Sample records for absorption band located

  1. Sub-band-gap absorption in Ga2O3

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Van de Walle, Chris G.

    2017-10-01

    β-Ga2O3 is a transparent conducting oxide that, due to its large bandgap of 4.8 eV, exhibits transparency into the UV. However, the free carriers that enable the conductivity can absorb light. We study the effect of free carriers on the properties of Ga2O3 using hybrid density functional theory. The presence of free carriers leads to sub-band-gap absorption and a Burstein-Moss shift in the onset of absorption. We find that for a concentration of 1020 carriers, the Fermi level is located 0.23 eV above the conduction-band minimum. This leads to an increase in the electron effective mass from 0.27-0.28 me to 0.35-0.37 me and a sub-band-gap absorption band with a peak value of 0.6 × 103 cm-1 at 3.37 eV for light polarized along the x or z direction. Both across-the-gap and free-carrier absorption depend strongly on the polarization of the incoming light. We also provide parametrizations of the conduction-band shape and the effective mass as a function of the Fermi level.

  2. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  3. Continuum definition for Ceres absorption bands at 3.1, 3.4 and 4.0 μm

    NASA Astrophysics Data System (ADS)

    Galiano, A.; Palomba, E.; Longobardo, A.; Zinzi, A.; De Sanctis, M. C.; Raponi, A.; Carrozzo, F. G.; Ciarniello, M.; Dirri, F.

    2017-09-01

    The images and hyperspectral data acquired during various Dawn mission phases (e.g. Survey, HAMO and LAMO) allowed identifying regions of different albedo on Ceres surface, where absorption bands located at 3.4 and 4.0 μm can assume different shapes. The 3.1 μm feature is observed on the entire Ceres surface except on Cerealia Facula, the brightest spot located on the dome of Occator crater. To perform a mineralogical investigation, absorption bands in reflectance spectra should be properly isolated by removing spectral continuum; hence, parameters as band centers and band depths must be estimated. The problem in the defining the continuum is in the VIR spectral range, which ends at 5.1 μm even though the reliable data, where the thermal contribution is properly removed, stops at 4.2 μm. Band shoulders located at longer wavelengths cannot be estimated. We defined different continua, with the aim to find the most appropriate to isolate the three spectral bands, whatever the region and the spatial resolution of hyperspectral images. The linear continuum seems to be the most suitable definition for our goals. Then, we performed an error evaluation on band depths and band centers introduced by this continuum definition.

  4. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  5. Glucose Absorption by the Bacillary Band of Trichuris muris

    PubMed Central

    Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M.

    2016-01-01

    Background A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. Methodology We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Principal Findings Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Conclusions/Significance Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development. PMID:27588682

  6. Glucose Absorption by the Bacillary Band of Trichuris muris.

    PubMed

    Hansen, Tina V A; Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M

    2016-09-01

    A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development.

  7. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    NASA Astrophysics Data System (ADS)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  8. Multijunction solar cell design revisited: disruption of current matching by atmospheric absorption bands: Disruption of current matching by atmospheric absorption bands

    DOE PAGES

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    2017-05-23

    This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less

  9. Multijunction solar cell design revisited: disruption of current matching by atmospheric absorption bands: Disruption of current matching by atmospheric absorption bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less

  10. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.

  11. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  12. Tunable dual-band nearly perfect absorption based on a compound metallic grating

    NASA Astrophysics Data System (ADS)

    Gao, Hua; Zheng, Zhi-Yuan; Feng, Juan

    2017-02-01

    Traditional metallic gratings and novel metamaterials are two basic kinds of candidates for perfect absorption. Comparatively speaking, metallic grating is the preferred choice for the same absorption effect because it is structurally simpler and more convenient to fabricate. However, to date, most of the perfect absorption effects achieved based on metamaterials are also available using an metallic grating except the tunable dual(multi)-band perfect absorption. To fill this gap, in this paper, by adding subgrooves on the rear surface as well as inside the grating slits to a free-standing metallic grating, tunable dual-band perfect absorption is also obtained for the first time. The grooves inside the slits is to tune the frequency of the Cavity Mode(CM) resonance which enhances the transmission and suppresses the reflectance simultaneously. The grooves on the rear surface give rise to the phase resonance which not only suppresses the transmission but also reinforces the reflectance depression effect. Thus, when the phase resonance and the frequency tunable CM resonance occur together, transmission and reflection can be suppressed simultaneously, dual-band nearly perfect absorption with tunable frequencies is obtained. To our knowledge, this perfect absorption phenomenon is achieved for the first time in a designed metallic grating structure.

  13. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    NASA Astrophysics Data System (ADS)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  14. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  15. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  16. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals.

    PubMed

    Manzi, Aurora; Tong, Yu; Feucht, Julius; Yao, En-Ping; Polavarapu, Lakshminarayana; Urban, Alexander S; Feldmann, Jochen

    2018-04-17

    Multi-photon absorption and multiple exciton generation represent two separate strategies for enhancing the conversion efficiency of light into usable electric power. Targeting below-band-gap and above-band-gap energies, respectively, to date these processes have only been demonstrated independently. Here we report the combined interaction of both nonlinear processes in CsPbBr 3 perovskite nanocrystals. We demonstrate nonlinear absorption over a wide range of below-band-gap excitation energies (0.5-0.8 E g ). Interestingly, we discover high-order absorption processes, deviating from the typical two-photon absorption, at specific energetic positions. These energies are associated with a strong enhancement of the photoluminescence intensity by up to 10 5 . The analysis of the corresponding energy levels reveals that the observed phenomena can be ascribed to the resonant creation of multiple excitons via the absorption of multiple below-band-gap photons. This effect may open new pathways for the efficient conversion of optical energy, potentially also in other semiconducting materials.

  17. ASSIGNMENT OF 5069 A DIFFUSE INTERSTELLAR BAND TO HC{sub 4}H{sup +}: DISAGREEMENT WITH LABORATORY ABSORPTION BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, J. P.; Chakrabarty, S.; Mazzotti, F. J.

    2011-03-10

    Krelowski et al. have reported a weak, diffuse interstellar band (DIB) at 5069 A which appears to match in both mid-wavelength and width the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} gas-phase origin absorption band of HC{sub 4}H{sup +}. Here, we present laboratory rotational profiles at low temperatures which are then compared with the 5069 A DIB using {approx}0.1 and 0.3 A line widths based on a realistic line-of-sight interstellar velocity dispersion. Neither the band shape nor the wavelength of the maximum absorption match, which makes the association of the 5069 A DIB with HC{sub 4}H{sup +} unlikely. The magneticmore » dipole transition X {sup 2}{Pi}{sub g} {Omega} = 1/2{yields}X {sup 2}{Pi}{sub g} {Omega} = 3/2 within the ground electronic state which competes with collisional excitation is also considered. In addition, we present the laboratory gas-phase spectrum of the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} transition of HC{sub 4}H{sup +} measured at 25 K in an ion trap and identify further absorption bands at shorter wavelengths for comparison with future DIB data.« less

  18. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  19. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  20. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    NASA Astrophysics Data System (ADS)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  1. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  2. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  3. Optical absorption spectra and energy band gap in manganese containing sodium zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Sardarpasha, K. R.; Hanumantharaju, N.; Gowda, V. C. Veeranna

    2018-05-01

    Optical band gap energy in the system 25Na2O-(75-x)[0.6P2O5-0.4ZnO]-xMnO2 (where x = 0.5,1,5,10 and 20 mol.%) have been studied. The intensity of the absorption band found to increase with increase of MnO2 content. The decrease in the optical band gap energy with increase in MnO2 content in the investigated glasses is attributed to shifting of absorption edge to a longer wavelength region. The obtained results were discussed in view of the structure of phosphate glass network.

  4. Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2018-05-01

    Gold hyperdoped silicon exhibits room temperature sub band gap optical absorption, with potential applications as infrared absorbers/detectors and impurity band photovoltaics. We use first-principles density functional theory to establish the origins of the sub band gap response. Substitutional gold AuSi and substitutional dimers AuSi - AuSi are found to be the energetically preferred defect configurations, and AuSi gives rise to partially filled mid-gap defect bands well offset from the band edges. AuSi is predicted to offer substantial sub-band gap absorption, exceeding that measured in prior experiments by two orders of magnitude for similar Au concentration. This suggests that in experimentally realized systems, in addition to AuSi, the implanted gold is accommodated by the lattice in other ways, including other defect complexes and gold precipitates. We further identify that it is energetically favorable for isolated AuSi to form AuSi - AuSi, which by contrast do not exhibit mid-gap states. The formation of dimers and other complexes could serve as nuclei in the earliest stages of Au precipitation, which may be responsible for the observed rapid deactivation of sub-band gap response upon annealing.

  5. Multi-Band Received Signal Strength Fingerprinting Based Indoor Location System

    NASA Astrophysics Data System (ADS)

    Sertthin, Chinnapat; Fujii, Takeo; Ohtsuki, Tomoaki; Nakagawa, Masao

    This paper proposes a new multi-band received signal strength (MRSS) fingerprinting based indoor location system, which employs the frequency diversity on the conventional single-band received signal strength (RSS) fingerprinting based indoor location system. In the proposed system, the impacts of frequency diversity on the enhancements of positioning accuracy are analyzed. Effectiveness of the proposed system is proved by experimental approach, which was conducted in non line-of-sight (NLOS) environment under the area of 103m2 at Yagami Campus, Keio University. WLAN access points, which simultaneously transmit dual-band signal of 2.4 and 5.2GHz, are utilized as transmitters. Likewise, a dual-band WLAN receiver is utilized as a receiver. Signal distances calculated by both Manhattan and Euclidean were classified by K-Nearest Neighbor (KNN) classifier to illustrate the performance of the proposed system. The results confirmed that Frequency diversity attributions of multi-band signal provide accuracy improvement over 50% of the conventional single-band.

  6. Constructing Repairable Meta-Structures of Ultra-Broad-Band Electromagnetic Absorption from Three-Dimensional Printed Patterned Shells.

    PubMed

    Song, Wei-Li; Zhou, Zhili; Wang, Li-Chen; Cheng, Xiao-Dong; Chen, Mingji; He, Rujie; Chen, Haosen; Yang, Yazheng; Fang, Daining

    2017-12-13

    Ultra-broad-band electromagnetic absorption materials and structures are increasingly attractive for their critical role in competing with the advanced broad-band electromagnetic detection systems. Mechanically soft and weak wax-based materials composites are known to be insufficient to serve in practical electromagnetic absorption applications. To break through such barriers, here we developed an innovative strategy to enable the wax-based composites to be robust and repairable meta-structures by employing a three-dimensional (3D) printed polymeric patterned shell. Because of the integrated merits from both the dielectric loss wax-based composites and mechanically robust 3D printed shells, the as-fabricated meta-structures enable bear mechanical collision and compression, coupled with ultra-broad-band absorption (7-40 and 75-110 GHz, reflection loss  smaller than -10 dB) approaching state-of-the-art electromagnetic absorption materials. With the assistance of experiment and simulation methods, the design advantages and mechanism of employing such 3D printed shells for substantially promoting the electromagnetic absorption performance have been demonstrated. Therefore, such universal strategy that could be widely extended to other categories of wax-based composites highlights a smart stage on which high-performance practical multifunction meta-structures with ultra-broad-band electromagnetic absorption could be envisaged.

  7. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  8. Design of a dual band metamaterial absorber for Wi-Fi bands

    NASA Astrophysics Data System (ADS)

    Alkurt, Fatih Özkan; Baǧmancı, Mehmet; Karaaslan, Muharrem; Bakır, Mehmet; Altıntaş, Olcay; Karadaǧ, Faruk; Akgöl, Oǧuzhan; Ünal, Emin

    2018-02-01

    The goal of this work is to design and fabrication of a dual band metamaterial based absorber for Wireless Fidelity (Wi-Fi) bands. Wi-Fi has two different operating frequencies such as 2.45 GHz and 5 GHz. A dual band absorber is proposed and the proposed structure consists of two layered unit cells, and different sized square split ring (SSR) resonators located on each layers. Copper is used for metal layer and resonator structure, FR-4 is used as substrate layer in the proposed structure. This designed dual band metamaterial absorber is used in the wireless frequency bands which has two center frequencies such as 2.45 GHz and 5 GHz. Finite Integration Technique (FIT) based simulation software used and according to FIT based simulation results, the absorption peak in the 2.45 GHz is about 90% and the another frequency 5 GHz has absorption peak near 99%. In addition, this proposed structure has a potential for energy harvesting applications in future works.

  9. Intermediate Band Material of Titanium-Doped Tin Disulfide for Wide Spectrum Solar Absorption.

    PubMed

    Hu, Keyan; Wang, Dong; Zhao, Wei; Gu, Yuhao; Bu, Kejun; Pan, Jie; Qin, Peng; Zhang, Xian; Huang, Fuqiang

    2018-04-02

    Intermediate band (IB) materials are of great significance due to their superior solar absorption properties. Here, two IBs peaking at 0.88 and 1.33 eV are reported to be present in the forbidden gap of semiconducting SnS 2 ( E g = 2.21 eV) by doping titanium up to 6 atom % into the Sn site via a solid-state reaction at 923 K. The solid solution of Sn 1- x Ti x S 2 is able to be formed, which is attributed to the isostructural structure of SnS 2 and TiS 2 . These two IBs were detected in the UV-vis-NIR absorption spectra with the appearance of two additional absorption responses at the respective regions, which in good agreement with the conclusion of first-principles calculations. The valence band maximum (VBM) consists mostly of the S 3p state, and the conduction band minimum (CBM) is the hybrid state composing of Ti 3d (e g ), S 3p, and Sn 5s, and the IBs are mainly the nondegenerate t 2g states of Ti 3d orbitals. The electronic states of Ti 3d reveal a good ability to transfer electrons between metal and S atoms. These wide-spectrum absorption IBs bring about more solar energy utilization to enhance solar thermal collection and photocatalytic degradation of methyl orange.

  10. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.

    PubMed

    Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua

    2017-12-06

    A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.

  11. A sextuple-band ultra-thin metamaterial absorber with perfect absorption

    NASA Astrophysics Data System (ADS)

    Yu, Dingwang; Liu, Peiguo; Dong, Yanfei; Zhou, Dongming; Zhou, Qihui

    2017-08-01

    This paper presents the design, simulation and measurement of a sextuple-band ultra-thin metamaterial absorber (MA). The unit cell of this proposed structure is composed of triangular spiral-shaped complementary structures imprinted on the dielectric substrate backed by a metal ground. The measured results are in good agreement with simulations with high absorptivities of more than 90% at all six absorption frequencies. In addition, this proposed absorber has good performances of ultra-thin, polarization insensitivity and a wide-angle oblique incidence, which can easily be used in many potential applications such as detection, imaging and sensing.

  12. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-19

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  13. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  14. Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge.

    PubMed

    Zhai, Xiaodong; Ding, Yanjun; Peng, Zhimin; Luo, Rui

    2012-07-10

    Nitric oxide (NO) concentrations were measured using the γ band system spectrum based on the strong self-absorption effect of NO in pulsed corona discharges. The radiative transitional intensities of the NO γ band were simulated based on the theory of molecular spectroscopy. The intensities of some bands, especially γ(0,0) and γ(1,0), are weakened by the self-absorption. The correlations between the spectral self-absorption intensities and NO concentration were validated using a modified Beer-Lambert law with a combined factor K relating the branching ratio and the NO concentration, and a nonlinear index α that is applicable to the broadband system. Optical emissive spectra in pulsed corona discharges in NO and N2/He mixtures were used to evaluate the two parameters for various conditions. Good agreement between the experimental and theoretical results verifies the self-absorption behavior seen in the UV spectra of the NO γ bands.

  15. Photoionization bands of rubidium molecule

    NASA Astrophysics Data System (ADS)

    Rakić, M.; Pichler, G.

    2018-03-01

    We studied the absorption spectrum of dense rubidium vapor generated in a T-type sapphire cell with a special emphasis on the structured photoionization continuum observed in the 200-300 nm spectral region. The photoionization spectrum has a continuous atomic contribution with a pronounced Seaton-Cooper minimum at about 250 nm and a molecular photoionization contribution with many broad bands. We discuss the possible origin of the photoionization bands as stemming from the absorption from the ground state of the Rb2 molecule to excited states of Rb2+* and to doubly excited autoionizing states of Rb2** molecule. All these photoionization bands are located above the Rb+ and Rb2+ ionization limits.

  16. Properties of the 4.45 eV optical absorption band in LiF:Mg,Ti.

    PubMed

    Nail, I; Oster, L; Horowitz, Y S; Biderman, S; Belaish, Y

    2006-01-01

    The optical absorption (OA) and thermoluminescence (TL) of dosimetric LiF:Mg,Ti (TLD-100) as well as nominally pure LiF single crystal have been studied as a function of irradiation dose, thermal and optical bleaching in order to investigate the role of the 4.45 eV OA band in low temperature TL. Computerised deconvolution was used to resolve the absorption spectrum into individual gaussian bands and the TL glow curve into glow peaks. Although the 4.45 eV OA band shows thermal decay characteristics similar to the 4.0 eV band its dose filling constant and optical bleaching properties suggest that it cannot be associated with the TL of composite peaks 4 or 5. Its presence in optical grade single crystal LiF further suggests that it is an intrinsic defect or possibly associated with chance impurities other than Mg, Ti.

  17. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  18. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers.

    PubMed

    Zhang, Nan; Zhou, Peiheng; Cheng, Dengmu; Weng, Xiaolong; Xie, Jianliang; Deng, Longjiang

    2013-04-01

    We present the simulation, fabrication, and characterization of a dual-band metamaterial absorber in the mid-infrared regime. Two pairs of circular-patterned metal-dielectric stacks are employed to excite the dual-band absorption peaks. Dielectric characteristics of the dielectric spacing layer determine energy dissipation in each resonant stack, i.e., dielectric or ohmic loss. By controlling material parameters, both two mechanisms are introduced into our structure. Up to 98% absorption is obtained at 9.03 and 13.32 μm in the simulation, which is in reasonable agreement with experimental results. The proposed structure holds promise for various applications, e.g., thermal radiation modulators and multicolor infrared focal plane arrays.

  19. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    NASA Astrophysics Data System (ADS)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  20. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picconi, David; Grebenshchikov, Sergy Yu., E-mail: Sergy.Grebenshchikov@ch.tum.de

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadeningmore » of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.« less

  1. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  2. Emergence of Very Broad Infrared Absorption Band By Hyperdoping of Silicon with Chalcogens

    DTIC Science & Technology

    2013-06-03

    measured by Hall effect in Ref. 9 (crosses) as functions of implanted sulfur dose. (c) Calculated reflectivity by Kramers- Kronig transformation of the...MIR band is small enough, this assumption is reasonable according to the Kramers- Kronig relationship between optical absorption and reflectivity...calculated by a Kramers- Kronig transformation of the absorption spectrum shown in Fig. 1(a) and the results are shown in Fig. 1(c). However, the a value

  3. Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.

    2017-07-01

    Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).

  4. Prospective Identification of Oligoclonal/Abnormal Band of the Same Immunoglobulin Type as the Malignant Clone by Differential Location of M-Spike and Oligoclonal Band.

    PubMed

    Vyas, Shikhar G; Singh, Gurmukh

    2017-10-01

    Serum and urine protein electrophoreses and immunofixation electrophoreses are the gold standards in diagnosing monoclonal gammopathy. Identification of oligoclonal bands in post-treatment patients has emerged as an important issue and recording the location of the malignant monoclonal peak may facilitate prospective identification of a new "monoclonal" spike as being distinct from the malignant peak. We recorded the locations of monoclonal spikes in descriptive terms, such as being in the cathodal region, mid-gamma region, anodal region, and beta region. The location of monoclonal or restricted heterogeneity bands in subsequent protein electrophoreses was compared to the location of the original malignant spike. In a patient with plasma cell myeloma, the original monoclonal IgG kappa band was located at the anodal end of gamma region. Post-treatment, an IgG kappa band was noted in mid-gamma region and the primary malignant clone was not detectable by serum protein immunofixation electrophoresis (SIFE) in post-treatment sample. Even though the κ/λ ratio remained abnormal, we were able to recognize stringent complete response by noting the different location of the new IgG kappa band as a benign regenerative process. Recording the location of the malignant monoclonal spike facilitates the identification of post-treatment oligoclonal bands, prospectively. Recognizing the regenerative, benign, bands in post-transplant patients facilitates the determination of stringent complete response despite an abnormal κ/λ ratio.

  5. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; hide

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  6. Influence of defects on the absorption edge of InN thin films: The band gap value

    NASA Astrophysics Data System (ADS)

    Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.

    2007-07-01

    We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.

  7. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    PubMed

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. L(alpha)-induced two-photon absorption of visible light emitted from an O-type star by H2(+) ions located near the surface of the Stromgren sphere surrounding the star: A possible explanation for the diffuse interstellar absorption bands (DIDs)

    NASA Technical Reports Server (NTRS)

    Glownia, James H.; Sorokin, Peter P.

    1994-01-01

    In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).

  9. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  10. Infrared radiation parameterizations for the minor CO2 bands and for several CFC bands in the window region

    NASA Technical Reports Server (NTRS)

    Kratz, David P.; Chou, Ming-Dah; Yan, Michael M.-H.

    1993-01-01

    Fast and accurate parameterizations have been developed for the transmission functions of the CO2 9.4- and 10.4-micron bands, as well as the CFC-11, CFC-12, and CFC-22 bands located in the 8-12-micron region. The parameterizations are based on line-by-line calculations of transmission functions for the CO2 bands and on high spectral resolution laboratory measurements of the absorption coefficients for the CFC bands. Also developed are the parameterizations for the H2O transmission functions for the corresponding spectral bands. Compared to the high-resolution calculations, fluxes at the tropopause computed with the parameterizations are accurate to within 10 percent when overlapping of gas absorptions within a band is taken into account. For individual gas absorption, the accuracy is of order 0-2 percent. The climatic effects of these trace gases have been studied using a zonally averaged multilayer energy balance model, which includes seasonal cycles and a simplified deep ocean. With the trace gas abundances taken to follow the Intergovernmental Panel on Climate Change Low Emissions 'B' scenario, the transient response of the surface temperature is simulated for the period 1900-2060.

  11. Imaging Breathing Rate in the CO2Absorption Band.

    PubMed

    Fei, Jin; Zhu, Zhen; Pavlidis, Ioannis

    2005-01-01

    Following up on our previous work, we have developed one more non-contact method to measure human breathing rate. We have retrofitted our Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO2absorption band (4.3 µm). This improves the contrast between the foreground (i.e., expired air) and background (e.g., wall). Based on the radiation information within the breath flow region, we get the mean dynamic thermal signal. This signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then determine the breathing frequency through Fourier analysis. We have performed experiments on 9 subjects at distances ranging from 6-8 ft. We compared the breathing rate computed by our novel method with ground-truth measurements obtained via a traditional contact device (PowerLab/4SP from ADInstruments with an abdominal transducer). The results show high correlation between the two modalities. For the first time, we report a Fourier based breathing rate computation method on a MWIR signal in the CO2absorption band. The method opens the way for desktop, unobtrusive monitoring of an important vital sign, that is, breathing rate. It may find widespread applications in preventive medicine as well as sustained physiological monitoring of subjects suffering from chronic ailments.

  12. Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Jiao, Zheng; Bao, Jie

    2017-05-01

    A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.

  13. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    PubMed

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  14. Optical absorption and emission bands of Tm 3+ ions in calcium niobium gallium garnet crystal

    NASA Astrophysics Data System (ADS)

    Tsuboi, Taiju; Tanigawa, Masayuki; Shimamura, Kiyoshi

    2000-12-01

    Absorption spectra of Tm 3+ ions in Ca 3Nb 1.6875Ga 3.1875O 12 (CNGG) crystal have been investigated at various temperatures between 15 and 296 K. Luminescence spectra in a spectral region of 400-1750 nm are investigated under excitation into various excited states of Tm 3+ and the conduction band of CNGG at room temperature. The absorption and emission bands of Tm 3+ in CNGG are observed to be broader than those observed in other Tm 3+-doped crystals such as LiNbO 3. This is due to the disordered structure of CNGG. From the temperature dependence of absorption spectra, five Stark levels are derived for the 3H 6 ground state. The highest Stark level is found to be 351 cm -1 above the ground level. It is suggested that the low efficiency of the 2.02 μm lasing at room temperature is due to the narrow splitting of the Stark levels.

  15. Effect of Atmospheric Absorption Bands on the Optimal Design of Multijunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    Designing terrestrial multijunction (MJ) cells with 5+ junctions is challenging, in part because the presence of atmospheric absorption bands creates a design space with numerous local maxima. Here we introduce a new taxonomical structure which facilitates both numerical convergence and the visualization of the resulting designs.

  16. The nu sub 9 fundamental of ethane - Integrated intensity and band absorption measurements with application to the atmospheres of the major planets

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Cess, R. D.; Bangaru, B. R. P.

    1974-01-01

    Measurements of the absolute intensity and integrated band absorption have been performed for the nu sub 9 fundamental band of ethane. The intensity is found to be about 34 per sq cm per atm at STP, and this is significantly higher than previous estimates. It is shown that a Gaussian profile provides an empirical representation of the apparent spectral absorption coefficient. Employing this empirical profile, a simple expression is derived for the integrated band absorption, which is in excellent agreement with experimental values. The band model is then employed to investigate the possible role of ethane as a source of thermal infrared opacity within the atmospheres of Jupiter and Saturn, and to interpret qualitatively observed brightness temperatures for Saturn.

  17. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  18. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  19. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands.

    PubMed

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-20

    Special electric and magnetic characteristics make Fe 3 O 4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe 3 O 4 , it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe 3 O 4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe 3 O 4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe 3 O 4 could acquire targeted EM wave absorption capacity in the X band (8-12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of -49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below -10 dB is 4.32 (7.52-11.84) GHz, which is almost equivalent to the whole X band (8-12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4-12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  20. High-resolution spectroscopy and global analysis of CF4 rovibrational bands to model its atmospheric absorption

    NASA Astrophysics Data System (ADS)

    Carlos, M.; Gruson, O.; Richard, C.; Boudon, V.; Rotger, M.; Thomas, X.; Maul, C.; Sydow, C.; Domanskaya, A.; Georges, R.; Soulard, P.; Pirali, O.; Goubet, M.; Asselin, P.; Huet, T. R.

    2017-11-01

    CF4, or tetrafluoromethane, is a chemically inert and strongly absorbing greenhouse gas, mainly of anthropogenic origin. In order to monitor and reduce its atmospheric emissions and concentration, it is thus necessary to obtain an accurate model of its infrared absorption. Such models allow opacity calculations for radiative transfer atmospheric models. In the present work, we perform a global analysis (divided into two distinct fitting schemes) of 17 rovibrational bands of CF4. This gives a reliable model of many of its lower rovibrational levels and allows the calculation of the infrared absorption in the strongly absorbing ν3 region (1283 cm-1 / 7.8 μm), including the main hot band, namely ν3 +ν2 -ν2 as well as ν3 +ν1 -ν1 ; we could also extrapolate the ν3 +ν4 -ν4 absorption. This represents almost 92% of the absorption at room temperature in this spectral region. A new accurate value of the C-F bond length is evaluated to re = 1.314860(21) Å. The present results have been used to update the HITRAN, GEISA and TFMeCaSDa (VAMDC) databases.

  1. Absorption band oscillator strengths of N2 transitions between 95.8 and 99.4 nm

    NASA Technical Reports Server (NTRS)

    Stark, G.; Smith, Peter L.; Huber, K. P.; Yoshino, K.; Stevens, M. H.; Ito, K.

    1992-01-01

    Molecular nitrogen plays a central role in the energetics of the earth's upper atmosphere and is the major constituent of the atmospheres of the planetary satellites Titan and Triton. This paper reports a new set of absorption oscillator strengths measured at higher resolution for seven bands in the 95.8-99.4 nm region. The results are compared with earlier, lower resolution absorption measurements, electron scattering measurements, and calculations based on a deperturbation analysis of the excited states.

  2. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  3. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands

    NASA Astrophysics Data System (ADS)

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-01

    Special electric and magnetic characteristics make Fe3O4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe3O4, it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe3O4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe3O4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe3O4 could acquire targeted EM wave absorption capacity in the X band (8–12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of ‑49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below ‑10 dB is 4.32 (7.52–11.84) GHz, which is almost equivalent to the whole X band (8–12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4–12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  4. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    NASA Astrophysics Data System (ADS)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  5. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    DOE PAGES

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; ...

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  6. Anisotropy of band gap absorption in TlGaSe2 semiconductor by ferroelectric phase transformation

    NASA Astrophysics Data System (ADS)

    Gulbinas, Karolis; Grivickas, Vytautas; Gavryushin, Vladimir

    2014-12-01

    The depth-resolved free-carrier absorption and the photo-acoustic response are used to examine the band-gap absorption in 2D-TlGaSe2 layered semiconductor after its transformation into the ferroelectric F-phase below 107 K. The absorption exhibits unusual behavior with a biaxial character in respect to the light polarization on the layer plane. A spectral analysis shows that the anisotropy is associated to the lowest Γ-direct optical transition. The Γ-absorption and the localized exciton at 2.11 eV are dipole-prohibited or partially allowed in two nearly perpendicular polarization directions. The shift of anisotropy axis in respect to crystallographic a- and b-directions demonstrates the non-equivalent zigzag rearrangement of the interlayer connecting Tl+ ions, which is responsible for occurrence of the F-phase.

  7. Collision-induced absorption in the region of the ν2 + ν3 band of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Baranov, Yu. I.

    2018-03-01

    The IR absorption spectra of pure carbon dioxide in the region of the forbidden ν2 + ν3 vibrational transition at 3004 cm-1 have been recorded using a Fourier-transform spectrometer. A multipass-optical cell with the path length of 100 m was used in the study. The data were taken at room temperature of 294.8 K with a resolution of 0.02 cm-1 over the spectral region 2500-3500 cm-1. A sample pressures varied from 207 to 463 kPa (2.04-4.57 atm). The measured binary absorption coefficients provide the band integrated intensity value of (2.39 ± 0.04) ∗ 10-4 cm-2 amagat-2. The result is compared with those from previous works. The observed band profile features are discussed.

  8. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  9. Electronic absorption band broadening and surface roughening of phthalocyanine double layers by saturated solvent vapor treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinhyun; Yim, Sanggyu, E-mail: sgyim@kookmin.ac.kr

    2012-10-15

    Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughnessmore » and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.« less

  10. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  11. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands

    NASA Astrophysics Data System (ADS)

    Serov, E. A.; Odintsova, T. A.; Tretyakov, M. Yu.; Semenov, V. E.

    2017-05-01

    Analysis of the continuum absorption in water vapor at room temperature within the purely rotational and fundamental ro-vibrational bands shows that a significant part (up to a half) of the observed absorption cannot be explained within the framework of the existing concepts of the continuum. Neither of the two most prominent mechanisms of continuum originating, namely, the far wings of monomer lines and the dimers, cannot reproduce the currently available experimental data adequately. We propose a new approach to developing a physically based model of the continuum. It is demonstrated that water dimers and wings of monomer lines may contribute equally to the continuum within the bands, and their contribution should be taken into account in the continuum model. We propose a physical mechanism giving missing justification for the super-Lorentzian behavior of the intermediate line wing. The qualitative validation of the proposed approach is given on the basis of a simple empirical model. The obtained results are directly indicative of the necessity to reconsider the existing line wing theory and can guide this consideration.

  12. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  13. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  14. Increased Alpha-Band Power during the Retention of Shapes and Shape-Location Associations in Visual Short-Term Memory

    PubMed Central

    Johnson, Jeffrey S.; Sutterer, David W.; Acheson, Daniel J.; Lewis-Peacock, Jarrod A.; Postle, Bradley R.

    2011-01-01

    Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band (~8–14 Hz) power during the delay period of delayed-recognition short-term memory tasks. These increases have been proposed to reflect the inhibition, for example, of cortical areas representing task-irrelevant information, or of potentially interfering representations from previous trials. Another possibility, however, is that elevated delay-period alpha-band power (DPABP) reflects the selection and maintenance of information, rather than, or in addition to, the inhibition of task-irrelevant information. In the present study, we explored these possibilities using a delayed-recognition paradigm in which the presence and task relevance of shape information was systematically manipulated across trial blocks and electroencephalographic was used to measure alpha-band power. In the first trial block, participants remembered locations marked by identical black circles. The second block featured the same instructions, but locations were marked by unique shapes. The third block featured the same stimulus presentation as the second, but with pretrial instructions indicating, on a trial-by-trial basis, whether memory for shape or location was required, the other dimension being irrelevant. In the final block, participants remembered the unique pairing of shape and location for each stimulus. Results revealed minimal DPABP in each of the location-memory conditions, whether locations were marked with identical circles or with unique task-irrelevant shapes. In contrast, alpha-band power increases were observed in both the shape-memory condition, in which location was task irrelevant, and in the critical final condition, in which both shape and location were task relevant. These results provide support for the proposal that alpha-band oscillations reflect the retention of shape information and/or shape–location associations in short-term memory. PMID:21713012

  15. Microwave absorption properties of flake-shaped Co particles composites at elevated temperature (293-673 K) in X band

    NASA Astrophysics Data System (ADS)

    Wang, Guowu; Li, Xiling; Wang, Peng; Zhang, Junming; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-06-01

    The complex permeability and permittivity of the easy-plane anisotropic Co/polyimide composite at high temperature (293-673 K) in X band were measured. The results show that both the complex permeability and permittivity increase with the increase of temperature in the measured temperature range. The calculated absorption properties display that the intensity of the reflection loss (RL) peak first increases and then decreases with the increase of temperature, and reaches the maximum (-52 dB) at 523 K. At each temperature, the composite can achieve the RL exceeding -10 dB in the whole X band. The composite can even work stably for more than 20 min with the excellent absorption performance under 673 K. In addition, the RL performance of the composite at high temperature is better than that at room temperature.

  16. Design of an ultra-thin absorption layer with magnetic materials based on genetic algorithm at the S band

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Yang, Xiaoning; Liu, Xiaoning; Niu, Tiaoming; Wang, Jing; Mei, Zhonglei; Jian, Yabin

    2018-04-01

    In this work, we design an ultra-thin absorption coating at the S band, and the total thickness is less than 2 mm. For incident angle less than 30 degree and the whole S band, the reflection is less than -5 dB. The coating is constructed with 4/3 layers of magnetic material with different thicknesses, which are optimized by using genetic algorithm. Analytic and simulation results confirm the correctness of the design.

  17. Temperature-Induced Large Broadening and Blue Shift in the Electronic Band Structure and Optical Absorption of Methylammonium Lead Iodide Perovskite.

    PubMed

    Yang, Jia-Yue; Hu, Ming

    2017-08-17

    The power conversion efficiency of hybrid halide perovskite solar cells is profoundly influenced by the operating temperature. Here we investigate the temperature influence on the electronic band structure and optical absorption of cubic CH 3 NH 3 PbI 3 from first-principles by accounting for both the electron-phonon interaction and thermal expansion. Within the framework of density functional perturbation theory, the electron-phonon coupling induces slightly enlarged band gap and strongly broadened electronic relaxation time as temperature increases. The large broadening effect is mainly due to the presence of cation organic atoms. Consequently, the temperature-dependent absorption peak exhibits blue-shift position, decreased amplitude, and broadened width. This work uncovers the atomistic origin of temperature influence on the optical absorption of cubic CH 3 NH 3 PbI 3 and can provide guidance to design high-performance hybrid halide perovskite solar cells at different operating temperatures.

  18. Band gap tuning and optical absorption in type-II InAs/GaSb mid infrared short period superlattices: 14 bands K Dot-Operator p study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AbuEl-Rub, Khaled M.

    2012-09-06

    The MBE growth of short-period InAs/GaSb type-II superlattice structures, varied around 20.5 A InAs/24 A GaSb were [J. Applied physics, 96, 2580 (2004)] carried out by Haugan et al. These SLs were designed to produce devices with an optimum mid-infrared photoresponse and a sharpest photoresponse cutoff. We have used a realistic and reliable 14-band k.p formalism description of the superlattice electronic band structure to calculate the absorption coefficient in such short-period InAs/GaSb type-II superlattices. The parameters for this formalism are known from fitting to independent experiments for the bulk materials. The band-gap energies are obtained without any fitting parameters, andmore » are in good agreement with experimental data.« less

  19. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  20. Band structures of TiO2 doped with N, C and B*

    PubMed Central

    Xu, Tian-Hua; Song, Chen-Lu; Liu, Yong; Han, Gao-Rong

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. PMID:16532532

  1. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  2. Band gap opening and optical absorption enhancement in graphene using ZnO nanocluster

    NASA Astrophysics Data System (ADS)

    Monshi, M. M.; Aghaei, S. M.; Calizo, I.

    2018-05-01

    Electronic, optical and transport properties of the graphene/ZnO heterostructure have been explored using first-principles density functional theory. The results show that Zn12O12 can open a band gap of 14.5 meV in graphene, increase its optical absorption by 1.67 times covering the visible spectrum which extends to the infra-red (IR) range, and exhibits a slight non-linear I-V characteristic depending on the applied bias. These findings envisage that a graphene/Zn12O12 heterostructure can be appropriate for energy harvesting, photodetection, and photochemical devices.

  3. Photodissociation dynamics of bromoiodomethane from the first and second absorption bands. A combined velocity map and slice imaging study.

    PubMed

    Marggi Poullain, Sonia; Chicharro, David V; Navarro, Eduardo; Rubio-Lago, Luis; González-Vázquez, Jesús; Bañares, Luis

    2018-01-31

    The photodissociation dynamics of bromoiodomethane (CH 2 BrI) have been investigated at the maximum of the first A and second A' absorption bands, at 266 and 210 nm excitation wavelengths, respectively, using velocity map and slice imaging techniques in combination with a probe detection of both iodine and bromine fragments, I( 2 P 3/2 ), I*( 2 P 1/2 ), Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) via (2 + 1) resonance enhanced multiphoton ionization. Experimental results, i.e. translational energy and angular distributions, are reported and discussed in conjunction with high level ab initio calculations of potential energy curves and absorption spectra. The results indicate that in the A-band, direct dissociation through the 5A' excited state leads to the I( 2 P 3/2 ) channel while I*( 2 P 1/2 ) atoms are produced via the 5A' → 4A'/4A'' nonadiabatic crossing. The presence of Br and Br* fragments upon excitation to the A-band is attributed to indirect dissociation via a curve crossing between the 5A' with upper excited states such as the 9A'. The A'-band is characterized by a strong photoselectivity leading exclusively to the Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) channels, which are likely produced by dissociation through the 9A' excited state. Avoided crossings between several excited states from both the A and A' bands entangle however the possible reaction pathways.

  4. Differentiation between pine woods according to species and growing location using FTIR-ATR.

    PubMed

    Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio

    2018-01-01

    Attenuated total reflectance-Fourier transform infrared (FTIR-ATR) spectroscopy was applied to 120 samples of heartwood rings from eight individual pine trees from different locations in Spain. Pinus sylvestris cores were collected at the Artikutza natural park (Ps-ART). Pinus nigra cores were collected in Sierra de Cazorla (Pn-LIN) and in La Sagra Mountain (Pn-LSA). Three discriminant analysis tests were performed using all bands (DF T ), lignin bands only (DF L ) and polysaccharides bands only (DF P ), to explore the ability of FTIR-ATR to separate between species and growing location. The DF L model enabled a good separation between pine species, whereas the DF P model enabled differentiation for both species and growing location. The DF T model enabled virtually perfect separation, based on two functions involving twelve FTIR bands. Discrimination between species was related to bands at 860 and 1655 cm -1 , which were more intense in P. sylvestris samples, and bands at 1425 and 1635 cm -1 , more intense in P. nigra samples. These vibrations were related to differences in lignin structure and polysaccharide linear chains. Discrimination between growing locations was mainly related to polysaccharide absorptions: at 900, 1085 and 1335 cm -1 more representative of Pn-LIN samples, and at 1105 and 1315 cm -1 mostly associated to Pn-LSA samples. These absorptions are related to β-glycosidic linkages (900 cm -1 ), cellulose and hemicellulose (C-O bonds, 1085 and 1105 cm -1 ) and content in amorphous/crystalline cellulose (1315 and 1335 cm -1 ). These results show that FTIR-ATR in combination with multivariate statistics can be a useful tool for species identification and provenancing for pine wood samples of unknown origin.

  5. Precise ro-vibrational analysis of molecular bands forbidden in absorption: The ν8 +ν10 band of the 12C2H4 molecule

    NASA Astrophysics Data System (ADS)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Kashirina, N. V.; Bauerecker, S.; Horneman, V.-M.

    2015-07-01

    The highly accurate (experimental accuracy in line positions ∼ (1 - 2) ×10-4 cm-1) ro-vibrational spectrum of the ν8 +ν10 band of the 12C2H4 molecule was recorded for the first time with high resolution Fourier transform spectrometry and analyzed in the region of 1650-1950 cm-1 using the Hamiltonian model which takes into account Coriolis resonance interactions between the studied ν8 +ν10 band, which is forbidden in absorption, and the bands ν4 +ν8 and ν7 +ν8 . About 1570 transitions belonging to the ν8 +ν10 band were assigned in the experimental spectra with the maximum values of quantum numbers Jmax. = 35 and Kamax . = 18 . On that basis, a set of 38 vibrational, rotational, centrifugal distortion, and resonance interaction parameters was obtained from the fit. They reproduce values of 598 initial "experimental" ro-vibrational energy levels (positions of about 1570 experimentally recorded and assigned transitions) with the rms error drms = 0.00045 cm-1 (drms = 0.00028 cm-1 when upper ro-vibrational energies obtained from blended and very weak transitions were deleted from the fit).

  6. A study of the structure of the ν1(HF) absorption band of the СH3СN…HF complex

    NASA Astrophysics Data System (ADS)

    Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.

    2015-09-01

    The ν1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ν1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ν7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.

  7. The librational band of water ice in AFGL 961: revisited

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Wright, C. M.

    2011-07-01

    Of all the water ice absorption bands seen in the laboratory, the librational band near 12-13 μ m has proven the most difficult to conclusively identify in observational spectra. Cox reported the detection of this band in the IRAS spectrum of the massive protostar AFGL 961 near 13.6 μ m; however, the details of the structure of the band were limited by the quality of the IRAS spectrum and the accuracy of the subtracted silicate absorption. AFGL 961 is also a double system comprising two point-like components separated by ˜6 arcsec (AFGL 961E and AFGL 961W) so the IRAS aperture included both components - it is unclear how the combination of the intrinsic spectra of these two sources may have affected the resultant IRAS spectrum. In this paper we report Spitzer and European Southern Observatory (ESO) 3.6-m mid-infrared spectroscopic observations of each component of AFGL 961. We find a broad absorption feature near 13.1 μ m common to both AFGL 961E and W. The profile and peak wavelength of this feature are well matched by the laboratory spectrum of the librational band of amorphous H2O ice in the temperature range 10-30 K, in agreement with the Cox result. Both AFGL 961E and W also have strong CO2 ice absorption near 15.2 μ m, indistinguishable in profile between the two. However, AFGL 961E shows silicates in absorption near 9.7 μ m, while AFGL 961W shows polycyclic aromatic hydrocarbons in emission and, in a small aperture, also silicates in emission. Uncertainty in where the true continuum lies in the 8-13 μ m spectral region for both AFGL 961E and W means we cannot rule out the possibility that a combination of silicate emission and absorption could be responsible for at least some of the features we see in this region. In this case, a much weaker librational band could still be present, but not as a distinct feature. In either case, the ice must be located in a cool, outer envelope surrounding both stars or a cool foreground cloud, far enough away that the

  8. A New Satellite Aerosol Retrieval Using High Spectral Resolution Oxygen A-Band Measurements

    NASA Astrophysics Data System (ADS)

    Winker, D. M.; Zhai, P.

    2014-12-01

    Efforts to advance current satellite aerosol retrieval capabilities have mostly focused on polarimetric techniques. While there has been much interest in recent decades in the use of the oxygen A-band for retrievals of cloud height or surface pressure, these techniques are mostly based on A-band measurements with relatively low spectral resolution. We report here on a new aerosol retrieval technique based on high-resolution A-band spectra. Our goal is the development of a technique to retrieve aerosol absorption, one of the critical parameters affecting the global radiation budget and one which is currently poorly constrained by satellite measurements. Our approach relies on two key factors: 1) the use of high spectral resolution measurements which resolve the A-band line structure, and 2) the use of co-located lidar profile measurements to constrain the vertical distribution of scatterers. The OCO-2 satellite, launched in July this year and now flying in formation with the CALIPSO satellite, carries an oxygen A-band spectrometer with a spectral resolution of 21,000:1. This is sufficient to resolve the A-band line structure, which contains information on atmospheric photon path lengths. Combining channels with oxygen absorption ranging from weak to strong allows the separation of atmospheric and surface scattering. An optimal estimation algorithm for simultaneous retrieval of aerosol optical depth, aerosol absorption, and surface albedo has been developed. Lidar profile data is used for scene identification and to provide constraints on the vertical distribution of scatterers. As calibrated OCO-2 data is not expected until the end of this year, the algorithm has been developed and tested using simulated OCO-2 spectra. The simulations show that AOD and surface albedo can be retrieved with high accuracy. Retrievals of aerosol single scatter albedo are encouraging, showing good performance when AOD is larger than about 0.15. Retrieval performance improves as the

  9. Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas.

