; Chen, L. Y.; Lee, Y. P.

    2015-04-01

    Anti-oscillating plasmas have been the key to perfect absorption induced by magnetic resonance. This is an achievement in recent research on metamaterials (MMs), especially in GHz and the lower-frequency regions of electromagnetic waves. Here, a comprehensive view of perfect absorption is introduced by means of both magnetic resonance and electric resonance in meta molecules. A conventional metal-dielectric-metal MM absorber is proposed to obtain dual-band perfect absorption. It is clarified that the mechanism of dual-band absorption is due to fundamental (at 7.2 GHz) and third-order (at 18.7 GHz) magnetic resonances. Finally, we develop triple-band absorption by integrating resistors in to the MM absorber. The electric resonance, under the presence of resistors, matches the impedance of the MM absorber with the air at 13 GHz and gives rise to the new absorption band, with absorption higher than 90%.

  8. Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system.

    PubMed

    Ren, Yihua; Li, Shuiqing; Zhang, Yiyang; Tse, Stephen D; Long, Marshall B

    2015-03-01

    The absorption-ablation-excitation mechanism in laser-cluster interactions is investigated by measuring Rayleigh scattering of aerosol clusters along with atomic emission from phase-selective laser-induced breakdown spectroscopy. For 532 nm excitation, as the laser intensity increases beyond 0.16??GW/cm^{2}, the scattering cross section of TiO_{2} clusters begins to decrease, concurrent with the onset of atomic emission of Ti, indicating a scattering-to-ablation transition and the formation of nanoplasmas. With 1064 nm laser excitation, the atomic emissions are more than one order of magnitude weaker than that at 532 nm, indicating that the thermal effect is not the main mechanism. To better clarify the process, time-resolved measurements of scattering signals are examined for different excitation laser intensities. For increasing laser intensity, the cross section of clusters decreases during a single pulse, evincing the shorter ablation delay time and larger ratios of ablation clusters. Assessment of the electron energy distribution during the ablation process is conducted by nondimensionalizing the Fokker-Planck equation, with analogous Strouhal Sl_{E}, Peclet Pe_{E}, and Damköhler Da_{E} numbers defined to characterize the laser-induced aerothermochemical environment. For conditions where Sl_{E}?1, Pe_{E}?1, and Da_{E}?1, the electrons are excited to the conduction band by two-photon absorption, then relax to the bottom of the conduction band by electron energy loss to the lattice, and finally serve as the energy transfer media between laser field and lattice. The relationship between delay time and excitation intensity is well correlated by this simplified model with quasisteady assumption. PMID:25793812

  9. Absorption-Ablation-Excitation Mechanism of Laser-Cluster Interactions in a Nanoaerosol System

    NASA Astrophysics Data System (ADS)

    Ren, Yihua; Li, Shuiqing; Zhang, Yiyang; Tse, Stephen D.; Long, Marshall B.

    2015-03-01

    The absorption-ablation-excitation mechanism in laser-cluster interactions is investigated by measuring Rayleigh scattering of aerosol clusters along with atomic emission from phase-selective laser-induced breakdown spectroscopy. For 532 nm excitation, as the laser intensity increases beyond 0.16 GW /cm2 , the scattering cross section of TiO2 clusters begins to decrease, concurrent with the onset of atomic emission of Ti, indicating a scattering-to-ablation transition and the formation of nanoplasmas. With 1064 nm laser excitation, the atomic emissions are more than one order of magnitude weaker than that at 532 nm, indicating that the thermal effect is not the main mechanism. To better clarify the process, time-resolved measurements of scattering signals are examined for different excitation laser intensities. For increasing laser intensity, the cross section of clusters decreases during a single pulse, evincing the shorter ablation delay time and larger ratios of ablation clusters. Assessment of the electron energy distribution during the ablation process is conducted by nondimensionalizing the Fokker-Planck equation, with analogous Strouhal SlE , Peclet PeE , and Damköhler DaE numbers defined to characterize the laser-induced aerothermochemical environment. For conditions where SlE?1 , PeE?1 , and DaE?1 , the electrons are excited to the conduction band by two-photon absorption, then relax to the bottom of the conduction band by electron energy loss to the lattice, and finally serve as the energy transfer media between laser field and lattice. The relationship between delay time and excitation intensity is well correlated by this simplified model with quasisteady assumption.

  10. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    SciTech Connect

    Ramakanth, S.; James Raju, K. C.

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53?eV from 3.2?eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23?nm and 54?nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31?nm and 34?nm particles, and they do not show the marginal band gap narrowing. The 23?nm and 54?nm particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715?cm{sup ?1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638?cm{sup ?1}) contained in 31 and 34?nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305?cm{sup ?1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23?nm and 54?nm size particles with a narrowed band gap of 3?eV and 2.53?eV is due to exchange correlation interactions between the carriers present in these particles. In 31?nm and 34?nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08?eV and 3.2?eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23?nm/54?nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31?nm/34?nm.

  11. The ?17 band of C2H5D from 770 to 880 cm-1

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Drouin, Brian J.; Pearson, John C.; Sung, Keeyoon; Brown, Linda R.; Mantz, Arlan; Smith, Mary Ann H.

    2015-10-01

    Atmospheric investigations rely heavily on the availability of accurate spectral information of hydrocarbons. To extend the ethane database we recorded a 0.0028 cm-1 resolution spectrum of 12C2H5D from 650 to 1500 cm-1 using a Bruker Fourier Transform spectrometer IFS-125HR at the Jet Propulsion Laboratory. The 98% deuterium-enriched sample was contained in a 0.2038 m absorption cell; one spectrum was obtained with the sample cryogenically cooled to 130.5 K and another at room temperature. From the cold data, we retrieved line positions and intensities of 8704 individual absorption features from 770 to 880 cm-1 using a least squares curve fitting algorithm. From this set of measurements, we assigned 5035 transitions to the v17 fundamental at 805.342729(27) cm-1; this band is a c-type vibration, with often-resolved A and E components arising from internal rotation. The positions were modeled to a 22 term torsional Hamiltonian using SPFIT to fit the spectrum to a standard deviation of 7 × 10-4 cm-1 (21 MHz). The prediction of the 5035 line intensities at 130.5 K agreed with observed intensities, but a small centrifugal distortion type correction to the transition dipole was needed to model the intensity of high Ka R and P transitions. The integrated band intensities of 3.6628 × 10-19 cm-1/(molecule cm-2) at 296 K in the 770-880 cm-1 region was obtained. To predict line intensities at different temperatures, the partition function values were determined at nine temperatures between 9.8 and 300 K by summing individual energy levels up to J = 99 and Ka = 99 for the six states up through ?17 at 805 cm-1. We found the energy of A and E are inverted as compared to ground state (with the E state lower than the A state) and the splitting, -241.8(10) MHz, lies between the ground state value of +74.167(18) MHz and the first torsional state (?18 = 271.1 cm-1) value of -3382.23(34) MHz. The proximity of the energy splitting to the ground state suggests that the ?17 state has a similar torsional character. The resulting prediction of singly-deuterated ethane absorption at 12.5 ?m enables its detection in planetary atmospheres, including those of Titan and exoplanets.

  12. Visible light absorption by various titanium dioxide specimens.

    PubMed

    Kuznetsov, Vyacheslav N; Serpone, Nick

    2006-12-21

    A set of heat-induced and photoinduced absorption spectra of various compositions of Degussa P25 TiO2 and different polymers has been examined. The spectra are described as the sum of overlapping absorption bands (ABs) with maxima at 2.90 eV (427 nm, AB1), 2.55 eV (486 nm, AB2), and 2.05 eV (604 nm, AB3); the spectra correlate entirely with the experimentally observed absorption spectra after the reduction of TiO2. Absorption spectra of visible-light-active TiO2 photocatalysts reported recently in the literature have also been analyzed. Relatively narrow absorption spectra are very similar and independent of the method of photocatalyst preparation. The average absorption spectrum can be described reasonably well by the sum of the two absorption bands AB1 and AB2. It is argued that visible light activation of TiO2 specimens (anion-doped or otherwise) implicates defects associated with oxygen vacancies that give rise to color centers displaying these absorption bands and not to a narrowing of the original band gap of TiO2 (EBG approximately 3.2 eV, anatase) through mixing of dopant and oxygen states, as has been suggested recently in the literature. PMID:17165964

  13. The Band of CH_3CH_2D from 770-880 wn

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Drouin, Brian; Pearson, John; Groner, Peter; Sung, Keeyoon; Brown, Linda; Mantz, Arlan; Smith, Mary Ann H.

    2015-06-01

    To extend the ethane database we recorded a 0.0028 wn resolution spectrum of CH_3CH_2D from 650 to 1500 wn using a Bruker IFS-125HR at the Jet Propulsion Laboratory. The 98% deuterium-enriched sample was contained in the 0.2038 m absorption cell; one scan was taken with the sample cryogenically cooled to 130 K and another at room temperature. From the cold data, we retrieved line positions and intensities of 8704 individual absorption features from 770 - 880 wn using a least squares curve fitting algorithm. From this set of measurements, we assigned 5041 transitions to the ?b{17} fundamental at 805.3427686(234) wn; this band is a c-type vibration, with A and E components arising from internal rotation. The positions were modeled using a 22 term torsional Hamiltonian using SPFIT producing the A and E energy splitting of 5.409(25)x10-3 wn (162.2(8) MHz) with a standard deviation of 7x10-4 wn (21 MHz). The calculated line intensities at 130 K agree very well with retrieved intensities. To predict line intensities at different temperatures, the partition function value was determined at eight temperatures between 9.8 and 300 K by summing individual energy levels up to J = 99 and Ka = 99 for the six states up through ?b{17} at 805 wn. The resulting prediction of singly-deuterated ethane absorption at 12.5 ?m enables its detection in planetary atmospheres, including those of Titan and exoplanets.

  14. Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities.

    PubMed

    Lu, Ming-Ming; Cao, Mao-Sheng; Chen, Yi-Hua; Cao, Wen-Qiang; Liu, Jia; Shi, Hong-Long; Zhang, De-Qing; Wang, Wen-Zhong; Yuan, Jie

    2015-09-01

    Ideal electromagnetic attenuation material should not only shield the electromagnetic interference but also need strong absorption. Lightweight microwave absorber with thermal stability and high efficiency is a highly sought-after goal of researchers. Tuning microwave absorption to meet the harsh requirements of thermal environments has been a great challenge. Here, grape-like Fe3O4-multiwalled carbon nanotubes (MWCNTs) are synthesized, which have unique multiscale-assembled morphology, relatively uniform size, good crystallinity, high magnetization, and favorable superparamagnetism. The Fe3O4-MWCNTs is proven to be a smart microwave-absorber prototype with tunable high intensities in double belts in the temperature range of 323-473 K and X band. Maximum absorption in two absorbing belts can be simultaneously tuned from ?-10 to ?-15 dB and from ?-16 to ?-25 dB by varying temperature, respectively. The belt for reflection loss ?-20 dB can almost cover the X band at 323 K. The tunable microwave absorption is attributed to effective impedance matching, benefiting from abundant interfacial polarizations and increased magnetic loss resulting from the grape-like Fe3O4 nanocrystals. Temperature adjusts the impedance matching by changing both the dielectric and magnetic loss. The special assembly of MWCNTs and magnetic loss nanocrystals provides an effective pathway to realize excellent absorbers at elevated temperature. PMID:26284741

  15. Infrared radiation parameterizations for the minor CO[sub 2] bands and for several CFC bands in the window region

    SciTech Connect

    Kratz, D.P. ); Chou, M.D. ); Yan, M.M.H. )

    1993-07-01

    Fast and accurate parameterizations have been developed for the transmission functions of the CO[sub 2] 9.4- and 10.4-[mu]m bands, as well as the CFC-11, CFC-12, and CFC-22 bands located in the 8-12[mu]m region. The parameterizations are based on line-by-line calculations of transmission functions for the CO[sub 2] bands on high spectral resolution laboratory measurements of the absorption coefficients for the CFC bands. Also developed are the parameterizations for the H[sub 2]O transmission functions for the corresponding spectral bands. Compared to the high-resolution calculations, fluxes at the tropopause computed with the parameterizations are accurate to within 10% when overlapping of gas absorptions within a band is taken into account. For individual gas absorption, the accuracy is of order 0%-2%. The climate effects of these trace gases have been studied using a zonally averaged multilayer energy balance model, which includes seasonal cycles and a simplified deep ocean. With the trace gas abundances taken to follow the Intergovernmental Panel on Climate Change Low Emissions [open quotes]B[close quotes] scenario, the transient response of the surface temperature is simulated for the period 1900-2060. The minor CO[sub 2] and CFC bands contribute about 20%-25% of the total warming at the surface, which is comparable to the contribution from the CH[sub 4] and N[sub 2] bands. Collectively these minor absorption band account for 40%-45% of the total surface temperature increases. Thus, the climate warming due to absorption in these bands is comparable to that in the 15 [mu]m CO[sub 2] band. 41 refs., 2 figs., 11 tabs.