    PubMed

    Nie, Kui-Ying; Li, Jing; Chen, Xuanhu; Xu, Yang; Tu, Xuecou; Ren, Fang-Fang; Du, Qingguo; Fu, Lan; Kang, Lin; Tang, Kun; Gu, Shulin; Zhang, Rong; Wu, Peiheng; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Ye, Jiandong

    2017-08-08

    Intermediate band solar cells (IBSCs) are conceptual and promising for next generation high efficiency photovoltaic devices, whereas, IB impact on the cell performance is still marginal due to the weak absorption of IB states. Here a rational design of a hybrid structure composed of ZnTe:O/ZnO core-shell nanowires (NWs) with Al bowtie nanoantennas is demonstrated to exhibit strong ability in tuning and enhancing broadband light response. The optimized nanowire dimensions enable absorption enhancement by engineering leaky-mode dielectric resonances. It maximizes the overlap of the absorption spectrum and the optical transitions in ZnTe:O intermediate-band (IB) photovoltaic materials, as verified by the enhanced photoresponse especially for IB states in an individual nanowire device. Furthermore, by integrating Al bowtie antennas, the enhanced exciton-plasmon coupling enables the notable improvement in the absorption of ZnTe:O/ZnO core-shell single NW, which was demonstrated by the profound enhancement of photoluminescence and resonant Raman scattering. The marriage of dielectric and metallic resonance effects in subwavelength-scale nanowires opens up new avenues for overcoming the poor absorption of sub-gap photons by IB states in ZnTe:O to achieve high-efficiency IBSCs.

  10. Type-II GaSb/GaAs quantum-dot intermediate band with extended optical absorption range for efficient solar cells

    NASA Astrophysics Data System (ADS)

    Boustanji, Hela; Jaziri, Sihem

    2018-02-01

    GaSb/GaAs type-II quantum-dot solar cells (QD SCs) have attracted attention as highly efficient intermediate band SCs due to their infrared absorption. Type-II QDs exhibited a staggered confinement potential, where only holes are strongly confined within the dots. Long wavelength light absorption of the QDSCs is enhanced through the improved carriers number in the IB. The absorption of dots depends on their shape, material quality, and composition. Therefore, the optical properties of the GaSbGaAs QDs before and after thermal treatment are studied. Our intraband studies have shown an extended absorption into the long wavelength region 1.77 μ {m}. The annealed QDs have shown significantly more infrared response of 7.2 μ {m} compared to as-grown sample. The photon absorption and hole extraction depend strongly on the thermal annealing process. In this context, emission of holes from localized states in GaSb QDs has been studied using conductance-voltage ( G- V ) characteristics.

  11. Easily Dispersible NiFe2O4/RGO Composite for Microwave Absorption Properties in the X-Band

    NASA Astrophysics Data System (ADS)

    Bateer, Buhe; Zhang, Jianjao; Zhang, Hongchen; Zhang, Xiaochen; Wang, Chunyan; Qi, Haiqun

    2018-01-01

    Composites with good dispersion and excellent microwave absorption properties have important applications. Therefore, an easily dispersible NiFe2O4/reduced graphene oxide (RGO) composite has been prepared conveniently through a simple hydrothermal method. Highly crystalline, small size (about 7 nm) monodispersed NiFe2O4 nanoparticles (NPs) are evenly distributed on the surface of RGO. The microwave absorbability revealed that the NiFe2O4/RGO composite exhibits excellent microwave absorption properties in the X-band (8-12 GHz), and the minimum reflection loss of the NiFe2O4/RGO composite is -27.7 dB at 9.2 GHz. The NiFe2O4/RGO composite has good dispersibility in nonpolar solvent, which facilitates the preparation of stable commercial microwave absorbing coatings. It can be a promising candidate for lightweight microwave absorption materials in many application fields.

  12. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  13. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-07-13

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.

  14. Simple and Low-Cost Dual-Band Printed Microwave Absorber for 2.4- and 5-GHz-Band Applications

    NASA Astrophysics Data System (ADS)

    Khoomwong, Ekajit; Phongcharoenpanich, Chuwong

    2017-10-01

    In this research, a dual-band thin printed-circuit-board (PCB) microwave absorber has been proposed for applications in 2.4 and 5 GHz frequency bands. Each unit cell of the absorber consists of a square ring and a thick cross-dipole, augmented with the tuning elements. In the design process, numerical simulations were performed for the optimal characteristics of the absorber and an absorber prototype was fabricated using the simple print-transferring and etching process. The measured absorption bandwidths (50 %) of 170 MHz (2.36-2.53 GHz) and 830 MHz (5.09-5.92 GHz) were achieved for the first and second bands, respectively, with the wideband characteristic at the second operating band. The absorption rates near the center frequencies (2.45 and 5.5 GHz) were respectively 97.85 % and 97.76 %. The simulation and measured results are in good agreement. Furthermore, the incidence-angle dependencies of the absorber were of moderately wide angles with the absorption capacity of at least 50 % for both operating bands. The proposed absorber is suitable for a variety of applications requiring absorption in the 2.4/5 GHz bands.

  15. Thermodynamic derivatives of infrared absorptance

    NASA Technical Reports Server (NTRS)

    Broersma, S.; Walls, W. L.

    1974-01-01

    Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.

  16. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.

    PubMed

    Wen, Qi-Ye; Xie, Yun-Song; Zhang, Huai-Wu; Yang, Qing-Hui; Li, Yuan-Xun; Liu, Ying-Li

    2009-10-26

    Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.

  17. Modulating the band structure and sub-bandgap absorption of Co-hyperdoped silicon by co-doping with shallow-level elements

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Fang, Xiuxiu; Wang, Yongyong; Song, Xiaohui; Lu, Zhansheng

    2018-06-01

    Hyperdoped group-III elements can lower the Fermi energy in the band structures of Co-hyperdoped silicon. When the Co-to-X (X = B, Al, Ga) ratio is 2:1, the intermediate band (IB) in the bandgap includes the Fermi energy and is partially filled by electrons, which is in accordance with the requirement of an IB material. The hyperdoped X atoms can cause the blueshift of the sub-bandgap absorption of the compound compared with the material with no shallow-level elements, which is due to the enlargement of the electronic excitation energy of the Co,X-co-doped silicon.

  18. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

    NASA Astrophysics Data System (ADS)

    Moriarty, D. P.; Pieters, C. M.

    2016-02-01

    We reexamine the relationship between pyroxene composition and near-infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two-part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene-bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene-bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene-bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low-Ca pyroxene-bearing materials, and (4) feldspathic materials.

  19. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  20. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree

    2014-04-01

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  1. Selective coherent perfect absorption in metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  2. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  3. The ÖX˜ absorption of vinoxy radical revisited: Normal and Herzberg-Teller bands observed via cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Phillip S.; Chhantyal-Pun, Rabi; Kline, Neal D.; Miller, Terry A.

    2010-03-01

    The ÖX˜ electronic absorption spectrum of vinoxy radical has been investigated using room temperature cavity ringdown spectroscopy. Analysis of the observed bands on the basis of computed vibrational frequencies and rotational envelopes reveals that two distinct types of features are present with comparable intensities. The first type corresponds to "normal" allowed electronic transitions to the origin and symmetric vibrations in the à state. The second type is interpreted in terms of excitations to asymmetric à state vibrations, which are only vibronically allowed by Herzberg-Teller coupling to the B˜ state. Results of electronic structure calculations indicate that the magnitude of the Herzberg-Teller coupling is appropriate to produce vibronically induced transitions with intensities comparable to those of the normal bands.

  4. Visible-light absorption and large band-gap bowing of GaN 1-xSb x from first principles

    DOE PAGES

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; ...

    2011-08-01

    Applicability of the Ga(Sb x)N 1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sb x)N 1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sb x)N 1-x alloys could be potential candidates for splitting watermore » under visible light irradiation.« less

  5. The Rovibrational Intensities of the (40 deg 1) and (00 deg 0) Pentad Absorption Bands of 12C16O2 Between 7284 and 7921 cm(exp-1)

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Chackerian, C., Jr.; Spencer, N.; Brown, L. R.; Wattson, R. B.; Gore, Warren J. (Technical Monitor)

    1995-01-01

    Carbon dioxide is the major constituent of the atmospheres of both Mars and Venus. Correct interpretations of spectra of these atmospheres require accurate knowledge of a substantial number of absorption bands of this gas. This is especially true for Venus; many weak CO2 bands that are insignificant in the earth's atmosphere are prominent absorbers in Venus' hot, dense lower atmosphere. Yet, recent near-infrared spectra of Venus' nightside have discovered emission windows, which occur between CO2 absorption bands, at 4040-4550 cm(exp-1), 5700-5900 cm(exp-1), and several smaller ones between 7500 and 9400 cm(exp-1). This radiation is due to thermal emission from Venus' lower atmosphere, diminished by scattering and absorption within the sulfuric acid clouds on its way to space. Simulations of these data with radiative transfer models can provide improved information on the abundances of a number of constituents of the lower atmosphere (e.g. H2O, CO, HDO, HCl, HF, and OCS) and the optical properties of the clouds, whose spatial variation modulates the brightness of the emissions. However, the accuracy of these retrievals has been limited by insufficient knowledge of the opacity of some of the gas species, including CO2, at the large pathlengths and high temperatures and pressures that exist on Venus. In particular, modeling the emission spectrum did not produce a good fit for the emission window centered at 7830 cm(exp-1). In an ongoing effort to assist analyses of these Venus spectra, we have been making laboratory intensity measurements of several weak bands of CO2 which are significant absorbers in these Venus emission windows. The CO2 bands that are prominent in the 7830 cm(exp-1) region belong to the vibrational sequence 4v1+v3 and associated hot bands. Only 2 of the 5 bands of this sequence have been previously measured. Modeling Venus' emission spectrum in the 7830 cm(exp-1) region had to rely on calculated intensity values for the weak ground state band at

  6. Free-end adaptive nudged elastic band method for locating transition states in minimum energy path calculation.

    PubMed

    Zhang, Jiayong; Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang

    2016-09-07

    A free-end adaptive nudged elastic band (FEA-NEB) method is presented for finding transition states on minimum energy paths, where the energy barrier is very narrow compared to the whole paths. The previously proposed free-end nudged elastic band method may suffer from convergence problems because of the kinks arising on the elastic band if the initial elastic band is far from the minimum energy path and weak springs are adopted. We analyze the origin of the formation of kinks and present an improved free-end algorithm to avoid the convergence problem. Moreover, by coupling the improved free-end algorithm and an adaptive strategy, we develop a FEA-NEB method to accurately locate the transition state with the elastic band cut off repeatedly and the density of images near the transition state increased. Several representative numerical examples, including the dislocation nucleation in a penta-twinned nanowire, the twin boundary migration under a shear stress, and the cross-slip of screw dislocation in face-centered cubic metals, are investigated by using the FEA-NEB method. Numerical results demonstrate both the stability and efficiency of the proposed method.

  7. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.

    PubMed

    Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A

    2006-12-15

    We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.

  8. Optical band gap of thermally deposited Ge-S-Ga thin films

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Heera, Pawan; Singh, Bhanu Pratap; Sharma, Raman

    2018-05-01

    Thin films of Ge20S80-xGax glassy alloy, obtained from melt quenching technique, were deposited on the glass substrate by thermal evaporation technique under a high vacuum conditions (˜ 10-5 Torr). Absorption spectrum fitting method (ASF) is employed to obtain the optical band gap from absorption spectra. This method requires only the measurement of the absorption spectrum of the sample. The width of the band tail was also determined. Optical band gap computed from absorption spectra is found to decrease with an increase in Ga content. The evaluated optical band gap (Eg) is in well agreement with the theoretically predicted Eg and obtained from transmission spectra.

  9. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  10. Comparison of band model calculations of upper atmospheric cooling rates for the 15-micrometer carbon dioxide band

    NASA Technical Reports Server (NTRS)

    Boughner, R. E.

    1985-01-01

    Within the atmosphere of the earth, absorption and emission of thermal radiation by the 15-micron CO2 bands are the largest contributors to infrared cooling rates in the stratosphere. Various techniques for calculating cooling rates due to these bands have been described. These techniques can be classified into one of two categories, including 'exact' or line-by-line calculations and other methods. The latter methods are based on broad band emissivity and band absorptance formulations. The present paper has the objective to present comparisons of the considered computational approaches. It was found that the best agreement with the exact line-by-line calculations of Fels and Schwarzkopf (1981) could be obtained by making use of a new Doppler band model which is described in the appendix of the paper.

  11. Decomposition of mineral absorption bands using nonlinear least squares curve fitting: Application to Martian meteorites and CRISM data

    NASA Astrophysics Data System (ADS)

    Parente, Mario; Makarewicz, Heather D.; Bishop, Janice L.

    2011-04-01

    This study advances curve-fitting modeling of absorption bands of reflectance spectra and applies this new model to spectra of Martian meteorites ALH 84001 and EETA 79001 and data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). This study also details a recently introduced automated parameter initialization technique. We assess the performance of this automated procedure by comparing it to the currently available initialization method and perform a sensitivity analysis of the fit results to variation in initial guesses. We explore the issues related to the removal of the continuum, offer guidelines for continuum removal when modeling the absorptions and explore different continuum-removal techniques. We further evaluate the suitability of curve fitting techniques using Gaussians/Modified Gaussians to decompose spectra into individual end-member bands. We show that nonlinear least squares techniques such as the Levenberg-Marquardt algorithm achieve comparable results to the MGM model ( Sunshine and Pieters, 1993; Sunshine et al., 1990) for meteorite spectra. Finally we use Gaussian modeling to fit CRISM spectra of pyroxene and olivine-rich terrains on Mars. Analysis of CRISM spectra of two regions show that the pyroxene-dominated rock spectra measured at Juventae Chasma were modeled well with low Ca pyroxene, while the pyroxene-rich spectra acquired at Libya Montes required both low-Ca and high-Ca pyroxene for a good fit.

  12. Design of triple-band polarization controlled terahertz metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Xie, Qin; Dong, Guangxi; Huang, Wei-Qing

    2018-02-01

    A kind of triple-band polarization tunable terahertz absorber based on a metallic mirror and a metallic patch structure with two indentations spaced by an insulating medium layer is presented. Results prove that three near-perfect absorption peaks with average absorption coefficients of 98.25% are achieved when the polarization angle is equal to zero, and their absorptivities gradually decrease (and even disappear) by increasing the angle of polarization. When the polarization angle is increased to 90°, three new resonance modes with average absorption rates of 96.59% can be obtained. The field distributions are given to reveal the mechanisms of the triple-band absorption and the polarization tunable characteristics. Moreover, by introducing photosensitive silicon materials (its conductivity can be changed by the pump beam) in the indentations of the patch structure, the number of resonance peaks of the device can be actively tuned from triple-band to dual-band. The presented absorbers have potential applications, such as controlling thermal emissivity, and detection of polarization direction of the incident waves.

  13. H i Absorption in the Steep-Spectrum Superluminal Quasar 3C 216.

    PubMed

    Pihlström; Vermeulen; Taylor; Conway

    1999-11-01

    The search for H i absorption in strong compact steep-spectrum sources is a natural way to probe the neutral gas contents in young radio sources. In turn, this may provide information about the evolution of powerful radio sources. The recently improved capabilities of the Westerbork Synthesis Radio Telescope have made it possible to detect a 0.31% (19 mJy) deep neutral atomic hydrogen absorption line associated with the steep-spectrum superluminal quasar 3C 216. The redshift (z=0.67) of the source shifts the frequency of the 21 cm line down to the ultra-high-frequency (UHF) band (850 MHz). The exact location of the H i-absorbing gas remains to be determined by spectral line VLBI observations at 850 MHz. We cannot exclude that the gas might be extended on galactic scales, but we think it is more likely to be located in the central kiloparsec. Constraints from the lack of X-ray absorption probably rule out obscuration of the core region, and we argue that the most plausible site for the H i absorption is in the jet-cloud interaction observed in this source.

  14. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl; Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara; Nojima, S.

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables themore » efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and

  15. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Liu Hao; Lau, Lok Yin; Ren, Wei

    2017-03-01

    We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.

  16. Hydrothermal Synthesis of Reduced Graphene Oxide Using Urea as Reduction Agent: Excellent X-band Electromagnetic Absorption Properties

    NASA Astrophysics Data System (ADS)

    Agusu, L.; Ahmad, L. O.; Alimin; Nurdin, M.; Herdianto; Mitsudo, S.; Kikuchi, H.

    2018-05-01

    We report a strong absorption of microwave energy at X-band (8 GHz to 12 GHz) by N-doped graphene. Attachment of nitrogen on the layered structure of GO improves the reflection loss of GO slab (2.0 mm, thickness) from –10 dB to –25.0 dB with a sharp bandwidth ∼0.3 GHz. As for the broader bandwidth of about 1.4 GHz, reflection loss is –10.5 dB. This significant absorption may take place by improvement of magnetic property of NG through high magnetic coupling of localized spins induced by a defect on the surface of graphene. N atoms play as the electron trapper, easily influenced by self-magnetic moments and incoming electromagnetic fields to produce electric and/or magnetic losses. Here, urea acts as the reducing agent and N atoms donor for graphene oxide in hydrothermal process at a temperature of 190 °C.

  17. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    NASA Astrophysics Data System (ADS)

    Pradhan, Jitendra K.; Behera, Gangadhar; Agarwal, Amit K.; Ghosh, Amitava; Ramakrishna, S. Anantha

    2017-06-01

    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR-LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated.

  18. Absorption of light dark matter in semiconductors

    DOE PAGES

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2017-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derivemore » the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. Finally, with only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.« less

  19. Electromagnetic and Microwave Absorption Properties of the Flake-Shaped Pr-Ho-Fe Alloys in the C-Band

    NASA Astrophysics Data System (ADS)

    Luo, Jialiang; Pan, Shunkang; Qiao, Ziqiang; Cheng, Lichun; Wang, Zhenzhong; Lin, Peihao; Chang, Junqing

    2018-01-01

    The polycrystalline samples Pr x Ho2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) were prepared by arc melting and high-energy ball milling method. The influences of Pr substitution on phase structure, morphology, saturation magnetization and electromagnetic parameters were investigated by x-ray diffraction, scanning electron microscopy, vibrating-sample magnetometry and vector network analyzer, respectively. The results show that the particle size increased and the saturation magnetization decreased with increasing Pr content. The minimum absorption peak frequency shifted towards a lower-frequency region with increasing Pr concentration. The minimum RL of Pr0.3Ho1.7Fe17 powder was -41.03 dB at 6.88 GHz with a coating thickness of 2.0 mm. With different thickness of 1.8-2.8 mm, the minimum reflection loss (RL) of Pr0.3Ho1.7Fe17 powder was less than -20 dB in the whole C-band (4-8 GHz). The microwave-absorbing properties of the composite with different weight ratios of Pr0.3Ho1.7Fe17/Co were researched. The microwave-absorbing peaks of the composites shifted to a lower frequency with increasing Co content. The minimum RL of Pr0.3Ho1.7Fe17/Co(10%) was -42.51 dB at 4.72 GHz with a coating thickness of 2.6 mm. This suggests that the Pr-Ho-Fe will be a promising microwave absorption material in higher-gigahertz frequency, especially in the C-band.

  20. Aerosol column absorption measurements using co-located UV-MFRSR and AERONET CIMEL instruments

    NASA Astrophysics Data System (ADS)

    Krotkov, N.; Labow, G.; Herman, J.; Slusser, J.; Tree, R.; Janson, G.; Durham, B.; Eck, T.; Holben, B.

    2009-08-01

    Column aerosol absorption properties in the visible wavelengths are measured routinely in worldwide locations by NASA AERONET network (http://aeronet.gsfc.nasa.gov), while similar optical properties in UV can be derived from diffuse and global irradiance measurements measured with Multifilter Rotating Shadowband Radiometer (MFRSR) instruments of the USDA UV-MFRSR network (http://uvb.nrel.colostate.edu). To enable direct comparisons between the two techniques, we have modified our UV-MFRSR by replacing standard 300nm filter with 440nm filter used in AERONET network. The modified UV/VIS-MFRSR has been mostly deployed at AERONET calibration site at NASA GSFC in Greenbelt, MD, but also at number of field campaigns. While the UV-MSFRSR instrument is highly susceptible to calibration drifts, these drifts can be accurately assessed using co-located AERONET direct-sun AOT data. In 2006 quartz dome has been installed atop the MFRSR diffuser, which stabilized calibration drifts in 2007-2009. After correcting for remaining calibration changes, the AOT and single scattering albedo (SSA) at the UV wavelengths can be accurately inferred by fitting the measurements of global and diffuse atmospheric transmittances with the forward RT model at each UV-MFRSR spectral channel. Derived AOT and SSA at common wavelength 440nm by two different techniques are generally in good agreement. We also found that SSA becomes smaller in the UV wavelengths and has strong wavelength dependence across blue and near-UV spectral range. The measured enhanced UV absorption might suggest the presence of selectively UV absorbing aerosols. High spectral resolution SSA measurements in UV-VIS wavelengths are called for.

  1. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  2. Design of a Ka-Band Propagation Terminal for Atmospheric Measurements in Polar Regions

    NASA Technical Reports Server (NTRS)

    Houts, Jacquelynne R.; Nessel, James A.; Zemba, Michael J.

    2016-01-01

    This paper describes the design and performance of a Ka-Band beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed alongside an existing Ka-Band Radiometer [2] located at the east end of the Svalbard Near Earth Network (NEN) complex. The goal of this experiment is to characterize rain fade attenuation to improve the performance of existing statistical rain attenuation models. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation [3] receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation by directly measuring the propagated signal from the satellite Thor 7.

  3. Design of a Ka-band Propagation Terminal for Atmospheric Measurements in Polar Regions

    NASA Technical Reports Server (NTRS)

    Houts, Jacquelynne R.; Nessel, James A.; Zemba, Michael J.

    2016-01-01

    This paper describes the design and performance of a Ka-Band beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed alongside an existing Ka-Band Radiometer located at the east end of the Svalbard Near Earth Network (NEN) complex. The goal of this experiment is to characterize rain fade attenuation to improve the performance of existing statistical rain attenuation models. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation by directly measuring the propagated signal from the satellite Thor 7.

  4. Investigation of TM Band-to-band Registration Using the JSC Registration Processor

    NASA Technical Reports Server (NTRS)

    Yao, S. S.; Amis, M. L.

    1984-01-01

    The JSC registration processor performs scene-to-scene (or band-to-band) correlation based on edge images. The edge images are derived from a percentage of the edge pixels calculated from the raw scene data, excluding clouds and other extraneous data in the scene. Correlations are performed on patches (blocks) of the edge images, and the correlation peak location in each patch is estimated iteratively to fractional pixel location accuracy. Peak offset locations from all patches over the scene are then considered together, and a variety of tests are made to weed out outliers and other inconsistencies before a distortion model is assumed. Thus, the correlation peak offset locations in each patch indicate quantitatively how well the two TM bands register to each other over that patch of scene data. The average of these offsets indicate the overall accuracies of the band-to-band registration. The registration processor was also used to register one acquisition to another acquisition of multitemporal TM data acquired over the same ground track. Band 4 images from both acquisitions were correlated and an rms error of a fraction of a pixel was routinely obtained.

  5. Intrinsic defect oriented visible region absorption in zinc oxide films

    NASA Astrophysics Data System (ADS)

    Rakhesh, V.; Shankar, Balakrishnan

    2018-05-01

    Zinc Oxide films were deposited on the glass substrate using vacuum arc sputtering technology. Films were prepared in oxygen ambience for 10mA and 15 mA deposition current separately. The UV-Visible spectroscopy of the samples showed that both samples possess sharp absorption near 3.5eV which is the characteristic band gap absorption energy of ZnO films. The absorption coefficient were calculated for the samples and the (αℎϑ)2 vs energy plot is drawn. The plot suggested that in addition to the sharp band edge absorption, the sample prepared at 10mA deposition current showed sharp absorption edge near 1.51eV and that at 15 mA showed absorption edge near 1.47eV. This refers to the presence of an intrinsic defect level which is likely to be deep in the band gap.

  6. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems

    NASA Astrophysics Data System (ADS)

    Hu, Haiyang; Wang, Qiang

    2018-07-01

    A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.

  7. Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser.

    PubMed

    Sonnenfroh, D M; Allen, M G

    1997-10-20

    We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 mum, which probes isolated transitions in the second overtone (3, 0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 10(6) by volume for a meter path (ppmv-m), assuming a minimum measurable absorbance of 10(-5). Initial H(2) -air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv-m could be achieved with optimum baseline correction.

  8. Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8- m room-temperature diode laser

    NASA Astrophysics Data System (ADS)

    Sonnenfroh, David M.; Allen, Mark G.

    1997-10-01

    We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 m, which probes isolated transitions in the second overtone (3,0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 10 6 by volume for a meter path (ppmv m), assuming a minimum measurable absorbance of 10 5 . Initial H 2 air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv m could be achieved with optimum baseline correction.

  9. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less

  10. Omnidirectional polarization insensitive tunable absorption in graphene metamaterial of nanodisk structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Bao, Jie; Jiao, Zheng; Xu, Yuan

    2015-11-01

    Tunable absorption based on graphene metamaterial with nanodisk structure at near-infrared frequency was investigated using the finite difference time domain method. The absorption of the nanodisk structure which consisting of Au-MgF2-graphene-Au-polyimide (from bottom to top) can be tuned by the chemical potential of graphene at certain diameter of nanodisk. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. It is shown that the increased value of the chemical potential of graphene can lead to blue-shifted of the absorption peaks and the values decreased. Moreover, dual-band and triple-band absorption can be achieved for resonance frequencies at normal incidence. Compared with diameter of nanodisks, the multilayer structure shows multi-band absorber, and an omnidirectional absorption at 195.25 THz is insensitive to TE/TM polarization. This omnidirectional polarization insensitive absorption may be applied by optical communications such as optical absorber, near infrared stealth, and filter.

  11. Photo-induced intersubband absorption in {Si}/{SiGe} quantum wells

    NASA Astrophysics Data System (ADS)

    Boucaud, P.; Gao, L.; Visocekas, F.; Moussa, Z.; Lourtioz, J.-M.; Julien, F. H.; Sagnes, I.; Campidelli, Y.; Badoz, P.-A.; Vagos, P.

    1995-12-01

    We have investigated photo-induced intersubband absorption in the valence band of {Si}/{SiGe} quantum wells. Carriers are optically generated in the quantum wells using an argon ion laser. The resulting infrared absorption is probed with a step-scan Fourier transform infrared spectrometer. The photo-induced infrared absorption in SiGe quantum wells is dominated by two contributions: the free carrier absorption, which is similar to bulk absorption in a uniformly doped SiGe layer, and the valence subband absorption in the quantum wells. Both p- and s-polarized intersubband absorptions are measured. We have observed that the photo-induced intersubband absorption in doped samples is shifted to lower energy as compared to direct intersubband absorption. This absorption process is attributed to carriers away from the Brillouin zone center. We show that the photo-induced technique is appropriate to study valence band mixing effects and their influence on intersubband absorption.

  12. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  13. Combinatorial Broadening Mechanism of O-H Stretching Bands in H-Bonded Molecular Clusters

    NASA Astrophysics Data System (ADS)

    Pitsevich, G. A.; Doroshenko, I. Yu.; Pogorelov, V. E.; Pettersson, L. G. M.; Sablinskas, V.; Sapeshko, V. V.; Balevicius, V.

    2016-07-01

    A new mechanism for combinatorial broadening of donor-OH stretching-vibration absorption bands in molecular clusters with H-bonds is proposed. It enables the experimentally observed increase of the O-H stretching-vibration bandwidth with increasing number of molecules in H-bonded clusters to be explained. Knowledge of the half-width of the OH stretching-vibration absorption band in the dimer and the number of H-bonds in the analyzed cluster is suffi cient in the zeroth-order approximation to estimate the O-H stretching-absorption bands in clusters containing several molecules. Good agreement between the calculated and published experimental half-widths of the OH stretching-vibration absorption bands in MeOH and PrOH clusters was obtained using this approach.

  14. An ultra-thin compact polarization-independent hexa-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Munaga, Praneeth; Bhattacharyya, Somak; Ghosh, Saptarshi; Srivastava, Kumar Vaibhav

    2018-04-01

    In this paper, an ultra-thin compact hexa-band metamaterial absorber has been presented using single layer of dielectric. The proposed design is polarization independent in nature owing to its fourfold symmetry and exhibits high angular stability up to 60° angles of incidences for both TE and TM polarizations. The structure is ultrathin in nature with 2 mm thickness, which corresponds to λ/11.4 ( λ is the operating wavelength with respect to the highest frequency of absorption). Six distinct absorption frequencies are obtained from the design, which can be distributed among three regions, namely lower band, middle band and higher band; each region consists of two closely spaced frequencies. Thereafter, the dimensions of the proposed structure are adjusted in such a way that bandwidth enhancement occurs at each region separately. Simultaneous bandwidth enhancements at middle and higher bands have also been achieved by proper optimization of the geometrical parameters. The structure with simultaneous bandwidth enhancements at X- and Ku-bands is later fabricated and the experimental absorptivity response is in agreement with the simulated one.

  15. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in ordermore » to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.« less

  16. Perfect narrow band absorber for sensing applications.

    PubMed

    Luo, Shiwen; Zhao, Jun; Zuo, Duluo; Wang, Xinbing

    2016-05-02

    We design and numerically investigate a perfect narrow band absorber based on a metal-metal-dielectric-metal structure which consists of periodic metallic nanoribbon arrays. The absorber presents an ultra narrow absorption band of 1.11 nm with a nearly perfect absorption of over 99.9% in the infrared region. For oblique incidence, the absorber shows an absorption more than 95% for a wide range of incident angles from 0 to 50°. Structure parameters to the influence of the performance are investigated. The structure shows high sensing performance with a high sensitivity of 1170 nm/RIU and a large figure of merit of 1054. The proposed structure has great potential as a biosensor.

  17. Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption.

    PubMed

    Wang, Zhijiang; Wu, Lina; Zhou, Jigang; Jiang, Zhaohua; Shen, Baozhong

    2014-11-07

    A chemoselective route to induce Fe3O4@ZnO core-shell nanoparticles decorating carbon nanotubes to form MWCNT/Fe3O4@ZnO heterotrimers has been developed. Charges are redistributed in the heterotrimers through C-O-Zn, C-O-Fe and Fe-O-Zn bondings, giving rise to multiple electronic phases. The generated significant interfacial polarization and synergetic interaction between dielectric and magnetic absorbers result in the MWCNT/Fe3O4@ZnO heterotrimers with high-performance microwave absorption in an entire X band.

  18. CMOS image sensor with organic photoconductive layer having narrow absorption band and proposal of stack type solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi

    2006-02-01

    Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.

  19. A search for formic acid in the upper troposphere - A tentative identification of the 1105-per cm nu-6 band Q branch in high-resolution balloon-borne solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02-per cm resolution during a balloon flight from Alamogordo, NM (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105 per cm has been tentatively identified in upper tropospheric spectra as due to the nu-6 band Q branch. A preliminary analysis indicates a concentration of about 0.6 ppbv and 0.4 ppbv near 8 and 10 km, respectively.

  20. Location of the valence band maximum in the band structure of anisotropic 1 T'-ReSe2

    NASA Astrophysics Data System (ADS)

    Eickholt, P.; Noky, J.; Schwier, E. F.; Shimada, K.; Miyamoto, K.; Okuda, T.; Datzer, C.; Drüppel, M.; Krüger, P.; Rohlfing, M.; Donath, M.

    2018-04-01

    Transition-metal dichalcogenides (TMDCs) are a focus of current research due to their fascinating optical and electronic properties with possible technical applications. ReSe2 is an interesting material of the TMDC family, with unique anisotropic properties originating from its distorted 1 T structure (1 T '). To develop a fundamental understanding of the optical and electric properties, we studied the underlying electronic structure with angle-resolved photoemission (ARPES) as well as band-structure calculations within the density functional theory (DFT)-local density approximation (LDA) and GdW approximations. We identified the Γ ¯M¯1 direction, which is perpendicular to the a axis, as a distinct direction in k space with the smallest bandwidth of the highest valence band. Using photon-energy-dependent ARPES, two valence band maxima are identified within experimental limits of about 50 meV: one at the high-symmetry point Z , and a second one at a non-high-symmetry point in the Brillouin zone. Thus, the position in k space of the global valence band maximum is undecided experimentally. Theoretically, an indirect band gap is predicted on a DFT-LDA level, while quasiparticle corrections lead to a direct band gap at the Z point.

  1. Temperature-dependence laws of absorption line shape parameters of the CO2 ν3 band

    NASA Astrophysics Data System (ADS)

    Wilzewski, J. S.; Birk, M.; Loos, J.; Wagner, G.

    2018-02-01

    To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν3 rovibrational band of CO2 perturbed by 10, 30, 100, 300 and 1000 mbar of N2 were recorded at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR. This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range.

  2. Spectroscopic study of hafnium silicate alloys prepared by RPECVD: Comparisons between conduction/valence band offset energies and optical band gaps

    NASA Astrophysics Data System (ADS)

    Hong, Joon Goo

    Aggressive scaling of devices has continued to improve MOSFET transistor performance. As lateral device dimensions continue to decrease, gate oxide thickness must be scaled down. As one of the promising high k alternative gate oxide materials, HfO2 and its silicates were investigated to understand their direct tunneling behavior by studying band offset energies with spectroscopy and electrical characterization. Local bonding change of remote plasma deposited (HfO2)x(SiO 2)1-x alloys were characterized by Fourier transform infrared (FTIR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) as a function of alloy composition, x. Two different precursors with Hf Nitrato and Hf-tert-butoxide were tested to have amorphous deposition. Film composition was determined off-line by Rutherford backscattering spectroscopy (RBS) and these results were calibrated with on-line AES. As deposited Hf-silicate alloys were characterized by off-line XPS and AES for their chemical shifts interpreting with a partial charge transfer model as well as coordination changes. Sigmoidal dependence of valence band offset energies was observed. Hf 5d* state is fixed at the bottom of the conduction band and located at 1.3 +/- 0.2 eV above the top of the Si conduction band as a conduction band offset by x-ray absorption spectroscopy (XAS). Optical band gap energy changes were observed with vacuum ultra violet spectroscopic ellipsometry (VUVSE) to verify compositional dependence of conduction and valence band offset energy changes. 1 nm EOT normalized tunneling current with Wentzel-Kramer-Brillouin (WKB) simulation based on the band offset study and Franz two band model showed the minimum at the intermediate composition matching with the experimental data. Non-linear trend in tunneling current was observed because the increases in physical thickness were mitigated by reductions in band offset energies and effective mass for tunneling. C-V curves were compared

  3. Two Photon Absorption And Refraction in Bulk of the Semiconducting Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Vinay; Department of Physics, DCRUST Murthal, Haryana; Kumar, Vinod

    2011-10-20

    Fast electronic detection systems have opened up a number of new fields like nonlinear optics, optical communication, coherent optics, optical bistability, two/four wave mixing. The interest in this field has been stimulated by the importance of multiphoton processes in many fundamental aspects of physics. It has proved to be an invaluable tool for determining the optical and electronic properties of the solids because of the fact that one gets the information about the bulk of the material rather than the surface one. In this paper we report, the measurement of the nonlinear absorption and refraction from the band gap tomore » half-band gap region of bulk of semiconductors in the direct and indirect band gap crystals with nanosecond laser. The measured theoretical calculated values of two-photon absorption coefficients ({beta}) and nonlinear refraction n{sub 2}({omega}) of direct band gap crystal match the earlier reported theoretical predictions. By making use of these theoretical calculated values, we have estimated {beta} and n{sub 2}({omega}) in the case of indirect band gap crystals. Low value of absorption coefficient in case of indirect band gap crystals have been attributed to phonon assisted transition while reduction in nonlinear refraction is due to the rise in saturation taking place in the absorption.« less

  4. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.

    PubMed

    Nozawa, Tomohiro; Takagi, Hiroyuki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2015-07-08

    We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.

  5. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  6. Mean absorption coefficients of He/Ar/N2/(C1-x-y , Ni x , Co y ) thermal plasmas for CNT synthesis

    NASA Astrophysics Data System (ADS)

    Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.

    2017-01-01

    In this paper, we present the mean absorption coefficients (MACs) calculated for plasma mixtures of argon-helium-nitrogen-carbon-nickel-cobalt at 60 kPa and in a temperature range from 1 kK to 20 kK. These coefficients have been computed under the assumption of a local thermodynamic equilibrium (LTE), isothermal plasma, including atomic and molecular continuum, molecular bands and lines radiation splitted into nine spectral intervals. The results show that the continuum absorption coefficients strongly depend on photodissociation and photoionization processes of the molecular species N2, CN and C2, with a significant effect on photodetachment processes of C- in a frequency interval lower than 1  ×  1015 Hz and for low temperature (<6 kK). While at high temperature, the main contribution in continuum absorption coefficient comes from radiative recombination processes except in the infrared region (<0.5  ×  1015 Hz) where the inverse bremsstrahlung represents the most important component in continuum processes for all temperature values. On the other hand, the calculation of MAC shows that the role of molecular continuum, molecular bands and line absorption of the neutral catalysis species Ni/Co are only important in a small range of temperature and in a few spectral bands located in visible and infrared regions, while at high temperature and in UV and visible regions, the foremost contributions to MAC come from atomic continuum and line absorption.

  7. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.

    PubMed

    Jiang, Zhi Hao; Yun, Seokho; Toor, Fatima; Werner, Douglas H; Mayer, Theresa S

    2011-06-28

    Metamaterials offer a new approach to create surface coatings with highly customizable electromagnetic absorption from the microwave to the optical regimes. Thus far, efficient metamaterial absorbers have been demonstrated at microwave frequencies, with recent efforts aimed at much shorter terahertz and infrared wavelengths. The present infrared absorbers have been constructed from arrays of nanoscale metal resonators with simple circular or cross-shaped geometries, which provide a single band response. In this paper, we demonstrate a conformal metamaterial absorber with a narrow band, polarization-independent absorptivity of >90% over a wide ±50° angular range centered at mid-infrared wavelengths of 3.3 and 3.9 μm. The highly efficient dual-band metamaterial was realized by using a genetic algorithm to identify an array of H-shaped nanoresonators with an effective electric and magnetic response that maximizes absorption in each wavelength band when patterned on a flexible Kapton and Au thin film substrate stack. This conformal metamaterial absorber maintains its absorption properties when integrated onto curved surfaces of arbitrary materials, making it attractive for advanced coatings that suppress the infrared reflection from the protected surface.

  8. What band rocks the MTB? (Invited)

    NASA Astrophysics Data System (ADS)

    Kind, J.; García-Rubio, I.; Gehring, A. U.

    2013-12-01

    Magnetotactic bacteria (MTB) are a polyphyletic group of bacteria that have been found in marine and lacustrine environments and soils [e.g. 1]. The hallmark of MTB is their intracellular formation of magnetosomes, single-domain ferrimagnetic particles that are aligned in chains. The chain configuration generates a strong magnetic dipole, which is used as magnetic compass to move the MTB into their favorable habit. The term band corresponds to a frequency window of microwaves in the gigahertz (GHz) range. Ferromagnetic resonance (FMR) spectroscopy uses the microwave absorption in a magnetic field to analyze the anisotropy properties and the domain state of magnetic materials. Specific microwave frequency causes absorption in a characteristic magnetic field range. For the investigation of MTB we use S-band (4.02 GHz), X-band (9.47 GHz), and Q-band (34.16 GHz). Experiments on cultured MTB and on sediment samples of Holocene age showed that absorption in X- and Q-band occurs when the sample is in a saturated or nearly saturated state [2, 3]. By contrast, absorption in the S-band appears in lower magnetic fields, where the sample is far from saturation. All FMR spectra show two distinct low-field features that can be assigned to magnetite particles in chains, aligned parallel and perpendicular to the external magnetic field. The detailed separation of the parallel and perpendicular components in the bulk samples is hampered, because of the random orientation of the chains in the sample. The comparison of S-, X-, and Q-band shows that the lower the frequency the better the separation of the components. In the S-band FMR spectroscopy, the separation of chains parallel to the external magnetic field is supported by the internal field of the sample. This field is caused by the remanence that contributes to the external magnetic field to fulfill the resonance condition [3,4]. Considering the different FMR responses, it can be postulated that a lower microwave frequency

  9. Dual-band polarization-/angle-insensitive metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Han; Chongqing University, College of Communication Engineering, Chongqing, 400044; Zhong, Lin-Lin

    A dual-band metamaterial absorber (MA) based on triangular resonators is designed and investigated in this paper. It is composed of a two-dimensional periodic metal-dielectric-metal sandwiches array on a dielectric substrate. The simulation results clearly show that this absorber has two absorption peaks at 14.9 and 18.9 GHz, respectively, and experiments are conducted to verify the proposed designs effectively. For each polarization, the dual-band absorber is insensitive to the incident angle (up to 60°) and the absorption peaks remain high for both transverse electric (TE) and transverse magnetic (TM) radiation. To study the physical mechanism of power loss, the current distributionmore » at the dual absorption peaks is given. The MA proposed in this paper has potential applications in many scientific and martial fields.« less

  10. Infrared absorption and admittance spectroscopy of Ge quantum dots on a strained SiGe layer

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Nikiforov, A. I.; Timofeev, V. A.; Dvurechenskii, A. V.

    2011-12-01

    A combined infrared absorption and admittance spectroscopy is carried out in examining the energy level structure and the hole emission process in self-assembled Ge quantum dots (QDs) placed on a strained Si0.65Ge0.35 quantum well (QW), which, in turn, is incorporated in a Si matrix. In the midinfrared spectral range, the dots exhibit three dominant absorption bands peaked at 130, 250 and 390 meV. By a comparison between absorption measurements and six-band {\\bf k}\\;{\\bm \\cdot}\\;{\\bf p} calculations, the long-wave (~130 meV) resonance is attributed to a transition from the QD hole ground state to the two-dimensional heavy-hole states confined in the Si0.65Ge0.35 layer. The mid-wave absorption band around 390 meV is ascribed to a transition from the QD hole ground state to the three-dimensional continuum states of the Si matrix. An equivalent absorption cross section for these two types of transitions is determined to be 1.2 × 10-15 cm2 and 1.2 × 10-16 cm2, respectively. The origin of the transmission minimum around 250 meV is more ambiguous. We tentatively propose that it can be due to transition either from the highest heavy-hole subband of the Si0.65Ge0.35 QW to continuum states above the Si barrier or from the dot states to the light-hole and split-off subbands of the Si0.65Ge0.35 layer. The photoinduced bleaching of the near-infrared absorption is detected under interband optical excitation of undoped samples. This finding is explained by blocking the interband transitions inside the dots due to the state filling effect. By using the admittance spectroscopy, the mechanism of hole escape from QDs in the presence of an ac vertical electric field is identified. A thermally activated emission from the QD ground state into the two-dimensional states of the Si0.65Ge0.35 well is observed. From the temperature- and frequency-dependent measurements the QD hole ground state is determined to be located ~160 meV below the heavy-hole subband of the Si0.65Ge0

  11. A new photometric ozone reference in the Huggins bands: the absolute ozone absorption cross section at the 325 nm HeCd laser wavelength

    NASA Astrophysics Data System (ADS)

    Janssen, Christof; Elandaloussi, Hadj; Gröbner, Julian

    2018-03-01

    The room temperature (294.09 K) absorption cross section of ozone at the 325 nm HeCd wavelength has been determined under careful consideration of possible biases. At the vacuum wavelength of 325.126 nm, thus in a region used by a variety of ozone remote sensing techniques, an absorption cross-section value of σ = 16.470×10-21 cm2 was measured. The measurement provides the currently most accurate direct photometric absorption value of ozone in the UV with an expanded (coverage factor k = 2) standard uncertainty u(σ) = 31×10-24 cm2, corresponding to a relative level of 2 ‰. The measurements are most compatible with a relative temperature coefficient cT = σ-1 ∂ Tσ = 0.0031 K-1 at 294 K. The cross section and its uncertainty value were obtained using generalised linear regression with correlated uncertainties. It will serve as a reference for ozone absorption spectra required for the long-term remote sensing of atmospheric ozone in the Huggins bands. The comparison with commonly used absorption cross-section data sets for remote sensing reveals a possible bias of about 2 %. This could partly explain a 4 % discrepancy between UV and IR remote sensing data and indicates that further studies will be required to reach the accuracy goal of 1 % in atmospheric reference spectra.

  12. Determination of optical band gap of powder-form nanomaterials with improved accuracy

    NASA Astrophysics Data System (ADS)

    Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul

    2017-10-01

    Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.

  13. Lifetime enhancement for multiphoton absorption in intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Bezerra, Anibal T.; Studart, Nelson

    2017-08-01

    A semiconductor structure consisting of two coupled quantum wells embedded into the intrinsic region of a p-i-n junction is proposed as an intermediate band solar cell with a photon ratchet state, which would lead to increasing the cell efficiency. The conduction subband of the right-hand side quantum well works as the intermediated band, whereas the excited conduction subband of the left-hand side quantum well operates as the ratchet state. The photoelectrons in the intermediate band are scattered through the thin wells barrier and accumulated into the ratchet subband. A rate equation model for describing the charge transport properties is presented. The efficiency of the current generation is analyzed by studying the occupation of the wells subbands, taking into account the charge dynamic behavior provided by the electrical contacts connected to the cell. The current generation efficiency depends essentially from the relations between the generation, recombination rates and the scattering rate to the ratchet state. The inclusion of the ratchet states led to both an increase and a decrease in the cell current depending on the transition rates. This suggests that the coupling between the intermediate band and the ratchet state is a key point in developing an efficient solar cell.

  14. Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications.

    PubMed

    Xie, Qin; Dong, Guangxi; Wang, Ben-Xin; Huang, Wei-Qing

    2018-05-08

    Quad-band terahertz absorber with single-sized metamaterial design formed by a perforated rectangular resonator on a gold substrate with a dielectric gap in between is investigated. The designed metamaterial structure enables four absorption peaks, of which the first three peaks have large absorption coefficient while the last peak possesses a high Q (quality factor) value of 98.33. The underlying physical mechanisms of these peaks are explored; it is found that their near-field distributions are different. Moreover, the figure of merit (FOM) of the last absorption peak can reach 101.67, which is much higher than that of the first three absorption modes and even absorption bands of other works operated in the terahertz frequency. The designed device with multiple-band absorption and high FOM could provide numerous potential applications in terahertz technology-related fields.