  16. Doppler Broadening of Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    B?czek, K.; Wszo?ek, B.

    2008-12-01

    For few dozens of hot reddened stars we have measured half widths (HW) and equivalent widths (EW) of the interstellar sodium D2 line and of the narrow and relatively strong diffuse interstellar band at 6196 Å. We have searched for mutual correlations between intensities of the both lines and we found that the width of the considered diffuse band does not follow the corresponding width for D2 line.

  17. Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption?

    PubMed

    Deparis, O; Mouchet, S R; Su, B-L

    2015-11-11

    Light harvesting enhancement by slow photons in photonic crystal catalysts or dye-sensitized solar cells is a promising approach for increasing the efficiency of photoreactions. This structural effect is exploited in inverse opal TiO2 photocatalysts by tuning the red edge of the photonic band gap to the TiO2 electronic excitation band edge. In spite of many experimental demonstrations, the slow photon effect is not fully understood yet. In particular, observed enhancement by tuning the blue edge has remained unexplained. Based on rigorous couple wave analysis simulations, we quantify light harvesting enhancement in terms of absorption increase at a specific wavelength (monochromatic UV illumination) or photocurrent increase (solar light illumination), with respect to homogeneous flat slab of equivalent material thickness. We show that the commonly accepted explanation relying on light intensity confinement in high (low) dielectric constant regions at the red (blue) edge is challenged in the case of TiO2 inverse opals because of the sub-wavelength size of the material skeleton. The reason why slow photons at the blue edge are also able to enhance light harvesting is the loose confinement of the field, which leads to significant resonantly enhanced field intensity overlap with the skeleton in both red and blue edge tuning cases, yet with different intensity patterns. PMID:26517229

  18. Come Join the Band

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    A growing number of students in Blue Springs, Missouri, are joining the band, drawn by a band director who emphasizes caring and inclusiveness. In the four years since Melissia Goff arrived at Blue Springs High School, the school's extensive band program has swelled. The marching band alone has gone from 100 to 185 participants. Also under Goff's…

  19. Participation of electron-phonon interaction in the ultrafast self-modulation of absorption of light in GaAs. Relation of modulation of absorption with the spectrum of stimulated radiation in GaAs

    SciTech Connect

    Ageeva, N. N.; Bronevoi, I. L. Krivonosov, A. N.; Nalet, T. A.; Stegantsov, S. V.

    2007-12-15

    Ultrafast (varying for {approx} 1 ps) self-modulation of the absorption spectrum of light takes place during the picosecond-scale photogeneration of charge carriers and intense intrinsic stimulated radiation in GaAs. With the modulation, formation of local amplifications of absorption in the spectrum (juts), which are attributed to local depletion of electron populations in the conduction band, is implied. It is found experimentally that the location of the juts in the spectrum is repeated over the interval determined by the energy of the longitudinal optical (LO) phonon and masses of the electron and heavy hole. This circumstance confirms the previous assumption about the substantial role of the electron-(LO phonon) interaction in ultrafast self-modulation of the absorption spectrum. The previously established notion of the relation of the shape of modulation of the absorption spectrum with the shape of the time-integrated spectrum of intrinsic picosecond radiation is also expanded to the case when ultrafast self-modulation of the absorption spectrum manifests itself.

  20. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  1. Interstitial oxygen molecules in amorphous SiO2. I. Quantitative concentration analysis by thermal desorption, infrared photoluminescence, and vacuum-ultraviolet optical absorption

    NASA Astrophysics Data System (ADS)

    Kajihara, Koichi; Hirano, Masahiro; Uramoto, Motoko; Morimoto, Yukihiro; Skuja, Linards; Hosono, Hideo

    2005-07-01

    The amount of oxygen molecules (O2) in amorphous SiO2(a-SiO2), also called interstitial O2, was quantitatively measured by combining thermal-desorption spectroscopy (TDS) with infrared photoluminescence (PL) measurements of interstitial O2 at 1272 nm while exciting with 1064-nm Nd: yttrium aluminum garnet laser light. It was found that the amount of O2 released by the TDS measurement is proportional to the intensity decrease of the PL band, demonstrating that a-SiO2 easily emits interstitial O2 during thermal annealing in vacuum. This correlation yielded the proportionality coefficient between the absolute concentration of interstitial O2 and its PL intensity normalized against the intensity of the fundamental Raman bands of a-SiO2. This relationship was further used to determine the optical-absorption cross section of the Schumann-Runge band of the interstitial O2 located at photon energies ?6.5eV. This band is significantly redshifted and has a larger cross section compared to that of O2 in the gas phase.

  2. Multiple superdeformed bands in sup 153 Dy

    SciTech Connect

    Johansson, J.K.; Andrews, H.R.; Bengtsson, T.; Djaafri, A.; Drake, T.E.; Flibotte, S.; Galindo-Uribarri, A.; Horn, D.; Janzen, V.P.; Kuehner, J.A.; Monaro, S.; Nadon, N.; Pilotte, S.; Prevost, D.; Radford, D.C.; Ragnarsson, I.; Taras, P.; Tehami, A.; Waddington, J.C.; Ward, D.; Aberg, S. Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada K0J 1J0)

    1989-11-13

    Multiple superdeformed rotational bands have been identified in a nucleus for the first time. Cascades of 14, 13, and 11 transitions have been assigned to three bands in {sup 153}Dy. Despite the small intensities, it has been possible to follow the decay of these bands from an angular frequency of 0.7 down to 0.4 MeV/{h bar}. In all three cases, the dynamic moment of inertia {ital I}{sup (2)} is nearly constant. Assignments to high-{ital N} intruder orbitals are suggested through comparison of these values of {ital I}{sup (2)} with theoretical calculations based on the cranked shell model.

  3. Scintillation theory of eclipse shadow bands

    SciTech Connect

    Codona, J.L.

    1986-01-01

    The results of a theoretical investigation of solar eclipse shadow bands are presented. The study provides both quantitative and qualitative insight into the factors governing the visibility of shadow bands. Using only standard, weak-scattering scintillation theory and standard models for atmospheric turbulence, all of the salient features of the shadow bands are explained. The contrast is found to be greater for shorter wavelengths and the band spacing to scale like the square-root of the wavelength very near totality. For times greater than about 20 seconds before (or after) totality the band spacing becomes frequency-independent and the scintillations are dominated by turbulence near the ground. The turbulence mainly responsible for shadow bands is found to be below two kilometers in altitude. Turbulence at the tropopause is found to have no impact on shadow bands until 2-3 seconds from totality. Longer eclipes are expected to show bands with greater contrast and linearity. Intensity correlation scales are typically less than 10cm within 30 seconds of totality. The scintillation theory predictions for shadow band structure motion, and evolution are found to be in agreement with both visual and photoelectric observations.

  4. Sensitivity analysis of polarimetric O2 A-band spectra for potential cloud retrievals using OCO-2/GOSAT measurements

    NASA Astrophysics Data System (ADS)

    Sanghavi, S.; Lebsock, M.; Stephens, G.

    2015-09-01

    Clouds play a crucial role in Earth's radiative budget, yet their climate feedbacks are poorly understood. The advent of space-borne high resolution spectrometers probing the O2 A band, like GOSAT and OCO-2, could make it possible to simultaneously retrieve vertically resolved cloud parameters that play a vital role in Earth's radiative budget, thereby allowing a reduction of the corresponding uncertainty due to clouds. Such retrievals would also facilitate air mass bias reduction in corresponding measurements of CO2 columns. In this work, the hyperspectral, polarimetric response of the O2 A band to mainly three important cloud parameters, viz., optical thickness, top height and droplet size has been studied, revealing a different sensitivity to each for the varying atmospheric absorption strength within the A band. Cloud optical thickness finds greatest sensitivity in intensity measurements, the sensitivity of other Stokes parameters being limited to low cloud optical thicknesses. Cloud height had a negligible effect on intensity measurements at non-absorbing wavelengths but finds maximum sensitivity at an intermediate absorption strength, which increases with cloud height. The same is found to hold for cloud geometric thickness. The geometry-dependent sensitivity to droplet size is maximum at non-absorbing wavelengths and diminishes with increasing absorption strength. It has been shown that significantly more information on droplet size can be drawn from multi-angle measurements. We find that, in the absence of sunglint, the backscatter hemisphere (scattering angle larger than 90°) is richer in information on droplet size, especially in the glory and rainbow regions. It has been shown that I and Q generally have differing sensitivities to all cloud parameters. Thus, accurate measurements of two orthogonal components IP andIS (as in GOSAT) are expected to contain more information than measurements of only I, Ih or Iv (as in the case of OCO-2).

  5. Calibration-free self-absorption model for measuring nitric oxide concentration in a pulsed corona discharge.

    PubMed

    Du, Yanjun; Ding, Yanjun; Liu, Yufeng; Lan, Lijuan; Peng, Zhimin

    2014-08-01

    The effect of self-absorption on emission intensity distributions can be used for species concentration measurements. A calculation model is developed based on the Beer-Lambert law to quantify this effect. And then, a calibration-free measurement method is proposed on the basis of this model by establishing the relationship between gas concentration and absorption strength. The effect of collision parameters and rotational temperature on the method is also discussed. The proposed method is verified by investigating the nitric oxide emission bands (A²???X²?) that are generated by a pulsed corona discharge at various gas concentrations. Experiment results coincide well with the expectations, thus confirming the precision and accuracy of the proposed measurement method. PMID:25090323

  6. Observation of the visible absorption spectrum of H2O(+)

    NASA Technical Reports Server (NTRS)

    Das, Biman; Farley, John W.

    1991-01-01

    The water cation, H2O(+), has been studied, using laser absorption spectroscopy in a velocity-modulated discharge. It is shown that it is possible to observe the absorption spectrum of an ion that is not a terminal ion, despite the weak absorption oscillator strength, and despite the use of a relatively noisy dye laser. The relative intensities of the absorption lines have been measured to an accuracy of 13 percent. It is concluded that if the absorption cross section of a single transition can be measured absolutely, then the entire manifold will be known absolutely.

  7. An analysis of temperature-dependent absorption and photocurrent spectra in BaAl2Se4 layers

    NASA Astrophysics Data System (ADS)

    Hong, K. J.; Jeong, T. S.; Youn, C. J.; Moon, J. D.

    2015-04-01

    The temperature-dependent photoresponse behavior of BaAl2Se4 layers has been investigated through the analysis of optical absorption and photocurrent (PC) spectra. Based on these results, the optical band gap was well expressed by Eg(T) = Eg(0) - 4.39 × 10-4T2/(T + 250), where Eg(0) is estimated to be 3.4205, 3.6234, and 3.8388 eV for the transitions corresponding to the valence band states ?3(A), ?4(B), and ?5(C), respectively. From the PC measurement, three peaks A, B, and C corresponded with the intrinsic transitions from the valence band states of ?3(A), ?4(B), and ?5(C) to the conduction band state of ?1, respectively. According to the selection rule, the crystal field and spin orbit splitting were found to be 0.2029 and 0.2154 eV, respectively, through the direct use of PC spectroscopy. However, the PC intensities decreased with lowering temperature. In the log Jph versus 1/T plot, the dominant trap level at the high-temperature region was observed and its value was 12.7 meV. This level corresponds to the activation energy for the electronic transition from the shallow donor levels to the edge of the conduction band. It is estimated that the decrease in the PC intensity is caused by trapping centers related to native defects in the BaAl2Se4 layers. Consequently, this trap level limited the PC intensity with decreasing temperature.

  8. Band filling effects on temperature performance of intermediate band quantum wire solar cells

    SciTech Connect

    Kunets, Vas. P. Furrow, C. S.; Ware, M. E.; Souza, L. D. de; Benamara, M.; Salamo, G. J.; Mortazavi, M.

    2014-08-28

    Detailed studies of solar cell efficiency as a function of temperature were performed for quantum wire intermediate band solar cells grown on the (311)A plane. A remotely doped one-dimensional intermediate band made of self-assembled In{sub 0.4}Ga{sub 0.6}As quantum wires was compared to an undoped intermediate band and a reference p-i-n GaAs sample. These studies indicate that the efficiencies of these solar cells depend on the population of the one-dimensional band by equilibrium free carriers. A change in this population by free electrons under various temperatures affects absorption and carrier transport of non-equilibrium carriers generated by incident light. This results in different efficiencies for both the doped and undoped intermediate band solar cells in comparison with the reference GaAs p-i-n solar cell device.

  9. Evolution of the Impurity Band to Diamond-Like Valence Bands in Boron Doped Diamond

    NASA Astrophysics Data System (ADS)

    Inushima, Takashi; Ota, Yuichi; Shiomi, Hiromu

    2014-02-01

    We present the absorption coefficient and the refractive index of boron doped diamond having an impurity band at 0.07 eV above the valence band maximum and compare them with those obtained by first principles calculation using a C63B supercell model containing 1.57% boron. These optical constants are in good accordance with each other, indicating that the impurity band that forms at 2p excited states of impurity boron becomes top of the valence bands in metallic condition. Based on this result we present a model of the evolution of boron atoms from isolated impurity to constituent atoms in the boron doped diamond, where the valence electrons of boron become to have k dependence and form the top of the valence bands of the C63B supercell diamond.

  10. Modeling of collision induced absorption spectra of CO2-CO2 pairs for planetary atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra

    1995-01-01

    The objective of the proposal was to model the rototranslational and rotovibrational collision induced absorption spectral bands of importance for the radiative transfer analysis of the atmosphere of Venus. Our main task has involved CO2 pairs. The approach is not straightforward: whereas computational techniques to compute CIA spectra of small linear molecules exist, and were successfully applied to molecules like H2 or N2, they fail when applied to large molecules like CO2. For small molecules one can safely assume that the interaction potential is isotropic. The same approximation does not work for CO2, and when employed, it gives an incorrect band shape and only 50 percent of the CIA intensity.

  11. X-ray absorption spectroscopy of metalloproteins.

    PubMed

    Ward, Jesse; Ollmann, Emily; Maxey, Evan; Finney, Lydia A

    2014-01-01

    Metalloproteins are enormously important in biology. While a variety of techniques exist for studying metals in biology, X-ray absorption spectroscopy is particularly useful in that it can determine the local electronic and physical structure around the metal center, and is one of the few avenues for studying "spectroscopically silent" metal ions like Zn(II) and Cu(I) that have completely filled valence bands. While X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) are useful for studying metalloprotein structure, they suffer the limitation that the detected signal is an average of all the various metal centers in the sample, which limits its usefulness for studying metal centers in situ or in cell lysates. It would be desirable to be able to separate the various proteins in a mixture prior to performing X-ray absorption studies, so that the derived signal is from one species only. Here we describe a method for performing X-ray absorption spectroscopy on protein bands following electrophoretic separation and western blotting. PMID:24639260

  12. Intense orange emission in Pr3+ doped lead phosphate glass

    NASA Astrophysics Data System (ADS)

    Mitra, Subrata; Jana, Samar

    2015-10-01

    Spectroscopic properties of one mol% Pr2O3 embedded in 40%PbO-60%P2O5 glass have been investigated at room temperature. From the absorption spectra energy levels of the observed bands are assigned. Using free ion Hamiltonian theoretical values of energy of 13 multiplets of Pr3+ are calculated. Judd-Ofelt intensity parameters have been estimated by including and excluding the hypersensitive transition (3H4?3P2). The best set of Judd-Ofelt parameters are obtained by omitting 3H4?3P2 transition from the calculation. These parameters are used to evaluate the important laser parameters for various emission lines. Our investigation reveals that the present glass may be utilized as a laser active medium corresponding to 3P0?3H4 and 1D2?3H4 transitions respectively, for 484.6 nm (blue) and 599.5 nm (strong orange) emissions. Indirect and direct optical band gap energies of Pr3+ doped lead phosphate glass matrix have also been reported.

  13. The Absorption Refrigerator as a Thermal Transformer

    ERIC Educational Resources Information Center

    Herrmann, F.

    2009-01-01

    The absorption refrigerator can be considered a thermal transformer, that is, a device that is analogous to the electric transformer. The analogy is based on the correspondence between the extensive quantities, entropy and electric charge and the intensive variables, temperature and electric potential. (Contains 1 footnote and 6 figures.)

  14. An aerosol absorption remote sensing algorithm

    NASA Astrophysics Data System (ADS)

    Zhai, P.; Winker, D. M.; Hu, Y.; Trepte, C. R.; Lucker, P. L.

    2013-12-01

    Aerosol absorption plays an important role in the climate by modulating atmospheric radiative forcing processes. Unfortunately aerosol absorption is very difficult to obtain via satellite remote sensing techniques. In this work we have built an algorithm to obtain aerosol absorption optical depth using both measurements from a passive O2 A-band spectrometer and an active lidar. The instrument protocols for these two satellite instruments are the O2 A-band spectrometer onboard the Orbiting Carbon Observatory (OCO-2) and the CALIOP onboard CALIPSO. The aerosol height and typing information is obtained from the CALIOP measurement. The aerosol extinction and absorption optical depths are then retrieved by fitting the forward model simulations to the O2 A-band spectrometer measurements. The forward model simulates the scattering and absorption of solar light at high spectral resolution in the O2 A-band region. The O2 and other gas absorption coefficients near 0.76 micron are calculated by either the line-by-line code (for instance, the Atmospheric Radiative Transfer Simulator) or the OCO2 ABSCO Look-Up-Table. The line parameters used are from the HITRAN 2008 database (http://www.cfa.harvard.edu/hitran/). The multiple light scattering by molecules, aerosols, and clouds is handled by the radiative transfer model based on the successive order of scattering method (Zhai et al, JQSRT, Vol. 111, pp. 1025-1040, 2010). The code is parallelized with Message Passing Interface (MPI) for better efficiency. The aerosol model is based on Shettle and Fenn (AFGL-TR 790214, 1979) with variant relative humidity. The vertical distribution of the aerosols and clouds will be read in from the CALIPSO product (http://www-calipso.larc.nasa.gov). The surface albedo is estimated by the continuum of the three bands of OCO2 payloads. Sensitivity study shows that the Gaussian quadrature (stream) number should be at least 12 to ensure the reflectance error is within 0.5% at the top of the atmosphere (TOA). The Fourier expansion number for the radiance field can be as small as 6. The fitting process is based on the Levenberg-Marquardt least squares fitting algorithm. Based on preliminary tests using the synthetic simulation data, the algorithm provides promising results for aerosol absorption retrievals.

  15. D-xylose absorption

    MedlinePLUS

    D-xylose absorption is a laboratory test to determine how well the intestines absorb a simple sugar (D-xylose). The test ... test is primarily used to determine if nutrient absorption problems are due to a disease of the ...

  16. Attenuated total reflection surface-enhanced infrared absorption spectroscopy at a cobalt electrode.

    PubMed

    Huo, Sheng-Juan; Wang, Jin-Yi; Sun, Da-Lin; Cai, Wen-Bin

    2009-10-01

    In situ surface-enhanced infrared absorption spectroscopy (SEIRAS) in attenuated total reflection (ATR) configuration has been extended to a Co electrode fabricated by potentiostatic deposition of a 50-nm-thick Co overlayer onto a Au underlayer chemically preformed on the reflecting plane of an ATR Si hemi-cylindrical prism. The as-prepared Co-on-Au film was characterized with atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The AFM images of the films before and after Co coating revealed island structures facilitating the SEIRA effect with Co nanoparticles much smaller than the underlying Au ones. The XPS spectrum did not contain any characteristic peaks related to Au, suggestive of a virtually pinhole-free nature of the Co overlayer. The voltammetric response of the as-prepared films in phosphate buffer solution (PBS, pH 6.9) was characteristic of a polycrystalline bulk Co electrode. Normally directed unipolar bands were found for surface probe CO molecules on Co surfaces in the PBS with their major band (CO(L)) intensity being one order of magnitude higher than that obtained with conventional IR reflection-absorption spectroscopy (IRRAS). By taking advantage of the higher detection sensitivity, the bands for linearly bonded CO (CO(L)) at 1965-2005 cm(-1) and the multi-bonded (CO(M)) band at 1845-1875 cm(-1) were clearly detected with their Stark tuning rates being 59 and 63 cm(-1) x V(-1), respectively, which would be otherwise unobtainable with the conventional IRRAS in the neutral solution. PMID:19843367

  17. Standoff alpha radiation detection via excited state absorption of air

    E-print Network

    Yao, Jimmy; Brenizer, Jack; Hui, Rongqing; Yin, Stuart (Shizhuo)

    2013-06-24

    A standoff alpha radiation detection technique based on the physical mechanism of excited state absorption of air molecules was explored and is presented in this paper. Instead of directly detecting the radiation via measuring the intensity...

  18. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Astrophysics Data System (ADS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-05-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  19. Resonance Raman intensity analysis of ClNO(2) dissolved in methanol.