  15. Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications

    NASA Astrophysics Data System (ADS)

    Xie, Qin; Dong, Guangxi; Wang, Ben-Xin; Huang, Wei-Qing

    2018-05-01

    Quad-band terahertz absorber with single-sized metamaterial design formed by a perforated rectangular resonator on a gold substrate with a dielectric gap in between is investigated. The designed metamaterial structure enables four absorption peaks, of which the first three peaks have large absorption coefficient while the last peak possesses a high Q (quality factor) value of 98.33. The underlying physical mechanisms of these peaks are explored; it is found that their near-field distributions are different. Moreover, the figure of merit (FOM) of the last absorption peak can reach 101.67, which is much higher than that of the first three absorption modes and even absorption bands of other works operated in the terahertz frequency. The designed device with multiple-band absorption and high FOM could provide numerous potential applications in terahertz technology-related fields.

  16. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  17. Nonlinearly enhanced linear absorption under filamentation in mid-infrared (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shipilo, Daniil; Panov, Nicolay; Andreeva, Vera; Kosareva, Olga G.; Saletski, Alexander M.; Xu, Huai-Liang; Polynkin, Pavel

    2017-05-01

    The mid-infrared OPCPA-based laser facilities have recently reached the critical power for self-focusing in air [1]. This ensures the demonstration of the major difference between the mid- and near-infrared filamentation in air: the odd optical harmonics, harshly suppressed by the material dispersion and phase-mismatch in the near-infrared (800 nm), gain reliable energies in the mid-infrared (3.9 µm) filament [1,2]. Another issue that makes mid-infrared filamentation different from the near-infrared one is a lot of molecular vibrational lines belonging to atmospheric constituents and located in the mid-infrared range [3]. As the result the mid-infrared region of interest becomes subdivided into the bands of normal and anomalous dispersion, the former of which leads to the pulse splitting in temporal domain, while the latter produces the confined light bullet. We simulate the 3.9-µm filamentation using Forward Maxwell equation. We include the tunnel ionization and transient photocurrent as the collapse arresting mechanism, which balances dynamically the instantaneous third-order medium response (similarly to 800-nm filamentation). The key feature that allows us to quantify the losses due to absorption bands is the accurate account of the complex linear absorption index. The absorption index obtained from Mathar model [3] is interpolated to the fine frequency grid (step of about 0.1 THz), and the refractive index is matched according to Kramers-Krönig relations [4]. If the initial Gaussian pulse has a center wavelength of 3.9 µm and a duration of 80 fs FWHM, the energy loss in the carbon dioxide (CO_2) absorption band at 4.3 µm is about 1% in the linear propagation regime. But when we take the 80-mJ pulse (about 3 critical powers for self-focusing), the Kerr-induced spectral broadening develops significantly before the clamping level of intensity is reached. In the collimated beam geometry about 2% of the initial pulse energy is absorbed on the CO_2 band before

  18. On the nature of absorption features toward nearby stars

    NASA Astrophysics Data System (ADS)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-06-01

    Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and

  19. Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen

    2017-03-01

    A novel quad-band terahertz metamaterial absorber using four different modes of single pattern resonator is demonstrated. Four obvious frequencies with near-perfect absorption are realized. Near-field distributions of the four modes are provided to reveal the physical picture of the multiple-band absorption. Unlike most previous quad-band absorbers that typically require four or more patterns, the designed absorber has only one resonant structure, which is simpler than previous works. The presented quad-band absorber has potential applications in biological sensing, medical imaging, and material detection.

  20. Optical Absorption Spectra of Hydrogenated Microcrystalline Silicon Films by Resonant Photothermal Bending Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kunii, Toshie; Yoshida, Norimitsu; Hori, Yasuro; Nonomura, Shuichi

    2006-05-01

    A resonant photothermal bending spectroscopy (PBS) is demonstrated for the measurement of absorption coefficient spectra in hydrogenated microcrystalline silicon (μc-Si:H) and hydrogenated microcrystalline cubic silicon carbide (μc-3C-SiC:H) films. The resonant vibration technique utilized in PBS establishes the sensitivity as α d˜ 5× 10-5 in a vacuum measurement. Appling resonant PBS to μc-Si:H films, a new extra absorption coefficient αex spectrum is observed from 0.6 to 1.2 eV. The αex spectrum has a peak at ˜1.0 eV, and the localized states inducing the αex are located ˜0.35 eV below the conduction band edge of μc-Si:H. A possible explanation for the observed localized state is that an oxidation produces weak bonds at the grain boundaries and/or amorphous silicon tissues. In μc-3C-SiC:H film, an optical band-gap energy of ˜2.2 eV was demonstrated assuming an indirect optical transition. The temperature coefficient of the optical band-gap energy was ˜2.3× 10-4 eV K-1. The αex spectrum of μc-3C-SiC:H film is plateau-shaped and its magnitude is in accord with an increase in grain size.

  1. Atmospheric solar heating rate in the water vapor bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  2. Determination of band gap in epitaxial delafossite Cu oxide using optical techniques

    NASA Astrophysics Data System (ADS)

    Cabrera, Alejandro; Wheatley, R.; Seifert, B.; Wallentowitz, S.; Joshi, T.; Lederman, D.

    Highly epitaxial delafossite CuFeO2 and CuFe1-xGaxO2 films were grown using Pulsed Laser Deposition techniques. The sample thicknesses were estimated to be 21 nm, 75 nm.The estimated gallium fraction of substituted ferric atoms was x =0.25 for the composite sample. We present the study of the fundamental band gap(s) for each sample via observation of their respective optical absorption properties in the NIR-VIS region using transmittance and diffuse reflection spectroscopy. Predominant absorption edges measured were between 1.1eV and 3.1eV from transmittance spectra. The sample of CuFe1-xGaxO2 showed measurable absorption features located at 2.4eV and 2.8eV. This study also found evidence of changes between apparent absorption edges between transmittance and diffuse reflectance spectroscopies of each sample and it may be resultant from absorption channels via surface states. Future photoluminescence experiments are planned to determine the photo-induced semiconductor behavior of these materials. ACNOWLEDGEMENTS: This work was supported by FONDECyT 1130372 and Proyecto Anillo ACT1409 at PUC and supported in part by the WV Higher Education Policy Commission (Grant HEPC.dsr.12.29) and by FAME sponsored by MARCO and DARPA (contract # 2013-MA-2382).

  3. Precise Determination of the Absorption Maximum in Wide Bands

    ERIC Educational Resources Information Center

    Eriksson, Karl-Hugo; And Others

    1977-01-01

    A precise method of determining absorption maxima where Gaussian functions occur is described. The method is based on a logarithmic transformation of the Gaussian equation and is suited for a mini-computer. (MR)

  4. Dependence of the electronic absorption spectra of aqueous solutions of iodine monochloride on the conditions of dilution and storage time

    NASA Astrophysics Data System (ADS)

    Klyubin, V. V.; Klyubina, K. A.; Makovetskaya, K. N.

    2017-04-01

    The electronic absorption spectra of aqueous solutions of iodine monochloride ICl are studied. The spectra of as-prepared solutions display the absorption band associated with hydrated ICl molecules. An additional band indicating that molecular iodine was formed in the solution emerges in the spectrum as dissolution takes place. Only the band belonging to iodine monochloride remains in the absorption spectra, and no additional bands appear after chloride anions Cl- are added to the solution. The absorption spectrum becomes more complex when ICl is dissolved in an alkaline medium. The band belonging to molecular iodine emerges in the spectra at low alkali concentrations, while being transformed to other shorter-wavelength bands at high alkali concentrations (pH ≥ 12).

  5. Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys

    NASA Astrophysics Data System (ADS)

    Jin, Moon-Seog; Kim, Chang-Dae; Jang, Kiwan; Park, Sang-An; Kim, Duck-Tae; Kim, Hyung-Gon; Kim, Wha-Tek

    2006-09-01

    Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys were investigated in the composition region of 0.0 x 0.4 and in the wavelength region of 300 to 2500 nm at 4.8 K and 290 K. We observed several absorption bands in the wavelength regions corresponding to the 4A2(4F) 4T1(4P) transition and the 4A2(4F) 4T1(4F) transition of Co2+ at a tetrahedral Td point symmetry point in the host crystals, as well as unknown absorption bands. The several absorption bands were analyzed in the framework of the crystal-field theory along with the second-order spin-orbit coupling. The unknown absorption bands were assigned as due to phonon-assisted absorption bands. We also investigated the variations of the crystal-field parameter Dq and the Racah parameter B with composition x in the Mgx Cd1-x Se system. The results showed that the crystal-field parameter (Dq ) increases, on the other hand, the Racah parameter (B ) decreases with increasing composition x, which may be connected with an increase in the covalency of the metal-ligand bond with increasing composition x in the Mgx Cd1-x Se system.

  6. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-19

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  7. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacherjee, Aditi, E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Attar, Andrew R., E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2016-03-28

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH{sub 2} =CHCH{sub 2}I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground ({sup 2}P{sub 3/2}, I) and spin-orbit excited ({sup 2}P{sub 1/2}, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N{sub 4/5} edge (45–60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region ofmore » the repulsive n{sub I}σ{sup ∗}{sub C—I} excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ{sup ∗} states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ{sup ∗}(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs–65 fs and decay completely by 145 fs–185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence

  8. Dual-band frequency selective surface with large band separation and stable performance

    NASA Astrophysics Data System (ADS)

    Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo

    2012-05-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.

  9. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  10. Absorption and emission spectra of Li atoms trapped in rare gas matrices

    NASA Astrophysics Data System (ADS)

    Wright, J. J.; Balling, L. C.

    1980-10-01

    Pulsed-dye-laser excitation has been used to investigate the optical absorption and emission spectra of Li atoms trapped in Ar, Kr, and Xe matrices at 10 °K. Attempts to stabilize Li atoms in a Ne matrix at 2 °K were unsuccessful. Results for all three rare gases were qualitatively the same. White light absorption scans showed a single absorption with three peaks centered near the free-atom 2s→2p transition wavelength. The intensity of fluorescence produced by dye-laser excitation within this absorption band was measured as a function of emission wavelength. Excitation of the longest- and shortest-wavelength absorption peaks produced identical emission profiles, but no distinct fluorescence signal was detected when the laser was tuned to the central absorption peaks, indicating that the apparent absorption triplet is actually the superposition of a singlet and a doublet absorption originating from two different trapping sites. No additional absorption bands were detected.

  11. Optical absorption in disordered monolayer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Ekuma, C. E.; Gunlycke, D.

    2018-05-01

    We explore the combined impact of sulfur vacancies and electronic interactions on the optical properties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that accounts for both randomly distributed sulfur vacancies and the presence of dielectric screening within the material. Second, we parametrize this energy-dependent Hamiltonian from first-principles calculations based on density functional theory and the Green's function and screened Coulomb (GW) method. Third, we apply a first-principles-based many-body typical medium method to determine the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the charge susceptibility χ with its imaginary part being related to the absorbance A . Our results show that an increased vacancy concentration leads to decreased absorption both in the band continuum and from exciton states within the band gap. We also observe increased absorption below the band-gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative agreement with our numerical calculations. This latter increased absorption in the 1.0 -2.5 eV range makes defect engineering of potential interest for solar cell applications.

  12. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    NASA Astrophysics Data System (ADS)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  13. Anomalous absorption of isolated silver nanoparticulate films in visible region of electromagnetic field.

    PubMed

    Kim, Sang Woo; Hui, Bang Jae; Bae, Dong-Sik

    2008-02-01

    Anomalous absorption of isolated silver nanoparticulate films with different morphological patterns prepared by the wet colloidal route and followed by thermal treatment were investigated. A polymer embedded silver nanoparticulate film thermally treated at 200 degrees C showed maximum absorbance at approximately 412 nm. The peak position of the surface plasmon band was slightly different but still consistent with theoretical prediction derived by the Mie theory. An isolated nanopariculate film thermally treated at 300 degrees C showed anomalous absorption. Its maximum absorption band was shifted to green regime of 506.9 nm and the bandwidth at half-maximum absorbance of the surface plasmon band was greatly broadened. The plasmon band and its bandwidth were much deviated compared to the theoretical prediction calculated for the silver nanoparticles in the surrounding medium of air and poly(vinyl pyrrolidone) or soda-lime-silica glass. Even though there was no significant growth of silver nanoparticles during thermal treatment at 300 degrees C, the anomalous absorption was observed. The anomalous absorption was not attributed to effects of particle shape and size but to effects of pores induced by development of a great number of pores in the nanoparticulate film. The anomalous absorption greatly decreased with increase in heating temperature from 400 degrees C to 500 degrees C. The extraordinary plasmon damping of the isolated film decreased and the plasmon absorption band was re-shifted to violet regime of 416 nm because of large decrease in size of particles with dramatic change of pore morphology from circular pores with rim to small continuous pores induced by spontaneous formation of new silver nanoparticles.

  14. Near-infrared diffuse interstellar bands in APOGEE telluric standard star spectra . Weak bands and comparisons with optical counterparts

    NASA Astrophysics Data System (ADS)

    Elyajouri, M.; Lallement, R.; Monreal-Ibero, A.; Capitanio, L.; Cox, N. L. J.

    2017-04-01

    Aims: Information on the existence and properties of diffuse interstellar bands (DIBs) outside the optical domain is still limited. Additional infra-red (IR) measurements and IR-optical correlative studies are needed to constrain DIB carriers and locate various absorbers in 3D maps of the interstellar matter. Methods: We extended our study of H-band DIBs in Apache Point Observatory Galactic Evolution Experiment (APOGEE) Telluric Standard Star (TSS) spectra. We used the strong λ15273 band to select the most and least absorbed targets. We used individual spectra of the former subsample to extract weaker DIBs, and we searched the two stacked series for differences that could indicate additional bands. High-resolution NARVAL and SOPHIE optical spectra for a subsample of 55 TSS targets were additionally recorded for NIR/optical correlative studies. Results: From the TSS spectra we extract a catalog of measurements of the poorly studied λλ15617, 15653, and 15673 DIBs in ≃300 sightlines, we obtain a first accurate determination of their rest wavelength and constrained their intrinsic width and shape. In addition, we studied the relationship between these weak bands and the strong λ15273 DIB. We provide a first or second confirmation of several other weak DIBs that have been proposed based on different instruments, and we add new constraints on their widths and locations. We finally propose two new DIB candidates. Conclusions: We compared the strength of the λ15273 absorptions with their optical counterparts λλ5780, 5797, 6196, 6283, and 6614. Using the 5797-5780 ratio as a tracer of shielding against the radiation field, we showed that the λ15273 DIB carrier is significantly more abundant in unshielded (σ-type) clouds, and it responds even more strongly than the λ5780 band carrier to the local ionizing field. Full Table 5 is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  15. Evidence for sulphur implantation in Europa's UV absorption band

    NASA Technical Reports Server (NTRS)

    Lane, A. L.; Nelson, R. M.; Matson, D. L.

    1981-01-01

    The UV spectral characteristics of the Galilean satellites are investigated (using data from the International Ultraviolet Explorer (IUE) spacecraft) as a function of the orbital position, large-scale areal variability, and temporal dynamics. The discovery of an absorption feature at 280 nm in Europa's reflection spectrum is reported and observations show that the absorption is strongest on the trailing hemisphere (central longitude 270 degrees). The feature resembles SO2 and seems to result from S-O bond formation between deeply implanted sulphur atoms and the adjacent damaged water-ice-lattice. The sulphur supposedly comes from energetic (hundreds of keV) sulphur ions that are present in the Jovian magnetosphere. An appropriate equilibrium condition can be found to match the observed spectral data if sputtering erosion occurs at no greater than approximately 20 meters per one billion years.

  16. An analytic formula for heating due to ozone absorption

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.; Will, D. I.

    1972-01-01

    An attempt was made to devise a simple expression or formula to describe radiative heating in the atmosphere by ozone absorption. Such absorption occurs in the Hartley, Huggins, and Chappuis bands and is only slightly temperature and pressure dependent.

  17. Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of Southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Chan, T. W.; Brook, J. R.; Smallwood, G. J.; Lu, G.

    2010-08-01

    In this study a photoacoustic spectrometer (PA), a laser-induced incandescence instrument system (LII) and an aerosol mass spectrometer were operated in parallel for in situ measurements of black carbon (BC) light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by particle coating while the PA response is enhanced and also that the nature of this enhancement is influenced by particle morphology. Comparisons of ambient PA and LII measurements at four different locations (suburban Toronto; a street canyon with heavy diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario), show that the different meteorological conditions and atmospheric processes result in different particle light absorption enhancement and hence the specific attenuation coefficient (SAC). Depending upon location of measurement and the BC spherule diameter (primary particle size - PPS) measurement from the LII, the SAC varies from 2.6±0.04 to 22.5±0.7 m2 g-1. Observations from this study also show the active surface area of the BC aggregate, inferred from PPS, is an important parameter for inferring the degree of particle collapse of a BC particle. The predictability of the overall BC light absorption enhancement in the atmosphere depends not only on the coating mass but also on the source of the BC and on our ability to predict or measure the change in particle morphology as particles evolve.

  18. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael; Allan, Graham R.; Hasselbrack, William E.; Stephen, Mark A.; Abshire, James B.

    2011-01-01

    We report on airborne measurements of atmospheric pressure using a fiber-laser based lidar operating in the oxygen A-band near 765 nm and the integrated path differential absorption measurement technique. Our lidar uses fiber optic technology and non-linear optics to generate tunable laser radiation at 765 nm, which overlaps an absorption line pair in the Oxygen A-band. We use a pulsed time resolved technique, which rapidly steps the laser wavelength across the absorption line pair, a 20 cm telescope and photon counting detector to measure Oxygen concentrations.

  19. Phonon-assisted optical absorption in BaSnO 3 from first principles

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Dreyer, Cyrus E.; Rabe, Karin M.

    2018-03-01

    The perovskite BaSnO3 provides a promising platform for the realization of an earth-abundant n -type transparent conductor. Its optical properties are dominated by a dispersive conduction band of Sn 5 s states and by a flatter valence band of O 2 p states, with an overall indirect gap of about 2.9 eV . Using first-principles methods, we study the optical properties of BaSnO3 and show that both electron-phonon interactions and exact exchange, included using a hybrid functional, are necessary to obtain a qualitatively correct description of optical absorption in this material. In particular, the electron-phonon interaction drives phonon-assisted optical absorption across the minimum indirect gap and therefore determines the absorption onset, and it also leads to the temperature dependence of the absorption spectrum. Electronic correlations beyond semilocal density functional theory are key to determine the dynamical stability of the cubic perovskite structure, as well as the correct energies of the conduction bands that dominate absorption. Our work demonstrates that phonon-mediated absorption processes should be included in the design of novel transparent conductor materials.

  20. First-principles C band absorption spectra of SO2 and its isotopologues

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Kumar, Praveen; Kłos, Jacek; Alexander, Millard H.; Poirier, Bill; Guo, Hua

    2017-04-01

    The low-energy wing of the C ˜ B12 ←X˜ 1A1 absorption spectra for SO2 in the ultraviolet region is computed for the 32S,33S,34S and 36S isotopes, using the recently developed ab initio potential energy surfaces (PESs) of the two electronic states and the corresponding transition dipole surface. The state-resolved absorption spectra from various ro-vibrational states of SO2(X˜ 1A1 ) are computed. When contributions of these excited ro-vibrational states are included, the thermally averaged spectra are broadened but maintain their key characters. Excellent agreement with experimental absorption spectra is found, validating the accuracy of the PESs. The isotope shifts of the absorption peaks are found to increase linearly with energy, in good agreement with experiment.

  1. Dual-band quantum well infrared photodetector with metallic structure

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Liu, Hongmei; Li, Pingzhou

    2018-02-01

    The quantum efficiency of the dual bands quantum well infrared photodetectors(QWIP) has been widely concerned in recent years. A novel structure for the dual-band quantum well infrared detectors which is based on GaAs/AlGaAs designed in this paper is aimed to improve the absorption efficiency. The structure replaces the conventional grating with a metallic grating based on surface plasmon polaritons(SPPS), and we further insert a metal structure in the periodic quantum well layer. The simulation result shows that the use of the different shapes of the metal holes can remarkably improve the optical coupling efficiency due to the surface plasmon effect. By optimizing parameters of the structure, it can work in the dual infrared bands of 3-5um and 8-12um. Moreover, the absorption rate increased by 20% compared with traditional structure of Dual-band QWIP.

  2. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  3. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  4. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  5. Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations

    NASA Technical Reports Server (NTRS)

    Reagan, John A.; Pilewskie, Peter A.; Scott-Fleming, Ian C.; Herman, Benjamin M.; Ben-David, Avishai

    1987-01-01

    Techniques for extrapolating earth-based spectral band measurements of directly transmitted solar irradiance to equivalent exoatmospheric signal levels were used to aid in determining system gain settings of the Halogen Occultation Experiment (HALOE) sunsensor being developed for the NASA Upper Atmosphere Research Satellite and for the Stratospheric Aerosol and Gas (SAGE) 2 instrument on the Earth Radiation Budget Satellite. A band transmittance approach was employed for the HALOE sunsensor which has a broad-band channel determined by the spectral responsivity of a silicon detector. A modified Langley plot approach, assuming a square-root law behavior for the water vapor transmittance, was used for the SAGE-2 940 nm water vapor channel.

  6. The ammonia absorption behavior on Jupiter during 2005-2015

    NASA Astrophysics Data System (ADS)

    Tejfel, Victor G.; V.G.Tejfel, V.D.Vdovichenko, A.M.Karimov, P.G.Lysenko, , G.A.Kirienko, , V.A.Filippov, G.A.Kharitonova, A.S. Khozhenetz

    2017-10-01

    V.G.Tejfel, V.D.Vdovichenko, A.M.Karimov, P.G.Lysenko, , G.A.Kirienko, , V.A.Filippov, G.A.Kharitonova, A.S. KhozhenetzFessenkov Astrophysical Institute, Almaty, KazakhstanWe measured the intensity of the 645 and 787 nm NH3 absorption bands in five latitudinal belts of Jupiter (STrZ, SEB, EZ, NEB and NTrZ) during almost full period of its revolution around the Sun: from 2005 to 2015. The variations in the equivalent widths of the bands were investigated. The permanently lowered intensity of the 787 nm NH3 band in NEB is confirmed. There are also some systematic differences in latitudinal and temporal variations between the 645 and 787 nm ammonia bands. The equivalent width of the 787 nm NH3 band was averaged for all years of observations. Its maximum (W = 18.95 ± 0.75 A) corresponds to EZ, its minimum (W = 15.82 ± 0.68 A) corresponds to NEB. The 645 nm NH3 band shows the maximum in SEB (W = 6.78 ± 0.45 A), and the minimum in NTrZ (W = 5.38 ± 0.36 A). The weakened ammonia absorption is also observed in the Great Red Spot. However, this is due to the increased density of the clouds inside the Spot storm, but not to decreased gaseous ammonia abundance, in contrast to NEB. The brightness temperature of GRS in the infrared and millimeter ranges of thermal radiation is lower, in contrast to NEB, where an increased brightness temperature is observed. The enhanced cloud density may explain also a pretty high brightness of GRS observed in strong methane absorption bands such as the 887 nm CH4 band and more long waved ones.

  7. Phononic glass: a robust acoustic-absorption material.

    PubMed

    Jiang, Heng; Wang, Yuren

    2012-08-01

    In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.

  8. Spectral Classification of Heavily Reddened Stars by CO Absorption Strength

    NASA Astrophysics Data System (ADS)

    Garling, Christopher; Bary, Jeffrey S.; Huard, Tracy L.

    2017-01-01

    The nature of dust grains in dense molecular clouds can be explored by obtaining spectra of giant stars located behind the clouds and examining the wavelength-dependent attentuation of their light. This approach requires the intrinsic spectra of the background stars to be known, which can be achieved by determining their spectral types. In the K-band spectra of cool giant stars, several temperature-sensitive CO absorption bands serve as good spectral type indicators. Taking advantage of the SpeX Infrared Telescope Facility Spectral Library, near-infrared spectra collected with TripleSpec and the 3.5-meter ARC Telescope at Apache Point Observatory, and a previously constructed CO spectral index, we make precise spectral determinations of 20 giant stars located behind two dense cloud cores: CB188 and L429C. With spectral types in hand, we then utilize Markov Chain Monte Carlo techniques to constrain extinctions along these lines of sight. The spectral typing method will be described and assessed as well as its success at finding a couple of incorrectly spectral typed stars in the SpeX Library. Funding for this program was provided by a NSF REU grant to the Keck Northeast Astronomy Consortium and a grant from the NASA Astrophysics Data Analysis Program.

  9. Dynamically tunable extraordinary light absorption in monolayer graphene

    NASA Astrophysics Data System (ADS)

    Safaei, Alireza; Chandra, Sayan; Vázquez-Guardado, Abraham; Calderon, Jean; Franklin, Daniel; Tetard, Laurene; Zhai, Lei; Leuenberger, Michael N.; Chanda, Debashis

    2017-10-01

    The high carrier mobility of graphene makes it an attractive material for electronics, however, graphene's application for optoelectronic systems is limited due to its low optical absorption. We present a cavity-coupled nanopatterned graphene absorber designed to sustain temporal and spatial overlap between localized surface plasmon resonance and cavity modes, thereby resulting in enhanced absorption up to an unprecedented value of theoretically (60 %) and experimentally measured (45 %) monolayer graphene in the technologically relevant 8-12-μm atmospheric transparent infrared imaging band. We demonstrate a wide electrostatic tunability of the absorption band (˜2 μ m ) by modifying the Fermi energy. The proposed device design allows enhanced absorption and dynamic tunability of chemical vapor deposition grown low carrier mobility graphene which provides a significant advantage over previous strategies where absorption enhancement was limited to exfoliated high carrier mobility graphene. We developed an analytical model that incorporates the coupling of the graphene electron and substrate phonons, providing valuable and instructive insights into the modified plasmon-phonon dispersion relation necessary to interpret the experimental observations. Such gate voltage and cavity tunable enhanced absorption in chemical vapor deposited large area monolayer graphene paves the path towards the scalable development of ultrasensitive infrared photodetectors, modulators, and other optoelectronic devices.

  10. Band-edge absorption coefficients from photoluminescence in semiconductor multiple quantum wells

    NASA Technical Reports Server (NTRS)

    Kost, Alan; Zou, Yao; Dapkus, P. D.; Garmire, Elsa; Lee, H. C.

    1989-01-01

    A novel approach to determining absorption coefficients in thin films using luminescence is described. The technique avoids many of the difficulties typically encountered in measurements of thin samples, Fabry-Perot effects, for example, and can be applied to a variety of materials. The absorption edge for GaAs/AlGaAs multiple quantum well structures, with quantum well widths ranging from 54 to 193 A is examined. Urbach (1953) parameters and excitonic linewidths are tabulated.

  11. Depolarisation of light scattered by disperse systems of low-dimensional potassium polytitanate nanoparticles in the fundamental absorption band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Yuvchenko, S A; Pravdin, A B

    2014-07-31

    The results of experimental studies of depolarising properties of disperse systems on the basis of potassium polytitanate nanoplatelets and nanoribbons in the visible and near-UV spectral regions are presented. It is shown that in the fundamental absorption band of the nanoparticle material the increase in the depolarisation factor takes place for the radiation scattered perpendicularly to the direction of the probing beam. For nanoribbons a pronounced peak of depolarisation is observed, which is caused by the essential anisotropy of the particles shape and the peculiarities of the behaviour of the material dielectric function. The empirical data are compared with themore » theoretical results for 'nanodiscs' and 'nanoneedles' with the model dielectric function, corresponding to that obtained from optical constants of the titanium dioxide dielectric function. (laser biophotonics)« less

  12. Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Bowles, Neil; Braude, Ashwin S.; Garland, Ryan; Calcutt, Simon

    2018-03-01

    Observations of the visible/near-infrared reflectance spectrum of Jupiter have been made with the Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) instrument in the spectral range 0.48-0.93 μm in support of the NASA/Juno mission. These spectra contain spectral signatures of gaseous ammonia (NH3), whose abundance above the cloud tops can be determined if we have reliable information on its absorption spectrum. While there are a number of sources of NH3 absorption data in this spectral range, they cover small sub-ranges, which do not necessarily overlap and have been determined from a variety of sources. There is thus considerable uncertainty regarding the consistency of these different sources when modelling the reflectance of the entire visible/near-IR range. In this paper we analyse the VLT/MUSE observations of Jupiter to determine which sources of ammonia absorption data are most reliable. We find that the band model coefficients of Bowles et al. (2008) provide, in general, the best combination of reliability and wavelength coverage over the MUSE range. These band data appear consistent with ExoMOL ammonia line data of Yurchenko et al. (2011), at wavelengths where they overlap, but these latter data do not cover the ammonia absorption bands at 0.79 and 0.765 μm, which are prominent in our MUSE observations. However, we find the band data of Bowles et al. (2008) are not reliable at wavelengths less than 0.758 μm. At shorter wavelengths we find the laboratory observations of Lutz and Owen (1980) provide a good indication of the position and shape of the ammonia absorptions near 0.552 μm and 0.648 μm, but their absorption strengths appear inconsistent with the band data of Bowles et al. (2008) at longer wavelengths. Finally, we find that the line data of the 0.648 μm absorption band of Giver et al. (1975) are not suitable for modelling these data as they account for only 17% of the band absorption and cannot be extended reliably to the cold

  13. Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Pilewskie, P. A.; Scott-Fleming, I. C.; Hermann, B. M.

    1986-01-01

    Techniques for extrapolating Earth-based spectral band measurements of directly transmitted solar irradiance to equivalent exoatmospheric signal levels were used to aid in determining system gain settings of the Halogen Occultation Experiment (HALOE) sunsensor system being developed for the NASA Upper Atmosphere Research Satellite and for the Stratospheric Aerosol and Gas (SAGE) 2 instrument on the Earth Radiation Budget Satellite. A band transmittance approach was employed for the HALOE sunsensor which has a broad-band channel determined by the spectral responsivity of a silicon detector. A modified Langley plot approach, assuming a square-root law behavior for the water vapor transmittance, was used for the SAGE-2 940 nm water vapor channel.

  14. Ferric iron in primitive asteroids - A 0.43-micron absorption feature

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Hatch, Erin C.; Larson, Stephen M.; Sawyer, Scott R.; Gaffey, Michael J.

    1993-01-01

    A search of reflectance spectra of C- P-, D- and S-class asteroids to hunt for the Soret band near 0.4 micron that is indicative of porphyrins yielded an identification of an 0.43 micron absorption feature in 11 primitive asteroids of the C, P, and G classes and in one S-class asteroid. It is proposed that the feature is an Fe(3+) spin-forbidden transition in aqueously altered material, possibly located near 0.43 micron due to an enhancement effect similar to the mechanism operating in jarosite. The significance of the feature for the aqueous alteration history of these asteroids is addressed.

  15. Relative Band Oscillator Strengths for Carbon Monoxide: Alpha (1)Pi-Chi (1)Sigma(+) Transitions

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Menningen, K. L.; Lee, Wei; Stoll, J. B.

    1997-01-01

    Band oscillator strengths for CO transitions between the electronic states A (l)Pi and X(1)Sigma(+) were measured via absorption with a synchrotron radiation source. When referenced to the well-characterized (5,0) band oscillator strength, our relative values for the (7,0) to (11,0) bands are most consistent with the recent experiments of Chan et al. and the theoretical predictions of Kirby & Cooper. Since the results from various laboratory techniques and theory now agree, analyses of interstellar CO based on absorption from A-X bands are no longer hindered by uncertainties in oscillator strength.

  16. A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.

    PubMed

    Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin

    2018-07-01

    Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. [Acoustic detection of absorption of millimeter-band electromagnetic waves in biological objects].

    PubMed

    Polnikov, I G; Putvinskiĭ, A V

    1988-01-01

    Principles of photoacoustic spectroscopy were applied to elaborate a new method for controlling millimeter electromagnetic waves absorption in biological objects. The method was used in investigations of frequency dependence of millimeter wave power absorption in vitro and in vivo in the commonly used experimental irradiation systems.

  18. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing.

  19. Would the solvent effect be the main cause of band shift in the theoretical absorption spectrum of large lanthanide complexes?

    NASA Astrophysics Data System (ADS)

    Freire, Ricardo O.; Rodrigues, Nailton M.; Rocha, Gerd B.; Gimenez, Iara F.; da Costa Junior, Nivan B.

    2011-06-01

    As most reactions take place in solution, the study of solvent effects on relevant molecular properties - either by experimental or theoretical methods - is crucial for the design of new processes and prediction of technological properties. In spite of this, only few works focusing the influence of the solvent nature specifically on the spectroscopic properties of lanthanide complexes can be found in the literature. The present work describes a theoretical study of the solvent effect on the prediction of the absorption spectra for lanthanide complexes, but other possible relevant factors have been also considered such as the molecular geometry and the excitation window used for interaction configuration (CI) calculations. The [Eu(ETA) 2· nH 2O] +1 complex has been chosen as an ideal candidate for this type of study due to its small number of atoms (only 49) and also because the absorption spectrum exhibits a single band. Two Monte Carlo simulations were performed, the first one considering the [Eu(ETA) 2] +1 complex in 400 water molecules, evidencing that the complex presents four coordinated water molecules. The second simulation considered the [Eu(ETA) 2·4H 2O] +1 complex in 400 ethanol molecules, in order to evaluate the solvent effect on the shift of the maximum absorption in calculated spectra, compared to the experimental one. Quantum chemical studies were also performed in order to evaluate the effect of the accuracy of calculated ground state geometry on the prediction of absorption spectra. The influence of the excitation window used for CI calculations on the spectral shift was also evaluated. No significant solvent effect was found on the prediction of the absorption spectrum for [Eu(ETA) 2·4H 2O] +1 complex. A small but significant effect of the ground state geometry on the transition energy and oscillator strength was also observed. Finally it must be emphasized that the absorption spectra of lanthanide complexes can be predicted with great accuracy

  20. Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin

    2017-12-01

    Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.

  1. An experimental study of the electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles and their electrosynthesized polymers.

    PubMed

    Diaw, A K D; Gningue-Sall, D; Yassar, A; Brochon, J-C; Henry, E; Aaron, J-J

    2015-01-25

    Electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles (N-PhPys), including HOPhPy, MeOPhPy, ThPhPy, PhDPy, DPhDPy, PyPhThThPhPy, and their available, electrosynthesized polymers were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), and other photophysical parameters of these N-PhPy derivatives and their polymers were measured in DMF, DMSO diluted solutions and/or solid state at room temperature. The electronic absorption spectra of N-PhPy derivatives and their polymers included one to several bands, located in the 270-395 nm region, according to the p-phenyl substituent electron-donating effect and conjugated heteroaromatic system length. The fluorescence excitation spectra were characterized by one broad main peak, with, in most cases, one (or more) poorly resolved shoulder (s), appearing in the 270-405 nm region, and their emission spectra were generally constituted of several bands located in the 330-480 nm region. No significant shift of the absorption, fluorescence excitation and emission spectra wavelengths was found upon going from the monomers to the corresponding polymers. ΦF values were high, varying between 0.11 and 0.63, according to the nature of substituents(s) and to the conjugated system extension. Fluorescence decays were mono-exponential for the monomers and poly-exponential for PyPhThThPhPy and for polymers. τF values were relatively short (0.35-5.17 ns), and markedly decreased with the electron-donor character of the phenyl group p-substituent and the conjugated system extension. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Efficient Sub-Bandgap Light Absorption and Signal Amplification in Silicon Photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsin

    This thesis focuses on two areas in silicon photodetectors, the first being enhancing the sub-bandgap light absorption of IR wavelenghts in silicon, and the second being intrinsic signal amplification in silicon photodetectors. Both of these are achieved using heavily doped p-n junction devices which create localized states that relax the k-selection rule of indirect bandgap material. The probability of transitions between impurity band and the conduction/valence band would be much more efficient than the one between band-to-band transition. The waveguide-coupled epitaxial p-n photodetector was demonstrated for 1310 nm wavelength detection. Incorporated with the Franz-Keldysh effect and the quasi-confined epitaxial layer design, an absorption coefficient around 10 cm-1 has been measured and internal quantum efficiency nearly 100% at -2.5V. The absorption coefficient is calculated from the wave function of the electron and hole in p-n diode. The heavily doped impurity wave function can be formulated as a delta function, and the quasi-confined conduction band energy states, and the wave function on each level can be obtained from the Silvaco software. The calculated theoretical absorption coefficient increases with the increasing applied bias and the doping concentration, which matches the experimental results. To solve the issues of large excess noise and high operation bias for avalanche photodiodes based on impact ionization, I presented a detector using the Cycling Excitation Process (CEP) for signal amplification. This can be realized in a heavily doped and highly compensated Si p-n junction, showing ultra high gain about 3000 at very low bias (<4 V), and possessing an intrinsic, phonon-mediated regulation process to keep the device stable without any quenching device required in today's Geiger-mode avalanche detectors. The CEP can be formulated with the rate equations in conduction bands and impurity states. The gain expression, which is a function of the

  3. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  4. A dual-band THz absorber based on graphene sheet and ribbons

    NASA Astrophysics Data System (ADS)

    Xing, Rui; Jian, Shuisheng

    2018-03-01

    A dual-band graphene absorber is proposed and investigated in this paper. The absorber consists of the gold substrate, the graphene sheet sandwiched by dielectric layers and the array of graphene ribbon placed on the top. The two absorption peaks of the dual-band are 99.8% at 4.95 THz and 99.6% at 9.2 THz, respectively. Due to the characteristic of tunable surface conductivity of graphene, the absorption can be controlled by adjusting the chemical potential of graphene. We also investigate the dependence of the absorption curve of the proposed absorber on the structure parameters. In addition, the structure of the absorber is very simple and it can be manufactured by chemical vapor deposition (CVD).

  5. The two-photon absorptivity of rotational transitions in the A2 Sigma hyperon + (v prime = O) - X-2 pion (v prime prime = O) gamma band of nitric oxide

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1982-01-01

    A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.

  6. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  7. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  8. Analysis of Mars surface hydration through the MEx/OMEGA observation of the 3 μm absorption band.

    NASA Astrophysics Data System (ADS)

    Jouglet, D.; Poulet, F.; Bibring, J. P.; Langevin, Y.; Gondet, B.; Milliken, R. E.; Mustard, J. F.

    The near infrared Mars surface global mapping done by OMEGA gives the first opportunity to study the global and detailed characteristics of the 3µm hydration absorption band on Mars surface. This feature is indistinctly due to bending and stretching vibrations of water bound in minerals or adsorbed at their surface, and of hydroxyl groups (for a review, see e.g. [1] or [2]). Its study may give new elements to determine the geologic and climatic past of Mars, and may put new constrain about the current water cycle of Mars. OMEGA data are processed in a pipeline that converts raw data to radiance, removes atmospheric effects and gets I/F. Specific data reduction scheme has been developed to assess temperature of OMEGA spectra at 5 µm and to remove their thermal part so as to get the albedo from 1.µm to 5.1µm ([2]). Two methods, the Integrated Band Depth and the water content based on comparison with laboratory measures of Yen et al. ([3]), have been used to assess the 3µm band depth. These two methods where applied to OMEGA spectra acquired at a nominal calibration level and not exhibiting water ice features. This corresponds to approximately 35 million spectra ([2]). The data processed show the presence of this absorption feature overall the Martian surface, which could be explained by the presence of adsorbed water up to 1% water mass percentage ([4]) and by rinds or coating resulting from weathering (see e.g. [5] or [6]). A possible increase of hydration with albedo is discussed so as to discriminate between the albedo-dependence of the method and hydration variations. Terrains enriched in phyllosilicates ([7]), sulfates ([8]) or hydroxides exhibit an increased hydration at 3 µm. This terrains show that the 3 µm band can bring additional information about composition, for example by observing a variation in the shape of the band. A decrease of hydration with elevation is observed on the processed data independently of the value of albedo. This correlation

  9. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R., E-mail: krp@northwestern.edu

    2016-08-15

    The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectramore » of Sn-doped In{sub 2}O{sub 3} (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In{sub 2}O{sub 3} single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.« less

  10. Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?

    NASA Astrophysics Data System (ADS)

    Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran

    2008-09-01

    The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.

  11. Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion.

    PubMed

    Wakamatsu, Takashi; Watanabe, Keita; Saito, Kazuhiro

    2005-02-20

    Complex-refractive-index spectra of Squarylium (SQ) dye-aggregate films deposited upon metal films have been investigated by measurements of properties of the films including absorption spectra (AS) and attenuated total reflection. Complex refractive indices are estimated by Kramers-Kronig analysis for the AS and by a theoretical curve-fitting analysis for attenuated total reflection. The dye-aggregate films exhibited an absorption that was blueshifted from that of a monomer, as a result of the H-aggregate formation of SQ molecules, and had a changing refractive index with anomalous dispersion about the H-absorption band. From both measurements of the SQ films it was found that there is a region of low absorption in the short-wavelength side of the absorption band and that the refractive index there is lower than that of glass.

  12. Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Takashi; Watanabe, Keita; Saito, Kazuhiro

    2005-02-01

    Complex-refractive-index spectra of Squarylium (SQ) dye-aggregate films deposited upon metal films have been investigated by measurements of properties of the films including absorption spectra (AS) and attenuated total reflection. Complex refractive indices are estimated by Kramers-Kronig analysis for the AS and by a theoretical curve-fitting analysis for attenuated total reflection. The dye-aggregate films exhibited an absorption that was blueshifted from that of a monomer, as a result of the H-aggregate formation of SQ molecules, and had a changing refractive index with anomalous dispersion about the H-absorption band. From both measurements of the SQ films it was found that there is a region of low absorption in the short-wavelength side of the absorption band and that the refractive index there is lower than that of glass.

  13. Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption

    DOE PAGES

    Slavney, Adam H.; Leppert, Linn; Bartesaghi, Davide; ...

    2017-03-29

    In this study, halide double perovskites have recently been developed as less toxic analogs of the lead perovskite solar-cell absorbers APbX 3 (A = monovalent cation; X = Br or I). However, all known halide double perovskites have large bandgaps that afford weak visible-light absorption. The first halide double perovskite evaluated as an absorber, Cs 2AgBiBr 6 (1), has a bandgap of 1.95 eV. Here, we show that dilute alloying decreases 1’s bandgap by ca. 0.5 eV. Importantly, time-resolved photoconductivity measurements reveal long-lived carriers with microsecond lifetimes in the alloyed material, which is very promising for photovoltaic applications. The alloyedmore » perovskite described herein is the first double perovskite to show comparable bandgap energy and carrier lifetime to those of (CH 3NH 3)PbI 3. By describing how energy- and symmetry-matched impurity orbitals, at low concentrations, dramatically alter 1’s band edges, we open a potential pathway for the large and diverse family of halide double perovskites to compete with APbX 3 absorbers.« less

  14. Interband absorption edge in the topological insulators Bi2(Te1-xSex) 3

    NASA Astrophysics Data System (ADS)

    Dubroka, A.; Caha, O.; Hronček, M.; Friš, P.; Orlita, M.; Holý, V.; Steiner, H.; Bauer, G.; Springholz, G.; Humlíček, J.

    2017-12-01

    We have investigated the optical properties of thin films of topological insulators Bi2Te3 , Bi2Se3 , and their alloys Bi2(Te1-xSex) 3 on BaF2 substrates by a combination of infrared ellipsometry and reflectivity in the energy range from 0.06 to 6.5 eV. For the onset of interband absorption in Bi2Se3 , after the correction for the Burstein-Moss effect, we find the value of the direct band gap of 215 ±10 meV at 10 K. Our data support the picture that Bi2Se3 has a direct band gap located at the Γ point in the Brillouin zone and that the valence band reaches up to the Dirac point and has the shape of a downward-oriented paraboloid, i.e., without a camel-back structure. In Bi2Te3 , the onset of strong direct interband absorption at 10 K is at a similar energy of about 200 meV, with a weaker additional feature at about 170 meV. Our data support the recent G W band-structure calculations suggesting that the direct interband transition does not occur at the Γ point but near the Z -F line of the Brillouin zone. In the Bi2(Te1-xSex) 3 alloy, the energy of the onset of direct interband transitions exhibits a maximum near x =0.3 (i.e., the composition of Bi2Te2Se ), suggesting that the crossover of the direct interband transitions between the two points in the Brillouin zone occurs close to this composition.

  15. Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan

    2016-06-15

    We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less

  16. Implications of New Methane Absorption Coefficients on Uranus Vertical Structure Derived from Near-IR Spectra

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, L. A.

    2009-09-01

    Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.

  17. Intensity Measurements of the 01(sup 1)21-00(sup 0)01 Perpendicular CO2 band at 5315 cm (sup -1) and 4 related hot bands

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Chackerian, Charles, Jr.; Spencer, Mark N.; Brown, Linda R.; Wattson, Richard B.; Gore, Warren J. (Technical Monitor)

    1994-01-01

    The near-infrared thermal emission windows in the spectrum of the night-side of Venus have stimulated new determinations of the intensities of weak CO2 bands which are prominent absorption features in Venus spectra. We have previously measured the 31(sup 1)04-00(sup 0)01 band at 4416 cm (sup -1), which dominates a portion of the 2.2 micrometer window, using the 25-meter White absorption cell at Ames. Parameters for many of the unmeasured bands have been recomputed for the HITRAN compilation using direct numerical diagonalization. This procedure has some uncertainties, particularly for higher overtone-combination perpendicular bands, and substantial differences were noted for these bands when comparing the 1986 HITRAN tabulation with the 1992 values. To clarify this situation, we decided to measure the intensities of several of these bands; L.R.B. obtained spectra using the McMath FTS and 6 meter White cell, covering the region 3800 to 7700 cm (sup -1). A table is provided in which we compare our measured intensities and Herman-Wallis al parameters for the 01(sup 1)21-00(sup 0)01 band and 4 associated hot bands with both Hitran tabulations. It is anticipated that these measured values will be useful in further DND calculations of many very weak unmeasurable bands.