    PubMed

    Trimithioti, Marilena; Hayes, Sophia C

    2013-01-17

    Halogens such as chlorine are converted from halides, including ClNO(2), to reactive radicals by UV solar radiation. These radicals can affect ozone production and destruction in the stratosphere. Recently, it became clear that halogen radicals can also play a significant role in the chemistry of the troposphere. The photochemistry of ClNO(2) has been the subject of several studies in the gas and solid state that demonstrated a clear phase-dependent reactivity. Here, we report our initial studies of nitryl chloride in solution. Resonance Raman (RR) spectra of ClNO(2) dissolved in methanol after excitation within the 1(1)A(1)-2(1)A(1) absorption band (D band) in the region 200-240 nm are presented. RR intensity along the NO symmetric stretch coordinate (v(1)) at 1291 cm(-1) is observed at all excitation wavelengths, whereas limited intensity corresponding to the transition of the N-Cl symmetric stretch (v(3)) was only observed at 199.8 nm, whereas no intensity corresponding to the O-N-O symmetric bend (v(2)) was observed. Depolarization ratios and absolute resonance Raman cross sections for v(1) were obtained at several excitation wavelengths spanning the D band. Depolarization ratios were found to deviate significantly from 1/3, consistent with more than a single dipole-allowed electronic transition contributing to the scattering. RR intensity analysis (RRIA) reveals that two closely spaced excited electronic states contribute to the scattering, which are dissociative along the Cl-N coordinate. In this study the role the solvent environment plays in ClNO(2) state energetics and excited structural evolution along fundamental coordinates is discussed. PMID:23237473

  20. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  1. Ultrafast self-modulation of the optical absorption spectrum under conditions of both the ultrashort optical pumping and superluminescence in GaAs

    SciTech Connect

    Ageeva, N. N.; Bronevoi, I. L. Krivonosov, A. N.; Stegantsov, S. V.

    2006-07-15

    Self-modulation of the optical absorption spectrum is observed during the picosecond photogeneration of charge carriers and intense superluminescence in GaAs. As the picosecond delay {tau} of the probing pulse with respect to the pump pulse is varied in the region of {tau} < 0, the local points of the absorption intensification (juts) shift along the spectrum (the modulation resembles a running wave). As the value of {tau} is varied in the vicinity of {tau} = 0, the juts in the spectrum arise and disappear at approximately fixed photon energies (the modulation resembles a standing wave). At certain photon energies, the dependence of the rate of variation in the absorption coefficient d{alpha}/d{tau} on {tau} is found to be modulated by pulsations, similarly to the previously observed modulation of the picosecond stimulated emission from GaAs. Presumably, the spectrum self-modulation represents (and, thus, reveals) the modulation of the electron distribution in the conduction band. This modulation is caused by the fact that the evolution of the electron-population depletion at the bottom of the conduction band during superluminescence reflects (due to the electron-phonon interaction) on the population of the upper energy levels in the band.

  2. CSF oligoclonal banding

    MedlinePLUS

    ... system. Oligoclonal bands may be a sign of multiple sclerosis. ... This test helps support the diagnosis of multiple sclerosis (MS). However, it does not confirm the diagnosis. Oligoclonal bands in the CSF can also be seen in other illnesses.

  3. Unoccupied electronic structure and core-hole effects in the x-ray-absorption spectra of Cu2O

    NASA Astrophysics Data System (ADS)

    Grioni, M.; van Acker, J. F.; Czyžyk, M. T.; Fuggle, J. C.

    1992-02-01

    X-ray-absorption measurements at the Cu L2,3 and O K edges of Cu2O reveal the presence of unoccupied states of predominantly Cu d and O p character at the bottom of the conduction band. We find that spectral features up to 25 eV from threshold can be assigned to structures in the calculated unoccupied density of states, projected on the Cu and O sites. However, for a satisfactory description of the anomalous line shape and threshold intensity of the Cu edges, the core hole created in the absorption process must be included in the calculation. We have investigated this effect by a modified Clogston-Wolff impurity model, based on the calculated band structure. We conclude that, possibly because of the peculiar Cu-O coordination, the Cu 2p core-hole potential is stronger in Cu2O than in other Cu(I) materials, and that the Cu L2,3 spectra present both band features, typical of monovalent Cu materials and of copper metal, and a resonant contribution, typical of divalent compounds such as CuO.

  4. Exciton and biexciton signatures in femotosecond transient absorption of {pi}-conjugated oligomers

    SciTech Connect

    Klimov, V.; McBranch, D.; Barashkov, N.; Ferraris, J.

    1997-10-01

    The authors report femotosecond transient-absorption studies of a five-ring oligomer of polyphenylenevinylene (PPV) prepared in two different forms: as solid-state films and dilute solutions. Both types of samples exhibit a photoinduced absorption (PA) band with dynamics which closely match those of the stimulated emission (SE), demonstrating unambiguously that these features originate from the same species, namely from intrachain singlet excitons. Photo-chemical degradation of the solid-state samples is demonstrated to dramatically shorten the SE dynamics above a moderate incident pump fluence, whereupon the dynamics of the SE and the long-wavelength PA no longer coincide. In contrast to solutions, solid-state films exhibit an additional short-wavelength PA band with pump-independent dynamics, indicating the efficient formation of non-emissive inter-chain excitons. Correlations in the subpicosecond dynamics of the two PA features, as well as the pump intensity-dependence provide strong evidence that the formation of inter-chain excitons is mediated by intrachain two-exciton states. At high pump levels, the authors see a clear indication of interaction between excited states also in dilute solutions. This is manifested as a superlinear pump-dependence and shortening of the decay dynamics of the SE. They attribute this behavior to the formation of biexcitons resulting from coherent interaction between two excitons on a single chain.

  5. Electronic structure of KD2xH2(1-x)PO4 studied by soft x-ray absorption and emission spectroscopies

    SciTech Connect

    Kucheyev, S O; Bostedt, C F; van Buuren, T; Willey, T M; Land, T A; Terminello, L J; Felter, T E; Hamza, A V; Demos, S G; Nelson, A J

    2004-04-27

    The surface and bulk electronic structure of tetragonal (at 300 K) and orthorhombic (at 77 K) KD{sub 2x}H{sub 2(1-x)}PO{sub 4} single crystals (so-called KDP and DKDP), with a deuteration degree x of 0.0, 0.3, and 0.6, is studied by soft x-ray absorption near-edge structure (XANES) and non-resonant soft x-ray emission (XES) spectroscopies. High-resolution O K-edge, P L{sub 2,3}-edge, and K L{sub 2,3}-edge XANES and XES spectra reveal that the element-specific partial density of states in the conduction and valence bands is essentially independent of deuteration x. We give assignment of XANES and XES peaks based on previous molecular orbital and band-structure calculations. Projected densities of states in the conduction band also appear to be essentially identical for tetragonal (at 300 K) and orthorhombic (at 77 K) phases, consistent with previous band structure calculations. However, a decrease in sample temperature from 300 to 77 K results in an {approx} 0.5 eV shift in the valence band edge (probed by XES), with negligible changes to the conduction band edge (probed by XANES). Results also show that high-intensity x-ray irradiation results in decomposition of these hydrogen-bonded materials into water and KPO{sub 3} cyclo- and polyphosphates.

  6. Band profiles and band strengths in mixed H2O:CO ices

    E-print Network

    Jordy Bouwman; Wiebke Ludwig; Zainab Awad; Karin I. Oberg; Guido W. Fuchs; Ewine F. van Dishoeck; Harold Linnartz

    2007-12-13

    A laboratory study on the band profiles and band strengths of H2O in CO ice, and vice versa, is presented and interpreted in terms of two models. The results show that a mutual interaction takes place between the two species in the solid, which alters the band positions and band strengths. It is found that the band strengths of the H2O bulk stretch, bending and libration vibrational bands decrease linearly by a factor of up to 2 when the CO concentration is increased from 0 to 80%. By contrast, the band strength of the free OH stretch increases linearly. The results are compared to a recently performed quantitative study on H2O:CO2 ice mixtures. It is shown that for mixing ratios of 1:0.5 H2O:X and higher, the H2O bending mode offers a good tracer to distinguish between CO2 or CO in H2O ice. Additionally, it is found that the band strength of the CO fundamental remains constant when the water concentration is increased in the ice. The integrated absorbance of the 2152 cm-1 CO feature, with respect to the total integrated CO absorption feature, is found to be a good indicator of the degree of mixing of CO in the H2O:CO laboratory ice system. From the change in the H2O absorption band strength in laboratory ices upon mixing we conclude that astronomical water ice column densities on various lines of sight can be underestimated by up to 25% if significant amounts of CO and CO2 are mixed in.

  7. Ultrathin flexible dual band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Shan, Yan; Chen, Lin; Shi, Cheng; Cheng, Zhaoxiang; Zang, Xiaofei; Xu, Boqing; Zhu, Yiming

    2015-09-01

    We propose an ultrathin and flexible dual band absorber operated at terahertz frequencies based on metamaterial. The metamaterial structure consists of periodical split ring resonators with two asymmetric gaps and a metallic ground plane, separated by a thin-flexible dielectric spacer. Particularly, the dielectric spacer is a free-standing polyimide film with thickness of 25 ?m, resulting in highly flexible for our absorber and making it promising for non-planar applications such as micro-bolometers and stealth aircraft. Experimental results show that the absorber has two resonant absorption frequencies (0.41 THz and 0.75 THz) with absorption rates 92.2% and 97.4%, respectively. The resonances at the absorption frequencies come from normal dipole resonance and high-order dipole resonance which is inaccessible in the symmetrical structure. Multiple reflection interference theory is used to analyze the mechanism of the absorber and the results are in good agreement with simulated and experimental results. Furthermore, the absorption properties are studied under various spacer thicknesses. This kind of metamaterial absorber is insensitive to polarization, has high absorption rates (over 90%) with wide incident angles range from 0° to 45° and the absorption rates are also above 90% when wrapping it to a curved surface.

  8. nBn and pBp infrared detectors with graded barrier layer, graded absorption layer, or chirped strained layer super lattice absorption layer

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor)

    2010-01-01

    An nBn detector is described where for some embodiments the barrier layer has a concentration gradient, for some embodiments the absorption layer has a concentration gradient, and for some embodiments the absorption layer is a chirped strained layer super lattice. The use of a graded barrier or absorption layer, or the use of a chirped strained layer super lattice for the absorption layer, allows for design of the energy bands so that the valence band may be aligned across the device. Other embodiments are described and claimed.

  9. Identification of more interstellar C60+ bands

    E-print Network

    Walker, Gordon; Maier, John; Campbell, Ewen

    2015-01-01

    Based on gas-phase laboratory spectra at 6 K, Campbell et al. (2015) confirmed that the diffuse interstellar bands (DIBs) at 9632.7 and 9577.5A are due to absorption by the fullerene ion C60+. They also reported the detection of two other, weaker bands at 9428.5 and 9365.9A. These lie in spectral regions heavily contaminated by telluric water vapour lines. We acquired CFHT ESPaDOnS spectra of HD183143 close to the zenith and chopped with a nearby standard to correct for the telluric line absorption which enabled us to detect a DIB at 9365.9A of relative width and strength comparable to the laboratory absorption. There is a DIB of similar strength and FWHM at 9362.5A. A stellar emission feature at 9429A prevented detection of the 9428.5A band. However, a CFHT archival spectrum of HD169454, where emission is absent at 9429A, clearly shows the 9428.5A DIB with the expected strength and width. These results further confirm C60+ as a DIB carrier.

  10. Identification of More Interstellar C60+ Bands

    NASA Astrophysics Data System (ADS)

    Walker, G. A. H.; Bohlender, D. A.; Maier, J. P.; Campbell, E. K.

    2015-10-01

    Based on gas-phase laboratory spectra at 6 K, Campbell et al. confirmed that the diffuse interstellar bands (DIBs) at 9632.7 and 9577.5 Å are due to absorption by the fullerene ion {{{C}}}60+. They also reported the detection of two other, weaker bands at 9428.5 and 9365.9 Å. These lie in spectral regions heavily contaminated by telluric water vapor lines. We acquired CFHT ESPaDOnS spectra of HD 183143 close to the zenith and chopped with a nearby standard to correct for the telluric line absorption which enabled us to detect a DIB at 9365.9 Å of relative width and strength comparable to the laboratory absorption. There is a DIB of similar strength and FWHM at 9362.5 Å. A stellar emission feature at 9429 Å prevented detection of the 9428.5 Å band. However, a CFHT archival spectrum of HD 169454, where emission is absent at 9429 Å, clearly shows the 9428.5 Å DIB with the expected strength and width. These results further confirm {{{C}}}60+ as a DIB carrier. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  11. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  12. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  13. Enhancement Of Free Exciton Peak Intensity In Reactively Sputtered ZnO Thin Films On (0001) Al2O3

    SciTech Connect

    Tuezemen, S.; Guer, Emre; Yildirim, T.; Xiong, G.; Williams, R. T.

    2007-04-23

    Wide bandgap materials such as GaN with its direct bandgap structure have been developed rapidly for applications in short wavelength light emission. ZnO, II-VI oxide semiconductor, is also promising for various technological applications, especially for optoelectronic light emitting devices in the visible and ultraviolet (UV) range of the electromagnetic spectrum. Above-band-edge absorption spectra of reactively sputtered Zn- and O-rich samples exhibit free exciton (FX) and neutral acceptor bound exciton (A deg. X) features. It is shown that the residual acceptors which bind excitons with an energy of 75 meV reside about 312 meV above the valence band, according to effective mass theory. An intra-bandgap absorption feature peaking at 2.5 eV shows correlation with the characteristically narrow A-free exciton peak intensity. Relevant annealing processes are presented as a function of time and temperature dependently for both Zn- and O- rich thin films. Enhancement of the free exciton peak intensity is observed without disturbing the residual shallow acceptor profile which is necessary for at least background p-type conductivity.

  14. First Infrared Band Strengths for Amorphous CO2, an Overlooked Component of Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-08-01

    Solid carbon dioxide (CO2) has long been recognized as a component of both interstellar and solar system ices, but a recent literature search has revealed significant qualitative and quantitative discrepancies in the laboratory spectra on which the abundances of extraterrestrial CO2 are based. Here we report new infrared (IR) spectra of amorphous CO2-ice along with band intensities (band strengths) of four mid-IR absorptions, the first such results in the literature. A possible thickness dependence for amorphous-CO2 IR band shapes and positions also is investigated, and the three discordant reports of amorphous CO2 spectra in the literature are addressed. Applications of our results are discussed with an emphasis on laboratory investigations and results from astronomical observations. A careful comparison with earlier work shows that the IR spectra calculated from several databases for CO2 ices, all ices being made near 10 K, are not for amorphous CO2, but rather for crystalline CO2 or crystalline-amorphous mixtures.

  15. Cavity Ring Down Spectroscopy Measurements for High-Overtone Vibrational Bands of HC3N.

    PubMed

    Douin, Stéphane; Gronowski, Marcin; Lamarre, Nicolas; Phung, Viet-Tiep; Boyé-Péronne, Séverine; Crépin, Claudine; Ko?os, Robert

    2015-09-10

    Overtone (5?1 and 6?1) and combination (4?1 + ?3 and 4?1 + ?2) vibrational bands of gaseous HC3N, located in the visible range (14?600-15?800 and 17?400-18?600 cm(-1)), were investigated by cavity ring-down absorption spectroscopy. The 5?1 + ?3 and 5?1 + ?2 combinations as well as the 6?1 + ?5 - ?5 hot overtone band have also been identified, on the basis of previous overtone assignments. Absolute integrated intensity values and the ensuing oscillator strengths have been measured here for the first time; f values are typically confined between 4 × 10(-12) and 7 × 10(-11). For the even weaker 5?1 + ?2 combination band, the oscillator strength was estimated as 9 × 10(-13). The values concerning CH-stretch overtones (n?1) are similar to those found in the literature for HCN and C2H2, the molecules with sp-hybridized carbon atoms. Data presented here may prove useful for studying the photochemistry triggered with visible or near-IR radiation within the atmospheres of certain Solar System bodies, including Titan. PMID:26216667

  16. Cyclic behavior of ultrafast self-modulation of the light-absorption spectrum under conditions of pump and stimulated emission in GaAs

    SciTech Connect

    Ageeva, N. N.; Bronevoi, I. L. Krivonosov, A. N.; Nalet, T. A.

    2008-09-15

    Under picosecond photogeneration of charge carriers in GaAs, accompanied by intense stimulated emission of the semiconductor itself, ultrafast self-modulation of its light-absorption spectrum takes place, which consists in the appearance of regions of local absorption enhancement (bumps) in the spectrum. The ultrafast self-modulation is found to exhibit a cyclic behavior; i.e., the pattern of the self-modulation of the spectrum (the number and spectral position of the bumps) is repeated after a certain time T{sub c} falling in the picosecond range. The cycle period T{sub c} varies over the time span of the pump pulse and depends on the pulse energy, which means that T{sub c} is a function of the pump intensity. Assuming that self-modulation of the absorption reflects self-modulation of the charge-carrier energy distribution in GaAs under pumping, experimental results can be formulated as follows: in the process of the ultrafast self-modulation, deviations of the occupancies of different energy levels from the Fermi distribution evolve with time in a mutually related way; the distribution of the occupancy depletion in the conduction band repeats cyclically in time; and the cycle period decreases as the intensity of the pump increases.

  17. Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses.

    PubMed

    Gebhardt, Martin; Gaida, Christian; Stutzki, Fabian; Hädrich, Steffen; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2015-06-01

    We present a rigorous study on the impact of atmospheric molecular absorption on the linear propagation of ultrashort pulses in the mid-infrared wavelength region. An ultrafast thulium-based fiber laser was employed to experimentally investigate ultrashort-pulse propagation through the atmosphere in a spectral region containing several strong molecular absorption lines. The atmospheric absorption profile causes a significant degradation of the pulse quality in the time domain as well as a distortion of the transverse beam profile in the spatial domain. Numerical simulations carried out in the small signal limit accurately reproduce the experimental observations in the time domain and reveal that the relative loss in peak power after propagation can be more than twice as high as the relative amount of absorbed average power. Although their nature is purely linear (i.e. the intensities considered are sufficiently low) the discussed effects represent significant challenges to performance-scaling of mid-infrared ultrafast lasers operating in spectral regions with molecular absorption bands. Guidelines for an efficient mitigation of the pulse quality degradation and the beam profile distortion are discussed. PMID:26072749

  18. Enhanced light absorption of solar cells and photodetectors by diffraction

    DOEpatents

    Zaidi, Saleem H.; Gee, James M.

    2005-02-22

    Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

  19. Longwave Band-by-band Cloud Radiative Effect and its Application in GCM Evaluation

    NASA Technical Reports Server (NTRS)

    Huang, Xianglei; Cole, Jason N. S.; He, Fei; Potter, Gerald L.; Oreopoulos, Lazaros; Lee, Dongmin; Suarez, Max; Loeb, Norman G.

    2012-01-01

    The cloud radiative effect (CRE) of each longwave (LW) absorption band of a GCM fs radiation code is uniquely valuable for GCM evaluation because (1) comparing band-by-band CRE avoids the compensating biases in the broadband CRE comparison and (2) the fractional contribution of each band to the LW broadband CRE (f(sub CRE)) is sensitive to cloud top height but largely insensitive to cloud fraction, presenting thus a diagnostic metric to separate the two macroscopic properties of clouds. Recent studies led by the first author have established methods to derive such band ]by ]band quantities from collocated AIRS and CERES observations. We present here a study that compares the observed band-by-band CRE over the tropical oceans with those simulated by three different atmospheric GCMs (GFDL AM2, NASA GEOS-5, and CCCma CanAM4) forced by observed SST. The models agree with observation on the annual ]mean LW broadband CRE over the tropical oceans within +/-1W/sq m. However, the differences among these three GCMs in some bands can be as large as or even larger than +/-1W/sq m. Observed seasonal cycles of f(sub CRE) in major bands are shown to be consistent with the seasonal cycle of cloud top pressure for both the amplitude and the phase. However, while the three simulated seasonal cycles of f(sub CRE) agree with observations on the phase, the amplitudes are underestimated. Simulated interannual anomalies from GFDL AM2 and CCCma CanAM4 are in phase with observed anomalies. The spatial distribution of f(sub CRE) highlights the discrepancies between models and observation over the low-cloud regions and the compensating biases from different bands.

  20. The evidences of latitudinal asymmetry of the ammonia absorption on Saturn

    NASA Astrophysics Data System (ADS)

    Tejfel, V. G.; Karimov, A. M.; Bondarenko, N. N.; Kharitonova, G. A.

    2015-10-01

    450 zonal CCD-spectrograms, recorded by scanning the disk of Saturn during its equinox at the beginning of 2009, were processed to find the variation of the absorption band of ammonia NH3 647 nm. This band overlaps with the short-wavelength wing of the absorption band of methane CH4 667 nm, therefore, to highlight the ammonia absorption spectra were used Uranus and laboratory spectra of methane. It was found that ammonia absorption is enhanced in the northern hemisphere of Saturn, as well as relatively weak bands of methane in contrast with stronger CH4 bands [1]. It may indicate on the North-South asymmetry in the density of the deeper parts of the ammonia cloud layer of Saturn.

  1. Picosecond transient absorption spectra of aminosalicylates in confirmation of the triple excitation mechanism

    SciTech Connect

    Gormin, D. )

    1989-08-10

    Using picosecond transient absorption studies, it is shown that the twisted intramolecular charge-transfer state (TICT) and the excited intramolecular proton-transfer state (ESIPT or PT) of specific aminosalicylates both contribute to the long-wavelength fluorescence band, F{sub 2}, observed as an unresolved band to the red of the normal fluorescence band, F{sub 1}. The transient absorption band for 2-hydroxy-4-(dimethylamino)benzoic acid methyl ester (PDASE) is shown to be a composite of the two excited-state absorption modes: S{sub n}{double prime}(TICT) {l arrow} S{sub 1}{double prime} (TICT) and S{sub n}{prime}(PT){l arrow} S{sub 1}{prime}(PT). This corroborates previous steady-state fluorescence studies of the unresolved F{sub 2} band. The assignments are based on comparison with the excited-state absorption spectra of various substituted aminosalicylates in polar and nonpolar solvents.

  2. Temperature and excitation intensity dependence of photoluminescence in AlGaN quantum wells with mixed two-dimensional and three-dimensional morphology

    NASA Astrophysics Data System (ADS)

    Rajanna, G.; Feng, W.; Sohal, S.; Kuryatkov, V. V.; Nikishin, S. A.; Bernussi, A. A.; Holtz, M.

    2011-10-01

    The temperature dependences of the time-integrated and time-resolved photoluminescence (PL) properties for AlGaN multiple quantum wells are examined. The wells are grown so that a range of mixed two-dimensional (2D) and three-dimensional (3D) morphology is obtained, ranging from primarily 2D to primarily 3D. The temperature dependence of the band edge is studied using absorption spectroscopy and found to be described by electron-phonon interactions. The temperature dependence of the PL emission intensities and lifetimes are described by a model incorporating the effects of thermal activation and hopping, both of which compete with the radiative process. These factors are smaller than the observed Stokes shift between absorption and emission, and attributed to intra-well electron transfer that varies according to 2D and 3D character. High excitation intensity reveals two PL bands in the sample with intermediate 2D/3D well morphology. The intensity dependence is described based on screening and bandgap renormalization.