  18. EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses

    NASA Astrophysics Data System (ADS)

    De Vicente, F. S.; Santos, F. A.; Simões, B. S.; Dias, S. T.; Siu Li, M.

    2014-12-01

    Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV-VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV-VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1 → 1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E → 4A2) and another intense band from 700 to 850 nm (4T2 → 4A2).

  19. Simplified procedure for computing the absorption of sound by the atmosphere

    DOT National Transportation Integrated Search

    2007-10-31

    This paper describes a study that resulted in the development of a simplified : method for calculating attenuation by atmospheric-absorption for wide-band : sounds analyzed by one-third octave-band filters. The new method [referred to : herein as the...

  20. Gas-phase Absorption of {{\\rm{C}}}_{70}^{2+} below 10 K: Astronomical Implications

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.

    2017-02-01

    The electronic spectrum of the fullerene dication {{{C}}}702+ has been measured in the gas phase at low temperature in a cryogenic radiofrequency ion trap. The spectrum consists of a strong origin band at 7030 Å and two weaker features to higher energy. The bands have FWHMs of 35 Å indicating an excited state lifetime on the order of one-tenth of a picosecond. Absorption cross-section measurements yield (2 ± 1) × 10-15 cm2 at 7030 Å. These results are used to predict the depth of diffuse interstellar bands (DIBs) due to the absorption by {{{C}}}702+. At an assumed column density of 2 × 1012 cm-2 the attenuation of starlight at 7030 Å is around 0.4% and thus the detection of such a shallow and broad interstellar band would be difficult. The electronic spectrum of {{{C}}}602+ shows no absorptions in the visible. Below 4000 Å the spectra of C60, {{{C}}}60+ and {{{C}}}602+ are similar. The large intrinsic FWHM of the features in this region, ˜200 Å for the band near 3250 Å, make them unsuitable for DIB detection.

  1. HIGH-ENERGY ELECTRON IRRADIATION OF INTERSTELLAR CARBONACEOUS DUST ANALOGS: COSMIC-RAY EFFECTS ON THE CARRIERS OF THE 3.4 μ m ABSORPTION BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μ m absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH{sub 3} and CH{sub 2} in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH{sub 3} and CH{sub 2} by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflectsmore » a-C:H dehydrogenation, which is well described by a model assuming that H{sub 2} molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μ m band carriers lie in the 10{sup 8} yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10{sup 7} yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.« less

  2. Two-Photon Absorption in Organometallic Bromide Perovskites.

    PubMed

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  3. Electronic structure and optical band gap determination of NiFe2O4.

    PubMed

    Meinert, Markus; Reiss, Günter

    2014-03-19

    In a theoretical study we investigate the electronic structure and band gap of the inverse spinel ferrite NiFe2O4. The experimental optical absorption spectrum is accurately reproduced by fitting the Tran-Blaha parameter in the modified Becke-Johnson potential. The accuracy of the commonly applied Tauc plot to find the optical gap is assessed based on the computed spectra and we find that this approach can lead to a misinterpretation of the experimental data. The minimum gap of NiFe2O4 is found to be a 1.53 eV wide indirect gap, which is located in the minority spin channel.

  4. Generation of Multi-band Chorus by Lower Band Cascade in the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Gao, X.; Lu, Q.; Chen, L.; Bortnik, J.; Li, W.; Wang, S.

    2016-12-01

    Chorus waves are intense electromagnetic whistler-mode emissions in the magnetosphere, typically falling into two distinct frequency bands: a lower band (0.1-0.5fce) and an upper band (0.5-0.8fce) with a power gap at about 0.5fce. In this letter, with the THEMIS satellite, we observed two special chorus events, which are called as multi-band chorus because upper band chorus is located at harmonics of lower band chorus. We propose a new potential generation mechanism for multi-band chorus, which is called as lower band cascade. In this scenario, a density mode with a frequency equal to that of lower band chorus is caused by the ponderomotive effect (inhomogeneity of the electric amplitude) along the wave vector, and then upper band chorus with the frequency twice that of lower band chorus is generated through wave-wave couplings between lower band chorus and the density mode. The mechanism provides a new insight into the evolution of whistler-mode chorus in the Earth's magnetosphere.

  5. Carrier-Specific Femtosecond XUV Transient Absorption of PbI 2 Reveals Ultrafast Nonradiative Recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ming-Fu; Verkamp, Max A.; Leveillee, Joshua

    Femtosecond carrier recombination in PbI 2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafastmore » electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. Lastly, the XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10 -9 cm 3/s.« less

  6. Carrier-Specific Femtosecond XUV Transient Absorption of PbI 2 Reveals Ultrafast Nonradiative Recombination

    DOE PAGES

    Lin, Ming-Fu; Verkamp, Max A.; Leveillee, Joshua; ...

    2017-11-30

    Femtosecond carrier recombination in PbI 2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafastmore » electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. Lastly, the XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10 -9 cm 3/s.« less

  7. High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8 μm

    NASA Astrophysics Data System (ADS)

    Sajid, M. B.; Javed, T.; Farooq, A.

    2015-04-01

    The mid-infrared wavelength region near 8 μm contains absorption bands of several molecules such as water vapor, hydrogen peroxide, nitrous oxide, methane and acetylene. A new laser absorption sensor based on the ν4 band of methane and the ν4+ν5 band of acetylene is reported for interference-free, time-resolved measurements under combustion-relevant conditions. A detailed line-selection procedure was used to identify optimum transitions. Methane and acetylene were measured at the line centers of Q12 (1303.5 cm-1) and P23 (1275.5 cm-1) transitions, respectively. High-temperature absorption cross sections of methane and acetylene were measured at peaks (on-line) and valleys (off-line) of the selected absorption transitions. The differential absorption strategy was employed to eliminate interference absorption from large hydrocarbons. Experiments were performed behind reflected shock waves over a temperature range of 1200-2200 K, between pressures of 1-4 atm. The diagnostics were then applied to measure the respective species time-history profiles during the shock-heated pyrolysis of n-pentane.

  8. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    NASA Technical Reports Server (NTRS)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  9. On the optical band gap of zinc oxide

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Clarke, D. R.

    1998-05-01

    Three different values (3.1, 3.2, and 3.3 eV) have been reported for the optical band gap of zinc oxide single crystals at room temperature. By comparing the optical properties of ZnO crystals using a variety of optical techniques it is concluded that the room temperature band gap is 3.3 eV and that the other values are attributable to a valence band-donor transition at ˜3.15 eV that can dominate the optical absorption when the bulk of a single crystal is probed.

  10. Absorption of Solar Radiation by Clouds: Observations Versus Models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Minnis, P.; Corsetti, L.; Dutton, E. G.; Forgan, B. W.; Garber, D. P.; Gates, W. L.; Hack, J. J.; Harrison, E. F.; hide

    1995-01-01

    There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmosphere's energy budget.

  11. Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties.

    PubMed

    Palacios, P; Aguilera, I; Sánchez, K; Conesa, J C; Wahnón, P

    2008-07-25

    Results of density-functional calculations for indium thiospinel semiconductors substituted at octahedral sites with isolated transition metals (M=Ti,V) show an isolated partially filled narrow band containing three t2g-type states per M atom inside the usual semiconductor band gap. Thanks to this electronic structure feature, these materials will allow the absorption of photons with energy below the band gap, in addition to the normal light absorption of a semiconductor. To our knowledge, we demonstrate for the first time the formation of an isolated intermediate electronic band structure through M substitution at octahedral sites in a semiconductor, leading to an enhancement of the absorption coefficient in both infrared and visible ranges of the solar spectrum. This electronic structure feature could be applied for developing a new third-generation photovoltaic cell.

  12. Band-filling of solution-synthesized CdS nanowires.

    PubMed

    Puthussery, James; Lan, Aidong; Kosel, Thomas H; Kuno, Masaru

    2008-02-01

    The band edge optical characterization of solution-synthesized CdS nanowires (NWs) is described. Investigated wires are made through a solution-liquid-solid approach that entails the use of low-melting bimetallic catalyst particles to seed NW growth. Resulting diameters are approximately 14 nm, and lengths exceed 1 microm. Ensemble diameter distributions are approximately 13%, with corresponding intrawire diameter variations of approximately 5%. High-resolution transmission electron micrographs show that the wires are highly crystalline and have the wurtzite structure with growth along at least two directions: [0001] and [1010]. Band edge emission is observed with estimated quantum yields between approximately 0.05% and 1%. Complementary photoluminescence excitation spectra show structure consistent with the linear absorption. Carrier cooling dynamics are subsequently examined through ensemble lifetime and transient differential absorption measurements. The former reveals unexpectedly long band edge decays that extend beyond tens of nanoseconds. The latter indicates rapid intraband carrier cooling on time scales of 300-400 fs. Subsequent recovery at the band edge contains significant Auger contributions at high intensities which are usurped by other, possibly surface-related, carrier relaxation pathways at lower intensities. Furthermore, an unusual intensity-dependent transient broadening is seen, connected with these long decays. The effect likely stems from band-filling on the basis of an analysis of observed spectral shifts and line widths.

  13. Adiabatic pressure dependence of the 2.7 and 1.9 micron water vapor bands

    NASA Technical Reports Server (NTRS)

    Mathai, C. V.; Walls, W. L.; Broersma, S.

    1977-01-01

    An acoustic excitation technique is used to determine the adiabatic pressure derivative of the spectral absorptance of the 2.7 and 1.9 micron water vapor bands, and the 3.5 micron HCl band. The dependence of this derivative on thermodynamic parameters such as temperature, concentration, and pressure is evaluated. A cross-flow water vapor system is used to measure spectral absorptance. Taking F as the ratio of nonrigid to rotor line strengths, it is found that an F factor correction is needed for the 2.7 micron band. The F factor for the 1.9 micron band is also determined. In the wings of each band a wavelength can be found where the concentration dependence is predominant. Farther out in the wings a local maximum occurs for the temperature derivative. It is suggested that the pressure derivative is significant in the core of the band.

  14. Circular dichroism and optical absorption spectra of mononuclear and trinuclear chiral Cu(II) amino-alcohol coordinated compounds: A combined theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.

    2015-04-01

    Studies on the physicochemical properties of biomimetic compounds of multicopper oxidases are fundamental to understand their reaction mechanisms and catalytic behavior. In this work, electronic, optical, and chiroptical properties of copper(II) complexes with amino-alcohol chiral ligands are theoretically studied by means of time-dependent density functional theory. The calculated absorption and circular dichroism spectra are compared with experimental measurements of these spectra for an uncoordinated pseudoephedrine derivative, as well as for the corresponding mononuclear and trinuclear copper(II)-coordinated complexes. This comparison is useful to gain insights into their electronic structure, optical absorption and optical activity. The optical absorption and circular dichroism bands of the pseudoephedrine derivative are located in the UV-region. They are mainly due to transitions originated from n to π anti-bonding orbitals of the alcohol and amino groups, as well as from π bonding to π anti-bonding orbitals of carboxyl and phenyl groups. In the case of the mononuclear and trinuclear compounds, additional signals in the visible spectral region are present. In both systems, the origin of these bands is due to charge transfer from ligand to metal and d-d transitions.

  15. Re-investigation of the (3, 0) band in the b4Σ- - a4Π system for nitric oxide by laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Chuanliang; Shao, Ligang; Wang, Hailing; Zhou, Qinghong; Qiu, Xuanbing; Wei, Jilin; Deng, Lunhua; Chen, Yangqin

    2018-04-01

    Nitric oxide (NO) radicals in the a4Π state were produced by discharging the mixture of NO gas and helium at the audio frequency. In the near infrared region, the spectra of the b4Σ- - a4Π system of the NO radical were studied by optical heterodyne - concentration modulation laser absorption spectroscopy. More than one hundred and thirty lines and eleven branches were recorded for the first time and assigned to the (3, 0) band. A global fitting was carried out to extract the molecular constants. In particular, the parameters D, p, γ and AD were precisely determined.

  16. Partially filled intermediate band of Cr-doped GaN films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonoda, S.

    2012-05-14

    We investigated the band structure of sputtered Cr-doped GaN (GaCrN) films using optical absorption, photoelectron yield spectroscopy, and charge transport measurements. It was found that an additional energy band is formed in the intrinsic band gap of GaN upon Cr doping, and that charge carriers in the material move in the inserted band. Prototype solar cells showed enhanced short circuit current and open circuit voltage in the n-GaN/GaCrN/p-GaN structure compared to the GaCrN/p-GaN structure, which validates the proposed concept of an intermediate-band solar cell.

  17. First report on C-banding, fluorochrome staining and NOR location in holocentric chromosomes of Elasmolomus (Aphanus) sordidus Fabricius, 1787 (Heteroptera, Rhyparochromidae)

    PubMed Central

    Suman, Vikas; Kaur, Harbhajan

    2013-01-01

    Abstract In spite of various cytogenetic works on suborder Heteroptera, the chromosome organization, function and its evolution in this group is far from being fully understood. Cytologically, the family Rhyparochromidae constitutes a heterogeneous group differing in chromosome numbers. This family possesses XY sex mechanism in the majority of the species with few exceptions. In the present work, multiple banding techniques viz., C-banding, base-specific fluorochromes (DAPI/CMA3) and silver nitrate staining have been used to cytologically characterize the chromosomes of the seed plant pest Elasmolomus (Aphanus) sordidus Fabricius, 1787 having 2n=12=8A+2m+XY. One pair of the autosomes was large while three others were of almost equal size. At diplotene, C-banding technique revealed, that three autosomal bivalents show terminal constitutive heterochromatic bands while one medium sized bivalent was euchromatic. Microchromosomes (m-chromosomes) were positively heteropycnotic. After DAPI and CMA3 staining, all the autosomal bivalents showed equal fluorescence, except CMA3 positive signals, observed at both telomeric heterochromatic regions of one medium sized autosomal bivalent. Silver nitrate staining further revealed that this chromosome pair carries Nucleolar Organizer Regions (NORs) at the location of CMA3 positive signals. The X chromosome showed a thick C-band, positive to both DAPI /CMA3 while Y, otherwise C-negative, was weakly positive to DAPI and negative to CMA3, m-chromosomes were DAPI bright and CMA3 dull. PMID:24039525

  18. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  19. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  20. CuTaS 3 : Intermetal d–d Transitions Enable High Solar Absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Jaeseok; Yu, Liping; Altschul, Emmeline

    To realize the fundamental limits of photovoltaic device efficiency, solar absorbers must exhibit strong absorption and abrupt absorption onsets. Ideally, onsets to maximum absorption (a > 105 cm-1) occur over a few tenths of an electronvolt. First-principles calculations predict CuTaS3 represents a potentially new class of materials with such absorption characteristics. Narrow metallic d bands in both the initial and final states present high joint densities of states and, therefore, strong absorption. Specifically, a mixture of metal d (Cu1+, d10) and S p characterizes states near the valence band maximum, and metal d (Ta5+, d0) dominates near the conduction bandmore » minimum. Optical absorption measurements on thin films confirm the abrupt onset to strong absorption a > 105 cm-1 at Eg + 0.4 eV (Eg = 1.0 eV). Theoretical CuTaS3 solar cell efficiency is predicted to be 28% for a 300 nm film based on the metric of spectroscopic limited maximum efficiency, which exceeds that of CuInSe2. This sulfide may offer new opportunities to discover and develop a new class of mixed d-element solar absorbers.« less

  1. Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide

    PubMed Central

    Cui, Yudong; Lu, Feifei; Liu, Xueming

    2017-01-01

    Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm2 and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system. PMID:28053313

  2. Longwave Band-by-band Cloud Radiative Effect and its Application in GCM Evaluation

    NASA Technical Reports Server (NTRS)

    Huang, Xianglei; Cole, Jason N. S.; He, Fei; Potter, Gerald L.; Oreopoulos, Lazaros; Lee, Dongmin; Suarez, Max; Loeb, Norman G.

    2012-01-01

    The cloud radiative effect (CRE) of each longwave (LW) absorption band of a GCM fs radiation code is uniquely valuable for GCM evaluation because (1) comparing band-by-band CRE avoids the compensating biases in the broadband CRE comparison and (2) the fractional contribution of each band to the LW broadband CRE (f(sub CRE)) is sensitive to cloud top height but largely insensitive to cloud fraction, presenting thus a diagnostic metric to separate the two macroscopic properties of clouds. Recent studies led by the first author have established methods to derive such band ]by ]band quantities from collocated AIRS and CERES observations. We present here a study that compares the observed band-by-band CRE over the tropical oceans with those simulated by three different atmospheric GCMs (GFDL AM2, NASA GEOS-5, and CCCma CanAM4) forced by observed SST. The models agree with observation on the annual ]mean LW broadband CRE over the tropical oceans within +/-1W/sq m. However, the differences among these three GCMs in some bands can be as large as or even larger than +/-1W/sq m. Observed seasonal cycles of f(sub CRE) in major bands are shown to be consistent with the seasonal cycle of cloud top pressure for both the amplitude and the phase. However, while the three simulated seasonal cycles of f(sub CRE) agree with observations on the phase, the amplitudes are underestimated. Simulated interannual anomalies from GFDL AM2 and CCCma CanAM4 are in phase with observed anomalies. The spatial distribution of f(sub CRE) highlights the discrepancies between models and observation over the low-cloud regions and the compensating biases from different bands.

  3. Computed a multiple band metamaterial absorber and its application based on the figure of merit value

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Sheng, Yuping; Jun, Wang

    2018-01-01

    A high performed multiple band metamaterial absorber is designed and computed through the software Ansofts HFSS 10.0, which is constituted with two kinds of separated metal particles sub-structures. The multiple band absorption property of the metamaterial absorber is based on the resonance of localized surface plasmon (LSP) modes excited near edges of metal particles. The damping constant of gold layer is optimized to obtain a near-perfect absorption rate. Four kinds of dielectric layers is computed to achieve the perfect absorption perform. The perfect absorption perform of the metamaterial absorber is enhanced through optimizing the structural parameters (R = 75 nm, w = 80 nm). Moreover, a perfect absorption band is achieved because of the plasmonic hybridization phenomenon between LSP modes. The designed metamaterial absorber shows high sensitive in the changed of the refractive index of the liquid. A liquid refractive index sensor strategy is proposed based on the computed figure of merit (FOM) value of the metamaterial absorber. High FOM values (116, 111, and 108) are achieved with three liquid (Methanol, Carbon tetrachloride, and Carbon disulfide).

  4. RETRACTED: Theoretical study of electronic properties and isotope effects in the UV absorption spectrum of disulfur

    NASA Astrophysics Data System (ADS)

    Sarka, Karolis; Danielache, Sebastian O.; Kondorskiy, Alexey; Nanbu, Shinkoh

    2017-05-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy) This article has been retracted at the request of the Authors because of a large amount of errors caused by incorrect interpretation of the potential energy curve boundaries by the data processing functions in their close-coupling algorithm, producing incorrect wavefunctions for the continuum region in the absorption spectrum. The spectrum calculated using the incorrect wavefunctions introduced periodic fluctuation in the absorption cross-section seen in the original article, which results in erroneous isotopic fractionation values. The updated spectra calculated after fixing the issues features a smooth continuum band, removing all false artifacts from isotopic effect analysis, producing significantly different results from the ones in this original article. The authors will submit the corrected data in a new article.

  5. Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators.

    PubMed

    Zhao, Lei; Liu, Han; He, Zhihong; Dong, Shikui

    2018-05-14

    Multiband metamaterial perfect absorbers (MPAs) have promising applications in many fields like microbolometers, infrared detection, biosensing, and thermal emitters. In general, the single resonator can only excite a fundamental mode and achieve single absorption band. The multiband MPA can be achieved by combining several different sized resonators together. However, it's still challenging to design the MPA with absorption bands of more than four and average absorptivity of more than 90% due to the interaction between differently sized resonators. In this paper, three absorption bands are successfully achieved with average absorptivity up to 98.5% only utilizing single one our designed ring-strip resonator, which can simultaneously excite a fundamental electric dipole mode, a higher-order electric quadrupole mode, and a higher-order electric octopole mode. As the biosensor, the sensing performance of the higher-order modes is higher than the fundamental modes. Then we try to increase the absorption bands by combining different sized ring-strip resonators together and make the average absorptivity above 90% by optimizing the geometry parameters. A six-band MPA is achieved by combining two different sized ring-strip resonators with average absorptivity up to 98.8%, which can excite two dipole modes, two quadrupole modes, and two octopole modes. A twelve-band MPA is achieved by combining four different sized ring-strip resonators with average absorptivity up to 93.7%, which can excite four dipole modes, four quadrupole modes, and four octopole modes.

  6. Performance of Ultrathin Silicon Solar Microcells with Nanostructures of Relief Formed by Soft Imprint Lithography for Broad Band Absorption Enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shir, Daniel J.; Yoon, Jongseung; Chanda, Debashis

    2010-08-11

    Recently developed classes of monocrystalline silicon solar microcells can be assembled into modules with characteristics (i.e., mechanically flexible forms, compact concentrator designs, and high-voltage outputs) that would be impossible to achieve using conventional, wafer-based approaches. This paper presents experimental and computational studies of the optics of light absorption in ultrathin microcells that include nanoscale features of relief on their surfaces, formed by soft imprint lithography. Measurements on working devices with designs optimized for broad band trapping of incident light indicate good efficiencies in energy production even at thicknesses of just a few micrometers. These outcomes are relevant not only tomore » the microcell technology described here but also to other photovoltaic systems that benefit from thin construction and efficient materials utilization.« less

  7. Absorption into fluorescence. A method to sense biologically relevant gas molecules

    NASA Astrophysics Data System (ADS)

    Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato

    2011-01-01

    In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection ofanalytes related to climate change. In particular, we focused our attention on the detection ofnitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.

  8. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  9. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Ramdas, A.; Su, Ching-Hua; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(x)V(1-x), alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(x),V(1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(x)Te(l-x) and ZnSe(Y)Te(1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(y)Te(1-y) alloys in the entire composition range, 0 less than or equal to y less than or equal to 1. The samples used in this study are bulk ZnSe(y)Te(1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the interaction between

  10. Protonation effects on the UV/Vis absorption spectra of imatinib: a theoretical and experimental study.

    PubMed

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-14

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Noise exposure in marching bands

    NASA Astrophysics Data System (ADS)

    Keefe, Joseph

    2005-09-01

    Previous studies involving orchestras have shown that music ensembles can produce hazardous noise levels. There are no similar data for marching bands and pep bands. In order to evaluate the noise levels produced by marching and pep bands, 1/3-octave-band sound-pressure levels were measured while these groups rehearsed and performed. Data were collected while marching with the bands to ensure a realistic environment. Comparing these data to OSHA and NIOSH criteria, marching and pep band exposures often exceed safe values. For typical exposures, OSHA doses range from 11% to 295%, while NIOSH doses range from 35% to 3055%. Exposures that would be considered hazardous in the workplace are common in marching and pep bands; students and band directors should take steps to recognize the risk posed by various instruments and various locations, and should implement hearing conservation efforts.

  12. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Shuai; Yang, Shizhong; Tao, Lu

    2016-07-15

    In this study, the design, realization, and characterization of an ultrathin triple-band polarization-insensitive wide-angle metamaterial absorber are reported. The metamaterial absorber comprises a periodic array of modified six-fold symmetric snowflake-shaped resonators with strip spiral line load, which is printed on a dielectric substrate backed by a metal ground plane. It is shown that the absorber exhibits three distinct near-unity absorption peaks, which are distributed across C, X, Ku bands, respectively. Owing to the six-fold symmetry, the absorber is insensitive to the polarization of the incident radiation. In addition, the absorber shows excellent absorption performance over wide oblique incident angles formore » both transverse electric and transverse magnetic polarizations. Simulated surface current and field distributions at the three absorption peaks are demonstrated to understand the absorption mechanism. Particularly, the absorption modes come from the fundamental and high-order dipole resonances. Furthermore, the experimental verification of the designed absorber is conducted, and the measured results are in reasonable agreement with the simulated ones. The proposed ultrathin (∼0.018λ{sub 0}, λ{sub 0} corresponding to the lowest peak absorption frequency) compact (0.168λ{sub 0}×0.168λ{sub 0} corresponding to the area of a unit cell) absorber enables potential applications such as stealth technology, electromagnetic interference and spectrum identification.« less

  13. X ray absorption by dark nebulae (HEAO-2 guest investigator program)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.

    1991-01-01

    A study is described of data obtained from the Imaging Proportional Counter (IPC) x ray detector aboard the HEAO-2 satellite (Einstein Observatory). The research project involved a search for absorption of diffuse low energy x ray background emission by galactic dark nebulae. The commonly accepted picture that the bulk of the C band emission originates locally, closer that a few hundred parsec, and the bulk of the M band emission originates farther away than a few hundred parsec, was tested. The idea was to look for evidence of absorption of the diffuse background radiation by nearby interstellar clouds.

  14. Broadening microwave absorption via a multi-domain structure

    NASA Astrophysics Data System (ADS)

    Liu, Zhengwang; Che, Renchao; Wei, Yong; Liu, Yupu; Elzatahry, Ahmed A.; Dahyan, Daifallah Al.; Zhao, Dongyuan

    2017-04-01

    Materials with a high saturation magnetization have gained increasing attention in the field of microwave absorption; therefore, the magnetization value depends on the magnetic configuration inside them. However, the broad-band absorption in the range of microwave frequency (2-18 GHz) is a great challenge. Herein, the three-dimensional (3D) Fe/C hollow microspheres are constructed by iron nanocrystals permeating inside carbon matrix with a saturation magnetization of 340 emu/g, which is 1.55 times as that of bulk Fe, unexpectedly. Electron tomography, electron holography, and Lorentz transmission electron microscopy imaging provide the powerful testimony about Fe/C interpenetration and multi-domain state constructed by vortex and stripe domains. Benefiting from the unique chemical and magnetic microstructures, the microwave minimum absorption is as strong as -55 dB and the bandwidth (<-10 dB) spans 12.5 GHz ranging from 5.5 to 18 GHz. Morphology and distribution of magnetic nano-domains can be facilely regulated by a controllable reduction sintering under H2/Ar gas and an optimized temperature over 450-850 °C. The findings might shed new light on the synthesis strategies of the materials with the broad-band frequency and understanding the association between multi-domain coupling and microwave absorption performance.

  15. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  16. Marcasite revisited: Optical absorption gap at room temperature

    NASA Astrophysics Data System (ADS)

    Sánchez, C.; Flores, E.; Barawi, M.; Clamagirand, J. M.; Ares, J. R.; Ferrer, I. J.

    2016-03-01

    Jagadeesh and Seehra published in 1980 that the marcasite band gap energy is 0.34 eV. However, recent calculations and experimental approximations accomplished by several research groups point out that the marcasite band gap energy should be quite similar to that of pyrite (of the order of 0.8-1.0 eV). By using diffuse reflectance spectroscopy (DRS) we have determined that marcasite has no optical absorption gap at photon energies 0.06 ≤ hν ≤ 0.75 eV and that it has two well defined optical transitions at ~ 0.9 eV and ~ 2.2 eV quite similar to those of pyrite. Marcasite optical absorption gap appears to be Eg ≅ 0.83 ± 0.02 eV and it is due to an allowed indirect transition.

  17. Ultra-Thin Multi-Band Polarization-Insensitive Microwave Metamaterial Absorber Based on Multiple-Order Responses Using a Single Resonator Structure

    PubMed Central

    Cheng, Zheng Ze; Mao, Xue Song; Gong, Rong Zhou

    2017-01-01

    We design an ultra-thin multi-band polarization-insensitive metamaterial absorber (MMA) using a single circular sector resonator (CSR) structure in the microwave region. Simulated results show that the proposed MMA has three distinctive absorption peaks at 3.35 GHz, 8.65 GHz, and 12.44 GHz, with absorbance of 98.8%, 99.7%, and 98.3%, respectively, which agree well with an experiment. Simulated surface current distributions of the unit-cell structure reveal that the triple-band absorption mainly originates from multiple-harmonic magnetic resonance. The proposed triple-band MMA can remain at a high absorption level for all polarization of both transverse-electric (TE) and transverse-magnetic (TM) modes under normal incidence. Moreover, by further optimizing the geometric parameters of the CSRs, four-band and five-band MMAs can also be obtained. Thus, our design will have potential application in detection, sensing, and stealth technology. PMID:29077036

  18. Microwave absorptivity by sulfuric acid in the Venus atmosphere derived from the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Oschlisniok, J.; Pätzold, M.; Häusler, B.; Tellmann, S.; Bird, M.; Andert, T.; Remus, S.; Krüger, C.; Mattei, R.

    2011-10-01

    Earth's nearest planetary neighbour Venus is shrouded within a roughly 22 km thick three-layered cloud deck, which is located approximately 48 km above the surface and extends to an altitude of about 70 km. The clouds are mostly composed of sulfuric acid. The latter is responsible for a strong absorption of radio signals at microwaves, which is observed in radio occultation experiments. The absorption of the radio signal intensity is used to determine the abundance of H2SO4. This way a detailed study of the H2SO4 height distribution within the cloud deck is possible. The Venus Express spacecraft is orbiting Venus since 2006. The Radio Science Experiment VeRa onboard probes the atmosphere with radio signals at 3.4 cm (X-Band) and 13 cm (S-Band). Absorptivity profiles of the 3.4 cm radio wave and the resulting vertical sulfuric acid profiles in the cloud region of Venus' atmosphere are presented. The three-layered structure and a distinct latitudinal variation of H2SO4 are observed. Convective atmospheric motions within the equatorial latitudes, which transport absorbing material from lower to higher altitudes, are clearly visible. Results of the Venus Monitoring Camera (VMC) and the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) are compared with the VeRa results.

  19. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure.

    PubMed

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling

    2017-01-25

    This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas.

  20. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase.

    PubMed

    Attia, Amr A A; Cioloboc, Daniela; Lupan, Alexandru; Silaghi-Dumitrescu, Radu

    2016-12-01

    The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Influence of MnO2 decorated Fe nano cauliflowers on microwave absorption and impedance matching of polyvinylbutyral (PVB) matrix

    NASA Astrophysics Data System (ADS)

    Bora, Pritom J.; Porwal, Mayuri; Vinoy, K. J.; Ramamurthy, Praveen C.; Madras, Giridhar

    2016-09-01

    In this work, a promising, polyvinyl butryl (PVB)-MnO2 decorated Fe composite was synthesised and microwave absorption properties were studied for the most important frequency ranges i.e., X-band (8.2-12.4 GHz) and Ku-band (12.4-18 GHz). The microwave absorption of Fe nano cauliflower structure can be enhanced by MnO2 nanofiber coating. 10 wt% Fe-MnO2 nano cauliflower loaded PVB composite films (2 mm thick) shows an appreciable increase in microwave absorption properties. In X-band, the reflection loss (RL) of this composite decreases almost linearly to -7.5 dB, whereas in the Ku-band the minimum RL was found to be -15.7 dB at 14.7 GHz. Here it was observed that impedance matching is the primarily important factor responsible for enhanced microwave absorption. Further, enhancement of EM attenuation constant (α), dielectrics, scattering attenuation also bolsters the obtained results. This polymer composite can be considered as a novel microwave absorbing coating material.

  2. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    PubMed

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (< -10 dB from 1 MHz to 3 GHz). This excellent microwave absorbing property induced by graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth.

  3. Independent polarization and multi-band THz absorber base on Jerusalem cross

    NASA Astrophysics Data System (ADS)

    Arezoomand, Afsaneh Saee; Zarrabi, Ferdows B.; Heydari, Samaneh; Gandji, Navid P.

    2015-10-01

    In this paper, we present the design and simulation of a single and multi-band perfect metamaterial absorber (MA) in the THz region base on Jerusalem cross (JC) and metamaterial load in unit cells. The structures consist of dual metallic layers for allowing near-perfect absorption with absorption peak of more than 99%. In this novel design, four-different shape of Jerusalem cross is presented and by adding L, U and W shape loaded to first structure, we tried to achieve a dual-band absorber. In addition, by good implementation of these loaded, we are able to control the absorption resonance at second resonance at 0.9, 0.7 and 0.85 THz respectively. In the other hand, we achieved a semi stable designing at first resonance between 0.53 and 0.58 THz. The proposed absorber has broadband polarization angle. The surface current modeled and proved the broadband polarization angle at prototype MA. The LC resonance of the metamaterial for Jerusalem cross and modified structures are extracting from equivalent circuit. As a result, proposed MA is useful for THz medical imaging and communication systems and the dual-band absorber has applications in many scientific and technological areas.

  4. [Study of cholesterol concentration based on serum UV-visible absorption spectrum].

    PubMed

    Zhu, Wei-Hua; Zhao, Zhi-Min; Guo, Xin; Chen, Hui

    2009-04-01

    In the present paper, UV-visible absorption spectrum and neural network theory were used for the analysis of cholesterol concentration. Experimental investigation shows that the absorption spectrum has the following characteristics in the wave band of 350-600 nm: (1) There is a stronger absorption peak at 416 nm for the test sample with different cholesterol concentration; (2) There is a shoulder peak between 450 and 500 nm, whose central wavelength is 460 nm; (3) There is a weaker peak at 578 nm; (4) Absorption spectrums shape of different cholesterol concentration is different obviously. The absorption spectrum of serum is the synthesis result of cholesterol and other components (such as sugar), and the information is contained at each wavelength. There is no significant correlation between absorbance and cholesterol content at 416 nm, showing a random relation, so whether cholesterol content is abnormal is not determined by the absorbance peak at 416 nm. Based on the evident correlation between serum absorption spectrum and cholesterol concentration in the wave band of 455-475 nm, a neural network model was built to predict the cholesterol concentration. The correlation coefficient between predicted cholesterol content output A and objectives T reaches 0.968, which can be regarded as better prediction, and it provides a spectra test method of cholesterol concentration.

  5. M-band imaging of the HR 8799 planetary system using an innovative LOCI-based background subtraction technique

    DOE PAGES

    Galicher, Raphael; Marois, Christian; Macintosh, Bruce; ...

    2011-09-02

    Multi-wavelength observations/spectroscopy of exoplanetary atmospheres are the basis of the emerging exciting field of comparative exoplanetology. The HR 8799 planetary system is an ideal laboratory to study our current knowledge gap between massive field brown dwarfs and the cold 5 Gyr old solar system planets. The HR 8799 planets have so far been imaged at J- to L-band, with only upper limits available at M-band. We present here deep high-contrast Keck II adaptive optics M-band observations that show the imaging detection of three of the four currently known HR 8799 planets. Such detections were made possible due to the developmentmore » of an innovative LOCI-based background subtraction scheme that is three times more efficient than a classical median background subtraction for Keck II AO data, representing a gain in telescope time of up to a factor of nine. These M-band detections extend the broadband photometric coverage out to ~5 μm and provide access to the strong CO fundamental absorption band at 4.5 μm. The new M-band photometry shows that the HR 8799 planets are located near the L/T-type dwarf transition, similar to what was found by other studies. Finally, we also confirm that the best atmospheric fits are consistent with low surface gravity, dusty, and non-equilibrium CO/CH 4 chemistry models.« less

  6. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2006-08-01

    In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient.

  7. Band-to-Band Misregistration of the Images of MODIS Onboard Calibrators and Its Impact on Calibration

    NASA Technical Reports Server (NTRS)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBCs), including a solar diffuser, a blackbody, and a space view port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPAs). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are coregistered onboard by delaying the appropriate band-dependent amount of time, depending on the band locations on the FPA. While this coregistration mechanismis functioning well for the far-field remote targets such as earth view scenes or the moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, particularly in OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistrationis proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration on the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  8. A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li

    2018-03-01

    Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.

  9. Piezoelectric-tuned microwave cavity for absorption spectrometry

    DOEpatents

    Leskovar, Branko; Buscher, Harold T.; Kolbe, William F.

    1978-01-01

    Gas samples are analyzed for pollutants in a microwave cavity that is provided with two highly polished walls. One wall of the cavity is mechanically driven with a piezoelectric transducer at a low frequency to tune the cavity over a band of microwave frequencies in synchronism with frequency modulated microwave energy applied to the cavity. Absorption of microwave energy over the tuned frequencies is detected, and energy absorption at a particular microwave frequency is an indication of a particular pollutant in the gas sample.

  10. Tunable electromagnetically induced absorption based on graphene

    NASA Astrophysics Data System (ADS)

    Cao, Maoyong; Wang, Tongling; Zhang, Huiyun; Zhang, Yuping

    2018-04-01

    In this paper, an electronically induced absorption (EIA) structure based on graphene at the infrared frequency is proposed. A pair of nanorods is coupled to a ring resonator, resulting in electronically induced transparency (EIT), and then, Babinet's principle is applied to transform the EIT structure into an EIA structure. Based on the bright and dark modes of the coupling schemes, the adjustment of the coupling strength between the dark and bright modes can be achieved by changing the asymmetry degree. In addition, the transparency window and the absorption peak can be tuned by changing the Fermi energy of graphene. This graphene-based EIA structure can develop the path in narrow-band filtering and, absorptive switching in the future.

  11. Absorption of Dy3+ and Nd3+ ions in Ba R 2F8 single crystals

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Pushkar', A. A.; Uvarova, T. V.; Chernov, S. P.

    2008-09-01

    The Dy3+ absorption and excitation spectra of BaY2F8 and BaYb2F8 single crystals are investigated in the ultraviolet, vacuum ultraviolet, and visible ranges at a temperature of 300 K. These crystals exhibit intense broad absorption bands due to the spin-allowed 4 f-5 d transitions in the range (56-78) × 10-3 cm-1 and less intense absorption bands that correspond to the spin-forbidden transitions in the range (50-56) × 10-3 cm-1. The Nd3+ absorption spectra of BaY2F8 single crystals are studied in the range (34-82) × 10-3 cm-1 at 300 K for different crystal orientations.

  12. Design and measure of a tunable double-band metamaterial absorber in the THz spectrum

    NASA Astrophysics Data System (ADS)

    Guiming, Han

    2018-04-01

    We demonstrate and measure a hybrid double-band tunable metamaterial absorber in the terahertz region. The measured metamaterial absorber contains of a hybrid dielectric layer structure: a SU-8 layer and a VO2 layer. Near perfect double-band absorption performances are achieved by optimizing the SU-8 layer thickness at room temperature 25 °C. Measured results show that the phase transition can be observed when the measured temperature reaches 68 °C. Further measured results indicate that the resonance frequency and absorption amplitude of the proposed metamaterial absorber are tunable through increasing the measured temperature, while structural parameters unchanged. The proposed hybrid metamaterial absorber shows many advantages, such as frequency agility, absorption amplitude tunable, and simple fabrication.

  13. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    NASA Technical Reports Server (NTRS)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  14. A high-resolution oxygen A-band spectrometer (HABS) and its radiation closure

    NASA Astrophysics Data System (ADS)

    Min, Q.; Yin, B.; Li, S.; Berndt, J.; Harrison, L.; Joseph, E.; Duan, M.; Kiedron, P.

    2014-02-01

    The pressure dependence of oxygen A-band absorption enables the retrieval of the vertical profiles of aerosol and cloud properties from oxygen A-band spectrometry. To improve the understanding of oxygen A-band inversions and utility, we developed a high-resolution oxygen A-band spectrometer (HABS), and deployed it at Howard University Beltsville site during the NASA Discover Air-Quality Field Campaign in July 2011. The HABS has the ability to measure solar direct-beam and zenith diffuse radiation through a telescope automatically. It exhibits excellent performance: stable spectral response ratio, high signal-to-noise ratio (SNR), high spectrum resolution (0.16 nm), and high Out-of-Band Rejection (10-5). To evaluate the spectra performance of HABS, a HABS simulator has been developed by combing the discrete ordinates radiative transfer (DISORT) code with the High Resolution Transmission (HTRAN) database HITRAN2008. The simulator uses double-k approach to reduce the computational cost. The HABS measured spectra are consistent with the related simulated spectra. For direct-beam spectra, the confidence intervals (95%) of relative difference between measurements and simulation are (-0.06, 0.05) and (-0.08, 0.09) for solar zenith angles of 27° and 72°, respectively. The main differences between them occur at or near the strong oxygen absorption line centers. They are mainly caused by the noise/spikes of HABS measured spectra, as a result of combined effects of weak signal, low SNR, and errors in wavelength registration and absorption line parameters. The high-resolution oxygen A-band measurements from HABS can constrain the active radar retrievals for more accurate cloud optical properties, particularly for multi-layer clouds and for mixed-phase clouds.

  15. Synthesis of a low-band-gap small molecule based on acenaphthoquinoxaline for efficient bulk heterojunction solar cells.

    PubMed

    Mikroyannidis, J A; Kabanakis, A N; Kumar, Anil; Sharma, S S; Vijay, Y K; Sharma, G D

    2010-08-03

    A novel small molecule (SM) with a low-band-gap based on acenaphthoquinoxaline was synthesized and characterized. It was soluble in polar solvents such as N,N-dimethylformamide and dimethylacetamide. SM showed broad absorption curves in both solution and thin films with a long-wavelength maximum at 642 nm. The thin film absorption onset was located at 783 nm, which corresponds to an optical band gap of 1.59 eV. SM was blended with PCBM to study the donor-acceptor interactions in the blended film morphology and the photovoltaic response of the bulk heterojunction (BHJ) devices. The cyclic voltammetry measurements of the materials revealed that the HOMO and LUMO levels of SM are well aligned with those of PCBM, allowing efficient photoinduced charge transfer and suitable open circuit voltage, leading to overall power conversion efficiencies (PCEs) of approximately 2.21 and 3.23% for devices with the as-cast and thermally annealed blended layer, respectively. The increase in the PCE with the thermally annealed blend is mainly attributed to the improvement in incident photon to current efficiency (IPCE) and short circuit photocurrent (J(sc)). Thermal annealing leads to an increase in both the crystallinity of the blend and hole mobility, which improves the PCE.

  16. Absorption and photoluminescence study of Al 2O 3 single crystal irradiated with fast neutrons

    NASA Astrophysics Data System (ADS)

    Izerrouken, M.; Benyahia, T.

    2010-10-01

    Colour centers formation in Al 2O 3 by reactor neutrons were investigated by optical measurements (absorption and photoluminescence). The irradiation's were performed at 40 °C, up to fast neutron ( E n > 1.2 MeV) fluence of 1.4 × 10 18 n cm -2. After irradiation the coloration of the sample increases with the neutron fluence and absorption band at about 203, 255, 300, 357 and 450 nm appear in the UV-visible spectrum. The evolution of each absorption bands as a function of fluence and annealing temperature is presented and discussed. The results indicate that at higher fluence and above 350 °C the F + center starts to aggregate to F center clusters (F 2, F 2+ and F22+). These aggregates disappear completely above 650 °C whereas the F and F + centers persist even after annealing at 900 °C. It is clear also from the results that the absorption band at 300 nm is due to the contribution of both F 2 center and interstitial Ali+ ions.

  17. High-resolution photoabsorption cross sections of E1Pi - X1Sigma(+) vibrational bands of CO-12 and CO-13

    NASA Technical Reports Server (NTRS)

    Stark, G.; Smith, P. L.; Ito, K.; Yoshino, K.

    1992-01-01

    Photodissociation following absorption of extreme-ultraviolet photons is an important factor in determining the abundance and isotropic fractionation of CO in diffuse and translucent interstellar clouds. The principal channel for destruction of CO-13 in such clouds begins with absorption in the (1,0) vibrational band of the E1Pi - X1Sigma(+) system; similarly, absorption in the (0,0) band begins a significant destruction channel for CO-12. Reliable modeling of the CO fractionation process depends critically upon the accuracy of the photoabsorption cross section for these bands. We have measured the cross sections for the relevant isotropic species and for the (1,0) band of CO-12. Our results, which are uncertain by about 10 percent, are for the most part larger than previous measurements.

  18. On the origin of a very close similarity between the spectra of the supernova type 1 in NGC 3198 and the absorption of DQ HeR

    NASA Technical Reports Server (NTRS)

    Mustel, E. R.

    1979-01-01

    The type 1 supernova discovered late in 1966 in NGC 3198 has broad minima in its spectrum break down into a number of significantly narrower absorption bands. The broad minima of tau, sigma and mu, which usually show no details in the spectra of type supernovas, contain a number of narrow absorption bands. The reality of most of these absorption bands is demonstrated by comparison of recordings of spectra of the supernova presented for two moments in time. These minima (particularly of tau and mu,) are a result of blending of several broad absorption bands. The minimum of tau should be a blend of intensive and very broad Fe absorption lines, in which the lower level is metastable. The wavelengths of these line are: 5169, 5198, 5235, 5276, 5317, 5363A.

  19. High resolution measurements of solar induced chlorophyll fluorescence in the Fraunhofer oxigen bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Cecchi, G.; Toci, G.; Mazzinghi, P.

    2017-11-01

    Spectra of solar radiance reflected by leaves close to the Fraunhofer bands show the net contribution of chlorophyll fluorescence emission which adds to the reflected solar spectra. In a laboratory experiment, a low stray light, high resolution, 0.85 m double monochromator was used to filter radiation living leaves still attached to the plant in correspondence of the 687 nm and 760 nm O2 absorption bands. Reference spectra from a non fluorescent white reference were also acquired. Acquisition was performed by a Microchannel plate (MCP) intensified diode array with 512 elements. A fit of the spectral data outside the absorption lines allowed to retrieve the spectral base-line as a function of wavelength for the reference panel and the leaf. Reflectance functions were determined extending the Plascyck equation system to all the resolved lines of the oxygen absorption bands and using the base-lines for the continuum values. Fluorescence was deduced from the same equation system, using both the measured leaf and reference radiance spectra and the leaf reflectance fitting function.

  20. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, Mark W.

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  1. Impurity-Band Model for GaP1-xNx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluegel, B.; Zhang, Y.; Geisz, J. F.

    2005-11-01

    Low-temperature absorption studies on free-standing GaP1-xNx films provide direct experimental evidence that the host conduction-band minimum (CBM) near X1C does not plunge downward with increased nitrogen doping, contrary to what has been suggested recently; rather, it remains stationary for x up to 0.1%. This fact, combined with the results of earlier studies of the CBM at ..GAMMA.. and conduction-band edge near L, confirms that the giant bandgap lowering observed in GaP1-xNx results from a CBM that evolves purely from nitrogen impurity bands.