  3. What band rocks the MTB? (Invited)

    NASA Astrophysics Data System (ADS)

    Kind, J.; García-Rubio, I.; Gehring, A. U.

    2013-12-01

    Magnetotactic bacteria (MTB) are a polyphyletic group of bacteria that have been found in marine and lacustrine environments and soils [e.g. 1]. The hallmark of MTB is their intracellular formation of magnetosomes, single-domain ferrimagnetic particles that are aligned in chains. The chain configuration generates a strong magnetic dipole, which is used as magnetic compass to move the MTB into their favorable habit. The term band corresponds to a frequency window of microwaves in the gigahertz (GHz) range. Ferromagnetic resonance (FMR) spectroscopy uses the microwave absorption in a magnetic field to analyze the anisotropy properties and the domain state of magnetic materials. Specific microwave frequency causes absorption in a characteristic magnetic field range. For the investigation of MTB we use S-band (4.02 GHz), X-band (9.47 GHz), and Q-band (34.16 GHz). Experiments on cultured MTB and on sediment samples of Holocene age showed that absorption in X- and Q-band occurs when the sample is in a saturated or nearly saturated state [2, 3]. By contrast, absorption in the S-band appears in lower magnetic fields, where the sample is far from saturation. All FMR spectra show two distinct low-field features that can be assigned to magnetite particles in chains, aligned parallel and perpendicular to the external magnetic field. The detailed separation of the parallel and perpendicular components in the bulk samples is hampered, because of the random orientation of the chains in the sample. The comparison of S-, X-, and Q-band shows that the lower the frequency the better the separation of the components. In the S-band FMR spectroscopy, the separation of chains parallel to the external magnetic field is supported by the internal field of the sample. This field is caused by the remanence that contributes to the external magnetic field to fulfill the resonance condition [3,4]. Considering the different FMR responses, it can be postulated that a lower microwave frequency generally leads to a better resolution of the chain configuration. Finally, for the investigation of geological samples, the application of S-band can be a powerful tool to complement the commonly used X-band FMR spectroscopy, i.e. multiple band rock the MTB. [1] Blakemore R.P., 1975, Magnetotactic bacteria, Science, 190, 377-379 [2] Mastogiacomo G., Fischer H., Garcia-Rubio I., and Gehring A. U., 2010, Ferromagnetic resonance spectroscopic response of magnetic chains in a biological matrix, J. Magn. Magn. Matter, 322, 661-663, doi: 10.1016/j.jmmm.2009.10.035 [3] Gehring A. U., Kind. J., Charilaou M., Garcia-Rubio I., 2011, S-band ferromagnetic resonance spectroscopy and the detection of magnetofossils, J. R. Soc. Interface, 10(80), doi: 10.1098/rsif.2012.0790 [4] Kind J., van Raden U., Garcia-Rubio I., and Gehring A. U., 2012, Rock magnetic techniques complemented by ferromagnetic resonance spectroscopy to analyse a sediment record, Geophys. J. Int., 191, 51-61, doi: 10.1111/j.1365-246X.2012.05620.x

  4. Colloidal Nanoparticles for Intermediate Band Solar Cells.

    PubMed

    Vörös, Márton; Galli, Giulia; Zimanyi, Gergely T

    2015-07-28

    The Intermediate Band (IB) solar cell concept is a promising idea to transcend the Shockley-Queisser limit. Using the results of first-principles calculations, we propose that colloidal nanoparticles (CNPs) are a viable and efficient platform for the implementation of the IB solar cell concept. We focused on CdSe CNPs and we showed that intragap states present in the isolated CNPs with reconstructed surfaces combine to form an IB in arrays of CNPs, which is well separated from the valence and conduction band edges. We demonstrated that optical transitions to and from the IB are active. We also showed that the IB can be electron doped in a solution, e.g., by decamethylcobaltocene, thus activating an IB-induced absorption process. Our results, together with the recent report of a nearly 10% efficient CNP solar cell, indicate that colloidal nanoparticle intermediate band solar cells are a promising platform to overcome the Shockley-Queisser limit. PMID:26042468

  5. Polarized absorption spectra of single crystals of lunar pyroxenes and olivines.

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Huggins, F. E.; Abu-Eid, R. M.

    1972-01-01

    Measurements have been made of the polarized absorption spectra (360-2200 nm) of compositionally zoned pyroxene minerals in rocks 10045, 10047 and 10058 and olivines in rocks 10020 and 10022. The Apollo 11 pyroxenes with relatively high Ti/Fe ratios were chosen initially to investigate the presence of crystal field spectra of Fe(2+) and Ti(3+) ions in the minerals. Broad intense bands at about 1000 and 2100 nm arise from spin-allowed, polarization-dependent transitions in Fe(2+) ions in pyroxenes. Several weak sharp peaks occur in the visible region. Peaks at 402, 425, 505, 550, and 585 nm represent spin-forbidden transitions in Fe(2+) ions, while broader bands at 460-470 nm and 650-660 nm are attributed to Ti(3+) ions. Charge transfer bands, which in terrestrial pyroxenes often extend into the visible region, are displaced to shorter wavelengths in lunar pyroxenes. This feature correlates with the absence of Ti(3+) ions in these minerals.

  6. Measuring the Impact of AGN Outflows via Intensive UV and X-ray Monitoring Campaigns

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard

    2015-08-01

    Observations of AGN outflows have progressed from the era of single-object surveys to intensive monitoring campaigns spanning weeks to months. The combination of multiple observations, improved temporal coverage, multi-wavelength monitoring in both the X-ray and UV bands, and the baseline of prior historical observations has enabled determinations of the locations, mass flux, and kinetic luminosities of the outflowing absorbing gas in several AGN, notably Mrk 509, NGC 5548, Mrk 335, and NGC 985. Another intensive campaign is planned for 2015-2016 on NGC 7469. In all cases, the mass flux and kinetic energy is dominated by the higher-ionization X-ray absorbing gas. But the higher-resolution UV observations give a kinematically resolved picture of the overall outflow. In most cases, the outflowing gas is located at parsec to kpc scales, with insufficient kinetic luminosity to have an evolutionary impact on the host galaxy. Typically, the kinetic luminosity is less than a percent of the Eddington luminosity. In some cases, transient, broad UV absorption troughs have appeared (e.g., Mrk 335 and NGC 5548), with variability timescales suggesting locations near the broad-line region of the AGN. Yet these higher-velocity outflows also have low-impact kinetic luminosities. In the best-studied case of NGC 5548, the strength of the broad UV absorption lines varies with the degree of soft X-ray obscuration first revealed by XMM-Newton spectra. The lower-ionization, narrow associated absorption lines in the UV spectrum of NGC 5548 that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. The intensive monitoring allows us to fit time-dependent photoionization models to the UV-absorbing gas, allowing precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.

  7. Electronic states of DNA and M-DNA studied by optical absorption

    NASA Astrophysics Data System (ADS)

    Tsuburaya, Makoto; Sakamoto, Hirokazu; Mizoguchi, Kenji

    2014-02-01

    To unveil the electronic states of divalent metal ion incorporated M-DNAs, where M is Mg, Mn, Ni, Co, or Fe, optical absorption spectra have been studied in aqueous solutions of single-stranded (SS) 30mer DNA of poly(dA) (adenine), poly(dG) (guanine), poly(dT) (thymine), poly(dC) (cytosine), salmon-sperm DNA (B-DNA), and M-DNA. The absorption spectrum of the double-stranded (DS) B-DNA can be reproduced with the sum of the four absorption spectra of the SS oligo-DNAs in the ratio corresponding to the composition of B-DNA. This observation suggests that the interactions between complementary strands of DS DNA are negligibly weaker than the bandwidths of the optical spectra. In the metal-incorporated M-DNAs, except for Fe-DNA, the absorption spectra show no significant qualitative change from that of B-DNA. Quantitatively, however, the absorption intensity decreases by ?15% uniquely in a DS poly(dA)-poly(dT) solution with adding MCl2, while nothing happens quantitatively and qualitatively in any SS oligo-DNA and DS poly(dG)-poly(dC) solutions, suggesting some suppression of the electronic excitation only in the Adenine-M-Thymine complex. In contrast, remarkable differences have been observed in Fe-DNA, prepared with FeCl2 and B-DNA. New absorption bands appear in the intragap energy of Fe-DNA, in addition to the suppression of the interband absorption peak of DNA at 4.8 eV. The intragap absorption is attributed to the appearance of Fe3+ species with the same spectral feature as that of FeCl3, that is, purely ionic Fe3+ species. This observation suggests that FeCl2+B-DNA forms Fe-DNA with hydrated Fe3+ ions with ionic bonds. Thus, it is concluded that the charge transfer from Fe2+ to DNA has occurred in Fe-DNA and that the transferred charges are expected to be located in the nearby bases.

  8. Intensity of the /R/Q sub zero branch in the nu-9 fundamental of ethane. [laboratory spectra for Jupiter and Saturn IR observations

    NASA Technical Reports Server (NTRS)

    Tokunaga, A.; Varanasi, P.

    1976-01-01

    Recent observations of Jupiter and Saturn at 12 microns have shown strong emission in the nu-9 fundamental of ethane. In order to derive the abundance of ethane from the planetary observations, the absolute intensity of the (R)Q sub zero branch of the nu-9 fundamental was measured, yielding a value of 0.74 plus or minus 0.09/sq cm/atm at 300 K. In order to study the absorption features of the nu-9 fundamental, the computed rotational structure of the band was compared with the laboratory spectrum.

  9. Effect of electrolytes and temperature on dications and radical cations of carotenoids: Electrochemical, optical absorption, and high-performance liquid chromatography studies

    SciTech Connect

    He, Z.; Kispert, L.D.

    1999-11-25

    The effect of supporting electrolytes and temperature on the behavior of dications and radical cations of carotenoids is studied. Cyclic voltammograms (CVs) of canthaxanthin (I) at 23 and {minus}25 C show that Car{sup sm{underscore}bullet+} of I has similar stability during the time of the CV scan, when using tetrabutylammonium perchlorate (TBAPC), tetrabutylammonium tetrafluoroborate (TBATFB), or tetrabutylammonium hexafluorophosphate (TBAHFP) as supporting electrolyte. However, the stability of Car{sup 2+} decreases when using TBAPC or TBATFB; {beta}-carotene (II) shows similar behavior. The CV of I at {minus}25 C shows a strong cathodic wave (wave 6) near {minus}0.15 V (vs Ag) with an intensity about half that of the neutral oxidation wave when TBAPC or TBATFB is the supporting electrolyte. When TBAHFP is used, wave 6 (ca. {minus}0.05 V vs Ag) is ca. 8 times weaker than when TBAPC or TBATFB is used. This wave results from the reduction of a species that may be a decay product of Car{sup 2+} of I. Results show that these electrolytes commonly used in electrochemical studies may affect the studied systems to different extents. In simultaneous bulk electrolysis (BE) and optical absorption spectroscopic measurements, the absorption band of Car{sup 2+} of I in the presence of 0.1 M TBAHFP can be observed by lowering the BE temperature to {minus}20 C. In the presence of 0.1 M TBAPC or TBATFB, this band is not observed, even at {minus}50 C. Isomerization of neutral I (as shown by HPLC and its blue absorption band shift) is observed only when the Car{sup 2+} absorption band is absent during BE. This observation, along with an increase of the neutral absorption band after stopping BE, suggests that the equilibrium Car + Car{sup 2+} {r{underscore}equilibrium} 2Car{sup {sm{underscore}bullet}+} is shifted to the left because Car{sup 2+} decays more quickly than Car{sup {sm{underscore}bullet}+} in the presence of electrolyte and this is a major path for formation of cis neutral species from cis Car{sup {sm{underscore}bullet}+}. The optical absorption of Car{sup 2+} of I at 18 C in the presence of 0.1 M TBAHFP is obtained, which suggests that Car{sup 2+} of I is not as unstable at room temperature in the presence of TBAHFP as was thought before.

  10. Development of near-infrared absorption spectrometry system by using NIR wideband glass phosphor LED

    NASA Astrophysics Data System (ADS)

    Uemura, H.; Fuchi, S.; Kato, R.; Amano, K.; Hiraizumi, K.; Hayase, H.; Takeda, Y.

    2015-06-01

    We developed a NIR absorption spectrometry system for detection of toxic substances by using a glass phosphor based LED. Using this NIR absorption spectrometry system, phosphoric acid solution samples were measured by molybdenum-blue method. Absorption band around 900 nm and that around 960 nm were observed. The absorption band around 900 nm increased with increasing of the phosphoric acid concentration. Partial least squares (PLS) analysis was revealed that a lower phosphoric acid concentration limit of 0.01 ppm. Furthermore, Cu dilute solutions were measured. Although there was no clear absorption band related to Cu, PLS analysis was revealed that a lower Cu concentration limit of 0.1 ppm. These results indicated that this NIR absorption spectrometry system is useful for practical applications.

  11. Absorption Changes in Bacterial Chromatophores

    PubMed Central

    Kuntz, Irwin D.; Loach, Paul A.; Calvin, Melvin

    1964-01-01

    The magnitude and kinetics of photo-induced absorption changes in bacterial chromatophores (R. rubrum, R. spheroides and Chromatium) have been studied as a function of potential, established by added redox couples. No photochanges can be observed above +0.55 v or below -0.15 v. The loss of signal at the higher potential is centered at +0.439 v and follows a one-electron change. The loss of signal at the lower potential is centered at -0.044 v and is also consistent with a one-electron change. Both losses are reversible. A quantitative relationship exists between light-minus-dark and oxidized-minus-reduced spectra in the near infrared from +0.30 to +0.55 v. Selective treatment of the chromatophores with strong oxidants irreversibly bleaches the bulk pigments but appears to leave intact those pigments responsible for the photo- and chemically-induced absorption changes. Kinetic studies of the photochanges in deaerated samples of R. rubrum chromatophores revealed the same rise time for bands at 433, 792, and 865 m? (t½ = 50 msec.). However, these bands had different decay rates (t½ = 1.5, 0.5, 0.15 sec., respectively), indicating that they belong to different pigments. Analysis of the data indicates, as the simplest interpretation, a first-order (or pseudo first-order) forward reaction and two parallel first-order (or pseudo first-order) decay reactions at each wavelength. These results imply that all pigments whose kinetics are given are photooxidized and the decay processes are dark reductions. These experiments are viewed as supporting and extending the concept of a bacterial photosynthetic unit, with energy migration within it to specific sites of electron transfer. PMID:14185583

  12. Multi-plasmon absorption in graphene

    E-print Network

    Marinko Jablan; Darrick E. Chang

    2015-01-21

    We show that graphene possesses a strong nonlinear optical response in the form of multi-plasmon absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict that graphene nano-ribbons can be used as saturable absorbers with low saturation intensity in the far-infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme localization of plasmon fields in graphene nano-disks can lead to a plasmon blockade effect, in which a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.

  13. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, Mark W. (Golden, CO)

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  14. Absorption technology for solar and waste heat utilization

    NASA Astrophysics Data System (ADS)

    Grossman, G.

    1991-05-01

    Absorption heat pumps, first developed in the 19th century, have received renewed and growing attention in the past two decades. With the increasing cost of oil and electricity, the particular features of this heat-powered cycle have made it attractive for both residential and industrial applications. Solar-powered temperature boosters are among the applications on which intensive research was conducted. The operation of absorption systems is described and several practical applications are discussed. It surveys recent advances in absorption technology, including the selection of working fluids, cycle improvements and multi-staging, and fundamentals of the combined heat and mass transfer in absorption processes.

  15. Development of softcopy environment for primary color banding visibility assessment

    NASA Astrophysics Data System (ADS)

    Min, Byungseok; Pizlo, Zygmunt; Allebach, Jan P.

    2008-01-01

    Fine-pitch banding is one of the most unwanted artifacts in laser electrophotographic (EP) printers. It is perceived as a quasiperiodic fluctuation in the process direction. Therefore, it is essential for printer vendors to know how banding is perceived by humans in order to improve print quality. Monochrome banding has been analyzed and assessed by many researchers; but there is no literature that deals with the banding of color laser printers as measured from actual prints. The study of color banding is complicated by the fact that the color banding signal is physically defined in a three-dimensional color space, while banding perception is described in a one-dimensional sense such as more banding or less banding. In addition, the color banding signal arises from the independent contributions of the four primary colorant banding signals. It is not known how these four distinct signals combine to give rise to the perception of color banding. In this paper, we develop a methodology to assess the banding visibility of the primary colorant cyan based on human visual perception. This is our first step toward studying the more general problem of color banding in combinations of two or more colorants. According to our method, we print and scan the cyan test patch, and extract the banding profile as a one dimensional signal so that we can freely adjust the intensity of banding. Thereafter, by exploiting the pulse width modulation capability of the laser printer, the extracted banding profile is used to modulate a pattern consisting of periodic lines oriented in the process direction, to generate extrinsic banding. This avoids the effect of the halftoning algorithm on the banding. Furthermore, to conduct various banding assessments more efficiently, we also develop a softcopy environment that emulates a hardcopy image on a calibrated monitor, which requires highly accurate device calibration throughout the whole system. To achieve the same color appearance as the hardcopy, we perform haploscopic matching experiments that allow each eye to independently adapt to different viewing conditions; and we find an appearance mapping function in the adapted XYZ space. Finally, to validate the accuracy of the softcopy environment, we conduct a banding matching experiment at three different banding levels by the memory matching method, and confirm that our softcopy environment produces the same banding perception as the hardcopy. In addition, we perform two more separate psychophysical experiments to measure the differential threshold of the intrinsic banding in both the hardcopy and softcopy environments, and confirm that the two thresholds are statistically identical. The results show that with our target printer, human subjects can see a just noticeable difference with a 9% reduction in the banding magnitude for the cyan colorant.

  16. Quantum-Spillover-Enhanced Surface-Plasmonic Absorption at the Interface of Silver and High-Index Dielectrics

    E-print Network

    Jin, Dafei

    We demonstrate an unexpectedly strong surface-plasmonic absorption at the interface of silver and high-index dielectrics based on electron and photon spectroscopy. The measured bandwidth and intensity of absorption deviate ...

  17. 2011 Intensity -1 INTENSITY OF SOUND

    E-print Network

    Gustafsson, Torgny

    2011 Intensity - 1 INTENSITY OF SOUND The objectives of this experiment are: · To understand the concept of sound intensity and how it is measured. · To learn how to operate a Sound Level Meter APPARATUS: Radio Shack Sound Level Meter, meterstick, function generator in FFTSCOPE, headphones. INTRODUCTION

  18. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  19. Fast transforms: Banded matrices with banded inverses

    E-print Network

    Strang, W. Gilbert

    It is unusual for both A and A[superscript -1] to be banded—but this can be a valuable property in applications. Block-diagonal matrices F are the simplest examples; wavelet transforms are more subtle. We show that every ...

  20. Temperature measurements via narrow line laser absorption of carbon dioxide

    SciTech Connect

    Wooldridge, M.S.

    1996-12-31

    Theoretical development for temperature measurements via narrow line, infrared absorption of carbon dioxide (CO{sub 2}) is presented. The proposed technique is based on rapid-scanning of two adjacent absorption line shapes. Spectroscopic considerations for sensitivity to temperature measurements are discussed. Several line pairs are evaluated, and the R(58) and R(60) transitions of the (00{sup 0}1){l_arrow}(00{sup 0}0) band are suggested for use in high temperature measurements for combustion systems.

  1. Dead pixel correction techniques for dual-band infrared imagery

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong T.; Mould, Nick; Regens, James L.

    2015-07-01

    We present two new dead pixel correction algorithms for dual-band infrared imagery. Specifically, we address the problem of repairing unresponsive elements in the sensor array using signal processing techniques to overcome deficiencies in image quality that are present following the nonuniformity correction process. Traditionally, dead pixel correction has been performed almost exclusively using variations of the nearest neighbor technique, where the value of the dead pixel is estimated based on pixel values associated with the neighboring image structure. Our approach differs from existing techniques, for the first time we estimate the values of dead pixels using information from both thermal bands collaboratively. The proposed dual-band statistical lookup (DSL) and dual-band inpainting (DIP) algorithms use intensity and local gradient information to estimate the values of dead pixels based on the values of unaffected pixels in the supplementary infrared band. The DSL algorithm is a regression technique that uses the image intensities from the reference band to estimate the dead pixel values in the band undergoing correction. The DIP algorithm is an energy minimization technique that uses the local image gradient from the reference band and the boundary values from the affected band to estimate the dead pixel values. We evaluate the effectiveness of the proposed algorithms with 50 dual-band videos. Simulation results indicate that the proposed techniques achieve perceptually and quantitatively superior results compared to existing methods.

  2. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  3. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015?W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  4. Calcium absorptive consistency.

    PubMed

    Heaney, R P; Weaver, C M; Fitzsimmons, M L; Recker, R R

    1990-11-01

    Calcium absorption efficiency was measured two or three times each in 74 premenopausal and 142 postmenopausal women under conditions predicted to alter absorptive performance. A woman's absorptive consistency was evaluated across differing loads, differing intervals, and substances of differing intrinsic absorbability. In all these circumstances there was a statistically significant correlation between a woman's absorption under differing test situations accounting for up to 60% of the variance typically found in cross-sectional studies. For example, when the same substance but at differing load levels was tested three times over an 8 week period, various coefficients of correlation ranged from +0.773 to +0.849 (P less than 0.001). Even over intervals as long as 5 years correlation of absorption fraction within individuals remained significant (r = +0.487, P less than 0.001). PMID:2270777

  5. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    DOE PAGESBeta

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sharpe, S. W.; Sams, R. L.; Johnson, T. J.

    2014-11-19

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600–6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298, and 323 Kmore »in a 19.94 cm path-length cell at 0.112 cm-1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.« less

  6. Rubber Band Science

    ERIC Educational Resources Information Center

    Cowens, John

    2005-01-01

    Not only are rubber bands great for binding objects together, but they can be used in a simple science experiment that involves predicting, problem solving, measuring, graphing, and experimenting. In this article, the author describes how rubber bands can be used to teach the force of mass.

  7. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  8. Singing with the Band

    ERIC Educational Resources Information Center

    Altman, Timothy Meyer; Wright, Gary K.