  2. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(sub x)V(sub 1-x) alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(sub x)V(sub 1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(sub x)Te(sub 1-x) and ZnSe(sub y)Te(sub 1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(sub y)Te(sub 1-y) alloys in the entire composition range, y between 0 and 1. The samples used in this study are bulk ZnSe(sub y)Te(sub 1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the

  3. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    2016-08-01

    Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.

  4. Fluorinated graphene oxide for enhanced S and X-band microwave absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudeep, P. M.; TIFR-Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500075; Vinayasree, S.

    2015-06-01

    Here we report the microwave absorbing properties of three graphene derivatives, namely, graphene oxide (GO), fluorinated GO (FGO, containing 5.6 at. % Fluorine (F)), and highly FGO (HFGO, containing 23 at. % F). FGO is known to be exhibiting improved electrochemical and electronic properties when compared to GO. Fluorination modifies the dielectric properties of GO and hence thought of as a good microwave absorber. The dielectric permittivities of GO, FGO, and HFGO were estimated in the S (2 GHz to 4 GHz) and X (8 GHz to 12 GHz) bands by employing cavity perturbation technique. For this, suspensions containing GO/FGO/HFGO were made in N-Methylmore » Pyrrolidone (NMP) and were subjected to cavity perturbation. The reflection loss was then estimated and it was found that −37 dB (at 3.2 GHz with 6.5 mm thickness) and −31 dB (at 2.8 GHz with 6 mm thickness) in the S band and a reflection loss of −18 dB (at 8.4 GHz with 2.5 mm thickness) and −10 dB (at 11 GHz with 2 mm thickness) in the X band were achieved for 0.01 wt. % of FGO and HFGO in NMP, respectively, suggesting that these materials can serve as efficient microwave absorbers even at low concentrations.« less

  5. Band-to-Band Misregistration of the Images of MODIS On-Board Calibrators and Its Impact to Calibration

    NASA Technical Reports Server (NTRS)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The MODIS instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBC) including a solar diffuser (SD), a blackbody (BB) and a space view (SV) port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPA). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are co-registered on board by delaying appropriate band dependent amount of time depending on the band locations on the FPA. While this co-registration mechanism is functioning well for the "far field" remote targets such as Earth view (EV) scenes or the Moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, in particular the OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistration is proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration to the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1 of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  6. Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Chan, T. W.; Brook, J. R.; Smallwood, G. J.; Lu, G.

    2011-10-01

    In this study a photoacoustic spectrometer (PA), a laser-induced incandescence instrument system (LII) and an Aerosol Mass Spectrometer were operated in parallel for in-situ measurements of black carbon (BC) light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by the presence of non-refractory material thus providing true atmospheric BC mass concentrations. In contrast, the PA response is enhanced when the non-refractory material is internally mixed with the BC particles. Through concurrent measurements using the LII and PA the specific absorption cross-section (SAC) can be quantified with high time resolution (1 min). Comparisons of ambient PA and LII measurements from four different locations (suburban Toronto; a street canyon with diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario), show that different impacts from emission sources and/or atmospheric processes result in different particle light absorption enhancements and hence variations in the SAC. The diversity of measurements obtained, including those with the thermodenuder, demonstrated that it is possible to identify measurements where the presence of externally-mixed non-refractory particles obscures direct observation of the effect of coating material on the SAC, thus allowing this effect to be measured with more confidence. Depending upon the time and location of measurement (urban, rural, close to and within a lake breeze frontal zone), 30 min average SAC varies between 9 ± 2 and 43 ± 4 m2 g-1. Causes of this variation, which were determined through the use of meteorological and gaseous measurements (CO, SO2, O3), include the particle emission source, airmass source region, the degree of atmospheric processing. Observations from this study also show that the active surface area of the BC aggregate

  7. Linear absorptive dielectrics

    NASA Astrophysics Data System (ADS)

    Tip, A.

    1998-06-01

    Starting from Maxwell's equations for a linear, nonconducting, absorptive, and dispersive medium, characterized by the constitutive equations D(x,t)=ɛ1(x)E(x,t)+∫t-∞dsχ(x,t-s)E(x,s) and H(x,t)=B(x,t), a unitary time evolution and canonical formalism is obtained. Given the complex, coordinate, and frequency-dependent, electric permeability ɛ(x,ω), no further assumptions are made. The procedure leads to a proper definition of band gaps in the periodic case and a new continuity equation for energy flow. An S-matrix formalism for scattering from lossy objects is presented in full detail. A quantized version of the formalism is derived and applied to the generation of Čerenkov and transition radiation as well as atomic decay. The last case suggests a useful generalization of the density of states to the absorptive situation.

  8. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix

  9. Broad band solar EUV absorption in the earth's upper atmosphere.

    NASA Technical Reports Server (NTRS)

    Allen, K. H.; Rense, W. A.

    1973-01-01

    Observation data on solar radiation intensity, based on measurements performed as a function of time for three broad wavelength bands between 280 and 1030 A by a wheel spectrometer on Oso 5 during sunrise and sunset, are compared with predicted intensity variations based on Cira models. The differences between sunrise and sunset data, as well as those between observed and predicted data are discussed.

  10. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  11. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  12. Single crystal absorption spectra of synthetic Ti, Fe-substituted pyropes

    NASA Astrophysics Data System (ADS)

    Khomenko, V. M.; Langer, K.; Andrut, M.; Koch-Müller, M.; Vishnevsky, A. A.

    1994-11-01

    Synthetic pyrope crystals up to 0.5 mm in diameter, substituted by titanium or by titanium plus iron, were grown under defined conditions of P, T, f_{O_2 } in the presence of water using a piston-cylinder device. The crystals were characterized by X-ray and microprobe techniques. Their single-crystal optical absorption spectra were measured by means of a microscope-spectrometer. Two absorption bands at 16100 and 22300 cm{cm-1} in the spectra of pale-blue Fe-free Ti-bearing pyropes, grown under reduced conditions, were identified as originating from spin-allowed transitions, derived from 2 T 2g → 2 E g of octahedral Ti3+ ions. The splitting value of the excited 2E g state, 6200 cm-1, and the crystal field parameter of Ti3+ in pyrope Δ 0 = 19 200 cm-1 are both in agreement with literature data. In spectra of brown Fe, Ti-bearing garnets, a broad band at 23000 cm-1 was interpreted as a Fe2+[8] → Ti4+[6] charge-transfer band. The spectral position and width of this band agree with those observed for a FeTi charge transfer band in natural garnets. Fe, Ti-containing garnets synthesized at relatively high oxygen fugacity (10-11,0 atm), which permits a fraction of Fe3+ to enter the garnet, show an additional Fe2+[8] → Fe3+[6] charge transfer band at 19800 cm-1.

  13. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect.

    PubMed

    Vincenti, M A; de Ceglia, D; Grande, M; D'Orazio, A; Scalora, M

    2013-09-15

    Perfect, narrow-band absorption is achieved in an asymmetric 1D photonic crystal with a monolayer graphene defect. Thanks to the large third-order nonlinearity of graphene and field localization in the defect layer we demonstrate the possibility to achieve controllable, saturable absorption for the pump frequency.

  14. Ultra-Thin Dual-Band Polarization-Insensitive and Wide-Angle Perfect Metamaterial Absorber Based on a Single Circular Sector Resonator Structure

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Cheng, Yong Zhi

    2018-01-01

    We present a simple design for an ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber (PMMA) based on a single circular sector resonator structure (CSRS). Both simulation and experimental results reveal that two resonance peaks with average absorption above 99% can be achieved. The dual-band PMMA is ultra-thin with total thickness of 0.5 mm, which is band absorption. Numerical simulations demonstrate that the PMMA could retain high absorption level at large angles of polarization and incidence for both transverse electric (TE) and transverse magnetic (TM) modes. Furthermore, the absorption properties of the PMMA can be adjusted by varying the geometric parameters of the unit-cell structure.

  15. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybaltovsky, A A; Aleshkina, S S; Likhachev, M E

    2011-12-31

    Photochemical reactions induced in the glass network of an ytterbium-doped fibre core by IR laser pumping and UV irradiation have been investigated by analysing absorption and luminescence spectra. We have performed comparative studies of the photoinduced absorption and luminescence spectra of fibre preforms differing in core glass composition: Al{sub 2}O{sub 3} : SiO{sub 2}, Al{sub 2}O{sub 3} : Yb{sub 2}O{sub 3} : SiO{sub 2}, and P{sub 2}O{sub 5} : Yb{sub 2}O{sub 3} : SiO{sub 2}. The UV absorption spectra of unirradiated preform core samples show strong bands peaking at 5.1 and 6.5 eV, whose excitation plays a key role inmore » photoinduced colour centre generation in the glass network. 'Direct' UV excitation of the 5.1- and 6.5-eV absorption bands at 244 and 193 nm leads to the reduction of some of the Yb{sup 3+} ions to Yb{sup 2+}. The photodarkening of ytterbium-doped fibres by IR pumping is shown to result from oxygen hole centre generation. A phenomenological model is proposed for the IR-pumping-induced photodarkening of ytterbium-doped fibres. The model predicts that colour centre generation in the core glass network and the associated absorption in the visible range result from a cooperative effect involving simultaneous excitation of a cluster composed of several closely spaced Yb{sup 3+} ions.« less

  16. Gas Phase Absorption Spectroscopy of C+60 and C+70 in a Cryogenic Ion Trap: Comparison with Astronomical Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.; Gerlich, D.; Walker, G. A. H.; Bohlender, D.

    2016-05-01

    Recent low-temperature laboratory measurements and astronomical observations have proved that the fullerene cation {{{C}}}60+ is responsible for four diffuse interstellar bands (DIBs). These absorptions correspond to the strongest bands of the lowest electronic transition. The gas phase spectrum below 10 {{K}} is reported here for the full wavelength range encompassed by the electronic transition. The absorption spectrum of {{{C}}}70+, with its origin band at 7959.2 {{\\mathringA }}, has been obtained under similar laboratory conditions. Observations made toward the reddened star {HD} 183143 were used in a specific search for the absorption of these fullerene cations in diffuse clouds. In the case of {{{C}}}60+, one further band in the astronomical spectrum at 9348.5 \\mathringA is identified, increasing the total number of assigned DIBs to five. Numerous other {{{C}}}60+ absorptions in the laboratory spectrum are found to lie below the astronomical detection limit. Special emphasis is placed on the laboratory determination of absolute absorption cross-sections. For {{{C}}}60+ this directly yields a column density, N({{{C}}}60+), of 2× {10}13 {{{cm}}}-2 in diffuse clouds, without the need to rely on theoretical oscillator strengths. The intensity of the {{{C}}}70+ electronic transition in the range 7000-8000 Å is spread over many features of similar strength. Absorption cross-section measurements indicate that even for a similar column density, the individual absorption bands of {{{C}}}70+ will be too weak to be detected in the astronomical spectra, which is confirmed giving an upper limit of 2 {{m\\mathringA }} to the equivalent width. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  17. Preparation and high-performance microwave absorption of hierarchical dendrite-like Co superstructures self-assembly of nanoflakes

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Wang, Lirui; Yang, Pingan; Fu, Jie

    2017-12-01

    Dendritic-like Co superstructures based on the self-assembly of nanoflakes that could efficiently suppress the eddy current were successfully synthesized via a facile, rapid, and energy-saving chemical reduction method. Since crystal structure, size, and special geometrical morphology, magnetism have a vital influence on microwave absorption properties, the as-obtained products were characterized by x-ray diffraction, scanning electron microscopy, vibrating sample magnetometry, and vector network analysis. The prepared dendritic Co possesses abundant secondary branches that extend to the 3D space. Their dimensions, spacing, sheet-like blocks, and high-ordering microstructures all contribute to the penetration, scattering, and attenuation of EM waves. The composites present attractive microwave absorption performances in the X band, as well as in the whole S band (2-4 GHz). This work investigates the mechanism of absorption for the as-obtained Co, offers a promising strategy for the fabrication of hierarchical Co microstructure assemblies by multi-leaf flakes and introduces the application of dendritic-like Co as a highly efficient absorber in the S band and X band.

  18. Study of transmission line attenuation in broad band millimeter wave frequency range.

    PubMed

    Pandya, Hitesh Kumar B; Austin, M E; Ellis, R F

    2013-10-01

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

  19. Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Kang, Yongqiang; Liu, Hongmei

    2018-02-01

    A broadband absorber which was proposed by one dimensional photonic crystal (1DPC) containing graphene-based hyperbolic metamaterials (GHMM) is theoretically investigated. For TM mode, it was demonstrated to absorb roughly 90% of all available electromagnetic waves at a 14 THz absorption bandwidth at normal incidence. The absorption bandwidth was affected by Fermi energy and thickness of dielectric layer. When the incident angle was increased, the absorption value decreased, and the absorption band had a gradual blue shift. These findings have potential applications for designing broadband optoelectronic devices at mid-infrared and THz frequency range.

  20. Low-frequency radio absorption in Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Arias, M.; Vink, J.; de Gasperin, F.; Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; van Amesfoort, A. S.; Anderson, J.; Beck, R.; Bell, M. E.; Bentum, M. J.; Best, P.; Blaauw, R.; Breitling, F.; Broderick, J. W.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; de Geus, E.; Deller, A.; van Dijk, P. C. G.; Duscha, S.; Eislöffel, J.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; van Haarlem, M. P.; Heald, G.; Hessels, J.; Hörandel, J.; Holties, H. A.; van der Horst, A. J.; Iacobelli, M.; Juette, E.; Krankowski, A.; van Leeuwen, J.; Mann, G.; McKay-Bukowski, D.; McKean, J. P.; Mulder, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pekal, R.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H. J. A.; Rothkaehl, H.; Schwarz, D. J.; Smirnov, O.; Soida, M.; Steinmetz, M.; Tagger, M.; Thoudam, S.; Toribio, M. C.; Vocks, C.; van der Wiel, M. H. D.; Wijers, R. A. M. J.; Wucknitz, O.; Zarka, P.; Zucca, P.

    2018-05-01

    Context. Cassiopeia A is one of the best-studied supernova remnants. Its bright radio and X-ray emission is due to shocked ejecta. Cas A is rather unique in that the unshocked ejecta can also be studied: through emission in the infrared, the radio-active decay of 44Ti, and the low-frequency free-free absorption caused by cold ionised gas, which is the topic of this paper. Aims: Free-free absorption processes are affected by the mass, geometry, temperature, and ionisation conditions in the absorbing gas. Observations at the lowest radio frequencies can constrain a combination of these properties. Methods: We used Low Frequency Array (LOFAR) Low Band Antenna observations at 30-77 MHz and Very Large Array (VLA) L-band observations at 1-2 GHz to fit for internal absorption as parametrised by the emission measure. We simultaneously fit multiple UV-matched images with a common resolution of 17″ (this corresponds to 0.25 pc for a source at the distance of Cas A). The ample frequency coverage allows us separate the relative contributions from the absorbing gas, the unabsorbed front of the shell, and the absorbed back of the shell to the emission spectrum. We explored the effects that a temperature lower than the 100-500 K proposed from infrared observations and a high degree of clumping can have on the derived physical properties of the unshocked material, such as its mass and density. We also compiled integrated radio flux density measurements, fit for the absorption processes that occur in the radio band, and considered their effect on the secular decline of the source. Results: We find a mass in the unshocked ejecta of M = 2.95 ± 0.48 M⊙ for an assumed gas temperatureof T = 100 K. This estimate is reduced for colder gas temperatures and, most significantly, if the ejecta are clumped. We measure the reverse shock to have a radius of 114″± 6″ and be centred at 23:23:26, +58:48:54 (J2000). We also find that a decrease in the amount of mass in the unshocked ejecta

  1. Collison-Induced Absorption of Oxygen Molecule as Studied by High Sensitivity Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kashihara, Wataru; Shoji, Atsushi; Kawai, Akio

    2017-06-01

    Oxygen dimol is transiently generated when two oxygen molecules collide. At this short period, the electron clouds of molecules are distorted and some forbidden transition electronic transitions become partially allowed. This transition is called CIA (Collision-induced absorption). There are several CIA bands appearing in the spectral region from UV to near IR. Absorption of solar radiation by oxygen dimol is a small but significant part of the total budget of incoming shortwave radiation. However, a theory predicting the lineshape of CIA is still under developing. In this study, we measured CIA band around 630 nm that is assigned to optical transition, a^{1}Δ_{g}(v=0):a^{1}Δ_{g}(v=0)-X^{3}Σ_{g}^{-}(v=0):X^{3}Σ_{g}^{-}(v=0) of oxygen dimol. CRDS(Cavity Ring-down Spectroscopy) was employed to measure weak absorption CIA band of oxygen. Laser beam around 630 nm was generated by a dye laser that was pumped by a YAG Laser. Multiple reflection of the probe light was performed within a vacuum chamber that was equipped with two high reflective mirrors. We discuss the measured line shape of CIA on the basis of collision pair model.

  2. Composite Reflective Absorptive IR-Blocking Filters Embedded in Metamaterial Antireflection Coated Silicon

    NASA Technical Reports Server (NTRS)

    Munson, C. D.; Choi, S. K.; Coughlin, K. P.; McMahon, J. J.; Miller, K. H.; Page, L. A.; Wollack, E. J.

    2017-01-01

    Infrared (IR)-blocking filters are crucial for controlling the radiative loading on cryogenic systems and for optimizing the sensitivity of bolometric detectors in the far-IR. We present a new IR filter approach based on a combination of patterned frequency-selective structures on silicon and a thin (2575 micron thick) absorptive composite based on powdered reststrahlen absorbing materials. For a 300 K blackbody, this combination reflects approximately 50% of the incoming light and blocks greater than.99.8% of the total power with negligible thermal gradients and excellent low-frequency transmission. This allows a reduction in the IR thermal loading to negligible levels in a single cold filter. These composite filters are fabricated on silicon substrates, which provide excellent thermal transport laterally through the filter and ensure that the entire area of the absorptive filter stays near the bath temperature. A metamaterial antireflection coating cut into these substrates reduces in-band reflections to below 1%, and the in-band absorption of the powder mix is below 1% for signal bands below 750 GHz. This type of filter can be directly incorporated into silicon refractive optical elements.

  3. Optical Absorption in Degenerately Doped Semiconductors: Mott Transition or Mahan Excitons?

    NASA Astrophysics Data System (ADS)

    Schleife, André; Rödl, Claudia; Fuchs, Frank; Hannewald, Karsten; Bechstedt, Friedhelm

    2011-12-01

    Electron doping turns semiconductors conductive even when they have wide fundamental band gaps. The degenerate electron gas in the lowest conduction-band states, e.g., of a transparent conducting oxide, drastically modifies the Coulomb interaction between the electrons and, hence, the optical properties close to the absorption edge. We describe these effects by developing an ab initio technique which captures also the Pauli blocking and the Fermi-edge singularity at the optical-absorption onset, that occur in addition to quasiparticle and excitonic effects. We answer the question whether free carriers induce an excitonic Mott transition or trigger the evolution of Wannier-Mott excitons into Mahan excitons. The prototypical n-type zinc oxide is studied as an example.

  4. Absorption Spectra of Gold Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  5. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  6. Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions

    NASA Astrophysics Data System (ADS)

    El-Diasty, Fouad; Abdel Wahab, Fathy A.; Abdel-Baki, Manal

    2006-11-01

    Lithium aluminum silicate glass system (LAS) implanted with chromium ions is prepared. The reflectance and transmittance measurements are used to determine the dispersion of absorption coefficient. The optical data are explained in terms of the different oxidation states adopted by the chromium ions into the glass network. It is found that the oxidation state of the chromium depends on its concentration. Across a wide spectral range, 0.2-1.6μm, analysis of the fundamental absorption edge provides values for the average energy band gaps for allowed direct and indirect transitions. The optical absorption coefficient just below the absorption edge varies exponentially with photon energy indicating the presence of Urbach's tail. Such tail is decreased with the increase of the chromium dopant. From the analysis of the optical absorption data, the absorption peak at ground state exciton energy, the absorption at band gap, and the free exciton binding energy are determined. The extinction coefficient data are used to determine the Fermi energy level of the studied glasses. The metallization criterion is obtained and discussed exploring the nature of the glasses. The measured IR spectra of the different glasses are used to throw some light on the optical properties of the present glasses correlating them with their structure and composition.

  7. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Vibronic bands in the HOMO-LUMO excitation of linear polyyne molecules

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Tomonari; Wada, Yoriko; Iwahara, Naoya; Sato, Tohru

    2013-04-01

    Hydrogen-capped linear carbon chain molecules, namely polyynes H(C≡C)nH (n>=2), give rise to three excited states in the HOMO-LUMO excitation. Electric dipole transition from the ground state is fully allowed to one of the three excited states, while forbidden for the other two low-lying excited states. In addition to the strong absorption bands in the UV for the allowed transition, the molecules exhibit weak absorption and emission bands in the near UV and visible wavelength regions. The weak features are the vibronic bands in the forbidden transition. In this article, symmetry considerations are presented for the optical transitions in the centrosymmetric linear polyyne molecule. The argument includes Herzberg-Teller expansion for the state mixing induced by nuclear displacements along the normal coordinate of the molecule, intensity borrowing from fully allowed transitions, and inducing vibrational modes excited in the vibronic transition. The vibronic coupling considered here includes off-diagonal matrix elements for second derivatives along the normal coordinate. The vibronic selection rule for the forbidden transition is derived and associated with the transition moment with respect to the molecular axis. Experimental approaches are proposed for the assignment of the observed vibronic bands.

  9. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications

    PubMed Central

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-01-01

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10−4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540

  10. Solvatochromic Effects on the Absorption Spectrum of 2-Thiocytosine

    PubMed Central

    2017-01-01

    The solvatochromic effects of six different solvents on the UV absorption spectrum of 2-thiocytosine have been studied by a combination of experimental and theoretical techniques. The steady-state absorption spectra show significant shifts of the absorption bands, where in more polar solvents the first absorption maximum shifts to higher transition energies and the second maximum to lower energies. The observed solvatochromic shifts have been rationalized using three popular solvatochromic scales and with high-level multireference quantum chemistry calculations including implicit and explicit solvent effects. It has been found that the dipole moments of the excited states account for some general shifts in the excitation energies, whereas the explicit solvent interactions explain the differences in the spectra recorded in the different solvents. PMID:28452483

  11. Multiple infrared bands absorber based on multilayer gratings

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyi; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Guo, Chengli

    2018-03-01

    The present study offers an Ag/Si multilayer-grating microstructure based on an Si substrate. The microstructure exhibits designable narrowband absorption in multiple infrared wavebands, especially in mid- and long-wave infrared atmospheric windows. We investigate its resonance mode mechanism, and calculate the resonance wavelengths by the Fabry-Perot and metal-insulator-metal theories for comparison with the simulation results. Furthermore, we summarize the controlling rules of the absorption peak wavelength of the microstructure to provide a new method for generating a Si-based device with multiple working bands in infrared.

  12. Effect of narrow band nonuniformity on unsteady heat up of water vapor under radiation-conduction combined heat transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Tatsuyuki; Tanaka, Tomohiro; Morimune, Atsushi

    Effect of narrow band nonuniformity on unsteady heat up process of water vapor under radiation-conduction combined heat transfer is examined by comparing the result of numerical simulations with and without incorporation of narrow band nonuniformity. The authors propose a rational and comprehensive computational approach for incorporating the narrow band nonuniformity into numerical simulations of radiative heat transfer when the considered field is nonisothermal. Results of examination exhibited that the contribution of radiative heat transfer to the heat up rate of water vapor may be almost twice overestimated, if the narrow band nonuniformity effect is neglected. Separate analyses of radiative energymore » attributed to wall emission and gas emission clarified that the absorption of wall emission is overestimated and, on the contrary, the absorption of radiation energy emitted by water vapor itself is underestimated if the narrow band nonuniformity is neglected. The reason why such over- or under-estimation is induced is understood by examining the influence of line overlap parameter on the transmittance averaged within a narrow band. Smaller value of line overlap parameter {gamma}/d means more violent narrow band nonuniformity. The broken lines show the narrow band transmittance for flat incident power spectrum, and the solid lines show that for the radiative emission from the absorbing gas itself. It is also clarified that the disregard of the narrow band nonuniformity give rise to serious error in the estimation of absorption rate of wall and gas emission even in the case where the disregard of narrow band nonuniformity bring little change to the temperature distribution. The results illustrated in this paper suggest that the narrow band nonuniformity should not be neglected.« less

  13. Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?

    NASA Astrophysics Data System (ADS)

    Schleife, André.; Rödl, Claudia; Hannewald, Karsten; Bechstedt, Friedhelm

    2012-02-01

    In the exploration of material properties, parameter-free calculations are a modern, sophisticated complement to cutting-edge experimental techniques. Ab-initio calculations are now capable of providing a deep understanding of the interesting physics underlying the electronic structure and optical absorption, e.g., of the transparent conductive oxides. Due to electron doping, these materials are conductive even though they have wide fundamental band gaps. The degenerate electron gas in the lowest conduction-band states drastically modifies the Coulomb interaction between the electrons and, hence, the optical properties close to the absorption edge. We describe these effects by developing an ab-initio technique which captures also the Pauli blocking and the Fermi-edge singularity at the optical absorption onset, that occur in addition to quasiparticle and excitonic effects. We answer the question whether free carriers induce an excitonic Mott transition or trigger the evolution of Wannier-Mott excitons into Mahan excitons. The prototypical n-type zinc oxide is studied as an example.

  14. Interactions of praseodymium and neodymium with nucleosides and nucleotides: absorption difference and comparative absorption spectral study.

    PubMed

    Misra, S N; Anjaiah, K; Joseph, G; Abdi, S H

    1992-02-01

    The interactions of praseodymium(III) and neodymium(III) with nucleosides and nucleotides have been studied in different stoichiometry in water and water-DMF mixtures by employing absorption difference and comparative absorption spectrophotometry. The 4f-4f bands were analysed by linear curve analysis followed by gaussian curve analysis, and various spectral parameters were computed, using partial and multiple regression method. The magnitude of changes in both energy interaction and intensity were used to explore the degree of outer and inner sphere coordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Crystalline complexes of the type [Ln(nucleotide)2(H2O)2]- (where nucleotide--GMP or IMP) were characterized by IR, 1H NMR, 31P NMR data. These studies indicated that the binding of the nucleotide is through phosphate oxygen in a bidentate manner and the complexes undergo substantial ionisation in aqueous medium, thereby supporting the observed weak 4f-4f bands and lower values for nephelauxetic effect (1-beta), bonding (b) and covalency (delta) parameters derived from coulombic and spin orbit interaction parameters.

  15. Comparison of HITRAN Calculated Spectra with Laboratory Measurements of the 820, 940, 1130, and 1370 nm Water Vapor Bands

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Pilewskie, P.; Gore, Warren J.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    Several groups have recently been working to improve the near-infrared spectrum of water vapor on HITRAN. The unit-conversion errors found by Giver, et al have now been corrected on the recently released HITRAN-2000. The most important aspect of this article for atmospheric absorption was increasing all the HITRAN-1996 intensities of the 940 nm band by nearly 15%. New intensity measurements of this band by Brown, et al (submitted to J. Mol. Spec.) have now been included in the latest HITRAN. However, Belmiloud, et al discuss new data in the 633-1175 nm region which they expect will substantially increase the calculated absorption of solar radiation by water vapor. They suggest the 4 bands at 725, 820, 940, and 1130 nm are all stronger than the sum of the line intensities currently on HITRAN. For the 725 and 820 nm bands, their recommended intensity increases are 10% and 15%, about the same as previously noted by Grossmann and Browell and Ponsardin and Browell. Belmiloud, et al only suggest a 6% increase for the 940 nm. band over the corrected HITRAN-1996 intensities, but a large 38% increase for the 1130 nm band. The new data discussed by Belmiloud, et al have now been published in greater detail by Schermaul, et al. The intensity increase for the 1130 nm band discussed by Belmiloud, et al is very substantial; it is important to quickly determine if the HITRAN intensity values are in error by as much as they claim. Only intensity errors for the strong lines could result in the total band intensity being in error by such a large amount. To quickly get a number of spectra of the entire near-infrared region from 650 to 1650 nm, we used the Solar Spectral Flux Radiometer with our 25-meter base path White absorption cell. This moderate resolution spectrometer is a flight instrument that has flown on the Sandia Twin Otter for the ARESE 11 experiment. The measured band profiles were then compared to calculated spectra using the latest HITRAN line intensities, convolved

  16. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode.

    PubMed

    Long, Chang; Yin, Sheng; Wang, Wei; Li, Wei; Zhu, Jianfei; Guan, Jianguo

    2016-02-18

    By investigating a square-shaped metamaterial structure we discover that wave diffraction at diagonal corners of such a structure excites transverse magnetic harmonics of 210 mode (TM210 harmonics). Multi-layer overlapping and deliberately regulating period length between adjacent unit cells can significantly enhance TM210 harmonics, leading to a strong absorption waveband. On such a basis, a design strategy is proposed to achieve broadband, thin-thickness multi-layered metamaterial absorbers (MMAs). In this strategy big pyramidal arrays placed in the "white blanks" of a chessboard exhibit two isolated absorption bands due to their fundamental and TM210 harmonics, which are further connected by another absorption band from small pyramidal arrays in the "black blanks" of the chessboard. The as-designed MMA at a total thickness (h) of 4.36 mm shows an absorption of above 0.9 in the whole frequency range of 7-18 GHz, which is 38% broader with respect to previous design methods at the same h. This strategy provides an effective route to extend the absorption bandwidth of MMAs without increasing h.

  17. First laboratory detection of an absorption line of the first overtone electric quadrupolar band of N2 by CRDS near 2.2 μm

    NASA Astrophysics Data System (ADS)

    Čermák, P.; Vasilchenko, S.; Mondelain, D.; Kassi, S.; Campargue, A.

    2017-01-01

    The extremely weak 2-0 O(14) electric quadrupole transition of N2 has been detected by very high sensitivity Cavity Ring Down spectroscopy near 4518 cm-1. It is the first N2 absorption line in the first overtone band reported so far from laboratory experiments. By combining a feedback narrowed Distributed Feedback laser diode with a passive cell tracking technique, a limit of detection of αmin ∼ 1.2 × 10-11 cm-1 was achieved after one day of spectra averaging. The N2 2-0 O(14) line position and line intensity (about 1.5 × 10-30 cm/molecule) agree with calculated values provided in the HITRAN2012 database.

  18. A measurement of the vibrational band strength for the v3 band of the HO2 radical

    NASA Technical Reports Server (NTRS)

    Zahniser, M. S.; Stanton, A. C.

    1984-01-01

    Laboratory measurements of the v(3) band strength of HO2 using a tunable diode laser to measure the absorption strength of a vibration-rotation line in the P branch near 1080/cm are reported. The HO2 is generated in a discharge-flow system by reaction of fluorine atoms with excess H2O2: F + H2O2 - HO2 + HF. The HO2 concentration is determined from measurements of F-atom concentrations using both chemical titration with Cl2 and tunable diode laser absorption by the F-atom spin-orbit transition near 404/cm. The experimental data are consistent with a value of k(3) = (1.6 + or - 0.3) x 10 to the 12th cu cm/s and a ratio k(4)/k(1) = 1.0 + or - 0.4. The line strength for the 6(15) - 7(16)F(1) transition is 2.9 x 10 to the -21 sq cm/molecule/cm, which corresponds to a v(3) band strength of 35 + or - 9/sq cm/(STP atm). This value is a factor of 1.6 to 6 lower than previous ab initio calculations.

  19. Intermediate Band Gap Solar Cells: The Effect of Resonant Tunneling on Delocalization

    NASA Astrophysics Data System (ADS)

    William, Reid; Mathew, Doty; Sanwli, Shilpa; Gammon, Dan; Bracker, Allan

    2011-03-01

    Quantum dots (QD's) have many unique properties, including tunable discrete energy levels, that make them suitable for a variety of next generation photovoltaic applications. One application is an intermediate band solar cell (IBSC); in which QD's are incorporated into the bulk material. The QD's are tuned to absorb low energy photons that would otherwise be wasted because their energy is less than the solar cell's bulk band gap. Current theory concludes that identical QD's should be arranged in a superlattice to form a completely delocalized intermediate band maximizing absorption of low energy photons while minimizing the decrease in the efficiency of the bulk material. We use a T-matrix model to assess the feasibility of forming a delocalized band given that real QD ensembles have an inhomogeneous distribution of energy levels. Our results suggest that formation of a band delocalized through a large QD superlattice is challenging; suggesting that the assumptions underlying present IBSC theory require reexamination. We use time-resolved photoluminescence of coupled QD's to probe the effect of delocalized states on the dynamics of absorption, energy transport, and nonradiative relaxation. These results will allow us to reexamine the theoretical assumptions and determine the degree of delocalization necessary to create an efficient quantum dot-based IBSC.

  20. First-principles study of direct and narrow band gap semiconducting β -CuGaO 2

    DOE PAGES

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  1. Effect of solvent on absorption spectra of all-trans-{beta}-carotene under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W. L.; Zheng, Z. R.; Liu, Z. G.

    The absorption spectra of all-trans-{beta}-carotene in n-hexane and carbon disulfide (CS{sub 2}) solutions are measured under high pressure at ambient temperature. The common redshift and broadening in the spectra are observed. Simulation of the absorption spectra was performed by using the time-domain formula of the stochastic model. The pressure dependence of the 0-0 band wavenumber is in agreement with the Bayliss theory at pressure higher than 0.2 GPa. The deviation of the linearity at lower pressure is ascribed to the reorientation of the solvent molecules. Both the redshift and broadening are stronger in CS{sub 2} than that in n-hexane becausemore » of the more sensitive pressure dependence of dispersive interactions in CS{sub 2} solution. The effect of pressure on the transition moment is explained with the aid of a simple model involving the relative dimension, location, and orientation of the solute and solvent molecules. The implication of these results for light-harvesting functions of carotenoids in photosynthesis is also discussed.« less

  2. Alcohol-catalyzed photoreduction of iron-porphyrin complexes revealed by resonance raman and absorption spectroscopies

    NASA Astrophysics Data System (ADS)

    Ogura, T.; Fidler, V.; Ozaki, Y.; Kitagawa, T.

    1990-06-01

    Photoreduction of Fe III(OEP) (2-MeIm) (OEP is octaethylporphyrin; 2-MeIm is 2-methylimidazole) was found to be catalyzed by a trace amount of MeOH present in Ch 2Cl 2 as a stabilizer. The absence of either 2-MeIm or MeOH in the CH 2Cl 2 solution of Fe III(OEP) X (X is Cl -, Br - or I -) leads to no photoreduction. The presence of MeOH in the Fe III(OEP) (2-MeIm) solution results in the appearance of a new absorption band at 585 nm, and when Raman scattering was excited at 590 nm, a new Raman band appeared at 524 cm -. This band exhibited an upshift by 4 cm - with 54Fe(OEP) (2-MeIm)(CH 3OH) and a downshift by 12 cm -1 with 56Fe(OEP)(2-MeIm) (CD 3OD) and was therefore assigned to the Fe III-MeOH stretching vibration. The excitation profile of this band gave a peak around 585 nm and accordingly, the new absorption band at 584 nm was assigned to a charge-transfer (CT) band from MeOH to the Fe III ion. It was most unexpected that the photoreduction did not occur upon laser illumination within the CT band.

  3. EFFECTS OF LASER RADIATION ON MATTER: Photoinduced absorption in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Ponomar', V. V.

    1990-08-01

    A dependence of the absorption coefficient on the optical radiation intensity in the range 10 - 5 - 1 W/cm2 was observed for chalcogenide glasses at a photon energy less than the band gap of the material. The absorption coefficient depended on the irradiation time. In the case of arsenic sulfide in the range 1.6-1.7 eV an absorption peak was observed at intensities of the order of 10 - 3 W/cm2. In this part of the spectrum the absorption probably involved metastable As-As, S-Se, and Se-Se "defect" bonds and was similar to the photoinduced degradation of hydrogenated amorphous silicon.

  4. Laser-excited luminescence and absorption study of mixed valence for K 2Pt(CN) 4—K 2Pt(CN) 6 crystals

    NASA Astrophysics Data System (ADS)

    Kasi Viswanath, A.; Smith, Wayne L.; Patterson, H.

    1982-04-01

    Crystals of K 2Pt(CN) 6 doped with Pt(CN) 2-4 show an absorption band at 337 nm which is assigned as a mixed-valence (MV) transition from Pt (II) to Pt(IV). From a Hush model analysis, the absorption band is interpreted to be class II in the Day—Robin scheme. When the MV band is laser excited at 337 nm, emmision is observed from Pt(CN) 2-4 clusters.

  5. [Passive ranging of infrared target using oxygen A-band and Elsasser model].

    PubMed

    Li, Jin-Hua; Wang, Zhao-Ba; Wang Zhi

    2014-09-01

    Passive ranging method of short range and single band was developed based on target radiation and attenuation characteristic of oxygen spectrum absorption. The relation between transmittance of oxygen A band and range of measured target was analyzed. Radiation strength distribution of measured target can be obtained according to the distribution law of absorption coefficient with environmental parameters. Passive ranging mathematical model of short ranges was established using Elsasser model with Lorentz line shape based on the computational methods of band average transmittance and high-temperature gas radiation narrowband model. The range of measured object was obtained using transmittance fitting with test data calculation and theoretical model. Besides, ranging precision was corrected considering the influence of oxygen absorption with enviromental parameter. The ranging experiment platform was established. The source was a 10 watt black body, and a grating spectrometer with 17 cm(-1) resolution was used. In order to improve the light receiving efficiency, light input was collected with 23 mm calibre telescope. The test data was processed for different range in 200 m. The results show that the transmittance accuracy was better than 2.18% in short range compared to the test data with predicted value in the same conditions.

  6. Synopsis of Mid-latitude Radio Wave Absorption in Europe

    NASA Technical Reports Server (NTRS)

    Torkar, K. M.; Friedrich, M.

    1984-01-01

    Radio wave absorption data covering almost two years from Europe to Central Asia are presented. They are normalized by relating them to a reference absorption. Every day these normalized data are fitted to a mathematical function of geographical location in order to obtain a daily synopsis of radio wave absorption. A film of these absorption charts was made which is intended to reveal movements of absorption or absorption anomaly. In addition, radiance (temperature) data from the lower D-region are also plotted onto these charts.

  7. [Near ultraviolet absorption spectral properties of chromophoric dissolved organic matter in the north area of Yellow Sea].

    PubMed

    Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.

  8. Resonant indirect optical absorption in germanium

    NASA Astrophysics Data System (ADS)

    Menéndez, José; Noël, Mario; Zwinkels, Joanne C.; Lockwood, David J.

    2017-09-01

    The optical absorption coefficient of pure Ge has been determined from high-accuracy, high-precision optical measurements at photon energies covering the spectral range between the indirect and direct gaps. The results are compared with a theoretical model that fully accounts for the resonant nature of the energy denominators that appear in perturbation-theory expansions of the absorption coefficient. The model generalizes the classic Elliott approach to indirect excitons, and leads to a predicted optical absorption that is in excellent agreement with the experimental values using just a single adjustable parameter: the average deformation potential DΓ L coupling electrons at the bottom of the direct and indirect valleys in the conduction band. Remarkably, the fitted value, DΓ L=4.3 ×108eV /cm , is in nearly perfect agreement with independent measurements and ab initio predictions of this parameter, confirming the validity of the proposed theory, which has general applicability.

  9. Tunable band gap in Bi(Fe1-xMnx)O3 films

    NASA Astrophysics Data System (ADS)

    Xu, X. S.; Ihlefeld, J. F.; Lee, J. H.; Ezekoye, O. K.; Vlahos, E.; Ramesh, R.; Gopalan, V.; Pan, X. Q.; Schlom, D. G.; Musfeldt, J. L.

    2010-05-01

    In order to investigate band gap tunability in polar oxides, we measured the optical properties of a series of Bi(Fe1-xMnx)O3 thin films. The absorption response of the mixed metal solid solutions is approximately a linear combination of the characteristics of the two end members, a result that demonstrates straightforward band gap tunability in this system.

  10. THE tilde{A}-tilde{X} AND tilde{B}-tilde{X} ABSORPTIONS OF NO_3 TRAPPED IN SOLID NEON

    NASA Astrophysics Data System (ADS)

    Jacox, Marilyn E.; Thompson, Warren E.

    2009-06-01

    Absorptions arising from the tilde{A}-tilde{X} transition of normal and isotopically substituted NO_3 have been observed between 7500 and 9500 cm^{-1}. Details of the spectra will be discussed and assignments will be proposed. Absorptions arising from the tilde{B}-tilde{X} transition of NO_3, with band origin near 15 000 cm^{-1}, have also been observed for the normal species and two of its isotopologues which possess D_{3h} symmetry. As in the gas phase, the absorptions are broadened because of predissociation. The observed band structure corresponds closely with that reported for the gas-phase molecule.

  11. Ultrafast X-Ray Absorption Spectroscopy of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Engelhorn, Kyle Craig

    This dissertation will present a series of new tools, together with new techniques, focused on the understanding of warm and dense matter. We report on the development of a high time resolution and high detection efficiency x-ray camera. The camera is integrated with a short pulse laser and an x-ray beamline at the Advanced Light Source synchrotron. This provides an instrument for single shot, broadband x-ray absorption spectroscopy of warm and dense matter with 2 picosecond time resolution. Warm and dense matter is created by isochorically heating samples of known density with an ultrafast optical laser pulse, and X-ray absorption spectroscopy probes the unoccupied electronic density of states before the onset of hydrodynamic expansion and electron-ion equilibrium is reached. Measured spectra from a variety of materials are compared with first principle molecular dynamics and density functional theory calculations. In heated silicon dioxide spectra, two novel pre-edge features are observed, a peak below the band gap and absorption within the band gap, while a reduction was observed in the features above the edge. From consideration of the calculated spectra, the peak below the gap is attributed to valence electrons that have been promoted to the conduction band, the absorption within the gap is attributed to broken Si-O bonds, and the reduction above the edge is attributed to an elevated ionic temperature. In heated copper spectra, a time-dependent shift and broadening of the absorption edge are observed, consistent with and elevated electron temperature. The temporal evolution of the electronic temperature is accurately determined by fitting the measured spectra with calculated spectra. The electron-ion equilibration is studied with a two-temperature model. In heated nickel spectra, a shift of the absorption edge is observed. This shift is found to be inconsistent with calculated spectra and independent of incident laser fluence. A shift of the chemical potential

  12. Ultrathin Six-Band Polarization-Insensitive Perfect Metamaterial Absorber Based on a Cross-Cave Patch Resonator for Terahertz Waves

    PubMed Central

    Cheng, Yong Zhi; Huang, Mu Lin; Chen, Hao Ran; Guo, Zhen Zhong; Mao, Xue Song; Gong, Rong Zhou

    2017-01-01

    A simple design of an ultrathin six-band polarization-insensitive terahertz perfect metamaterial absorber (PMMA), composed of a metal cross-cave patch resonator (CCPR) placed over a ground plane, was proposed and investigated numerically. The numerical simulation results demonstrate that the average absorption peaks are up to 95% at six resonance frequencies. Owing to the ultra-narrow band resonance absorption of the structure, the designed PMMA also exhibits a higher Q factor (>65). In addition, the absorption properties can be kept stable for both normal incident transverse magnetic (TM) and transverse electric (TE) waves. The physical mechanism behind the observed high-level absorption is illustrated by the electric and power loss density distributions. The perfect absorption originates mainly from the higher-order multipolar plasmon resonance of the structure, which differs sharply from most previous studies of PMMAs. Furthermore, the resonance absorption properties of the PMMA can be modified and adjusted easily by varying the geometric parameters of the unit cell. PMID:28772951

  13. Ultrafast relaxation dynamics of nitric oxide synthase studied by visible broadband transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S.

    2017-09-01

    Ultrafast dynamics of endothelial nitric oxide synthase (eNOS) oxygenase domain was studied by transient absorption spectroscopy pumping at Soret band. The broadband visible probe spectrum has visualized the relaxation dynamics from the Soret band to Q-band and charge transfer (CT) band. Supported by two-dimensional correlation spectroscopy, global fitting analysis has successfully concluded the relaxation dynamics from the Soret band to be (1) electronic transition to Q-band (0.16 ps), (2) ligand dissociation and CT (0.94 ps), (3) relaxation of the CT state (4.0 ps), and (4) ligand rebinding (59 ps).

  14. HIghZ: A search for HI absorption in high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Allison, J.; Callingham, J.; Sadler, E.; Wayth, R.; Curran, S.; Mahoney, E.

    2017-01-01

    We will use the unique low-frequency spectral capability of the MWA to carry out a pilot survey for neutral gas in the interstellar medium of the most distant (z>5) radio galaxies in the Universe. Through detection of the HI 21-cm line in absorption we aim to place stringent lower limits on the source redshift, confirming its location in the early Universe. Our sample makes use of the excellent wide-band spectral information available from the recently completed MWA GLEAM survey, from which we have selected a sample of ultra-steep peaked-spectrum radio sources that have a spectral turnover below 300 MHz. These sources should be ideal candidates for high-redshift compact radio galaxies since they have (a) spectral peaks that turnover below 1GHz and (b) very steep (alpha < -1.0) spectral indices that are consistent with the high density environments expected for radio galaxies in the early Universe. Using the MWA, we aim to verify this hypothesis through the detection of significant column densities of cold HI. This pathfinder project will provide important technical information that will inform future absorption surveys both with the MWA and, ultimately, the SKA-LOW telescope.

  15. Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce

    NASA Astrophysics Data System (ADS)

    Li, Peiyun; Gridin, Sergii; Ucer, K. Burak; Williams, Richard T.; Menge, Peter R.