    2012-01-01

    Usually band, orchestra, and choir directors work independently. However, the authors--one a choral director, the other a band director--have learned that making music together makes friends. Not only can ensemble directors get along, but joint concerts may be just the way to help students see how music can reach the heart. Combined instrumental…

  9. Far-field diffraction patterns by a thin nonlinear absorptive nonlocal media.

    PubMed

    Martinez Irivas, B A; Arroyo Carrasco, M L; Mendez Otero, M M; Ramos García, R; Iturbe Castillo, M D

    2015-06-01

    In this work we present numerical results of the far field intensity distributions obtained for a Gaussian beam after crossing a thin nonlinear nonlocal material that exhibit nonlinear refraction and absorption. The distributions are obtained for different positions along the Z axis and different signs of the nonlinear absorption. The results demonstrate that the far field intensity patterns obtained for strong nonlocal media are more affected by the presence of the nonlinear absorption than weak nonlocal media. PMID:26072773

  10. Photoactivity and UV absorption spectroscopy of RCo(CO)4 (R = H, CH3) organometallic complexes.

    PubMed

    Ambrosek, David; Villaume, Sebastien; Daniel, Chantal; Gonzalez, Leticia

    2007-06-01

    The photoactivity of RCo(CO)4 (R = H, CH3) complexes has been investigated and compared by means of state correlation diagrams connecting the low-lying singlet (1)E (d(Co) --> sigma*(Co-R) and d(Co) --> pi*(CO)) and (1)A1 (d(Co) --> pi*(CO)) electronic states accessible through UV irradiation, and the low-lying triplet states ((3)E and (3)A1), to the corresponding states of the primary products R + Co(CO)4 and CO(ax) + RCo(CO)3. The electronic absorption spectra have been calculated by time-dependent wave packet propagations on two-dimensional potential energy surfaces describing both channels of dissociation, namely the homolysis of the R-Co and the CO(ax)-Co bonds. It is shown that the absorption spectrum of HCo(CO)4 is characterized by two peaks; the most intense peaks for each set are located respectively at 42,659 and 45,001 cm(-1). The CH(3)Co(CO)4 absorption spectrum also gives two sets of signals with maximum intensities found at 42,581 and 51,515 cm(-1). These bands for both molecules are assigned to the two metal-to-ligand-charge-transfer (MLCT; d(Co) --> pi*(CO)) states. Three photoactive states have been determined in both molecules, namely the singlet metal-to-sigma-bond-charge-transfer (MSBCT) states (a(1)E and b(1)E), simultaneously dissociative for both the homolysis of CO and the R-Co bond, and the (3)A1 (sigma(Co-R) --> sigma*(Co-R)), dissociative along the R-Co bond. PMID:17500544

  11. Optical Control of Intersubband Absorption in a Multiple Quantum Well-Embedded Semiconductor Microcravity

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    2000-01-01

    Optical intersubband response of a multiple quantum well (MQW)-embedded microcavity driven by a coherent pump field is studied theoretically. The n-type doped MQW structure with three subbands in the conduction band is sandwiched between a semi-infinite medium and a distributed Bragg reflector (DBR). A strong pump field couples the two upper subbands and a weak field probes the two lower subbands. To describe the optical response of the MQW-embedded microcavity, we adopt a semi-classical nonlocal response theory. Taking into account the pump-probe interaction, we derive the probe-induced current density associated with intersubband transitions from the single-particle density-matrix formalism. By incorporating the current density into the Maxwell equation, we solve the probe local field exactly by means of Green's function technique and the transfer-matrix method. We obtain an exact expression for the probe absorption coefficient of the microcavity. For a GaAs/Al(sub x)Ga(sub 1-x)As MQW structure sandwiched between a GaAs/AlAs DBR and vacuum, we performed numerical calculations of the probe absorption spectra for different parameters such as pump intensity, pump detuning, and cavity length. We find that the probe spectrum is strongly dependent on these parameters. In particular, we find that the combination of the cavity effect and the Autler-Townes effect results in a triplet in the optical spectrum of the MQW system. The optical absorption peak value and its location can be feasibly controlled by varying the pump intensity and detuning.

  12. An analysis of temperature-dependent absorption and photocurrent spectra in BaAl{sub 2}Se{sub 4} layers

    SciTech Connect

    Hong, K. J.; Jeong, T. S.; Youn, C. J.; Moon, J. D.

    2015-04-28

    The temperature-dependent photoresponse behavior of BaAl{sub 2}Se{sub 4} layers has been investigated through the analysis of optical absorption and photocurrent (PC) spectra. Based on these results, the optical band gap was well expressed by E{sub g}(T)?=?E{sub g}(0)???4.39?×?10{sup ?4}T{sup 2}/(T?+?250), where E{sub g}(0) is estimated to be 3.4205, 3.6234, and 3.8388?eV for the transitions corresponding to the valence band states ?{sub 3}(A), ?{sub 4}(B), and ?{sub 5}(C), respectively. From the PC measurement, three peaks A, B, and C corresponded with the intrinsic transitions from the valence band states of ?{sub 3}(A), ?{sub 4}(B), and ?{sub 5}(C) to the conduction band state of ?{sub 1}, respectively. According to the selection rule, the crystal field and spin orbit splitting were found to be 0.2029 and 0.2154?eV, respectively, through the direct use of PC spectroscopy. However, the PC intensities decreased with lowering temperature. In the log J{sub ph} versus 1/T plot, the dominant trap level at the high-temperature region was observed and its value was 12.7?meV. This level corresponds to the activation energy for the electronic transition from the shallow donor levels to the edge of the conduction band. It is estimated that the decrease in the PC intensity is caused by trapping centers related to native defects in the BaAl{sub 2}Se{sub 4} layers. Consequently, this trap level limited the PC intensity with decreasing temperature.

  13. Progressive Band Selection

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin; Chang, Chein-I

    2009-01-01

    Progressive band selection (PBS) reduces spectral redundancy without significant loss of information, thereby reducing hyperspectral image data volume and processing time. Used onboard a spacecraft, it can also reduce image downlink time. PBS prioritizes an image's spectral bands according to priority scores that measure their significance to a specific application. Then it uses one of three methods to select an appropriate number of the most useful bands. Key challenges for PBS include selecting an appropriate criterion to generate band priority scores, and determining how many bands should be retained in the reduced image. The image's Virtual Dimensionality (VD), once computed, is a reasonable estimate of the latter. We describe the major design details of PBS and test PBS in a land classification experiment.

  14. First principles intensity calculations of the methane rovibrational spectra in the infrared up to 9300 cm(-1).

    PubMed

    Rey, Michaël; Nikitin, Andrei V; Tyuterev, Vladimir G

    2013-07-01

    We report global calculations of rovibrational spectra and dipole transition intensities of methane using our recent ab initio dipole moment and potential surfaces [Nikitin et al., Chem. Phys. Lett., 2011, 501, 179; 2013, 565, 5]. For the full symmetry account, a recently published variational tensor formalism in normal modes [Rey et al., J. Chem. Phys., 2012, 136, 244106] is applied, the convergence of high-J calculations being improved by the use of vibrational eigenfunctions to make a compressed basis set for solving the rovibrational problem. Comparisons of theoretical predictions up to J = 25 for various complex polyads of methane involving strongly coupled vibration-rotation bands support the validity of this new approach. For the first time, positions and line intensities at 80 K and 296 K are shown to be in excellent agreement with raw experimental data, even for high energy ranges. The theoretical predictions also correctly describe the isotopic effects in line positions and intensities due to the CH4 ? CD4 substitution which is considered as the test for the method. This work is a first step toward the theoretical interpretation of numerous methane bands which remain still unassigned and detailed line-by-line absorption/emission spectra analyses for atmospheric and planetological applications. PMID:23632448

  15. Absorption of ultraviolet radiation by antarctic phytoplankton

    SciTech Connect

    Vernet, M.; Mitchell, B.G. )

    1990-01-09

    Antarctic phytoplankton contain UV-absorbing compounds that may block damaging radiation. Compounds that absorb from 320-340 nm were observed in spectral absorption of both particulates and in methanol extracts of the particulates. The decrease in the total concentration of these UV compounds with respect to chlorophyll a, as measured by the ratio of in vitro absorption at 335 nm to absorption at 665 nm is variable and decreases with depth. We observed up to 5-fold decrease in this ratio for samples within the physically mixes surface layer. The absorption of UV radiation in methanol extracts, which peaks from 320 to 340 nm, may be composed of several compounds. Shifts in peak absorption with depth (for example, from 331 nm at surface to 321 nm at 75 m), may be interpreted as a change in composition. Ratios of protective yellow xanthophylls (diadinoxanthin + diatoxanthin) to photosynthetic fucoxanthin-like pigments have highest values in surface waters. As these pigments also absorb in the near UV, their function might extend to protection as well as utilization of UV radiation for photosynthesis. We document strong absorption in the UV from 320-330 nm for Antarctic marine particulates. Below this region of the solar energy spectrum, absolute energy levels of incident radiation drop off dramatically. Only wavelengths shorter than about 320 nm will be significantly enhanced due to ozone depletion. If the absorption we observed serves a protective role for phytoplankton photosynthesis, it appears the peak band is in the region where solar energy increases rapidly, and not in the region where depletion would cause significant variations in absolute flux.

  16. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    SciTech Connect

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  17. Infrared radiation parameterizations for the minor CO2 bands and for several CFC bands in the window region

    NASA Technical Reports Server (NTRS)

    Kratz, David P.; Chou, Ming-Dah; Yan, Michael M.-H.

    1993-01-01

    Fast and accurate parameterizations have been developed for the transmission functions of the CO2 9.4- and 10.4-micron bands, as well as the CFC-11, CFC-12, and CFC-22 bands located in the 8-12-micron region. The parameterizations are based on line-by-line calculations of transmission functions for the CO2 bands and on high spectral resolution laboratory measurements of the absorption coefficients for the CFC bands. Also developed are the parameterizations for the H2O transmission functions for the corresponding spectral bands. Compared to the high-resolution calculations, fluxes at the tropopause computed with the parameterizations are accurate to within 10 percent when overlapping of gas absorptions within a band is taken into account. For individual gas absorption, the accuracy is of order 0-2 percent. The climatic effects of these trace gases have been studied using a zonally averaged multilayer energy balance model, which includes seasonal cycles and a simplified deep ocean. With the trace gas abundances taken to follow the Intergovernmental Panel on Climate Change Low Emissions 'B' scenario, the transient response of the surface temperature is simulated for the period 1900-2060.

  18. Olefin recovery via chemical absorption

    SciTech Connect

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  19. Optimized absorption imaging of mesoscopic atomic clouds

    NASA Astrophysics Data System (ADS)

    Muessel, Wolfgang; Strobel, Helmut; Joos, Maxime; Nicklas, Eike; Stroescu, Ion; Tomkovi?, Ji?í; Hume, David B.; Oberthaler, Markus K.

    2013-10-01

    We report on the optimization of high-intensity absorption imaging for small Bose-Einstein condensates. The imaging calibration exploits the linear scaling of the quantum projection noise with the mean number of atoms for a coherent spin state. After optimization for atomic clouds containing up to 300 atoms, we find an atom number resolution of atoms, mainly limited by photon shot noise and radiation pressure.

  20. Two-photon absorption in nitrobenzol

    NASA Astrophysics Data System (ADS)

    Fahmi, A.; Kityk, I. V.; Lefkir, M.; Sahraoui, B.; Sylla, M.; Rivoire, G.

    1999-03-01

    When nitrobenzol is illuminated by an intense picosecond pump beam at 1464-4258/1/2/013/img9 nm, it displays a two-photon absorption (TPA) phenomenon which can be explained by the presence of the excited states in the calculated level diagram. The combination of TPA and optical Kerr effect leads to a strong modulation of the transmission of a probe beam in the presence of a pump beam, according to their time delay.