    2018-04-01

    Picosecond time-resolved optical absorption spectra induced by two-photon interband excitation of LaBr3 are reported. The spectra are similar in general characteristics to self-trapped exciton (STE) absorption previously measured in alkali halides and alkaline-earth halides. A broad ultraviolet absorption band results from excitation of the self-trapped hole within the STE. A series of infrared and red-visible bands results from excitation of the bound outer electron within the STE similar to bands found in alkali halides corresponding to different degrees of "off-center" relaxation. Induced absorption in cerium-doped LaBr3 after band-gap excitation of the host exhibits similar STE spectra, except it decays faster on the tens-of-picoseconds scale in proportion to the Ce concentration. This is attributed to dipole-dipole energy transfer from STE to Ce3 + dopant ions. The absorption spectra were also measured after direct excitation of the Ce3 + ions with sufficient intensity to drive two- and three-photon resonantly enhanced excitation. In this case, the spectrum attributed to STEs created adjacent to Ce3 + ions decays in 1 ps suggesting dipole-dipole transfer from the nearest-neighbor separation. A transient absorption band at 2.1 eV growing with Ce concentration is found and attributed to a charge-transfer excitation of the Ce3 +* excited state responsible for scintillation in LaBr3:Ce crystals. This study concludes that the energy transport from host to activator responsible for the scintillation of LaBr3:Ce proceeds by STE creation and dipole-dipole transfer more than by sequential trapping of holes and electrons on Ce3 + ions.

  16. Temperature shift of intraband absorption peak in tunnel-coupled QW structure

    NASA Astrophysics Data System (ADS)

    Akimov, V.; Firsov, D. A.; Duque, C. A.; Tulupenko, V.; Balagula, R. M.; Vinnichenko, M. Ya.; Vorobjev, L. E.

    2017-04-01

    An experimental study of the intersubband light absorption by the 100-period GaAs/Al0.25Ga0.75As double quantum well heterostructure doped with silicon is reported and interpreted. Small temperature redshift of the 1-3 intersubband absorption peak is detected. Numerical calculations of the absorption coefficient including self-consistent Hartree calculations of the bottom of the conduction band show good agreement with the observed phenomena. The temperature dependence of energy gap of the material and the depolarization shift should be accounted for to explain the shift.

  17. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers

    DOE PAGES

    Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.

    2018-01-22

    In this paper, we present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moire pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moire Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moire potential energy restores circular opticalmore » selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. Finally, we discuss the possibility of using the moire pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.« less

  18. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers

    NASA Astrophysics Data System (ADS)

    Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.

    2018-01-01

    We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moiré Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moiré potential energy restores circular optical selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. We discuss the possibility of using the moiré pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.

  19. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.

    In this paper, we present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moire pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moire Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moire potential energy restores circular opticalmore » selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. Finally, we discuss the possibility of using the moire pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.« less

  20. Effect of pyridine on infrared absorption spectra of copper phthalocyanine.

    PubMed

    Singh, Sukhwinder; Tripathi, S K; Saini, G S S

    2008-02-01

    Infrared absorption spectra of copper phthalocyanine in KBr pellet and pyridine solution in 400-1625 and 2900-3200 cm(-1)regions are reported. In the IR spectra of solid sample, presence of weak bands, which are forbidden according to the selection rules of D4h point group, is explained on the basis of distortion in the copper phthalocyanine molecule caused by the crystal packing effects. Observation of a new band at 1511 cm(-1) and change in intensity of some other bands in pyridine are interpreted on the basis of coordination of the solvent molecule with the central copper ion.

  1. Enhanced light absorption of solar cells and photodetectors by diffraction

    DOEpatents

    Zaidi, Saleem H.; Gee, James M.

    2005-02-22

    Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

  2. High resolution absorption spectrum of CO2between 1750 and 2000 Å. 2. Rotational analysis of two parallel-type bands assigned to the lowest electronic transition 13B2←

    NASA Astrophysics Data System (ADS)

    Cossart-Magos, Claudina; Launay, Françoise; Parkin, James E.

    The absorption spectrum of CO2 gas between 175 and 200 nm was photographed at high resolution some years ago. This very weak spectral region proved to be extremely rich in bands showing rotational fine structure. In Part 1 [C. Cossart-Magos, F. Launay, J. E. Parkin, Mol. Phys., 75, 835 (1992), nine perpendicular-type bands were assigned to the lowest singlet-singlet transition, 11A2 ← ν'3 (b2) vibration. Here, the parallel-type bands observed at 185.7 and 175.6 nm are assigned to the lowest triplet-singlet transition, 13B2 ← TMPH0629math005 ν'2 (a1) vibration. The assignment and the rotational and spin constant values obtained are discussed in relation to previous experimental data and ab initio calculation results on the lowest excited states of CO2. The actual role of the 13B2 state in CO2 photodissociation, O(3P)+CO(X1Σ+) recombination, and O(1D) emission quenching by CO(X) molecules is reviewed.

  3. V x In (2–x) S 3 Intermediate Band Absorbers Deposited by Atomic Layer Deposition

    DOE PAGES

    McCarthy, Robert F.; Weimer, Matthew S.; Haasch, Richard T.; ...

    2016-03-21

    Substitutional alloys of several thin film semiconductors have been proposed as intermediate band (IB) materials for use in next-generation photovoltaics, which aim to utilize a larger fraction of the solar spectrum without sacrificing significant photovoltage. Here, we demonstrate a novel approach to IB material growth, namely atomic layer deposition (ALD), to enable unique control over substitutional-dopant location and density. Two new ALD processes for vanadium sulfide incorporation are introduced, one of which incorporates a vanadium (III) amidinate previously untested for ALD. We synthesize the first thin film V xIn (2-x)S 3 intermediate band semiconductors, using this process, and further demonstratemore » that the V:In ratio, and therefore intraband gap density of states, can be finely tuned according to the ALD dosing schedule. Deposition on a crystalline In 2S 3 underlayer promotes the growth of a tetragonal β-In 2S 3-like phase V xIn (2-x)S 3, which exhibits a distinct sub-band gap absorption peak with onset near 1.1 eV in agreement with computational predictions. But, the V xIn (2-x)S 3 films lack the lower energy transition predicted for a partially filled IB, and photoelectrochemical devices reveal a photocurrent response only from illumination with energy sufficient to span the parent band-gap.« less

  4. On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerrits, Thomas; Lita, Adriana E.; Calkins, Brice

    Integration is currently the only feasible route toward scalable photonic quantum processing devices that are sufficiently complex to be genuinely useful in computing, metrology, and simulation. Embedded on-chip detection will be critical to such devices. We demonstrate an integrated photon-number-resolving detector, operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows it to be placed at arbitrary locations within a planar circuit. Up to five photons are resolved in the guided optical mode via absorption from the evanescent field into a tungsten transition-edge sensor. The detection efficiency is 7.2{+-}0.5 %. The polarization sensitivity of themore » detector is also demonstrated. Detailed modeling of device designs shows a clear and feasible route to reaching high detection efficiencies.« less

  5. Study of transmission line attenuation in broad band millimeter wave frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.

    2013-10-15

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmosphericmore » water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.« less

  6. Laboratory absorption spectra of molecules at interstellar cloud temperatures - First measurements on CO at about 97 nm

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Yoshino, K.; Stark, G.; Ito, K.; Stevens, M. H.

    1991-01-01

    In the 91-100 nm spectral region, where absorption of photons by interstellar CO usually leads to dissociation, laboratory spectra obtained at 295 K show that most CO bands are both overlapped and perturbed. Reliable band oscillator strengths cannot be extracted from such spectra. As a consequence, synthetic extreme-ultraviolet absorption spectra for CO at the low temperatures that prevail in interstellar clouds are uncertain. A supersonic expansion technique has been used to cool CO to 30 K and three bands in the 97-nm region have been studied with high spectral resolution. The measured spectrum at 30 K is in reasonable agreement with some published modeled spectra, but the ratios of integrated cross sections are somewhat different from those determined from low resolution spectra obtained at 295 K, in which the bands are blended.

  7. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.

    PubMed

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-11-13

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.

  8. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  9. Potential Second-Harmonic Ghost Bands in Fourier Transform Infrared (FT-IR) Difference Spectroscopy of Proteins.

    PubMed

    Ito, Shota; Kandori, Hideki; Lorenz-Fonfria, Victor A

    2018-06-01

    Fourier transform infrared (FT-IR) difference absorption spectroscopy is a common method for studying the structural and dynamical aspects behind protein function. In particular, the 2800-1800 cm -1 spectral range has been used to obtain information about internal (deuterated) water molecules, as well as site-specific details about cysteine residues and chemically modified and artificial amino acids. Here, we report on the presence of ghost bands in cryogenic light-induced FT-IR difference spectra of the protein bacteriorhodopsin. The presence of these ghost bands can be particularly problematic in the 2800-1900 cm -1 region, showing intensities similar to O-D vibrations from water molecules. We demonstrate that they arise from second harmonics from genuine chromophore bands located in the 1400-850 cm -1 region, generated by double-modulation artifacts caused from reflections of the IR beam at the sample and at the cryostat windows back to the interferometer (inter-reflections). The second-harmonic ghost bands can be physically removed by placing an optical filter of suitable cutoff in the beam path, but at the cost of losing part of the multiplexing advantage of FT-IR spectroscopy. We explored alternatives to the use of optical filters. Tilting the cryostat windows was effective in reducing the intensity of the second harmonic artifacts but tilting the sample windows was not, presumably by their close proximity to the focal point of the IR beam. We also introduce a simple numerical post-processing approach that can partially, but not fully, correct for second-harmonic ghost bands in FT-IR difference spectra.

  10. Design of a wide-band metamaterial absorber based on fractal frequency selective surface and resistive films

    NASA Astrophysics Data System (ADS)

    Cheng, Yong-Zhi; Nie, Yan; Gong, Rong-Zhou

    2013-10-01

    We present the design of a wide-band metamaterial absorber, based on fractal frequency selective surface and resistive films. The total thickness is only 0.8 mm and shows a polarization-insensitive and wide-angle strong absorption. Due to the multiband resonance properties of the Minkowski fractal loop structure and Ohmic loss properties of resistive films, a strongly absorptive bandwidth of about 19 GHz is demonstrated numerically in the range 6.51-25.42 GHz. This design provides an effective and feasible way to construct a broad-band absorber in stealth technology.

  11. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption.

    PubMed

    Price, Edwin R; Brun, Antonio; Gontero-Fourcade, Manuel; Fernández-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.

  12. Fine structure of the amide i band in acetanilide

    NASA Astrophysics Data System (ADS)

    Careri, G.; Gratton, E.; Shyamsunder, E.

    1988-05-01

    Their absorption spectrum of both single crystals and powdered samples of acetanilide (a model system for proteins) has been studied in the amide i region, where a narrow band has been identified as a highly trapped soliton state. The powder-sample spectra have been decomposed using four Lorentzian bands. A strong temperature dependence has been found for the intensity of two of the subbands, which also show a complementary behavior. Polarization studies performed on thin crystals have shown that the subbands have the same polarization. Low-temperature spectra of partially deuterated samples show the presence of the subbands at the same absorption frequencies found using the fitting procedure in the spectra of nondeuterated samples. The soliton model currently proposed to explain the origin of the anomalous amide i component at 1650 cm-1 still holds, but some modification of the model is required to account for the new features revealed by this study.

  13. Water metamaterial for ultra-broadband and wide-angle absorption.

    PubMed

    Xie, Jianwen; Zhu, Weiren; Rukhlenko, Ivan D; Xiao, Fajun; He, Chong; Geng, Junping; Liang, Xianling; Jin, Ronghong; Premaratne, Malin

    2018-02-19

    A subwavelength water metamaterial is proposed and analyzed for ultra-broadband perfect absorption at microwave frequencies. We experimentally demonstrate that this metamaterial shows over 90% absorption within almost the entire frequency band of 12-29.6 GHz. It is also shown that the proposed metamaterial exhibits a good thermal stability with its absorption performance almost unchanged for the temperature range from 0 to 100°C. The study of the angular tolerance of the metamaterial absorber shows its ability of working at wide angles of incidence. Given that the proposed water metamaterial absorber is low-cost and easy for manufacture, we envision it may find numerous applications in electromagnetics such as broadband scattering reduction and electromagnetic energy harvesting.

  14. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    PubMed

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  15. TRES survey of variable diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Law, Charles J.; Milisavljevic, Dan; Crabtree, Kyle N.; Johansen, Sommer L.; Patnaude, Daniel J.; Margutti, Raffaella; Parrent, Jerod T.; Drout, Maria R.; Sanders, Nathan E.; Kirshner, Robert P.; Latham, David W.

    2017-09-01

    Diffuse interstellar bands (DIBs) are absorption features commonly observed in optical/near-infrared spectra of stars and thought to be associated with polyatomic molecules that comprise a significant reservoir of organic material in the Universe. However, the central wavelengths of almost all DIBs do not correspond with electronic transitions of known atomic or molecular species and the specific physical nature of their carriers remains inconclusive despite decades of observational, theoretical and experimental research. It is well established that DIB carriers are located in the interstellar medium, but the recent discovery of time-varying DIBs in the spectra of the extragalactic supernova SN 2012ap suggests that some may be created in massive star environments. Here, we report evidence of short time-scale (∼10-60 d) changes in DIB absorption line substructure towards 3 of 17 massive stars observed as part of a pathfinder survey of variable DIBs conducted with the 1.5-m Tillinghast telescope and Tillinghast Reflector Echelle Spectrograph (TRES) at Fred L. Whipple Observatory. The detections are made in high-resolution optical spectra (R ∼ 44 000) having signal-to-noise ratios of 5-15 around the 5797 and 6614 Å features, and are considered significant but requiring further investigation. We find that these changes are potentially consistent with interactions between stellar winds and DIB carriers in close proximity. Our findings motivate a larger survey to further characterize these variations and may establish a powerful new method for probing the poorly understood physical characteristics of DIB carriers.

  16. TRES Survey of Variable Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Law, Charles; Milisavljevic, Dan; Crabtree, Kyle; Johansen, Sommer; Patnaude, Daniel

    2017-01-01

    Diffuse interstellar bands (DIBs) are absorption features commonly observed in optical/near-infrared spectra of stars and thought to be associated with polyatomic molecules that comprise a significant reservoir of organic material in the universe. However, because the central wavelengths of DIBs do not correspond with electronic transitions of known atomic or molecular species, the specific physical nature of their carriers remains inconclusive despite decades of observational, theoretical, and experimental research. It is well established that DIB carriers must be located in the interstellar medium, but the recent discovery of time-varying DIBs in the spectra of the extragalactic supernova SN 2012ap suggests that some may be created in massive star environments. We report evidence of short time-scale (˜1-60 days) variations in DIB absorption line substructure toward 3 of 17 massive stars observed as part of a pathfinder survey of variable DIBs. The detections are made in high-resolution optical spectra (R ˜ 44000) from the Tillinghast Reflection Echelle Spectrograph on the 1.5m Tillinghast telescope at the Smithsonian Astrophysical Observatory's Fred L. Whipple Observatory on Mt. Hopkins in Arizona. Our detections have signal-to-noise ratios of 5-15 around the features of interest, and are thus considered significant but requiring further investigation. We find that these changes are potentially consistent with interactions between stellar winds and DIB carriers in close proximity. Our findings motivate a larger survey to further characterize these variations and may establish a powerful new method for probing the poorly understood physical characteristics of DIB carriers.

  17. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ˜700 and ˜1400 km s-1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ˜700 km s-1 has a density in the range of 109 to 1010 cm-3 and a distance of ˜1 pc, and the gas with blueshift velocity of ˜1400 km s-1 has a density of 103 cm-3 and a distance of ˜1 kpc.

  18. Nonlinear refraction at the absorption edge in InAs.

    PubMed

    Poole, C D; Garmire, E

    1984-08-01

    The results of measurements of nonlinear refraction at the absorption edge in InAs between 68 and 90 K taken with an HF laser are compared with those of a band-gap resonant model in which the contribution of the light-hole band is included and found to account for more than 40% of the observed nonlinear refraction. A generalized expression for the nonlinear index is derived by using the complete Fermi-Dirac distribution function. Good agreement between theory and experiment is obtained, with no free parameters.

  19. Mid-infrared two photon absorption sensitivity of commercial detectors

    NASA Astrophysics Data System (ADS)

    Boiko, D. L.; Antonov, A. V.; Kuritsyn, D. I.; Yablonskiy, A. N.; Sergeev, S. M.; Orlova, E. E.; Vaks, V. V.

    2017-10-01

    We report on broad-band two-photon absorption (TPA) in several commercially available MIR inter-band bulk semiconductor photodetectors with the spectral cutoff in the range of 4.5-6 μm. The highest TPA responsivity of 2 × 10-5 A.mm2/W2 is measured for a nitrogen-cooled InSb photovoltaic detector. Its performance as a two-photon detector is validated by measuring the second-order interferometric autocorrelation function of a multimode quantum cascade laser emitting at the wavelength of 8 μm.

  20. Improvements to Shortwave Absorption in the GFDL General Circulation Model Radiation Code

    NASA Astrophysics Data System (ADS)

    Freidenreich, S.

    2015-12-01

    The multiple-band shortwave radiation parameterization used in the GFDL general circulation models is being revised to better simulate the disposition of the solar flux in comparison with line-by-line+doubling-adding reference calculations based on the HITRAN 2012 catalog. For clear skies, a notable deficiency in the older formulation is an underestimate of atmospheric absorption. The two main reasons for this is the neglecting of both H2O absorption for wavenumbers < 2500 cm-1 and the O2 continuum. Further contributions to this underestimate are due to neglecting the effects of CH4, N2O and stratospheric H2O absorption. These issues are addressed in the revised formulation and result in globally average shortwave absorption increasing from 74 to 78 Wm-2. The number of spectral bands considered remains the same (18), but the number of pseudomonochromatic intervals (based mainly on the exponential-sum-fit technique) for the determination of H2O absorption is increased from 38 to 74, allowing for more accuracy in its simulation. Also, CO2 absorption is now determined by the exponential-sum-fit technique, replacing an algebraic absorptivity expression in the older parameterization; this improves the simulation of the heating in the stratosphere. Improvements to the treatment of multiple scattering are currently being tested. This involves replacing the current algorithm, which consists of the two stream delta-Eddington, with a four stream algorithm. Initial results show that in most, but not all cases these produce better agreement with the reference doubling-adding results.

  1. Absorption coefficients of silicon: A theoretical treatment

    NASA Astrophysics Data System (ADS)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  2. Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Dong; Liu, Ming-Hai; Hu, Xi-Wei; Kong, Ling-Hua; Cheng, Li-Li; Chen, Zhao-Quan

    2014-01-01

    The influence of the gap on the absorption performance of the conventional split ring resonator (SRR) absorber is investigated at microwave frequencies. Our simulated results reveal that the geometry of the square SRR can be equivalent to a Jerusalem cross (JC) resonator and its corresponding metamaterial absorber (MA) is changed to a JC absorber. The JC MA exhibits an experimental absorption peak of 99.1% at 8.72 GHz, which shows an excellent agreement with our simulated results. By simply assembling several JCs with slightly different geometric parameters next to each other into a unit cell, a perfect multi-band absorption can be effectively obtained. The experimental results show that the MA has four distinct and strong absorption peaks at 8.32 GHz, 9.8 GHz, 11.52 GHz and 13.24 GHz. Finally, the multi-reflection interference theory is introduced to interpret the absorption mechanism.

  3. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  4. High-resolution discrete absorption spectrum of α-methallyl free radical in the vapor phase

    NASA Astrophysics Data System (ADS)

    Bayrakçeken, Fuat; Telatar, Ziya; Arı, Fikret; Tunçyürek, Lale; Karaaslan, İpek; Yaman, Ali

    2006-09-01

    The α-methallyl free radical is formed in the flash photolysis of 3-methylbut-1-ene, and cis-pent-2-ene in the vapor phase, and then subsequent reactions have been investigated by kinetic spectroscopy and gas-liquid chromatography. The photolysis flash was of short duration and it was possible to follow the kinetics of the radicals' decay, which occurred predominantly by bimolecular recombination. The measured rate constant for the α-methallyl recombination was (3.5 ± 0.3) × 10 10 mol -1 l s -1 at 295 ± 2 K. The absolute extinction coefficients of the α-methallyl radical are calculated from the optical densities of the absorption bands. Detailed analysis of related absorption bands and lifetime measurements in the original α-methallyl high-resolution discrete absorption spectrum image were also carried out by image processing techniques.

  5. Infrared absorptivities of transition metals at room and liquid-helium temperatures.

    NASA Technical Reports Server (NTRS)

    Jones, M. C.; Palmer, D. C.; Tien, C. L.

    1972-01-01

    Evaluation of experimental data concerning the normal spectral absorptivities of the transition metals, nickel, iron, platinum, and chromium, at both room and liquid-helium temperatures in the wavelength range from 2.5 to 50 microns. The absorptivities were derived from reflectivity measurements made relative to a room-temperature vapor-deposited gold reference mirror. The absorptivity of the gold reference mirror was measured calorimetrically, by use of infrared laser sources. Investigation of various methods of sample-surface preparation resulted in the choice of a vacuum-annealing process as the final stage. The experimental results are discussed on the basis of the anomalous-skin-effect theory modified for multiple conduction bands. As predicted, the results approach a single-band model toward the longer wavelengths. Agreement between theory and experiment is considerably improved by taking into account the modification of the relaxation time due to the photon-electron-phonon interaction proposed by Holstein (1954) and Gurzhi (1958); but, particularly at helium temperatures, the calculated curve is consistently below the experimental results.

  6. Single-ended retroreflection sensors for absorption spectroscopy in high-temperature environments

    NASA Astrophysics Data System (ADS)

    Melin, Scott T.; Wang, Ze; Neal, Nicholas J.; Rothamer, David A.; Sanders, Scott T.

    2017-04-01

    Novel single-ended sensor arrangements are demonstrated for in situ absorption spectroscopy in combustion and related test articles. A single-ended optical access technique based on back-reflection from a polished test article surface is presented. H2O vapor absorption spectra were measured at 10 kHz in a homogeneous-charge compression-ignition engine using a sensor of this design collecting back-reflection from a polished piston surface. The measured spectra show promise for high-repetition-rate measurements in practical combustion devices. A second sensor was demonstrated based on a modification to this optical access technique. The sensor incorporates a nickel retroreflective surface as back-reflector to reduce sensitivity to beam steering and misalignment. In a propane-fired furnace, H2O vapor absorption spectra were obtained over the range 7315-7550 cm- 1 at atmospheric pressure and temperatures up to 775 K at 20 Hz using an external-cavity diode laser spectrometer. Gas properties of temperature and mole fraction were obtained from this furnace data using a band-shape spectral fitting technique. The temperature accuracy of the band-shape fitting was demonstrated to be ±1.3 K for furnace measurements at atmospheric pressure. These results should extend the range of applications in which absorption spectroscopy sensors are attractive candidates.

  7. Intersubband absorption in GaN nanowire heterostructures at mid-infrared wavelengths.

    PubMed

    Ajay, Akhil; Blasco, Rodrigo; Polaczynski, Jakub; Spies, Maria; den Hertog, Martien; Monroy, Eva

    2018-06-27

    In this paper, we study intersubband characteristics of GaN/AlN and GaN/Al0.4Ga0.6N heterostructures in GaN nanowires structurally designed to absorb in the mid-infrared wavelength region. Increasing the GaN well width from 1.5 to 5.7 nm leads to a red shift of the intersubband absorption from 1.4 to 3.4 µm. The red shift in larger quantum wells is amplified by the fact that one of the GaN/AlN heterointerfaces (corresponding to the growth of GaN on AlN) is not sharp but rather a graded alloy extending around 1.5-2 nm. Using AlGaN instead of AlN for the same barrier dimensions, we observe the effects of reduced polarization, which blue shifts the band-to-band transitions and red shifts the intersubband transitions. In heavily doped GaN/AlGaN nanowires, a broad absorption band is observed in the 4.5-6.4 µm spectral region. © 2018 IOP Publishing Ltd.

  8. Evidence for active galactic nucleus feedback in the broad absorption lines and reddening of MRK 231 {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.

    2014-06-20

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly fullmore » coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.« less

  9. Effect of doping on the intersubband absorption in Si- and Ge-doped GaN/AlN heterostructures

    NASA Astrophysics Data System (ADS)

    Ajay, A.; Lim, C. B.; Browne, D. A.; Polaczyński, J.; Bellet-Amalric, E.; Bleuse, J.; den Hertog, M. I.; Monroy, E.

    2017-10-01

    In this paper, we study band-to-band and intersubband (ISB) characteristics of Si- and Ge-doped GaN/AlN heterostructures (planar and nanowires) structurally designed to absorb in the short-wavelength infrared region, particularly at 1.55 μm. Regarding the band-to-band properties, we discuss the variation of the screening of the internal electric field by free carriers, as a function of the doping density and well/nanodisk size. We observe that nanowire heterostructures consistently present longer photoluminescence decay times than their planar counterparts, which supports the existence of an in-plane piezoelectric field associated to the shear component of the strain tensor in the nanowire geometry. Regarding the ISB characteristics, we report absorption covering 1.45-1.75 μm using Ge-doped quantum wells, with comparable performance to Si-doped planar heterostructures. We also report similar ISB absorption in Si- and Ge-doped nanowire heterostructures indicating that the choice of dopant is not an intrinsic barrier for observing ISB phenomena. The spectral shift of the ISB absorption as a function of the doping concentration due to many body effects confirms that Si and Ge efficiently dope GaN/AlN nanowire heterostructures.

  10. Multi-band filter design with less total film thickness for short-wave infrared

    NASA Astrophysics Data System (ADS)

    Yan, Yung-Jhe; Chien, I.-Pen; Chen, Po-Han; Chen, Sheng-Hui; Tsai, Yi-Chun; Ou-Yang, Mang

    2017-08-01

    A multi-band pass filter array was proposed and designed for short wave infrared applications. The central wavelength of the multi-band pass filters are located about 905 nm, 950 nm, 1055 nm and 1550 nm. In the simulation of an optical interference band pass filter, high spectrum performance (high transmittance ratio between the pass band and stop band) relies on (1) the index gap between the selected high/low-index film materials, with a larger gap correlated to higher performance, and (2) sufficient repeated periods of high/low-index thin-film layers. When determining high and low refractive index materials, spectrum performance was improved by increasing repeated periods. Consequently, the total film thickness increases rapidly. In some cases, a thick total film thickness is difficult to process in practice, especially when incorporating photolithography liftoff. Actually the maximal thickness of the photoresist being able to liftoff will bound the total film thickness of the band pass filter. For the application of the short wave infrared with the wavelength range from 900nm to 1700nm, silicone was chosen as a high refractive index material. Different from other dielectric materials used in the visible range, silicone has a higher absorptance in the visible range opposite to higher transmission in the short wave infrared. In other words, designing band pass filters based on silicone as a high refractive index material film could not obtain a better spectrum performance than conventional high index materials like TiO2 or Ta2O5, but also its material cost would reduce about half compared to the total film thickness with the conventional material TiO2. Through the simulation and several experimental trials, the total film thickness below 4 um was practicable and reasonable. The fabrication of the filters was employed a dual electric gun deposition system with ion assisted deposition after the lithography process. Repeating four times of lithography and deposition

  11. Tree-shaped fractal meta-surface with left-handed characteristics for absorption application

    NASA Astrophysics Data System (ADS)

    Faruque, M. R. I.; Hasan, M. M.; Islam, M. T.

    2018-02-01

    A tri-band fractal meta-surface absorber composed of metallic branches of a tree connected with a straight metal strip has been presented in this paper for high absorption application. The proposed tree-shaped structure shows resonance in C-, X-, and Ku-bands and left-handed characteristics in 14.15 GHz. The dimension of the tree-shaped meta-surface single unit cell structure is 9 × 9 mm2 and the effective medium ratio is 5.50. In addition, the designed absorber structure shows absorption above 84%, whereas the absorber structure printed on epoxy resin fiber substrate material. The FIT-based CST-MWS has been utilized for the design, simulation, and analysis purposes. Fabrication is also done for the experimental validation.

  12. Analysis of single band and dual band graphene based patch antenna for terahertz region

    NASA Astrophysics Data System (ADS)

    George, Jemima Nissiyah; Madhan, M. Ganesh

    2017-10-01

    A microstrip patch antenna is designed using a very thin layer of graphene as the radiating patch, which is fed by a microstrip transmission line. The graphene based patch is designed on a silicon substrate having a dielectric constant of 11.9, to radiate at a single frequency of 2.6 THz. Further, this antenna is made to resonate at dual frequencies of 2.48 THz and 3.35 THz, by changing the substrate height, which is reported for the first time. Various antenna parameters such as return loss, VSWR, gain, efficiency and bandwidth are also determined for the single and dual band operation. For the single band operation, a bandwidth of 145.4 GHz and an efficiency of 92% was achieved. For dual band operation, a maximum bandwidth of 140.5 GHz was obtained at 3.35 THz and an efficiency of 87.3% was obtained at the first resonant frequency of 2.48 THz. The absorption cross section of the antenna is also analysed for various substrate heights and has maximum peaks at the corresponding resonating frequencies. The simulation has been carried out by using a full wave electromagnetic simulator based on FDTD method.

  13. Subsurface banding poultry litter impacts greenhouse gas emissions

    USDA-ARS?s Scientific Manuscript database

    The impact subsurface banding poultry litter (PL) has on greenhouse gas emissions is limited. Thus, a study was conducted in established bermudagrass pastures located in Coastal Plain and Piedmont regions to determine the effects subsurface applying PL has on soil flux using two different band spaci...

  14. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    NASA Astrophysics Data System (ADS)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  15. Use of abnormal preprophase bands to decipher division plane determination

    NASA Technical Reports Server (NTRS)

    Granger, C.; Cyr, R.

    2001-01-01

    Many premitotic plant cells possess a cortical preprophase band of microtubules and actin filaments that encircles the nucleus. In vacuolated cells, the preprophase band is visibly connected to the nucleus by a cytoplasmic raft of actin filaments and microtubules termed the phragmosome. Typically, the location of the preprophase band and phragmosome corresponds to, and thus is thought to influence, the location of the cell division plane. To better understand the function of the preprophase band and phragmosome in orienting division, we used a green fluorescent protein-based microtubule reporter protein to observe mitosis in living tobacco bright yellow 2 cells possessing unusual preprophase bands. Observations of mitosis in these unusual cells support the involvement of the preprophase band/phragmosome in properly positioning the preprophase nucleus, influencing spindle orientation such that the cytokinetic phragmoplast initially grows in an appropriate direction, and delineating a region in the cell cortex that attracts microtubules and directs later stages of phragmoplast growth. Thus, the preprophase band/phragmosome appears to perform several interrelated functions to orient the division plane. However, functional information associated with the preprophase band is not always used or needed and there appears to be an age or distance-dependent character to the information. Cells treated with the anti-actin drug, latrunculin B, are still able to position the preprophase nucleus suggesting that microtubules may play a dominant role in premitotic positioning. Furthermore, in treated cells, spindle location and phragmoplast insertion are frequently abnormal suggesting that actin plays a significant role in nuclear anchoring and phragmoplast guidance. Thus, the microtubule and actin components of the preprophase band/phragmosome execute complementary activities to ensure proper orientation of the division plane.

  16. Linear and Nonlinear Optical Properties of Spherical Quantum Dots: Effects of Hydrogenic Impurity and Conduction Band Non-Parabolicity

    NASA Astrophysics Data System (ADS)

    Rezaei, G.; Vaseghi, B.; Doostimotlagh, N. A.

    2012-03-01

    Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-x As spherical quantum dot are theoretically investigated, using the Luttinger—Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.

  17. Near-near-infrared thermal lens spectroscopy to assess overtones and combination bands of sulfentrazone pesticide

    NASA Astrophysics Data System (ADS)

    Ventura, M.; Silva, J. R.; Andrade, L. H. C.; Scorza Júnior, R. P.; Lima, S. M.

    2018-01-01

    Thermal lens spectroscopy (TLS) in the near-near-infrared region was used to explore the absorptions of overtones and combination bands of sulfentrazone (SFZ) herbicide diluted in methanol. This spectroscopic region was chosen in order to guarantee that only thermal lens effect is noted during the experimental procedure. The results showed that it was possible to detect very low concentrations ( 2 ng/μL) of SFZ in methanol by determining its thermal diffusivity or the absorption coefficient due to the 3ν(NH) + 1δ(CH) combination band. This minimum SFZ concentration is the limit observed by chromatography method. The findings demonstrated that the TLS can be used for precise and accurate assessment of pesticides in ecosystems. Besides, the 3ν(NH) + 1δ(CH) combination band at 960 nm can be used as a marker for SFZ in methanol.

  18. Defect properties of Sn- and Ge-doped ZnTe: suitability for intermediate-band solar cells

    NASA Astrophysics Data System (ADS)

    Flores, Mauricio A.

    2018-01-01

    We investigate the electronic structure and defect properties of Sn- and Ge- doped ZnTe by first-principles calculations within the DFT+GW formalism. We find that ({{{Sn}}}{{Zn}}) and ({{{Ge}}}{{Zn}}) introduce isolated energy levels deep in the band gap of ZnTe, derived from Sn-5s and Ge-4s states, respectively. Moreover, the incorporation of Sn and Ge on the Zn site is favored in p-type ZnTe, in both Zn-rich and Te-rich environments. The optical absorption spectra obtained by solving the Bethe-Salpeter equation reveals that sub-bandgap absorptance is greatly enhanced due to the formation of the intermediate band. Our results suggest that Sn- and Ge-doped ZnTe would be a suitable material for the development of intermediate-band solar cells, which have the potential to achieve efficiencies beyond the single-junction limit.

  19. absorption sensor for sensitive temperature and species measurements in high-temperature gases

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Ren, W.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm-1) and combination υ 1 + υ 3 band (~3,610 cm-1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm-1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm-1, paired with the R(28) line near 3,633.08 cm-1. This combination yields high temperature sensitivity (ΔE" = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600-1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.

  20. Coupling between absorption and scattering in disordered colloids

    NASA Astrophysics Data System (ADS)

    Stephenson, Anna; Hwang, Victoria; Park, Jin-Gyu; Manoharan, Vinothan N.

    We aim to understand how scattering and absorption are coupled in disordered colloidal suspensions containing absorbing molecules (dyes). When the absorption length is shorter than the transport length, absorption dominates, and absorption and scattering can be seen as two additive effects. However, when the transport length is shorter than the absorption length, the scattering and absorption become coupled, as multiple scattering increases the path length of the light in the sample, leading to a higher probability of absorption. To quantify this synergistic effect, we measure the diffuse reflectance spectra of colloidal samples of varying dye concentrations, thicknesses, and particle concentrations, and we calculate the transport length and absorption length from our measurements, using a radiative transfer model. At particle concentrations so high that the particles form disordered packings, we find a minimum in the transport length. We show that selecting a dye where the absorption peak matches the location of the minimum in the transport length allows for enhanced absorption. Kraft-Heinz Corporation, NSF GRFP 2015200426.

  1. Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass

    PubMed Central

    Zaid, Mohd Hafiz Mohd; Matori, Khamirul Amin; Aziz, Sidek Hj. Abdul; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased. PMID:22837711

  2. Water-vapor foreign-continuum absorption in the 8-12 and 3-5 μm atmospheric windows

    NASA Astrophysics Data System (ADS)

    Klimeshina, T. E.; Rodimova, O. B.

    2015-08-01

    The frequency and temperature dependence of the water vapor-nitrogen continuum in the 8-12 and 3-5 μm spectral regions obtained experimentally by CAVIAR and NIST is described with the use of the line contour constructed on the basis of asymptotic line shape theory. The parameters of the theory found from fitting the calculated values of the absorption coefficient to the pertinent experimental data enter into the expression for the classical potential describing the center-of-mass motion of interacting molecules and into the expression for the quantum potential of two interacting molecules. The frequency behavior of the line wing contours appears to depend on the band the lines of which make a major contribution to the absorption in a given spectral interval. The absorption coefficients in the wings of the band in question calculated with the line contours obtained for other bands are outside of experimental errors. The distinction in the line wing behavior may be explained by the difference in the quantum energies of molecules interacting in different vibrational states.

  3. Optical absorption of carbon-gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  4. The design of wideband metamaterial absorber at E band based on defect

    NASA Astrophysics Data System (ADS)

    Wang, L. S.; Xia, D. Y.; Ding, X. Y.; Wang, Y.

    2018-01-01

    A kind of wideband metamaterial absorber at E band is designed in this paper; it is composed of round metal cells with defect, dielectric substrate and metal film. The electromagnetic parameters of unit cell are calculated by using the finite element method. The results show that the wideband metamaterial absorber presents nearly perfect absorption above 90% with absorption ranging from 65.38GHz to 67.86GHz; the reason of wideband absorption is the overlap of different absorption frequency which is caused by electromagnetic resonance; the size parameters and position of defect has important effect on its absorption property. It has many advantages, such as simply, easy to preparation and so on. It has potential application on aerospace measurement and control, remote data communication, LTE wideband mobile communication and other fields.

  5. Wide-band 'black silicon' with atomic layer deposited NbN.

    PubMed

    Isakov, Kirill; Perros, Alexander Pyymaki; Shah, Ali; Lipsanen, Harri

    2018-08-17

    Antireflection surfaces are often utilized in optical components to reduce undesired reflection and increase absorption. We report on black silicon (b-Si) with dramatically enhanced absorption over a broad wavelength range (250-2500 nm) achieved by applying a 10-15 nm conformal coating of NbN with atomic layer deposition (ALD). The improvement is especially pronounced in the near infrared (NIR) range of 1100-2500 nm where absorption is increased by >90%. A significant increase of absorption is also observed over the ultraviolet range of 200-400 nm. Preceding NbN deposition with a nanostructured ALD Al 2 O 3 (n-Al 2 O 3 ) coating to enhance the NbN texture was also examined. Such texturing further improves absorption in the NIR, especially at longer wavelengths, strong absorption up to 4-5 μm wavelengths has been attested. For comparison, double side polished silicon and sapphire coated with 10 nm thick NbN exhibited absorption of only ∼55% in the NIR range of 1100-2500 nm. The results suggest a positive correlation between the surface area of NbN coating and optical absorption. Based on the wide-band absorption, the presented NbN-coated b-Si may be an attractive candidate for use in e.g. spectroscopic systems, infrared microbolometers.

  6. Absorption Coefficient of a Semiconductor Thin Film from Photoluminescence

    NASA Astrophysics Data System (ADS)

    Rey, G.; Spindler, C.; Babbe, F.; Rachad, W.; Siebentritt, S.; Nuys, M.; Carius, R.; Li, S.; Platzer-Björkman, C.

    2018-06-01

    The photoluminescence (PL) of semiconductors can be used to determine their absorption coefficient (α ) using Planck's generalized law. The standard method, suitable only for self-supported thick samples, like wafers, is extended to multilayer thin films by means of the transfer-matrix method to include the effect of the substrate and optional front layers. α values measured on various thin-film solar-cell absorbers by both PL and photothermal deflection spectroscopy (PDS) show good agreement. PL measurements are extremely sensitive to the semiconductor absorption and allow us to advantageously circumvent parasitic absorption from the substrate; thus, α can be accurately determined down to very low values, allowing us to investigate deep band tails with a higher dynamic range than in any other method, including spectrophotometry and PDS.

  7. Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities.

    PubMed

    Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T

    2014-11-17

    The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.

  8. Remarkable optical red shift and extremely high optical absorption coefficient of V-Ga co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Deng, Quanrong; Han, Xiaoping; Gao, Yun; Shao, Guosheng

    2012-07-01

    A first attempt has been made to study the effect of codoping of transition metal and sp metal on the electronic structure and associated optical properties of TiO2, through V-Ga codoped thin films. V-Ga codoped rutile TiO2 films were fabricated on fused quartz substrates using pulsed laser ablation, followed by heat treatment at high temperatures. Gigantic redshift in the optical absorption edge was observed in V-Ga co-doped TiO2 materials, from UV to infrared region with high absorption coefficient. Through combined structural characterization and theoretical modeling, this is attributed to the p-d hybridization between the two metals. This leads to additional energy bands to overlap with the minimum of the conduction band, leading to remarkably narrowed band gap free of mid-gap states. The direct-gap of the co-doped phase is key to the remarkably high optical absorption coefficient of the coped titania.

  9. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do notmore » change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.« less

  10. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity.

    PubMed

    Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin

    2015-06-12

    Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.

  11. Interferometric Control of Dual-Band Terahertz Perfect Absorption Using a Designed Metasurface

    NASA Astrophysics Data System (ADS)

    Kang, Ming; Zhang, Huifang; Zhang, Xueqian; Yang, Quanlong; Zhang, Weili; Han, Jiaguang

    2018-05-01

    The coherent perfect absorber (CPA), a time-reversed counterpart to the laser emission, could cause all energy fed to the system to be absorbed. It can also be used as an absorptive interferometer, which could provide applications in controllable optical energy transfer. Here, in order to achieve a terahertz CPA, we propose a designed metasurface and experimentally demonstrate that it can serve as a polarization-insensitive CPA at a one-frequency channel under normal symmetric excitation, while a transverse-electric CPA at two-frequency channels around oblique 40° symmetric incidence. Such phenomena in this system can be attributed to Fano resonance consisting of interacting one bright and one dark mode under normal incidence and an additional operative dark mode under oblique symmetric excitation. The experimental results find good agreement with the fitted coupled-mode theory. Moreover, we show that the output amplitude can be effectively tuned from 0 to 1 only by varying the relative phase between the two input waves. The designed CPA could find potential application in effectively controlling absorption for terahertz imaging and terahertz switches.

  12. A newly-designed magnetic/dielectric [Fe3O4/BaTiO3@MWCNT] nanocomposite system for modern electromagnetic absorption applications

    NASA Astrophysics Data System (ADS)

    Sardarian, Pouria; Naffakh-Moosavy, Homam; Afghahi, Seyyed Salman Seyyed

    2017-11-01

    Developments in electronic industries for telecommunications and demands for decreasing electromagnetic radiation pollution result in developing researches on microwave absorption materials. The target of the present study is to design materials with high absorption properties for electromagnetic waves in the 12-18 GHz range. Thus, Fe3O4 magnetic nanoparticles were syntheses through chemical co-precipitation reinforced by ultrasonic. Then, BaTiO3 nanocrystalline powder was synthesized by the hydrothermal sol-gel method under atmospheric oxygen. Next, nano-particles of barium titanate were deposited on the multi-walled carbon nanotubes (BaTiO3@CNT). It was concluded that a magnetic-dielectric nanocomposite has superior microwave absorption properties in comparison to individual magnetic or dielectric absorbers. Also, in order to obtain an optimum absorption in a wide frequency band, dielectric-CNT nanocomposites represents higher properties than magnetic-CNT composites. It is concluded that composites with more magnetic percentage showed better absorption in low frequency band (12 GHz), whereas composites with more dielectric percentage exhibited superior absorption for high frequency band (18 GHz). 80-93% absorption was obtained in the frequency range of 16.7-18 GHz by composite 40M.20F.40C (40% paraffin, 20% magnetite, 40% multi-walled carbon nanotubes). Also, composite 40M.20B.40B@C (40% paraffin, 20% barium titanate, 40% barium titanate deposited on multi-walled carbon nanotubes) showed the absorption of 80-90%.

  13. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.

    PubMed

    Sun, Jin; Li, Guang; Liang, WanZhen

    2015-07-14

    A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.

  14. Elastic properties and optical absorption studies of mixed alkali borogermanate glasses

    NASA Astrophysics Data System (ADS)

    Taqiullah, S. M.; Ahmmad, Shaik Kareem; Samee, M. A.; Rahman, Syed

    2018-05-01

    First time the mixed alkali effect (MAE) has been investigated in the glass system xNa2O-(30-x)Li2O-40B2O3- 30GeO2 (0≤x≤30 mol%) through density and optical absorption studies. The present glasses were prepared by melt quench technique. The density of the present glasses varies non-linearly exhibiting mixed alkali effect. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter. From the absorption edge studies, the values of optical band gap energies for all transitions have been evaluated. It was established that the type of electronic transition in the present glass system is indirect allowed. The indirect optical band gap exhibit non-linear behavior with compositional parameter showing the mixed alkali effect.

  15. Bound-to-bound midinfrared intersubband absorption in carbon-doped GaAs /AlGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Malis, Oana; Pfeiffer, Loren N.; West, Kenneth W.; Sergent, A. Michael; Gmachl, Claire

    2005-08-01

    Bound-to-bound intersubband absorption in the valence band of modulation-doped GaAs quantum wells with digitally alloyed AlGaAs barriers was studied in the midinfrared wavelength range. A high-purity solid carbon source was used for the p-type doping. Strong narrow absorption peaks due to heavy-to-heavy hole transitions are observed with out-of-plane polarized light, and weaker broader features with in-plane polarized light. The heavy-to-heavy hole transition energy spans the spectral range between 206 to 126 meV as the quantum well width is increased from 25 to 45 Å. The experimental results are found to be in agreement with calculations of a six-band k •p model taking into account the full band structure of the digital alloy.

  16. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    NASA Astrophysics Data System (ADS)

    Belyakov, V. A.; Semenov, S. V.

    2016-05-01

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  17. Distinct enhancement of sub-bandgap photoresponse through intermediate band in high dose implanted ZnTe:O alloys

    NASA Astrophysics Data System (ADS)

    Li, Jing; Ye, Jiandong; Ren, Fangfang; Tang, Dongming; Yang, Yi; Tang, Kun; Gu, Shulin; Zhang, Rong; Zheng, Youdou

    2017-03-01

    The demand for high efficiency intermediate band (IB) solar cells is driving efforts in producing high quality IB photovoltaic materials. Here, we demonstrate ZnTe:O highly mismatched alloys synthesized by high dose ion implantation and pulsed laser melting exhibiting optically active IB states and efficient sub-gap photoresponse, as well as investigate the effect of pulsed laser melting on the structural and optical recovery in detail. The structural evolution and vibrational dynamics indicates a significant structural recovery of ZnTe:O alloys by liquid phase epitaxy during pulsed laser melting process, but laser irradiation also aggravates the segregation of Te in ZnTe:O alloys. A distinct intermediate band located at 1.8 eV above valence band is optically activated as evidenced by photoluminescence, absorption and photoresponse characteristics. The carrier dynamics indicates that carriers in the IB electronic states have a relatively long lifetime, which is beneficial for the fast separation of carriers excited by photons with sub-gap energy and thus the improved overall conversion efficiency. The reproducible capability of implantation and laser annealing at selective area enable the realization of high efficient lateral junction solar cells, which can ensure extreme light trapping and efficient charge separation.

  18. Band gap tuning of amorphous Al oxides by Zr alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J.; Jones, N. C.

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearlymore » as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.« less

  19. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  20. High resolution absolute absorption cross sections of the B ̃(1)A'-X ̃(1)A' transition of the CH2OO biradical.

    PubMed

    Foreman, Elizabeth S; Kapnas, Kara M; Jou, YiTien; Kalinowski, Jarosław; Feng, David; Gerber, R Benny; Murray, Craig

    2015-12-28

    Carbonyl oxides, or Criegee intermediates, are formed from the gas phase ozonolysis of alkenes and play a pivotal role in night-time and urban area atmospheric chemistry. Significant discrepancies exist among measurements of the strong B ̃(1)A'-X ̃(1)A' electronic transition of the simplest Criegee intermediate, CH2OO in the visible/near-UV. We report room temperature spectra of the B ̃(1)A'-X ̃(1)A' electronic absorption band of CH2OO acquired at higher resolution using both single-pass broadband absorption and cavity ring-down spectroscopy. The new absorption spectra confirm the vibrational structure on the red edge of the band that is absent from ionization depletion measurements. The absolute absorption cross sections over the 362-470 nm range are in good agreement with those reported by Ting et al. Broadband absorption spectra recorded over the temperature range of 276-357 K were identical within their mutual uncertainties, confirming that the vibrational structure is not due to hot bands.

  1. Enhanced absorption of graphene strips with a multilayer subwavelength grating structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jin-Hua; Huang, Yong-Qing, E-mail: yqhuang@bupt.edu.cn; Duan, Xiao-Feng

    2014-12-01

    The optical absorption of graphene strips covered on a multilayer subwavelength grating (MSG) surface is theoretically investigated. The absorption of graphene strips with MSG is enhanced in the wavelength range of 1500 nm to 1600 nm by critical coupling, which is associated with the combined effects of a guided resonance of MSG and its photonic band gap effect. The critical coupling of the graphene strips can be controlled by adjusting the incident angle without changing the structural parameters of MSG. The absorption of graphene strips can also be tuned by varying key parameters, such as grating period, strip width, and incident angle.

  2. Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katahara, John K.; Hillhouse, Hugh W., E-mail: h2@uw.edu

    A unified model for the direct gap absorption coefficient (band-edge and sub-bandgap) is developed that encompasses the functional forms of the Urbach, Thomas-Fermi, screened Thomas-Fermi, and Franz-Keldysh models of sub-bandgap absorption as specific cases. We combine this model of absorption with an occupation-corrected non-equilibrium Planck law for the spontaneous emission of photons to yield a model of photoluminescence (PL) with broad applicability to band-band photoluminescence from intrinsic, heavily doped, and strongly compensated semiconductors. The utility of the model is that it is amenable to full-spectrum fitting of absolute intensity PL data and yields: (1) the quasi-Fermi level splitting, (2) themore » local lattice temperature, (3) the direct bandgap, (4) the functional form of the sub-bandgap absorption, and (5) the energy broadening parameter (Urbach energy, magnitude of potential fluctuations, etc.). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se){sub 2} (CIGSSe) and Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) to reveal the nature of their tail states. For GaAs, the model fit is excellent, and fitted parameters match literature values for the bandgap (1.42 eV), functional form of the sub-bandgap states (purely Urbach in nature), and energy broadening parameter (Urbach energy of 9.4 meV). For CIGSSe and CZTSSe, the model fits yield quasi-Fermi leveling splittings that match well with the open circuit voltages measured on devices made from the same materials and bandgaps that match well with those extracted from EQE measurements on the devices. The power of the exponential decay of the absorption coefficient into the bandgap is found to be in the range of 1.2 to 1.6, suggesting that tunneling in the presence of local electrostatic potential fluctuations is a dominant factor contributing to the sub-bandgap absorption by either purely electrostatic (screened Thomas

  3. Visible absorption properties of radiation exposed XR type-T radiochromic film.

    PubMed

    Butson, Martin J; Cheung, Tsang; Yu, Peter K N

    2004-10-07

    The visible absorption spectra of Gafchromic XR type-T radiochromic film have been investigated to analyse the dosimetry characteristics of the film with visible light densitometers. Common densitometers can use photospectrometry, fluorescent light (broad-band visible), helium neon (632 nm), light emitting diode (LED) or other specific bandwidth spectra. The visible absorption spectra of this film when exposed to photon radiation show peaks at 676 nm and 618 nm at 2 Gy absorbed doses which shift to slightly lower wavelengths (662 nm and 612 nm at 8 Gy absorbed dose) at higher doses. This is similar to previous models of Gafchromic film such as MD-55-2 and HS but XR type-T also includes a large absorption at lower visible wavelengths due to 'yellow' dyes placed within the film to aid with visible recognition of the film exposure level. The yellow dye band pass is produced at approximately 520 nm to 550 nm and absorbs wavelengths lower than this value within the visible spectrum. This accounts for the colour change from yellow to brown through the added absorption in the red wavelengths with radiation exposure. The film produces a relatively high dose sensitivity with up to 0.25 OD units per Gy change at 672 nm at 100 kVp x-ray energy. Variations in dose sensitivity can be achieved by varying wavelength analysis.

  4. Optical evidence of strong coupling between valence-band holes and d -localized spins in Zn1-xMnxO

    NASA Astrophysics Data System (ADS)

    Sokolov, V. I.; Druzhinin, A. V.; Gruzdev, N. B.; Dejneka, A.; Churpita, O.; Hubicka, Z.; Jastrabik, L.; Trepakov, V.

    2010-04-01

    We report on optical-absorption study of Zn1-xMnxO (x=0-0.06) films on fused silica substrates taking special attention to the spectral range of the fundamental absorption edge (3.1-4 eV). Well-pronounced excitonic lines observed in the region 3.40-3.45 eV were found to shift to higher energies with increasing Mn concentration. The optical band-gap energy increases with x too, reliably evidencing strong coupling between oxygen holes and localized spins of manganese ions. In the 3.1-3.3 eV region the optical-absorption curve in the manganese-contained films was found to shift to lower energies with respect to that for undoped ZnO. The additional absorption observed in this range is interpreted as a result of splitting of a localized Zhang-Rice-type state into the band gap.

  5. Effective line intensity measurements of trans-nitrous acid (HONO) of the ν1 band near 3600 cm-1 using laser difference-frequency spectrometer

    NASA Astrophysics Data System (ADS)

    Maamary, Rabih; Fertein, Eric; Fourmentin, Marc; Dewaele, Dorothée; Cazier, Fabrice; Chen, Changshui; Chen, Weidong

    2017-07-01

    We report on the measurements of the effective line intensities of the ν1 fundamental band of trans-nitrous acid (trans-HONO) in the infrared near 3600 cm-1 (2.78 μm). A home-made widely tunable laser spectrometer based on difference-frequency generation (DFG) was used for this study. The strengths of 28 well-resolved absorption lines of the ν1 band were determined by scaling their absorption intensities to the well referenced absorption line intensity of the ν3 band of trans-HONO around 1250 cm-1 recorded simultaneously with the help of a DFB quantum cascade laser (QCL) spectrometer. The maximum measurement uncertainty of 12% in the line intensities is mainly determined by the uncertainty announced in the referenced line intensities, while the measurement precision in frequency positions of the absorption lines is better than 6×10-4 cm-1. The cross-measurement carried out in the present work allows one to perform intensity calibration using well referenced line parameters.

  6. Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohu; Fu, Ceji

    2018-04-01

    The wavevector of electromagnetic wave propagation in a hexagonal boron nitride (hBN) slab can be controlled by tilting its optical axis. This property can be used to manipulate the absorption in a hBN slab. By carefully analyzing the dependence of the absorptivity of a thin hBN slab on the tilted angle of its optical axis, we propose a structure that can realize great absorptivity enhancement in a band by stacking hBN slabs of different tilted angles. Our numerical results show that the absorptivity of a structure made of 91 stacked hBN slabs can be achieved higher than 0.94 in the wavenumber range from 1367 to 1580 cm-1 when the tilted angles of the slabs are properly arranged. The strong absorption is attributed to the combination of impedance matching at the slab interfaces and enlarged wavevectors in the slabs. This work reveals a novel way to realize strong absorption with anisotropic materials for applications in areas such as thermal radiative energy harvesting and conversion.

  7. Broad absorption-line time variability in the QSO CSO 203

    NASA Technical Reports Server (NTRS)

    Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. M.; Weymann, Ray J.; Morris, Simon L.; Korista, Kirk T.

    1992-01-01

    We present spectroscopy of the BALQSO CSO 203 during four epochs over a 17-month time span. These data show three distinct levels in the broad absorption lines (BALs) of Si IV 1397A and C IV 1549A. We also note possible variations in the N V 1240A and Al III 1857A absorption troughs. A broad-band monitoring effort during this period shows that the continuum level remained constant to within 10 percent. We argue that the triggering mechanism for the absorption-line changes is most likely synchronous with the continuum source photons; however, no correlation with the central source has yet been found. The observed variations are consistent with changes in the ionization level in the broad absorption-line region (BALR). We discuss possible mechanisms for these changes and the implications for the structure of the BALR.

  8. Intraband light absorption by holes in InGaAsP/InP quantum wells

    NASA Astrophysics Data System (ADS)

    Pavlov, N. V.; Zegrya, G. G.

    2018-03-01

    A microscopic analysis of the mechanism of intraband radiation absorption by holes with their transition to a spin-split band for quantum wells based on InGaAsP/InP solid solutions is performed within the framework of the four-band Kane model. The calculation is made for two polarizations of the incident radiation: along the crystal growth axis and in the plane of the quantum well. It is shown that this process can be the main mechanism of internal radiation losses for quantum well lasers. It is also shown that the dependence of the absorption coefficient on the width of the quantum well has a maximum at a well width from 40 to 60 A.

  9. Some aspects of coupling-induced sound absorption in enclosures.

    PubMed

    Sum, K S; Pan, J

    2003-08-01

    It is known that the coupling between a modally reactive boundary structure of an enclosure and the enclosed sound field induces absorption in the sound field. However, the effect of this absorption on the sound-field response can vary significantly, even when material properties of the structure and dimensions of the coupled system are not changed. Although there have been numerous investigations of coupling between a structure and an enclosed sound field, little work has been done in the area of sound absorption induced by the coupling. Therefore, characteristics of the absorption are not well understood and the extent of its influence on the behavior of the sound-field response is not clearly known. In this paper, the coupling of a boundary structure and an enclosed sound field in frequency bands above the low-frequency range is considered. Three aspects of the coupling-induced sound absorption are studied namely, the effects of exciting either the structure or the sound field directly, damping in the uncoupled sound field and damping in the uncoupled structure. The results provide an understanding of some features of the coupling-induced absorption and its significance to the sound-field response.

  10. Multiband coherent perfect absorption in a water-based metasurface.

    PubMed

    Zhu, Weiren; Rukhlenko, Ivan D; Xiao, Fajun; He, Chong; Geng, Junping; Liang, Xianling; Premaratne, Malin; Jin, Ronghong

    2017-07-10

    We design an ultrathin water-based metasurface capable of coherent perfect absorption (CPA) at radio frequencies. It is demonstrated that such a metasurface can almost completely absorb two symmetrically incident waves within four frequency bands, each having its own modulation depth of metasurface absorptivity. Specifically, the absorptivity at 557.2 MHz can be changed between 0.59% and 99.99% via the adjustment of the phase difference between the waves. The high angular tolerance of our metasurface is shown to enable strong CPA at oblique incidence, with the CPA frequency almost independent of the incident angle for TE waves and varying from 557.2 up to 584.2 MHz for TM waves. One can also reduce this frequency from 712.0 to 493.3 MHz while retaining strong coherent absorption by varying the water layer thickness. It is also show that the coherent absorption performance can be flexibly controlled by adjusting the temperature of water. The proposed metasurface is low-cost, biocompatible, and useful for electromagnetic modulation and switching.

  11. Near-near-infrared thermal lens spectroscopy to assess overtones and combination bands of sulfentrazone pesticide.

    PubMed

    Ventura, M; Silva, J R; Andrade, L H C; Scorza Júnior, R P; Lima, S M

    2018-01-05

    Thermal lens spectroscopy (TLS) in the near-near-infrared region was used to explore the absorptions of overtones and combination bands of sulfentrazone (SFZ) herbicide diluted in methanol. This spectroscopic region was chosen in order to guarantee that only thermal lens effect is noted during the experimental procedure. The results showed that it was possible to detect very low concentrations (~2ng/μL) of SFZ in methanol by determining its thermal diffusivity or the absorption coefficient due to the 3ν(NH)+1δ(CH) combination band. This minimum SFZ concentration is the limit observed by chromatography method. The findings demonstrated that the TLS can be used for precise and accurate assessment of pesticides in ecosystems. Besides, the 3ν(NH)+1δ(CH) combination band at 960nm can be used as a marker for SFZ in methanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Line by Line CO2 Absorption in the Atmosphere for Input Data to Calculate Global Warming, David C. Smith, DCS Lasers & Optics LLC, Old Saybrook CT 06475

    NASA Astrophysics Data System (ADS)

    Smith, D. C.

    2012-12-01

    Compter modeling of global climate change require an input (asssumption) of the forcing function for CO2 absorption. All codes use a long term forcing function of ~ 4 W/M2. (IPCC 2007 Summary for Policymakers. In:Climate Change 2007. The Physical Sciences Basis.Contributions of Working Group 1 to the Fourth Assessment Report of the IPCC, Cambridge U. Press N.Y.)..This is based on a band model of the CO2 rotational/vibrational absorption where a band of absorption averages over all the rotational levels of the vibration transition. (Ramananathan,V.,et al, J. of Geophysical Research,Vol 84 C8,p4949,Aug.1979).. The model takes into account the line width,the spacing between lines and identifies 10 CO2 bands.. This approach neglects the possibility that the peak absorption transitions in a band can "use up" all of the earths IR radiation at that wavelength and does not contribute to global warming no matter how much the CO2 is increased. The lines in the wings of a band increase their absorption as the CO2 is increased. However, the lines that are lost are the strong absorbers and those that are added are the weaker absorption lines. When a band begins to use up the IR then the net result of increasing the atmospheric CO2 is a decrease in the absorption change. This presentation calculates the absorption of each line individualy using the Behr's Law Approach. The dependence of the absorption and line width of each transition as a function of altitude is accounted for. The temperature dependence of the absorption with altitude is not and an evaluation of this error is given. For doubling CO2 from 320ppm to 640 ppm, the calculation gives a forcing function of 1.1 W/M2. The results show the importance of using individual lines to calculate the CO2 contribution to global warming, We can speculate on the imact and anticipate a computer code calculation of a factor of 4 less global warming than the published results.

  13. Temperature dependence of the intensity of the vibration-rotational absorption band ν2 of H2O trapped in an argon matrix

    NASA Astrophysics Data System (ADS)

    Pitsevich, G.; Doroshenko, I.; Malevich, A..; Shalamberidze, E.; Sapeshko, V.; Pogorelov, V.; Pettersson, L. G. M.

    2017-02-01

    Using two sets of effective rotational constants for the ground (000) and the excited bending (010) vibrational states the calculation of frequencies and intensities of vibration-rotational transitions for J″ = 0 - 2; and J‧ = 0 - 3; was carried out in frame of the model of a rigid asymmetric top for temperatures from 0 to 40 K. The calculation of the intensities of vibration-rotational absorption bands of H2O in an Ar matrix was carried out both for thermodynamic equilibrium and for the case of non-equilibrium population of para- and ortho-states. For the analysis of possible interaction of vibration-rotational and translational motions of a water molecule in an Ar matrix by 3D Schrödinger equation solving using discrete variable representation (DVR) method, calculations of translational frequencies of H2O in a cage formed after one argon atom deleting were carried out. The results of theoretical calculations were compared to experimental data taken from literature.

  14. ATS-5 ranging receiver and L-band experiment. Volume 2: Data reduction and analysis

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results of ranging and position location experiments performed at the NASA Application Technology Satellite ground station at Mojave California are presented. The experiments are simultaneous C-band and L-band ranging to ATS-5, simultaneous C-band and VHF ranging, simultaneous 24-hour ranging and position location using ATS-1, ATS-3, and ATS-5. The data handling and processing technique is also described.

  15. YIG based broad band microwave absorber: A perspective on synthesis methods

    NASA Astrophysics Data System (ADS)

    Sharma, Vinay; Saha, J.; Patnaik, S.; Kuanr, Bijoy K.

    2017-10-01

    The fabrication of a thin layer of microwave absorber that operates over a wide band of frequencies is still a challenging task. With recent advances in nanostructure synthesis techniques, considerable progress has been achieved in realizations of thin nanocomposite layer designed for full absorption of incident electromagnetic (EM) radiation covering S to K band frequencies. The primary objective of this investigation is to achieve best possible EM absorption with a wide bandwidth and attenuation >10 dB for a thin absorbing layer (few hundred of microns). Magnetic yttrium iron garnet (Y3Fe5O12; in short YIG) nanoparticles (NPs) were prepared by sol-gel (SG) as well as solid-state (SS) reaction methods to elucidate the effects of nanoscale finite size on the magnetic behavior of the particles and hence their microwave absorption capabilities. It is found that YIG prepared by these two methods are different in many ways. Magnetic properties investigated using vibrating sample magnetometry (VSM) exhibit that the coercivity (Hc) of solid-state NPs is much larger (72 Oe) than the sol-gel NPs (31 Oe). Microwave absorption properties were studied by ferromagnetic resonance (FMR) technique in field sweep mode at different fixed frequencies. A thin layer (∼300 μm) of YIG film was deposited using electrophoretic deposition (EPD) technique over a coplanar waveguide (CPW) transmission line made on copper coated RT/duroid® 5880 substrates. Temperature dependent magnetic properties were also investigated using VSM and FMR techniques. Microwave absorption properties were investigated at high temperatures (up to 300 °C) both for sol-gel and solid-state synthesized NPs and are related to skin depth of YIG films. It is observed that microwave absorption almost vanishes when the temperature reached the Néel temperature of YIG.

  16. First determination of the valence band dispersion of CH3NH3PbI3 hybrid organic-inorganic perovskite

    NASA Astrophysics Data System (ADS)

    Lee, Min-I.; Barragán, Ana; Nair, Maya N.; Jacques, Vincent L. R.; Le Bolloc'h, David; Fertey, Pierre; Jemli, Khaoula; Lédée, Ferdinand; Trippé-Allard, Gaëlle; Deleporte, Emmanuelle; Taleb-Ibrahimi, Amina; Tejeda, Antonio

    2017-07-01

    The family of hybrid organic-inorganic halide perovskites is in the limelight because of their recently discovered high photovoltaic efficiency. These materials combine photovoltaic energy conversion efficiencies exceeding 22% and low-temperature and low-cost processing in solution; a breakthrough in the panorama of renewable energy. Solar cell operation relies on the excitation of the valence band electrons to the conduction band by solar photons. One factor strongly impacting the absorption efficiency is the band dispersion. The band dispersion has been extensively studied theoretically, but no experimental information was available. Herein, we present the first experimental determination of the valence band dispersion of methylammonium lead halide in the tetragonal phase. Our results pave the way for contrasting the electronic hopping or the electron effective masses in different theories by comparing to our experimental bands. We also show a significant broadening of the electronic states, promoting relaxed conditions for photon absorption, and demonstrate that the tetragonal structure associated to the octahedra network distortion below 50 °C induces only a minor modification of the electronic bands, with respect to the cubic phase at high temperature, thus minimizing the impact of the cubic-tetragonal transition on solar cell efficiencies.

  17. Realistic absorption coefficient of ultrathin films

    NASA Astrophysics Data System (ADS)

    Cesaria, M.; Caricato, A. P.; Martino, M.

    2012-10-01

    Both a theoretical algorithm and an experimental procedure are discussed of a new route to determine the absorption/scattering properties of thin films deposited on transparent substrates. Notably, the non-measurable contribution of the film-substrate interface is inherently accounted for. While the experimental procedure exploits only measurable spectra combined according to a very simple algorithm, the theoretical derivation does not require numerical handling of the acquired spectra or any assumption on the film homogeneity and substrate thickness. The film absorption response is estimated by subtracting the measured absorption spectrum of the bare substrate from that of the film on the substrate structure but in a non-straightforward way. In fact, an assumption about the absorption profile of the overall structure is introduced and a corrective factor accounting for the relative film-to-substrate thickness. The method is tested on films of a well known material (ITO) as a function of the film structural quality and influence of the film-substrate interface, both deliberately changed by thickness tuning and doping. Results are found fully consistent with information obtained by standard optical analysis and band gap values reported in the literature. Additionally, comparison with a conventional method demonstrates that our route is generally more accurate even if particularly suited for very thin films.

  18. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  19. Detection of blueshifted emission and absorption and a relativistic iron line in the X-ray spectrum of ESO323-G077

    NASA Astrophysics Data System (ADS)

    Jiménez-Bailón, E.; Krongold, Y.; Bianchi, S.; Matt, G.; Santos-Lleó, M.; Piconcelli, E.; Schartel, N.

    2008-12-01

    We report on the X-ray observation of the Seyfert 1 galaxy ESO323-G077 performed with XMM-Newton. The EPIC spectra show a complex spectrum with conspicuous absorption and emission features. The continuum emission can be modelled with a power law with an index of 1.99 +/- 0.02 in the whole XMM-Newton energy band, marginally consistent with typical values of type I objects. An absorption component with an uncommonly high equivalent hydrogen column (nH = 5.82+0.12-0.11 × 1022cm-2) is affecting the soft part of the spectrum. Additionally, two warm absorption components are also present in the spectrum. The lower ionized one, mainly imprinting the soft band of the spectrum, has an ionization parameter of logU = 2.14+0.06-0.07 and an outflowing velocity of v = 3200+600-200kms-1. Two absorption lines located at ~6.7 and ~7.0keV can be modelled with the highly ionized absorber. The ionization parameter and outflowing velocity of the gas measured are logU = 3.26+0.19-0.15 and v = 1700+600-400kms-1, respectively. Four emission lines were also detected in the soft energy band. The most likely explanation for these emission lines is that they are associated with an outflowing gas with a velocity of ~2000kms-1. The data suggest that the same gas which is causing the absorption could also being responsible of these emission features. Finally, the XMM-Newton spectrum shows the presence of a relativistic iron emission line likely originated in the accretion disc of a Kerr black hole with an inclination of ~25°. We propose a model to explain the observed X-ray properties which invokes the presence of a two-phase outflow with cone-like structure and a velocity of the order of 2000- 4000kms-1. The inner layer of the cone would be less ionized, or even neutral, than the outer layer. The inclination angle of the source would be lower than the opening angle of the outflowing cone. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and

  20. Optical absorption, TL and IRSL of basic plagioclase megacrysts from the pinacate (Sonora, Mexico) quaternary alkalic volcanics.

    PubMed

    Chernov, V; Paz-Moreno, F; Piters, T M; Barboza-Flores, M

    2006-01-01

    The paper presents the first results of an investigation on optical absorption (OA), thermally and infrared stimulated luminescence (TL and IRSL) of the Pinacate plagioclase (labradorite). The OA spectra reveal two bands with maxima at 1.0 and 3.2 eV connected with absorption of the Fe3+ and Fe2+ and IR absorption at wavelengths longer than 2700 nm. The ultraviolet absorption varies exponentially with the photon energy following the 'vitreous' empirical Urbach rule indicating exponential distribution of localised states in the forbidden band. The natural TL is peaked at 700 K. Laboratory beta irradiation creates a very broad TL peak with maximum at 430 K. The change of the 430 K TL peak shape under the thermal cleaning procedure and dark storage after irradiation reveals a monotonous increasing of the activation energy that can be explained by the exponential distribution of traps. The IRSL response is weak and exhibits a typical decay behaviour.

  1. [Study of cubic boron nitride crystal UV absorption spectroscopy].

    PubMed

    Liu, Hai-Bo; Jia, Gang; Chen, Gang; Meng, Qing-Ju; Zhang, Tie-Chen

    2008-07-01

    UV absorption spectroscopy of artificial cubic boron nitride (cBN) single crystal flake, synthesized under high-temperature and high-pressure, was studied in the present paper. UV WINLAB spectrometer was used in the experiments, and MOLECULAR SPECTROSCOPY software was used for data analysis. The UV-cBN limit of 198 nm was showed in this test by a special fixture quartz sample. We calculated the energy gap by virtue of the formula: lambda0 = 1.24/E(g) (microm). The energy gap is 6. 26 eV. There are many viewpoints about the gap of cBN. By using the first-principles theory to calculate energy band structure and density of electronic states of cBN, an indirect transition due to electronics in valence band jumping into conduction band by absorbing photon can be confirmed. That leads to UV absorption. The method of calculation was based on the quantum mechanics of CASTEP in the commercial software package of Cerius2 in the Co. Accerlrys in the United States. The theory of CASTEP is based on local density approximation or gradient corrected LDA. The crystal parameter of cBN was input to the quantum mechanics of CASTEP in order to construct the crystal parameter model of cBN. We calculated the energy gap of cBN by the method of gradient corrected LDA. The method underestimates the value of nonconductor by about 1 to 2 eV. We gaot some opinions as follows: cBN is indirect band semiconductor. The energy gap is 4.76 eV, less than our experiment. The reason may be defect that we ignored in calculating process. It was reported that the results by first principles method of calculation of the band generally was less than the experimental results. This paper shows good UV characteristics of cBN because of the good agreement of experimental results with the cBN band width. That is a kind of development prospect of UV photo-electronic devices and high-temperature semiconductor devices.

  2. Photocatalytic hydrogen generation enhanced by band gap narrowing and improved charge carrier mobility in AgTaO3 by compensated co-doping.

    PubMed

    Li, Min; Zhang, Junying; Dang, Wenqiang; Cushing, Scott K; Guo, Dong; Wu, Nianqiang; Yin, Penggang

    2013-10-14

    The correlation of the electronic band structure with the photocatalytic activity of AgTaO3 has been studied by simulation and experiments. Doping wide band gap oxide semiconductors usually introduces discrete mid-gap states, which extends the light absorption but has limited benefit for photocatalytic activity. Density functional theory (DFT) calculations show that compensated co-doping in AgTaO3 can overcome this problem by increasing the light absorption and simultaneously improving the charge carrier mobility. N/H and N/F co-doping can delocalize the discrete mid-gap states created by sole N doping in AgTaO3, which increases the band curvature and the electron-to-hole effective mass ratio. In particular, N/F co-doping creates a continuum of states that extend the valence band of AgTaO3. N/F co-doping thus improves the light absorption without creating the mid-gap states, maintaining the necessary redox potentials for water splitting and preventing from charge carrier trapping. The experimental results have confirmed that the N/F-codoped AgTaO3 exhibits a red-shift of the absorption edge in comparison with the undoped AgTaO3, leading to remarkable enhancement of photocatalytic activity toward hydrogen generation from water.

  3. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.

    2015-12-14

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintainingmore » high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.« less

  4. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    NASA Astrophysics Data System (ADS)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B.; Brosch, Noah; Tielens, Alexander G. G. M.

    2017-02-01

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μm IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ˜15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ˜15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.

  5. Modeled and Empirical Approaches for Retrieving Columnar Water Vapor from Solar Transmittance Measurements in the 0.72, 0.82, and 0.94 Micrometer Absorption Bands

    NASA Technical Reports Server (NTRS)

    Ingold, T.; Schmid, B.; Maetzler, C.; Demoulin, P.; Kaempfer, N.

    2000-01-01

    A Sun photometer (18 channels between 300 and 1024 nm) has been used for measuring the columnar content of atmospheric water vapor (CWV) by solar transmittance measurements in absorption bands with channels centered at 719, 817, and 946 nm. The observable is the band-weighted transmittance function defined by the spectral absorption of water vapor and the spectral features of solar irradiance and system response. The transmittance function is approximated by a three-parameter model. Its parameters are determined from MODTRAN and LBLRTM simulations or empirical approaches using CWV data of a dual-channel microwave radiometer (MWR) or a Fourier transform spectrometer (FTS). Data acquired over a 2-year period during 1996-1998 at two different sites in Switzerland, Bern (560 m above sea level (asl)) and Jungfraujoch (3580 m asl) were compared to MWR, radiosonde (RS), and FTS retrievals. At the low-altitude station with an average CWV amount of 15 mm the LBLRTM approach (based on recently corrected line intensities) leads to negligible biases at 719 and 946 nm if compared to an average of MWR, RS, and GPS retrievals. However, at 817 nm an overestimate of 2.7 to 4.3 mm (18-29%) remains. At the high-altitude station with an average CWV amount of 1.4 mm the LBLRTM approaches overestimate the CWV by 1.0, 1.4. and 0.1 mm (58, 76, and 3%) at 719, 817, and 946 nm, compared to the ITS instrument. At the low-altitude station, CWV estimates, based on empirical approaches, agree with the MWR within 0.4 mm (2.5% of the mean); at the high-altitude site with a factor of 10 less water vapor the agreement of the sun photometers (SPM) with the ITS is 0.0 to 0.2 mm (1 to 9% of the mean CWV there). Sensitivity analyses show that for the conditions met at the two stations with CWV ranging from 0.2 to 30 mm, the retrieval errors are smallest if the 946 nm channel is used.

  6. Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes

    DOE PAGES

    Suram, Santosh K.; Zhou, Lan; Shinde, Aniketa; ...

    2018-01-01

    Combinatorial photoelectrochemistry combined with first principles calculations demonstrate that NiMnO 3 and its mixture with Ni 6 MnO 8 are photoanodes with phenomenal absorptivity and band alignment to the oxygen evolution reaction.

  7. Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suram, Santosh K.; Zhou, Lan; Shinde, Aniketa

    Combinatorial photoelectrochemistry combined with first principles calculations demonstrate that NiMnO 3 and its mixture with Ni 6 MnO 8 are photoanodes with phenomenal absorptivity and band alignment to the oxygen evolution reaction.

  8. Band gap enhancement of glancing angle deposited TiO2 nanowire array

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Mondal, A.; Singh, N. K.; Dhar, J. C.; Chattopadhyay, K. K.; Bhattacharya, Sekhar

    2012-09-01

    Vertically oriented TiO2 nanowire (NW) arrays were fabricated by glancing angle deposition technique. Field emission-scanning electron microscopy shows the formation of two different diameters ˜80 nm and ˜40 nm TiO2 NW for 120 and 460 rpm azimuthal rotation of the substrate. The x-ray diffraction and Raman scattering depicted the presence of rutile and anatase phase TiO2. The overall Raman scattering intensity decreased with nanowire diameter. The role of phonon confinement in anatase and rutile peaks has been discussed. The red (7.9 cm-1 of anatase Eg) and blue (7.4 cm-1 of rutile Eg, 7.8 cm-1 of rutile A1g) shifts of Raman frequencies were observed. UV-vis absorption measurements show the main band absorption at 3.42 eV, 3.48 eV, and ˜3.51 eV for thin film and NW prepared at 120 and 460 rpm, respectively. Three fold enhance photon absorption and intense light emission were observed for NW assembly. The photoluminescence emission from the NW assembly revealed blue shift in main band transition due to quantum confinement in NW structures.

  9. Infrared absorption of methanethiol clusters (CH3SH)n, n = 2-5, recorded with a time-of-flight mass spectrometer using IR depletion and VUV ionization

    NASA Astrophysics Data System (ADS)

    Fu, Lung; Han, Hui-Ling; Lee, Yuan-Pern

    2012-12-01

    We investigated IR spectra in the CH- and SH-stretching regions of size-selected methanethiol clusters, (CH3SH)n with n = 2-5, in a pulsed supersonic jet using infrared (IR)-vacuum ultraviolet (VUV) ionization. VUV emission at 132.50 nm served as the source of ionization in a time-of-flight mass spectrometer. Clusters were dissociated with light from a tunable IR laser before ionization. The variations in intensity of methanethiol cluster ions (CH3SH)n+ were monitored as the IR laser light was tuned across the range 2470-3100 cm-1. In the SH-stretching region, the spectrum of (CH3SH)2 shows a weak band near 2601 cm-1, red-shifted only 7 cm-1 from that of the monomer. In contrast, all spectra of (CH3SH)n, n = 3-5, show a broad band near 2567 cm-1 with much greater intensity. In the CH-stretching region, absorption bands of (CH3SH)2 are located near 2865, 2890, 2944, and 3010 cm-1, red-shifted by 3-5 cm-1 from those of CH3SH. These red shifts increase slightly for larger clusters and bands near 2856, 2884, 2938, and 3005 cm-1 were observed for (CH3SH)5. These spectral results indicate that the S-H...S hydrogen bond plays an important role in clusters with n = 3-5, but not in (CH3SH)2, in agreement with theoretical predictions. The absence of a band near 2608 cm-1 that corresponds to absorption of the non-hydrogen-bonded SH moiety and the large width of observed feature near 2567 cm-1 indicate that the dominant stable structures of (CH3SH)n, n = 3-5, have a cyclic hydrogen-bonded framework.

  10. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyakov, V. A., E-mail: bel1937@mail.ru, E-mail: bel@landau.ac.ru; Semenov, S. V.

    2016-05-15

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM)more » frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.« less

  11. Spectral band passes for a high precision satellite sounder

    NASA Technical Reports Server (NTRS)

    Kaplan, L. D.; Chahine, M. T.; Susskind, J.; Searl, J. E.

    1977-01-01

    Atmospheric temperature soundings with significantly improved vertical resolution can be obtained from carefully chosen narrow band-pass measurements in the 4.3-micron band of CO2 by taking advantage of the variation of the absorption coefficients, and thereby the weighting functions, with pressure and temperature. A set of channels has been found in the 4.2-micron region that is capable of yielding about 2-km vertical resolution in the troposphere. The concept of a complete system is presented for obtaining high resolution retrievals of temperature and water vapor distribution, as well as surface and cloud top temperatures, even in the presence of broken clouds.

  12. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakanth, S.; James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in; School of Physics, University of Hyderabad, Hyderabad 500046

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nmmore » particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.« less

  13. Mapping Surface Water DOC in the Northern Gulf of Mexico Using CDOM Absorption Coefficients and Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.

    2017-12-01

    Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.

  14. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with themore » progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.« less

  15. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  16. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  17. Intracavity absorption with a continuous wave dye laser - Quantification for a narrowband absorber

    NASA Technical Reports Server (NTRS)

    Brobst, William D.; Allen, John E., Jr.

    1987-01-01

    An experimental investigation of the dependence of intracavity absorption on factors including transition strength, concentration, absorber path length, and pump power is presented for a CW dye laser with a narrow-band absorber (NO2). A Beer-Lambert type relationship is found over a small but useful range of these parameters. Quantitative measurement of intracavity absorption from the dye laser spectral profiles showed enhancements up to 12,000 (for pump powers near lasing threshold) when compared to extracavity measurements. The definition of an intracavity absorption coefficient allowed the determination of accurate transition strength ratios, demonstrating the reliability of the method.

  18. Optical absorption in recycled waste plastic polyethylene

    NASA Astrophysics Data System (ADS)

    Aji, M. P.; Rahmawati, I.; Priyanto, A.; Karunawan, J.; Wati, A. L.; Aryani, N. P.; Susanto; Wibowo, E.; Sulhadi

    2018-03-01

    We investigated the optical properties of UV spectrum absorption in recycled waste plastic from polyethylene polymer type. Waste plastic polyethylene showed an optical spectrum absorption after it’s recycling process. Spectrum absorption is determined using spectrophotometer UV-Nir Ocean Optics type USB 4000. Recycling method has been processed using heating treatment around the melting point temperature of the polyethylene polymer that are 200°C, 220°C, 240°C, 260°C, and 280°C. In addition, the recycling process was carried out with time variations as well, which are 1h, 1.5h, 2h, and 2.5h. The result of this experiment shows that recycled waste plastic polyethylene has a spectrum absorption in the ∼ 340-550 nm wavelength range. The absorbance spectrum obtained from UV light which is absorbed in the orbital n → π* and the orbital π → π*. This process indicates the existence of electron transition phenomena. This mechanism is affected by the temperature and the heating time where the intensity of absorption increases and widens with the increase of temperature and heating time. Furthermore this study resulted that the higher temperature affected the enhancement of the band gap energy of waste plastic polyethylene. These results show that recycled waste plastic polyethylene has a huge potential to be absorber materials for solar cell.

  19. Laser-Induced Modification Of Energy Bands Of Transparent Solids

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2010-10-01

    Laser-induced variations of electron energy bands of transparent solids significantly affect the initial stages of laser-induced ablation (LIA) influencing rates of ionization and light absorption by conduction-band electrons. We analyze fast variations with characteristic duration in femto-second time domain that include: 1) switching electron functions from bonding to anti-bonding configuration due to laser-induced ionization; 2) laser-driven oscillations of electrons in quasi-momentum space; and 3) direct distortion of the inter-atomic potential by electric field of laser radiation. Among those effects, the latter two have zero delay and reversibly modify band structure taking place from the beginning of laser action. They are of special interest due to their strong influence on the initial stage and threshold of laser ablation. The oscillations modify the electron-energy bands by adding pondermotive potential. The direct action of radiation's electric field leads to high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the forbidden-energy bands. FKE provides decrease of the effective band gap while the electron oscillations lead either to monotonous increase or oscillatory variations of the gap. We analyze the competition between those two opposite trends and their role in initiating LIA.

  20. Fireball Observations in Visible and Sodium Bands

    NASA Astrophysics Data System (ADS)

    Fletcher, Sandra

    On November 17th at 1:32am MST, a large Leonid fireball was simultaneously imaged by two experiments, a visible band CCD camera and a 590nm filtered band equi-angle fisheye and telecentric lens assembly. The visible band camera, ROTSE (Robotic Optical Transient Search Experiment) is a two by two f/1.9 telephoto lens array with 2k x2k Thompson CCD and is located at 35.87 N, 106.25 W at an altitude of 2115m. One-minute exposures along the radiant were taken of the event for 30 minutes after the initial explosion. The sodium band experiment was located at 35.29 N,106.46 W at an altitude of 1860m. It took ninety second exposures and captured several events throughout the night. Triangulation from two New Mexico sites resulted in an altitude of 83km over Wagon Mound, NM. Two observers present at the ROTSE site saw a green flash and a persistent glow up to seven minutes after the explosion. Cataloging of all sodium trails for comparison with lidar and infrasonic measurements is in progress. The raw data from both experiments and the atmospheric chemistry interpretation of them will be presented.

  1. Electronic Band Structure Tuning of Highly-Mismatched-Alloys for Energy Conversion Applications

    NASA Astrophysics Data System (ADS)

    Ting, Min

    Highly-mismatched alloys: ZnO1-xTe x and GaN1-xSb x are discussed within the context of finding the suitable material for a cost-effective Si-based tandem solar cell (SBTSC). SBTSC is an attractive concept for breaking through the energy conversion efficiency theoretical limit of a single junction solar cell. Combining with a material of 1.8 eV band gap, SBTSC can theoretically achieve energy conversion efficiency > 45%. ZnO and GaN are wide band gap semiconductors. Alloying Te in ZnO and alloying Sb in GaN result in large band gap reduction to < 2 eV from 3.3 eV and 3.4 eV respectively. The band gap reduction is majorly achieved by the upward shift of valence band (VB). Incorporating Te in ZnO modifies the VB of ZnO through the valence-band anticrossing (VBAC) interaction between localized Te states and ZnO VB delocalized states, which forms a Te-derived VB at 1 eV above the host VB. Similar band structure modification is resulted from alloying Sb in GaN. Zn1-xTex and GaN 1-xSbx thin films are synthesized across the whole composition range by pulsed laser deposition (PLD) and low temperature molecular beam epitaxy (LT-MBE) respectively. The electronic band edges of these alloys are measured by synchrotron X-ray absorption, emission, and the X-ray photoelectron spectroscopies. Modeling the optical absorption coefficient with the band anticrossing (BAC) model revealed that the Te and Sb defect levels to be at 0.99 eV and 1.2 eV above the VB of ZnO and GaN respectively. Electrically, Zn1-xTex is readily n-type conductive and GaN1-xSbx is strongly p-type conductive. A heterojunction device of p-type GaN 0.93Sb0.07 with n-type ZnO0.77Te0.93 upper cell (band gap at 1.8 eV) on Si bottom cell is proposed as a promising SBTSC device.

  2. Band gap bowing in NixMg1−xO

    PubMed Central

    Niedermeier, Christian A.; Råsander, Mikael; Rhode, Sneha; Kachkanov, Vyacheslav; Zou, Bin; Alford, Neil; Moram, Michelle A.

    2016-01-01

    Epitaxial transparent oxide NixMg1−xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1−xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x < 0.037. Density functional calculations of the NixMg1−xO band structure and the density of states demonstrate that deep Ni 3d levels are introduced into the MgO band gap, which significantly reduce the fundamental gap as confirmed by optical absorption spectra. These states broaden into a Ni 3d-derived conduction band for x > 0.074 and account for the anomalously large band gap narrowing in the NixMg1−xO solid solution system. PMID:27503808

  3. Absorption-emission optrode and methods of use thereof

    DOEpatents

    Hirschfeld, T.B.

    1990-05-29

    A method and apparatus are described for monitoring the physical and chemical properties of a sample fluid by measuring an optical signal generated by a fluorescent substance and modulated by an absorber substance. The emission band of the fluorescent substance overlaps the absorption band of the absorber substance, and the degree of overlap is dependent on the physical and chemical properties of the sample fluid. The fluorescent substance and absorber substance are immobilized on a substrate so that an effective number of molecules thereof are sufficiently close for resonant energy transfer to occur, thereby providing highly efficient modulation of the fluorescent emissions of the fluorescent substance by the absorber substance. 4 figs.

  4. Synthesis and evaluation of changes induced by solvent and substituent in electronic absorption spectra of some azo disperse dyes

    NASA Astrophysics Data System (ADS)

    Mohammadi, Asadollah; Yazdanbakhsh, Mohammad Reza; Farahnak, Lahya

    2012-04-01

    Five azo disperse dyes were prepared by diazotizing 4'-aminoacetophenone and p-anisidine and coupling with varies N-alkylated aromatic amines. Characterization of the dyes was carried out by using UV-vis, FTIR and 1H NMR spectroscopic techniques. The electronic absorption spectra of dyes are determined at room temperature in fifteen solvents with different polarities. The solvent dependent maximum absorption band shifts, were investigated using dielectric constant (ɛ), refractive index (n) and Kamlet-Taft polarity parameters (hydrogen bond donating ability (α), hydrogen bond accepting ability (β) and dipolarity/polarizability polarity scale (π*)). Acceptable agreement was found between the maximum absorption band of dyes and solvent polarity parameters especially with π*. The effect of substituents of coupler and/or diazo component on the color of dyes was investigated. The effects of acid and base on the visible absorption maxima of the dyes are also reported.

  5. Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle

    NASA Astrophysics Data System (ADS)

    Huang, Mulin; Cheng, Yongzhi; Cheng, Zhengze; Chen, Haoran; Mao, Xuesong; Gong, Rongzhou

    2018-05-01

    We present a wide-angle tunable dual-band terahertz (THz) metamaterial absorber (MMA) based on square graphene patch (SGP). This MMA is a simple periodic array, consisting of a dielectric substrate sandwiched with the SGP and a continuous metallic film. The designed MMA can achieve dual-band absorption by exciting fundamental and second higher-order resonance modes on SGP. The numerical simulations indicate that the absorption spectrum of the designed MMA is tuned from 0.85 THz to 1.01 THz, and from 2.84 THz to 3.37 THz when the chemical potential of the SGP is increasing from 0.4eV to 0.8eV. Moreover, it operates well in a wide-angle of the incident waves. The presented THz MMA based on the SGP could find some potential applications in optoelectronic related devices, such as sensor, emitter and wavelength selective radiators.

  6. Rain Fade Compensation Alternatives for Ka Band Communication Satellites

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.

    1997-01-01

    Future satellite communications systems operating in Ka-band frequency band are subject to degradation produced by the troposphere which is much more severe than those found at lower frequency bands. These impairments include signal absorption by rain, clouds and gases, and amplitude scintillation's arising from refractive index irregularities. For example, rain attenuation at 20 GHz is almost three times that at 11 GHz. Although some of these impairments can be overcome by oversizing the ground station antennas and high power amplifiers, the current trend is using small (less than 20 inches apertures), low-cost ground stations (less than $1000) that can be easily deployed at user premises. As a consequence, most Ka-band systems are expected to employ different forms of fade mitigation that can be implemented relatively easily and at modest cost. The rain fade mitigation approaches are defined by three types of Ka-band communications systems - a low service rate (less than 1.5 Mb/s), a moderate service rate (1.5 to 6 Mb/s) system and a high service rate (greater than 43 Mb/s) system. The ACTS VSAT network, which includes an adaptive rain fade technique, is an example of a moderate service rate.

  7. Collision-induced Absorption in the Infrared: A Data Base for Modelling Planetary and Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra

    1998-01-01

    Accurate knowledge of certain collision-induced absorption continua of molecular pairs such as H2-H2, H2-He, H2-CH4, CO2-CO2, etc., is a prerequisite for most spectral analyses and modelling attempts of atmospheres of planets and cold stars. We collect and regularly update simple, state of the art computer programs for the calculation of the absorption coefficient of such molecular pairs over a broad range of temperatures and frequencies, for the various rotovibrational bands. The computational results are in agreement with the existing laboratory measurements of such absorption continua, recorded with a spectral resolution of a few wavenumbers, but reliable computational results may be expected even in the far wings, and at temperatures for which laboratory measurements do not exist. Detailed information is given concerning the systems thus studied, the temperature and frequency ranges considered, the rotovibrational bands thus modelled, and how one may obtain copies of the FORTRAN77 computer programs by e-mail.

  8. Optical absorption of Mg-doped layers and InGaN quantum wells on c-plane and semipolar GaN structures

    NASA Astrophysics Data System (ADS)

    Sizov, Dmitry; Bhat, Rajaram; Zah, Chung-en

    2013-05-01

    We studied optical absorption of Mg-doped AlInGaN layers using excitation-position dependent and polarization resolved photoluminescence from the slab-waveguide edge of a laser structure. The major absorption in the Mg-doped layers was found only when p-doping is activated. It increases with the removal of residual hydrogen, which in case of Mg doping is a p-type passivation impurity, and reversibly disappears after passivation by hydrogen. This absorption is weakly wavelength and temperature dependent, and isotropic. This can be attributed to acceptor-bound hole absorption, because those holes concentration is nearly equal to that of activated acceptors and weakly temperature dependent (unlike the free hole concentration, which is much lower and is an exponential function of temperature due to high ionization energy). The cross section of photon absorption on such activated acceptor was quantified to be in the order of 10-17 cm-2. The absorption cross section of free electrons was found to be at least one order of magnitude lower and below detection limit. The same technique was used to experimentally quantify band structure polarization components along basis directions for green InGaN quantum wells (QWs) grown on c- and semipolar planes. The A1 and B1 valence subbands of c-plane QW were found to comprise mostly |X⟩ and |Y⟩ states. There was rather minor amount of |Z⟩ states with average square fraction of only 0.02. In (20-21) plane, due to small band anticrossing near gamma-point, we observed highly polarized absorption edges of A1- and B1-subbands consisting mainly of |Y⟩ and |X⟩ states, respectively, and found their energy splitting to be ˜40 meV. For (11-22) plane with smaller band splitting and polarization, we observed polarization switching with indium (In) concentration greater than 30% in the QW (or photon energy less than 2.3 eV). We confirmed our study of valence band structures by optical gain measurements.

  9. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: Within the frequency band 9 kHz, up to, but not including, 45 kHz, the peak output power from the cable... output power from the cable locating equipment shall not exceed one watt. If provisions are made for connection of the cable locating equipment to the AC power lines, the conducted limits in § 15.207 also apply...

  10. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: Within the frequency band 9 kHz, up to, but not including, 45 kHz, the peak output power from the cable... output power from the cable locating equipment shall not exceed one watt. If provisions are made for connection of the cable locating equipment to the AC power lines, the conducted limits in § 15.207 also apply...

  11. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: Within the frequency band 9 kHz, up to, but not including, 45 kHz, the peak output power from the cable... output power from the cable locating equipment shall not exceed one watt. If provisions are made for connection of the cable locating equipment to the AC power lines, the conducted limits in § 15.207 also apply...

  12. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: Within the frequency band 9 kHz, up to, but not including, 45 kHz, the peak output power from the cable... output power from the cable locating equipment shall not exceed one watt. If provisions are made for connection of the cable locating equipment to the AC power lines, the conducted limits in § 15.207 also apply...

  13. L-band ultrafast fiber laser mode locked by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Rozhin, A. G.; Wang, F.; Scardaci, V.; Milne, W. I.; White, I. H.; Hennrich, F.; Ferrari, A. C.

    2008-08-01

    We fabricate a nanotube-polyvinyl alcohol saturable absorber with a broad absorption at 1.6 μm. We demonstrate a pulsed fiber laser working in the telecommunication L band by using this composite as a mode locker. This gives ˜498±16 fs pulses at 1601 nm with a 26.7 MHz repetition rate.

  14. Absorption by DNA single strands of adenine isolated in vacuo: The role of multiple chromophores

    NASA Astrophysics Data System (ADS)

    Nielsen, Lisbeth Munksgaard; Pedersen, Sara Øvad; Kirketerp, Maj-Britt Suhr; Nielsen, Steen Brøndsted

    2012-02-01

    The degree of electronic coupling between DNA bases is a topic being up for much debate. Here we report on the intrinsic electronic properties of isolated DNA strands in vacuo free of solvent, which is a good starting point for high-level excited states calculations. Action spectra of DNA single strands of adenine reveal sign of exciton coupling between stacked bases from blueshifted absorption bands (˜3 nm) relative to that of the dAMP mononucleotide (one adenine base). The bands are blueshifted by about 10 nm compared to those of solvated strands, which is a shift similar to that for the adenine molecule and the dAMP mononucleotide. Desolvation has little effect on the bandwidth, which implies that inhomogenous broadening of the absorption bands in aqueous solution is of minor importance compared to, e.g., conformational disorder. Finally, at high photon energies, internal conversion competes with electron detachment since dissociation of the bare photoexcited ions on the microsecond time scale is measured.

  15. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    PubMed

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  16. Residual stress dependant anisotropic band gap of various (hkl) oriented BaI{sub 2} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pradeep; Gulia, Vikash; Vedeshwar, Agnikumar G., E-mail: agni@physics.du.ac.in, E-mail: agvedeshwar@gmail.com

    2013-11-21

    The thermally evaporated layer structured BaI{sub 2} grows in various completely preferred (hkl) film orientations with different growth parameters like film thickness, deposition rate, substrate temperature, etc. which were characterized by structural, morphological, and optical absorption measurements. Structural analysis reveals the strain in the films and the optical absorption shows a direct type band gap. The varying band gaps of these films were found to scale linearly with their strain. The elastic moduli and other constants were also calculated using Density Functional Theory (DFT) formalism implemented in WIEN2K code for converting the strain into residual stress. Films of different sixmore » (hkl) orientations show stress free anisotropic band gaps (2.48–3.43 eV) and both positive and negative pressure coefficients. The negative and positive pressure coefficients of band gap are attributed to the strain in I-I (or Ba-Ba or both) and Ba-I distances along [hkl], respectively. The calculated band gaps are also compared with those experimentally determined. The average pressure coefficient of band gap of all six orientations (−0.071 eV/GPa) found to be significantly higher than that calculated (−0.047 eV/GPa) by volumetric pressure dependence. Various these issues have been discussed with consistent arguments. The electron effective mass m{sub e}{sup *}=0.66m{sub 0} and the hole effective mass m{sub h}{sup *}=0.53m{sub 0} have been determined from the calculated band structure.« less

  17. Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Li, Xin; Wan, Qi; Bai, R.; Wen, Z. C.

    2018-04-01

    We obtain the effective Hamiltonian of the phosphorene including the effect of Rashba spin-orbit coupling in the frame work of the low-energy theory. The spin-splitting energy bands show an anisotropy feature for the wave vectors along kx and ky directions, where kx orients to ΓX direction in the k space. We numerically study the optical absorption of the electrons for different wave vectors with Rashba spin-orbit coupling. We find that the spin-flip transition from the valence band to the conduction band induced by the circular polarized light closes to zero with increasing the x-component wave vector when ky equals to zero, while it can be significantly increased to a large value when ky gets a small value. When the wave vector varies along the ky direction, the spin-flip transition can also increase to a large value, however, which shows an anisotropy feature for the optical absorption. Especially, the spin-conserved transitions keep unchanged and have similar varying trends for different wave vectors. This phenomenon provides a novel route for the manipulation of the spin-dependent property of the fermions in the monolayer phosphorene.

  18. Cirrus Cloud Optical and Microphysical Property Retrievals from eMAS During SEAC4RS Using Bi-Spectral Reflectance Measurements Within the 1.88 micron Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.

    2016-01-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.

  19. Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi

    2016-04-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.

  20. Tunable diode-laser absorption measurements of methane at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Nagali, V.; Chou, S. I.; Baer, D. S.; Hanson, R. K.; Segall, J.

    1996-07-01

    A diode-laser sensor system based on absorption spectroscopy techniques has been developed to monitor CH4 nonintrusively in high-temperature environments. Fundamental spectroscopic parameters, including the line strengths of the transitions in the R(6) manifold of the 2 nu 3 band near 1.646 mu m, have been determined from high-resolution absorption measurements in a heated static cell. In addition, a corrected expression for the CH 4 partition function has been validated experimentally over the temperature range from 400 to 915 K. Potential applications of the diode-laser sensor system include process control, combustion measurements, and atmospheric monitoring.

  1. Bandwidth enhancement in microwave absorption of binary nanocomposite ferrites hollow microfibers.

    PubMed

    Song, Fuzhan; Shen, Xiangqian; Yang, Xinchun; Meng, Xianfeng; Xiang, Jun; Liu, Ruijiang; Dong, Mingdong

    2013-04-01

    The binary Ba0.5Sr0.5Fe12O19 (BSFO)/Ni0.5Zn0.5Fe2O4 (NZFO) nanocomposite ferrites hollow microfibers with high aspect ratios have been prepared by the gel precursor transformation process. These microfibers possess a high specific surface area about 45.2 m2 g(-1), and a ratio of the hollow diameter to the fiber diameter estimated about 5/7. The binary nanocomposite ferrites are formed after the precursor calcined at 750 degrees C for 3 h. Their minimum reflection loss (RL) is -38.1 dB at 10.4 GHz. The microwave absorption bandwidth with RL value exceeding -20 dB covers the whole X-band (8.2-12.4 GHz) and Ku-band (12.4-18 GHz). This enhancement in microwave absorption can be attributed to the exchange-coupling interaction, interfacial polarization and small size effect in nanocomposite hollow microfibers.

  2. Enhanced broadband absorption in nanowire arrays with integrated Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Aghaeipour, Mahtab; Pettersson, Håkan

    2018-05-01

    A near-unity unselective absorption spectrum is desirable for high-performance photovoltaics. Nanowire (NW) arrays are promising candidates for efficient solar cells due to nanophotonic absorption resonances in the solar spectrum. The absorption spectra, however, display undesired dips between the resonance peaks. To achieve improved unselective broadband absorption, we propose to enclose distributed Bragg reflectors (DBRs) in the bottom and top parts of indium phosphide (InP) NWs, respectively. We theoretically show that by enclosing only two periods of In0.56Ga0.44As/InP DBRs, an unselective 78% absorption efficiency (72% for NWs without DBRs) is obtained at normal incidence in the spectral range from 300 nm to 920 nm. Under oblique light incidence, the absorption efficiency is enhanced up to about 85% at an incidence angle of 50°. By increasing the number of DBR periods from two to five, the absorption efficiency is further enhanced up to 95% at normal incidence. In this work, we calculated optical spectra for InP NWs, but the results are expected to be valid for other direct band gap III-V semiconductor materials. We believe that our proposed idea of integrating DBRs in NWs offers great potential for high-performance photovoltaic applications.

  3. Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency

    NASA Astrophysics Data System (ADS)

    Wu, Jun

    2016-06-01

    Complete absorption in a graphene monolayer at terahertz frequency through the critical coupling effect is investigated. It is achieved by sandwiching the graphene monolayer between a dielectric grating and a Bragg grating. The designed graphene absorber exhibits near-unity absorption at resonance but with an ultranarrow spectrum and antenna-like response, which is attributed to the combined effects of guided mode resonance with dielectric grating and the photonic band gap with Bragg grating. In addition to numerical simulation, the electric field distributions are also illustrated to provide a physical understanding of the perfect absorption effect. Furthermore, the absorption performance can be tuned by only changing the Fermi level of graphene, which is beneficial for real application. It is believed that this study may be useful for designing next-generation graphene-based optoelectronic devices.

  4. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the opticalmore » absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.« less

  5. Modeling of the absorption properties of Ga1-xInxAs1-yNy/GaAs quantum well structures for photodetection applications

    NASA Astrophysics Data System (ADS)

    Aissat, A.; Bestam, R.; Alshehri, B.; Vilcot, J. P.

    2015-06-01

    This work reports on theoretical studies on the GaInNAs material properties (bandgap, lattice mismatch, absorption coefficient) as grown on GaAs substrate. The Band Anti-Crossing (BAC) kṡp 8 × 8 model has been used to determine the influence of indium and nitrogen concentrations on the position of conduction and valence bands. The incorporation of nitrogen at a level lower than 5% causes the split of the conduction band. For indium and nitrogen concentrations of 38% and 3.5%, respectively, the strained bandgap energy is 0.70 eV and the absorption coefficient of indium and nitrogen-rich compounds increases significantly.

  6. Ultrafast band-gap oscillations in iron pyrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, B; Kolpak, AM

    2013-12-20

    With its combination of favorable band gap, high absorption coefficient, material abundance, and low cost, iron pyrite, FeS2, has received a great deal of attention over the past decades as a promising material for photovoltaic applications such as solar cells and photoelectrochemical cells. Devices made from pyrite, however, exhibit open circuit voltages significantly lower than predicted, and despite a recent resurgence of interest in the material, there currently exists no widely accepted explanation for this disappointing behavior. In this paper, we show that phonons, which have been largely overlooked in previous efforts, may play a significant role. Using fully self-consistentmore » GW calculations, we demonstrate that a phonon mode related to the oscillation of the sulfur-sulfur bond distance in the pyrite structure is strongly coupled to the energy of the conduction-band minimum, leading to an ultrafast (approximate to 100 fs) oscillation in the band gap. Depending on the coherency of the phonons, we predict that this effect can cause changes of up to +/- 0.3 eV relative to the accepted FeS2 band gap at room temperature. Harnessing this effect via temperature or irradiation with infrared light could open up numerous possibilities for novel devices such as ultrafast switches and adaptive solar absorbers.« less

  7. A three-color absorption/scattering imaging technique for simultaneous measurements on distributions of temperature and fuel concentration in a spray

    NASA Astrophysics Data System (ADS)

    Qi, Wenyuan; Zhang, Yuyin

    2018-04-01

    A three-color imaging technique was proposed for simultaneous measurements on distributions of fuel/air mixture temperature and fuel vapor/liquid concentrations in evaporating sprays. The idea is based on that the vapor concentration is proportional to the absorption of vapor to UV light, the liquid-phase concentration is related to the light extinction due to scattering of droplet to visible light, and the mixture temperature can be correlated to the absorbance ratio at two absorbing wavelengths or narrow bands. For verifying the imaging system, the molar absorption coefficients of p-xylene at the three narrow bands, which were centered respectively at 265, 289, and 532 nm with FWHM of 10 nm, were measured in a specially designed calibration chamber at different temperatures (423-606 K) and pressure of 3.6 bar. It was found that the ratio of the molar absorption coefficients of p-xylene at the two narrow bands centered at the two UV wavelengths is sensitive to the mixture temperature. On the other hand, the distributions of fuel vapor/liquid concentrations can be obtained by use of absorbance due to ultraviolet absorption of vapor and visible light scattering of droplets. Combining these two methods, a simultaneous measurement on distributions of mixture temperature and fuel vapor/liquid concentrations can be realized. In addition, the temperature field obtained from the ratio of the two absorbing narrow bands can be further used to improve the measurement accuracy of vapor/liquid concentrations, because the absorption coefficients depend on temperature. This diagnostic was applied to an evaporating spray inside a high-temperature and high-pressure constant volume chamber.

  8. Polarization-independent dual-band terahertz metamaterial absorbers based on gold/parylene-C/silicide structure.

    PubMed

    Wen, Yongzheng; Ma, Wei; Bailey, Joe; Matmon, Guy; Yu, Xiaomei; Aeppli, Gabriel

    2013-07-01

    We design, fabricate, and characterize dual-band terahertz (THz) metamaterial absorbers with high absorption based on structures consisting of a cobalt silicide (Co-Si) ground plane, a parylene-C dielectric spacer, and a metal top layer. By combining two periodic metal resonators that couple separately within a single unit cell, a polarization-independent absorber with two distinct absorption peaks was obtained. By varying the thickness of the dielectric layer, we obtain absorptivity of 0.76 at 0.76 THz and 0.97 at 2.30 THz, which indicates the Co-Si ground plane absorbers present good performance.

  9. Optical Control of Intersubband Absorption in a Multiple Quantum Well-Embedded Semiconductor Microcravity

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    2000-01-01

    Optical intersubband response of a multiple quantum well (MQW)-embedded microcavity driven by a coherent pump field is studied theoretically. The n-type doped MQW structure with three subbands in the conduction band is sandwiched between a semi-infinite medium and a distributed Bragg reflector (DBR). A strong pump field couples the two upper subbands and a weak field probes the two lower subbands. To describe the optical response of the MQW-embedded microcavity, we adopt a semi-classical nonlocal response theory. Taking into account the pump-probe interaction, we derive the probe-induced current density associated with intersubband transitions from the single-particle density-matrix formalism. By incorporating the current density into the Maxwell equation, we solve the probe local field exactly by means of Green's function technique and the transfer-matrix method. We obtain an exact expression for the probe absorption coefficient of the microcavity. For a GaAs/Al(sub x)Ga(sub 1-x)As MQW structure sandwiched between a GaAs/AlAs DBR and vacuum, we performed numerical calculations of the probe absorption spectra for different parameters such as pump intensity, pump detuning, and cavity length. We find that the probe spectrum is strongly dependent on these parameters. In particular, we find that the combination of the cavity effect and the Autler-Townes effect results in a triplet in the optical spectrum of the MQW system. The optical absorption peak value and its location can be feasibly controlled by varying the pump intensity and detuning.

  10. Topological Exciton Bands in Moire Heterojunctions.

    DOE PAGES

    Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.

    2017-04-05

    Moire patterns are common in Van der Waals heterostructures and can be used to apply periodic potentials to elementary excitations. Here, we show that the optical absorption spectrum of transition metal dichalcogenide bilayers is profoundly altered by long period moire patterns that introduce twist-angle dependent satellite excitonic peaks. Topological exciton bands with non-zero Chern numbers that support chiral excitonic edge states can be engineered by combining three ingredients: i) the valley Berry phase induced by electron-hole exchange interactions, ii) the moire potential, and iii) the valley Zeeman field.

  11. Dynamic Optoelectronic Properties in Perovskite Oxide Thin Films Measured with Ultrafast Transient Absorption & Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey Y.

    Ultrafast transient absorption and reflectance spectroscopy are foundational techniques for studying photoexcited carrier recombination mechanisms, lifetimes, and charge transfer rates. Because quantifying photoexcited carrier dynamics is central to the intelligent design and improvement of many solid state devices, these transient optical techniques have been applied to a wide range of semiconductors. However, despite their promise, interpretation of transient absorption and reflectance data is not always straightforward and often relies on assumptions of physical processes, especially with respect to the influence of heating. Studying the material space of perovskite oxides, the careful collection, interpretation, and analysis of ultrafast data is presented here as a guide for future research into novel semiconductors. Perovskite oxides are a class of transition metal oxides with the chemical structure ABO3. Although traditionally studied for their diverse physical, electronic, and magnetic properties, perovskite oxides have gained recent research attention as novel candidates for light harvesting applications. Indeed, strong tunable absorption, unique interfacial properties, and vast chemical flexibility make perovskite oxides a promising photoactive material system. However, there is limited research characterizing dynamic optoelectronic properties, such as recombination lifetimes, which are critical to know in the design of any light-harvesting device. In this thesis, ultrafast transient absorption and reflectance spectroscopy was used to understand these dynamic optoelectronic properties in highquality, thin (<50 nm) perovskite oxide films grown by molecular beam epitaxy. Starting with epitaxial LaFeO3 (LFO) grown on (LaAlO 3)0.3(Sr2AlTaO6)0.7 (LSAT), transient absorption spectroscopy reveals two photoinduced absorption features at the band gap of LFO at 2.4 eV and at the higher energy absorption edge at 3.5 eV. Using a combination of temperature

  12. Absorption Spectroscopy Analysis of Calcium-Phosphate Glasses Highly Doped with Monovalent Copper.

    PubMed

    Jiménez, José A

    2016-06-03

    CaO-P2 O5 glasses with high concentrations of monovalent copper ions were prepared by a simple melt-quench method through CuO and SnO co-doping. Spectroscopic characterization was carried out by optical absorption with the aim of analyzing the effects of Cu(+) ions on the optical band-gap energies, which were estimated on the basis of indirect-allowed transitions. The copper(I) content is estimated in the CuO/SnO-containing glasses after the assessment of the concentration dependence of Cu(2+) absorption in the visible region for CuO singly doped glasses. An exponential dependence of the change in optical band gaps (relative to the host) with Cu(+) concentration is inferred up to about 10 mol %. However, the entire range is divided into two distinct linear regions that are characterized by different rates of change with respect to concentration: 1) below 5 mol %, where the linear dependence presents a relatively high magnitude of the slope; and 2) from 5-10 mol %, where a lower magnitude of the slope is manifested. With increasing concentration, the mean Cu(+) -Cu(+) interionic distance decreases, thereby decreasing the sensitivity of monovalent copper for light absorption. The decrease in optical band-gap energies is ultimately shown to follow a linear dependence with the interionic distance, suggesting the potential of the approach to gauge the concentration of monovalent copper straightforwardly in amorphous hosts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. HST Rotational Spectral Mapping Of Two L-Type Brown Dwarfs: Variability In And Out Of Water Bands Indicates High-Altitude Haze Layers

    DOE PAGES

    Yang, Hao; Apai, Dániel; Marley, Mark S.; ...

    2014-12-17

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at othermore » wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers - the driver of the variability - must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.« less

  14. HST ROTATIONAL SPECTRAL MAPPING OF TWO L-TYPE BROWN DWARFS: VARIABILITY IN AND OUT OF WATER BANDS INDICATES HIGH-ALTITUDE HAZE LAYERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hao; Apai, Dániel; Karalidi, Theodora

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759–1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at othermore » wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon and Marley and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers—the driver of the variability—must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.« less

  15. HST Rotational Spectral Mapping Of Two L-Type Brown Dwarfs: Variability In And Out Of Water Bands Indicates High-Altitude Haze Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hao; Apai, Dániel; Marley, Mark S.

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at othermore » wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers - the driver of the variability - must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.« less

  16. Absorption in X-ray spectra of high-redshift quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Wilkes, Belinda; Mcdowell, Jonathan; Bechtold, Jill

    1994-01-01

    We present evidence that X-ray absorption is common in high-redshift quasars. We have studied six high-redshift (z approximately 3) quasars with the ROSAT Position Sensitive Proportional Counter (PSPC) of which four are in directions of low Galactic N(sub H). Three out of these four show excess absorption, while only three in approximately 50 z approximately less than 0.4 quasars do, indicating that such absorption must be common, but not ubiquitous, at high redshifts, and that the absorbers must lie at z greater than 0.4. The six quasars were: S5 0014+81, Q0420-388, PKS 0438-436, S4 0636+680. PKS 2000-330, PKS 2126-158, which have redshifts between 2.85 and 3.78. PKS 0438-436 and PKS 2126-158 show evidence for absorption above the local Galactic value at better than 99.999% confidence level. If the absorber is at the redshift of the quasar, then values of N(sub H) = (0.86(+0.49, -0.28)) x 10(exp 22) atoms/sq cm for PKS 0438-436, and N(sub H) = (1.45(+1.20, -0.64)) x 10(exp 22) atoms/ sq cm for PKS 2126-158, are implied, assuming solar abundances. The spectrum of S4 0636+680 also suggests the presence of a similarly large absorption column density at the 98% confidence level. This absorption reverses the trend for the most luminous active galactic nuclei (AGN) to have the least X-ray absorption, so a new mechanism is likely to be responsible. Intervening absorption due to damped Lyman(alpha) systems is a plausible cause. We also suggest, as an intrinsic model, that intracluster material, e.g., a cooling flow, around the quasar could account for both the X-ray spectrum and other properties of these quasars. All the quasars are radio-loud and three are gigahertz peaked (two of the three showing absorption). No excess absorption above the Galactic value is seen toward Q0420-388. This quasar has two damped Lyman(alpha) systems at z = 3.08. The limit on the X-ray column density implies a low ionization fraction, N(H I)/N(H) approximately greater than 4 x 10(exp -3) (3

  17. Experimental Air-Broadened Line Parameters in the nu2 Band of CH3D

    NASA Technical Reports Server (NTRS)

    Cross, Adriana Predoi; Brawley-Tremblay, Shannon; Povey, Chad; Smith, Mary Ann H.

    2007-01-01

    In this study we report the first experimental measurements of air-broadening and air-induced pressure-shift coefficients for approximately 378 transitions in the nu2 fundamental band of CH3D. These results were obtained from analysis of 17 room temperature laboratory absorption spectra recorded at 0.0056 cm(exp -1) resolution using the McMath-Pierce Fourier transform spectrometer located on Kitt Peak, Arizona. Three absorption cells with path lengths of 10.2, 25 and 150 cm were used to record the spectra. The total sample pressures ranged from 0.129x10(exp -2) to 52.855x10(exp -2) atm with CH3D volume mixing ratios of approximately 0.0109 in air. The spectra were analyzed using a multispectrum non-linear least-squares fitting technique. We report measurements for air pressure-broadening coefficients for transitions with quantum numbers as high as J" = 20 and K = 15, where K" = K' equivalent to K (for a parallel band). The measured air broadening coefficients range from 0.0205 to 0.0835 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shift coefficients are negative and are found to vary from about -0.0005 to -0.0080 cm(exp -1) atm(exp -1) at the temperature of the spectra. We have examined the dependence of the measured broadening and shift parameters on the J" and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J", J" and J" + 1 in the (sup Q)P- (sup Q)Q-, and (sup Q)R-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%.

  18. Linear and nonlinear magneto-optical absorption coefficients and refractive index changes in graphene

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.; Hieu, Nguyen N.; Duque, Carlos A.; Poklonski, Nikolai A.; Ilyasov, Victor V.; Hieu, Nguyen V.; Dinh, Le; Quang, Quach K.; Tung, Luong V.; Phuc, Huynh V.

    2017-07-01

    In this work, we study the magneto-optical absorption coefficients (MOACs) and refractive index changes (RICs) in monolayer graphene under a perpendicular magnetic field using the compact density matrix approach. The results are presented as functions of photon energy and external magnetic field. Our results show that there are three groups of the possible transitions: the intra-band, the mixed, and the inter-band transitions; in which the MOACs and the RICs appear as a series of peaks in both intra-band and inter-band transitions between the Landau levels. With an increase magnetic field, the resonant peaks give a blue-shift and reduce in their amplitudes. These results suggest a potential application of monolayer graphene in nanoscale electronic and magneto-optical devices.

  19. Neutral gas and diffuse interstellar bands in the LMC

    NASA Technical Reports Server (NTRS)

    Danks, Anthony C.; Penprase, Brian

    1994-01-01

    Tracing the dynamics of the neutral gas and observing diffuse interstellar bands in the LMC (Large Magellanic Cloud) was the focus of this study. The S/N values, a Quartz lamp exposure, a T horium Argon Comparision lamp exposure, and spectral plots for each star observed were taken. The stars observed were selected to sample the 30 Dor vicinty. NaI absorption profiles are included.

  20. Absorption spectroscopic studies of Np(IV) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, D. T.

    2004-01-01

    The complexation of neptunium (IV) with selected inorganic and organic ligands was studied as part of an investigation to establish key subsurface interactions between neptunium and biological systems. The prevalence of reducing environments in most subsurface migation scenarios, which are in many cases induced by biological activity, has increased the role and importance of Np(IV) as a key subsurface neptunium oxidation state. The biodegradation of larger organics that often coexist with actinides in the subsurface leads to the formation of many organic acids as transient products that, by complexation, play a key role in defining the fate and speciation ofmore » neptunium in biologically active systems. These often compete with inorganic complexes e.g. hydrolysis and phosphate. Herein we report the results of a series of complexation studies based on new band formation of the characteristic 960 nm band for Np(IV). Formation constants for Np(IV) complexes with phosphate, hydrolysis, succinate, acetohydroxamic acid, and acetate were determined. These results show the 960 nm absorption band to be very amenable to these types of complexation studies.« less

  1. Absorption spectra of PTCDI: A combined UV-Vis and TD-DFT study

    NASA Astrophysics Data System (ADS)

    Oltean, Mircea; Calborean, Adrian; Mile, George; Vidrighin, Mihai; Iosin, Monica; Leopold, Loredana; Maniu, Dana; Leopold, Nicolae; Chiş, Vasile

    2012-11-01

    Absorption spectra of PTCDI (3,4,9,10-perylene-tetracarboxylic-diimide) have been investigated in chloroform, N,N'-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). While no signature of assembled PTCDI molecules is observed in chloroform solution, distinct bands assigned to their aggregation have been identified in DMF and DMSO solutions. PTCDI monomers show very similar absorption patterns in chloroform and DMSO solutions. Experimental data, including the vibronic structure of the absorption spectra were explained based on the Franck-Condon approximation and quantum chemical results obtained at PBE0-DCP/6-31+G(d,p) level of theory. Geometry optimization of the first excited state leads to a nice agreement between the calculated adiabatic transition energies and experimental data.

  2. Correlation of an infrared absorption with carriers in rare-earth monoantimonides

    NASA Astrophysics Data System (ADS)

    Kwon, Y. S.; Jung, M. H.; Lee, K. R.; Kimura, S.; Suzuki, T.

    1997-09-01

    Dielectric constants spectra were obtained in the single crystals LaSb, PrSb, GdSb and DySb at several temperatures. The spectra for these crystals except for LaSb show Drude's behavior with a hump due to an anomalous absorption lying at about 0.25 eV. The inverse of effective electron number ( NIA) of the absorption is linear in temperature, and the NIA at each temperature is dependent on the square of the effective Bohr magneton of each rare-earth ion. The sum of the number of effective electrons due to Drude adsorption and that due to infrared absorption agree well with the number of carriers obtained from their band calculations or their dHvAs. Therefore, this absorption seems to be due to the intraband transition induced by the scattering between the spin of carriers and the localized magnetic moments at each site of rare-earth ion.

  3. Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Yanyu; Wang, Lifeng

    2014-08-01

    Periodic composite materials have many promising applications due to their unique ability to control the propagation of waves. Here, we report the existence and frequency tunability of complete elastic wave band gaps in bio-inspired periodic composites with nacre-like, brick-and-mortar microstructure. Numerical results show that complete band gaps in these periodic composites derive from local resonances or Bragg scattering, depending on the lattice angle and the volume fraction of each phase in the composites. The investigation of elastic wave propagation in finite periodic composites validates the simulated complete band gaps and further reveals the mechanisms leading to complete band gaps. Moreover, our results indicate that the topological arrangement of the mineral platelets and changes of material properties can be utilized to tune the evolution of complete band gaps. Our finding provides new opportunities to design mechanically robust periodic composite materials for wave absorption under hostile environments, such as for deep water applications.

  4. Sustainable p-type copper selenide solar material with ultra-large absorption coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Erica M.; Williams, Logan; Olvera, Alan

    We report the synthesis of CTSe, a p-type titanium copper selenide semiconductor. Its band gap (1.15 eV) and its ultra-large absorption coefficient (10 5 cm −1 ) in the entire visible range make it a promising Earth-abundant solar absorber material.

  5. Sustainable p-type copper selenide solar material with ultra-large absorption coefficient

    DOE PAGES

    Chen, Erica M.; Williams, Logan; Olvera, Alan; ...

    2018-01-01

    We report the synthesis of CTSe, a p-type titanium copper selenide semiconductor. Its band gap (1.15 eV) and its ultra-large absorption coefficient (10 5 cm −1 ) in the entire visible range make it a promising Earth-abundant solar absorber material.

  6. Oxygen detection using the laser diode absorption technique

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Fox, C. W.

    1991-01-01

    Accurate measurement of the concentration and flow rate of gaseous oxygen is becoming of greater importance. The detection technique presented is based on the principal of light absorption by the Oxygen A-Band. Oxygen molecules have characteristics which attenuate radiation in the 759-770 nm wavelength range. With an ability to measure changes in the relative light transmission to less than 0.01 percent, a sensitive optical gas detection system was configured. This system is smaller in size and light in weight, has low energy requirements and has a rapid response time. In this research program, the application of temperature tuning laser diodes and their ability to be wavelength shifted to a selected absorption spectral peak has allowed concentrations as low as 1300 ppm to be detected.

  7. Absorption bleaching of squarylium dye J aggregates via a two-photon excitation process

    NASA Astrophysics Data System (ADS)

    Furuki, Makoto; Tian, Minquan; Sato, Yasuhiro; Pu, Lyong Sun; Tatsuura, Satoshi; Abe, Shuji

    2001-08-01

    Squarylium dye J aggregates exhibit ultrafast nonlinear optical response of absorption saturation at the resonant wavelength of 770 nm. We studied the two-photon excitation process of J aggregates. By fluorescence measurement, we found the two-photon absorption band at 1.3 μm, which was different from that of the dye solution at 1.2 μm. Absorption saturation at 770 nm via a two-photon excitation process was observed by two-photon resonant excitation at 1.3 μm and also by off-resonant excitation at 1.55 μm, suggesting the possibility of J aggregates for optical switching materials working at the wavelength used in optical communications.

  8. Transient absorption study of two-photon excitation mechanism in the LH2 complex from purple bacterium Rhodobacter sphaeroides.

    PubMed

    Stepanenko, Ilya; Kompanetz, Viktor; Makhneva, Zoya; Chekalin, Sergey; Moskalenko, Andrei; Razjivin, Andrei

    2012-03-08

    The mechanism of two-photon excitation of a peripheral light-harvesting complex LH2 (B800-850) from purple bacterium Rhodobacter sphaeroides was explained on the basis of femtosecond transient absorption data. Fast bleaching of the B850 absorption band was measured under two-photon excitation by 1350 nm femtosecond pulses, showing fast subpicosecond arrival of excitation energy to B850 circular aggregates. Any spectral changes connected with the B800 absorption band of B800-BChl molecules were absent. A similar picture was observed under one-photon excitation of the LH2 complex by 675 nm femtosecond pulses. We believe these effects may be attributed to direct excitation of high-energy excitonic states of a B850 circular aggregate or its vibrational manifold in accordance with the model of Abe [Chem. Phys. 2001, 264, 355-363].

  9. A simulation study on terahertz absorption of liquid crystal mixture E7

    NASA Astrophysics Data System (ADS)

    Dong, Jian-qi; Cheng, Wen-qi; Li, Meng-ge; Wang, Kai-li; Chen, Ze-zhang; Ma, Heng

    2017-09-01

    A simulation work on a broad THz absorption of liquid crystal mixture E7 consisting of 5CB, 7CB, 8OCB and 5CT is reported. Based on the density functional theory, the molecular structures of the monomers were optimized and calculated using the Gaussian package with base set B3LYP and 6-311g. The results indicate that the simulation of the characteristic absorption spectra is accurate compared to the experimental and literature report in the infrared band. By analyzing contribution of the benzene ring, C-O and alkyl bonds on THz absorption, it is found that there are no significant effects from the cyano group and the alkyl radical. The addition of a benzene ring leads to an increase in absorption intensity and redshift. By discussing the atomic mass distribution and the structural symmetry of the monomers, a reason for the strong THz absorption of 8OCB is proposed.

  10. Observation of infrared absorption of InAs quantum dot structures in AlGaAs matrix toward high-efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Hirofumi; Watanabe, Katsuyuki; Kotani, Teruhisa; Izumi, Makoto; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-06-01

    In accordance with the detailed balance limit model of single-intermediate-band solar cells (IBSCs), the optimum matrix bandgap and IB–conduction band (CB) energy gap are ∼1.9 and 0.7 eV, respectively. We present the room-temperature polarized infrared absorption of 20 stacked InAs quantum dot (QD) structures in the Al0.32Ga0.68As matrix with a bandgap of ∼1.9 eV for the design of high-efficiency IBSCs by using a multipass waveguide geometry. We find that the IB–CB absorption is almost independent of the light polarization, and estimate the magnitude of the absorption per QD layer to be ∼0.01%. We also find that the IB–CB absorption edge of QD structures with a wide-gap matrix is ∼0.41 eV. These results indicate that both the significant increase in the magnitude of IB–CB absorption and the lower energy of the IB state for the higher IB–CB energy gap are necessary toward the realization of high-efficiency IBSCs.

  11. Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Ju; Yang, Kung-Hsun; Hsu, Shih-Chen; Huang, Michael H.

    2015-12-01

    Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths.Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars

  12. Temperature dependence of the NO3 absorption spectrum

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.

    1986-01-01

    The absorption spectrum of the gas-phase NO3 radical has been studied between 220 and 700 nm by using both flash photolysis and discharge flow reactors for the production of NO3. In the flash photolysis method, cross sections at the peak of the (0,0) band at 661.9 nm were measured relative to the cross section of ClONO2 at several different wavelengths. From the best current measurements of the ClONO2 spectrum, the NO3 cross section at 661.9 nm was determined to be (2.28 + or 0.34) x 10 to the -17th sq cm/molecule at 298 K. Measurements at 230 K indicated that the cross section increases by a factor of 1.18 at the peak of the (0,0) band. The discharge flow method was used both to obtain absolute cross sections at 661.9 nm and to obtain relative absorption spectra between 300 and 700 nm at 298 and 230 K. A value of (1.83 + or - 0.27) x 10 to the -17th sq cm/molecule was obtained for sigma NO3 at 661.9 nm at 298 K. Upper limits to the NO3 cross sections were also measured between 220 and 260 nm with the discharge flow method.

  13. Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, Lars

    2008-01-01

    We present the first ground-based detection of sodium absorption in the transmission spectrum of an extrasolar planet. Absorption due to the atmosphere of the extrasolar planet HD 189733b is detected in both lines of the Na I doublet. High spectral resolution observations were taken of 11 transits with the High Resolution Spectrograph (HRS) on the 9.2 m Hobby-Eberly Telescope (HET). The Na I absorption in the transmission spectrum due to HD 189733b is (- 67.2 +/- 20.7) × 10-5 deeper in the "narrow" spectral band that encompasses both lines relative to adjacent bands. The 1 σ error includes both random and systematic errors, and the detection is >3 σ. This amount of relative absorption in Na I for HD 189733b is ~3 times larger than that detected for HD 209458b by Charbonneau et al. (2002) and indicates that these two hot Jupiters may have significantly different atmospheric properties. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  14. Operational Observation of Australian Bioregions with Bands 8-19 of Modis

    NASA Astrophysics Data System (ADS)

    McAtee, B. K.; Gray, M.; Broomhall, M.; Lynch, M.; Fearns, P.

    2012-07-01

    Data from bands 1-7 are the most common bands of the MODIS instrument used for near-real time terrestrial earth observation operations in Australia. However, many of Australia's bioregions present unique scenarios which constitute a challenge for quantitative environmental remote sensing. We believe that data from MODIS bands 8-19 may provide significant benefit to Earth observation over particular bioregions of the Australian continent. Examples here include the use of band 8 in characterising aerosol optical depth over typically bright land surfaces and accounting for anomalous retrievals of atmospheric water vapour obtained using MOD05 based on the abundance of Australia's 'red dirt', which exhibits absorption features in the near infrared bands 17-19 of MODIS. Bioregion-focused applications such as those mentioned above have driven the development of automated processing, infrastructure for the atmospheric and BRDF correction of the first 19 bands of MODIS rather than only the first 7, which is more often the case. This work has been facilitated by the AusCover project which is the remote sensing component of the Terrestrial Ecosystem Research Network (TERN), itself a program designed to create a new generation of infrastructure for ecological study of the Australian landscape.

  15. Exciton Absorption Spectra by Linear Response Methods:Application to Conjugated Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosquera, Martin A.; Jackson, Nicholas E.; Fauvell, Thomas J.

    The theoretical description of the timeevolution of excitons requires, as an initial step, the calculation of their spectra, which has been inaccessible to most users due to the high computational scaling of conventional algorithms and accuracy issues caused by common density functionals. Previously (J. Chem. Phys. 2016, 144, 204105), we developed a simple method that resolves these issues. Our scheme is based on a two-step calculation in which a linear-response TDDFT calculation is used to generate orbitals perturbed by the excitonic state, and then a second linear-response TDDFT calculation is used to determine the spectrum of excitations relative to themore » excitonic state. Herein, we apply this theory to study near-infrared absorption spectra of excitons in oligomers of the ubiquitous conjugated polymers poly(3-hexylthiophene) (P3HT), poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV), and poly(benzodithiophene-thieno[3,4-b]thiophene) (PTB7). For P3HT and MEH-PPV oligomers, the calculated intense absorption bands converge at the longest wavelengths for 10 monomer units, and show strong consistency with experimental measurements. The calculations confirm that the exciton spectral features in MEH-PPV overlap with those of the bipolaron formation. In addition, our calculations identify the exciton absorption bands in transient absorption spectra measured by our group for oligomers (1, 2, and 3 units) of PTB7. For all of the cases studied, we report the dominant orbital excitations contributing to the optically active excited state-excited state transitions, and suggest a simple rule to identify absorption peaks at the longest wavelengths. We suggest our methodology could be considered for further evelopments in theoretical transient spectroscopy to include nonadiabatic effects, coherences, and to describe the formation of species such as charge-transfer states and polaron pairs.« less

  16. Enhanced Photoelectrochemical Water Splitting Behaviour of Tuned Band Gap CdSe QDs Sensitized LaB₆.

    PubMed

    Babu, M Soban; Sivanantham, A; Chakravarthi, B Barath; Kannan, R Sujith; Panda, Subhendu K; Berchmans, L John; Arya, S B; Sreedhar, Gosipathala

    2017-01-01

    We report the fabrication of tuned band gap quantum dots sensitized LaB₆ hybrid nanostructures and their application as a photoanode for photoelectrochemical water splitting. The lanthanum hexaboride (LaB₆) obtained by molten salt electrolysis method is sensitized with different sized CdSe quantum dots, which form a multiple-level hierarchical heterostructure and such design enhance the light absorption and charge carrier separation, which in turn showed higher photocurrent density compared to that of pristine LaB₆. When LaB₆ is sensitized with CdSe quantum dots of different band gaps, which have the absorption in the green and red (530 and 605 nm) regions in visible light, developed a ten times higher photocurrent density (11.0 mA cm(−2)) compared to that of pristine LaB6 (0.5 mA cm(−2) at 0.75 V vs. Ag/AgCl) in 1 M Na₂S electrolyte under illumination. These results prove that the tuned band gap quantum dots sensitized LaB₆ heterostructures are an ideal candidate for a photoanode in solar water splitting applications.

  17. Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Nakamura, Toru; Endo, Masaru; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2014-03-01

    We studied the near-band-edge optical responses of solution-processed CH3NH3PbI3 on mesoporous TiO2 electrodes, which is utilized in mesoscopic heterojunction solar cells. Photoluminescence (PL) and PL excitation spectra peaks appear at 1.60 and 1.64 eV, respectively. The transient absorption spectrum shows a negative peak at 1.61 eV owing to photobleaching at the band-gap energy, indicating a direct band-gap semiconductor. On the basis of the temperature-dependent PL and diffuse reflectance spectra, we clarified that the absorption tail at room temperature is explained in terms of an Urbach tail and consistently determined the band-gap energy to be ˜1.61 eV at room temperature.

  18. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3-micrometers Region: Role of Periphery

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2017-01-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3-micrometers absorption band. To this purpose we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 per cm range. The experimental spectra are compared with standard harmonic calculations, and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3-micrometers region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive dataset of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly-condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3-micrometers band, and on features such as the two-component emission character of this band and the 3-micrometers emission plateau.

  19. The Rovibrational Intensities of Five Absorption Bands of (12)C(16)O2 Between 5218 and 5349/cm

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Brown, Linda R.; Chackerian, Charles, Jr.; Freedman, Richard S.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Absolute line intensities, band intensities, and Herman-Wallis parameters were measured for the (01(sup 1)2)(sub I) from (00(sup 0)0)(sub I) perpendicular band of (12)C(16)O2 centered at 5315/cm, along with the three nearby associated hot bands: (10(sup 0)2)(sub II) from (01(sup 1)0)(sub I) at 5248/cm, (02(sup 2))(sub I) from (01(sup 1)0)(sub I) at 5291/cm, and (10(sup 0)2)(sub I) from (01(sup 1)0)(sub I) at 5349/cm. The nearby parallel hot band (30(sup 0))(sub I) from (10(sup 0)0)(sub II) at 5218/cm was also included in this study.

  20. Slow earthquakes in microseism frequency band (0.1-2 Hz) off the Kii peninsula

    NASA Astrophysics Data System (ADS)

    Kaneko, L.; Ide, S.; Nakano, M.

    2017-12-01

    Slow earthquakes are divided into deep tectonic tremors, very low frequency (VLF) events, and slow slip events (SSE), each of which is observed in a different frequency band. Tremors are observed above 2 Hz, and VLF signals are visible mainly in 0.01-0.05 Hz. It was generally very difficult to find signals of slow underground deformation at frequencies between them, i.e., 0.1-2Hz, where microseism noise is dominant. However, after a Mw 5.9 plate boundary earthquake off the Kii peninsula on April 1st, 2016, sufficiently large signals have been observed in the microseism band, accompanied with signals from active tremors, VLFEs, and SSEs by the ocean bottom seismometer network DONET maintained by JAMSTEC and NIED. This is the first observation of slow earthquakes in the microseism frequency band. Here we report the detection and location of events in this band, and compare them with the spatial and temporal distributions of ordinary tectonic tremors above 2 Hz and VLF events. We used continuous records of 20 broadband seismometers of DONET from April 1st to 12th. We detected events by calculating arrival time differences between stations using an envelope correlation method of Ide (2010). Unlike ordinary applications, we repeated analyses for seismograms bandpass-filtered in four separated frequency bands, 0.1-1, 1-2, 2-4, and 4-8 Hz. For each band, we successfully detected events and determined their hypocenter locations. Many VLF events have also been detected in this region in the frequency band of 0.03-0.05 Hz, with location and focal mechanism using a method of Nakano et al. (2008). In the 0.1-1 Hz microseism band, hypocenters were determined mainly on April 10th, when microseism noises are small and signal amplitudes are quite large. In several time windows, events were detected in all four bands, and located within the 2-sigma error ellipses, with similar source time functions. Sometimes, events were detected in two or three bands, suggesting wide variations